The effect of r-process enhancement in binary CEMP-s/r stars

S. Bisterzo
Dipartimento di Fisica Generale, Università di Torino, via P. Giuria 1, 10025 Torino, Italy
E-mail: bisterzo@ph.unito.it

R. Gallino
Dipartimento di Fisica Generale, Università di Torino, via P. Giuria 1, 10025 Torino, Italy
INAF Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy
E-mail: gallino@ph.unito.it

About half of carbon and s-process enhanced metal-poor stars (CEMP-s) show a high r-process enrichment (CEMP-s/r), incompatible with a pure s-process contribution. CEMP-s stars are of low mass ($M < 0.9 M_\odot$) and belong to binary systems. The C and s-process enrichment results from mass transfer by the winds of the primary AGB companion (now a white dwarf). The nucleosynthesis of the r-process, instead, is believed to occur in massive stars exploding as Supernovae of Type II. The most representative r-process element is Eu (95% of solar Eu).

We suggest that the r-process enrichment was already present by local SNII pollution in the molecular cloud from which the binary system formed. The initial r-enhancement does not affect the s-process nucleosynthesis. However, the s-process indicators [hs/ls] (where ls is defined as the average of Y and Zr; hs as the average of La, Nd, Sm) and [Pb/hs] may depend on the initial r-enhancement. For instance, the hs-peak has to account of an r-process contribution estimated to be 30% for solar La, 40% for solar Nd, and 70% for solar Sm. A large spread of [Eu/Fe] is observed in unevolved halo stars up to [Eu/Fe] ~ 2. In presence of a very high initial r-enhancement of the molecular cloud, the maximum [hs/Fe] predicted in CEMP-s/r stars may increase up to 0.3 dex. Instead, the spread of [Y,Zr/Fe] observed in unevolved halo stars reaches a maximum of only ~ 0.5 dex, not affecting much the predicted [ls/Fe]. This is in agreement with observations of CEMP-s/r stars that show an observed [hs/ls] in average higher than that observed in CEMP-s. Preliminary results are presented.
1. Introduction

It is commonly believed that the s- and r-processes derive from separate astrophysical sites [1]. The nucleosynthesis of the s-process occurs in stars of low mass (1.3 ≤ M/M⊙ ≤ 8) during their thermally pulsing asymptotic giant branch (TP-AGB) phase. The main neutron source is the 13C(α, n)16O, which burns radiatively at T ∼ 0.9 × 10^8 K during the interpulse period in the region between the H- and He-shell (He-intershell). A second neutron source, 22Ne(α, n)25Mg, is marginally activated at the bottom of the recurrent convective thermal instability (thermal pulse, TP) in the He-intershell, mainly affecting the abundance at the branching points that are sensitive to temperature and neutron density. The s-process elements are mixed with the surface during the third dredge-up (TDU) episodes, in which the convective envelope engulfs part of the He-intershell, after the quenching of a TP. We refer to the reviews by [2, 3] for major details on the AGB nucleosynthesis.

Instead, the physical environment for the r-process is still unknown, although SNII are the most promising candidates. For elements from Ba to Bi, observations of very metal-poor stars with high r-enhancement (e.g., CS 22892–052 [4]) show an abundance distribution well reproduced by a scaled solar r-process residual contribution [5]. Instead, lighter neutron capture elements with Z ≤ 47 show values lower than the scaled solar-system r-process [6, 7]. The nucleosynthesis site(s) and the exact contributions from different primary processes to Sr, Y, Zr is highly debated [8, 9, 10, 11, 12], although also related to massive stars. A large spread is observed for [Eu/Fe] and for [Sr,Y,Zr/Fe] in unevolved halo stars. For [Fe/H] < −2, different ranges are observed for Eu and Sr, Y, Zr: −1 ≤ [Eu/Fe] ≤ 2 with an average around 0.5 dex, while −1 ≤ [Sr,Y,Zr/Fe] ≤ 0.5 with an average around 0 dex [8, 12]. This may be interpreted as a signature of incomplete mixing in the gas cloud from which these stars have formed [13, 14], as well as an indication of different and uncorrelated primary process contributions.

In the last years, a quite large number of carbon and s-process enhanced metal-poor (CEMP-s) stars have been detected. CEMP-s are main-sequence/turnoff or giants of low mass (M < 0.9 M⊙). The most plausible explanation for their peculiar high s-element abundances is mass transfer by stellar winds from the most massive AGB companion (now a white dwarf). About half of these CEMP-s stars are also highly enhanced in r-process elements (CEMP-s/r). The observed r-enhancement in these stars reflects the observations of unevolved Galactic stars at low metallicity. CEMP-s/r stars show abundance patterns incompatible with a pure s-process nucleosynthesis. While a pure s-process predicts [La/Eu] ∼ 0.8 – 1.1 (where La and Eu are typical s- and r-process elements, respectively), CEMP-s/r stars show 0.0 ≤ [La/Eu] ≤ 0.4, with [La/Fe] and [Eu/Fe] up to ∼ 2 dex. Different scenarios have been proposed in the literature to explain the origin of CEMP-s/r (e.g., [15, 16]).

We suggest that the molecular cloud from which the binary system formed was already enriched in r-process elements by local pollution of SNII ejecta [17, 18]. This hypothesis is supported by numerical simulations by [19], who found that SNII explosion in a molecular cloud may trigger the formation of binary systems. These simulations may explain the very high fraction of CEMP-s/r (∼ 50%) among the CEMP-s.

We present here a preliminary analysis of a comparison between AGB theoretical predictions and spectroscopic observations of CEMP-s and CEMP-s/r stars. A detailed discussion will be
presented in Bisterzo et al. (in preparation).

2. Results

Among CEMP-s stars in the literature, we selected only those with Eu detection. About half of them are CEMP-s/r.

In Fig. 1, we analyse the s-process indicator [hs/ls] (where ls = Y, Zr and hs = La, Nd, Sm) versus metallicity, by comparing CEMP-s/r and CEMP-s observations with AGB models of initial mass $M = 1.3 \, M_\odot$ (left panel) or $1.5 \, M_\odot$ (right panel). AGB models are described by [19] (updated by [20]). Starting from the case ‘ST’ defined by [19, 5], a range of 13C-pockets is adopted by multiplying or dividing the 13C (and 14N) in the pocket by different factors. Theoretical lines in the Figure represent pure s-process AGB predictions for cases from ‘ST × 2’ down to ‘ST/150’. For simplicity, in this preliminary analysis we distinguish between main-sequence/turnoff stars or subgiants having not suffered the first dredge-up (FDU) episode (diamonds in left panel), and late subgiants or giants (down-rotated triangles in right panel). The FDU involves about 80% of the mass of the star [2]. In case of binary systems with mass transfer like CEMP-s stars, this mixing strongly dilutes the C and s-rich material previously transferred from the AGB companion. This means that the [El/Fe] observed in a CEMP-s giant is about 1 dex lower than in the envelope of the AGB companion\(^1\). CEMP-s/r stars are represented by big symbols while CEMP-s by little symbols. References are given in the caption of the Figures. In average, CEMP-s/r stars show higher [hs/ls] than CEMP-s. Moreover, some CEMP-s/r have an observed [hs/ls] ratio higher than the AGB predictions, but still compatible within the errorbars.

In Fig. 2, the observed [hs/ls] ratio is compared with AGB models of initial masses $M = 1.3 \, M_\odot$ (left panel) or $1.5 \, M_\odot$ (right panel) with a high initial r-process enhancement, [r/Fe]\(^{\text{ini}}\) = 2.0 dex (corresponding to [Eu/Fe]\(^{\text{ini}}\) = 2.0 dex). Only CEMP-s/r stars are shown in this Figure (big symbols). The choice of the initial r-process contribution to heavy elements was based on the r-process solar predictions [5, 20]. In particular, we applied an initial r-process contribution of 30% to solar La, 40% to solar Nd, and 70% to solar Sm. In first approximation we assumed a solar-scaled Y and Zr. This because the [Y,Zr/Fe] ratios observed in unevolved halo stars reach maximum values of about 0.5 dex, which little affects the [ls/Fe] in CEMP-s. The resulting maximum [hs/ls], with [r/Fe]\(^{\text{ini}}\) = 2.0 shown in Fig. 2 is about 0.3 dex higher than the predicted [hs/ls], with no initial r-enhancement. Note that the s-process index [hs/ls] is independent of the dilution factor if no initial r-enhancement is adopted (Fig. 1, right panel). Instead, in case of a high initial r-enhancement, the dilution factor affects [hs/ls], because both stars belonging to the binary system are initially r-enriched. In Fig. 2, right panel, a dil = 1.0 dex is applied.

3. Conclusions

To explain the origin of CEMP-s/r, we hypothesised that the molecular cloud from which the binary system formed was already enriched in r-process elements. Subsequently, the s-process

\[^1\]To simulate mixing processes we define the logarithmic ratio ‘dil’ as $\text{dil} = \log \left(\frac{M_{\text{env}}}{\Delta M_{\text{AGB}}} \right)$, where M_{env} represents the mass of the convective envelope of the observed star before the mixing, and ΔM_{AGB} is the AGB total mass transferred (see [20]).
CEMP-s/r stars

Figure 1: Left panel: the [hs/ls] ratios observed in main-sequence/turnoff or subgiants CEMP-s and CEMP-s/r stars versus metallicity, compared with AGB models of initial mass $M = 1.3$ M_\odot and a range of 13C-pockets. References are [21, 22, 23, 24, 25, 16, 26, 27, 28, 29, 15, 30, 31]. Right panel: the [hs/ls] ratios observed in CEMP-s and CEMP-s/r giants versus metallicity, compared with AGB models of initial mass $M = 1.5$ M_\odot and a range of 13C-pockets. Similar predictions are obtained by $M = 2$ M_\odot models. References are [32, 22, 33, 24, 26, 34, 35, 36, 37, 38]. No initial r-process enhancement is assumed in both cases.

Figure 2: Left panel: the [hs/ls] ratios observed in main-sequence/turnoff or subgiant CEMP-s/r stars versus metallicity, compared with AGB models of initial mass $M = 1.3$ M_\odot and a range of 13C-pockets. Right panel: the [hs/ls] ratios observed in CEMP-s/r giants versus metallicity, compared with AGB models of initial mass $M = 1.5$ M_\odot and a range of 13C-pockets. An initial r-enhancement of $[r/Fe]^{ini} = 2.0$ dex is adopted in both cases. A dilution of 1 dex is applied to $M = 1.5$ M_\odot models, which best accounts for giant CEMP-s or CEMP-s/r.

elements synthesised by the AGB companion are transferred by stellar winds on to the observed star. The s-process nucleosynthesis is not affected by the initial r-enhancement of the molecular cloud. However, for high r-process enrichment ($[r/Fe]^{ini} = 2$), one should account for the r-process contribution to solar La, Nd and Sm (30%, 40%, 70%). In agreement with the [Y,Zr/Fe] observed in unevolved halo stars, we adopt solar scaled initial Y and Zr values. This increases [hs/ls] by ~ 0.3 dex. This is sustained by observations in CEMP-s/r stars, which show an [hs/ls] ratio in average higher than that observed in CEMP-s. Note that the [hs/ls] observed in CEMP-s/r stars may be in agreement with pure s-process predictions within the errorbars. A deeper analysis will be given in Bisterzo et al., in preparation.
References

[18] Bisterzo et al. (2009), PASA, 26, 314