The Nature of Damped Lyman Alpha Systems and Their Hosts in the Standard Cold Dark Matter Universe
Renyue Cen

ABSTRACT

Using adaptive mesh-refinement cosmological hydrodynamic simulations with a physically motivated supernova feedback prescription we show that the standard cold dark matter model can account for extant observed properties of damped Lyman alpha systems (DLAs). We then examine the properties of DLA host galaxies. We find: (1) While DLA hosts roughly trace the overall population of galaxies at all redshifts, they are always gas rich and have tendencies of being slightly smaller and bluer. (2) The history of DLA evolution is cosmological in nature and reflects primarily the evolution of the underlying cosmic density, galaxy size and galaxy interactions. With higher density and more interactions at high redshift DLAs are larger in both absolute terms and in relative terms with respect to virial radii of halos. (3) The variety of DLAs at high redshift is richer with a large contribution coming from galactic filaments, created through close galaxy interactions. The portion of gaseous disks of galaxies where most stars reside makes relatively small contribution to DLA incidence at $z = 3 - 4$. (4) The vast majority of DLAs arise in halos of mass $M_h = 10^{10} - 10^{12} M_\odot$ at $z = 1.6 - 4$, as these galaxies dominate the overall population of galaxies then. At $z = 3 - 4$, 20-30% of DLA hosts are Lyman Break Galaxies (LBGs), 10-20% are due to galaxies more massive than LBGs and 50-70% are from smaller galaxies. (5) Galactic winds play an indispensable role in shaping the kinematic properties of DLAs. Specifically, the high velocity width DLAs are a mixture of those arising in high mass, high velocity dispersion halos and those arising in smaller mass systems where cold gas clouds are entrained to high velocities by galactic winds. (6) In agreement with observations, we see a weak but noticeable evolution in DLA metallicity. The metallicity distribution centers at $[Z/H] = -1.5$ to -1 and spans more than three decades at $z = 3 - 4$, with the peak moving to $[Z/H] = -0.75$ at $z = 1.6$ and $[Z/H] = -0.5$ by $z = 0$. (7) The star formation rate of DLA hosts is concentrated in the range $0.3 - 30 M_\odot/yr$ at $z = 3 - 4$, gradually shifting lower to peak at $\sim 0.5 - 1 M_\odot/yr$ by $z = 0$.

Subject headings: Methods: numerical, ISM: kinematics and dynamics, Galaxies: interactions, Galaxies: evolution, intergalactic medium

1Princeton University Observatory, Princeton, NJ 08544; cen@astro.princeton.edu
1. Introduction

Damped Lyα systems (DLAs) are fundamentally important, because they contain most of the neutral gas in the universe at all times since cosmological reionization (e.g., Storrie-Lombardi & Wolfe 2000; Péroux et al. 2003; Prochaska & Wolfe 2009). Molecular clouds, within which star formation takes place, likely condense out of cold dense neutral atomic gas contained in DLAs, evidenced by the fact that the neutral hydrogen (surface) density in DLAs and molecular hydrogen (surface) density in molecular clouds form a continuous sequence (e.g., Kennicutt 1998; Zwaan & Prochaska 2006). Therefore, DLAs likely hold key to understanding the fuel for and ultimately galaxy formation. A substantial amount of theoretical work has been devoted to studying the nature of DLAs (e.g., Gardner et al. 1997a; Gardner et al. 1997; Haehnelt et al. 1998; Gardner et al. 2001; Maller et al. 2001; Cen et al. 2003; Nagamine et al. 2004b; a 2007; Razoumov et al. 2006 2008; Pontzen et al. 2008; Tesari et al. 2009; Hong et al. 2010), since the pioneering investigation of Katz et al. (1996) in the context of the cold dark matter (CDM) cosmogony. A very interesting contrast is drawn between the observationally based inference of simple large disk galaxies possibly giving rise to DLAs (Wolfe et al. 1986; Prochaska & Wolfe 1997) and the more naturally expected hierarchical buildup of structures in the CDM cosmogony where galactic subunits may produce some of the observed kinematics of DLAs (Haehnelt et al. 1998). Clearly, the implications on the evolution of galaxies in the two scenarios are very different.

We have carried out a set of Eulerian adaptive mesh refinement (AMR) simulations with a resolution of 0.65 kpc proper and a sample size of several thousand galaxies with mass $\geq 10^{10} M_{\odot}$ to statistically address the physical nature of DLAs in the current standard cosmological constant-dominated CDM model (LCDM) (Komatsu et al. 2010). Mechanical feedback from star formation driven by supernova explosions and stellar winds is modeled by a one-parameter prescription that is physically and energetically sound. Part of the motivation was to complement and cross-check studies to date that are largely based on smooth-particle-hydrodynamics (SPH) simulations. With the simulation set and detailed analysis performed here this study represents a significant extension of previous works to simultaneously subject the LCDM model to a wider and more complete range of comparisons with observations. We examine in detail the following properties of DLAs in a self-consistent fashion within the same model: DLA column density distribution evolution, line density evolution, metallicity distribution evolution, size distribution evolution, velocity width distribution evolution, kinematic structural parameters evolution, neutral mass content evolution and others. A gallery of DLAs is presented to obtain a visual understanding of the physical richness of DLA systems, especially the effects of galactic winds and large-scale gaseous structures. In comparison to the recent work of Hong et al. (2010) we track the metallicity distribution and evolution explicitly and show that the metallicity distribution of DLAs is, in good agreement with observations, very wide, which itself calls for a self-consistent
treatment of metals transport. In agreement with the conclusions of Hong et al. (2010), although not in the detailed process, we show that galactic winds are directly responsible for a large fraction of wide DLAs at high redshift, by entraining cold clouds to large velocities and causing large kinematic velocity widths. We find that the simulated Si II λ1808 line velocity width, kinematic shape measures and DLA metallicity distributions that are all in excellent agreement with observations. Taking all together, we conclude that the standard LCDM model gives a satisfactory account of all properties of DLAs. Finally, we examine the properties of DLA hosts, including their mass, star formation rate, HI content, gas to stellar mass ratio and colors, and show that DLAs arise in a variety of galaxies and roughly trace the entire population of galaxies at any redshift. This may reconcile many apparently conflicting observational evidence of identifying DLAs with different galaxy populations. Specifically, at \(z \sim 3 \) we show that 20 – 30% of DLAs are Lyman Break Galaxies (LBGs) (Steidel et al. 1996), while the majority arise in smaller galaxies.

The outline of this paper is as follows. In §2 we detail our simulations, method of making galaxy catalogs, method of making DLA catalogs and procedure of defining Si II line profile shape measures. Results are presented in §3. In §3.1 we present a gallery of twelve DLAs. We give Si II line velocity width distribution functions in §3.2, demonstrating excellent agreement between simulations and observations, particularly at high velocity width end. §3.3 is devoted to the three kinematic measures of the Si II absorption line and we show the model produces results that are consistent with observations. Column density distribution and evolution, line density and neutral gas density evolution are described in §3.4, where, while simulations are consistent with observations, we emphasize large cosmic variance from region to region with different large-scale overdensities. The focus is shifted to metallicity distribution and evolution in §3.5 and simulations are found to be in excellent agreement with observations where comparisons can be made. The next subsection §3.6 performs a detailed analysis of the size of DLAs and finds that the available observed QSO pairs with DLAs are in accord with the expectation of our model. Having found agreement between simulations and observations in all aspects pertinent to DLAs, we turn our attention to the properties of DLA hosts in §3.7, where we show that DLAs, while slightly favoring galaxies that are more gas rich, less massive and bluer in color, and have higher HI mass and higher gas to stellar mass ratio, roughly trace the entire population of galaxies at all redshifts. Conclusions are given in §4.
2. Simulations

2.1. Hydrocode and Simulation Parameters

We perform cosmological simulations with the adaptive mesh refinement (AMR) Eulerian hydro code, Enzo (Bryan 1999; Bryan & Norman 1999; O'Shea et al. 2004; Joung et al. 2009). First we ran a low resolution simulation with a periodic box of $120\ h^{-1}\text{Mpc}$ on a side. We identified two regions separately, one centered on a cluster of mass of $\sim 2 \times 10^{14}\ M_\odot$ and the other centered on a void region at $z = 0$. We then resimulate each of the two regions separately with high resolution, but embedded in the outer $120h^{-1}\text{Mpc}$ box to properly take into account large-scale tidal field and appropriate boundary conditions at the surface of the refined region. We name the simulation centered on the cluster “C” run and the one centered on the void “V” run. The refined region for “C” run has a size of $21\times 24\times 20\ h^{-3}\text{Mpc}^3$ and that for “V” run is $31\times 31\times 35h^{-3}\text{Mpc}^3$. At their respective volumes, they represent 1.8σ and -1.0σ fluctuations. The initial condition in the refined region has a mean interparticle-separation of $117h^{-1}\text{kpc}$ comoving, dark matter particle mass of $1.07 \times 10^8h^{-1}\text{M}_\odot$. The refined region is surrounded by two layers (each of $\sim 1h^{-1}\text{Mpc}$) of buffer zones with particle masses successively larger by a factor of 8 for each layer, which then connects with the outer root grid that has a dark matter particle mass 8^3 times that in the refined region. Because we still can not run a very large volume simulation with adequate resolution and physics, we choose these two runs to represent two opposite environments that possibly bracket the average. At redshift $z > 1.6$, as we will show, the average properties of most quantities concerning DLAs in “C” and “V” runs are not very different, although the abundances of DLAs in the two runs are already very different. It is only at lower redshift where we see significant divergence of some quantities of DLAs between the two runs, presumably due to different dynamic evolutions in the two runs.

We choose the mesh refinement criterion such that the resolution is always better than $460h^{-1}\text{pc}$ physical, corresponding to a maximum mesh refinement level of 11 at $z = 0$. We also ran an additional simulation for “C” run with a factor of two lower resolution to assess the convergence of the results which we name “C/2” run and, as we will show in the Appendix, the convergence is excellent for all quantities examined here. The simulations include a metagalactic UV background (Haardt & Madau 1996), and a model for shielding of UV radiation by neutral hydrogen (Cen et al. 2005). They also include metallicity-dependent radiative cooling (Cen et al. 1995). Star particles are created in cells that satisfy a set of criteria for star formation proposed by Cen & Ostriker (1992). Each star particle is tagged with its initial mass, creation time, and metallicity; star particles typically have masses of $\sim 10^6\text{M}_\odot$.

Supernova feedback from star formation is modeled following Cen et al. (2005). Feedback energy and ejected metal-enriched mass are distributed into 27 local gas cells centered
at the star particle in question, weighted by the specific volume of each cell, which is to mimic the physical process of supernova blastwave propagation that tends to channel energy, momentum and mass into the least dense regions (with the least resistance and cooling). We allow the whole feedback processes to be hydrodynamically coupled to surroundings and subject to relevant physical processes, such as cooling and heating, as in nature. As we will show later, the extremely inhomogeneous metal enrichment process demands that both metals and energy (and momentum) are correctly modeled so that they are transported into right directions in a physically sound (albeit still approximate at the current resolution) way. The primary advantages of this supernova energy based feedback mechanism are three-fold. First, nature does drive winds in this way and energy input is realistic. Second, it has only one free parameter \(e_{SN} \), namely, the fraction of the rest mass energy of stars formed that is deposited as thermal energy on the cell scale at the location of supernovae. Third, the processes are treated physically, obeying their respective conservation laws (where they apply), allowing transport of metals, mass, energy and momentum to be treated self-consistently and taking into account relevant heating/cooling processes at all times. We use \(e_{SN} = 1 \times 10^{-5} \) in these simulations. The total amount of explosion kinetic energy from Type II supernovae with a Chabrier IMF translates to \(e_{GSW} = 6.6 \times 10^{-6} \). Observations of local starburst galaxies indicate that nearly all of the star formation produced kinetic energy (due to Type II supernovae) is used to power GSW (e.g., Heckman 2001). Given the uncertainties on the evolution of IMF with redshift (i.e., possibly more top heavy at higher redshift) and the fact that newly discovered prompt Type I supernovae contribute a comparable amount of energy compared to Type II supernovae, it seems that our adopted value for \(e_{SN} \) is consistent with observations and within physical plausibility.

We use the following cosmological parameters that are consistent with the WMAP7-normalized (Komatsu et al. 2010) LCDM model: \(\Omega_M = 0.28, \Omega_b = 0.046, \Omega_{\Lambda} = 0.72, \sigma_8 = 0.82, H_0 = 100h\text{km}^{-1}\text{Mpc}^{-1} = 70\text{km}^{-1}\text{Mpc}^{-1} \) and \(n = 0.96 \).

Convergence test of results are presented separately in Appendix A in order not to disrupt the flow of the presentation in the results section. The tests show that our results are quite converged and should be robust at the accuracies concerned here, suggesting that our resolution has reached an adequate level for the present study. The reader may go to the Appendix any time to gauge the convergence of relevant computed quantities. The fact that most of the contributions to DLA incidence come from galaxies of mass \(\sim 10^{11} \text{M}_\odot \) that are well above our resolution, the results of our convergence tests are self-consistent.

2.2. Simulated Galaxy Catalogs

We identify galaxies in our high resolution simulations using the HOP algorithm (Eisenstein \\& Hu 1999), operated on the stellar particles, which is tested to be robust and insen-
sitive to specific choices of concerned parameters within reasonable ranges. Satellites within a galaxy are clearly identified separately. The luminosity of each stellar particle at each of the Sloan Digital Sky Survey (SDSS) five bands is computed using the GISSEL stellar synthesis code \cite{BruzualCharlot2003}, by supplying the formation time, metallicity and stellar mass. Collecting luminosity and other quantities of member stellar particles, gas cells and dark matter particles yields the following physical parameters for each galaxy: position, velocity, total mass, stellar mass, gas mass, mean formation time, mean stellar metallicity, mean gas metallicity, star formation rate, luminosities in five SDSS bands (and various colors) and others.

2.3. Simulated Damped Lyman Alpha System Samples

While our simulations also solve relevant gas chemistry chains for molecular hydrogen formation \cite{Abeletal1997}, molecular formation on dust grains \cite{Joungetal2009} and metal cooling extended down to 10 K \cite{DalgarnoMcCray1972}, at the resolution of the simulations, molecular clouds are not properly modeled. To correct for that, we use the \cite{HidakaSofue2002} observation that at $n_c = 5\text{HI/cm}^3$ H$_2$ fraction is about 50% and then implement the following prescription to remove neutral gas in extrapolated high density regions and put it in H$_2$ phase. In detail, we assume that the density profile is isothermal below our resolution, which would translate the fraction of mass in H$_2$ is min$(1, 0.5(n_c/n_{\text{res}})^{-1/2})$. Thus, we post-process the neutral neutral density in the simulation by the following transformation:

$$n_{\text{HI}}(\text{after}) = n_{\text{HI}}(\text{before})(1 - \text{min}(1, 0.5(n_c/n_{\text{HI}}(\text{before}))^{-1/2})),$$

where $n_{\text{HI}}(\text{before})$ is the HI density directly from the simulation, and $n_{\text{HI}}(\text{after})$ is that after this processing step. A very precise choice of the parameter in the above equation is unimportant; changing 0.5 to 1.0 makes marginally noticeable differences in the results. The primary effect of doing this is to remove very high HI column DLAs and causes the HI column density distribution function to steepen at $N_{\text{HI}} \geq 22.5$, in agreement with observations. In addition, because of that, the total amount of neutral gas in DLAs also become convergent and more stable.

After the above post-process step, we shoot rays through the entire refined region of each simulation along all three orthogonal directions using a cell size of 0.915h^{-1}kpc comoving. In practice, this is done piece-wise, one small volume of the simulation box at a time, due to limited computer memory. The spectral bin size is 3km/s. All physical effects are taken into account, including temperature broadening and peculiar velocities. Both intrinsic Lorentzian line profile and Doppler broadening are taken into account for both Lyα and Si II λ1808 line, although, in practice, for DLAs, Doppler broadening is important for Si II λ1808 line and Lorentzian profile for Lyα line. All relevant atomic data are taken from \cite{Morton2003}. A DLA is defined, as usual, a system with HI column larger than $10^{20.3}\text{cm}^{-2}$. We assume that the fractional abundance of Si II is equal to fractional abundance of HI. Since, we will see
later, the HI regions of DLAs are “peaky” with well-defined line-of-sight boundaries and since DLAs are very optically opaque to ionizing photons, any refined treatment of radiative self-shielding etc is unlikely to have any significant effect. Note that we have already included a crude self-shielding method during the simulation, which should work well for optically opaque regions. As a side, one numerical point to note is that, because of the very large dynamic range of both line cross sections as a function of frequency shift from the line center and the delta function like cross section shapes in the line core regions, the convolution operations involved in the detailed calculations of optical depths require at least 64–bits precision for floating point numbers.

For each DLA, we compute the HI column weighted metallicity, register its position relative to the center of the primary galaxy (i.e, the impact parameter), and for DLAs that are physically connected by at least one cell side in projection we merge them and in the end compute projected area A of each connected region to define it size $r_{\text{DLA}} = (A/\pi)^{1/2}$. For each galaxy we also register the maximum velocity width $v_{90,\text{max}}$ among its associated DLAs.

We are able to identify more than one million DLAs through ray tracing at each redshift examined in each of the runs. So the statistical errors are very small for each specific run at any redshift. But that does not speak to cosmic variance and as we shall show later, cosmic variance is indeed quite large concerning quantities that directly or indirectly pertain to the number density of DLAs. Other quantities, such as size, metallicity, kinematic properties, etc., however, appear to depend weakly on environments and their variances are small. A DLA “belongs” to the largest galaxy in the region, within whose virial radius the DLA lies. For example, a DLA that is physically more closely located to a satellite galaxy that in turn is within the virial radius of a larger galaxy is said to belong to that larger galaxy.

2.4. Kinematic Measures for Si II Line

We do not add instrumental noise to the simulated spectra, but we adopt the same observational procedure to compute the kinematic measures for the Si II absorption lines. For all relevant measures for the Si II line, we follow identically the procedures and definitions in Prochaska & Wolfe (1997). We generate synthetic spectra for both Lyα and Si II line with 3km/s pixels and then smooth it with a 9-pixel boxcar averaging procedure. We define the velocity width of a Si II absorption line associated with a DLA to be the velocity interval of 90% of the total optical depth, v_{90}. For the three kinematic shape measures for Si II line we use all intensity troughs (optical depth peaks) without the $0.1 \leq I(v_{pk})/\bar{I} \leq 0.6$ constraint, where \bar{I} is the continuum flux, as re-emphasized by Prochaska & Wolfe (2010). The kinematic shape measures, f_{mm}, f_{edg} and $f_{2\text{pk}}$, are defined exactly the same way as in Prochaska & Wolfe (1997).
3. Results

3.1. A Garden Variety of DLAs

Fig. 1.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L$_{\odot}$/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and finally Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M$_h$, v_{90}, f_{mm}, f_{edg}, f_{2pk}.

We first present a gallery of twelve DLAs at $z = 3.1$ (Figure 1-12) to show the richness of their physical properties. For each DLA six maps and five quantitative panels are displayed. In each of the six maps the line of sight (LOS) intercepting the DLA is shown as a white horizontal line and the exact location of the primary component of the DLA is at the intersection with another, white vertical line. In cases with multiple components along the LOS, the primary component coincides with the highest neutral density. Four of the maps - top left (temperature in Kelvin), middle left (atomic hydrogen density in cm$^{-3}$), bottom...
Fig. 2.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L$_{\odot}$/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si$\,\text{II} \lambda$1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M$_{h}$, v$_{90}$, f$_{mm}$, f$_{edg}$, f$_{2pk}$.

left (metallicity in solar units) and top middle (pressure in units of Kelvin cm$^{-3}$) - have a physical thickness of 1.3kpc. Also indicated in top middle (pressure) is the peculiar velocity field with a scaling of 5kpc corresponding to 500km/s. The remaining two maps - middle middle (baryonic overdensity) and bottom middle (stellar surface density in M$_{\odot}$/kpc2) - are projected over the entire galaxy of depth of order of the virial diameter of the primary galaxy. While these two projected maps give an overall indication of relative projected location of the DLA respect to the galaxy, the exact depth of the DLA inside the paper is, however, not shown. When we quote distance from the galaxy, we mean the projected distance on the paper plane.

The five panels on the right column show various physical quantities along the line of
Fig. 3.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3 kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L/\odot/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5 kpc corresponding to 500 km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M_h, v_{90}, f_{mm}, f_{edg}, f_{2pk}. We now describe in turn each of the twelve DLA examples.

sight (i.e, along the white horizontal line shown in the maps on the left two columns). From top to bottom they are: atomic hydrogen density (in cm$^{-3}$; red solid curve with a narrower shape) along with total hydrogen density (dotted green curve with a more extended shape), gas metallicity (in solar units), line-of-sight proper peculiar velocity (in km/s), Lyα flux and flux for Si II λ1808 line. The top three panels are plotted against physical distance, whereas the bottom two panels are plotted versus the LOS velocity. Also indicated in the Lyα flux panel (second from bottom) are several quantitative measures of the DLA, including the neutral hydrogen column density (log N(HI)), the halo mass of the primary galaxy in the system (log M_h), the velocity width of the associated Si II line (v_{90}) and three kinetic measures of the Si II line, f_{mm}, f_{edg}, f_{2pk}. We now describe in turn each of the twelve DLA examples.
Figure 4.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L_{\odot}/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M_{HI}, v_{90}, f_{mm}, f_{edg}, $f_{2\text{pk}}$.

Figure 1 shows a DLA produced by the LOS intersecting the tip of a long chimney at a distance of ~ 30kpc. The velocity structure suggests that it is still moving away (upwards) from the galaxy at a velocity of ~ 500km/s, likely caused by galactic winds. The metallicity at the interception is $[Z/H] \sim -1.5$ but there are large gradients and variations of metallicity (we found that some other very nearby DLA systems intersecting different parts of the chimney have metallicity $[Z/H] < -3$, not shown), suggesting very inhomogeneous enrichment process by galactic winds. While the primary galaxy has a mass of $4 \times 10^{12} M_{\odot}$, i.e., a 1-d velocity dispersion of 500km/s, the kinetic width of this line is only 129km/s with $N_{\text{HI}} = 21.7$. Although the Lyα flux appears as a single component, as will be the case in all subsequent examples, the Si II absorption has several separate features, reflecting the two-peak structure of the absorbing column and complex velocity structure within. We note
that the nearby satellite galaxies may have triggered the starburst and the galactic winds. The responsible gas for this DLA is probably cooling and confined by external pressure likely due to thermal instability, as seen in the pressure panel.

Fig. 5.— Top left: temperature (K); middle left: atomic hydrogen density (cm\(^{-3}\)); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm\(^{-3}\)); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L\(\odot\)/kpc\(^2\)); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm\(^{-3}\); red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Ly\(\alpha\) flux and Si II \(\lambda 1808\) flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M\(_h\), \(v_{90}\), \(f_{mm}\), \(f_{edg}\), \(f_{2pk}\).

In Figure 2 a DLA of width 219km/s is created jointly by two major components along the sightline, one at \(x \sim 70\text{kpc}\) of metallicity of \([Z/H] \sim [-1.0, -0.5]\) and size of \(\sim 20\text{kpc}\) at an impact parameter of \(\sim 30\text{kpc}\) and the other at \(x \sim 110\text{kpc}\) of metallicity of \([Z/H] \sim 0.0\) and size of \(\sim 30\text{kpc}\). What is striking is many long gaseous structures in this galaxy. As we will see frequently, there are often long gaseous structures connected with galaxies that seem always coincidental with visible galaxy interactions of multiple galaxies or galaxies and satellites in close proximity. We shall call these features “galactic filaments” hereafter. It seems likely that some of these galactic filaments are cold streams. (Kereš et al. 2005; Dekel...
Fig. 6.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L_{\odot}/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M_h, v_{90}, f_{mm}, f_{edg}, f_{2pk}.

& Birnboim 2006). However, galactic filaments found in our simulations appear to be very rich in variety and disparate in metallicity (spanning 3 decades or more in metallicity). In other words, they are not necessarily primordial cold streams. In the case of this DLA, the filaments are likely made of gas pre-enriched, having cooled (as the pressure panel shows) and now rotating about the galaxy (roughly counter-clockwise). In contrast, note that the DLA in Figure 1 was still moving away from the galaxy. Like in Figure 1, the rich galactic filaments appear to be associated with significant satellite structures in close proximity. The Si II absorption has several separate features, reflecting the two separate physical components as well as substructures within each component.

Figure 3 shows a DLA that is associated with a low metallicity ([Z/H] \sim [−2.0, −1.5])
filament that is feeding a small satellite, which in turn appears to be interacting and possibly feeding the primary galaxy at a projected distance of ~ 20 kpc. This is yet another example of interacting galaxies producing rich gas-feeding filaments, as already seen in Figures 1 and 2. The relatively large width of 303 km/s is produced by steep velocity gradient in the region from $x \sim 45$ to 50 kpc. One could see that galactic winds are blowing to the upper left corner by the primary galaxy, whose starburst is likely triggered by the interaction.

Figure 4 shows a DLA that is made up by several filaments at distances of $30 - 40$ kpc from the galaxy. The metallicity of all the components is near solar, indicating that these are probably pre-enriched gas cooling due to thermal instability. The velocity structures show that they are falling back towards the galaxy, in a fashion perhaps similar to galactic
Fig. 8.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L$_{\odot}$/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M_h, v_{90}, f_{mm}, f_{edg}, f_{2pk}.

fountains (Shapiro & Field 1976), on somewhat extended scales. Once again, it appears that galaxy-galaxy interactions may be responsible for the rich gas filaments, as seen in Figures 1, 2 and 3. There is evidence that winds are blowing upwards from the galaxy.

Figure 5 shows another example of a DLA arising from a galaxy with a very rich filament system due to galaxy interactions. The primary galaxy is the same as the one shown in Figure 2 and we are now looking at its south side. These filaments that are responsible for the neutral column of the DLA appear to have been enriched to a level of $[Z/H] \sim -1.0$ and have cooled to low temperature. The large width of 420km/s is due to the multiple components spanning a spatial range of ~ 40kpc each of physical depth of several kpc and individual velocity width ≤ 100km/s. Interestingly, for this DLA system, while most of
Fig. 9.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L$_{\odot}$/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M$_h$, v_{90}, f_{mm}, f_{edg}, f_{2pk}.

the gas filaments are now falling back toward the galaxy (not necessarily radially), galactic winds are still blowing towards the upper right corner. Comparison of Figure 5 and Figure 2 indicates that the metallicity in the upper right quadrant of the galaxy is somewhat more metal enriched ([Z/H] \sim 0) than other regions ([Z/H] \sim −1 or lower), consistent with the directions of ongoing galactic winds. This is strongly suggestive that metallicity enrichment process not only is episodic, multi-generational, anisotropic, but also in general possesses no parity.

Figure 6 shows a DLA intercepting two filaments at a small inclined angle, giving rise to a broad physical extension of \sim 25kpc. All the visible filaments appear to run roughly top-left to bottom-right, whereas the metal enriched regions seem to spread out like a butterfly in
the direction roughly perpendicular to the filaments. This is the classic picture that galactic winds tend to blow in directions that are perpendicular to the filaments that are feeding the galaxy. The inner regions of the filaments appear to be less enriched ([Z/H] ∼ −2) than the outer regions of the filaments ([Z/H] ∼ [−0.5, 0]), strongly indicative of galactic winds tending to circumvent the denser filaments. The large width of 510 km/s appears to be caused by oppositely moving (i.e., converging) flows at x ∼ 15 − 40 kpc, probably caused by the bipolar winds interacting with the complex filament structures. This galaxy has a mass of 2 × 10^{11} M_☉ and we notice that most of its surrounding regions is relatively cold, whereas in Figures (1-5) we consistently see a hot atmosphere permeating the circumgalactic regions. The galaxies in Figures (1-5) all have mass ≥ 10^{12} M_☉, consistent with the mass demarcation of cold and hot accretion modes (Kereš et al. 2005; Dekel & Birnboim 2006).
Nevertheless, the existence of cold galactic filaments seen in Figures 1-5 is consistent with the suggested cold mode of accretion of massive galaxies at high redshift (Dekel et al. 2009).

Figure 7 shows a “normal” DLA where a relatively quiet galactic disk is pierced edge-on. Its large width of 522km/s is simply due to the large halo that the galaxy is residing in of mass $3 \times 10^{12} M_\odot$ (at $z = 3.1$). The surrounding environment seems relatively “pristine” with no widespread metal enrichment at a level of $[Z/H] \geq -1$. However, the temperature panel indicates that there is a hot halo permeating the entire region and embedding and pressure-confining (see the pressure panel) the cold neutral clouds. It seems likely that this hot gaseous halo is produced by gravitational shocks rather than galactic wind shocks. There are several filaments attached to the galaxy. This is a good example of cold streams feeding...
Fig. 12.— Top left: temperature (K); middle left: atomic hydrogen density (cm$^{-3}$); bottom left: metallicity (solar units); top middle: pressure (Kelvin cm$^{-3}$); the above maps have a thickness of 1.3kpc. Middle middle: baryonic overdensity; bottom middle: SDSS U band luminosity surface density (L$_{\odot}$/kpc2); these two maps are projected over the virial diameter of the galaxy. Included in pressure map is peculiar velocity field with 5kpc corresponding to 500km/s. The five panels on the right column, from top to bottom, are: atomic hydrogen density (cm$^{-3}$; red solid curve) with total hydrogen density (dotted green curve), gas metallicity (solar units), LOS proper peculiar velocity, Lyα flux and Si II λ1808 flux. The top three panels are plotted against physical distance, whereas the bottom two versus LOS velocity. Indicated in the second from bottom panel are properties of the DLA: log N(HI), log M$_h$, v$_{90}$, f$_{mm}$, f$_{edg}$, f$_{2pk}$.

a massive galaxy by penetrating a hot atmosphere.

Figure 8 shows a DLA with a large velocity width arising from a relatively small galaxy of total mass $3 \times 10^{10} M_\odot$. The galactic winds are blowing in the north-east direction that entrain cold neutral clouds with it. The LOS of the DLA intercepts a high velocity component at $x = 35 - 55$kpc. The combination of this high velocity component with the low velocity component at $x \sim 0$ produces the relatively large width of 306km/s. Note that an isotropic Maxwellian velocity distribution of dispersion equal to that of the halo velocity dispersion would only yield a width of $v_{90} = 2.33v_{vir} = 176$km/s. Clearly, galactic winds are directly responsible for the large width of this DLA, by entraining cold gas clouds to a high velocity.

Figure 9 shows another DLA produced by a small galaxy of mass $2 \times 10^{10} M_\odot$ with a
large velocity width. The galaxy system have multiple, interaction galaxies at close distances. The galactic winds are blowing primarily, in a bipolar fashion, in north-east and south-west direction, roughly perpendicular to the galactic disk, that entrain the cold neutral cloud at \(x \sim 40 \text{kpc} \) to a broad velocity of \(v_x = 0 - 400 \text{km/s} \) relative to the galaxy itself. In combination with another complex structure at \(x = 45 - 70 \text{kpc} \) the galactic winds produce a very large width of \(516 \text{km/s} \). Note that for this galaxy \(2.33v_{\text{vir}} = 160 \text{km/s} \).

Figure 10 shows yet another DLA arising from a small galaxy but having a large velocity width of \(501 \text{km/s} \). This is an interesting case where the galactic winds are blowing, by the primary galaxy, towards and passing through the satellite galaxy at \((x, y) \sim (40, 20) \text{kpc} \) in the north-east direction. The SDSS u band luminosity map suggests that the satellite galaxy itself is experiencing a starburst and likely blowing and enhancing the north-east/north winds. A very large positive velocity gradient in the positive x-direction (downstream) of \(\sim 700 \text{km/s} \) over an LOS physical interval of \(\Delta x \sim 20 \text{kpc} \) is produced, resulting in a very large width. Note that \(2.33v_{\text{vir}} = 162 \text{km/s} \) for this galaxy. The entrained neutral gas cloud and its downstream appear to have escaped the metal enrichment by ongoing winds and remain at \([Z/H] \sim -1 - \) “shadowing” effect due to dense clouds and filaments.

Figure 11 shows another wide DLA from a small galaxy. For this DLA the majority of the column is due to the intersection with the disk of the galaxy, which would have produced a velocity width of \(\sim 200 \text{km/s} \) on its own. The galactic winds blowing at the south-east direction entrain some cold clouds at \(x = 35 - 45 \text{kpc} \) to a velocity up to \(500 \text{km/s} \). Together, a large width of \(501 \text{km/s} \) is produced. Given the small mass of the galaxy the surrounding regions are not embedded in a hot gravitationally shock heated atmosphere. There are some solid angles with low gas column that have been heated by galactic winds, probably triggered by the binary galaxy interaction, as can be seen by comparing temperature map and the density map. Note that \(2.33v_{\text{vir}} = 204 \text{km/s} \) for this galaxy.

Finally, Figure 12 shows the last example of a wide DLA from a small galaxy. Two galactic filaments make up this DLA, one at \(x \sim 10 \text{kpc} \) and the other at \(x \sim 35 \text{kpc} \). The galactic system is a primary-satellite binary that is interacting, which has likely caused both to experience starbursts. The primary galaxy at \((x, y) \sim (23, 36) \text{kpc} \) is blowing bipolar galactic winds mainly in the north-south direction, whereas the satellite at \((x, y) \sim (35, 35) \text{kpc} \) is blowing bipolar galactic winds in the east-west direction. Together they produce a very complex, multi-stream velocity structure. The total velocity width of this DLA is \(500 \text{km/s} \), although each of the two components individually has a velocity width of \(\leq 200 \text{km/s} \). Note that \(2.33v_{\text{vir}} = 200 \text{km/s} \) for the primary galaxy.

In summary, we see that DLAs arise in a wide variety of cold gas clouds, from galactic disks to cold streams to cooling gas from galactic winds to cold clouds entrained by hot galactic winds at a wide range of distances from galaxies, with a wide range of metallicity and in galaxies of all masses from \(10^{10} - 10^{-12.5} \text{M}_\odot \) at \(z \sim 3 \). Inspection of the gallery has
already hinted that many large velocity width DLAs may be produced directly or indirectly by galactic winds. That is, directly by entraining cold gas clouds and compressing cold gas clouds with high pressure and indirectly by enhancing cooling and thermal instability with added metals and shock compression. In addition, the composite nature of many large width DLA systems should also help remove the perceived failure of the standard LCDM model with respect to producing large width systems (e.g., Prochaska & Wolfe 1997). Quantitative results later prove this is indeed the case.

3.2. Kinematic Velocity Width Distribution Functions

Fig. 13.— Velocity distribution functions, defined to be the number of DLAs per unit width velocity per unit absorption length, at $z = 1.6, 3.1, 4.0$. Two sets of simulation results are shown, one for the “C” run (solid symbols) and “V” run (open symbols). The corresponding observational data for each of the individual redshifts (Prochaska et al. 2005) are shown as open squares, which span the redshift range of $z = 1.7 - 4.5$.

We now present more quantitative statistical results on the velocity width distribution functions of DLAs at several redshifts. Since the velocity structure in Lyα flux of a DLA is “damped” and does not provide the kinematic information of the underlying physical cloud. Following Prochaska & Wolfe (1997), the velocity width, v_{90}, is defined to be the velocity interval of 90% of the optical depth of the Si II $\lambda 1808$ absorption line associated with the DLA. Figure 13 shows the velocity width distribution at three redshifts ($z = 1.6, 3.1, 4.0$),
covering most of the observed redshift range. We see a factor of \(\sim 10 \) variation from “C” to “V” run, indicating the need to have a larger statistical set of simulations covering, more densely, different environments, before a more precise comparison can be made with observations. Insofar as the observed velocity width distribution function lies inbetween the two bracketing runs, “C” and “V”, and the shape of the functions are in excellent agreement with observations, including the high velocity tail \((v_{90} \geq 300 \text{km/s}) \), this should be considered a success for the LCDM model - there is no lack of large width DLAs with \(v_{90} \geq 300 \text{km/s} \) in the LCDM simulation. This conclusion is consistent with that of [Hong et al. (2010)], who studied this issue with a different code and a different feedback implementation. There is a significant difference between our results and theirs in the that we find galactic winds are directly responsible for many of the large width DLAs, by entraining neutral dense clouds to large velocities. In addition, they conclude that a large halo mass \((\geq 10^{11} \text{M}_\odot) \) is a necessary condition for producing large velocity widths, while we find that a non-negligible fraction of large velocity width DLAs arise in halos less massive than \(10^{11} \text{M}_\odot \).

Fig. 14.— The maximum \(v_{90} \) of all DLAs associated with each galaxy against the halo mass of the galaxy \(M_{\text{halo}} \) for \(z = 1.6 \) and \(z = 3.1 \) for “C” and “V” run. The black line \(v_{90} = 2.33v_{\text{vir}} \) is what \(v_{90} \) would be if the velocity distribution is an isotropic and Maxwellian distribution with its dispersion equal to \(v_{\text{vir}} \), and the Si II gas density is constant across the DLA.
To help understand the large velocity width DLAs, we plot in Figure 14 the maximum v_{90} of all DLAs, $v_{90,\text{max}}$, associated with each galaxy against the halo mass of the galaxy, M_{halo}. The black line $v_{90} = 2.33v_{\text{vir}}$ is what v_{90} would be if the velocity distribution is an isotropic and Maxwellian distribution with its dispersion equal to v_{vir}, and the Si II gas density is constant across the DLA. We see that the Maxwellian velocity distribution (the black line) approximately provides a lower bound to v_{90}, although there is, unsurprisingly, some fraction of systems that lie below (see Figure 1 for an example). What is very interesting is that at $z = 3.1$ there is a large number of galaxies whose $v_{90,\text{max}}$ are substantially larger than what v_{vir} could produce, i.e., “super-gravitational motion” in the terminology of Hong et al. (2010). This super-gravitational motion is produced by galactic winds, as we have seen clearly in Figures 8, 9, 10, 11 and 12 in §3.1. We also note that at $z = 1.6$ for both “C” and “V” run (and especially the “C” run), the correlation between v_{90} and v_{vir} becomes substantially better with much reduced scatter, and the excess of DLAs with large v_{90}/v_{vir} is much removed. This is circumstantial but strong evidence that galactic winds are responsible for most of the large v_{90}/v_{vir} DLAs, because of higher star formation activities hence galactic winds at $z = 3.1$ than $z = 1.6$. Figure 16 below will further strengthen this point.

It appears that the redshift evolution at a fixed environment is relatively mild in the redshift range $z = 4.0$ to $z = 1.6$. We speculate that the weak evolution of the velocity width distribution from $z = 4.0$ to $z = 1.6$ may be coincidental and attributable to two countering processes: growth of halo mass hence virial velocity with time and diminution of supergravitational motion produced by galactic winds with time (due to reduced star formation activities with time at $z \leq 2$). This prediction of a weak evolution of velocity width distribution with redshift is verifiable with future larger DLA sample and is a powerful test for the non-gravitational origin of a large fraction of the large width systems.

Figure 14 does not, however, fairly characterize the relative contribution of halos of different masses to velocity width distribution function, because it does not specify the number of DLAs at a given halo mass. In Figure 15 we show the halo mass probability distribution function for DLAs above three velocity width cuts, v_{90} \geq 150, 300, 600km/s, respectively. We see a clear trend that larger halos make larger contribution to larger width DLAs, as one would have expected. For example, about one half of all DLAs with v_{90} \geq 600km/s arise in halos of mass greater than 10^{12} M$_{\odot}$ at $z = 3.1$, whereas that division line drops to 2×10^{11} M$_{\odot}$ for v_{90} \geq 150km/s. It should be noted that the ratio of the virial velocity of a halo of mass 2×10^{11} M$_{\odot}$ to that of 10^{12} M$_{\odot}$ is 0.58, significantly greater than $0.25 = 150/600$, indicating an overweight of DLA cross-section by large galaxies. For moderate to large velocity width of v_{90} \geq 150km/s, halos of mass 1×10^{11} M$_{\odot}$ dominate the contribution to DLA incidence, largely in agreement with Hong et al. (2010). Slightly at odds with Hong et al. (2010), however, we find a significant fraction of these relative wide systems arising in galaxies of mass less than 1×10^{11} M$_{\odot}$: (24%, 18%, 12%) of DLAs with velocity width larger than $(150, 300, 600)$km/s are due to galaxies with mass less than 1×10^{11} M$_{\odot}$.
Fig. 15.— shows the DLA incidence weighted halo mass probability distribution function for DLAs above three velocity width cuts, $v_{90} \geq 150, 300, 600$ km/s at $z = 3.1$ for the “C” run. Note that a DLA associated with a satellite galaxy or any gas cloud within the virial radius is given the halo mass of the primary galaxy.

We note that our definition of associating DLAs with galaxies biases associating them to larger galaxies; Figure 3 gives an example, where the DLA is defined to arise from the larger galaxy of mass $8 \times 10^{11} \, M_\odot$, even though it is more closely related to a much smaller satellite galaxy that is orbiting around the larger galaxy. Our results are perhaps unsurprising in the sense that one would have expected that galactic winds, when they are blowing, should be stronger, or at least not weaker, in dwarf starburst galaxies than larger galaxies thanks to shallow gravitational potential wells in the former, when cold gas is still abundant at high redshift. Both Figure 15 and gallery pictures in §3.1 confirm this point. Galactic winds, however, could be weaker in dwarf galaxies if star formation is inproportionally less vigorous. This may be the case at lower redshift, as shown in Figure 16. What is interesting, and further evidence, is that at $z = 0$ the dwarf galaxies in “V” run appear to have more super-gravitational motion than in the “C” run, simply because the former are gas richer and have higher star formation rate than the latter. Thus, it seems that galactic winds are a bivariate function of galaxy mass and star formation rate, in a fashion that is consistent with observations (e.g., Martin 2005).
Fig. 16.— The maximum v_{90} of all DLAs associated with each galaxy against the halo mass of the galaxy M_{halo} at $z = 0$ for “C” and “V” run. The black line $v_{90} = 2.33 v_{\text{vir}}$ is what v_{90} would be if the velocity distribution is an isotropic and Maxwellian distribution with its dispersion equal to v_{vir}, and the Si II gas density is constant across the DLA.

3.3. Si II Line Profile Shape Measures

Having found an overall good agreement with observations with respect to the velocity width distribution, we now turn to shape measures of Si II λ1808 absorption line profile. Before comparing to observational data from Prochaska & Wolfe (1997), we shall first try to understand the relationship among the optical depth of a Si II line, HI column density, metallicity and velocity width. Assuming that the optical depth profile of the Si II line is a simple top-hat (assuming a different profile such as a gaussian makes no material difference for our purpose), it can be shown that

$$\tau_{\text{Si II}} = 0.01 \left(\frac{N_{\text{HI}}}{2 \times 10^{20} \text{ cm}^{-2}} \right) \left(\frac{Z}{Z_\odot} \right) \left(\frac{v_{90}}{100 \text{ km/s}} \right)^{-1},$$

where Z is the metallicity of DLA in solar units. Left panel of Figure 17 shows v_{90} as a function of $\log N_{\text{HI}}$ for $Z = 0.1 Z_\odot$. As expected, an increase in velocity width requires a corresponding increase in column density to produce a same optical depth. More important is that, quantitatively, in order to achieve an optical depth of 0.1, with a width $v_{90} \sim 100 \text{km/s}$ it requires a DLA column of $\sim 2 \times 10^{22} \text{cm}^{-2}$, if the DLA is composed of one single component with $[Z/H] = -1$. Since the abundance of DLAs with $N_{\text{HI}} \geq 10^{22.5} \text{cm}^{-2}$ declines rapidly (see Figure 21) but the abundance of Si II line peaks near $v_{90} \sim 100 \text{km/s}$ (Figure 13), this suggests that a significant fraction of Si II lines must have multiple components. To quantitatively illustrate this, we define a new simple two-component measure as follows. If there are at least two peaks in the optical depth profile that are separated by more than $0.5 v_{90}$ and the ratio of the peak heights is greater than 1/15, we define the DLA to be a two-component DLA. The ratio, 1/15, comes about such that the lower peak is guaranteed
Fig. 17.— Left panel: v_{90} as a function of $\log N_{\text{HI}}$ assuming $Z = 0.1 Z_\odot$. Right panel: the percentage of DLAs that have multiple components, as a function of v_{90}.

to be included in the accounting of v_{90} interval, although changing it to say 1/10 makes no dramatic difference in the results. Note that DLAs with more than two components are included as two-component systems. Right panel of Figure 17 shows the percentage of two-component DLAs as a function of v_{90}. In good agreement with the simple expectation, we see that at $v_{90} = 100 \text{km/s}$, about 50% of DLAs have more than one component and that number increases to $\sim 90\%$ at $v_{90} = 300 \text{km/s}$. This result is also consistent with the anecdotal evidence shown in the gallery examples in §3.1, where most of large width DLAs contain more than one physical component.

We now turn to the three kinematic shape measures defined in Prochaska & Wolfe (1997), f_{mm}, f_{edg}, f_{2pk}, representing, respectively, measures of the symmetry, leading-edgeness and two-peakness of the profile of Si II $\lambda 1808$ absorption lines associated with DLAs (see the bottom right panels of the gallery pictures in §3.1). Figures (18, 19, 20) show comparisons of simulation results with observations at three redshifts $z = 1.6$, $z = 3.1$ and $z = 4.0$. We see the overall agreement between simulations and observations is excellent, with K-S tests (indicated in the figures) for both runs (“C” and “V”) at three compared redshifts ($z = 1.6, 3.1, 4.0$) all being at acceptable levels. Our results are in good agreement with one of the models with feedback in Hong et al. (2010), except for the case of f_{2pk}: our simulations find acceptable K-S test values of 26-29%, 4-34% and 23-34% at $z = 1.6$, 3.1 and 4.0, respectively, whereas they find none of their models have probability higher than 5% at $z = 3.1$. We speculate that difference in the detailed treatments of metal transport process as well as feedback prescription between our simulations and theirs may have partly contributed to this difference; with detailed metal transport we find very inhomogeneous metallicity distributions across space and among DLAs in our simulations (see Figure 23
Fig. 18.— Left set of four panels: f_{mm} distributions for “C” run at redshift $z = 1.6$ (top left), $z = 3.1$ (top right) and $z = 4.0$ (bottom left). For $z = 1.6$ we compared to observed DLAs at the redshift range $z = 1.2 - 2.2$; for $z = 3.1$ we compared to observed DLAs at $z = 2.9 - 3.3$; for $z = 4.0$ we compared to observed DLAs at $z = 3.8 - 4.2$. Observed sample is an updated version of Prochaska & Wolfe (1997), shown as the black histogram. Also shown in each K-S test probability that the two distributions (computed and observed) are drawn form the same underlying distribution. In the bottom right panel, we compare computed $z = 1.6$ and $z = 3.1$ distributions along with the K-S test probability to show a significant evolution of this shape distribution function with redshift. Right set of four panels: f_{mm} distributions for “V” run.

below), whereas they assume a constant metallicity of $[Z/H] = -1$ for all DLAs. It is also noted that the metallicity distributions of our simulations at redshift range $z = 1.6 - 4.0$ are in excellent agreement with observations (Figure 23). At the bottom-right panels of each four-panel set in Figures (18 19 20) we show a comparison between $z = 1.6$ and $z = 3.1$ distributions for each of the shape statistics and find that there is significant evolution in all three shape measures. Current small observational sample does not allow for such a test. Our results demonstrate that the standard LCDM model, with a proper modeling of astrophysical processes, including galaxy formation and feedback in the forms of mechanical feedback and metal enrichment, can successfully produce Si II line shapes that are in good agreement with observations.
Fig. 19.— Left set of four panels: f_{edg} distributions for “C” run at redshift $z = 1.6$ (top left), $z = 3.1$ (top right) and $z = 4.0$ (bottom left). For $z = 1.6$ we compared to observed DLAs at the redshift range $z = 1.2 - 2.2$; for $z = 3.1$ we compared to observed DLAs at $z = 2.9 - 3.3$; for $z = 4.0$ we compared to observed DLAs at $z = 3.8 - 4.2$. Observed sample is an updated version of Prochaska & Wolfe (1997), shown as the black histogram. Also shown in each K-S test probability that the two distributions (computed and observed) are drawn form the same underlying distribution. In the bottom right panel, we compare computed $z = 1.6$ and $z = 3.1$ distributions along with the K-S test probability to show a significant evolution of this shape distribution function with redshift. Right set of four panels: f_{edg} distributions for “V” run.

3.4. Column Density Distribution, Line Density and Ω_g(DLA) Evolution

Let us now address the fundamentally important observable: the column density distribution of DLAs and its evolution. Figure 21 shows the column density distribution at several redshifts from $z = 0$ to $z = 4$. Where comparisons can be reliably made with observations, at $z = 2.5$, $z = 3.1$ and $z = 4$, we see that the overdense run “C” and underdense run “V” appropriately bracket the observational data in amplitude. Similar to the situation for the velocity distribution function (Figure 13), the strong environmental dependence of the column density distribution renders it impractical to make vigorous comparisons between the simulations and observations. Given that the amplitude of observed column density distribution lies between that of “C” and that of “V” run, and the shapes of both simulated functions are in reasonable agreement with observations we tentatively conclude that the standard LCDM model can reasonably reproduce the observed the column density distribution. Note that the shape at the highest column end depends on the treatment of high density regions, for which we have used an empirical relation. Ultimately, when pc resolution...
What is reassuring is that the observed data lie sensibly between results from these two runs. There is a large variation of both plotted quantities between the two (“C” and “V”) runs. Right panel of Figure 21 shows the redshift evolution of DLA line density, defined to be the number of DLAs per unit absorption length. Inherited from the situation shown in Figure 22, the number of DLAs per unit absorption length. Right panel of Figure 22 shows the redshift evolution of neutral gas density in DLAs. Inherited from the situation shown in Figure 22, there is a large variation of both plotted quantities between the two (“C” and “V”) runs. What is reassuring is that the observed data lie sensibly between results from these two runs.

is reached, we can make more definitive tests. What is also interesting is that the variations between different environments are larger than the redshift evolution of the column density distribution in each run. It is further noted that, seen in the lower-left panel of Figure 21, the evolution of the column density distribution in “C” and “V” run is different. In “C” run, we see weak evolution from \(z = 4 \) to \(z = 1.6 \) and then a relatively large drop in amplitude at \(z = 0 \). In “V” run, on the other hand, we see practically little evolution from \(z = 3.1 \) to \(z = 0 \). This likely reflects the dynamical stage of a simulated sample, where the “C” run is more dynamically advanced than the “V” at a same redshift, consistent with the behavior seen in Figure 25 below.

Left panel of Figure 22 shows the redshift evolution of DLA line density, defined to be the number of DLAs per unit absorption length. Right panel of Figure 22 shows the redshift evolution of neutral gas density in DLAs. Inherited from the situation shown in Figure 22, there is a large variation of both plotted quantities between the two (“C” and “V”) runs.
Fig. 21.— Column density distributions, defined to be the number of DLAs per unit column density per unit absorption length, at $z = 2.5$ (lower right), at $z = 3.1$ (upper left), at $z = 4.0$ (upper right), separately, and together for $z = 0, 1.6, 3.1, 4.0$ (lower left). In each panel, two sets of simulation results are shown, one for the “C” run (solid dots) and “V” run (open circles). The corresponding observational data for each of the individual redshifts are an updated version with SDSS DR7 from Prochaska et al. (2005), shown as open squares.

If one assumes that the cosmic mean of each of the two plotted quantities should lie between “C” and “V” run, reading the range spanned by the two runs suggests that the LCDM model is likely to agree with observations to within a factor of ~ 2 with respect to both quantities, although what the overall temporal shape will look like is difficult to guess.

To firmly quantify these important observables and to more precisely assess the agreement/disagreement between the predictions of the LCDM model and observations, a larger set of simulations sampling, more densely, different environments in a statistically correct fashion will be necessary, so is a more accurate treatment of the transition from atomic to molecular hydrogen in very high density regions (that likely affects the shape at the high column density end). We reserve this for future work.
Fig. 22.— Left panel: the redshift evolution of the DLA line density for the “C” run (solid dots) and “V” run (solid squares). The observational data at $z > 2$ are an updated version with SDSS DR7 from Prochaska et al. (2005), shown as open squares, the observational data at $z < 2$ are from Rao et al. (2006), shown as open circles. Right panel: the redshift evolution of the neutral gas density in DLAs for the “C” run (solid dots) and “V” run (solid squares). The observational data at $z > 2$ are an updated version with SDSS DR7 from Prochaska et al. (2005), shown as open squares, the observational data at $z < 2$ are from Rao et al. (2006), shown as open circles.

3.5. Metallicity Distribution and Evolution

The current set of simulations is vastly superior to those used in our earlier work addressing the observed relatively weak but non-negligible evolution of DLA metallicity (Cen et al. 2003) and here we return to this critical issue. Figure 23 shows the DLA metallicity distributions at four redshift, $z = 0, 1.6, 3.1, 4.0$. For the three redshifts, $z = 1.6, 3.1, 4.0$, where comparisons can be made, we find that the agreement between simulations and observations at $z = 1.6$ to $z = 0$ is excellent, as K-S tests show. This is a non-trivial success, given that our feedback prescription has essentially one free parameter, that is, the supernova energy that is driving galactic winds transports energy, metals and mass throughout interstellar (ISM), circumgalactic (CGM) and intergalactic space (IGM). Furthermore, the absolute amount of metals is totally fixed by requiring that 25% of stellar mass with metallicity equal to $10Z_\odot$ returning to the ISM, CGM and IGM. The agreement indicates that our choices of both the supernova ejecta mass and its metallicity and the explosion energy, which are inspired by theories of stellar interior and direct observations, may provide a reasonable approximation of truth.

We see that the peak of the DLA metallicity distribution evolves from $[Z/H] = -1.5$
Fig. 23.— shows the DLA metallicity distributions at four redshift, \(z = 0, 1.6, 3.1, 4.0 \) for both “C” (red histograms) and “V” (green histograms) run. The observational data are from Prochaska et al. (2005), shown as black histograms. Because there is non-negligible evolution, the comparisons between simulations at a given redshift are only made with observed DLAs within a narrow redshift window, as shown. Probabilities that simulated and observed samples are drawn from the same underlying distribution are indicated in each panel, separately for “C” and “V” run.

at \(z = 3 - 4 \), to \([Z/H] = -0.75\) at \(z = 1.6 \), and to \([Z/H] = -0.5\) at \(z = 0\). Thus, both simulations and nature indicate that there is a weak but real evolution in DLA metallicity. What is also important to note is that, in agreement with observations, simulations indicate that the distribution of metallicity is very wide, spanning three or more decades at \(z \geq 1.6 - 4 \). This wide range reflects the rich variety of neutral gas that composes the DLA population, from relatively pristine gas clouds falling onto or feeding galaxies, to metal-enriched cold clouds that are falling back to (galactic fountain) or still moving away from (due to entrainment of galactic winds) galaxies, to cold neutral gas clouds in galactic disks. There is a metallicity floor at \([Z/H] \sim -3\) at \(z = 1.6 - 4 \) and that floor moves up to \([Z/H] \sim -1.5\) by \(z = 0\), consistent with observations (Prochaska et al. 2003). The distribution at \(z = 0\) is significantly narrower, partly reflecting the overall enrichment of the IGM and partly due to much reduced variety of DLAs with galactic disks becoming a more dominant contributor to DLAs (see discussion below).
Ellison et al. (2010) find that proximate DLAs (PDLAs), those within a velocity distance from the QSO $\Delta v < 3000\text{km/s}$, seem to have metallicity higher than the more widely studied, intervening DLAs. It seems conceivable that the total sample of PDLAs plus conventional (intervening) DLAs may somewhat shift the metallicity distribution to the right, perhaps bringing it to a still better agreement with our simulations.

Fig. 24.— Left panel: shows the cumulative velocity width probability function for two subsets of the DLA sample, divided by DLA metallicity at $[Z/H] = -1$, at $z = 3.1$ from the “C” run; the results with “V” run, not shown, are nearly identical. The observational data is an updated version of Prochaska & Wolfe (1997), divided into two subsets such that the ratio of the number of DLAs in the two subsets is equal to that of the simulated sample to enable a fair comparison. The observed data points are slightly shifted to the right by a small amount for more clear reading. Right panel: $z = 0$ from the “C” run.

Observations have found a strong positive correlation between galaxy mass and metallicity (e.g., Erb et al. 2006). We divide the simulated DLA sample at $z = 3.1$ into two subsets, one with metallicity less than $[Z/H] = -1$ and the other more than $[Z/H] = -1$. We then compute the velocity width functions separately for each subset, which are shown as solid dots (lower metallicity) and solid squares (higher metallicity) in the left panel of Figure 24. What we see is that there is a small excess of large velocity width DLAs for the higher metallicity subset compared to the lower metallicity one. This is of course in the sense that is consistent with the observed metallicity-mass relation. However, current observational data sample is consistent with simulations, and the difference between the two simulated subsets and between the two observed subsets is statistically insignificant. A larger sample (by a factor of 4) may allow for a statistically significant test. Do we expect a larger difference in the disk model (Wolfe et al. 1986; Prochaska & Wolfe 1997)? We do not have a straight answer to this question, without a very involved modeling. However, we we suggest that the picture we have presented, where DLAs arise from a variety of galactic systems, in a vari-
et of locations of widely varying metallicity (see the gallery in §3.1), would be consistent with the small difference found, because the velocity widths of large width DLAs do not strongly correlate with galaxy mass (see Figure 14). In other words, the observed correlation between metallicity and galaxy mass is largely washed out by DLAs that do not arise in disks and whose metallicity do not strongly correlate with galaxy mass. If one combines the information provided by Figure 15 and Figure 24, one may reach a similar conclusion.

Fig. 25.— shows the distributions of distance of DLA from the center of galaxy (i.e., impact parameter) for “C” (red histograms) and “V” (green histograms) run at redshift $z = 0$ (top right), $z = 1.6$ (top left), $z = 3.1$ (bottom left) and $z = 4.0$ (bottom right).

The implication may be that DLAs do not arise predominantly in gaseous disks of spiral galaxies at high redshift, in agreement with Maller et al. (2001) and Hong et al. (2010). We shall elaborate further on this significant point. In Figure 25 we show the distribution of physical distance of DLAs from the galactic center (i.e., impact parameter) at four redshifts, $z = 0, 1.6, 3.1, 4.0$. Since we have shown in Figure 15 that DLA incidence contribution peaks at $\sim 10^{11.5} \mathrm{M}_\odot$, let us make a simple estimate of their size at $z \sim 3$. As a reference, let us take the radius of Milky Way (MW) stellar disk to be 15kpc. Taking MW to $z = 3$ self-similarly would give a radius of 3.8kpc and for a $10^{11.5} \mathrm{M}_\odot$ galaxy the stellar disk radius would be 2.5kpc at $z = 3$, corresponding to 0.40 in the shown x-axis. Observed large galaxies
of mass likely in the range $\sim 10^{11} - 10^{12} \, M_\odot$ at $z \sim 3$ appear to have sizes of $\sim 1 - 10 \, kpc$ (Lowenthal et al. 1997; Ferguson et al. 2004; Trujillo et al. 2006; Toft et al. 2007; Zirm et al. 2007; Buitrago et al. 2008), roughly consistent with the simple scaling. The distance distribution peaks at $d_{\text{DLA}} \sim 20 - 30 \, kpc$ at $z = 3 - 4$, which is much larger than a few kpc of the observed (or expected based on $z = 0$ galaxies) stellar disk size at $z \sim 3$. It is noted that the virial radius of a Milky Way size galaxy is about $\sim 50 \, kpc$ at $z = 3$. Thus, these gaseous structures occur at about half the virial radius at $z = 3$. Thus, we conclude that at $z = 3 - 4$ most of the DLAs do not arise from large galactic stellar disks. They appear to come from regions that are $\sim 5 - 8$ larger than the stellar disks.

The ubiquitous extended structures - galactic filaments - appear to be at the right distances of $d_{\text{DLA}} \sim 20 - 30 \, kpc$, seen in the gallery examples in §3.1. While the extremely close association of galactic filaments with galaxy interactions suggest that the host galaxies are likely experiencing starbursts, as seen in the gallery examples, the clouds that give rise to DLAs do not appear to have ongoing in situ star formation. Clearly, most DLAs do not arise in disks and most DLAs have low metallicities, as we have shown, are self-consistent. In other words, aside from those DLAs that arise from galactic disks and are metal rich, the metallicity of the vast majority of more metal poor DLAs do not appear to be forming stars. It may be that, if and when the gas in the galactic filaments forms stars, either they are destroyed by star formation feedback and remove themselves from the DLA category or they have already incorporated into disks of galaxies. We suggest that our model gives a natural explanation to the apparent puzzle of the lack of obvious star formation of gas-rich DLAs (Wolfe & Chen 2006). On the other hand, the inferred cooling rates of DLAs may be provided, in part, by radiative heating from the host galaxy (see Figure 31 below) and possibly in part by compression heating as we frequently see higher external pressure in §3.1. Figure 26 shows the ratio of gas metallicity for DLAs at different subset of DLAs with different column density ranges to the mean metallicity of ongoing star-forming gas. It is clear that only the high end of the high column density range ($N_{\text{HI}} \geq 10^{22} \, \text{cm}^{-2}$) DLAs are forming stars; most of the DLAs have little star formation.

Returning to Figure 25 at $z = 1.6$ there is a very interesting divergence between the two distributions for “C” and “V” run, where the distribution for “C” run peaks at $d_{\text{DLA}} \sim 40 \, kpc$ and for “V” run at $d_{\text{DLA}} \sim 10 \, kpc$. This is consistent with the expectation that the overdense region in the “C” run and the underdense region in the “V” run start to “feel” the difference in their respective local large-scale density environment and evolve differently dynamically. That is, in “C” run gravitational shock heating due to large-scale structure formation begins to significantly affect the cold gas in galaxies, whereas in “V” run the galaxies have not changed significantly since $z = 3 - 4$ except that they are now somewhat smaller due to lower gas density at lower redshift. By $z = 0$ the two distributions once again become nearly identical; this is rather intriguing and may reflect the following physical picture: while galaxies in the “V” run has by now dynamically “caught up” with the field
Fig. 26.— shows the distribution of the ratio of gas metallicity for DLAs at different column density ranges to the mean metallicity of ongoing star-forming gas in the “C” run (left set of four panels) at $z = 0, 1.6, 3.1, 4.0$ and in the “V” run (right set of four panels). We expect that gas that has the x-axis value close or greater than 0 may be forming stars.

galaxies in the “C” run, giving rise to the similar gaussian-like distribution centered at $d_{DLA} = 10$ kpc, the original gas-rich galaxies in the “C” run have fallen into the cluster, lost gas and “disappeared” from the DLA population. While there is almost no DLA that is further away than 50kpc at $z = 3 - 4$, there is a second bump at $d_{DLA} = 100 - 300$ kpc in the distribution for the “C” run at $z = 0$. This bump is likely due to gas rich satellite galaxies orbiting larger galaxies or small groups of mass $10^{12} - 10^{13}$ M_{\odot}. Beyond $d_{DLA} = 300$ kpc, there is no DLA in the “C” run, which is due to gas-starvation of galaxies in still larger groups or clusters at $z = 0$. With direct inspection of simulation data we find that there is virtually no gas rich galaxies within the virial radius of the primary cluster in the “C” run.

What is also interesting is that the peak distance of $d_{DLA} \sim 10$ kpc at $z = 0$ is totally consistent with the notion that gaseous disks of field galaxies, like the one in our own Galaxy, significantly contribute to DLAs. Right panel of Figure 24 shows the velocity distributions of two subsets of DLAs, divided at metallicity at $[Z/H] = -1$ at $z = 0$. Here we see a very clear difference between the two distributions: the higher metallicity subset have large velocity widths, i.e., there is a strong positive correlation between metallicity and velocity width at $z = 0$. This supports the picture that a large fraction of DLAs arise in gaseous disks of large field galaxies. Most of the DLAs at $z = 0$ have a higher metallicity of $[Z/H] \geq -1.0$ with the overall distribution peaking at $[Z/H] = -0.5$, also providing support for this picture. Therefore, by $z = 0$ the situation appears to have reversed: galactic disks of large galaxies make a major contribution to DLAs at $z = 0$. The fact that the peak distance has dropped
Binary quasars, physical or lensed, provide an unique tool to probe the size of DLAs. Here we present our predictions of size distributions of DLAs in the LCDM model. As we have described in §2.3, any cells (of size 0.915h^{-1}kpc comoving) that are connected by one side in projection are merged into a “single isolated” DLA. The area of each “isolated” DLA, \(A \), is then used to define the size (radius) of the DLA by \(r_{\text{DLA}} = (A/\pi)^{1/2} \). The total area of all isolated DLA associated with a galaxy along three orthogonal directions \((x, y, z)\), \(A_x\), \(A_y\) and \(A_z\), are summed to obtain \(A_{\text{tot}} = \sqrt{A_x^2 + A_y^2 + A_z^2} \) and the total DLA size (radius) of the galaxy is defined to be \(r_{\text{tot}} = (A_{\text{tot}}/\pi)^{1/2} \). Note that, if DLAs arises from a thin disk, the \(A_{\text{tot}} \) computed this way will be the exact size of the disk face on, regardless of its orientation. On the other hand, if each DLA cloud is a sphere, this method overestimate the size (area) by a factor of \(\sqrt{3} \).

Figure 27 shows the size (radius) distribution at redshift \(z = 0, 1.6, 3.1, 4.0 \) for individual

3.6. Size Distribution

Fig. 27.— Left set of four panels: the DLA size distribution at redshift \(z = 0, 1.6, 3.1, 4.0 \) for “C” run. Each individual DLA size \(r_{\text{DLA}} \) (see text for definition) is shown as red histograms, whereas the total DLA size of a galaxy \(r_{\text{tot}} \) (see text for definition) is shown as green histograms. Right set of four panels: the DLA size distribution at redshift \(z = 0, 1.6, 3.1, 4.0 \) for “V” run. The observationally inferred DLA size, shown as an open square in both \(z = 1.6 \) panels, is from Cooke et al. (2010), and that shown as an open circle in both \(z = 3.1 \) panels is from Rauch et al. (2008) with the shown dispersion estimated by this author.
Fig. 28.— The probability of the second LOS having a HI column lower than the value shown in the x-axis, while the first LOS is known to have intercepted a DLA at projected separation of (30, 20, 10, 5, 3)kpc (five curves from top to bottom shown in each panel) at the redshift in question. The left set of four panels are at redshift $z = 0, 1.6, 3.1, 4.0$ for “C” run; the right set of four panels are for “V” run.

DLA size and total DLA size of each galaxy. Figure 28 presents the size information in a different way, where we show the probability that, for a random pair of sightlines separated by (30, 20, 10, 5, 3)kpc at the redshift in question, one sightline intercepts a DLA and the other intercepts a column density lower than shown in the x-axis. We see that, in the sense that is consistent with distance distributions shown in Figure 25, on average, individual DLA size as well as the total DLA size of galaxies are larger at high redshift than at lower redshift. The individual DLA size distribution appears to sharply peak at $r_{\text{DLA}} \sim 15$ kpc at $z = 4$, then move left to a broader peak at $r_{\text{DLA}} \sim 10$ kpc at $z = 3.1$, then sharpen somewhat to peak at $r_{\text{DLA}} \sim 5$ kpc at $z = 1.6$, and finally move rightward slightly to peak at $r_{\text{DLA}} \sim 7$ kpc at $z = 0$ for the “C” run. The numbers for the “V” run are largely comparable to the “C” run: (15, 12, 4, 6) kpc at $z = (4, 3.1, 1.6, 0)$, respectively. What is quite remarkable is that, at $z = 1.6$ where comparison can be made, the predicted size distribution and the available observation agree better than anyone would have expected. This is a testament to the success of the LCDM model and physical treatment of our simulations, especially considering other agreements that we have already found, for example, with respect to metallicity distribution, column density distribution, kinematics.

Intriguingly, Rauch et al. (2008) find a new population of faint Lyman alpha emitters which they advocate may be the host galaxies of DLAs at $z \sim 3$. Their estimated size, based on observed Lyα line emission profile, shown as the open circle in $z = 3.1$ panels of
Fig. 29.— Left panel: a scatter plot of DLA size of each galaxy against its halo mass at $z = 3.1$. Also shown as a black straight line is a proposed relation between the radius of DLA and virial radius of the halo that roughly goes through the median at $z = 3.1$: $r_{DLA} = 0.30 r_{vir}$. Right panel: a scatter plot of DLA size of each galaxy against its halo mass at $z = 0$. Also shown as a black straight line is a linear relation between the radius of DLA and virial radius of the halo at $z = 0$: $r_{DLA} = 0.08 r_{vir}$.

Figure 27 would be consistent with our model, although the true nature of this population is relatively uncertain. Given the reasonable agreement in size, we will make some further speculation to gauge if our model can accommodate or explain this population as DLAs. One possible physical mechanism for the Lyα emission of this population, if they are indeed DLA hosts, would be fluorescence due to ionizing photons from the host galaxies. Assuming that the distance of each DLA cloud from the host galaxy is 25kpc (Figure 25), the size of each DLA cloud is 8kpc (Figure 27) and the star formation rate of host galaxy is $10 \text{M}_\odot/\text{yr}$ (see Figure 31 below), then a typical expected star formation rate inferred from their fluorescence would be $(8^2\pi)/(4\pi 25^2) \times 10 = 0.26 \text{M}_\odot/\text{yr}$. This very rough estimate curiously falls within the range of $0.07 - 1.5 \text{M}_\odot/\text{yr}$ estimated by Rauch et al. (2008) for the observed emitters if there are Lyα emitters at $z \sim 3$.

Now we make more direct comparisons between our model and available observed 18 pairs of QSOs (all lensed pairs/multiples except one real physical binary) at $z \sim 1.6$, given in Table 1. Columns 1-7 list parameters of each observed pair and columns 8-9 give the probability of each pair occurring the “C” $[P(C)]$ and “V” $[P(V)]$ run respectively at $z = 1.6$. We have made the following simplification for computing the probability: we treat all DLA with $N_{HI} \geq 2 \times 10^{20}\text{cm}^{-2}$ the same regardless of column density values and for non-DLA absorbers the probability that we present is the probability of having a column equal to or
Table 1. Probability of observed QSO pairs - column 1: QSO name; column 2: DLA redshift; column 3: pair name; column 4: separation of two images in the sky in arcseconds; column 5: physical separation of two sightlines at \(z_{\text{abs}} \); column 6: HI column density of the first sightline in units of \(10^{20} \text{cm}^{-2} \); column 7: HI column density of the second sightline in units of \(10^{20} \text{cm}^{-2} \); column 8: probability from “C” run; column 9: probability from “V” run. The observed data are taken from Table 1 of [Cooke et al., 2010], which are all lensed binaries (or multiples). Note that the physical separations at the redshift of DLAs are computed correctly with the actual geometry of the lenses. We have also added in the last row the binary quasar LBQS1429-0053 taken from [Monier et al., 2009].

<table>
<thead>
<tr>
<th>QSO</th>
<th>(z_{\text{abs}})</th>
<th>Pair</th>
<th>(\theta_{\text{abs}})</th>
<th>(d) (kpc)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>P(C)</th>
<th>P(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1413+1143</td>
<td>1.440</td>
<td>B-A</td>
<td>0.753</td>
<td>3.13</td>
<td>60</td>
<td>9.0</td>
<td>0.84</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-D</td>
<td>0.967</td>
<td>4.02</td>
<td>60</td>
<td>0.25</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-C</td>
<td>1.359</td>
<td>5.65</td>
<td>60</td>
<td>0.20</td>
<td>0.17</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-D</td>
<td>1.118</td>
<td>4.64</td>
<td>9.0</td>
<td>0.25</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-C</td>
<td>0.872</td>
<td>3.62</td>
<td>9.0</td>
<td>0.20</td>
<td>0.093</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-C</td>
<td>0.893</td>
<td>3.71</td>
<td>0.25</td>
<td>0.20</td>
<td>0.097</td>
<td>0.12</td>
</tr>
<tr>
<td>H1413+1143</td>
<td>1.486</td>
<td>D-A</td>
<td>1.118</td>
<td>4.32</td>
<td>2.0</td>
<td>< 0.05</td>
<td>0.097</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-B</td>
<td>0.967</td>
<td>3.73</td>
<td>2.0</td>
<td>< 0.1</td>
<td>0.084</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-C</td>
<td>0.893</td>
<td>3.45</td>
<td>2.0</td>
<td>< 0.05</td>
<td>0.070</td>
<td>0.079</td>
</tr>
<tr>
<td>H1413+1143</td>
<td>1.662</td>
<td>B-A</td>
<td>0.753</td>
<td>2.17</td>
<td>6.0</td>
<td>1.5</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-C</td>
<td>1.359</td>
<td>3.91</td>
<td>6.0</td>
<td>0.6</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-D</td>
<td>0.967</td>
<td>2.78</td>
<td>6.0</td>
<td>0.3</td>
<td>0.064</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-C</td>
<td>0.872</td>
<td>2.51</td>
<td>1.5</td>
<td>0.6</td>
<td>0.058</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-D</td>
<td>1.118</td>
<td>3.22</td>
<td>1.5</td>
<td>0.3</td>
<td>0.086</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C-D</td>
<td>0.893</td>
<td>2.57</td>
<td>0.6</td>
<td>0.3</td>
<td>0.052</td>
<td>0.063</td>
</tr>
<tr>
<td>HE1104-1805</td>
<td>1.662</td>
<td>A-B</td>
<td>3.0</td>
<td>4.47</td>
<td>6.3</td>
<td>< 0.013</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>UM673</td>
<td>1.6265</td>
<td>A-B</td>
<td>2.22</td>
<td>2.71</td>
<td>6.3</td>
<td>< 0.037</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>LBQS1429-0053</td>
<td>1.6616</td>
<td>A-B</td>
<td>5.1</td>
<td>43.9</td>
<td>3.0</td>
<td>0.1</td>
<td>0.051</td>
<td>0.050</td>
</tr>
</tbody>
</table>
less than the indicated value. We see from Table 1 that the observed QSO pairs are all statistically consistent with our model at $\sim 1.5\sigma$ level or better, entirely consistent with the agreement shown in Figure 27 between the computed size distribution and observationally inferred size, which is somewhat model dependent.

Finally, in Figure 29, we plot the total DLA cross section of each galaxy (A_{tot}) against its halo mass at $z = 3.1$ (left panel) and $z = 0$ (right panel). Also shown as the black line is a linear fit assuming that the effective radius $r_{\text{tot}} = (A_{\text{tot}}/\pi)^{1/2}$ is proportional to the virial radius for simplicity. Note that a least-square linear fit is slightly flatter than the black curve. It is noted that there are a small fraction of galaxies that do not have significant neutral gas thus do not show up in the plotted range. What is most striking is that, for gas rich galaxies that give rise to DLAs at $z = 3.1$, on average, the effective area that gives rise to DLAs occupies about $1/3$ of the total area within the virial radius, i.e., $r_{\text{tot}} = 0.6r_{\text{vir}}$. By $z = 0$ the effective radius has much reduced to $r_{\text{tot}} = 0.08r_{\text{vir}}$, becoming comparable to the size of the stellar disk. The total DLA cross section as a function of halo mass is in agreement with Pontzen et al. (2008) within a factor of 3 (ours is higher than theirs). We note that the method we use to compute the total DLA cross section gives a correct value for the case of a thin disk but could overestimate it by a factor of $\sqrt{3}$ in the case of a sphere.

Let us fast forward to Figure 30 and take a note that at $z = 3.1$ the typical halo mass for DLA incidence is $M_{\text{h}} \sim 10^{11.5}$ having a virial radius of $r_{\text{vir}} = 37\text{kpc}$, which then gives $r_{\text{tot}} = 22\text{kpc}$ (see above relation between r_{tot} and r_{vir}). From Figure 25 we see that the typical distance of DLA from galaxy center is $d_{\text{DLA}} \sim 25\text{kpc}$, thus $r_{\text{tot}} \sim d_{\text{DLA}}$. This near equality between the distance and size suggests that a large fraction of the sky seen by an object sitting in the galaxy, up to $\pi r^{2}_{\text{tot}}/4\pi d^{2}_{\text{DLA}} \sim 20\%$, may be covered by DLAs! If that object is a QSO, the situation may be different, because the QSO, with its intense radiation (and possibly other effects, such as winds), may have significantly modified its surroundings, including the nearby DLAs. Note that a QSO proximity radius is about $5 - 10\text{Mpc}$. The evidence we see in the gallery examples that the surge in DLA incidence of a galaxy seems always associated with starbursts and in gas-rich (probably) spiral like galaxies, whereas QSOs tend to reside in gas-poor elliptical galaxies. These two facts together suggest that it is not straightforward to estimate the fraction of QSOs that have this type of proximity DLAs. The situation for gamma-ray bursts (GRBs) may be relatively more straightforward to analyze, because GRBs are associated with star formation hence likely coincides with the surge in DLA cross section of interacting galaxies and because radiation from GRBs does not significantly affect their surroundings at a distance of $\sim 25\text{kpc}$. Therefore, we suggest that at high redshift $z \geq 3$, a significant fraction (up to 20%) of GRBs, which depends on detailed geometry/orientation of DLA clouds, have associated DLAs with a typical velocity difference from its systemic redshift of $\Delta v \leq 100\text{km/s}$ (see Figure 35 below for Δv). One complication factor is that some (or possibly most of) GRB-DLAs may be due to dense gas in the close vicinity of GRBs - nearby DLAs. Since GRBs are thought to occur in star-forming regions,
i.e., embedded in molecular clouds, one might expect to see a significant amount of molecules associated with nearby DLAs and they should be dusty and relatively more metal enriched. However, if progenitors of GRBs are biased metal poor, such as preferred in the collapsar model (MacFadyen & Woosley [1999], Woosley & Heger [2006]), then it may become more complicated, although latest observations seem to indicate otherwise (e.g., Levesque et al. [2010]). Thus, we suggest that a subset of GRB-DLAs with little molecular hydrogen column density and being relatively metal poor and dust poor, such as those in Hjorth et al. (2003), Tumlinson et al. (2007), and Ledoux et al. (2009), may be identified with circumgalactic DLAs proposed here.

This fraction of GRBs with DLAs is, however, likely to decrease rapidly towards lower redshift because of (1) smaller $r_{\text{tot}}/d_{\text{DLA}}$ ratio and (2) a smaller fraction of DLAs outside stellar disk. The unknown in the above estimate is the geometry of DLAs. We will reserve a detailed analysis of this issue for a future study.

3.7. Properties of DLA Host Galaxies

So far we have presented our simulations and compare to observations of DLAs in many different aspects. From these detailed comparisons we conclude that the model is consistent with all extant observations of DLAs, including kinematic properties, metallicity, column density distribution, line density and neutral hydrogen density, size distribution, and their evolution, wherever comparisons could be made. Proper modeling of galactic winds along with high numerical resolution seems to have contributed to the success. What is clear is that galactic winds play an indispensable role in alleviating previous tension between the LCDM model and observations, especially in producing large velocity width DLAs and disparate and low metallicities of DLA gas. We now examine the properties of DLA host galaxies.

Figure 30 shows the DLA incidence as a function of the halo mass. We see that at redshift $z = 0 - 4$ it appears that the DLA cross section of each galaxy is roughly proportional to the square of its virial radius, evidenced by the approximate agreement between the red and green histograms at $z = 1.6, 3.1, 4.0$. Thus our model makes this rather simple prediction: DLAs closely trace the overall population of galaxies at $z = 0 - 4$, with a slight relative bias for lower mass galaxies for DLA hosts compared to the general galaxy population. The bias is more noticeable at $z = 0$. This is not to say that every galaxy has a DLA in it. Rather, this simply says that the portion of galaxies that give rise to DLAs at any particular time has statistically the same mass function as the galaxy population as a whole. At $z = 1.6 - 4$, the vast majority of DLAs arise in halos of mass $M_h = 10^{10} - 10^{12} \, M_\odot$, as these galaxies dominate the overall population of galaxies. We expect the clustering of DLAs to be nearly identical to the overall population of galaxies at $z \geq 3$ and gradually becomes relatively weaker compared to the galaxy population as a whole with time.
Fig. 30.— Left set of four panels: the DLA incidence distribution as a function of host dark matter halo mass (red histograms) at $z = 0, 1.6, 3.1, 4.0$ in the “C” run. Also shown as green histograms are notional distributions, if the total DLA cross section of a galaxy is proportional to its total mass to the two-third power, i.e., proportional to its virial radius squared. Right set of four panels: same for the “V” run. The open squares shown in the $z = 1.6$ and $z = 3.1$ panels are observationally inferred halo mass range for LBGs (Adelberger et al. 2005).

Based on clustering analyses, the mass range of the observed LBGs is inferred to be $10^{11.2} - 10^{11.8} M_\odot$ at $z=2.9$, $10^{11.8} - 10^{12.2} M_\odot$ at $z = 2.2$, and $10^{11.9} - 10^{12.3} M_\odot$ at $z=1.7$ (Adelberger et al. 2005). Comparing these observationally inferred ranges to the histograms in Figure 30 we find that 20 – 30% of DLAs at $z \sim 3$ may be LBGs and the fraction drops to 10 – 20% at $z \sim 1.7$. Schaye (2001) pointed out that, if DLAs have a radius of 27 kpc, LBGs could account for all the DLAs at $z \sim 3$. Working backwards, the estimated 20 – 30% of DLAs at $z \sim 3$ being LBGs would imply a DLA disk radius of 12 – 15kpc for LBGs, which is significantly larger than the size of LBG stellar disks, suggesting that the distribution of neutral DLA gas is in a much more extended region than stellar disk, likely a combination of some extended gaseous disk and galactic filaments. While a significant overlap between DLAs and LBGs is expected, the overall clustering of DLAs is expected to be comparable but slightly weaker than LBGs, since the median halo mass for DLA incidence distribution is slightly smaller than the typical LBG halo mass (more quantitative comparison will be performed in future work). Møller et al. (2002) conclude that the properties of DLA hosts, including half-light radius, radial profile, optical to near-infrared color, morphology, Ly\textsc{a} emission equivalent width, and Ly\textsc{a} emission velocity structure, lie within the measured range for the general population of LBGs. Since those DLA hosts that are sufficiently luminous to be detected are large galaxies in the mass range of LBGs and because DLAs tend to arise in
Fig. 31.— Left set of four panels: the DLA incidence distribution as a function of host star formation rate (SFR) at $z = 0, 1.6, 3.1, 4.0$ in the “C” run. Also shown as green histograms are notional distributions, if the total DLA cross section of a galaxy is proportional to its stellar mass to the two-third power, i.e., proportional to its virial radius squared for a constant total mass to stellar mass ratio. Right set of four panels: same for the “V” run.

Gaseous galactic filaments of galaxies that experience starbursts (via galaxy interactions; see §3.1), like LBGs, it is naturally expected in our model that they find similarity between their DLA hosts and LBGs. Of the remaining 70-80% that are not covered by LBGs at $z = 3-4$, roughly 10-20% are due to more massive galaxies and 50-70% are from smaller galaxies.

When systems become more dynamically advanced with time and large galaxies are no longer abundant with cold gas, a slightly more significant shift occurs between DLA hosts and the overall population of galaxies at $z = 0$. At $z = 0$ we see that the contribution to DLA population is broadly peaked at $M_h = 10^{12} M_\odot$, whereas most of the sum of the square of virial radius is also broadly distributed but, unlike for DLA host, having a significant contribution from halos of mass $M_h = 10^{13-14} M_\odot$, in the “C” run; For the “V” run most of DLAs are in halos of mass $M_h = 10^{10-12} M_\odot$, whereas most of the sum of the square of virial radius come from halos of mass $M_h = 10^{11-13} M_\odot$.

Figure 31 shows the DLA incidence distribution as a function of host star formation rate (SFR) (red histograms) and the corresponding notional distribution if the total DLA cross section of a galaxy is proportional to its stellar mass to the two-third power. The relative distribution between the two seems complex and environment dependent. To zeroth order, DLA hosts roughly span the same SFR range of the general galaxy population and most of DLA hosts have SFR in excess of $0.1 M_\odot/yr$ at all redshifts. To first order, there is a bias for
DLA hosts to have slightly higher SFR at $z = 3 - 4$ and slightly lower SFR at $z = 0$ than the general galaxy population. The most likely SFR rate for a typical DLA host falls in the range $0.3 - 30 \, M_\odot/yr$ at $z = 3 - 4$. LBGs lie at the upper end of this SFR range, consistent with the earlier finding that 20-30% of DLAs overlap with LBGs. The peak in the distribution move to $\sim 0.5 - 1 \, M_\odot/yr$ by $z = 0$. It is beyond the scope of this study to investigate the cause for the preferred SFR range by DLAs at different redshifts. We conjecture that the DLA incidence rate likely “surges” when mergers or other significant interactions between galaxies produce the filaments seen in the gallery in §3.1. These same interactions also cause the concerned galaxies to experience significant star formation, plausibly falling into the found range above. The trend of moving to lower SFR galaxies at lower redshift is perhaps due to the transition from major mergers at high redshift ($z = 3 - 4$) to minor mergers or smooth accretion and lack of cold gas in very large galaxies at $z = 0$. All evidence - size (Figure 27), distance (Figure 25), metallicity (Figure 23) and now SFR (Figure 31) - seems to point to the picture that by $z = 0$ most of DLS arise in disks of large galaxies of mass $10^{11} - 10^{12.5} \, M_\odot$ that are relatively quiet.

Figure 32 shows the DLA incidence distribution as a function of host HI mass. It is interesting that the HI mass appears to peak at $10^{10} \, M_\odot$ at all redshifts with $10^9 - 10^{11} \, M_\odot$ covering nearly all the contributions. There is a bias for DLA hosts to have slightly more gas rich than the general population of galaxies. Why the peak position of M_{HI} does not
change with time is intriguing but not fully understood presently. Figure 33 shows the DLA incidence distribution as a function of host HI mass to stellar mass ratio. We see that at $z = 3 - 4$ the majority of galaxies are gas-rich ($M_{\text{gas}}/M_{\text{star}} \geq 0.1$) and DLA hosts very closely follow the general population of galaxies, consistent with what we saw in Figure 30. This statement remains true for the “V” run until $z = 0$, whereas for the regions that are more dynamically advanced, such as $z = 0$ in the “C” run, a significant segregation is evident in that most of the galaxies are now gas poor ($M_{\text{gas}}/M_{\text{star}} \leq 0.1$) but majority of DLA hosts are still gas rich ($M_{\text{gas}}/M_{\text{star}} \geq 0.1$). Moreover, at $z = 0$ in “C” run, there is a population of old, red and “dead” galaxies with virtually no cold gas; these are likely galaxies in clusters of galaxies, which DLAs largely avoid.

Figure 34 shows the DLA incidence distribution as a function of host SDSS g-r color. While the individual color of the simulated galaxies may not be totally consistent with observations due to its sensitivity to a relatively small variation in the amount of recent star formation that the simulation may not necessarily properly capture, a comparative statement is still valid statistically. We see that DLA hosts trace the general population of galaxies at $z = 3 - 4$ in all environments with a slight bias to a bluer color peaking sharply at $g - r \sim 0.3$. At lower redshift DLA hosts become significantly bluer than average galaxies by roughly $\Delta(g - r) \sim 0.3 - 0.4$ and they avoid the reddest galaxies that are presumably elliptical galaxies or galaxies in clusters of galaxies.
Fig. 34.— Left set of four panels: the DLA incidence distribution as a function of host SDSS g-r color at $z = 0, 1.6, 3.1, 4.0$ in the “C” run. Also shown as green histograms are notional distributions, if the total DLA cross section of a galaxy is proportional to its stellar mass to the two-third power, i.e., proportional to its virial radius squared for a constant total mass to stellar mass ratio. Right set of four panels: same for the “V” run.

Finally, in Figure 35 we show the distribution of the LOS velocity difference between the DLA and its host. We find the following exponential function provides an excellent fit, as shown in the figure, while a gaussian fares much worse:

$$PDF(v_{gal} - v_{DLA}) = \frac{1}{2\sigma} \exp \left(-\frac{|v_{gal} - v_{DLA}|}{\sigma}\right).$$

We find that the dispersion parameter σ only increases mildly with decreasing redshift from $\sigma \sim 75 - 90$ km/s at $z = 3 - 4$ to $\sim 90 - 110$ km/s at $z = 0$. The relatively small velocity dispersion and a symmetric distribution may make DLAs a useful proxy for the systemic velocity of host galaxies. This property may be utilized to measure galactic wind velocities, using a large statistical sample of DLA hosts with measured interstellar absorption lines, such as Na I line (e.g., Heckman et al. 2000).

In summary, we show that, at $z = 3 - 4$, DLA hosts approximately follow the general population of galaxies with respect to halo mass, star formation rate, HI mass, gas mass to stellar mass ratio, and color, with a small but noticeable tendency of being more gas rich, slightly smaller and bluer. It is seen that LBGs make up about 20-30% of the overall DLAs at $z = 3 - 4$ decreasing to 10–20% by $z = 1.7$. Of the remaining 70-80% that are not covered by LBGs at $z = 3 - 4$, roughly 10-20% are due to galaxies more massive than LBGs and 50-70% are from smaller galaxies. The comparisons at lower redshifts become not as clean cut as at high redshift, but in a way that seems physically understandable. Specifically, at
Fig. 35.— shows the distribution of the LOS velocity difference between the DLA and its host, for “C” (red histograms) and “V” (green histograms) run. As shown in blue (for “C” run) and black (for “V” run) are fits to the histograms with the dispersion parameters σ indicated.

lower redshifts, while the general population of galaxies gradually become less cold gas-rich, DLA hosts seem to ‘pick out’ those that are gas richer and bluer, but not necessarily of higher star formation rate.

4. Conclusions

With high resolution, physically sound treatment of all relevant physical processes, our state-of-the-art, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations can reproduce a whole array of observables of damped Lyman alpha systems, including the distributions of the following quantities and their evolution with redshift: column density, Si II λ1808 absorption line velocity width, kinematic shape measures of the Si II line, metallicity, size, line density, HI mass density. This allows to examine, in addition, with significant confidence, the properties of DLA host galaxies. We are able to reach the following conclusions.

(1) DLA hosts roughly trace the overall population of galaxies at all redshifts, with respect to halo mass, star formation rate, HI mass and color, with a noticeable tendency of being smaller and bluer, on average. The standout selection criterion seems being gas
rich. Most of DLA hosts appear to have HI mass peaked at $10^{10} M_\odot$ at all redshifts with $10^9 - 10^{11} M_\odot$ covering nearly all DLA hosts. The majority of DLA hosts are gas-rich ($M_{\text{gas}}/M_{\text{star}} \geq 0.1$) closely following the general population of galaxies at high redshift; by $z = 0$ most of the stars are in systems with ($M_{\text{gas}}/M_{\text{star}} \leq 0.1$), but majority of DLA hosts are still gas rich ($M_{\text{gas}}/M_{\text{star}} \geq 0.1$).

(2) It seems that the history of DLA evolution is cosmological in nature and reflects the underlying cosmic density evolution, galaxy evolution and galaxy interactions. With higher density and more interactions at high redshift DLAs are larger in both absolute terms and in relative terms with respect to virial radii of halos. At $z = 3 - 4$ galactocentric distance of DLAs is, on average, $0.6 r_{\text{vir}}$, whereas at $z = 0$ it decreases to $0.08 r_{\text{vir}}$. The typical DLA impact parameter is $d = 20 - 30 \text{kpc}$ at $z = 3 - 4$ and 10kpc at $z = 0$. The typical size (radius) of individual DLAs is $\sim 10 \text{kpc}$ at $z \sim 3 - 4$ dropping to $\sim 5 \text{kpc}$ at $z \sim 1.6$, in agreement with observations, then increasing to $\sim 7 \text{kpc}$ at $z = 0$.

(3) The variety of DLAs at high redshift is richer with a large contribution coming from galactic filaments - filamentary gaseous structures sometimes extending to as far as virial radius - that are created through close galaxy interactions. The portion of gaseous disks of galaxies where most stars reside makes relatively small contribution to DLA incidence at $z = 3 - 4$. By $z = 0$ galaxy interactions have become rare, cosmic mean density has decreased dramatically, so what is left to contribute to DLA incidence is gas rich disks of galaxies in the mass range of $10^{10} - 10^{12} M_\odot$.

(4) Galactic winds play an indispensable role in shaping the kinematic properties of DLAs. Specifically, the high velocity width DLAs are a mixture of those arising in high mass, high velocity dispersion halos and those arising in smaller mass systems where cold gas clouds are entrained to high velocities by galactic winds. Closer examination reveals that most of the large width DLAs are due to multiple physically distinct components of varying LOS velocities within a 100kpc separation (along the LOS).

(5) Quantitatively, the vast majority of DLAs arise in halos of mass $M_h = 10^{10} - 10^{12} M_\odot$ at $z = 1.6 - 4$, as these galaxies dominate the overall population of galaxies then. At $z = 3 - 4$, 20-30% of DLA hosts are Lyman Break Galaxies (LBGs), 10-20% are due to galaxies more massive than LBGs and 50-70% are from smaller galaxies. The fraction of LBG DLA hosts drops to 10 – 20% by $z \sim 1.7$.

(6) In agreement with observations, we see a weak but noticeable evolution in DLA metallicity. The metallicity distribution centers at $[Z/H] = -1.5$ to -1 and spans more than three decades at $z = 3 - 4$, with the peak moving to $[Z/H] = -0.75$ at $z = 1.6$ and $[Z/H] = -0.5$ by $z = 0$. The overall metallicity seems floored at $[Z/H] \sim -3$ at $z = 1.6 - 4$ and at $[Z/H] \sim -1.5$ at $z = 0$. When most of the DLA incidence is due to cold gas outside the stellar disks at high redshift, not only the metallicity is relatively low, but also there
is little star formation within. This explains self-consistently their low metallicity and lack of star formation activity. If and when significant internal star formation occurs, there are two possible scenarios. If that takes place outside galactic disk, the DLA will be destroyed and remove itself from the DLA category. If it takes place on galactic disk, the DLA will either be destroyed permanently, or temporarily and then cool back down to become a more metal-enriched one, after star formation has stopped. The former occurs predominantly at high redshift, which is why most of DLAs are metal poor. The latter occurs at low redshift, which explains the significant increase of metallicity.

(7) The star formation rate of DLA hosts is, however, quite strong, heavily concentrated in the range $0.3 - 30 \, \text{M}_\odot/\text{yr}$ at $z = 3 - 4$, gradually shifting lower to peak at $\sim 0.5 - 1 \, \text{M}_\odot/\text{yr}$ by $z = 0$. The finding that the typical size and galactocentric distance of DLAs are both large and comparable gives a moderate, “apparent” star formation rate seen in Lyα emission due to fluorescence of ionizing photons from the host galaxies. Both the size of Lyα emission and the magnitude of this fluorescence is, curiously, consistent with the population of faint Lyα emitters observed by Rauch et al. (2008), if they are at $z \sim 3$.

(8) Finally, we suggest that a significant fraction of sky seen by gamma-ray bursts should be covered by circumgalactic DLAs at high redshift ($z \geq 3$). They may be identified with those GRB-DLAs that have little H$_2$ column densities and are relatively metal and dust poor.

I would like to thank Dr. M.K.R. Joung for help on generating initial conditions for the simulations and running a portion of the simulations and Greg Bryan for help with Enzo code. I would like to thank Dr. Jason X. Prochaska and Dr. Andrew Pontzen for kindly providing the observational data, Dr. Sara L. Ellison for sending a paper draft before publication and for discussion, Dr. Edward Jenkins for discussion on atomic data. Computing resources were in part provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. This work is supported in part by grants NNX08AH31G and NAS8-03060. The simulation data are available from the author upon request.

REFERENCES

—. 2010, ArXiv e-prints

A. Resolution Convergence Tests

In Figure 36 we show a comparison of DLA column density distributions for the “C” and “C/2” run at $z = 2.5$. Recall that “C/2” run has a spatial resolution lower than “C” run by a factor of 2. While the agreement is not perfect, it is reasonably good and the difference is at $10 - 30\%$ across the dynamic range. Figure 37 compares velocity width (v_{90} column density distributions for the “C” and “C/2” run at $z = 2.5$, where we see that the level of agreement is comparable to that seen in Figure 36. Figure 38 shows a comparison of the metallicity distribution for the “C” and “C/2” run at $z = 2.5$. It it seen that the metallicity distribution agrees to within about 0.3dex and it appears that a still higher resolution simulation might give a somewhat lower metallicity, perhaps in still better agreement with observations. Figure 39 shows a comparison of the DLA size distribution for the “C” and “C/2” run at $z = 2.5$. Since the spatial resolution more directly affects
the size, here we see the worst disagreement between the two runs in terms of the shape of the distribution, but overall still mostly at a level of $\sim 0.05 - 0.1$ dex. However, a direct comparison of probability for QSO binary sightlines shown in Figure 40 suggests that the overall convergence is quite good.

Fig. 36.— a comparison of DLA column density distributions at $z = 2.5$ for “C” run (solid dots) and “C/2” run (open squares).
Fig. 37.— a comparison of DLA velocity width distributions at $z = 2.5$ for “C” run (solid dots) and “C/2” run (open squares).

Fig. 38.— a comparison of DLA metallicity distributions at $z = 2.5$ for “C” run (red histogram) and “C/2” run (green histogram).
Fig. 39.— a comparison of DLA size distributions at \(z = 2.5 \) for “C” run (red histogram) and “C/2” run (green histogram).

Fig. 40.— a comparison of the probability of the second LOS having a HI column lower than the value shown in the x-axis, while the first LOS is known to have intercepted a DLA at projected separation of (30, 20, 10, 5, 3)kpc (five curves from top to bottom shown in each panel) at \(z = 2.5 \) for “C” run (solid symbols) and “C/2” run (open symbols).