We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new insights into the origins of gravity, dark energy, and the arrow of time.
I. INTRODUCTION

The recently proposed Verlinde’s idea [1] linking the gravitational force to the entropic force has attracted much attention [2–9]. He derived Newton’s equation and Einstein’s equation by using the relation. Padmanabhan also proposed a similar idea [10] by using the equipartition energy.

In this paper, we conjecture that, in general, quantum entanglement of matter or the vacuum in the universe increases like the entropy and that a new kind of force (the ‘quantum entanglement force’, henceforth), similar to the entropic force, is associated with this tendency. (This force is different from the ‘entanglement force’ of polymer science.) From this perspective, gravity and dark energy are suggested to be types of the quantum entanglement force associated with the increase in the entanglement, similar to Verlinde’s entropic force which is linked to the second law of thermodynamics. Our model relies on the well-established quantum entanglement theory and uses fewer assumptions.

In a series of works [11–15], we have investigated the quantum informational nature of gravity by utilizing especially the quantum entanglement and Landauer’s principle. Using the concepts, we suggested that dark energy is related to the quantum entanglement of the vacuum fluctuation [11] at the cosmic horizon [16, 17] (or cosmic Hawking radiation [17]) and that the first law of black hole thermodynamics is derived from the second law of thermodynamics [12]. Recently, we also suggested [14, 15] that the classical Einstein gravity could be derived by considering quantum entanglement entropy and an information erasure at Rindler horizons and Jacobson’s idea linking the Einstein equation to thermodynamics. All our results imply that gravity has something to do with quantum information, especially quantum entanglement.

In Section II, we discuss the relation between entanglement and the holographic principle. In Section III, we introduce the concept of the quantum entanglement force and suggest that gravity is a kind of quantum entanglement force. In Section VI, the predictions of our dark energy theory are compared with the recent observational data. Section V contains discussions.

II. ENTANGLEMENT AND HOLOGRAPHY

In quantum information science, quantum entanglement is a central concept and a precious resource allowing various types of quantum information processing such as the quantum key distribution. Entanglement is a quantum nonlocal correlation that cannot be prepared by using local operations and classical communication. For pure states, the entanglement entropy S_{Ent} is a good measure of entanglement. For a bipartite system AB described by a full density matrix ρ_{AB}, S_{Ent} is the von Neumann entropy $S_{\text{Ent}} = -\text{Tr}(\rho_A \ln \rho_A)$ for a reduced density matrix $\rho_A \equiv \text{Tr}_B \rho_{AB}$ obtained by partial tracing part B. The partial tracing represents an ignorance of a subsystem.

For a typical example in quantum field theory, we consider a massless scalar field ϕ in a flat spacetime with the Hamiltonian [18]

$$H = \int d^3x (|\nabla \phi(x)|^2 + |\pi(x)|^2),$$

where $\pi(x)$ is the momentum of the field. For a spherical region as shown in Fig. 1, one can expand the field with spherical harmonics on a discrete radial coordinate with an UV-cutoff. An effective Hamiltonian for discretized field oscillators, ϕ_{lmj} [18], contains terms like $\phi_{lmj} \ast \phi_{lm(j+1)}$, where lmj are angular and radial indices. These terms represent a nearest-neighbor interaction along the r direction even at a causal horizon, which can generate entanglement between the inside and the outside of the spherical surface. One can find similar terms generating entanglement between two regions for more general spacetimes and fields. The entanglement of the generic quantum field vacuum has also been shown by using the Reeh-Schlieder theorem [19, 20].

In general, the vacuum entanglement entropy of a spherical region with a radius r with quantum fields can be expressed in the form of

$$S_{\text{ent}} = \frac{\beta r^2}{b^2},$$

where β is an $O(1)$ constant that depends on the nature of the field and b is the UV cutoff. By performing numerical calculations on a sphere lattice, Srednicki obtained a value $\beta = 0.3$ for the massless filed [18]. A similar value was obtained in Ref. [21, 22] for the entanglement entropy for a massless scalar field in the Friedmann universe. More generally, we have to add the contributions from other fields with $\beta = \beta_j$ [21]. If the j-th field has N_j spin degrees
The space around a massive object with mass M can be divided into two subspaces, the inside and the outside of an imaginary spherical surface Σ with a radius r. The surface Σ has the entanglement entropy $S_{\text{ent}} \propto r^2$ and entanglement energy $E_{\text{ent}} = \int_{\Sigma} T_{\text{ent}} dS_{\text{ent}}$. If a test particle with mass m is present, it feels an effective attractive force in the direction of the increase in the entanglement between the inside and the outside of the surface.

\[S_{\text{ent}} = \sum_j \beta_j N_j r^2 = \frac{\alpha r^2}{l_P^2}, \]
(3)

where the Planck length $l_P = \sqrt{\hbar G/c^3}$. If we choose $b = 1/M_P$, where M_P is the reduced Planck mass, then

\[\alpha = \frac{1}{8\pi} \sum_j \beta_j N_j. \]
(4)

Obtaining the value of α by using an explicit calculation in the future is important. The Bekenstein-Hawking entropy

\[S_{\text{BH}} = \frac{c^3 A}{4G}, \]
(5)

was conjectured to saturate the information bound that a region of space with a surface area A can contain [23]. If S_{ent} saturates this bound, i.e., $S_{\text{ent}} = S_{\text{BH}}$, then $\alpha = \pi$.

Why are we considering the quantum entanglement as an essential concept for gravity? First, interesting similarities exist between the holographic entropy and the entanglement entropy of a given surface. Both are proportional to the area, in general, and related to quantum nonlocality. Second, when a gravitational force exists, a Rindler horizon always exists for some observers, and it acts as an information barrier for the observers. This can lead to ignorance of information beyond the horizons, and the lost information can be naturally described by using the entanglement entropy [14]. The spacetime should bend itself so that the increase in the entanglement entropy compensates the lost information of matter. In Ref. [14] we suggested that the Einstein equation is an equation just describing this relation. Third, if we use the entanglement entropy of quantum fields instead of the thermal entropy of the holographic screen, we can understand the microstates of the screen and, in principle, explicitly calculate the relevant physical quantities by using quantum field theory in a curved spacetime. The microstates can be thought of as just quantum fields on the surface or their discretized oscillators. On the other hand, if we identify the horizon entropy to be the ordinary thermal entropy of quantum fields, we will encounter some problems. The thermal entropy is a local quantity that is incompatible with the holographic principle, and the thermal relaxation process associated with the entropy may be too slow to explain the holographic nature of a gravitational system with huge r. Finally, identifying the holographic entropy as the entanglement entropy could explain why the derivations of the Einstein equation are involved with information and, hence, quantum mechanics. All these facts indicate that quantum mechanics and gravity have an intrinsic connection and that the holographic principle itself has something to do with quantum entanglement.

III. ENTANGLEMENT ENERGY AND ENTANGLEMENT FORCE

Separable (i.e., not entangled) states are fragile in the sense that the states can be easily entangled with environments surrounding the states. A well-known example is the Schrödinger cat paradox [24]. In the paradox, no matter how
well we separate a box that contains the cat from its environment, we cannot fully block the information leakage of the cat toward the environment outside the box. Thus, even if we carefully prepare a superposition of the cat’s state \(|\text{dead cat}\rangle + |\text{live cat}\rangle\), the state easily gets entangled with the environment to be \(|\text{dead cat}\rangle|\text{env}_0\rangle + |\text{live cat}\rangle|\text{env}_1\rangle\), where \(|\text{env}_0\rangle\) and \(|\text{env}_1\rangle\) represent the corresponding states of the environment. This entanglement between the cat and the environment induces a decoherence of the cat’s effective density matrix when we trace out the environment states.

Although this process is \textit{reversible} in principle, practically, the reverse process is hardly observed on a macroscopic scale. Ironically, this is one of the reasons observing a controllable quantum entanglement in a laboratory and building a practical quantum computer using the entangled states is so difficult. The quantum system of interest uncontrollably gets so easily entangled with its environment and loses coherence within the system. Decoherence is also related to the emergence of the classical world from the quantum world \cite{24}.

That the entanglement in the universe is increasing in general, considering that quantum evolution of a density matrix is described by a unitary matrix \(U\) as \(\rho \rightarrow U\rho U\dagger\), which is reversible, might seem strange. This paradoxical situation is very similar to the case with thermal entropy. Even though the Schrödinger equation and the Einstein equation are time reversible, we see many time-irreversible phenomena in the macroscopic world, and the total entropy does not always decrease. One way of handling this ‘Loschmidt’s paradox’ is to assume that the early universe had a very small entropy due to, for example, inflation. Similarly, we can assume that the early universe began with a very small entanglement, too. Thus, we can expect the universe to have a strong tendency to increase the entanglement among its constituents (matter, quantum fields, spacetime), as well as the entropy. This might give us some new insights into the issue of the arrow of time. The direction of time (i.e., the arrow of time) seems to be the direction in which the entanglement increases. That is,

\[
\frac{dS_{\text{ent}}}{dt} \geq 0
\]

(6)

for a sufficiently large macroscopic system and its environment. In Ref. \cite{13} we argued that the time evolution of the universe was related to the expansion of the cosmic event horizon and its entanglement entropy.

Then, what is the relation between gravity and entanglement? In Ref. \cite{11}, authors pointed out that a cosmic horizon had a kind of thermal energy called entanglement energy related to \(S_{\text{ent}}\),

\[
dE_{\text{ent}} = k_B T_{\text{ent}} dS_{\text{ent}},
\]

(7)

and suggested that it was the origin of dark energy. The above condition could be interpreted as extremization of the entanglement entropy with ‘heat’ \(dE_{\text{ent}}\). This energy can be interpreted as the effective energy obtained by tracing out the Hilbert space describing the outside of the horizon. It is also the energy of the vacuum fluctuation around the horizon. In Ref. \cite{14} we pointed out that this energy was very similar to the equipartition energy of the horizon \cite{1, 25}.

If this energy is a function of parameters \(r_i\), one can define a generalized force

\[
F_{\text{ent}, i} = \frac{dE_{\text{ent}}}{dr_i} = k_B \partial r_i (\int_{\Sigma} T_{\text{ent}} dS_{\text{ent}}) = k_B T_{\text{ent}} \partial r_i (\int_{\Sigma} dS_{\text{ent}}),
\]

(8)

which is similar to the entropic force. We call this force a ‘quantum entanglement force’. At the last step, we assumed a surface integral on an \textit{isothermal} spherical surface (not equipotential) \(\Sigma\).

Now, we conjecture that the quantum entanglement of matter and vacuum in the universe tends to increase over time like entropy and that gravity is a kind of this quantum entanglement force, similar to Verlinde’s entropic force. Below we will reinterpret Verlinde’s theory in terms of our entanglement theory. To do this, we consider the situation in Fig. 1. First, one can integrate Eq. (7) on the isothermal spherical surface \(\Sigma\) with radius \(r\) surrounding a mass \(M\):

\[
E_{\text{ent}} = \int_{\Sigma} dE_{\text{ent}} = k_B T_{\text{ent}} \int_{\Sigma} dS_{\text{ent}} = \frac{\hbar G M \alpha r^2}{2 \pi c r^2} \ell_p^3 = \frac{\alpha M c^2}{2\pi},
\]

(9)

where we have used the Unruh temperature

\[
T_U = \frac{\hbar a}{2 \pi c k_B} = \frac{\hbar G M}{2 \pi c k_B r^2}
\]

(10)

for \(T_{\text{ent}}\), with \(a\) being the acceleration. In Ref. \cite{14} we identified \(T_U\) as the Rindler horizon temperature observed by a test particle under the influence of the mass \(M\). For the holographic condition \(E = M c^2\) to hold on the surface, \(\alpha\) should be \(2\pi\), which exceeds the Bekenstein bound. This discrepancy can be removed by using the relation \(E = 2k_B T_S\) of Padmanabhan \cite{26}, which seems to be valid when an active gravitational mass exits. In that case, we recover \(\alpha = \pi\).
Now, we move on to the derivation of gravity. Consider a small test particle with mass \(m \) at a distance \(r \) from the central object with mass \(M \). This will influence \(S_{\text{ent}} \) of the spherical surface (Fig. 1). Let us denote this dependency as \(S_{\text{ent}}(E_{\text{ent}}, r) \). Simply following Verlinde’s approach, we express the tendency to maximize the entanglement by using the condition

\[
\frac{dS_{\text{ent}}(E_{\text{ent}} + e^{V(r)m,r})}{dr} = \partial_r S_{\text{ent}} + \frac{\partial S_{\text{ent}}}{\partial E_{\text{ent}}} \frac{\partial (e^{V(r)m})}{\partial r} = 0,
\]

where \(e^{V(r)} \) represents the gravitational redshift with some function \(V(r) \). This equation means that \(S_{\text{ent}} \) increases as \(r \) increases in such a way that the newly-embodied mass \(m \) at \(r \) contributes \(e^{V}m \) to \(E_{\text{ent}} \). Thus,

\[
\partial_r S_{\text{ent}} = \frac{-\partial_r (e^{V(r)m})}{k_B T_{\text{ent}}}.
\]

Then, this equation and Eq. (7) lead to

\[
F_{\text{ent}} = k_B T_{\text{ent}} \partial_r \left(\int_{\Sigma} dS_{\text{ent}} \right) = k_B T_{\text{ent}} \partial_r S_{\text{ent}} = -me^{V(r)} \partial_r V(r).
\]

In the weak gravity limit \(GM \ll V \sim -GM/r \ll 1, e^{V} \approx 1 \), and

\[
F_{\text{ent}} \approx -m \partial_r V(r) = \frac{GMm}{r^2},
\]

which is just Newton’s gravity as Verlinde showed with the thermal entropy instead of \(S_{\text{ent}} \). Because we used the gravitational redshift for the derivation, the appearance of Newton’s gravity is not so surprising. What we want to show here is the relation between gravity felt by the test particle and quantum entanglement of the whole system. The test particle moves in a way that the total entanglement of the system maximizes.

IV. ENTANGLEMENT AND DARK ENERGY

In Ref. [11] we suggested that a cosmic causal horizon with a radius \(R_h \sim O(H^{-1}) \) had a kind of thermal energy \(E_h \sim T_h S_h \propto R_h \), and that this energy was the dark energy. Here, \(H \) is the Hubble parameter, \(T_h \) is the horizon temperature, and \(S_h \) is its entropy. To be specific, we considered the entanglement energy \(E_{\text{ent}} \) associated with the cosmic event horizon for \(E_h \). (Similar suggestions based on the Verlinde’s idea [27–30] have appeared recently.) Our theory can be easily extended with other cosmic horizons, such as apparent horizons.

In this section, we will redo the calculation in Ref. [11] except that we integrate Eq. (7) on the horizon’s surface instead of in the radial direction. We will see that this gives an \(E_{\text{ent}} \) that is a factor 2 smaller than that Ref. [11].

As before, by integrating \(dE_{\text{ent}} \) on the surface of the event horizon we obtain

\[
E_{\text{ent}} = \int_{\Sigma} dE_{\text{ent}} = k_B T_{\text{ent}} \int_{\Sigma} dS_{\text{ent}} = \frac{\hbar c}{2\pi R_h} \frac{\alpha R_h^2}{l_p^2} = \frac{c^4 \alpha R_h}{2\pi G},
\]

where we chose \(T_{\text{ent}} = \hbar c/2\pi k_B R_h \), the Hawking-Gibbons temperature of the horizon. Using Eq. (8), we find that this dark energy corresponds to a constant quantum entanglement force

\[
F_{\text{ent}} = \frac{dE_{\text{ent}}}{dR_h} = \frac{c^4 \alpha}{2\pi G},
\]

which makes the cosmological horizon expand. (A similar value for the entropic force was obtained independently by Easson et al. [30] using a surface action.) Thus, we can say that dark energy is an effective force of the universe associated with an increase of the quantum entanglement in the universe or in the area of the cosmic causal horizon. Now, the entanglement energy density of the cosmic event horizon is given by

\[
\rho_\Lambda = \frac{3E_{\text{ent}}}{4\pi R_h^4} = \frac{3c^4 \alpha}{8\pi^2 G R_h^2} = \frac{3c^3 \alpha M_p^2}{\pi \hbar R_h^2} = \frac{3d^2 c^3 M_p^2}{\hbar R_h^2},
\]

which has the form of holographic dark energy [31]. From the above equation, we immediately obtain a formula for the constant:

\[
d = \sqrt{\frac{\alpha}{\pi}}.
\]
If S_{ent} saturates the Bekenstein bound, then $\alpha = \pi$; hence, $d = 1$. Before our works the constant d determining the equation of state w_Λ of the dark energy and the final fate of the universe, was obtained only by observations in Ref. [11]. Theoretically, the value $d = 1$ is favored because it reproduces the de Sitter universe when the dark energy dominates.

One can compare predictions of our theory directly with current observational data. The equation of state for holographic dark energy is given by [31, 32]

$$w_0 = -\frac{1}{3} \left(1 + \frac{2\sqrt{\Omega_\Lambda^0}}{d}\right),$$

and its change rate at the present is [31, 33]

$$w_1 = \frac{\sqrt{\Omega_\Lambda^0 (1 - \Omega_\Lambda^0)}}{3d} \left(1 + \frac{2\sqrt{\Omega_\Lambda^0}}{d}\right),$$

where z is the redshift parameter, Ω_Λ^0 is the present value of the density parameter for dark energy, $w_\Lambda(z) \simeq w_0 + w_1(1 - R)$, and R is the scale factor of the universe. For $\Omega_\Lambda^0 = 0.73$ and $d = 1$, these equations give $w_0 = -0.903$ and $w_1 = 0.208$. These theoretical values for ω_Λ are comparable to the current observational data. Although the cosmological constant is most favored by observations, a large range of values is still allowed by the data for the time-dependent w_Λ. For example, the combination of WMAP (Wilkinson Microwave Anisotropy Probe) 7-year data, the baryon acoustic oscillation (BAO), Type Ia supernovae (SN), and the Hubble constant (H_0) data yields $\omega_0 = -0.925 \pm 0.13$ and $\omega_1 = -0.925 \pm 0.208$ at the 68% CL [34]. (Note that the observational uncertainty for w_1 is still large and that w_1 is 0.11 ± 0.7 in the WMAP-5 year data [35].)

Alternatively, we can rely on the quantum field theory to avoid the use of the Bekenstein bound. If we use the approximation $\beta_j \approx 0.3$ for all j and use $\sum_j N_j = 118$ of the standard model (SM) of particle physics in Eq. (4), we obtain $d = 0.67$, $w_0 \simeq -1.18$ and $w_1 \simeq 0.407$. For the minimal supersymmetric standard model (MSSM), $\sum_j N_j = 244$, $d = 0.962$, $\omega_0 \simeq -0.925$ and $\omega_1 \simeq 0.22$. Thus, our theory with quantum field theory is still in good agreement with the observational data and favors supersymmetric theories over non-supersymmetric ones. (Recall that the d values in this paper are half of those in Ref. [11].)

V. DISCUSSION

Understanding the entropic origin of gravity is important. In this work, we have tried to reconcile Verlinde’s theory with our theory based on quantum information. Many similarities exist between the two theories. If we identify the horizon entropy as the entanglement entropy and the equipartition energy as the entanglement energy, we can give the theory a better foundation.

We conjectured that the total quantum entanglement of matter and fields in the universe tends to increase over time and that an effective force is associated with this tendency. This force might be very general in the nature, and
we expect that one can measure this force in a quantum information experiment using quantum optics or solid-state quantum devices.

We also suggest that dark energy and, more fundamentally, gravity itself are quantum entanglement forces similar to Verlinde’s entropic force. If the entanglement entropy of the universe saturates the Bekenstein bound, this gives the holographic dark energy with an equation of state comparable to the current observational data. Our quantum informational interpretation of gravity may provide some new insights into the natures of gravity, dark energy, and the arrow of time.

ACKNOWLEDGEMENT

This work was supported by the Daejin University Research Grants 2015.