Conformal transformations and Nordström’s scalar theory of gravity

Nathalie Deruelle1 and Misao Sasaki2,3

1 APC, UMR 7164 du CNRS, Université Paris 7, 75205 Paris Cedex 13, France
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3 Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

(Dated: 23 December, 2010)

As we shall briefly recall, Nordström’s theory of gravity is observationally ruled out. It is however an interesting example of non-minimal coupling of matter to gravity and of the role of conformal transformations. We show in particular that they could be useful to extend manifolds through curvature singularities.

I. INTRODUCTION

Scalar-tensor theories of gravity, where gravity is described by a 4-dimensional metric \(g_{\mu\nu} \) together with a scalar field \(\Phi \), have been thoroughly studied (see e.g. the seminal paper \cite{1}). Among them two stand apart: General Relativity which describes gravity by a metric alone, and Nordström’s theory \cite{2} which describes it by a scalar field in flat spacetime (for reviews, see \cite{3}). General Relativity stands apart as it is observationally unchallenged. Nordström’s theory is interesting as a toy model which shares with General Relativity the unique property to embody the strong equivalence principle \cite{1}. It has in particular been extensively used to test analytical \cite{4} or numerical \cite{5} methods developed to study the two-body problem.

In this paper we dwell on the two facets of a whole class of Nordström’s theories, which can be formulated either as field theories in Minkowski spacetime, as Nordström originally did, or, for one of them, as a purely geometric theory, as Einstein and Fokker showed \cite{6}. In today’s jargon Nordström’s formulation is an “Einstein frame” description since matter is non-minimally coupled to gravity and Einstein-Fokker’s is a “Jordan frame” description. Conformal transformations between Jordan and Einstein “frames” (that is, metrics) are currently extensively used in e.g. “modified-gravity” theories, such as those based on \(f(R) \) actions often invoked to model dark energy (see e.g. \cite{7} for a review). However there is still some debate on the equivalence of the two formulations (see \cite{8} and references therein) and the example of Nordström’s theories may help clarify this point.

II. NORDSTRÖM’S THEORIES OF GRAVITY

1. The field equations

In Nordström’s theories, gravity is described by a massless scalar field \(\Phi(x^\mu) \) in Minkowski spacetime. Its action is

\[
S_g = -\frac{c^6}{8\pi G} \int d^4x \sqrt{-\ell} \ell_{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi ,
\]

(2.1)

where \(c \) and \(G \) are the speed of light and Newton’s constant; the coefficients of the Minkowski metric and its determinant are \(\ell_{\mu\nu} \) and \(\ell \) in the coordinate system \(x^\mu \) (and reduce to \(\ell_{\mu\nu} = \eta_{\mu\nu} = (-1,+1,+1,+1) \)) in cartesian coordinates \(X^\mu = (cT, X^i) \). The function \(\Phi(x^\mu) \) is dimensionless.

Consider an ensemble of particles with (inertial) masses \(m \) and 4-velocities \(u^\mu \equiv dx^\mu/d\tau \) where \(c\tau \), such that \(\ell_{\mu\nu} u^\mu u^\nu = -c^2 \), gives the proper length along their worldline. Their action is chosen in analogy to that of an electric charge coupled to an electromagnetic potential:

\[
S_m = -\sum m c^2 \int (1 + F(\Phi)) d\tau ,
\]

(2.2)

where \(F \) is an \textit{a priori} arbitrary function of the gravitational potential \(\Phi \) (hence the existence of a whole family of Nordström’s theories). The fact that the coupling constant between a particle and gravity is \(m \) (and not some independent “charge”) embodies the weak equivalence principle: all particles will fall the same way in a gravity field.

Extremising $S_g + S_m$ with respect to variations $\delta \Phi$ yields the equation of motion for Φ:

$$\Box \Phi = -\frac{4\pi G}{c^4} \frac{dF/d\Phi}{1 + F} T_m \tag{2.3}$$

where \Box is the flat Daelambertian and where T_m is the trace of the matter stress-energy tensor:

$$T_{\mu\nu}^m = \frac{2c^2}{\sqrt{-\ell}} \delta S_m = \sum m c \int (1 + F) \frac{\mu\nu}{\sqrt{-\ell}} \delta_4 [x^\lambda - x^\lambda(\tau)] d\tau. \tag{2.4}$$

As for the equations of motion of the particles they are obtained by extremizing the matter action with respect to variations δx^μ of their path:

$$\frac{D\mu^\mu}{d\tau} = -\frac{c^2}{1 + F} \left(\partial^\mu F + \frac{\mu\nu}{c^2} \partial_\nu F \right) \quad \iff \quad D_\nu T_{\mu\nu}^m = \frac{T_m}{1 + F} \partial^\mu F, \tag{2.5}$$

where D is the covariant derivative associated with $\ell_{\mu\nu}$. By construction they do not depend on m.

The equations of motion when matter is an ensemble of particles suggest to generalize them, whatever matter may be, into

$$\begin{align*}
\Box \Phi &= -\frac{4\pi G}{c^4} \frac{dF/d\Phi}{1 + F} T_m, \\
D_\nu T_{\mu\nu}^m &= \frac{T_m}{1 + F} \partial^\mu F. \tag{2.6}
\end{align*}$$

If matter is a scalar field Ψ with potential $V(\Psi)$, the action and stress-energy-tensors are

$$\begin{align*}
S_m &= \int \frac{d^4x}{c} (1 + F)^4 \sqrt{-\ell} \left[\frac{\ell_{\mu\nu}}{(1 + F)^2} \partial_\mu \Psi \partial_\nu \Psi + V(\Psi) \right], \\
T_{\mu\nu}^m &= (1 + F)^2 \left(\partial_\mu \Psi \partial_\nu \Psi - \frac{1}{2} \ell_{\mu\nu} \partial_\rho \Psi \partial^\rho \Psi - (1 + F)^2 \ell_{\mu\nu} V(\Psi) \right). \tag{2.7}
\end{align*}$$

If matter is a perfect fluid,

$$T_{\mu\nu}^m = (1 + F)^4 \left[\bar{c} \bar{\rho} \frac{\mu\nu}{c^2} + \bar{p} \ell_{\mu\nu} \right],$$

where \bar{c} and \bar{p} being its energy density and pressure. See Appendix for a justification of the various couplings to Φ.

2. Time and inertial mass in Nordström’s gravity

In Special Relativity, in the absence of gravity, Minkowskian coordinates X^μ, where $\ell_{\mu\nu} = \eta_{\mu\nu}$, are postulated to represent time and an inertial frame, $T \equiv X^0/c$ being time as measured by a clock at rest in that frame. As for “proper time” τ, it is postulated to represent time as measured along the time-like worldline of a particle of inertial mass m.

However these postulates have to be revisited in the presence of gravity. Indeed, the field Φ, being long range, pervades the whole universe and no particle escapes its grip since its “charge” is its inertial mass. Therefore, outside asymptotic infinity where Φ may vanish, there are no longer free particles which can materialize an inertial frame and the statement that T is the time measured by a clock at rest becomes inoperational.

To decide which quantity must represent time, let us consider, for example, an electron, coupled to the electromagnetic potential A_μ of a proton say, and in the presence of a gravity field, which can be taken to be approximately constant around x^μ. Its action is

$$S_m = -mc^2 \int (1 + F) d\tau + q \int A_\mu dx^\mu, \tag{2.9}$$

where m and q are its inertial mass and charge, where $A_\mu = (-q/r, \vec{0})$ if the proton is considered at rest, and where $d\tau \equiv \sqrt{1 - V^2/c^2} dT$ with $V^\alpha \equiv dX^\alpha/dT$ in Minkowskian coordinates $X^\mu = (ct, X^\alpha)$. Now, the infinitesimal element $m(1 + F)d\tau$ can be rewritten in two different equivalent ways as

$$m(1 + F)d\tau = m d\tau \quad \text{with} \quad d\tau \equiv (1 + F) d\tau,$$ \tag{2.10}

or

$$m(1 + F)d\tau = \bar{m} d\tau \quad \text{with} \quad \bar{m} \equiv (1 + F) m. \tag{2.11}$$
Therefore, as most clearly stated by Dicke [9], all predictions of Maxwell’s classical theory will hold in the presence of gravity, if either
(a) time is postulated to be represented by \(\bar{\tau} \), and no longer by \(\tau \); thus time measured by a clock at rest in a frame where the gravity field is constant and where electrically neutral particles have a uniform motion, is not \(T \) but the rescaled time, or “Weyl time”, \(\bar{T} = (1 + F)T \),
(b) or elementary particles are endowed with a varying effective mass \(\bar{m} \), \(\tau \) remaining their proper time along their wordline, see e.g. [9] and references therein.

We examine now a few consequences of these two new, alternative, postulates.

3. Nordström’s theories and Solar System observations

- **Bending of light.**
 As in Newton’s theory the status of particles with zero mass is *a priori* ambiguous: either they can be supposed to obey (2.2) or to travel at \(c \) along Minkowskian light cones. However it is easy to see, by solving (2.2) at lowest order in the gravitational field of a central object \((F(\Phi) = \Phi + O(\Phi^2) \) with \(\Phi = -M/r \) where \(M \equiv GM/c^2 \), that ultra-relativistic particles are not deflected. Hence the Nordström value of the PPN parameter \(\gamma \), defined by \((1 + \gamma)/2 = \Delta \phi/\Delta \phi_{\text{GR}}, \) is \(\gamma = -1 \). This prediction does not involve time measurements and hence does not involve the new postulates.

- **Perihelion shift**
 Expanding \(F(\Phi) \) as \(F(\Phi) = \Phi + \frac{1}{2}a_2\Phi^2 + ... \) with \(\Phi = -M/r \), a short calculation, copied from the standard one in GR, yields \(\Delta \omega = \frac{1}{2}(1 + a_2)\Delta \omega_{\text{GR}} \), that is, \(\beta = (1 + a_2)/2 \) where \(\beta \) is the PPN parameter defined by \((2\gamma - \beta + 2)/3 = \Delta \omega/\Delta \omega_{\text{GR}} \). Again, this prediction does not involve time measurements. Since the least unsatisfactory of Nordström’s theories corresponds to \(F(\Phi) = \Phi \), i.e. \(a_2 = 0 \) (see below), the prediction for the perihelion shift differs from that of GR, \(\beta = 1/2 \) instead of \(\beta = 1 \), and hence is ruled out by observations.

- **Geodetic precession**
 At lowest order the angular velocity of the precession of an accelerated spin is given by Thomas’ formula which, in the field \(\Phi = -M/r \) where \(M \equiv GM/c^2 \), reads: \(\omega_{\text{Thomas}} = -\frac{1}{2}(c/r)(M/R)^{3/2}(R/r)^{3/2} \) (at lowest order: \(F \approx \Phi = M/r \ll 1 \) so that \(\bar{T} \approx T \)). This is minus one third the geodetic precession predicted by GR and measured by GPB.

4. Redshifts in Nordström’s gravity

We shall here compute them using the Weyl-postulate (2.10). For the alternative view in terms of varying masses, see [8].

Consider an observer at rest at \(P_0 \) who receives some information from an emitter at point \(P \) (this can be an explosion in a galaxy or a message from a spacecraft). Let the duration of the delivery of this information, that is, the (Weyl)-time interval between the beginning and end of reception, be \(\Delta \tau_{\text{rec}} \), as measured by \(P_0 \) (this means that his clock has ticked, say, \(N_0 \) times).

The time it takes to obtain the same information at \(P_0 \) (figuratively speaking in the case of an explosion!) is a priori different: \(\Delta \bar{\tau}_0 \) (the clock of the observer at \(P_0 \) clicks \(N_0 \) times).

The red (or blue) shift \(z \) is defined as \(1 + z = \Delta \tau_{\text{rec}}/\Delta \tau_0 \).

Now, since the clocks are the same at \(P \) and \(P_0 \) (the astronaut in the spacecraft has the same wristwatch than his colleague on Earth), the duration of the message will be the same at \(P \): \(\Delta \tau_0 = \Delta \bar{\tau} \).

To relate now \(\Delta \tau_{\text{rec}} \) and \(\Delta \bar{\tau} \), we use the fact that time intervals are related to Minkowski time \(T \) by (2.10), so that:
\[
\Delta \tau_{\text{rec}} = (1 + F_0)\Delta T_{\text{rec}} \quad (P_0 \text{ is at rest}) \quad \text{and} \quad \Delta \bar{\tau} = (1 + F)\sqrt{1 - V^2/c^2}\Delta T_{\text{em}} \quad \text{where} \quad V = dX/dT \quad \text{is the 3-velocity of the galaxy or spacetime.}
\]

If, finally, information from \(P \) to \(P_0 \) is transmitted at the speed of light then \(\Delta T_{\text{em}} = (1 - V/c)\Delta T_{\text{em}} \) (this the standard Doppler effect, supposing the motion of the emitter is along the line of sight; \(V \) is negative if the emitter recedes from the observer).

Therefore, all in all:
\[
1 + z = \frac{\Delta \tau_{\text{rec}}}{\Delta \tau_0} = \frac{\Delta \tau_{\text{rec}}}{\Delta \bar{\tau}} = \frac{(1 + F_0)\Delta T_{\text{rec}}}{(1 + F)\sqrt{1 - V^2/c^2}\Delta T_{\text{em}}} = 1 + F_0 \frac{1}{1 + F} \sqrt{1 - \frac{V^2}{c^2}}.
\]
If the emitter is at rest \((V = 0)\) the redshift observed at \(P_0\) tends to infinity as \(1/(1 + F)\) if \(1 + F \to 0\).

5. Nordström’s theories and (basic) cosmology

Consider a gravitational potential \(\Phi\) which, in some Minkowskian frame \(X^\alpha\), depends on time \(T\) only. Then, as can easily be seen from the equation of motion \((2.5)\), test particles (“galaxies”) can be at rest.

The light emitted by one of these galaxies at rest at \(P\) travels along the Minkowskian cones to the observer, himself at rest at \(P_0\). Thus, if two photons representing, say, a given atomic transition, are emitted within \(\Delta T_{em}\) at \(P\) they will be received at \(P_0\) within the same Minkowskian time interval \(\Delta T_{rec} = \Delta T_{em}\). However, since, following \((2.10)\), time is represented by \(\bar{\tau} = (1 + F)T\), and not by \(T\), a redshift will be observed, given by \((2.12)\) with \(V = 0:\)

\[
1 + z = \frac{1 + \Phi_0}{1 + F}.
\]

Let us now solve equations \((2.6)\) when matter is a perfect fluid with stress energy-tensor given by \((2.8)\). Equation \((2.6b)\) becomes

\[
\frac{\dot{\bar{\epsilon}}}{\bar{\epsilon}} = \frac{3\dot{F}}{1 + F} (1 + w) \quad \text{with} \quad w \equiv \frac{\dot{\bar{p}}}{\bar{\epsilon}}
\]

whose solution is, when \(w = \text{const}\)

\[
\bar{\epsilon} \propto (1 + F)^{-3(1 + w)} \propto (1 + z)^{3(1 + w)}.
\]

For \(w > -1\) the energy density of matter diverges if there is a moment of infinite redshift in the history of the universe.

As for Equation \((2.3)\) which gives the time evolution of the gravitational field, it becomes

\[
\ddot{\Phi} = \frac{4\pi G}{c^4} \frac{dF}{d\Phi} (1 - 3w) \bar{\epsilon}.
\]

If we choose \(F = \Phi\) as a example then Eqs. \((2.15, 2.16)\) possess the following power-law solution if \(w > 1/3\) or \(w < -2/3:\)

\[
a(t) \equiv (1 + \Phi) \propto t^{\frac{2}{1 + 3w}} \quad \Rightarrow \quad \bar{\epsilon} \propto t^{-\frac{2(1 + w)}{1 + 3w}}.
\]

For \(w > -1\), \(T = 0\) is a “Big-Bang”: matter density is infinite and then ever decreases; as for the “scale factor” \(a\) it vanishes at \(T = 0\) and then ever increases and the cosmological redshift \((2.13)\) becomes since \(F = \Phi:\)

\[
1 + z = \frac{1 + \Phi_0}{1 + F} = \frac{a_0}{a}.
\]

The Euclidean 3-plane of the Big-Bang \(T = 0\) where the energy density diverges and the scale factor vanishes is thus an infinite redshift surface.

This “Big-Bang” is interpreted, when one adheres to postulate \((2.10)\), as due to the fact that Weyl-time \(\bar{\tau}\) stops running. In one adheres to the alternative postulate \((2.11)\), the Big-Bang is due to the fact that the effective inertial masses of all particles go to zero (see \[5\]).

6. Nordström’s theories and “black holes”

Let us treat now the case of a gravitational potential \(\Phi\) which depends only on the radial coordinate \(r\) in some inertial frame \((T, r, \theta, \phi)\).

The static, spherically symmetric vacuum solution of the field equations \((2.8)\) is Newton’s potential, whatever the function \(F(\Phi)\):

\[
\Phi = -\frac{M}{r} \quad \text{with} \quad M = \frac{GM}{c^2},
\]

1 For \(w = \frac{1}{3}\), \(1 + \Phi \propto T\) and the scale factor also vanishes. For \(w = 0\), \(1 + \Phi \propto \sqrt{1 + \text{const.} \cdot T^2}\): the scale factor “bounces” at \(T = 0\).
where the integration constant M is the gravitational mass of the central body. To be specific we shall restrict ourselves to the case when $F = \Phi$:

$$1 + F = 1 - \frac{M}{r}. \quad (2.20)$$

Let us first consider a static emitter in that field which sends light signals to infinity. These signals will be seen as all the more redshifted as the emitter is closer to $r = M$. More precisely, see Eq. (2.12)

$$1 + z = \frac{1}{1 - \frac{M}{r}}. \quad (2.21)$$

Thus $r = M$ is a surface of infinite redshift and can be called a “horizon”.

In order now to try to understand what happens if the emitter is beyond the horizon ($r < M$) let us return to Eq. (2.10) and (2.11). When $(1 + F)$ becomes negative, (2.10) tells us that Weyl-time, as measured by the emitter, runs backwards compared to the time T measured at infinity. As for (2.11) it tells us that its effective inertial mass becomes negative. Supposing that such behaviours can be reinterpreted à la Feynman-Dirac we impose that Weyl-time keeps running forwards or, equivalently, that masses remain positive (this amounts to replace $(1 + F)$ by its absolute value), and (somewhat arbitrarily) decree that all particles have turned into antiparticles. Thus, the emitter, if beyond the horizon, is an “anti-emitter”. As for the observed shift it will then be given by

$$1 + z = \frac{1}{|1 - \frac{M}{r}|}. \quad (2.22)$$

It decreases from infinite redshift when $r \to M^-$ to zero if the emitter is at the origin.

Let us consider now an observer falling radially towards $r = 0$. Its equation of motion is given by (2.23) whose first integral is

$$\left(\frac{dr}{c d\tau}\right)^2 = \frac{(1 + F_{in})^2 - (1 + F)^2}{(1 + F)^2} \quad (2.23)$$

where F_{in} is the value of $F(\Phi)$ at $r = r_{in}$ where the initial velocity is zero. In terms of Weyl’s time it reads

$$\left(\frac{dr}{c d\bar{\tau}}\right)^2 = \frac{(1 + F_{in})^2 - (1 + F)^2}{(1 + F)^2}. \quad (2.24)$$

In terms of Minkowskian time T this becomes

$$\left(\frac{dr}{c dT}\right)^2 \equiv V^2 = \frac{(1 + F_{in})^2 - (1 + F)^2}{(1 + F_{in})^2}. \quad (2.25)$$

The trajectory of the falling emitter when $F = \Phi = -M/r$, is easily obtained by integration of (2.23) and (2.25). In Minkowskian time T it starts at $T = 0$ at $r = r_{in} > M$ with zero velocity, reaches the speed of light when crossing $r = M$, slows down, reaches the turning point $r_0 = Mr_{in}/(2r_{in} - M)$ in a finite time, and crosses back the surface $r = M$, again at the velocity of light.

The scenario is the same when described in terms of proper time τ or Weyl’s time $\bar{\tau}$, even if the proper velocities $dr/d\tau$ and $dr/d\bar{\tau}$ go to infinity when $r \to M$. As measured by the wrist-watch of the emitter and if one adheres to (2.10) the round trip from r_{in} to inside the horizon and back takes a finite amount of proper-time τ, as one finds by integration of (2.24), and nothing special happens when crossing it. The same holds true if one adheres to (2.11): the round trip takes a finite amount of proper-time τ, as can be seen by integration of (2.23).

Let us suppose now that the emitter sends light signals to the observer at rest at infinity. Formula (2.12) gives the redshift as a function of the position r of the falling emitter when $V < 0$ and $F = \Phi = -M/r$ as:

$$1 + z = \frac{(1 - \frac{M}{r_{in}}) + \sqrt{(1 - \frac{M}{r_{in}})^2 - (1 - \frac{M}{r})^2}}{(1 - \frac{M}{r})}. \quad (2.26)$$

Thus the light signals will be observed as infinitely redshifted at P_0 when the emitter approaches $r = M$: signals sent by infalling matter die out when it reaches the horizon. The rate at which z grows is enhanced by a factor $(1 - M/r)$ compared to the static case because the emitter reaches the speed of light at horizon crossing.
What happens during the time the emitter is beyond the horizon? As we argued when considering static emitters, it should presumably be considered as an “anti-emitter” by the distant observer and $$(1 - M/r)$$ must be replaced by $$|1 - M/r|$$. This does not change formula (2.26) as long as $$V$$ remains negative: the observed redshift decreases from infinity to $$1 + z = (1 - M/r)_{\text{in}}$$ at the turning point. After the turning point, $$V$$ is positive and the redshift formula (2.12) becomes
\[
1 + z = (1 - M/r)_{\text{in}} - \sqrt{(1 - M/r)_{\text{in}}^2 - (1 - M/r)^2} \quad (2.27)
\]
At horizon crossing, the redshift of $$z$$ due to the gravitational field is compensated by the blueshift due to the fact that the emitter reaches the speed of light and the combined effect results in a finite redshift at $$r = M$$:
\[
1 + z = \frac{1}{2(1 - M/r)_{\text{in}}} \quad (2.28)
\]
A caveat is however in order. Since (Weyl)-time is related to time at infinity by $$\bar{\tau} = (1 - M/r) d\tau$$, it runs backwards when the emitter is inside the horizon. Alternatively its effective mass $$m(1 - M/r)_{\text{in}}$$ is negative. Therefore, as we have argued, the emitter suddenly becomes an “anti-emitter” at horizon crossing. This probably leads to quantum instabilities.

III. “JORDAN REPRESENTATION” OF NORDSTRÖM’S THEORIES

1. Conformal transformation of the field equations

As was already known to Einstein and Fokker [6], Nordström’s theories of gravity can be turned into metric theories. Indeed if we introduce
\[
\bar{g}_{\mu\nu} = (1 + F)^2 \ell_{\mu\nu} , \quad (3.1)
\]
then the equations of motion (2.6) can be recast as
\[
\begin{align*}
\bar{R} &= \frac{24\pi G}{c^4} \left(\frac{dF}{d\Phi} \right)^2 \bar{T}_m - \frac{6}{1 + F} \frac{d^2F}{d\Phi^2} \bar{g}^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi , \\
\bar{D}_j \bar{T}_m^{\mu\nu} &= 0 ,
\end{align*}
\]
where $$\bar{R}$$ is the scalar curvature of the conformally flat metric $$\bar{g}_{\mu\nu}$$ and where $$\bar{T}_m^{\mu\nu}$$ is the stress-energy tensor of matter minimally coupled to the metric $$\bar{g}_{\mu\nu}$$. Thus the action and stress-energy tensor for particles are
\[
\begin{align*}
S_m &= -\sum mc^2 \int d\bar{\tau} , \\
\bar{T}_m^{\mu\nu} &= \sum mc \int \frac{\bar{u}^\mu \bar{u}^\nu}{\sqrt{-\bar{g}}} \delta_k [x^\xi - x^\xi(\bar{\tau})] d\bar{\tau} ,
\end{align*}
\]
with $$\bar{u} = \frac{dx}{d\bar{\tau}}$$ and $$\bar{g}_{\mu\nu} \bar{u}^\mu \bar{u}^\nu = -c^2$$. The action and stress-energy tensor for a scalar field $$\Psi$$ are
\[
\begin{align*}
S_m &= -\int \frac{d^4x}{c^4} \sqrt{-\bar{g}} \left[\frac{1}{2} \bar{g}^{\mu\nu} \partial_\mu \Psi \partial_\nu \Psi + V(\Psi) \right] , \\
\bar{T}_m^{\mu\nu} &= \partial_\mu \Psi \partial_\nu \Psi - \bar{g}_{\mu\nu} \left[\frac{1}{2} \partial_\nu \Psi \partial^\mu \Psi + V(\Psi) \right] ,
\end{align*}
\]
Finally the stress-energy tensor for a perfect fluid is:
\[
\bar{T}_m^{\mu\nu} = (\epsilon + \rho) \bar{u}_\mu \bar{u}_\nu - \rho \bar{g}_{\mu\nu} .
\]

2 More precisely, taking into account the fact that measuring instruments have a finite resolution in frequencies, the observer at infinity loses contact with the emitter for a while.
In this “Jordan representation”, \(T \) (called “Minkowskian time” in the previous section) becomes a mere coordinate time with no special significance and \(\bar{\tau} \) (previously called “Weyl’s time”) measures the length of worldlines by means of the metric \(\bar{g}_{\mu\nu} \) and is postulated to represent time as measured along the worldline. Therefore all predictions are the same, whether one uses the previous, “Einstein” representation or this “Jordan” one, although the descriptions may vary, see below some examples.

In the “Jordan representation” the special status of the choice
\[
F(\Phi) = \Phi
\]
is also manifest. In that case indeed the equations of the theory reduce to (see [1])
\[
\bar{R} = \frac{24\pi G}{c^4} \bar{T}_m , \quad \bar{D}_\nu \bar{T}_{\mu\nu}^m = 0 , \quad \bar{C}_{\mu\nu\rho\sigma} = 0 ,
\]
where the vanishing of the Weyl tensor \(\bar{C}_{\mu\nu\rho\sigma} \) imposes the metric to be conformally flat. Equations (3.7) share with Einstein’s equations the fact that they are purely geometrical and second order. Hence the claim that Nordström’s theory with \(F = \Phi \) embodies the strong equivalence principle [1].

2. Cosmology and “black holes” revisited

When working in the Jordan representation, the cosmological solution (2.17) is interpreted as an “expansion of the universe”, test particles (galaxies) are said to be at rest in the “comoving” frame \(x^\mu \equiv (t, r, \theta, \phi) \) and the redshift is interpreted as due to the expansion of the universe. As for the Big-Bang it is not only a surface where the energy density of matter diverges, it is also a curvature singularity. Similarly the infinite redshift surface at \(r = M \) in a static spherically symmetric gravitational field discussed in II.6 is also a curvature singularity of the Jordan metric,
\[
ds^2 = \left(1 - \frac{M}{r}\right)^2 (-dT^2 + dr^2 + r^2 d\Omega^2) .
\]
The square of the Ricci tensor for example is given by
\[
\bar{R}_{\mu\nu} \bar{R}^{\mu\nu} = \frac{4M^2(M^2 - 4Mr + 6r^2)}{(r-M)^8}.
\]
Now the motion of a test particle is the geodesic equation, \(\bar{D} \bar{u}^\mu / d\bar{\tau} = 0 \) with \(\bar{g}_{\mu\nu} \bar{u}^\mu \bar{u}^\nu = -c^2 \), which is identical to (2.5). Therefore, as discussed in II.6 a freely falling object, can cross the curvature singularity at \(r = M \). Note also that \(r = 0 \) is not a curvature singularity: all components of \(R_{\mu\nu} \) are well-behaved there.

One can therefore argue that the Jordan spacetime describing the gravitational field of a static spherically symmetric point-like object is geodesically incomplete, its completion being the Minkowski spacetime of the Einstein representation.

However, as we discussed it in II.6, if particles beyond \(r = M \) are considered as antiparticles then a quantum description of \(r = M \) becomes necessary.

IV. CONCLUSIONS

As we have briefly recalled, Nordström’s theory of gravity is observationally ruled out, but is interesting as a playground where to probe various aspects of metric theories of gravity. By presenting some gedanken experiments in the field of a compact object we have seen in particular that a spurious curvature singularity (in that geodesics can cross it) can be removed and the manifold be extended by means of a conformal transformation, at least at the classical level.

Acknowledgments

N.D. thanks Gilles Esposito-Farèse for discussions and the Yukawa Institute for its hospitality when this work was completed. She also acknowledges financial support from the CNRS-JSPS contract 24600. M.S. is supported by Korea
Appendix A: The coupling of gravity to matter in Nordström’s theories

If matter is a scalar field $\Psi(x^\mu)$ it action can a priori be taken to be the sum of a kinetic and a potential term coupled to gravity as

$$S_m = - \int \frac{d^4x}{c^4} \sqrt{-\ell} \left[G_1(\Phi) \frac{1}{2} \ell_{\mu\nu} \partial_\mu \Psi \partial_\nu \Psi + G_2(\Phi) V(\Psi) \right],$$

(A1)

where G_1 and G_2 have to be chosen appropriately. The equation of motion for Φ is

$$\Box \Phi = \frac{4\pi G}{c^4} \left(\frac{1}{2} \frac{dG_1}{d\Phi} \partial_\mu \Psi \partial^\mu \Psi + \frac{dG_2}{d\Phi} V(\Psi) \right).$$

(A2)

The stress-energy tensor of the field Ψ is, on the other hand:

$$T^m_{\mu\nu} = G_1 \partial_\mu \Psi \partial_\nu \Psi - \ell_{\mu\nu} \left(\frac{1}{2} G_1 \partial_\rho \Psi \partial^\rho \Psi + G_2 V(\Psi) \right).$$

(A3)

If one now imposes that the source for gravity be related to the stress-energy tensor of matter (a requirement made by Einstein [10], quoted in [3]), so that the field equations have the universal form (2.3), we see that the two functions G_1 and G_2 are related to F thus: $G_1 = (1 + F)^2$; $G_2 = (1 + F)^4$ so that S_m and $T^m_{\mu\nu}$ become

$$S_m = - \int \frac{d^4x}{c^4} (1 + F(\Phi))^4 \sqrt{-\ell} \left[\ell_{\mu\nu} \frac{1}{2} \partial_\mu \Psi \partial_\nu \Psi + \ell^2 \partial_\mu \partial_\nu \Psi \partial^\rho \Psi \partial^\sigma \Psi + V(\Phi) \right],$$

(A4)

$$T^m_{\mu\nu} = (1 + F(\Phi))^2 \left(\partial_\mu \Psi \partial_\nu \Psi - \frac{1}{2} \ell_{\mu\nu} \partial_\rho \Psi \partial^\rho \Psi - (1 + F(\Phi))^2 \ell_{\mu\nu} V(\Psi) \right).$$

(A5)

When matter now is a perfect fluid for which an action is awkward to define, one imposes the equations of motion to be (2.3) and (2.5) where, now, $T^m_{\mu\nu}$ is the stress-energy tensor of the fluid interacting with the gravity field Φ. In analogy with the procedure followed when treating a scalar field one may start from the following ansatz :

$$T^m_{\mu\nu} = [\bar{\epsilon} H_1(\Phi) + \bar{p} H_2(\Phi)] \frac{\bar{u}_\mu \bar{u}_\nu}{c^2} + \bar{p} H_2(\Phi) \ell_{\mu\nu},$$

(A6)

where the functions H_1 and H_2 must be chosen appropriately and where $\bar{\epsilon}$ and \bar{p} are the energy density and pressure of the fluid. A way to restrict the functions H_1 and H_2 is first to impose that a radiation fluid ($\bar{\epsilon} = 3\bar{p}$) does not source gravity and is not influenced by it (this is in keeping with the fact that light follows light cones in Minkowski spacetime even in the presence of gravity). This requirement yields $H_2 = H_1$. At this stage and using, admittedly, the insight shown in [6], we see that if one chooses $H_1(\Phi) = (1 + F(\Phi))^4$ and if one introduces the auxiliary metric $\bar{g}_{\mu\nu} = (1 + F(\Phi))^2 \ell_{\mu\nu}$ (which is nothing but the Jordan metric), then the equations of motion (2.5) reduce to equations of motion for a free fluid,

$$\bar{D}_\nu T^m_{\mu\nu} = 0 \quad \iff \quad \begin{cases} \frac{d\bar{\epsilon}}{d\tau} = - (\bar{\epsilon} + \bar{p}) \bar{D}_\nu \bar{u}^\nu \\ \frac{d\bar{u}_\mu}{d\tau} = - \frac{c^2}{\bar{\epsilon} + \bar{p}} \left(\partial_\mu \bar{\rho} + \frac{\bar{u}_\nu \bar{u}^\nu}{c^2} \partial_\nu \bar{p} \right), \end{cases}$$

(A7)

where \bar{D}_ν is the covariant derivative associated with $\bar{g}_{\mu\nu}, \bar{u}^\mu = dx^\mu / d\tau, \bar{g}_{\mu\nu} \bar{u}^\mu \bar{u}^\nu = - c^2$ and $T^m_{\mu\nu} = (\bar{\epsilon} + \bar{p}) \bar{u}_\mu \bar{u}_\nu / c^2 + \bar{p} \bar{g}_{\mu\nu}$. Hence, with the above choice for H_1, there exists a “freely falling frame” where gravity is effaced and where, in accordance with the Einstein equivalence principle, local physics apply.