The electronic properties of graphene, a two-dimensional crystal of carbon atoms, are exceptionally novel. For instance the low-energy quasiparticles in graphene behave as massless chiral Dirac fermions which has led to the experimental observation of many interesting effects similar to those predicted in the relativistic regime. Graphene also has immense potential to be a key ingredient of new devices such as single molecule gas sensors, ballistic transistors, and spintronic devices. Bilayer graphene, which consists of two stacked monolayers and where the quasiparticles are massive chiral fermions, has a quadratic low-energy band structure which generates very different scattering properties from those of the monolayer. It also presents the unique property that a tunable band gap can be opened and controlled easily by a top gate. These properties have made bilayer graphene a subject of intense interest.

In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties.

Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane – gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.

Contents

1. Introduction
 1.1. A sheet of molecular chicken wire
 1.2. Massless Dirac fermions
 1.3. How it’s made
 1.4. Graphene devices
2. Graphene in a magnetic field

Corresponding author. Email: tapash@physics.umanitoba.ca
2.1. Landau levels in graphene 12
2.2. Anomalous quantum Hall effect 17
 2.2.1. Experimental observation of the quantum Hall effect in graphene 17
 2.2.2. Symmetry breaking: theoretical models 21
 2.2.3. Symmetry breaking: disorder effects 22
 2.2.4. Symmetry breaking: electron-electron interaction effects 24
 2.2.5. Symmetry breaking: lattice distortion 28
 2.2.6. Edge states in a strong magnetic field 29
2.3. Fractional quantum Hall effect 32
3. Bilayer graphene 35
 3.1. Sample fabrication and identification 37
 3.1.1. Optical identification of exfoliated bilayer graphene 37
 3.1.2. Atomic force microscopy, and miscellaneous diagnostic techniques 38
 3.1.3. Raman spectroscopy 40
 3.2. Tight-binding model 41
 3.2.1. Nearest neighbor and next-nearest neighbor models 41
 3.2.2. Trigonal warping 46
 3.2.3. Effective low-energy theory 47
 3.3. Band gap in bilayer graphene 48
 3.3.1. Band gap in the tight-binding model 48
 3.3.2. Experimental evidence of gap 51
 3.3.3. Ab-initio simulations 54
 3.4. Quantum Hall effect 56
 3.4.1. Experimental picture 56
 3.4.2. Tight-binding description of low-energy Landau levels 57
 3.4.3. Magneto-optical properties of bilayer graphene 60
 3.4.4. The effect of trigonal warping on the Landau level spectrum 63
 3.4.5. Electron-electron interactions in the zero-mode Landau levels 63
 3.5. Electron-electron interactions in bilayer graphene 65
 3.6. Phonon anomalies and electron-phonon coupling 68
 3.7. Device proposals utilizing bilayer graphene 70
4. Many-body and optical properties of graphene 71
 4.1. Electronic compressibility 72
 4.1.1. Monolayer graphene 72
 4.1.2. Bilayer graphene 75
 4.2. Plasmon dispersion in graphene 77
 4.2.1. Monolayer graphene 77
 4.2.2. Bilayer graphene 80
 4.3. Graphene in a strong electromagnetic field 83
5. Zero-field transport in graphene 85
 5.1. Basic experimental facts 86
 5.2. Tight-binding model and low-energy approximation 87
 5.2.1. Random fluctuations 90
 5.2.2. Density of states 91
 5.3. Theory of transport 92
 5.3.1. Boltzmann approach 92
 5.3.2. Kubo formalism 94
 5.3.3. Semiclassical approach: phenomenological scattering rate 96
 5.4. Perturbation theory for disorder 97
 5.5. Numerical simulations 99
 5.6. Field theory of diffusion: the nonlinear sigma model 100
 5.6.1. Saddle-point approximation 100
5.6. Two-particle Green’s function and diffusion
- 5.6.2. Two-particle Green’s function and diffusion
- 5.6.3. Scaling relation of the two-particle Green’s function
- 5.6.4. Diffusion coefficients
- 5.6.5. Scattering rate η for the gapless case

5.7. Metal-insulator transition

6. Confinement of electrons in graphene
- 6.1. Quantum dots in graphene islands
- 6.2. Electron trapping in graphene quantum dots
- 6.3. Quantum dots with sharp boundaries
- 6.4. Quantum dots in a magnetic field: Numerical studies
- 6.5. Magnetic quantum dots
- 6.6. Confinement of massive relativistic electrons in graphene
- 6.7. Quantum dots in bilayer graphene

7. Localized states at the edges of graphene nanoribbons
- 7.1. Localization of the electron density at the edges
- 7.2. Experimental evidence for localized edge states
- 7.3. Stabilization of the edge states
 - 7.3.1. The nearest-neighbor interactions
 - 7.3.2. Coulomb interactions
- 7.4. Spin ordering, symmetry and band gap
- 7.5. Band gap: confinement effect and edge shape
- 7.6. Graphene nanoribbons in an electric field
- 7.7. Nanoscale graphene
- 7.8. Bilayer graphene nanoribbons and the effects of edges

8. Manipulation of band gap and magnetic properties of graphene
- 8.1. Interaction of graphene with a substrate
- 8.2. Doping of graphene through adsorption
 - 8.2.1. Adsorption of non-metals on graphene: Experimental results
 - 8.2.2. Adsorption of non-metals on graphene: Theoretical approaches
 - 8.2.3. From graphene to graphane
 - 8.2.4. Adsorption of metal atoms on graphene: Experimental results
 - 8.2.5. Adsorption of metal atoms on graphene: Theoretical approaches
- 8.3. Lattice defects
 - 8.3.1. Vacancy defects
 - 8.3.2. Vacancy defects saturated by hydrogen
 - 8.3.3. Divacancy defects
 - 8.3.4. Crystallographic and chemisorption defects
 - 8.3.5. Substitutional doping of graphene
- 8.4. Functionalization of the edges

Acknowledgements

References
chemists, electrical engineers, and device specialists. Several thousand papers have been written in the past couple of years that have attempted to explain every aspect of the electronic properties of graphene. There are review articles, long and short (see, for example, [1–5]), special journal issues [6] and popular magazine articles (see, for example, [7]). This development at ‘Mozartian speed’ is primarily due to the fact that a two-dimensional system of electrons in graphene behaves rather uniquely as compared to its counterpart in semiconductor systems. In fact, many of the fundamental properties of graphene that were crucial for the present developments, were already reported in the early part of the past century, merely waiting to be confirmed experimentally until now.

In graphene, one finds a new class of low-dimensional system, only one atom thick, with vast potential for applications in future nanotechnology. Our review is organized as follows. In this section, we introduce graphene by describing its crystal structure, and discussing its band structure via the frequently-used tight-binding model. We also discuss the low-energy properties of this material, and in particular we focus on the linear (Dirac-like) nature of the energy dispersion near the edges of the Brillouin zone, and on the chiral nature of the low-energy electrons. We also briefly discuss fabrication techniques for graphene, and whet the appetite for study of this material by describing some of the devices utilizing the unique properties of graphene which have already been created in the laboratory.

Section 2 deals with the quantum Hall effect, i.e., quantization of Hall conductance as a function of the magnetic field or the electron density, that was initially discovered in conventional nonrelativistic two-dimensional electron systems. The effect is a direct manifestation of Landau quantization of electron dynamics. An electron system in graphene, being a two-dimensional system, also shows Landau quantization of electron motion and the corresponding quantum Hall effect, which has been observed experimentally. The relativistic massless nature of the energy dispersion law in graphene results in striking differences between the quantum Hall effect observed in graphene and in conventional two-dimensional systems. In graphene, quantum Hall effect can be observed even at room temperature, while in nonrelativistic systems it is observable only at low temperatures. The quantized Hall effect in graphene occurs not at integer values as in the conventional Hall effect, but at half-integer values. Such anomalous behavior of the quantum Hall effect is due to massless relativistic nature of the charge carrier dispersion and the electron-hole symmetry of the system. In addition to anomalous half-integer values of the Hall conductance a rich structure of Hall plateaus has been observed experimentally. This structure is associated with the lifting of valley and spin degeneracy of the Landau levels. Different many-body mechanisms of lifting of the degeneracy of the Landau levels have been proposed in the literature. These mechanisms are reviewed in detail. The specific features of the many-particle excitations of the quantum Hall states, the fractional quantum Hall effect in graphene and the unique structure of the quantum Hall state edge states are also discussed.

In Section 3, we discuss specific aspects of bilayer graphene, and try to highlight the similarities and differences between this and the monolayer material. We introduce experimental techniques for distinguishing the number of layers in a graphene flake. We present the tight-binding formalism in order to derive the quadratic low energy spectrum, and to discuss the influence of trigonal warping and the formation of a band gap. We describe the quantum Hall effect and the formation of the zero energy level with doubled degeneracy, which is unique to this system. The interactions between electrons are fascinating in this material, and several proper-
The interactions between electrons and phonons are also important (for example, in the context of Raman scattering experiments) so we briefly describe the phonon anomalies and the electron-phonon interaction. Lastly, we review some of the proposals for devices which utilize bilayer graphene in their design.

Electronic properties that are intimately related to electron-electron interactions, viz., the compressibility and plasmon dispersion in a two-dimensional electron gas show unique behavior in graphene. The compressibility of a two-dimensional electron gas is an important physical quantity that is deduced from the ground state energy. It provides important information about the electron correlations, the chemical potential, and the stability of the system, etc. In Section 4, we discuss the unique behavior of the electron compressibility in monolayer and bilayer graphene. In this section, we also describe the excitation spectra of graphene in the presence of the spin-orbit interaction within the random-phase approximation. The spin-orbit interaction opens a gap between the valence and conduction bands and between the intraband and inter-band electron-hole excitation continuum of the semimetal Dirac system. As a result, one sees a dramatic change in the long-wavelength dielectric function of the system. An undamped plasmon mode appears in the electron-hole continuum (EHC) gap reflecting the interplay between the intraband and interband electron correlations. In undoped bilayer graphene, the static screening effect is anisotropic and much stronger than that in monolayer graphene. The dynamic screening shows the properties of a Dirac gas in the low frequency limit and of Fermi gas in the high frequency limit. A similar transition from the Dirac gas to the Fermi gas is also observed in the plasmon spectrum. In doped bilayer graphene, the plasmon spectrum is quite similar to that of Fermi gas for momentum less than half the Fermi momentum while becoming softer at higher momentum. We close this section with a discussion of the properties of graphene in a strong external electromagnetic field. The possibility of inducing valley-polarized currents by irradiating gapped bilayer graphene is described.

In Section 5, we review the transport behavior of monolayer and bilayer graphene in the absence of an external magnetic field, focusing on properties in the vicinity of the charge neutrality points. Beginning with the classical Boltzmann approach we compare the latter with the more general linear-response (Kubo) approach. The effect of electron-electron and electron-phonon interaction as well as the effect of different types of disorder is discussed. Of all these effects disorder seems to be the most important one. We present and compare several schemes of approximation for disorder averaging, including a semiclassical approximation, perturbation theory, saddle-point approximation and nonlinear-sigma model calculations. Finally, the properties of a random gap and a related metal-insulator transition is investigated.

Quantum dots or artificial atoms [8, 9] are crucial building blocks in many nanoscale semiconductor applications. Their unique properties, such as superior transport and tunable optical spectra, are originated from their zero dimensionality, which results in discrete energy spectra and sharp density of states. In conventional ‘nonrelativistic’ semiconductor systems, the natural way to realize nanoscale quantum dots is through a confinement potential or as nanoscale islands of semiconductor material. In both cases the quantum dots have discrete energy spectra and electrons are localized within the quantum dot regions. In graphene, the massless relativistic nature of the dispersion law results in very unique properties of graphene quantum dots. That is, the above two approaches of realization of quantum dots have very different outcome in graphene. While the quantum dots as isolated islands of graphene have been successfully realized experimentally and
exist in graphene. This is due to Klein’s tunneling, which provides an efficient escape channel from a confinement potential of any strength. Therefore electrons in graphene cannot be localized by a confinement potential. Different approaches have been proposed to overcome this problem: generation of an electron effective mass through interaction with a substrate, introducing a confinement potential in a double layer system, in which electrons have non-zero mass under applied gate voltage, or considering special types of confinement potentials, e.g., smooth cylindrically symmetric potentials, for which not the problem of localization but the problem of efficient electron trapping is discussed. In Section 6, we review different approaches to overcome the Klein’s tunneling and realize graphene quantum dots through a confinement potential. Even for quantum dots realized as islands of materials, the graphene islands show some unique properties. Although the main manifestations of a two-dimensional quantization, such as the Coulomb blockade and discrete energy spectra, are observed in experiments, the graphene nanoscale islands show specific features. Such features are degenerate zero-energy edge states with unique magnetic properties, specific energy level statistics related to the Dirac billiard, and so on. These special properties of the nanoscale graphene islands are also discussed. Finally, we also present a brief review on quantum dots in bilayer graphene.

In Section 7, we review the band structure of graphene nanoribbons which is known to be modified by the presence of edges where the alteration of the sp2 network due to the mixture of the sp and sp2 hybridization occurs. The nature of the zigzag edges impose localization of the electron density with the maximum at the border carbon atoms leading to the formation of flat conduction and valence bands near the Fermi level when the wave vector, $k \geq 2\pi/3$. The localized states are spin-polarized and in case of ordering of the electron spin along the zigzag edges, graphene can be established in ferromagnetic or antiferromagnetic phases. The antiferromagnetic spin ordering of the localized states at the opposite zigzag edges breaks the sublattice symmetry of graphene that changes its band structure and opens a gap. Because the energetics, localization and spin ordering of the edge states can be modified by the size of graphene nanoribbons, edge geometry, orbital hybridization at the edges and an external electric field, their influence on the electronic and magnetic properties of graphene are discussed. Finally, we turn to finite-sized bilayer graphene systems, e.g., nanoribbons, and describe how the confinement and edge structures affect the properties of this system.

Graphene in the real world would interact with a substrate and the surrounding environment. If these interactions cause an imbalance of the charge or spin distribution between graphene sublattices or modify the graphene lattice, the sublattice or lattice symmetry of graphene will be broken, resulting in a change of the electronic and magnetic properties of the graphene. The edges of graphene are chemically active and prone to structural modifications and interactions with the gas dissolved in environment, thereby influencing the properties of graphene as well. Therefore, in Section 8, we discuss the influence of the changes brought by the external sources into the electronic and magnetic properties of graphene and prospects of their manipulation in a controllable way.

References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

15

REFERENCES

REFERENCES