We conformally weld (via “quantum zipping”) two boundary arcs of a Liouville quantum gravity random surface to generate a random curve called the Schramm-Loewner evolution (SLE). We develop a theory of quantum fractal measures (consistent with the KZ) and analyze their evolution under welding via SLE martingales. As an application, we construct the natural quantum length and boundary intersection measures on the SLE curve itself.

PACS numbers: 02.50.-r, 04.60.Kz, 64.60.al, 02.90.+p, 04.60.-m, 05.40.-a, 11.25.Hf

Introduction.—Thirty years ago, Polyakov [1] invented the now celebrated model of Liouville 2D quantum gravity, giving the first mathematical description of continuous random surfaces, and of the summation over random Riemannian metrics involved. While the alternative discrete representation by random planar graphs was developed via random matrix theory, the convergence of its continuous limit to Liouville quantum gravity (still not yet rigorously proven) became clear only after Knizhnik, Polyakov and Zamolodchikov (KZ) [2, 3] proposed their exact solution of the Ising model on a random planar surface and in the Euclidean plane. Via KZ, Kazakov’s so-called Coulomb gas approach to critical 2D statistical mechanics [4] indeed matched Onsager’s results in the plane. The KZ relation was recently rigorously proven [5].

While Liouville field theory, itself a CFT, can be heuristically coupled to other CFT’s via KZ and the so-called conformal Ansatz [2, 3, 9], and quantum gravity used to predict properties of critical curves and SLE martingales. As an application, we construct quantum gravity fractal measures for SLE using the KZ formula. (See [12] for some related ideas.)

Liouville quantum gravity.—(Critical) Liouville quantum gravity consists of changing the (Lebesgue) area measure dz in a domain $D \subset \mathbb{C}$ to the quantum area measure $d\mu_{\gamma}(z) := e^{\gamma h(z)}dz$, where γ is a real parameter and where h is an instance of the (zero boundary, for now) Gaussian free field (GFF), with Dirichlet energy $(h, h)_D := (2\pi)^{-1} \int_D \nabla h(z) \cdot \nabla h(z) dz$. For $0 \leq \gamma < 2$ this allows us to mathematically define a quantum random surface $S := (\mathcal{D}, h)$ [5], even though h is actually a distribution [15]. The measure $d\mu_{\gamma}(z)$ can be constructed as the limit as $\varepsilon \to 0$ of the regularized quantities $d\mu_{\gamma,\varepsilon}(z) := e^{\gamma/2} \exp[\gamma h_\varepsilon(z)]dz$, where $h_\varepsilon(z)$ is the mean value of h on the circle $\partial B_\varepsilon(z)$, boundary of the ball $B_\varepsilon(z)$ of radius ε centered at z; note in particular that $\mathbb{E} e^{\gamma h_\varepsilon(z)} = \left[C(z, \mathcal{D})/\varepsilon\right] e^{\gamma/2} \mathcal{E}$, where $C(z, \mathcal{D})$ is the conformal radius of \mathcal{D} viewed from z.

Quantum fractal measures and KZ.—Consider d-dimensional Euclidean or analogously quantum measures of planar fractal sets and their a priori scaling properties:• If we rescale a d-dimensional fractal $X \subset \mathcal{D}$ via the map $z \to \phi(z) = bz$, $b \in \mathbb{C}$ (so that the Euclidean area of X is multiplied by $|b|^2$) then the d-dimensional Euclidean fractal measure of X is multiplied by $|b|^d = |b|^{2-2\alpha}$, where x (the so-called Euclidean scaling weight) is defined by $d := 2 - 2x \leq 2$.
• If X is a fractal subset of a random surface S, and we rescale S so that its quantum area increases by a factor of $|b|^2$, then the quantum fractal measure of X is multiplied by $|b|^{2-2\Delta}$, where Δ is the analogous quantum scaling weight.

The above assertions suggest that the (γ-dependent) Liouville quantum measure $Q(X, h)$ of a fractal $X \subset \mathcal{D}$ should satisfy the following scaling axioms:
• Adding a constant λ_0 to h (which has the effect of multiplying the quantum area by $e^{\gamma \lambda_0}$) should cause the fractal measure to be multiplied by $(e^{\gamma \lambda_0})^{1-\Delta} = e^{\alpha \lambda_0}$:
\begin{equation}
Q(X, h + \lambda_0) = e^{\alpha \lambda_0} Q(X, h) \quad (1)
\end{equation}
\begin{equation}
\alpha := \gamma - \gamma \Delta. \quad (2)
\end{equation}
• If $\phi(z) = bz$, then
\begin{equation}
Q(\phi(X), h \circ \phi^{-1}) = |b|^d + \alpha^2/2 Q(X, h). \quad (3)
\end{equation}
To explain (14), note that if we can cover X by N radius-ε balls, then it will take $N|b|^d$ such balls to cover bX. One next observes that the law of $h(\cdot) := h(\cdot) - h(z)$ on $B(z)$, given $h(z)$, is an appropriately projected GFF on a disc, which is independent of $h(z)$ and z (up to negligible effects of \mathcal{D}; see (3)), so one can apply (1) to $h + \lambda_0$, with the local shift $\lambda_0 = h(z)$. Then the expected resulting conformal factor $E e^{\alpha h(z)}$ will be $|b|^\alpha/2$ times larger in the domain \mathcal{D}, because of the conformal radius $C(bz; \mathcal{D}) = |b| C(z; D)$. Thus the expected (w.r.t. h) quantum measure of bX within one of the ε-balls covering bX (near bz) should be $|b|^\alpha/2$ times that of X within one of the ε-balls covering X (near z). The law of large numbers for the covering yields (3).

- $Q(\phi(X), h \circ \phi^{-1} - Q \lambda) = Q(X, h)$ for $\phi(z) = bz$, $\lambda = \log |b| = \log |\phi'|$. This is because in general (see (2)), the pair $S = (D, h)$ describes the same quantum surface (up to coordinate change) as the conformally transformed pair $(\phi(D), h \circ \phi^{-1} - Q \log |\phi'|)$, and

$$Q := \gamma/2 + 2/\gamma. \quad (4)$$

These properties taken together imply that

$$d = \alpha Q - \alpha^2/2, \quad (5)$$

which by (2) and (14) is equivalent to the celebrated KPZ formula: $x = (\gamma^2/4) \Delta^2 + (1 - \gamma^2/4) \Delta$. Indeed, the above may be viewed as a rather heuristic but genuine derivation of that formula.

SLE definition.—In its so-called chordal version, the Schramm-Loewner evolution (15) describes the uniformizing conformal map $g_t : \mathbb{H} \setminus K_t \to \mathbb{H}$, from the half-plane slit by the external envelope K_t of the trace $\eta(t)$ up to time $t \geq 0$ of the SLE$_\kappa$ path $\eta(t)$ to \mathbb{H} itself. This map satisfies the stochastic differential equation (SDE) $dg_t(z) = 2dt/g_t(z)\sqrt{\kappa}dB_t$, where B_t is standard Brownian motion with $B_0 = 0$, and $\kappa \geq 0$. One has $g_t(\eta(t)) = 0$, while for $t = 0$, $g_0(z) = z$. For values $0 \leq \kappa \leq 4$, the SLE$_\kappa$ trace is a simple curve (so that $K_t = \eta([0,t])$), while for $4 < \kappa < 8$ it develops double points and becomes space-filling for $\kappa \geq 8$ (16). Of particular physical interest are the cases of the loop-erased random walk ($\kappa = 2$) (17), the self-avoiding walk ($\kappa = 8/3$, still conjectural from a rigorous perspective), the Ising model interface ($\kappa = 3$ or 16/3) (18), the GFF contour lines ($\kappa = 4$) (19), and the percolation interface ($\kappa = 6$) (20).

Let $f_t : \mathbb{H} \to \mathbb{H} \setminus K_t$ be the reverse (“zipping up”) SLE conformal map (Fig. 1) given by the SDE $df_t(z) = -2dt/f_t(z) - \sqrt{\kappa}dB_t$, with $f_0(z) = z$, $f_0'(z) = 1$. Differentiating w.r.t. t gives $df_t(z) = 2dt f_t(z)/f_t'(z)$. For each $t \geq 0$, f_t maps $z \in \mathbb{H}$ to $w := f_t(z) \in \mathbb{H} \setminus \eta_t$ for an SLE$_\kappa$ segment η_t with tip $f_t(0)$.

A (reverse) SLE martingale.—Define a real stochastic process for $t \geq 0$ and $z \in \mathbb{H}$, by

$$\hat{h}_0(z) := (2/\sqrt{\kappa}) \log |z| \quad (6)$$

$$\hat{h}_t(z) := \hat{h}_0 \circ f_t(z) + Q \log |f'_t(z)|. \quad (7)$$

By standard stochastic Itô calculus, this process is a (local) martingale (so that $E h_t(z) = \hat{h}_t(z)$) for

$$Q = \sqrt{\kappa}/2 + 2/\sqrt{\kappa}, \quad (8)$$

for which $d\hat{h}_t(z) = - R_t(z) dB_t$, with $R_t(z) := \mathbb{H}[2/f_t(z)]$. The standard quadratic variation of Brownian motion is $\langle dB_t, dB_t \rangle = dt$, hence $\langle d\hat{h}_t(y), d\hat{h}_t(z) \rangle = R_t(y) R_t(z) dt$.

Let us now introduce the standard Neumann Green function in the half-plane \mathbb{H}, $G_0(y, z) := -\log(|y - z||y - \overline{z}|)$, such that $-\Delta G_0(y, z) = 2\pi\delta(y - z)$, with Neumann boundary conditions $\partial G_0(y, z)/\partial y = 0$ for $y \in \mathbb{R}$. Define the time-dependent Green function $G_t(y, z) := G_0(f_t(y), f_t(z))$, i.e., G_0 taken at the image points under f_t. A direct calculation shows that the quadratic variation above can then simply be written as the Green function’s variation (Hadamard’s formula) $\langle d\hat{h}_t(y), d\hat{h}_t(z) \rangle = -dG_t(y, z)$. Integrating with respect to t yields the covariance of the \hat{h}_t martingale ($\hat{h}_t(y), \hat{h}_t(z) = G_0(y, z) - G_t(y, z)$). Taking the limit $y \to z$ in the latter, one obtains

$$\langle \hat{h}_t(z), \hat{h}_t(z) \rangle = C_0(z) - C_t(z), \quad (9)$$

where $C_t(z) := -\log [3 f_t(z)/f_t'(z)]$.

Quantum conformal welding.—Consider $h := \hat{h} + \hat{h}_0$, sum of an instance \hat{h} of the Gaussian free field on \mathbb{H} with free boundary conditions (f.b.c.) on \mathbb{R} (up to additive constant), and of the deterministic function \hat{h}_0 (6). This h can be coupled with the reverse Loewner flow evolution f_t described above so that, given f_t, the conditional law of h (hereafter denoted by $h(f_t)$) is

$$h(z)|f_t \overset{\text{in law}}{=} \hat{h} \circ f_t(z) + \hat{h}_t(z), \quad (10)$$

where $\hat{h} \circ f_t$ is the pullback of the free boundary GFF \hat{h} in the image half-plane, and where \hat{h}_t is the martingale (11). To sample h, one can first sample the B_t process (which determines f_t), then sample independently the
f.b.c. GFF \tilde{h} and take (10). Its conditional expectation w.r.t. \tilde{h} is the martingale $E[h(z)|f_t] = h_t(z)$. Owing to (7) the r.h.s. of (10) is of the form $h \circ f_t + Q \log |f_t'|$. For Q equal to (4), this is the transformation law in Liouville quantum gravity of the GFF h under the conformal map f_t (3, 8). Then the pair $(\mathbb{H}, h \circ f_t + b_t)$ describes the same random surface as the pair $(\mathbb{H} \setminus K_t, h)$: Given f_t, the image under f_t of the measure $e^{h(z)}dz$ in \mathbb{H} is a random measure whose law is the a priori (unconditioned) law of $e^{h(w)}dw$ in $\mathbb{H} \setminus K_t$. From (3) and (8) we find the two dual solutions $\gamma = \sqrt{\kappa} \wedge \kappa'$ or $\gamma' = 4/\gamma = \sqrt{\kappa'}/\kappa'$, with $\kappa' \geq 16/\kappa$.

The first solution $\gamma \leq 2$ corresponds precisely to the famous conformal Ansatz (2). This relates the parameter $\gamma = \sqrt{\frac{25}{8} - c - \sqrt{1 - c}}/\sqrt{6}$ in Liouville theory to the central charge $c = \frac{4}{3} (6 - \kappa) (6 - \kappa')$ of the CFT coupled to gravity. The second solution $\gamma' = 4/\gamma \geq 2$ corresponds to a dual model of Liouville quantum gravity, in which the quantum area measure develops atoms with localized area (3, 21).

The equality in law (10) essentially results from using in the above $G_0(y, z) = \text{Cov}[h(y), h(z)]$ (thus $G_t = \text{Cov}[h_t(y), h_t(z)]$), and the fact that $h_t(y) h_t(z) + G_t(y, z)$ is a martingale (12). In this particular coupling of h and f_t, the two strands of the boundary to be matched along the trace η_t when “zipping-up” by the reverse Loewner map f_t have the same quantum length (at least for $k < 4$) (Fig. 1). This quantum conformal welding property actually determines f_t as a function of h (12).

Let $X = \eta$ be an SLE_k independent of h (Fig. 1). Define its “zipping down” map by $f_{-t} := g_t : \mathbb{H} \setminus \eta((0, t]) \to \mathbb{H}$, $t \geq 0$. When $k < 4$, X divides \mathbb{H} into a pair of welded quantum surfaces that is stationary w.r.t. zipping up or down via the transformations f_t ($t \in \mathbb{R}$) (12). The relation between γ and k is now rigorously clear: conformally welding two γ-quantum surfaces produces SLE_k.

Conformal martingales.— Let us introduce the conditional expectations of exponentials of the field (10), $\mathcal{M}_t^\alpha(z) := E[e^{a h(z)} f_t(z)]$, depending on a real parameter α, which are fundamental objects describing quantum gravity coupled to the SLE process. These martingales can be given explicitly in terms of (7) and (9):

$$\mathcal{M}_t^\alpha(z) = \text{exp} [a h_t(z) + (a^2/2) C_t(z)]$$

$$= |w|^{2a/\sqrt{\kappa}} |f_t'(z)|^{aQ - a^2/2} (3\omega)^{-a^2/2},$$

where $w = f_t(z)$. Because of (9, 11) is an exponential martingale with respect to the Brownian motion driving the reverse SLE process:

$$E[\mathcal{M}_t^\alpha(z)] = |z|^{2a/\sqrt{\kappa} (3\omega)^{-a^2/2}}.$$

A stronger statement is the identity in law of the conditional exponential measure

$$E[e^{a h(z)} f_t(z)dz] = |f_t'(z)|^{4 - 2} e^{ah(w)} dw,$$

with d given by (13). $dw = |f_t'(z)|^2 dz$, and whose expectations (12) agree.

Expected quantum area.— For $\alpha = \gamma$, i.e., $d = 2$ in (3) and (14), we get in (12) the invariant (expected) quantum area $dA := \mathcal{M}_t^\gamma(z)dz = M_t^0(w)dw$, for $\gamma = \sqrt{\kappa} \wedge 4/\sqrt{\kappa}$.

$$dA = dz E[e^{\gamma h(z)} f_t(z)] dw = |w|^{2 - \kappa/2} (\sin \phi)^{-\kappa/2}, \kappa \leq 4$$

$$= dw (\sin \phi)^{-8/\kappa}, \kappa \geq 4; \phi := \arg w.$$

We now construct explicit invariant SLE quantum measures, using the martingales (11) for $\alpha \neq \gamma$.

SLE bulk quantum measure.— An SLE measure recently introduced in the context of the so-called natural parametrization of SLE_k describes the “fractal length” of the intersection $X \cap D$ of an (infinite) SLE_{κ} fractal path $X = \eta$ with an arbitrary domain $D \subset \mathbb{H}$ (Fig. 1 left). It is shown in (22) that its expectation with respect to the SLE law is finite for any bounded D, and given by $\nu(D) := \int_D G(z) dz$, where $G(z) := |z|^a |\bar{z}|^b$, with $a = 1 - 8/\kappa, b = 8/\kappa + \kappa/8 - 2$. Under a zipping-up conformal map f_t, the expectation $\nu_{f_t}(D_t)$ of the fractal length of the image path $f_t(X)$ in the image domain $D_t := f_t(D)$ (Fig. 1 right) is conformally covariant:

$$\nu_{f_t}(D_t) := \int_{D_t} |f_t'(z)|^4 G(z) dz = \int_{D_t} N_t(w) dw, \quad (15)$$

where d is the SLE_{kappa} Hausdorff dimension, equal to $d := 1 + \kappa/8$ (22), and $N_t(w) := G(z) |f_t'(z)|^{2-d}$, with $z = f_t^{-1}(w)$. Replacing f_t^{-1} by the zipping-down map f_{-t}, we observe that $M_t := (G \circ f_{-t}) |f_{-t}'|^2 dw$ describes the density of expected Euclidean fractal length of $X = \eta$, given $\eta((0, t])$ (22). This M_t is a local martingale w.r.t. the forward direction SLE flow f_{-t} that generates $X = \eta$ (22).

Thus $\int_{D \cap \eta((0, t])} M_t(w) dw$ is a martingale minus the length of $\eta((0, t]) \cap D$; this unique Doob-Meyer decomposition actually determines the latter length (22).

We extend this construction to the quantum case by defining the expected (w.r.t. X, given h) Liouville quantum length ν_{Q} of an infinite SLE path in a domain D

$$\nu_{Q}(D, h) := \int_D e^{ah(h)} G(z) dz, \quad (16)$$

where $\alpha := \sqrt{\kappa}/2$ for $\kappa \leq 4$, and $\gamma'/2$ for $\kappa > 4$) is chosen to satisfy KPFZ (5) for the SLE dimension $d = 1 + \kappa/8$ (and Seiberg’s bound $\alpha \leq Q$ (2, 22)). Conditioning (16) on f_t and using (14) gives

$$\nu_{Q}|_{f_t} := \int_D (e^{ah(h)} f_t(z)) G(z) dz \text{ in law } \int_{D_t} e^{ah(w)} N_t(w) dw.$$
under a finite expectation assumption \[22\]. The expectation of \[16\] w.r.t. \(h \), conditioned on \(f_t \), is from \[12\]
\[
E[\nu_\Theta | f_t] = \int_D \mathcal{M}^\Theta_t(z)G(z)dz = \int_{D_t} \mathcal{M}^\Theta_0(w)N_t(w)dw,
\]
where \(\mathcal{M}^\Theta_0(w) = |w|(3w)^{-\kappa/8} \) is the (unconditioned) free boundary GFF expectation \(E[\nu_\Theta | u] \). Finally, taking expectation w.r.t. \(f_t \) gives via the martingale \(\mathcal{M}^\Theta_t(z) \) the expected quantum length in \(D \) (here \(\theta := \arg z \)):
\[
E\nu_\Theta(D) = \int_D dz \mathcal{M}^\Theta_0(z)G(z) = \int_D (\sin \theta)^{8/\kappa - 2}dz;
\]
for \(\kappa = 4 \), it coincides with the Euclidean area of \(D \).

SLE boundary quantum measure.—Consider now the reverse Schramm-Loewner map \(f_t(x) \) restricted to \(x \in f_t^{-1}(\mathbb{R} \setminus K_t) \) on the real axis (i.e., to the right of \(A \) in Fig. 1), such that \(f_t^{(1)}(x) \geq 1 \). The boundary analogs of the exponential martingales \[11\] are
\[
\mathcal{M}^\gamma_t(x) := E(e^{\beta h(x)})f_t = e^{\beta h(x)}|f_t^{(1)}(x)|^{-\beta^2}, \quad (17)
\]
for any real \(\beta \), such that \(E[\mathcal{M}^\gamma_t(x)] = \hat{\mathcal{M}}^\gamma_t(0) = \gamma^2/\kappa \). From \[7\] one has \(\hat{\mathcal{M}}^\gamma_t(x) = u^{2\beta/\sqrt{\kappa}}f_t^{(1)}(x)^d \) with \(u = f_t^{(1)}(x) \) and \(d = \beta Q - \beta^2 \), the boundary analog of KPZ \[15\] \[3\].

A boundary fractal measure \(\nu \), supported on the intersection of a chordal SLE\(_\kappa \) curve \(X = \eta \) with the axis \(\mathbb{R} \), for \(\kappa \in (4,8) \), has been constructed recently \[20\]. For any interval \(I \subset \mathbb{R}^+ \), its expectation is the simple integral \(\nu(I) = \int_I x^{-1}dx \), with \(\beta = 2-8/\kappa \) is the Hausdorff boundary dimension of \(X \cap \mathbb{R}^+ \). As in \[15\], under the map \(f_t \), the expected measure \(\nu_\Theta(f_t(I)) \) of the intersection of the image path \(f_t(x) \) with the image interval \(I_t := f_t(I) \) is conformally covariant: \(\nu_\Theta(I_t) = \int_{I_t} \hat{N}_t(u)du \), where \(\hat{N}_t(u) := (x f_t^{(1)}(x))^{-d-1}x = f_t^{(1)}(u) \). Replacing \(f_t^{(1)} \) by \(f_{-t} \), we observe that \(\hat{M}_t := ((-t)/f_{-t}^{(1)})^{-d-1} \) describes the density of expected boundary measure of \(X = \eta \) given \(\eta([0,t]) \), and \(\hat{M}_t \) is a local martingale w.r.t. \(f_{-t} \) \[26\].

We define the expected SLE quantum boundary measure \(\nu_\Theta \) as
\[
\nu_\Theta(I, h) := \int_I e^{\beta h(x)} x^{-d-1}dx,
\]
where \(\beta := \sqrt{\kappa}/2 - 2/\sqrt{\kappa} \) satisfies the boundary KPZ relation above for \(\hat{d} \) (and the boundary Seiberg bound \(\beta \leq Q/2 \) \[23\]); its conditional expected measure
\[
\nu_\Theta| f_t := \int_I (e^{\beta h(x)}|f_t^{(1)}|)^{-d-1}dx \overset{\text{law}}{=} \int_I e^{\beta h(u)} \hat{N}_t(u)du
\]
yields by Doob-Meyer decomposition the SLE quantum boundary measure, with now \(E[e^{\beta h(x)+\beta h(y)} M_t(x)\hat{M}_t(y)] \) bounded from \[20\] by \(|x-y|^{\beta-1} \), with \(\hat{d} := \hat{d} - 2\beta^2 = 6 - \kappa/2 - 16/\kappa \), which is integrable for \(\hat{d} > 0 \), i.e., \(\kappa \in (4,8) \). The expectation with respect to \(h \) conditioned on \(f_t \) is
\[
E[\nu_\Theta(I, h)|f_t] = \int_0^1 \hat{M}^\Theta_t(\hat{d})x^{-d-1}dx = \int_0^1 \hat{M}^\Theta_0(u)\hat{N}_t(u)du,
\]
where \(\hat{M}^\Theta_0(u) = u^{1-4/\kappa} \). Taking expectation w.r.t. \(f_t \), we find for \(\kappa \in (4,8) \) that \(E\nu_\Theta(I) = \int_I x^{\hat{d}-12/\kappa}dx \); for \(\kappa = 6 \), this coincides with the Euclidean length of \(I \).

Finally, the expected quantum boundary length \(\hat{D} := \int \nu_\Theta(\exp(3h(x))|f_t)|f_t| \) is obtained for \(\hat{d} = 1 \) in the above, with \(\beta = \gamma/2 \), as expected \[2], and with the deterministic forms \(d\mathcal{L} = u\,du \) for \(\kappa \leq 4 \), and \(d\mathcal{L} = u^{\kappa/\kappa} \) for \(\kappa > 4 \).

We provided a foundational relationship between SLE, KPZ and Liouville quantum gravity. We hope it will help to solve the outstanding open problem of relating these objects to discrete models and random planar maps.

Support by grants ANR-08-BLAN-0311-CSDF, CNRS-PEPS-PTI 2010 and NSF grants DMS 0403182/064558 and OISE 0730136 is gratefully acknowledged.