Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields

Rong-Gen Cai, Bin Hu, Hong-Bo Zhang

Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
E-mail: cairg@itp.ac.cn hubin@itp.ac.cn hbzhang@itp.ac.cn

Abstract: Using the full radiation transfer function, we numerically calculate the CMB angular bispectrum seeded by the compensated magnetic scalar density mode. We find that, for the string inspired primordial magnetic fields characterized by index \(n_B = -2.9 \) and mean-field amplitude \(B_\lambda = 9 \) nG, the angular bispectrum is dominated by two primordial magnetic shapes. The first magnetic shape looks similar to the one from local-type primordial curvature perturbations, so both the amplitude and profile of the Komatsu-Spergel estimator (reduced bispectrum) seeded by this shape are almost the same as those of the primary CMB anisotropies. However, for different parameter sets \((l_1, l_2) \), this “local-type” reduced bispectrum oscillates around different asymptotic values in the high-\(l_3 \) regime because of the effect of the Lorentz force, which is exerted by the primordial magnetic fields on the charged baryons. This feature is different from the standard case where all modes approach to zero asymptotically in the high-\(l \) limit. On the other hand, the second magnetic shape appears only in the primordial magnetic field model. The amplitude of the Komatsu-Spergel estimator sourced by the second shape diverges in the low-\(l \) regime because of the negative slope of shape. In the high-\(l \) regime, this amplitude is approximately equal to that of the first estimator, but with a reversal phase.
1. Introduction

In the inflationary scenario [1], the quantum fluctuations of the scalar field(s) are responsible to generate the initial conditions for the Cosmic Microwave Background (CMB) anisotropies. The current observations [2] from large scale structures are consistent with an almost scale invariant, Gaussian primordial density perturbations generated during inflation. However, with the improvements of measurement precision, any small deviations from the Gaussian distribution enable us to distinguish different cosmological models. Like the role colliders play in particle physics, measurements of non-Gaussian features provide microscopic information on the interactions of the inflatons and/or curvatons. Constraining and detecting non-Gaussianity (NG) have become one of the major efforts in modern cosmology. A variety of potentially detectable forms of primordial non-Gaussian features from inflation models have been intensively investigated (see [3, 4] for a review). The effects of primordial non-Gaussian curvature perturbations on CMB anisotropies have also been studied in the recent papers [5, 6, 7, 8, 9, 10, 11, 12]. The current limitations on the primordial bispectra from WMAP-7yr data are $-10 < f_{\text{local}}^{\text{NL}} < 74$ and $-214 < f_{\text{equil}}^{\text{NL}} < 266$ at 95% CL [2, 8], where $f_{\text{local}}^{\text{NL}}$ and $f_{\text{equil}}^{\text{NL}}$ are the non-linear parameters of the “squeezed” and “equilateral” momentum configurations, respectively.

Except for the possible NG from the inflationary dynamics, the primordial NG might come from other mechanisms. One interesting possibility is that the non-Gaussianities are sourced by the primordial magnetic fields (PMFs) in the large scale structures [16, 17, 18]. The astrophysical observations about the spiral/elliptical galaxies and rich clusters indicate that our universe is permeated with large scale coherent magnetic fields with the magnitudes ranging from hundreds of nG to few μG [19, 20, 21, 22], however, their origins are still not yet fully understood. The dynamo mechanism explains the origin of the galactic magnetic fields with amplification of a small frozen-in seed field to the observed μG field through turbulence and differential rotation [23, 24]. And the gravitational adiabatic compression may generate the magnetic fields in clusters during the collapse of a protogalactic cloud [25, 26, 27]. Cosmological phase transitions in the early universe may produce the tiny magnetic seed fields, which are required by the above mentioned amplification mechanisms, such as the electroweak phase transition [28, 29], QCD phase transition [30, 31] and the inflation with the broken conformal invariance [32].

In recent years, intensive effort has been devoted to studying the imprints of magnetic fields on the CMB anisotropies, which are nicely reviewed in [33]. The contributions to the CMB angular power spectrum from the scalar perturbations induced by PMFs are investigated in [34, 35, 36, 39, 10, 11, 12, 13, 14], from the vector perturbations in [14, 70, 71, 13, 14] and from tensor mode in [71, 72, 73, 14, 14], respectively. Some other phenomena induced by PMFs, such as Faraday rotation, damping of Aflvén waves, effects of PMFs on seeds for large scale structures and on neutrino masses are investigated in [54, 55, 56, 57] and [58, 59], respectively. And the new constraints on PMFs from CMB anisotropy and large scale structure data are reported in [60, 61].

In the inflationary scenario, the NG signals come from the high order curvature perturbations. However, even at the lowest order, PMFs can still generate some non-Gaussian
features in the CMB anisotropies, since the magnetic energy density and anisotropic stress induced by PMFs are naturally non-Gaussian variables. Such signatures have been investigated in [63, 64, 65, 66, 50, 67, 68, 69], but for the homogeneous magnetic fields with fixed direction which break the spatial isotropy and result in the north-south asymmetry on the CMB sky. However, as pointed out in [17, 18], the stochastic PMFs are able to generate a distinctive non-Gaussian signal in the CMB anisotropies with an amplitude comparable with the one from the primary curvature perturbations.

The authors in [17, 18] analytically calculate the CMB bispectrum from the stochastic PMFs, but only in the Sachs-Wolfe regime \((l \leq 10)\). In this paper we calculate the angular bispectrum from scalar perturbations induced by PMFs with the full transfer function. Because the scale-invariant magnetic power spectra are strongly inspired by string cosmological model as a consequence of the breaking of conformal invariance during the pre-big bang phase [36, 37], following most of the literatures in this subject (for example, \(n_B \simeq -3\) in [17] and \(n_B = -2.9, \pm 2\) in [18]), in this paper we take the magnetic index \(n_B = -2.9\) and mean-field amplitude \(B_\lambda = 9\) nG. In this model, we find that the angular bispectrum is dominated by two primordial magnetic shapes. The first magnetic shape \(f^{(1)}(k, q, p)\) (5.9) looks similar to the one from local-type primordial curvature perturbations, so both the amplitude and profile of the Komatsu-Spergel estimator (reduced bispectrum) seeded by this shape are almost the same as those of the primary CMB anisotropies \([70, 105]\), (see Figure 4, 5, 7 and 8). However, for different parameter sets \((l_1, l_2)\), this “local-type” estimator \(b_{l_1l_2l_3}^{(1)}\) (5.18) oscillates around different asymptotic values in the high-\(l_3\) regime because of the effect of the Lorentz force, (see Figure 8 and 9). This feature is different from the standard case where all modes approach to zero asymptotically in the high-\(l\) limit.

On the other hand, the second magnetic shape \(f^{(2)}(k, q, p)\) (5.10) appears only in the primordial magnetic field model. However, the amplitude of the Komatsu-Spergel estimator \(b_{l_1l_2l_3}^{(2)}\) (5.19) sourced by the shape \(f^{(2)}(k, q, p)\) diverges in the low-\(l\) regime because of the negative slope of shape. In the high-\(l\) regime, this amplitude is approximately equal to that of the first estimator \(b_{l_1l_2l_3}^{(1)}\), but with a reversal phase, (see Figure 4, 10 and 11).

The rest of this paper is organized as follows. In section 2 we firstly present the Maxwell and conservation equations which govern the behaviors of electromagnetic fields in the curved spacetime. Then we calculate the primordial magnetic power spectrum induced by PMFs under the ideal magnetohydrodynamics approximation. The linearized scalar equations for each individual matter component in the Cold Dark Matter (CDM) model and the gravitational fields are given in section 3. In section 4, we derive two magnetic initial conditions in the deep radiation dominant era, and then calculate the CMB angular power spectrum numerically by using these initial conditions. The numerical calculations about CMB bispectrum signatures seeded by the compensated magnetic density mode are analyzed in section 5. Finally, we conclude in section 6.

2. Stochastic primordial magnetic fields

In this section, we firstly present the Maxwell and conservation equations which govern the evolution of electromagnetic fields in a curved spacetime. Then we calculate the primor-
dial magnetic power spectrum induced by PMFs under the ideal magnetohydrodynamics approximation.

2.1 Electromagnetic field in a curved spacetime

In this subsection, we present the Maxwell’s equations and conservation equations in a covariant formulism\(^1\). Following the formulism, the electromagnetic (Faraday) tensor \(F_{ab}\) can be decomposed into an electric and a magnetic component as

\[
F_{ab} = 2u_aE_b + \varepsilon_{abc}B^c,
\]

where \(E_a = F_{ab}u^b\) and \(B_a = \varepsilon_{abc}F^{bc}/2\) are respectively the electric and magnetic fields experienced by the observer with 4-velocity \(u^a\) \((E_a u^a = B_a u^a = 0)\). The Faraday tensor also determines the energy-momentum tensor of the electromagnetic field as

\[
T^{(em)}_{ab} = \frac{1}{4\pi} \left[-F_{ac}F^c_b - \frac{1}{4}F_{cd}F^{cd}g_{ab} \right].
\]

(2.2)

Combining (2.1) with (2.2), we arrive at the irreducible form of \(T^{(em)}_{ab}\)

\[
T^{(em)}_{ab} = \frac{1}{4\pi} \left[\frac{1}{2}(E^2 + B^2)u_a u_b + \frac{1}{6}(E^2 + B^2)h_{ab} + 2q_{(a}u_{b)} \right] + \pi^{(B)}_{ab}.
\]

(2.3)

Here \(E^2 = E_aE^a\) and \(B^2 = B_aB^a\) are the square magnitudes, \(q_{a} = \varepsilon_{abc}E^bB^c\) and \(\pi^{(B)}_{ab} = (-E_{(a}E_{b)} - B_{(a}B_{b)})/4\pi\) are the electromagnetic Poynting vector and anisotropic stress tensor, respectively \(^2\). In this paper, the round, squared and angled brackets denote the symmetric, anti-symmetric, and symmetric trace-free parts of a tensor, respectively.

In the standard tensor form the Maxwell equations read

\[
\nabla_b F^{ab} = J^a, \quad \nabla_{[c}F_{ab]} = 0 \iff \eta^{abcd}F_{bc;d} = 0,
\]

(2.4)

where \(J^a\) is the 4-current that sources the electromagnetic field. With respect to the \(u_a\)-congruence, the 4-current splits into its irreducible parts according to

\[
J^a = \mu u^a + J^a,\]

(2.5)

with \(\mu = -J_a u^a\), \(J^a = h^a_b J^b\) and \(J_a u^a = 0\). By virtue of the irreducible form of \(F_{ab}\) and \(J^a\), the timelike parts of the Maxwell equations read

\[
h^c_a \dot{E}_c = -\frac{2}{3} \Theta E_a + (\sigma_{ab} + \varepsilon_{abc}\omega^c)E^b + \varepsilon_{abc}A^b B^c + \text{curl} B_a - J_a, \quad (2.6)
\]

\[
h^c_a \dot{B}_c = -\frac{2}{3} \Theta B_a + (\sigma_{ab} + \varepsilon_{abc}\omega^c)B^b - \varepsilon_{abc}A^b E^c - \text{curl} E_a. \quad (2.7)
\]

\(^1\)The covariant approach to cosmological perturbations is shortly reviewed in Appendix A, and the definitions of covariant variables, such as 4-velocity \(u^a\), expansion rate \(\Theta\), etc. can be found there.

\(^2\)In this paper we take the unit conventions as \(c = \hbar = M_{pl} = 1 = 1/8\pi G = 1\).

\(^3\)Comparing with the conventional definition about the electromagnetic anisotropic tensor \(\pi^{(B)}_{ab}\), such as the one in the Jackson’s textbook \([71]\), the definition in this paper is different from the conventional one by a factor of \(1/4\pi\).
while their spacelike components provide the constraints

\[D_a E^a + 2 \omega_a B^a = \mu , \quad (2.8) \]
\[D_a B^a - 2 \omega_a E^a = 0 , \quad (2.9) \]

where \(D_a \) denotes the spatial derivatives with respect to projected metric \(h_{ab} \) and its definition is presented in (A.2).

Besides, the 4-current conservation law \(\nabla_a J^a = 0 \) gives the continuity equation of charge density

\[\dot{\mu} = -\Theta \mu - D_a J^a - A_a J^a . \quad (2.10) \]

The equations (2.6),(2.7),(2.8),(2.9),(2.10) form a complete set of equations which evolve the electromagnetic field in a curved spacetime.

2.2 Ideal MHD approximation in the Universe

A good conductor throughout the history of the Universe allows us to study the electromagnetic field in the universe within the limits of ideal magnetohydrodynamics (MHD) approximation. By means of Ohm’s law, the spatial currents \(J_a \) read

\[J_a = \varsigma E_a , \quad (2.11) \]

where \(\varsigma \) represents the scalar conductivity of the medium. The MHD approximation states that, in the limit \(\varsigma \to \infty \), we can neglect the electric field \(E_a \). Hence, the energy-momentum tensor of the residual magnetic field becomes

\[T^{(B)}_{ab} = \frac{1}{4\pi} \left[\frac{1}{2} B^2 u_a u_b + \frac{1}{6} D^2 h_{ab} \right] + \pi^{(B)}_{ab} , \quad (2.12) \]

with the anisotropic tensor \(\pi^{(B)}_{ab} = -B_{(a} B_{b)}/4\pi \). From the above expression we can identify the energy density of PMFs as \(\Delta^{(B)} = B^2/8\pi \). In addition, the Maxwell equations reduce into a single propagation equation

\[\dot{B}_a = \left(\sigma_{ab} + \varepsilon_{abc} \omega^c - \frac{2}{3} \Theta h_{ab} \right) B^b , \quad (2.13) \]

and three constraints

\[J_a = \text{curl} \ B_a + \varepsilon_{abc} B^b B^c , \quad (2.14) \]
\[\mu = 2 \omega_a B^a , \quad (2.15) \]
\[0 = D^a B_a . \quad (2.16) \]

2.3 Primordial power spectrum induced by PMFs

In this subsection, we present the primordial power spectrum induced by scalar perturbations from the stochastic PMFs. In the local rest frame \(u^a = (1, \vec{0}) \), \(B_a u^a = 0 \) leads to a
vanishing temporal component of B_a and then we have

\[B_a(t, \mathbf{x}) \rightarrow B_i(t, \mathbf{x}), \quad (2.17) \]

\[\hat{\pi}^{(B)}_{ab}(t, \mathbf{x}) \rightarrow \hat{\pi}^{(B)}_{ij}(t, \mathbf{x}) = \frac{1}{4\pi} \left[\frac{1}{3} B^k(t, \mathbf{x}) B_k(t, \mathbf{x}) \delta_{ij} - B_i(t, \mathbf{x}) B_j(t, \mathbf{x}) \right], \quad (2.18) \]

\[\Delta^{(B)}(t, \mathbf{x}) \rightarrow \Delta^{(B)}(t, \mathbf{x}) = \frac{B^i(t, \mathbf{x}) B_i(t, \mathbf{x})}{8\pi}. \quad (2.19) \]

Furthermore, in the ideal MHD regime we can separate out the time evolution of PMFs, $B_i(t, \mathbf{x}) = B_i(\mathbf{x})/a^2$. Hence, in what follows we concentrate on the time independent spatial component $B_i(\mathbf{x})$ and take them as statistically homogeneous and isotropic random fields. The transversal nature of PMFs leads to

\[\langle B_i(\mathbf{k}) B_j^*(\mathbf{k'}) \rangle = (2\pi)^3 \frac{P_{ij}}{2} P^{(B)}(k) \delta(\mathbf{k} - \mathbf{k'}), \quad k < k_D, \quad (2.20) \]

where $P_{ij} = \delta_{ij} - \hat{k}_i \hat{k}_j$ is the projector onto the transverse plane, k_D is the wavenumber of damping scale and $P^{(B)}(k)$ is the primordial magnetic power spectrum. For some specific magnetogenesis models $P^{(B)}(k)$ takes the power law form

\[P^{(B)}(k) = Ak^{n_B}. \quad (2.21) \]

In the above expression, we have adopted the Fourier transform convention as

\[B_i(\mathbf{x}) = \frac{1}{(2\pi)^3} \int d^3 k \tilde{B}_i(\mathbf{k}) e^{-i\mathbf{k} \cdot \mathbf{x}}, \quad (2.22) \]

\[\tilde{B}_i(\mathbf{k}) = \int d^3 x B_i(\mathbf{x}) e^{i\mathbf{k} \cdot \mathbf{x}}. \quad (2.23) \]

It is convenient to introduce the Fourier components of the PMF energy density contrast $\Delta^{(B)}_k$ and scalar part of the anisotropic stress tensor $\pi^{(B)}_k$ as

\[\Delta^{(B)}(\mathbf{x}) = \frac{1}{(2\pi)^3} \int d^3 k \Delta^{(B)}_k e^{-i\mathbf{k} \cdot \mathbf{x}}, \quad (2.24) \]

\[\pi^{(B)}_k(\mathbf{x}) = \frac{1}{(2\pi)^3} \int d^3 k \pi^{(B)}_k \left(\frac{1}{3} \delta_{ij} - \hat{k}_i \hat{k}_j \right) e^{-i\mathbf{k} \cdot \mathbf{x}}. \quad (2.25) \]

Thus, we obtain the expressions for $\Delta^{(B)}_k$ and $\pi^{(B)}_k$ from the momentum convolution

\[\Delta^{(B)}_k = \frac{1}{8\pi} \int \frac{d^3 p}{(2\pi)^3} \tilde{B}^i(\mathbf{p}) \tilde{B}_i(\mathbf{k} - \mathbf{p}), \quad (2.26) \]

\[\pi^{(B)}_k = \frac{3}{8\pi} \int \frac{d^3 p}{(2\pi)^3} \left[\hat{k}_i \tilde{B}^i(\mathbf{p}) \hat{k}^j \tilde{B}_j(\mathbf{k} - \mathbf{p}) - \frac{1}{3} \tilde{B}^i(\mathbf{p}) \tilde{B}_i(\mathbf{k} - \mathbf{p}) \right]. \quad (2.27) \]

Since we are interested in the PMFs in the linear perturbation regime, we therefore define the magnetic comoving mean-field amplitude by smoothing over a Gaussian sphere of the comoving radius $\lambda = 1$ Mpc ($f_k = e^{-\lambda^2 k^2/2}$) as

\[\langle B_i(\mathbf{x}) B_i(\mathbf{x}) \rangle|_\lambda = B^2_\lambda. \quad (2.28) \]
For the power law model (2.21), \(B^2 \) can be given by the Fourier transform of the product of the power spectrum \(P^{(B)}(k) \) and the square of the filter transform \(f_k \),

\[
B^2 = \frac{2}{(2\pi)^4} \int d^3k P^{(B)}(k) |f_k|^2 \simeq \frac{2A}{(2\pi)^2} \frac{1}{\lambda^{n_B+3}} \Gamma \left(\frac{n_B+3}{2} \right), \tag{2.29}
\]

where we require the spectral index \(n_B > -3 \) to prevent the infrared divergence at the power spectrum level. Plugging (2.29) into (2.20), we arrive at

\[
\langle B_i(k) B_j^*(k') \rangle = (2\pi)^3 \frac{P_{ij}}{2} \frac{2\Gamma(\frac{n_B+5}{2})}{k^{n_B+3}} \delta(k-k'), \quad k < k_D, \tag{2.30}
\]

where \(k_D = 2\pi/\lambda \). For all scales smaller than the damping scale (\(k > k_D \simeq 4.5 \text{ Mpc}^{-1} \)) the spectrum vanishes.

Furthermore, we can obtain the two-point correlation functions for \(\Delta^{(B)}_k \) and \(\pi^{(B)}_k \) by using the Wick theorem

\[
\langle \Delta^{(B)}(k) \Delta^{(B)*}(k') \rangle = \frac{\delta(k-k')}{128\pi^2} \int d^3p \quad P^{(B)}(p) P^{(B)}(|k-p|) (1 + \mu^2), \tag{2.31}
\]

\[
\langle \pi^{(B)}(k) \pi^{(B)*}(k') \rangle = \frac{\delta(k-k')}{32\pi^2} \int d^3p \quad P^{(B)}(p) P^{(B)}(|k-p|)
\]

\[
\left[1 - \frac{3}{4} \gamma^2 + \frac{9}{4} \gamma \beta + \frac{3}{4} \gamma \beta \mu + \frac{1}{4} \mu^2 \right], \tag{2.32}
\]

where \(\mu = \hat{p} \cdot (\hat{k} - \hat{p}) \), \(\gamma = \hat{k} \cdot \hat{p} \) and \(\beta = \hat{k} \cdot (\hat{k} - \hat{p}) \). Following most of the literatures in this subject, and also due to that the nearly scale-invariant magnetic power spectra are strongly inspired by the string cosmological models as a consequence of the breaking of conformal invariance during the pre-big bang phase \[36, 37\], we take \(n_B = -2.9 \) in the following calculations. Ignoring the cutoff in the definitions of \(P^{(B)} \) allows us to integrate (2.31) and (2.32) semi-analytically \[46\]

\[
P_{\Delta_B}(k) \simeq \frac{42.37}{16} \left[\frac{(2\pi)^{n_B+2} B^2_\lambda}{2\Gamma(\frac{n_B+3}{2}) \rho(\gamma)} \right]^2 \left(\frac{k}{k_\lambda} \right)^{2n_B+6}, \tag{2.33}
\]

\[
P_{\pi_B}(k) \simeq \frac{9 \times 14.55}{4} \left[\frac{(2\pi)^{n_B+2} B^2_\lambda}{2\Gamma(\frac{n_B+3}{2}) \rho(\gamma)} \right]^2 \left(\frac{k}{k_\lambda} \right)^{2n_B+6}, \tag{2.34}
\]

where we have used the convention about dimensionless power spectrum

\[
\langle X(k) X^*(k') \rangle = 2\pi^2 (2\pi)^3 \delta(k-k') k^{-3} P_X(k), \quad X = \Delta_B, \pi_B. \tag{2.35}
\]

3. Basic equations

In this section we present the magnetic linearized scalar equations in Fourier space\[4\]. Firstly, we define the scalar-valued harmonic function on the exact Friedmann-Robertson-Walker (FRW) background

\[
a^2 D^2 Q^{(0)}(k) + k^2 Q^{(0)}(k) = 0, \quad \dot{Q}^{(0)}(k) = 0, \tag{3.1}
\]

\[\text{The set of the linear equations for all matter components in the coordinate space can be found in Appendix \[B\].} \]
where \(a \) is the scale factor and the superscript \((0)\) represents the scalar mode. The covariant temporal and spatial derivatives are defined in (A.2). Arming with the scalar harmonics, we can calculate the rank-1 Projected Symmetric and Trace-Free (PSTF) tensors by virtue of the recursion relation

\[
Q_{A_l}^{(0)}(k) = -\frac{a}{k} D_{(A_l} Q_{A_{l-1})}^{(0)}(k) .
\]

(3.2)

Another useful relation is

\[
D^a Q_{A_l}^{(0)}(k) = \frac{k}{a} \frac{l}{(2l - 1)} \left[1 - (l^2 - 1) \frac{K}{k^2} \right] Q_{A_{l-1}}^{(0)}(k) ,
\]

(3.3)

where the constant \(K \) is related to the spatial geometry of the universe (\(K = 0, +1, -1 \) corresponds to a flat, closed and open universe, respectively). In the above expressions, we have used the covariant spherical multipole expansion

\[
f(x^a, p^a) = \sum_{l=0}^{\infty} F_{A_l}(x^a, E)e^{A_l} = F(E) + F_a(E)e^a + F_{ab}(E)e^ae^b + \cdots ,
\]

(3.4)

where the PSTF tensor reads \(F_{A_l}(E) = F_{(a_1a_2\ldots a_l)}(E) \).

Next, we expand all dynamical variables in terms of the harmonic tensors, which is similar to the Fourier series expansion. For the multipoles of intensity brightness of photon \(I_{A_l} \) and neutrino \(G_{A_l} \), we have

\[
I_{A_l} = I \sum_k \left(\prod_{n=0}^{l} \kappa_n^{(0)} \right)^{-1} \mathcal{I}_{l}^{(0)}(k) Q_{A_l}^{(0)}(k) , \quad l \geq 1 ,
\]

(3.5)

\[
G_{A_l} = G \sum_k \left(\prod_{n=0}^{l} \kappa_n^{(0)} \right)^{-1} \mathcal{G}_{l}^{(0)}(k) Q_{A_l}^{(0)}(k) , \quad l \geq 1 .
\]

(3.6)

where \(I = \rho^{(\gamma)} \), \(G = \rho^{(\nu)} \) and \(\kappa_l^{(m)} = [1 - (l^2 - 1 - m)K/k^2]^{1/2} \) for \(l \geq m \). For the sake of briefness, we will suppress the scalar superscript \((0)\) and momentum \(k \) implicitly in \(Q_{A_l}^{(0)}(k) \), \(\mathcal{I}_{l}^{(0)}(k) \) and \(\mathcal{G}_{l}^{(0)}(k) \) in the rest part of our paper. And for other gauge-invariant variables, we have

\[
\Delta^{(i)}_a = \frac{aD_{ab}^{(i)}}{\rho^{(i)}} = -\sum_k k \Delta^{(i)}_k Q_a ,
\]

(3.7)

\[
q^{(i)}_a = \rho^{(i)} \sum_k q^{(i)}_k Q_a ,
\]

(3.8)

\[
q^{(i)}_a = \sum_k q^{(i)}_k Q_a ,
\]

(3.9)

\[
\pi^{(i)}_{ab} = \rho^{(i)} \sum_k \pi^{(i)}_{ab} Q_{ab} ,
\]

(3.10)

\[
Z_a = -\sum_k \frac{k^2}{a} Z_{k} Q_a ,
\]

(3.11)

\[
E_{ab} = -\sum_k \frac{k^2}{a^2} E_{k} Q_{ab} ,
\]

(3.12)
\[\sigma_{ab} = - \sum_k \frac{k}{a} \sigma k Q_{ab}, \quad (3.13) \]

\[A_a = \sum_k \frac{k}{a} A_k Q_a, \quad (3.14) \]

\[\pi_{ab}^{(B)} = \rho^{(\gamma)} \sum_k \pi_k^{(B)} Q_{ab}, \quad (3.15) \]

\[\Delta_a^{(B)} = \frac{a D_{ab}^{(B)}}{\rho^{(\gamma)}} = - \sum_k k \Delta_k^{(B)} Q_a, \quad (3.16) \]

where the superscript \((i)\) denotes photon \((\gamma)\), massless neutrino \((\nu)\), baryon \((b)\) and Cold Dark Matter \((c)\), respectively. Since \(\rho^{(B)}\) vanishes at the background level, in \((3.16)\) and \((3.15)\) we therefore normalize \(\pi_{ab}^{(B)}\) and \(\Delta_a^{(B)}\) by photon density \(\rho^{(\gamma)}\). In the above conventions we have

\[I_0 = \Delta_k^{(\gamma)}, \quad I_1 = q_k^{(\nu)}, \quad I_2 = \pi_k^{(\gamma)}, \quad (3.17) \]

\[G_0 = \Delta_k^{(\nu)}, \quad G_1 = q_k^{(\gamma)}, \quad G_2 = \pi_k^{(\nu)}. \quad (3.18) \]

We are now ready to derive the scalar multipole equations for all matter components.

3.1 Photons

From \((B.9)\), the complete Boltzmann hierarchies for the total intensity of photon are

\[\frac{\dot{I}_l}{a} = \frac{k}{2l+1} \left[\frac{l+1}{2l+1} \kappa_{l+1}^{(0)} \mathcal{I}_{l+1} - \frac{l}{2l+1} \kappa_l^{(0)} \mathcal{I}_{l-1} \right] + 4 \hbar \delta_{00} + \frac{4k}{3} A_k \delta_{l1} - \frac{8k}{15} \kappa_2^{(0)} \sigma_k \delta_{l2} \]

\[= -n_e \sigma_T \left[\mathcal{I}_l - \mathcal{I}_0 \delta_{00} - \frac{4}{3} q_k^{(b)} \delta_{l1} - \frac{1}{10} \mathcal{I}_2 \delta_{l2} \right], \quad (3.19) \]

where \(\dot{h} = (k Z_k/a - \Theta A_k)/3\), the dot is derivative with respect to cosmic time \(t\) and \(n_e \sigma_T\) is the differential optical depth of the Thompson scattering. The first three hierarchy equations are

\[\frac{\dot{\Delta}_k^{(\gamma)}}{a} + \frac{k}{3} \left(\frac{4}{3} Z_k + q_k^{(\gamma)} \right) - \frac{4}{3} \Theta A_k = 0, \quad (3.20) \]

for the monopole case \((l = 0)\),

\[\frac{\dot{q}_k^{(\gamma)}}{a} \frac{1}{3} \left(2 \pi_k^{(\gamma)} - \Delta_k^{(\gamma)} + 4 A_k \right) = n_e \sigma_T \left(\frac{4}{3} \sigma_k^{(b)} - q_k^{(\gamma)} \right), \quad (3.21) \]

for the dipole case \((l = 1)\), and

\[\frac{\dot{\pi}_k^{(\gamma)}}{a} \frac{3}{5} \mathcal{I}_3 - \frac{2}{5} q_k^{(\gamma)} - \frac{8}{15} \sigma_k = - \frac{9}{10} n_e \sigma_T \pi_k^{(\gamma)}, \quad (3.22) \]

for the quadrupole case, respectively.
\subsection*{3.2 Massless Neutrinos}

Because the massless neutrino only gravitate, the Boltzmann hierarchies for the total intensity is similar with the one for photons except that in the right hand side, the Thompson scattering term vanishes:

\begin{equation}
\dot{G}_l + \frac{k}{a} \left[\frac{(l+1)(l+2)}{2(l+1)} \kappa_{l+1}^{(0)} G_{l+1} - \frac{l}{(2l+1)} \kappa_l^{(0)} G_{l-1} \right] + 4 \delta_{l0} + \frac{4}{3} k A_k \delta_{l1} - \frac{8}{15} k \kappa_2^{(0)} \sigma_k \delta_{l2} = 0. \tag{3.23}
\end{equation}

Because the massless neutrinos behave like collisionless relativistic particles, we treat them as the improved fluid, i.e. we need expand in the multipole series to octupole at least. So in what follows we list the first four hierarchies:

monopole ($l = 0$)

\begin{equation}
\dot{\Delta}^{(\nu)}_k + \frac{k}{a} \left[4 \frac{Z}{a} + q^{(\nu)}_k \right] - \frac{4}{3} \Theta A_k = 0, \tag{3.24}
\end{equation}

dipole ($l = 1$)

\begin{equation}
\dot{q}^{(\nu)}_k + \frac{1}{3} k \left(2 \pi_1^{(\nu)} - \Delta^{(\nu)}_k + 4 A_k \right) = 0, \tag{3.25}
\end{equation}

quadrupole ($l = 2$)

\begin{equation}
\dot{\pi}^{(\nu)}_k + \frac{3}{5} k \dot{G}_3 - \frac{2}{5} k q^{(\nu)}_k - \frac{8}{15} k \sigma_k = 0, \tag{3.26}
\end{equation}

octupole ($l = 3$)

\begin{equation}
\dot{\sigma}^{(\nu)}_k = \frac{k}{a} \frac{3}{7} \pi^{(\nu)}_k. \tag{3.27}
\end{equation}

\subsection*{3.3 Bayrons}

For baryons and CDM we use the fluid approximation and neglect their anisotropic stress tensors, i.e. we characterize baryons and CDM only by the energy densities and velocities. For baryon density contrast we have

\begin{equation}
\dot{\Delta}^{(b)}_k + \left(1 + \frac{\rho^{(b)}}{\rho^{(b)}} \right) \left[\frac{k}{a} (Z_k + v^{(b)}_k) - \Theta A_k \right] + \left(c_s^2 - \frac{\rho^{(b)}}{\rho^{(b)}} \right) \Theta \Delta^{(b)}_k = 0, \tag{3.28}
\end{equation}

where we use $D_{\alpha p}^{(b)} = c_s^2 D_{\alpha p}^{(b)}$. The baryon velocity equation reads

\begin{equation}
\begin{aligned}
&\left(1 + \frac{\rho^{(b)}}{\rho^{(b)}} \right) \left[\dot{v}^{(b)}_k + \frac{1}{3} (1 - 3c_s^2) \Theta v^{(b)}_k + \frac{k}{a} A_k \right] - \frac{k}{a} c_s^2 \Delta^{(b)}_k = \\
&- \frac{1}{\rho^{(b)}} \left[n_e \sigma T \rho^{(\gamma)} \left(\frac{4}{3} v^{(b)}_k - q^{(\gamma)}_k \right) + \frac{k}{3} \rho^{(\gamma)} \left(2 \pi^{(B)}_k - \Delta^{(B)}_k \right) \right], \tag{3.29}
\end{aligned}
\end{equation}

where the first term in the right hand side denotes the usual Thompson scattering and the second new term for the Lorentz force from PMFs.
3.4 Cold Dark Matter

For CDM we have

\[\dot{\Delta}_k^{(c)} + \frac{k}{a} (Z_k + \dot{v}_k^{(c)}) - \Theta A_k = 0, \]

(3.30)

and

\[\dot{v}_k^{(c)} + \frac{1}{3} \Theta v_k^{(c)} + \frac{k}{a} A_k = 0, \]

(3.31)

respectively.

3.5 Gravitational equations

The evolution equations of gravitational field read

\[\ddot{Z}_k + \frac{\Theta}{3} Z_k + \frac{a}{2k} \left[2(\rho^{(\gamma)} \Delta_k^{(\gamma)} + \rho^{(\nu)} \Delta_k^{(\nu)}) + \rho^{(b)} (1 + 3c_s^2) \Delta_k^{(b)} + \rho^{(c)} \Delta_k^{(c)} + 2\rho^{(\gamma)} \Delta_k^{(B)} \right] \]

\[- \frac{3a}{2k} \left[\frac{4}{3} (\rho^{(\gamma)} + \rho^{(\nu)}) + \rho^{(c)} + \rho^{(b)} + p^{(b)} \right] A_k - \frac{k}{a} A_k = 0, \]

(3.32)

\[\dot{\mathcal{E}}_k + \frac{\Theta}{3} \mathcal{E}_k + \frac{a}{2k} \left[(\rho + p) \sigma_k + \rho^{(i)} q_k^{(i)} \right] \]

\[+ \frac{a^2}{6k^2} \Theta \left[3 \left(\rho^{(i)} + p^{(i)} \right) - \rho^{(i)} \right] \pi_k^{(i)} - \frac{a^2}{2k^2} \rho^{(i)} \pi_k^{(i)} = 0, \]

(3.33)

\[\frac{k}{a} \left(\dot{\sigma}_k + \frac{\Theta}{3} \sigma_k \right) + \frac{k^2}{a^2} (\ddot{Z}_k - A_k) + \frac{1}{2} \left(\rho^{(\gamma)} \sigma_k^{(\gamma)} + \rho^{(\nu)} \sigma_k^{(\nu)} + \rho^{(\gamma)} \sigma_k^{(B)} \right) = 0. \]

(3.34)

And the corresponding constraint equations are

\[2\mathcal{E}_k - \frac{a^2}{k^2} \left(\rho^{(i)} \pi_k^{(i)} + \rho^{(i)} \Delta_k^{(i)} \right) - \frac{a^3}{k^3} \Theta \rho^{(i)} q_k^{(i)} = 0, \]

(3.35)

\[\frac{2k^2}{3a^2} (Z_k - \sigma_k) + \rho^{(i)} q_k^{(i)} = 0. \]

(3.36)

4. Compensated magnetic initial conditions and CMB power spectrum

In this section, we analytically extract the scalar modes seeded by PMFs in the deep radiation dominated era. Then we numerically calculate the CMB angular power spectrum by using two compensated magnetic initial conditions.

4.1 Equations in the tight-coupling approximation

In this subsection we propagate the covariant equations in the zero-acceleration frame, in which the CDM velocity vanishes. For the density contrast of different species, we have

\[\Delta_k^{(\gamma)'} + k \left(\frac{4}{3} Z_k + q_k^{(\gamma)} \right) = 0, \]

(4.1)

\[\Delta_k^{(\nu)'} + k \left(\frac{4}{3} Z_k + q_k^{(\nu)} \right) = 0, \]

(4.2)
\[\Delta_k^{(b)'} + k \left(Z_k + v_k^{(b)} \right) = 0, \quad (4.3) \]

\[\Delta_k^{(c)'} + k Z_k = 0, \quad (4.4) \]

where \(\eta = d/d\eta \) is the derivative with respect to the conformal time \(\eta \). For simplicity, we also set the pressure and sound-speed of baryon fluid to zero \((p^{(b)} = c_s^2 = 0). \)

In the deep radiation dominant era, photons are tightly coupled with ionized baryons through the Thomson scattering. This allows us to deal with them as a single baryon-photon fluid with a common fluid velocity \(q_k^{(b)} \). Furthermore, PMFs also exert the Lorentz force onto the baryon-photon fluid. Hence, under the tight-coupling approximation \((q_k^{(\gamma)} \approx q_k^{(\gamma)} \approx 4v_k^{(b)}/3), \) the velocity equation of the baryon-photon fluid takes the following form

\[q_k^{(\gamma)'} + \frac{\mathcal{H}}{(1 + R)} q_k^{(\gamma)} - \frac{k R}{3(1 + R)} \Delta_k^{(\gamma)} + \frac{k R}{3(1 + R)} (2\pi_k^{(B)} - \Delta_k^{(B)}) = 0, \quad (4.5) \]

where \(\mathcal{H} = a'/a \) is the conformal Hubble constant and \(R = 4\rho^{(\gamma)}/3\rho^{(b)} \) is the photon to baryon ratio.

Since the massless neutrinos behave as collisionless relativistic particles, they can preserve the non-vanishing octupole signals

\[q_k^{(\nu)'} + \frac{k}{3} (2\pi_k^{(\nu)} - \Delta_k^{(\nu)}) = 0, \quad (4.6) \]

\[\Delta_k^{(\nu)'} + k Z_k^{(\nu)} = 0, \quad (4.7) \]

\[\frac{15}{k^2} \Delta_k^{(\nu)'} + \pi_k^{(\nu)} = 0. \quad (4.8) \]

The gravitational field equations in the zero-acceleration frame read

\[Z_k' + \mathcal{H} Z_k + \frac{3\mathcal{H}^2}{k} \left[R_\gamma \Delta_k^{(\gamma)} + R_\nu \Delta_k^{(\nu)} + R_c \Delta_k^{(c)} + \frac{1}{2} R_b \Delta_k^{(b)} \right] = 0, \quad (4.9) \]

\[\mathcal{E}_k' + \mathcal{H} \mathcal{E}_k + \frac{3\mathcal{H}^2}{2k} \left[\frac{4}{3} \sigma_k^{(\gamma)} + R_\gamma \pi_k^{(\gamma)} + R_\nu \pi_k^{(\nu)} + R_b \pi_k^{(b)} \right] + \frac{9\mathcal{H}^3}{2k^2} \left[R_\gamma \pi_k^{(B)} + R_\nu \pi_k^{(\nu)} \right] \]

\[- \frac{2\mathcal{H}^2}{k^2} \left[R_\gamma \pi_k^{(B)'} + R_\nu \pi_k^{(\nu)'} \right] = 0, \quad (4.10) \]

\[\sigma_k' + \mathcal{H} \sigma_k + k \mathcal{E}_k + \frac{3\mathcal{H}^2}{2k^2} \left[R_\gamma \pi_k^{(B)} + R_\nu \pi_k^{(\nu)} \right] = 0, \quad (4.11) \]

where we define the density fraction as \(R_\gamma = \rho_\gamma / \rho, R_\nu = \rho_\nu / \rho, R_b \eta = \rho_b / \rho \) and \(R_c \eta = \rho_c / \rho \). Note that in our definitions \(R_b \) and \(R_c \) have the dimension (length)$^{-1}$. In addition, the gravitational constraint equations are

\[2\mathcal{E}_k - \frac{3\mathcal{H}^2}{k^2} \left[R_\gamma \pi_k^{(B)} + R_\nu \pi_k^{(\nu)} + R_\gamma \Delta_k^{(\gamma)} + R_\nu \Delta_k^{(\nu)} + R_c \Delta_k^{(c)} + R_b \Delta_k^{(b)} \right] \]

\[- \frac{9\mathcal{H}^3}{k^3} \left[R_\gamma q_k^{(\gamma)} + R_\nu q_k^{(\nu)} + R_b v_k^{(b)} \right] = 0, \quad (4.12) \]

\[Z_k - \sigma_k + \frac{9\mathcal{H}^2}{2k^2} \left[R_\gamma q_k^{(\gamma)} + R_\nu q_k^{(\nu)} + R_b v_k^{(b)} \right] = 0. \quad (4.13) \]
4.2 Compensated magnetic initial conditions

Since the radiation species dominate our universe during the initial era \((R_\gamma + R_\nu \simeq 1)\), usually one neglects the matter contributions when derives the adiabatic initial conditions. However, as demonstrated in [45, 46], one cannot neglect the matter contributions in the case of existence of PMFs due to the compensation mechanism between the radiation density perturbations and those of PMFs. So it is essential to take the matter contributions into account when we derive the magnetic initial conditions. In addition, it turns out convenient to introduce a new characteristic length scale \(R_m = R_b + R_c \simeq \rho_m(\eta_0)/\sqrt{3\rho_\gamma(\eta_0)} \simeq 5 \times 10^{-3}\) Mpc\(^{-1}\). In what follows, we list two different compensated magnetic modes including matter contributions.

The density \(\Delta^{(B)}_k\) sourced compensated magnetic mode:

\[
\Delta^{(\gamma)}_k = -R_\gamma + \frac{R_\gamma R_m k \eta}{2k} - \left[\frac{R_\nu}{6} + \frac{3R_\gamma R_m^2}{16k^2} \right] k^2 \eta^2, \\
\Delta^{(\nu)}_k = -R_\gamma + \frac{R_\gamma R_m k \eta}{2k} + \left[\frac{R_\gamma}{6} - \frac{3R_\gamma R_m^2}{16k^2} \right] k^2 \eta^2, \\
\Delta^{(b)}_k = \frac{3}{4} R_\gamma + \frac{3R_\gamma R_m k \eta}{8k} - \left[\frac{R_\nu}{8} + \frac{9R_\gamma R_m^2}{64k^2} \right] k^2 \eta^2, \\
\Delta^{(c)}_k = -\frac{3}{4} R_\gamma + \frac{3R_\gamma R_m k \eta}{8k} - \frac{9R_\gamma R_m^2 k^2 \eta^2}{64k^2}, \\
q^{(\gamma)}_k = \frac{R_\nu}{3} k \eta + \left[\frac{R_m R_\gamma}{12k} - \frac{R_b R_\nu}{4k R_\gamma} \right] k^2 \eta^2, \\
q^{(\nu)}_k = -\frac{R_\gamma}{3} k \eta + \frac{R_\gamma R_m k^2 \eta^2}{12k}, \\
\pi^{(\nu)}_k = -\frac{R_\gamma}{15 + 4R_\nu} k^3 \eta^3, \\
G_3 = -\frac{3R_\gamma}{7(15 + 4R_\nu)} k^3 \eta^3, \\
\eta_s = \frac{R_\gamma R_m}{8k} k \eta + \left[\frac{R_\nu R_\gamma}{6(15 + 4R_\nu)} - \frac{3R_\gamma R_m^2}{64k^2} \right] k^2 \eta^2.
\]

And the anisotropic stress tensor \(\pi^{(B)}_k\) sourced mode:

\[
\Delta^{(\gamma)}_k = \frac{1}{3} k^2 \eta^2, \\
\Delta^{(\nu)}_k = -\frac{R_\gamma}{3R_\nu} k^2 \eta^2, \\
\Delta^{(b)}_k = \frac{1}{4} k^2 \eta^2, \\
\Delta^{(c)}_k = -\frac{R_b}{40k} k^3 \eta^3, \\
q^{(\gamma)}_k = -\frac{2}{3} k \eta + \frac{R_b}{2R_\gamma k} k^2 \eta^2, \\
q^{(\nu)}_k = \frac{2R_\gamma}{3R_\nu} k \eta.
\]
\[\pi_k^{(\nu)} = -\frac{R_\gamma}{R_\nu} + \frac{55R_\gamma}{14R_\nu(15 + 4R_\nu)}k^2\eta^2, \] \hfill (4.29)

\[G_3 = -\frac{3R_\gamma k\eta}{7R_\nu}, \] \hfill (4.30)

\[\eta_s = -\frac{55R_\nu}{84(15 + 4R_\nu)}k^2\eta^2, \] \hfill (4.31)

where \(\eta_s = -(2\mathcal{E}_k + \sigma'_k/k) \) is the curvature perturbation in the synchronous gauge.

4.3 CMB power spectrum

By virtue of the above initial conditions, we formally integrate the set of evolution equations over the line of sight \[\tau = \int n_e \sigma_T dt \] is the optical depth, \(x = k\chi \) with \(\chi \) is the comoving radial distance along the line of sight and \(j_l(x) \) are the spherical Bessel functions.

![CMB spectrum](image)

Figure 1: The CMB spectrum of TT mode with the magnetic index \(n_B = -2.9 \) and comoving magnetic mean-field amplitude \(B_\lambda = 9 \) nG. The red solid curve stands for the primary adiabatic mode, the green dashed one for the magnetic density \(\Delta^{(B)}_k \) sourced mode and the blue dotted one for the magnetic anisotropic stress \(\pi^{(B)}_k \) sourced mode, respectively.

Then we expand the temperature contrast \((\delta_T = \delta T/T_0) \) in the multipole series

\[\delta_T(e^a) = \frac{\pi}{I} \sum_{l=1}^{\infty} \Delta_l^{-1} I_{A_l} e^{A_l} = \frac{\pi}{I} \sum_{l=1}^{\infty} \sum_k \Delta_l^{-1} C_k g_{Tl}(k) Q_{A_l} e^{A_l}, \] \hfill (4.33)
where in the second equality we rewrite the multipole coefficient \(I_l(k) = C_k g_{Tl}(k) \) with the transfer function \(g_{Tl}(k) \) and random variables \(C_k \), which source the CMB anisotropies with primordial power spectrum

\[
\langle C_k C_{k'}^* \rangle = C^2(k) \delta_{kk'}.
\] (4.34)

Usually \(C_k \) are the primordial curvature perturbations, however, in this paper they are the density contrast \(\Delta_k^{(B)} \) or anisotropic stress \(\pi_k^{(B)} \) of PMFs, and their power spectra are given in (2.33) and (2.34).

Armed with the primordial power spectrum, we finally obtain the CMB angular power spectrum

\[
C_l = \pi^2 \int_0^\infty d\ln k \ C^2(k) |g_{Tl}(k)|^2.
\] (4.35)

In Figure 2, we plot the CMB TT, EE and TE spectra with the primary adiabatic mode (red solid curve), magnetic density \(\Delta_k^{(B)} \) sourced mode (green dashed one) and magnetic anisotropic stress \(\pi_k^{(B)} \) sourced mode (blue dotted one), respectively. In our numerical calculations, we modify CAMB code [102] and set the amplitudes of primordial curvature perturbations to unit. The results show that PMFs contribute a tiny part to the CMB power spectra, however, in the next section, we will demonstrate that they will give a dominant contribution at the bispectrum level.

5. CMB bispectrum

In this section we numerically calculate the CMB bispectrum seeded by the compensated
5.1 Analytic formulas

Firstly, let us shortly review the analytic formulas to calculate CMB angular bispectrum \([103, 104, 70]\). In (4.33) we decompose the temperature contrast \(\delta_T\) by the covariant approach, now we expand it in terms of the spherical harmonics, which are more familiar to us,

\[
\delta_T(\hat{n}) = \sum_{lm} a_{lm} Y_{lm}(\hat{n}) ,
\]

where \(\hat{n}\) denotes the unit direction vector. The CMB angular bispectrum is defined as

\[
B_{m1m2m3}^{l1l2l3} \equiv \langle a_{l1m1} a_{l2m2} a_{l3m3} \rangle ,
\]

where \(B_{m1m2m3}^{l1l2l3}\) must satisfy the triangle conditions and the selection rules: \(m_1 + m_2 + m_3 = 0, l_1 + l_2 + l_3 = \) even and \(|l_i - l_j| \leq l_k \leq l_i + l_j\) for all permutations of indices. Note that Gaunt integral satisfies all the conditions mentioned above

\[
G_{l1l2l3}^{m1m2m3} \equiv \int d^2 \hat{n} \ Y_{l1m1}(\hat{n}) Y_{l2m2}(\hat{n}) Y_{l3m3}(\hat{n}) ,
\]

\[
= \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} ,
\]

where the matrices denote the Wigner-3j symbol. Therefore it is convenient to introduce the reduced bispectrum (Komatsu-Spergel estimator) \(b_{l1l2l3}^{m1m2m3}\) to replace \(B_{l1l2l3}^{m1m2m3}\) without

\textbf{Figure 3:} The CMB spectrum of TE mode with magnetic index \(n_B = -2.9\) and comoving magnetic mean-field amplitude \(B_\lambda = 9\) nG. The red solid curve stands for the primary adiabatic mode, the green dashed one for the magnetic density \(\Delta_k^{(B)}\) sourced mode and the blue dotted one for the magnetic anisotropic stress \(\pi_k^{(B)}\) sourced mode, respectively.

magnetic density mode.
any loss of information
\[B_{l_1 l_2 l_3}^{m_1 m_2 m_3} = G_{l_1 l_2 l_3}^{m_1 m_2 m_3} b_{l_1 l_2 l_3} . \]

Thus, the observable angle-averaged bispectrum can be written as
\[
B_{l_1 l_2 l_3} = \sum_{m_1 m_2 m_3} \left(\frac{l_1 \ l_2 \ l_3}{m_1 \ m_2 \ m_3} \right) B_{l_1 l_2 l_3}^{m_1 m_2 m_3} = \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)}{4\pi}} \left(\frac{l_1 \ l_2 \ l_3}{0 \ 0 \ 0} \right) b_{l_1 l_2 l_3} . \]

In order to calculate the reduced bispectrum \(b_{l_1 l_2 l_3} \), we need obtain the form of primordial bispectrum \(F(k_1, k_2, k_3) \). For a slow roll inflation model, the non-gaussian curvature perturbations \(\zeta(x) \) are usually parameterized by a single constant parameter \(f_{NL}^{\text{local}} \) and the Gaussian random variable \(\zeta_L(x) \) in the real space
\[
\zeta(x) = \zeta_L(x) + f_{NL}^{\text{local}} \left[\zeta_L^2(x) - \langle \zeta^2(x) \rangle \right] .
\]

In the Fourier space, the local-type primordial curvature bispectrum \(\langle \zeta(k_1) \zeta(k_2) \zeta(k_3) \rangle \equiv F_{\zeta}(k_1, k_2, k_3) \delta(k_1 + k_2 + k_3) \) can be obtained by performing the momentum convolution
\[
F_{\zeta}(k_1, k_2, k_3) \propto f_{NL}^{\text{local}} \{ P_{\zeta}(k_1) P_{\zeta}(k_2) k^3_3 + (k_1, k_2, k_3) \ \text{perm.} \},
\]

where \(P_{\zeta} \) is the primordial power spectrum of curvature perturbations (\(\zeta \)). However, we are interested in the PMF signals in CMB bispectrum which have the essential non-Gaussian characters. The magnetic density contrast bispectrum \(\langle \Delta(B) \rangle \equiv F_{\Delta_B}(k_1, k_2, k_3) \delta(k_1 + k_2 + k_3) \) has been derived analytically in [8, 17]
\[
F_{\Delta_B}(k, q, p) = \frac{3A^3}{4\pi^2 \rho_0^2} \left[f^{(1)}(k, q, p) + f^{(2)}(k, q, p) + f^{(3)}(k, q, p) \right] .
\]

From the above expressions, we notice that the first magnetic shape \(f^{(1)}(k, q, p) \) looks similar to the one from local-type primordial curvature perturbations [7], if the magnetic index takes the nearly scale-invariant value \(n_B \approx -3 \). So, we will abuse the phrase “local-type” for the magnetic shape \(f^{(1)}(k, q, p) \) in this paper.

Now, we are ready to calculate the CMB bispectrum sourced by the magnetic density contrast \(\Delta(B) \). Following the standard procedure [103], the reduced bispectrum can be expressed as
\[
b_{l_1 l_2 l_3} = (8\pi)^3 \int_0^\infty x^2 dx \int_0^{k_D} dln k \int_0^{k_D} dln q \int_0^{k_D} dln p \ j_{l_1}(k x) j_{l_2}(q x) j_{l_3}(p x) \\
\times F_{\Delta_B}(k, q, p) g_{T l_1}(k) g_{T l_2}(q) g_{T l_3}(p) , \]

(5.12)
where $g_{Tl}(k)$ is the transfer function and x is the comoving radial distance along the line of sight. From (5.9)-(5.11), we can see that the integral (5.12) is determined by four kinds of momentum integrations

$$b_l^{(1)}(x) \equiv \int_0^{kD} d \ln k \, k^{2n_B+6}j_l(kx)g_{Tl}(k),$$

(5.13)

$$b_l^{(2)}(x) \equiv \int_0^{kD} d \ln k \, k^{n_B+3}j_l(kx)g_{Tl}(k),$$

(5.14)

$$b_l^{(3)}(x) \equiv \int_0^{kD} d \ln k \, j_l(kx)g_{Tl}(k),$$

(5.15)

$$b_l^{(4)}(x) \equiv \int_0^{kD} d \ln k \, k^{3}j_l(kx)g_{Tl}(k).$$

(5.16)

Then, we can express the reduced bispectrum (5.12) in the following form

$$b_{l_1l_2l_3} = b_{l_1l_2l_3}^{(1)} + b_{l_1l_2l_3}^{(2)} + b_{l_1l_2l_3}^{(3)} + b_{l_1l_2l_3}^{(4)},$$

(5.17)

$$b_{l_1l_2l_3}^{(1)} = \int_0^{\infty} x^2 dx \, N_1 \left\{ b_l^{(1)}(x)b_{l_1}^{(1)}(x)b_{l_2}^{(1)}(x)b_{l_3}^{(1)}(x) + (l_1, l_2, l_3) \text{ perm.} \right\},$$

(5.18)

$$N_1 = \frac{3(8\pi)^3 A^3 n_B}{48\pi^2 (n_B + 3) (2n_B + 3) \rho^{(\gamma)^2}},$$

$$b_{l_1l_2l_3}^{(2)} = \int_0^{\infty} x^2 dx \, N_2 \left\{ b_l^{(2)}(x)b_{l_1}^{(2)}(x)b_{l_2}^{(2)}(x)b_{l_3}^{(2)}(x) + (l_1, l_2, l_3) \text{ perm.} \right\},$$

(5.19)

$$N_2 = \frac{3(8\pi)^3 A^3 n_B}{48\pi^2 (3n_B + 3) (2n_B + 3) \rho^{(\gamma)^2}},$$

$$b_{l_1l_2l_3}^{(3)} = \int_0^{\infty} x^2 dx \, N_3 \left\{ b_l^{(3)}(x)b_{l_1}^{(3)}(x)b_{l_2}^{(3)}(x)b_{l_3}^{(3)}(x) + (l_1, l_2, l_3) \text{ perm.} \right\},$$

(5.20)

$$N_3 = \frac{3(8\pi)^3 A^3 n_B}{48\pi^2 (3n_B + 3) \rho^{(\gamma)^2}},$$

(5.21)

The seven-year WMAP data [2] give $P_\zeta \sim 2.441 \times 10^{-9}$. Hence, from (5.7) we can estimate the amplitude of the primordial curvature bispectrum $F_\zeta(k_1, k_2, k_3)$ is of the order $O(10^{-18})$. On the other hand, the numerical calculations about the magnetic power spectrum show that the amplitude of $P_{\Delta B}$ is approximately of the order $O(10^{-13})$, i.e. $\Delta_k^{(B)} \sim O(10^{-6})$. Since the some quantities related to the PMFs such as $\Delta_k^{(B)}$ and $\pi_k^{(B)}$ have the essential non-Gaussian characters, the primordial magnetic bispectrum $F_{\Delta B/\pi B}(k_1, k_2, k_3)$ is proportional to the cubic of $\Delta_k^{(B)}$ and $\pi_k^{(B)}$. So, for the magnetic density sourced mode, the amplitude of bispectrum $F_{\Delta B/\pi B}(k_1, k_2, k_3) \sim O(10^{-18})$ is comparable with that of the primordial curvature one $F_\zeta(k_1, k_2, k_3) \sim O(10^{-18})$. In fact, this observation is just our motivation for this paper.

5.2 Numerical results

In this subsection, we will present our numerical results about the reduced bispectra. For the case with $n_B = -2.9$ and $B_\lambda = 9$ nG, the momentum integral (5.13) is approximately equivalent to (5.14), while (5.10) diverges in the infrared limit ($k \to 0$). In Figure (4), (5) and (6), we plot $b_l^{(1)} (\simeq b_l^{(3)})$, $b_l^{(4)}$ and the absolute value of $b_l^{(4)}$ over l with $\eta_0 = 14.38$ Gpc.
and $\eta_s = 284.85$ Mpc being the conformal time at present and at the recombination epoch, respectively. For $n_B = -2.9$, the momentum shapes in $b_l^{(\alpha/\beta)}$ are nearly scale invariant, so the profile of $b_l^{(\alpha)}$-curve (Figure 3) looks similar to those of C_l. However, the main difference between $b_l^{(\alpha)}$ and C_l is that the former changes the sign, while the latter does not. The reason lies in that $b_l^{(\alpha)} \propto j_l(kx)gt_l(k)$, but $C_l \propto |gt_l(k)|^2$. As what happens to the standard model [70, 105, 106, 107], from Figure 3 we can see that the phase of $b_l^{(\gamma)}$ in the high-l regime oscillates rapidly with respect to x, which will heavily suppress the integrations (5.18), (5.19) and (5.20) at small scales. However, for the case with the magnetic index $n_B \simeq -3$, the integration (5.16) is dangerous. Because the exponent of the shape $k^{3n_B + 6}$ is much less than zero, the full integrand will diverge in the Infrared (IR) limit, if the spherical Bessel function $j_l(kx)$ and transfer function $gt_l(k)$ cannot provide an enough positive power to compensate the negative slope of $k^{3n_B + 6}$. Our numerical calculation indeed shows that such divergence does exist. Figure 4 illustrates the IR divergence of $b_l^{(\beta)}$, which will dominate over all the other terms in the low-l regime. However, since we are interested in the acoustic signatures of bispectrum induced by PMFs, i.e. the moderate high-l regime ($l \geq 100$), we need not worry about the momentum divergence.

Having the numerical results about the momentum integrations (5.13)-(5.16), we can finally perform the x-integrations to obtain the reduced bispectra. In Figure 5 and 6, we plot the integrals $\int l_2(l_2 + 1)l_3(l_3 + 1) \int x^2 dx \ b_l^{(\alpha)}(x)b_l^{(\beta)}(x)b_l^{(\gamma)}(x)/(2\pi)^2 \times 10^9$ and $\int l_1(l_1 + 1)l_2(l_2 + 1) \int x^2 dx \ b_l^{(\alpha)}(x)b_l^{(\beta)}(x)b_l^{(\gamma)}(x)/(2\pi)^2 \times 10^9$ over l_3 by fixing $l_1 = l_2 = 11, 110, 200, 500$, respectively. In the numerical calculations we integrate x from $(\eta_0 - 2\eta_s)$
Figure 5: This figure shows $b_l^{(\gamma)}(x) \times 10^{13}$ for several different comoving radial distances $x = (\eta_0 - 0.4\eta_*) \sim (\eta_0 - 1.6\eta_*)$, where we set the conformal time at present $\eta_0 = 14.38$ Gpc and at the recombination epoch $\eta_* = 284.85$ Mpc, respectively. Parameters for PMFs are $n_B = -2.9$ and $B_\lambda = 9$ nG.

to $(\eta_0 - 0.1\eta_*)$, since the primary signals come from the recombination epoch η_*. From Figure (5) and (8), we can see that in the Sachs-Wolfe (SW) regime ($l \leq 10$) our result presents a SW plateau, which is consistent with that in [18]. And in the high-l regime, the integral shown in Figure (8) is greatly damped after the prominent first acoustic peak, since the phase of $b_l^{(\gamma)}(x)$ oscillates rapidly as a function of x. In Figure (8) the integral also has a first acoustic peak, but damps more slowly. And more importantly, from Figure (8) we can see clearly that the modes with different parameter sets (l_1, l_2) oscillate around different asymptotic values because of the effect of the Lorentz force, which is exerted by PMFs on the charged baryons. This feature is much different with the one from the inflation scenario [21, 105, 106, 107]. In order to illustrate this phenomenon more clearly, we perform the above calculations without considering the Lorentz force term in the baryon velocity equation (3.29). Figure (9) shows that, contrary to those with the Lorentz force, all modes oscillate around zero in the limit of large l_3.

In Figure (10) and (11), we plot the absolute values of integrals

\[
\int x^2 dx \left| b_{l_1}^{(\gamma)}(x) b_{l_2}^{(\delta)}(x) b_{l_3}^{(\gamma)}(x) / (2\pi)^2 \right| \quad \text{and} \quad \int x^2 dx \left| b_{l_1}^{(\gamma)}(x) b_{l_2}^{(\delta)}(x) b_{l_3}^{(\gamma)}(x) / (2\pi)^2 \right|
\]

as a function of l_3 with $l_1 = l_2 = 11, 110, 200, 500$. Since $b_{l_1l_2l_3}^{(2)}$ contains the factor $b_{l_1}^{(\delta)}$, its amplitude experiences a great suppression in the high-l regime as the same as $b_l^{(\delta)}$. From Figure (10), we can see that the amplitude of first acoustic peak is approximately of the same order as the one in Figure (8), however, in the very high-l region ($l \geq 1000$) its amplitude damps in a power law form. In addition, from Figure (8) and (11), we can see that the amplitude of $b_l^{(\gamma)}$ is smaller than that of $b_l^{(\alpha)}$ by the order of $O(10^{-2})$. Further-
Figure 6: This figure shows $l(l+1)|b_l^{(3)}(x)|/2\pi$ for several different comoving radial distances $x = (\eta_0 - 0.4\eta_*) \sim (\eta_0 - 1.6\eta_*)$, where we set the conformal time at present $\eta_0 = 14.38$ Gpc and at the recombination epoch $\eta_* = 284.85$ Mpc, respectively. Parameters for PMFs are $n_B = -2.9$ and $B_\lambda = 9$ nG.

Figure 7: This figure shows the integral $\left[l(l+1)l(l+1)l(l+1) \int x^2 dx b_3^{(\alpha)}(x) b_2^{(\beta)}(x) b_1^{(\gamma)}(x)/(2\pi)^2 \right] \times 10^9$ as a function of l_3, with several parameter configurations ($l_1 = l_2 = 11, 110, 200, 500$).

more, for the set of parameters ($n_B = -2.9, B_\lambda = 9$ nG), the coefficients in (5.18)-(5.20) are $N_1 \simeq 3.5 \times 10^{-12}$, $N_2 \simeq -6 \times 10^{-14}$ and $N_3 \simeq -7 \times 10^{-18}$. After considering the hierarchies between N_3 and N_1 (or N_2), we can safely neglect the $b_1^{(3)}$ term in our calculations.
Figure 8: This figure shows the integral \[\int_{l_1}^{l_1+1} \int_{l_2}^{l_2+1} \int_{l_3}^{l_3+1} \frac{x^2}{2\pi^2} b^{(\alpha)}_{l_1}(x) b^{(\beta)}_{l_2}(x) b^{(\gamma)}_{l_3}(x) \times 10^9 \] as a function of \(l_3 \), with several parameter configurations \((l_1 = l_2 = 11, 110, 200, 500)\).

Figure 9: This figure shows the integral \[\int_{l_1}^{l_1+1} \int_{l_2}^{l_2+1} \int_{l_3}^{l_3+1} \frac{x^2}{2\pi^2} b^{(\alpha)}_{l_1}(x) b^{(\beta)}_{l_2}(x) b^{(\gamma)}_{l_3}(x) \times 10^9 \] as a function of \(l_3 \) in the case without considering the effect of the Lorentz force. From this figure, we can see clearly that all modes oscillate around zero in the limit of large \(l_3 \).

As a summary, from the above numerical calculations, we can see that the typical amplitudes of the reduced bispectra \(l^4 b^{(1)}_{\ell_1 \ell_2 \ell_3} / (2\pi)^2 \) and \(l^4 b^{(2)}_{\ell_1 \ell_2 \ell_3} / (2\pi)^2 \) are of the order \(O(10^{-20}) \), which is comparable with the NG signals from primary curvature perturbations \([70, 105, 106, 107]\). In details, \(b^{(1)}_{\ell_1 \ell_2 \ell_3} \) dominates the total reduced bispectrum with a
Figure 10: This figure shows the absolute value of integral \[\int x^2 dx |b^{(γ)}_{l_1}(x)b^{(δ)}_{l_2}(x)|/(2\pi)^2 \] as a function of \(l_3 \), with several parameter configurations \((l_1 = l_2 = 11, 110, 200, 500) \).

Figure 11: This figure show the absolute value of the integral \[\int x^2 dx |b^{(γ)}_{l_3}(x)b^{(δ)}_{l_2}(x)|/(2\pi)^2 \] as a function of \(l_3 \), with several parameter configurations \((l_1 = l_2 = 11, 110, 200, 500) \).

positive amplitude in the regime \(l \geq 100 \). For \(b^{(2)}_{l_1,l_2,l_3} \), its amplitude in the high-\(l \) regime, is of the same order as the one of \(b^{(2)}_{l_1,l_2,l_3} \), but the sign is negative; while it diverges at the
large scales.

6. Conclusion

Using the full radiation transfer function, we numerically calculated the CMB angular bispectrum seeded by the compensated magnetic scalar density modes. For PMFs characterized by the index $n_B = -2.9$ and mean-field amplitude $B_\lambda = 9 \text{ nG}$, CMB bispectrum is dominated by two primordial magnetic shapes. For the reduced bispectrum $b_{l_1l_2l_3}^{(1)}$ [5.18], which is seeded by the “local-type” shape $f^{(1)}(k,q,p)$ [5.9], both the profile and amplitude look similar to those of the primary CMB anisotropies [70, 105, 106, 107], (see Figure 4, 5, 7 and 8). However, for different parameter sets (l_1, l_2), such “local-type” estimator $b_{l_1l_2l_3}^{(1)}$ oscillates around different asymptotic values in the high-l regime because of the effect of the Lorentz force, which is exerted by PMFs on the charged baryons (see Figure 8 and 9). This feature is different from the one of inflation scenarios where all modes approach to zero asymptotically in the high-l limit. On the other hand, the second magnetic shape $f^{(2)}(k,q,p)$ [5.19] appears only in the primordial magnetic field model. However, the amplitude of the Komatsu-Spergel estimator $b_{l_1l_2l_3}^{(2)}$ sourced by the shape $f^{(2)}(k,q,p)$ diverges in the low-l regime because of the negative slope of shape. In the high-l regime, this amplitude is approximately equal to that of the first estimator $b_{l_1l_2l_3}^{(1)}$, but with a reversal phase.

In this paper we only calculated the magnetic angular bispectrum with parameters ($n_B = -2.9$, $B_\lambda = 9 \text{ nG}$). In fact, the results are strongly dependent on the magnetic parameters, especially on the magnetic index n_B. Take $n_B = -2$ as an example, the upper bound of comoving magnetic mean-field amplitude becomes larger, $B_\lambda \lesssim 25 \text{ nG}$ [18]. And more importantly, there will appear new Gaussian and non-Gaussian features in the CMB anisotropies. At the Gaussian level, the two-point function will have more powers on the small scales, i.e. a blue tilt power spectrum; at the non-Gaussian level, the bispectrum will no longer diverge in the IR limit. Finally, we would like to comment on the bispectrum from the compensated magnetic anisotropic stress mode. Although the amplitude of anisotropic stress $\pi_k^{(B)}$ is approximately larger than that of density contrast $\Delta_k^{(B)}$ by a factor 3, $\pi_k^{(B)}$ mode only appears in the high order terms in the tight-coupling expansion [4.23]–[4.31]. This results in that the amplitudes of power spectra from $\pi_k^{(B)}$ mode are smaller than those from $\Delta_k^{(B)}$ mode, (see Figure 1, 2 and 3). So we can estimate that the bispectrum from the compensated magnetic anisotropic stress should be smaller than the one from the magnetic density.

Acknowledgments

BH thanks Kiyotomo Ichiki and Kazuhiko Kojima for the helpful correspondence. RGC thanks the organizers and participants for various discussions during the workshop “Dark Energy and Fundamental Theory” held at Xidi, Anhui, China, May 28–June 6, 2010, supported by the Special Fund for Theoretical Physics from the National Natural Science Foundation of China with grant No. 10947203, and the long-term workshop “Gravity and
A. The covariant approach to cosmological perturbations

In this Appendix we briefly review the covariant approach to cosmological perturbations \[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90\]. Especially, the cosmological covariant formalisms with magnetic fields are carefully studied in \[73, 91, 92, 93, 94, 95, 96\]. In order to determine the time direction, we define a unit timelike 4-velocity vector tangent to the worldline of the observer

\[
u^a = \frac{dx^a}{d\tau}, \quad u_a u^a = -1, \tag{A.1}\]

where \(\tau\) is the proper time of the fundamental observer. Then we introduce an orthogonal tensor \(h^{ab} = g^{ab} + u^a u^b\) with respect to \(u^a\) to define the space direction at each spacetime point. Using the vector field \(u^a\) and projector tensor \(h^{ab}\), we can decompose any space-time quantity into its irreducible temporal and spatial parts. Moreover, we can also use these fields to define the covariant time and spatial derivatives of any tensor field \(S_{\cdots cd\cdots}\) according to

\[
\dot{S}_{\cdots cd\cdots} = u^e \nabla_e S_{\cdots cd\cdots}, \quad D_e S_{\cdots cd\cdots} = h^e_s h^r_t h^p_q h^h_i \cdots \nabla_s S_{\cdots fp\cdots qr\cdots}, \tag{A.2}\]

respectively.

In this paper we use the convention about the effective volume element \(\varepsilon_{abc}\) and the spacetime volume element \(\eta_{abcd}\) as

\[
\varepsilon_{abc} = \eta_{abcd} u^d, \tag{A.3}\]

where the totally skew pseudotensor is defined as \(\eta^{0123} = [-\det (g_{ab})]^{-1/2}\). Furthermore, \(\eta^{abcd}\) is parallelly transported (\(\eta^{abcd}_{;e} = 0\)) and satisfies some algebras as

\[
\eta^{abcd} \eta_{efgh} = -4! \delta^{[a}_{e} \delta^{b}_{f} \delta^{c}_{g} \delta^{d]} h, \tag{A.4}\]
\[
\eta^{abcd} \eta_{efgs} = -3! \delta^{[a}_{e} \delta^{b}_{f} \delta^{c}_{g} \delta^{d]} c, \tag{A.5}\]
\[
\eta^{abcd} \eta_{efts} = -4! \delta^{[a}_{e} \delta^{b}_{f} \delta^{c}_{g} \delta^{d]} t, \tag{A.6}\]
\[
\eta^{abcd} \eta_{erts} = -3! \delta^{a}_{e} h, \tag{A.7}\]
\[
\eta^{abcd} \eta_{prts} = -4! c, \tag{A.8}\]

where the square bracket in the superscript represents for the antisymmetric part of corresponding tensors.

In General Relativity, the local gravitational interaction is described by Ricci tensor \(R_{ab}\), while the non-local long-range interaction, such as gravitational waves or tidal...
forces, is determined by Weyl conformal curvature tensor C_{abcd}. The decomposition of the gravitational field into its local and non-local parts is given by

$$R_{abcd} = C_{abcd} + \frac{1}{2}(g_{ac}R_{bd} + g_{bd}R_{ac} - g_{bc}R_{ad} - g_{ad}R_{bc}) - \frac{1}{6}R(g_{ac}g_{bd} - g_{ad}g_{bc}) ,$$ \hspace{1cm} (A.9)

where Weyl tensor shares all the symmetries of Riemann tensor and it is trace-free $C^c_{acb} = 0$. Furthermore, we can define the irreducible electric and magnetic parts of the Weyl tensor

$$E_{ab} = C_{acbd}u^c u^d , \quad H_{ab} = \frac{1}{2} \varepsilon_{a}^{cd} C_{cdbe} u^e .$$ \hspace{1cm} (A.10)

Then the Weyl tensor can be rewritten by these two tensors

$$C_{abcd} = (g_{ab}q_{c}d - \eta_{abq}q_{c}d)u^q u^s E^{pr} - (\eta_{abq}q_{c}d + g_{abq}q_{cd})u^q u^s H^{pr} ,$$ \hspace{1cm} (A.11)

where $g_{abcd} = g_{ac}g_{bd} - g_{ad}g_{bc}$.

The energy-momentum tensor of a general (imperfect) fluid defined by the observer u_a can be decomposed into

$$T_{ab} = \rho u_a u_b + p h_{ab} + 2q_{(a} u_{b)} + \pi_{ab} ,$$ \hspace{1cm} (A.12)

where $\rho = T_{ab} u^a u^b$, $p = T_{ab} h^{ab}/3$, $q_a = -h_{ab} T_{bc} u^c$ and $\pi_{ab} = h_{(a}^{ac} h_{b)}^{cd} T_{cd} = h_{(a}^{ac} h_{b)}^{cd} T_{cd} - \frac{1}{3} h^{cd} T_{cd} h_{ab}$ are the energy density, isotropic pressure, energy-flux and anisotropic stress tensor of the fluid, respectively.

In order to characterize the observer’s motion we need to decompose the 4-velocity gradient into the following irreducible kinematical quantities relative to the u_a-congruence

$$\nabla_b u_a = \sigma_{ab} + \omega_{ab} + \frac{1}{3} \Theta h_{ab} - A_a u_b ,$$ \hspace{1cm} (A.13)

where $\sigma_{ab} = D_{(b} u_{a)}$, $\omega_{ab} = D_{[b} u_{a]}$, $\Theta = \nabla_a u^a = D_a u^a$ and $A_a = \dot{u}_a = u^b \nabla_b u_a$ are respectively the shear and vorticity tensors, the volume expansion scalar, and the 4-acceleration vector. In addition, it is useful to define the vorticity vector $\omega_a = \varepsilon_{abc} \omega^c / 2$ (with $\omega_{ab} = \varepsilon_{abc} \omega^c$) instead of the vorticity tensor.

A.1 Linearized Einstein equations

Dynamical equations:

$$\dot{\rho} + (\rho + p) \Theta + D^a q_a = 0 ,$$ \hspace{1cm} (A.14)

$$\dot{\Theta} + \frac{1}{3} \Theta^2 + \frac{1}{2} (\rho + 3p) - D^a A_a = 0 ,$$ \hspace{1cm} (A.15)

$$\dot{q}_a + \frac{4}{3} \Theta q_a + (\rho + p) A_a + D_a p + D^b \pi_{ab} = 0 ,$$ \hspace{1cm} (A.16)

$$\dot{\omega}_{(a)} + \frac{2}{3} \Theta \omega_{a} + \frac{1}{2} \text{curl} A_a = 0 ,$$ \hspace{1cm} (A.17)

$$\dot{\sigma}_{(ab)} + \frac{2}{3} \Theta \sigma_{ab} + E_{ab} - \frac{1}{2} \pi_{ab} - D_{(a} A_{b)} = 0 ,$$ \hspace{1cm} (A.18)

$$\dot{E}_{(ab)} + \Theta E_{ab} - \text{curl} H_{ab} + \frac{1}{2} (\rho + p) \sigma_{ab}$$

$$+ \frac{1}{2} \pi_{(ab)} + \frac{1}{2} D_{(a} q_{b)} + \frac{1}{6} \Theta \pi_{ab} = 0 ,$$ \hspace{1cm} (A.19)

$$\dot{H}_{(ab)} + \Theta H_{ab} + \text{curl} E_{ab} - \frac{1}{2} \text{curl} \pi_{ab} = 0 .$$ \hspace{1cm} (A.20)
Constraint equations:

\[D_a \omega^a = 0 , \]
\[D^b \sigma_{ab} - \text{curl} \omega_a - \frac{2}{3} D_a \Theta + q_a = 0 , \]
\[\text{curl} \sigma_{ab} + D_{(a} \omega_{b)} - H_{ab} = 0 , \]
\[D^b E_{ab} + \frac{1}{2} D^b \pi_{ab} - \frac{1}{3} D_a \rho + \frac{1}{3} \Theta q_a = 0 , \]
\[D^b H_{ab} + \frac{1}{2} \text{curl} q_a - (\rho + p) \omega_a = 0 . \]

A.2 Two key variables

It is convenient to define two key variables in the covariant approach

\[\Delta_a^{(i)} = \frac{a}{\rho^{(i)}} D_a \rho^{(i)} , \quad Z_a = a D_a \Theta , \]

where \(i = \gamma, \nu, b, c \). Taking the spatial gradient of the density evolution equation \((A.14) \), we arrive at

\[\dot{\rho}^{(i)} \Delta_a^{(i)} + (\rho^{(i)} + p^{(i)})(Z_a + a \Theta A_a) + a D_a D^b q_{ab}^{(i)} + a \Theta D_a p^{(i)} - p^{(i)} \Theta \Delta_a = 0 , \]

For \(Z_a \), by virtue of the Raychaudhuri equation \((A.15) \) we have

\[\dot{Z}_a + \frac{2 \Theta}{3} Z_a + \frac{1}{2} \rho \Delta_a + \frac{3}{2} a D_a p + a \left[\frac{1}{3} \Theta^2 + \frac{1}{2} (\rho + 3p) \right] A_a - a D_a D^b A_b = 0 . \]

B. Equations for matter components

Under the ideal MHD approximation, the energy-momentum tensors for the five matter components are

\[T_{ab}^{(i)} = \rho^{(i)} u_a u_b + p^{(i)} h_{ab} + 2q_{(a}^{(i)} u_{b)} + \pi_{ab}^{(i)} , \]

with \(i = \gamma, \nu, b, c \), and

\[T_{ab}^{(B)} = \frac{1}{4\pi} \left[\frac{1}{2} B^2 u_a u_b + \frac{1}{6} B^2 h_{ab} \right] + \pi_{ab}^{(B)} . \]

Since the total energy-momentum tensor is conserved \(\nabla^b T_{ab} = 0 \), for each component we have

\[\nabla^b T_{ab}^{(i)} = J_a^{(i)} = E_a^{(i)} u_a + M_a^{(i)} , \quad \sum_i J_a^{(i)} = 0 , \]

where \(E^{(i)} \) is the energy transfer and \(M_a^{(i)} \) the momentum transfer for the \(i \)-species. For simplicity, in this work we assume the energy transfer vanishes at the linear order \((E^{(i)} \sim 0) \), this gives the energy conservation for each matter component

\[\dot{\rho}^{(i)} + \Theta (\rho^{(i)} + p^{(i)}) + D^a q_{a}^{(i)} = 0 . \]
B.1 Photons

For photons, it is convenient to expand the total intensity brightness $I(E, e^c)$ in terms of the spherical multipole

$$I(E, e^c) = \sum_{l=0}^{\infty} I_A l(E)e^{A_l}, \quad (B.5)$$

where e^c is a unit spacelike vector orthogonal to u_a. For CMB, it is usual to define the bolometric multipoles by integrating over energy without loss of information

$$I_A l = \Delta_l \int_0^\infty I_A l(E)dE, \quad (B.6)$$

with

$$\Delta_l = \frac{4\pi 2^l(l!)^2}{(2l + 1)!}. \quad (B.7)$$

The first three multipoles are respectively

$$I = \rho^{(\gamma)}, \quad I_a = q_a^{(\gamma)}, \quad I_{ab} = \pi_{ab}^{(\gamma)}. \quad (B.8)$$

The Boltzmann hierarchies for the total intensity of photons are

$$\dot{I}_A l + \frac{4}{3} \Theta I_A l + D^b I_{bA_l} + \frac{l}{(2l + 1)} D_{(a_l} I_{A_{l-1})} + \frac{4}{3} I A_{a_1} \delta_{l1} + \frac{8}{15} I \sigma_{a_1 a_2} \delta_{l2}$$

$$= -n_e \sigma_T \left[I_{A_l} - I \delta_{l0} - \frac{4}{3} I_{a_1} \delta_{l1} - \frac{1}{10} I_{a_1 a_2} \delta_{l2} \right], \quad (B.9)$$

where the right hand side terms stand for the Thompson scattering. The first three multipole hierarchy equations are listed as follows.

Monopole ($l = 0$):

$$\dot{\rho}^{(\gamma)} + \frac{4}{3} \Theta \rho^{(\gamma)} + D^a q_a^{(\gamma)} = 0, \quad (B.10)$$

Usually one uses the spatial gradient of energy conservation equation, instead of (B.10),

$$\dot{\pi}_a^{(\gamma)} + \frac{4}{3} (Z_a + a\Theta A_a) + \frac{a}{\rho^{(\gamma)}} D_a D^b q_b^{(\gamma)} = 0. \quad (B.11)$$

Dipole ($l = 1$):

$$\dot{q}_a^{(\gamma)} + \frac{4}{3} \Theta q_a^{(\gamma)} + \frac{1}{3} D_a \rho^{(\gamma)} + D^b \pi_{ab}^{(\gamma)} + \frac{4}{5} \rho^{(\gamma)} A_a = n_e \sigma_T \left[\frac{4}{5} \rho^{(\gamma)} v_a^{(b)} - q_a^{(\gamma)} \right]. \quad (B.12)$$

Quadrupole ($l = 2$):

$$\dot{\pi}_{ab}^{(\gamma)} + \frac{4}{3} \Theta \pi_{ab}^{(\gamma)} + D^c I_{abc} + \frac{2}{5} D_{(b} q_{a)}^{(\gamma)} + \frac{8}{15} \rho^{(\gamma)} \sigma_{ab} = -\frac{9}{10} n_e \sigma_T \pi_{ab}^{(\gamma)}. \quad (B.13)$$

Note that the monopole equation (B.10) is equivalent to the equation of energy conservation of the photons, and the dipole one (B.12) to the momentum conservation equation with the Thompson scattering.
B.2 Massless neutrinos

For massless neutrinos, the Boltzmann hierarchies are similar with the ones of photons, except that the latter has the Thompson collision term,

\[\dot{G}_{Al} + \frac{4}{3} \Theta G_{Al} + D^bG_{bAl} + \frac{l}{(2l + 1)} D_{(a_l}G_{A_{l-1})} + \frac{4}{3} G_{A_1} \delta_{l1} + \frac{8}{15} G_{\sigma a_1 a_2} \delta_{l2} = 0. \] (B.14)

The monopole, dipole and quadrupole equations are, respectively,

monopole \((l = 0)\)

\[\dot{\rho}^{(\nu)} + \frac{4}{3} \Theta \rho^{(\nu)} + D^a q_a^{(\nu)} = 0, \] (B.15)

or replaced by

\[\dot{\Delta}^{(\nu)} + \frac{4}{3} (Z_a + a \Theta A_a) + \frac{a}{\rho^{(\nu)}} D_a D^b q_b^{(\nu)} = 0. \] (B.16)

dipole \((l = 1)\)

\[\dot{q}_a^{(\nu)} + \frac{4}{3} \Theta q_a^{(\nu)} + D_a p_a^{(\nu)} + \frac{1}{3} D^b \pi_{ab}^{(\nu)} + \frac{4}{3} \rho^{(\nu)} A_a = 0. \] (B.17)

quadrupole \((l = 2)\)

\[\dot{\pi}_{ab}^{(\nu)} + \frac{4}{3} \Theta \pi_{ab}^{(\nu)} + D^c G_{abc} + \frac{2}{5} D_{(b} q_{a)}^{(\nu)} + \frac{8}{15} \rho^{(\nu)} \sigma_{ab} = 0. \] (B.18)

B.3 Baryons

For baryons, the energy conservation equation gives

\[\dot{\rho}^{(b)} + (\rho^{(b)} + p^{(b)}) \Theta + (\rho^{(b)} + p^{(b)}) D^a v_a^{(b)} = 0, \] (B.19)

and by taking the spatial gradient of (B.19), we obtain

\[\rho^{(b)} \Delta_a^{(b)} + (\rho^{(b)} + p^{(b)}) (Z_a + a \Theta A_a + a D_a D^c v_c^{(b)}) + a \Theta D_a p^{(b)} - p^{(b)} \Theta \Delta_a^{(b)} = 0. \] (B.20)

The momentum conservation reads

\[\left(\rho^{(b)} + p^{(b)} \right) \left(\dot{v}_a^{(b)} + A_a \right) + \rho^{(b)} \dot{v}_a^{(b)} + \frac{1}{3} (\rho^{(b)} + p^{(b)}) \Theta v_a^{(b)} + D_a p^{(b)} = - \left[n_e \sigma T \left(\frac{4}{3} \rho^{(\gamma)} v_a^{(\gamma)} - q_a^{(\gamma)} \right) + D^b \pi_{ab}^{(B)} + D_a p^{(B)} \right], \] (B.21)

where the momentum transfer for baryons is due to the Thompson scattering and Lorentz force from PMFs.
B.4 Cold Dark Matter

Since CDM only gravitates, the density contrast equation is given by

$$\dot{\rho}^{(c)} + \Theta \rho^{(c)} + \rho^{(c)} D_a v_a^{(c)} = 0 ,$$ \hspace{1cm} (B.22)

or

$$\dot{\Delta}^{(c)}_a + Z_a + a \Theta A_a + a D_a D_b v_b^{(c)} = 0 ,$$ \hspace{1cm} (B.23)

and the velocity equation is

$$\dot{v}_a^{(c)} + \frac{1}{3} \Theta v_a^{(c)} + A_a = 0 .$$ \hspace{1cm} (B.24)

They are simple.

References

