The Near-Flat-Space and BMN Limits for Strings in $AdS_4 \times CP^3$ at One Loop

Michael C. Abbott$^1$ and Per Sundin$^2$

$^1$ Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Rd, Mumbai 400-005, India

$^2$ Astrophysics, Cosmology & Gravity Centre and Department of Applied Mathematics, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa

3 June 2011

Abstract

This paper studies type IIA string theory in $AdS_4 \times CP^3$ in both the BMN limit and the Maldacena–Swanson [1] or near-flat-space limit. We derive the simpler Lagrangian for the latter limit by taking a large worldsheet boost of the BMN theory. We then calculate one-loop corrections to the correlators of the various fields using both theories. In all cases the near-flat-space results agree with a limit of the BMN results, providing evidence for the quantum consistency of this truncation. The corrections can also be compared to an expansion of the exact dispersion relation, known from integrability apart from one interpolating function $h(\lambda)$. Here we see agreement with the results of McLoughlin, Roiban & Tseytlin [2], and we observe that it does not appear to be possible to fully implement the cutoff suggested by Gromov & Mikhaylov [3], although for some terms we can do so. In both the near-flat-space and BMN calculations there are some extra terms in the mass shifts which break supersymmetry. These terms are extremely sensitive to the cutoff used, and can perhaps be seen as a consequence of using dimensional regularisation.

Contents

1 Introduction .............................................. 2
2 The String Lagrangian and Two Strong-Coupling Limits ...... 4
   2.1 The BMN Lagrangian, 6 • 2.2 The near-flat-space limit, 7
3 Corrections to the Light Propagators ......................... 9
   3.1 Bubble diagrams for $\langle \omega \omega \rangle$, 11 • 3.2 Tadpole diagrams for $\langle \omega \omega \rangle$, 12 • 3.3 Total for the light boson, 13 • 3.4 Corrections for the light fermion $\langle \psi \bar{\psi} \rangle$, 14
4 A Detour via some Delicate Cutoffs ....................... 15
   4.1 Using hard cutoffs, 15 • 4.2 High-precision cutoffs, 16 • 4.3 ‘Old’ and ‘new’ prescriptions, 18 • 4.4 Modes other than the light boson, 19
1 Introduction

Closed strings in flat spacetime have the property that left- and right-moving excitations decouple, but this is no longer true in curved backgrounds such as $\text{AdS}_5 \times S^5$ or $\text{AdS}_4 \times \text{CP}^3$. Even after one has taken the BMN, or Penrose, limit, focusing on strings very near to a light-like trajectory [5], non-trivial couplings between the left-movers and right-movers remain. The limit proposed by Maldacena and Swanson in [1] can be viewed as a partial restoration of this decoupling, by virtue of the fact that one light-like worldsheet momentum is taken to be much larger than the other, $p_- \gg p_+$. Both of these limits are taken using a power of the 't Hooft coupling $\lambda$ as the parameter, thus tying them to the semiclassical limit $\lambda \gg 1$. The BMN limit looks at perturbations of order $1/\lambda^{1/4}$ from a null geodesic, allowing us (at a given loop order) to truncate the expansion of the Lagrangian in the number of fields. The near-flat-space limit then scales the momenta such that $p_-/p_+ \sim \sqrt{\lambda}$. This can be regarded as a worldsheet boost in the $\sigma^-$ direction, and the simplification comes from discarding all interaction terms except the leading ones under this boost. It is not obvious that this truncation will be respected quantum mechanically. For this to happen, the contributions from where momenta on internal lines are not large must cancel out, or at least be sufficiently small.

In the case of strings in $\text{AdS}_5 \times S^5$, this quantum consistency was checked at one loop in [6] and at two loops in [7]. These papers computed primarily corrections to four-point functions, and compared these to the worldsheet S-matrix known exactly from integrability [8]. The second paper [7] also computed corrections to the two-point function, and compared these to the dispersion relation $E(p)$. It is useful here to think of the near-flat-space limit as being intermediate between the BMN limit and the full sigma-model:

\[ p \sim 1/\sqrt{\lambda}, \quad \text{BMN limit} \]
\[ p \sim \lambda^{-1/4}, \quad \text{near-flat-space} \]
\[ p \sim 1, \quad \text{giant magnons}. \]

We write 'giant magnons' for the third sector, as these are the classical string solutions obeying the dispersion relation at finite $p$ [9]. They are of size $\Delta \phi = p$ along an equator of $S^5$.

For the case of strings in $\text{AdS}_4 \times \text{CP}^3$, relevant for the comparison with ABJM's superconformal Chern–Simons theory [10, 11], only the bosonic part of the the near-flat-space limit has been studied [12]. Fermions are of course essential for one-loop calculations, and so we work
out the complete near-flat-space Lagrangian, starting from the BMN case of [4]. We use this to calculate corrections to two-point functions, which we can compare to the exact dispersion relation

\[ E = \sqrt{\frac{1}{4} + 4 h(\lambda)^2 \sin^2 \frac{p}{2}}. \tag{2} \]

The interpolating function \( h(\lambda) \) is the only part of this relation not fixed by symmetries. At small values of \( \lambda \) it is \( h(\lambda) = \lambda + O(\lambda^3) \), but at large \( \lambda \) (relevant for semiclassical strings) it is instead

\[ h(\lambda) = \sqrt{\frac{\lambda}{2}} + c + O\left(\frac{1}{\sqrt{\lambda}}\right). \tag{3} \]

The subleading term \( c \) has been the subject of some debate in the literature. In one-loop energy corrections to spinning strings [13–15, 3] and to giant magnons [16], there is a choice of how to regulate divergent sums over mode numbers, and using the same momentum cutoff \( \Lambda \) for all modes leads to \( c = -\log 2/2\pi \). However it has been argued that it is natural to use a cutoff of \( 2\Lambda \) for half of the modes (the heavy modes) and this ‘new’ prescription leads instead to \( c = 0 \) [3,17]. The same two prescriptions have been implemented in a recent Hamiltonian analysis [18], which argues in favour of the new prescription. Our paper is in some ways the Lagrangian analysis complementary to this.

The sigma model in \( AdS_4 \times CP^3 \) has several novel features compared to that in \( AdS_5 \times S^5 \). One is that its excitations do not all have the same mass: half are ‘light’ (\( m = \frac{1}{2} \) in our conventions) and half are heavy (\( m = 1 \)). Another is that the Lagrangian has interactions starting at cubic order, rather than at quartic order [19,12,20], greatly expanding the number of Feynman diagrams possible. The cubic interactions always couple two light modes to one heavy mode, and therefore lead to bubble diagrams such as

![Diagram](image)

where we draw the heavy mode as a double line. In this diagram the same loop momentum applies to both the heavy and the light mode, at least in the UV. This points towards the ‘old’ prescription, of integrating up to the same momentum \( \Lambda \) for all modes. In this paper we use primarily dimensional regularisation, but for the simplest case can also obtain exactly the same results using a momentum cutoff.

In addition to the term coming from \( c = -\log 2/2\pi \), we also find (using either regularisation procedure) some additional terms. These terms are present in both the BMN and near-flat-space limit, and so do not represent a problem with the consistency of the near-flat-space truncation. These extra terms differ for the various particles, vanishing in the case of corrections to the light fermion propagator. This implies that they break supersymmetry, possibly as a consequence of dimensional regularisation.

In fact these extra terms come (primarily) from the bubble diagram above, while the term containing \( c = -\log 2/2\pi \) comes from tadpole diagrams:

![Diagram](image)

Each loop here contains only one mode, and so for these tadpole diagrams there is no obstruction to changing the heavy mode cutoff to implement the ‘new’ sum. This change cancels the \(-\log 2/2\pi\) term, and thus while slightly unsatisfying (since it does nothing to the bubble diagrams) could be said to lead to \( c = 0 \).
In this paper we also further the investigation of what one-loop corrections can teach us about the nature of the heavy modes, as initiated by Zarembo in [21] and continued in [4]. There it was argued that the heavy modes dissolve into a multi-particle continuum, under the assumption that \( c = 0 \). In our calculation, it is clear that the decay of a heavy mode into two light modes is kinematically allowed.

Outline

In section 2 we set up the theory we are considering, re-writing some results of [4] for the BMN limit in more convenient notation, and taking the near-flat space limit of the Lagrangian.

Sections 3, 4 and 5 study mass corrections to the propagator in the near-flat space limit. The basic light boson calculation is quite simple, but the light fermion case is more involved. We discuss some issues about momentum cutoffs in section 4 before working on the heavy modes in section 5.

We then turn to the full near-BMN case in section 6. All of the same issues arise here, but the calculations are a great deal more complicated and thus less transparent. We can reproduce our near-flat-space results as limits of these results.

We conclude and summarise in section 7.

Appendix A contains extra notation particularly about fermions. Appendix B contains manipulations to simplify \( L_4 \). Appendix C looks at expansions of integrals used for dimensional regularisation.

2 The String Lagrangian and Two Strong-Coupling Limits

Our starting point is the gauge-fixed Lagrangian for type IIA strings in the near-BMN limit of \( AdS_4 \times CP^3 \) as derived in [4]. We begin by reviewing this derivation, very briefly.

We are interested strings moving in the quotient super-space \([22, 23]\)

\[
\frac{OSP(2, 2|6)}{SO(3, 1) \times U(3)}
\]

the bosonic part of which is \( AdS_4 \times CP^3 \). The sigma-model is defined in terms of the following Lie-algebra valued flat current:

\[
A_\mu(\sigma, \tau) = -G^{-1} \partial_\mu G, \quad G \in OSP(2, 2|6) = A^{(0)}_\mu + A^{(1)}_\mu + A^{(2)}_\mu + A^{(3)}_\mu.
\]

Here \( A^{(k)} \) is the component with eigenvalue \( i^k \) under the generator of the \( \mathbb{Z}_4 \) automorphism, \( \Omega \). The subalgebra \( so(3, 1) \oplus u(3) \) is precisely that fixed by \( \Omega \), and thus to be omitted from the action. The \( k = 0, 2 \) components are bosonic, and \( k = 1, 3 \) fermionic. The action defined by [22] is as follows:

\[
S = \frac{g}{2} \int d^2 \sigma \text{ Str } \left[ \sqrt{-hh} \epsilon^{\mu\nu} A^{(2)}_\mu A^{(2)}_\nu + \kappa \epsilon^{\mu\nu} A^{(1)}_\mu A^{(3)}_\nu \right].
\]

The coupling constant is \( g = \sqrt{\lambda/2} = R^2/8\pi\alpha' \) which is taken to be large. In order for local \( \kappa \)-symmetry to hold we need \( \kappa^2 = 1 \), and we now choose \( \kappa = 1 \).

It is necessary to introduce some parameterisation of the group. Since we are interested in strings near to the null line \( \phi = t \), and will later discard these two directions during gauge fixing, it has been found convenient to factorise them out from the start. A suitable parameterisation

\footnote{\( \kappa \) changes sign under \( \sigma \to -\sigma \).}
\[ G = \Lambda(t, \phi) \, F(\chi) \, G_{\perp}(X). \]

The three factors contain the light-cone directions, the fermions and the eight transverse bosonic directions. Explicitly,

\begin{align*}
\Lambda(t, \phi) &= \exp \left[ \frac{i}{2} (x^+ + (\frac{1}{2} - a)x^-) \Sigma_+ + \frac{i}{4} x^- \Sigma_- \right] \\
G_{\perp}(X) &= G_{\text{AdS}} \oplus G_{\text{CP}} = 1 + \frac{i}{2} z_i \Gamma^i \sqrt{1 - z_i^2 / 4} \oplus \exp \left( W + \bar{W} + \frac{1}{2} y T_5 \right) \\
F(\chi) &= \chi + \sqrt{1 + \chi^2}.
\end{align*}

Here \( z_i \) and \( t \) are the \( \text{AdS}_4 \) co-ordinates, while \( y \), \( W \), \( \bar{W} \) and \( \phi \) are the \( \text{CP}^3 \) co-ordinates. All the fermionic fields are contained in the matrix \( \chi \), see appendix A for details. The target-space light-cone coordinates here are non-standard ones, defined

\[ x^+ = (1 - a)t + a \phi, \quad x^- = \phi - t, \]

where \( a \in [0, 1] \) is the same constant as appears in generalised light-cone gauge.

The bosonic gauge fixing is simplified by introducing an auxiliary field \( \pi \) conjugate to \( A(2) \). This brings us to a first-order formalism in which the Weyl-invariant worldsheet metric \( \gamma^{\mu\nu} = \sqrt{-\det h^{\mu\nu}} \) enters as a set of Lagrange multipliers:

\[ S = -g \int d\sigma \text{Str} \left[ \pi A_0 + \frac{1}{2} \epsilon^{\alpha\beta} A^{(1)}_\alpha A^{(3)}_\beta - \frac{1}{2} \gamma^{00} \left( \pi^2 + (A^{(2)}_1)^2 \right) + \gamma^{01} \pi A^{(2)}_1 \right] \]

By solving for \( \pi \) this action is classically equivalent to (4); for details see [4]. The gauge we adopt is the generalised light-cone gauge of [24, 25], in which we set \( x^+ = \tau \) and the density of the momentum \( p_+ \) to be a constant:

\[ P_+ = g \int d\sigma p_+ = (1 - a)J + a \Delta \]

where \( \Delta \) and \( J \) are the conserved charges from \( \text{AdS}_4 \) and \( \text{CP}^3 \). Note that this gauge relates the length of the string worldsheet to \( P_+ \) and the coupling. As a result of this the large coupling expansion will decompactify the worldsheet. The light-cone gauge also implies that the physical Hamiltonian is

\[ \mathcal{H}_{lc} = -P_- = g \int d\sigma p_- = J - \Delta. \]

The gauge fixing breaks some of the symmetries and the set of charges that commutes with the light-cone Hamiltonian combines into \( SU(2|2) \times U(1) \) [26].

What we have written thus far is exact in the sense that arbitrarily large motions of the string are allowed. We now take the BMN, or PP-wave, limit, in which we focus on strings near to the null geodesic \( \phi = t \). By ‘near’ we mean of order \( 1/\sqrt{g} \), which means that this limit is to be taken simultaneously with the semiclassical limit. We implement this by scaling all fields, making the following replacements in \( \mathcal{L} \):

\[ x \rightarrow \frac{1}{\sqrt{g}} x, \quad \pi \rightarrow \frac{1}{\sqrt{g}} \pi, \quad \chi \rightarrow \frac{1}{\sqrt{g}} \chi \]

writing \( x \) for a generic boson (whose conjugate momentum is \( \pi \)) and \( \chi \) for a fermion. At large \( g \) the Lagrangian is then organised as an expansion in the number of fields, which we write as
follows:

\[ S = \int d^2 \sigma \left[ \mathcal{L}_2(\pi, x, \chi) + \frac{1}{\sqrt{g}} \mathcal{L}_3(\pi, x, \chi) + \frac{1}{g} \mathcal{L}_4(\pi, x, \chi) + \mathcal{O}(g^{-3/2}) \right]. \]

The result we take from [4] as our starting point is the Lagrangian in this form. (The only change is that we generalise it to the gauge \( a \neq \frac{1}{2} \).) Note that unlike the Hamiltonian analysis of [4,27], it is not necessary for us to perform complicated redefinitions of the fermions in order to make canonically conjugate pairs (up to some order). We can simply work with them as they stand.

### 2.1 The BMN Lagrangian

The analysis we want to perform in this paper is simplified by eliminating the momentum variables (introduced for ease of gauge fixing) in favour of velocities. The equations of motion for the momenta \( \pi \) are, schematically,

\[ \frac{\partial \mathcal{L}}{\partial \pi} = 0 \quad \Rightarrow \quad \pi = \partial_0 x + \frac{1}{\sqrt{g}} \partial_3 \pi + \frac{1}{g} \partial_4 \pi + \ldots \]

The higher-order terms on the right mean that the interaction terms \( \mathcal{L}_3 \) and \( \mathcal{L}_4 \) will change in nontrivial ways. But the quadratic Lagrangian is essentially\(^2\) given by replacing \( \pi \rightarrow \partial_0 x \) in that of [4]:

\[
\begin{align*}
\mathcal{L}_2 &= \frac{1}{2} \partial_+ y \partial_- y + \frac{1}{2} \partial_+ z_i \partial_- z_i + \frac{1}{4} \partial_+ \omega_\alpha \partial_- \omega^\alpha + \frac{1}{4} \partial_- \omega_\alpha \partial_+ \omega^\alpha - \frac{1}{2} (y^2 + z_i^2) - \frac{1}{8} \omega_\alpha \omega^\alpha \\
&\quad + i (\overline{\psi}_a \partial_- \psi^a_a + \overline{\psi}_a \partial_+ \psi^a_a) + \frac{i}{2} \left[(s_-)_a^\alpha \partial_+(s_-)^\alpha_a + (s_+)_a^\alpha \partial_-(s_+)^\alpha_a\right] \\
&\quad - \frac{1}{2} (\overline{\psi}_a \partial_- \psi^a_a + \overline{\psi}_a \partial_+ \psi^a_a) - i (s_+)_a^\alpha (s_-)^\alpha_a. \quad (8)
\end{align*}
\]

Here we have introduced worldsheet light-cone coordinates

\[ \sigma^\pm = \frac{\tau \pm \sigma}{2}, \quad \Rightarrow \quad \partial_\pm = \partial_0 \pm \partial_1. \]

We will refer to both fields and derivatives with a + subscript as being left-moving, and those with − as right-moving. The list of fields is as follows:

<table>
<thead>
<tr>
<th>Field ( \psi_a^\pm )</th>
<th>Complex light fermion ( a = 1, 2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( (s_\pm)^\alpha_a )</td>
<td>Real heavy fermion ( \alpha = 3, 4 )</td>
</tr>
<tr>
<td>( \omega_\alpha )</td>
<td>Complex light boson</td>
</tr>
<tr>
<td>( y, z_i )</td>
<td>Real heavy boson ( i = 1, 2, 3 )</td>
</tr>
</tbody>
</table>

The fields transform covariantly under the bosonic part of \( SU(2) \times U(1) \), namely \( SU(2)^2 \times U(1) \), and we denote the \( SU(2) \) from \( AdS_4 \) with Latin indices and the \( SU(2) \) from \( CP_3 \) with Greek.

Both are raised and lowered with \( \epsilon \)-tensors

\[ R^a = \epsilon^{ab} R_b = \epsilon^{ab} (\epsilon_{bc} R^c), \quad \epsilon_{12} = \epsilon_{34} = 1 \quad \Rightarrow \quad \epsilon_{12} = \epsilon_{34} = -1 \]

and the action of conjugation is \( (C^\alpha_a)^\dagger = C^\alpha_a \). The light fields also transform under the \( U(1) \), with \( \psi_a^\pm \) and \( \omega_\alpha \) having +1 charge.

Either by direct inspection or through solving the quadratic equations of motion, one can...\(^2\)We detail some changes of notation in appendix A.
derive the following Feynman propagators:

\[ \langle \bar{\psi}^\alpha \omega_{\beta} \rangle = \frac{\delta^\alpha_\beta}{p^2 - \frac{4}{4}}, \quad \langle \gamma^\alpha \rangle = \frac{i}{p^2 - 1}, \quad \langle z_i z_j \rangle = \delta_{ij} \frac{i}{p^2 - 1}. \]  

(Notice that our light boson has non-standard normalisation.) For the fermions:

\[ \langle \bar{\psi}_a \psi^b \rangle = \frac{\delta^b_a}{p^2 - \frac{4}{4}}, \quad \text{where } D_{\psi \psi} = \begin{cases} ip_+ & \text{for the case } \bar{\psi}_+ \psi_+ \\ ip_- & -,- \\ -i/2 & +,- \text{ or } -,+ \end{cases} \]

\[ \langle s^a s^\beta \rangle = \delta^\beta_\alpha \frac{D_{ss}}{p^2 - 1}, \quad D_{ss} = \begin{cases} ip_+ & s_+ s_+ \\ ip_- & -,- \\ -1 & +,- \\ +1 & -,+ \end{cases} \]

The cubic Lagrangian is naturally more complicated, and writing \( \partial_\pm = \partial_\pm - \bar{\partial}_\pm \) and \( Z^a_b = \sum_s z_i (\sigma_i)^a_b \), it is given by

\[
L_3 = \frac{i}{8} g (\omega_a \bar{\psi}_a \bar{\omega} + \omega_a \bar{\omega} \bar{\psi}_a) + \frac{i}{2} \bar{\psi}_{-a} \partial_+ \psi^b \partial_- Z_a^b - \frac{i}{2} \bar{\psi}_+ \partial_- \psi^b \partial_+ Z_a^b \\
+ \frac{1}{2} (\bar{\psi}_{-a} \partial_+ \psi^b + \partial_+ \bar{\psi}_a \psi^b - \bar{\psi}_+ \partial_- \psi^b - \partial_- \psi_a \psi^b) Z_a^b \\
- e^a_b \left( \frac{3i}{16} (s_-)_a \bar{\omega}_b + \frac{3}{16} (s_+)_a \bar{\omega}_b + \frac{i}{2} (s_+)_a \partial_- \psi^b - \frac{1}{2} (s_-)_a \partial_+ \bar{\psi}_b - \frac{1}{4} \partial_-(s_+)_a \bar{\psi}_b \\
- \frac{i}{4} \partial_-(s_-)_a \bar{\psi}_b + \frac{i}{4} \partial_+(s_+)_a \bar{\psi}_b + \frac{i}{4} \partial_+(s_+)_a \partial_- \psi_b + \frac{1}{4} \partial_-(s_-)_a \partial_+ \bar{\psi}_b \\
- \frac{1}{4} \partial_+(s_+)_a \partial_- \bar{\psi}_b \right) \omega_a - \left( \frac{i}{8} (s_-)_a \partial_+ \bar{\psi}_b + \frac{1}{8} (s_+)_a \partial_- \psi_b \right) \partial_+ \omega_a \\
+ e^b_a \left( \frac{3i}{16} (s_-)_a \psi^b - \frac{3}{16} (s_+)_a \psi^b + \frac{i}{2} (s_+)_a \partial_- \psi_b - \frac{1}{2} (s_-)_a \partial_+ \psi_b + \frac{1}{4} \partial_-(s_-)_a \psi_b \\
- \frac{i}{4} \partial_-(s_+)_a \partial_+ \psi_b + \frac{i}{4} \partial_+(s_-)_a \partial_- \psi_b + \frac{i}{4} \partial_+(s_+)_a \partial_- \psi_b - \frac{1}{2} (s_+)_a \partial_+ \psi_b \\
+ \frac{1}{4} \partial_+(s_+)_a \partial_- \psi_b \right) \psi_a - \left( \frac{i}{8} (s_-)_a \partial_+ \psi_b - \frac{1}{8} (s_+)_a \partial_- \psi_b \right) \partial_+ \psi_a \\
- \left( \frac{i}{8} (s_-)_a \partial_+ \psi_b - \frac{1}{8} (s_+)_a \partial_- \psi_b \right) \partial_+ \psi_a \right). 
\]

The quartic BMN Lagrangian is very involved and we will not present it here.

### 2.2 The near-flat-space limit

In the near-flat-space limit we focus on those terms which are important at large \( p_- \). We can do this by taking a large worldsheet boost (in the \( \sigma_- \) direction) and keeping only the leading terms under this boost. The quadratic Lagrangian is Lorentz invariant and so is unaffected, but the cubic and quartic interaction terms break this symmetry, and are thus simplified in this limit. These simplifications are the main reason for studying this limit.

The bosonic fields all behave trivially under worldsheet Lorentz transformations. We have written the fermionic fields in terms of left- and right-moving components, and it is easy to see that these must scale like \( \sqrt{p_\pm} \) for \( L_2 \) to be invariant. Explicitly, the boost involves the following
replacements in $L$:
\[
\begin{align*}
\partial_{\pm} & \rightarrow g^{\mp 1/2} \partial_{\pm} \quad \text{(i.e. $\sigma_{\pm} \rightarrow g^{\mp 1/2} \sigma_{\pm}$)}
\psi_{\pm} & \rightarrow g^{\mp 1/4} \psi_{\pm} \quad \text{and likewise $s_{\pm} \rightarrow g^{\mp 1/4} s_{\pm}$}.
\end{align*}
\]
(13)

The leading behaviour of $L_4$ is given by terms that grow like $\sqrt{g}$, and we keep only these terms. Likewise the leading terms in $L_4$ grow like $g$. We write the result of these replacements as follows:
\[
\frac{1}{\sqrt{g}} L_3 + \frac{1}{g} L_4 \rightarrow L_3^{\text{NFS}} + L_4^{\text{NFS}} + \mathcal{O}\left(\frac{1}{\sqrt{g}}\right)
\]
and after discarding the $\mathcal{O}(1/\sqrt{g})$ terms are thus studying
\[
S = \int d^2 \sigma \left[ L_2 + L_3^{\text{NFS}} + L_4^{\text{NFS}} \right].
\]
(14)

As noted by [1], this action has no parameters at all.

The idea of [6] is to perform a second boost of the same form:
\[
\begin{align*}
\partial_{\pm} & \rightarrow \gamma^{\mp 1/2} \partial_{\pm}, \quad \psi_{\pm} \rightarrow \gamma^{\mp 1/4} \psi_{\pm}, \quad s_{\pm} \rightarrow \gamma^{\mp 1/4} s_{\pm}
\end{align*}
\]
(15)

leading to
\[
S = \int d^2 \sigma \left[ L_2 + \sqrt{\gamma} L_3^{\text{NFS}} + \gamma L_4^{\text{NFS}} \right].
\]
(16)

If $\gamma$ is kept arbitrary it can be viewed as just a parameter to keep track of the orders. But if $\gamma = 1/g$ (as we will assume) then this second transformation is the inverse of the first, except for the fact that we do not recover the interaction terms we discarded. So what has happened is that we are back in the original variables, but have baked in the assumption that $p_- \gg p_+$.

We now write the interaction terms, starting with the cubic term. Here we simply keep those terms in (12) which grow as $\sqrt{g}$ under the boost (13) (i.e. grow as fast as the right-moving momentum $p_-$):
\[
\begin{align*}
L_3^{\text{NFS}} & = i \frac{y}{8} \omega_{\alpha} \bar{\psi}_{\alpha}^a \gamma_5 \psi_a^b \gamma_\alpha + i \frac{1}{2} \overline{\psi}_{-a} \gamma_\alpha \psi_{+a} \partial_{-} Z_\alpha^a - \frac{1}{2} \left( \overline{\psi}_{-a} \sigma_{-b} \psi_{+a} + \overline{\psi}_{+a} \sigma_{+b} \psi_{-a} \right) Z_\alpha^a \\
& \quad \quad - e^{ab} \left( \frac{3i}{16} (s_{-})^a_{\alpha} \bar{\psi}_{\alpha}^b + \frac{i}{2} (s_{+})^a_{\alpha} \partial_{-} \bar{\psi}_{\alpha}^b - \frac{1}{4} \partial_{-} (s_{-})_{\alpha}^a \bar{\psi}_{\alpha}^b - \frac{1}{4} \partial_{+} (s_{-})_{\alpha}^a \bar{\psi}_{\alpha}^b \\
& \quad \quad \quad + \frac{i}{4} \partial_{+} (s_{-})_{\alpha}^a \partial_{-} \bar{\psi}_{\alpha}^b \right) \omega_{\alpha} - \frac{i}{8} (s_{-})_{\alpha}^a \bar{\psi}_{\alpha}^b \partial_{+} \omega_{\alpha} - \frac{i}{8} (s_{+})_{\alpha}^a \bar{\psi}_{\alpha}^b \partial_{-} \omega_{\alpha} \\
& \quad \quad + \epsilon_{ab} \left( \frac{3i}{16} (s_{-})_{\alpha}^a \psi_{\alpha}^b + \frac{i}{2} (s_{+})_{\alpha}^a \partial_{-} \psi_{\alpha}^b + \frac{1}{4} \partial_{-} (s_{-})_{\alpha}^a \psi_{\alpha}^b - \frac{i}{4} \partial_{-} (s_{-})_{\alpha}^a \partial_{-} \psi_{\alpha}^b \\
& \quad \quad \quad + \frac{i}{4} \partial_{+} (s_{-})_{\alpha}^a \partial_{-} \psi_{\alpha}^b \right) \bar{\omega} \gamma_5 - \frac{i}{8} (s_{-})_{\alpha}^a \bar{\psi}_{\alpha}^b \partial_{+} \bar{\omega} - \frac{i}{8} (s_{+})_{\alpha}^a \bar{\psi}_{\alpha}^b \partial_{-} \bar{\omega} \right].
\end{align*}
\]
(17)

We notice immediately a distinction from the $\text{AdS}_5 \times S^5$ case: this leading order interaction term has both left- and right-moving fields and derivatives, rather than consisting only of right-moving objects ($\psi_{-}$, $s_{-}$ and $\partial_{-}$) as in [1]. This is not unexpected from the form of the boost (13): in order for a term with two right-moving fermions to scale as $g^{1/2}$, it must have either no derivatives, or both $\partial_{+}$ and $\partial_{-}$. Alternatively, it can contain one $\partial_{-}$ with one left-moving and one right-moving fermion.

This difference from $\text{AdS}_5 \times S^5$ will have an important consequence. When we come to drawing Feynman diagrams in the next section, right-moving fields and derivatives will contribute powers of right-moving momenta $p_-$, $k_-$ to the numerator, see (11). But the presence of left-moving objects will introduce also $k_+$, and a factor $k_+ k_- = k^2$ will make any loop integral more divergent. Because of this, we will have many quadratically divergent integrals to deal with,
while in the $AdS_5 \times S^5$ case [7], all of the analogous integrals were finite.

For the quadratic terms, we write $L^{\text{FFS}}_B = L_{BB} + L_{BF} + L_{FF}$, and the all-boson term is the simplest:

$$L_{BB} = -\frac{1}{4} \left[ \partial_+ z \partial_- z + (\partial_+ y)^2 + \partial_- \bar{\omega}^a \partial_- \omega_a \right] \left( z_j z_j - \frac{y^2}{4} \bar{\omega}^2 \omega \right). \quad (18)$$

For the term mixing bosons and fermions (writing $\bar{\psi} \psi = \bar{\psi}_a \psi^a$ and $\bar{\omega} = \bar{\omega}^a \omega_a$) we have:

$$L_{BF} = -\frac{i}{8} (s_-)_a^a \partial_- (s_-)_a^a (z_1^2 - y^2 - \frac{1}{2} \omega \bar{\omega}) + \frac{i}{16} (s_-)_a^a (s_-)_a^a \omega_a \bar{\omega}^a \bar{\omega} - \frac{i}{32} \bar{\omega} \bar{\omega} \omega \omega$$

$$+ \frac{i}{8} \left( \bar{\omega} \bar{\omega} \partial_- \omega \bar{\omega} + \bar{\omega} \bar{\omega} \partial_- \omega \omega - \bar{\omega} \bar{\omega} \partial_- \omega \omega - \partial_- \bar{\omega} \partial_- \omega \bar{\omega} \right) - \frac{i}{8} \bar{\omega} \bar{\omega} \omega \omega Z_a^a \bar{\omega} \bar{\omega}$$

$$+ \frac{1}{8} y \left( (s_-)_a^a \bar{\psi}_a \partial_- \bar{\omega}^a + (s_-)_a^a \bar{\psi}_a \partial_- \omega_a \right) - \frac{1}{16} \partial_- y \left[ (s_-)_a^a \bar{\psi}_a \omega^a + (s_-)_a^a \bar{\psi}_a \omega_a \right]$$

$$+ \frac{1}{4} g (s_-)_a^a \partial_- (s_-)_a^a \bar{\omega}^a + \frac{i}{4} (s_-)_a^a \partial_- \bar{\omega} \omega Z_a^a + \frac{i}{4} (s_-)_a^a \partial_- \bar{\omega} \bar{\omega} Z_a^a$$

$$+ \frac{i}{8} \partial_- (s_-)_a^a \bar{\psi}_a \omega_a + \frac{i}{8} \partial_- (s_-)_a^a \bar{\psi}_a \bar{\omega}^a Z_a^a - \frac{i}{8} y^2 \bar{\omega} \bar{\omega} \partial_- \bar{\omega} + \frac{i}{8} (s_-)_b^a (s_-)_b^a Z^d \bar{Z}^d$$

$$- \frac{1}{8} \left( \bar{\psi}_a \partial_- \bar{\psi}_a + \bar{\psi}_a \partial_- \bar{\psi}_a + \bar{\psi}_a \partial_- \bar{\psi}_a \right) \left[ (\partial_+ y)^2 + (\partial_- z)^2 + \partial_- \omega \partial_- \omega \right] \quad (19)$$

At this order, the powers of $y$ under the boost (13) are the same as in the $AdS_5 \times S^5$ case [1]: terms with two right-moving fermions and $\partial_-$ scale correctly as $g$. On the last line we do also have some terms with left-moving objects.

It is possible to remove the terms with left-moving factors from $L_{BF}$ by nonlinear redefinitions of the fermions, in a way which does not change final results. Similar terms were sometimes present in the $AdS_5 \times S^5$ case, in certain parameterisations of the coset.\footnote{This is presented in [28]. For similar redefinitions, see [29,30].} We write the last term $L_{FF}$ in a form obtained by performing such a redefinition, since the result is much more compact:

$$L_{FF} = \frac{3}{8} (\bar{\psi}_- \psi_-)^2 - \frac{1}{4} \bar{\psi}_- \psi_- (\partial_+ \bar{\psi}_- \partial_- \psi_- + \partial_- \bar{\psi}_- \partial_+ \psi_-) - \frac{3}{8} \bar{\psi}_+ (\bar{\omega} \bar{\omega}) \partial_- (\bar{\omega} \bar{\omega})$$

$$- \frac{1}{24} (s_-)_a^a (s_-)_a^a \bar{\psi}_a (s_-)_a^a \bar{\psi}_a + \frac{1}{8} \left[ \partial_+ (s_-)_a^a \bar{\psi}_a \partial_- \bar{\psi}_a \right]$$

$$+ \frac{1}{2} \partial_+ (s_-)_a^a \partial_- \bar{\psi}_a \psi_+ + \frac{1}{2} \partial_+ (s_-)_a^a \partial_- \bar{\psi}_a \psi_+ + \frac{1}{2} (s_-)_b^a \partial_+ \bar{\psi}_a \partial_- \bar{\psi}_a$$

$$+ \frac{1}{2} (s_-)_b^a \partial_+ \bar{\psi}_a \partial_- \bar{\psi}_a + \frac{3}{2} \partial_- (s_-)_a^a \partial_+ \bar{\psi}_a \partial_- \bar{\psi}_a$$

$$+ \frac{3}{2} \partial_- (s_-)_a^a \partial_+ \bar{\psi}_a \partial_- \bar{\psi}_a \quad (20)$$

We discuss details of the redefinitions leading to this form in appendix B. Note however that this is only possible for the highest-order interactions. A similar procedure for the cubic interaction $L_3$ is not allowed.

In the next three sections we will use the above Lagrangian to calculate two-point functions on the worldsheet. We return to the full BMN theory in section 6.

### 3 Corrections to the Light Propagators

For one light mode, the exact dispersion relation is

$$E = \sqrt{\frac{1}{4} + 4 h(\lambda)^2 \sin^2 \frac{P_{\text{chain}}}{2}} \quad (2)$$
where the interpolating function is \( h(\lambda) = \sqrt{\lambda/2} + c + O(1/\sqrt{\lambda}) \). The momentum here is the one canonically normalised for the spin chain, and it is this which scales as \( p_{\text{chain}} \sim \lambda^{-1/4} \) in the near-flat-space limit, (1). Taking this into account, we can expand \( E^2 \) in \( \lambda \) as follows:

\[
E^2 = \frac{\lambda p_{\text{chain}}^2}{2} + \left[ \frac{1}{4} + \sqrt{2\lambda} \frac{c p_{\text{chain}}^2}{24} - \frac{\lambda p_{\text{chain}}^4}{24} \right] + O\left( \frac{1}{\sqrt{\lambda}} \right),
\]

\[
= p_1^2 + \frac{1}{4} + \left( \frac{4 cp_{\text{chain}}^2}{\sqrt{2\lambda}} - \frac{p_{\text{chain}}^4}{6\lambda} \right) + O\left( \frac{1}{\sqrt{\lambda}} \right),
\]

where \( p_1 = \sqrt{\lambda/2} p_{\text{chain}} \sim \lambda^{1/4} \).

On the second line we write it in terms of \( p_1 \) normalised to match \( p_0 = E \). This \( p_1 \) is the worldsheet momentum in our uniform lightcone gauge, and its relationship to \( p_{\text{chain}} \) could in principle be deduced from the gauge but we are content just to read it off here.

In terms of the worldsheet momenta, the near-flat-space limit assumes that \( p_- \gg p_+ \) (or more strictly \( p_- \sim \lambda^{1/4} \) and \( p_+ \sim \lambda^{-1/4} \)) and thus we can write \( (p_1)^2 = \frac{1}{4} (p_+ - p_-)^2 = \frac{1}{4} p_- + O(1) \). Doing this in the correction terms, we arrive at:

\[
p_0^2 - p_1^2 = \frac{1}{4} + \left( \frac{c p_{\text{chain}}^2}{\sqrt{2\lambda}} - \frac{p_{\text{chain}}^4}{96\lambda} \right) + O\left( \frac{1}{\sqrt{\lambda}} \right). \tag{21}
\]

We can now read this as giving a mass correction: \( p^2 = m^2 + \delta m^2 \), with \( m^2 = \frac{1}{4} \), and \( \delta m^2 \) in brackets. The second term there is the same two-loop correction as was calculated by [7] in the \( AdS_5 \times S^5 \) case.\(^4\) We aim to compute the first term of the correction, containing \( c \). The result of [2,16] which we would like to match is that

\[
c = -\frac{\log 2}{2\pi}.
\]

Note that in the expansion (21) the mass squared and its one- and two-loop corrections are all of the same order in \( 1/\sqrt{\lambda} \). This is a peculiarity of the near-flat-space limit. In the BMN case, \( p_{\text{chain}} \sim \lambda^{-1/2} \) and thus \( p_1 \sim \lambda^0 \), restoring the natural-looking separation of orders.

Our calculation of the mass shift comes from writing a familiar geometric series involving amputated diagrams we call \( A \):\(^5\)

\[
G_\omega(p) = \frac{2i}{p^2 - \frac{1}{4}} \sum_{n=0}^{\infty} \left[ \gamma A \frac{2i}{p^2 - \frac{1}{4}} \right]^n
= \frac{2i}{p^2 - (\frac{1}{4} + \delta m^2)}, \quad \text{with} \quad \delta m^2 = 2i\gamma A. \tag{22}
\]

We will consider corrections not only to the light boson propagator \( \langle \bar{\psi} \omega \psi \rangle \) as written here, but also (in section 3.4) to all four of the light fermion propagators (11). When correcting for instance \( \langle \bar{\psi}_+ \psi_+ \rangle \), the lines we amputate will no longer have fixed numerator \( 2i \) but instead the various \( D_{++} \) and \( D_{--} \), so (normalising to the bosonic case) we absorb all of these into \( A \).

There are two topologies of diagrams we must compute, both of which contain divergences, and it is simplest to employ dimensional regularisation. We show quite a lot of detail partly in order to attach later discussions about other possible cutoffs, in section 4.

\(^4\)Of course the conventional factors of 2 and \( \pi \) in (2) are different.

\(^5\)Recall that the interaction terms in (16) are \( \sqrt{\gamma} \mathcal{L}_3 + \gamma \mathcal{L}_4 \) with \( \gamma = 1/g = \sqrt{2/\lambda} \).
3.1 Bubble diagrams for $\langle \bar{\omega} \omega \rangle$

The loop in each bubble diagram (for a light mode) always contains one light and one heavy mode. We begin with the simplest case, in which these are both bosons:

$$\omega_\alpha(k)$$

$$\mathcal{A}_B = \quad \quad , \quad q_\mu = p_\mu - k_\mu$$

$$= -1 \int \frac{d^2k}{(2\pi)^2} \frac{B}{(k^2 - \frac{1}{4})(q^2 - 1)}, \quad B = -2 \left( \frac{p_- + k_-}{8} \right)^2.$$

The factor $B$ includes both factors from the propagators (10) and from the vertex (17). The decorations $\partial_\pm$ pull down $ik_\pm$ from the momentum flowing into the vertex on that line.

To treat this integral, we introduce a Feynman parameter $x$ as follows:

$$\mathcal{A}_B = -\int_0^1 dx \frac{B}{x(k^2 - \frac{1}{4}) + (1 - x)((p - k)^2 - 1)}^2$$

where

$$\ell_\mu = k_\mu - (1 - x)p_\mu, \quad \Delta(x) = \frac{1}{4}x^2 - x + 1.$$

This effective mass squared $\Delta(x)$ assumes $p^2 = \frac{1}{4}$, i.e. that we are very near to the pole of the original propagator. In terms of $\ell_\mu$,

$$B = -(x - 2)^2 \frac{2}{32} p_-^2 + \frac{2(x - 2)\ell_- p_- - \ell_-^2}{32}.$$

Next we rotate the $\ell_0$ contour to the imaginary axis, and in the resulting Euclidean space, the terms $\ell_n$ will vanish.$^6$ The radial integral then gives $1/2\Delta(x)$, and finally we obtain:

$$\mathcal{A}_B = \frac{i}{32\pi} p_-^2 \Rightarrow \delta m^2 = 2i\gamma \mathcal{A}_B = -\frac{1}{16\pi} \gamma p_-^2. \quad (23)$$

Next we treat the case where the heavy and light modes in the loop are both fermions:

$$\psi_\alpha(k)$$

$$\mathcal{A}_F(p) = \quad \quad \quad \quad , \quad s_\alpha(q)$$

$$= 2 \int \frac{d^2k}{(2\pi)^2} \frac{B}{(k^2 - \frac{1}{4})(q^2 - 1)}$$

$$= 2 \int_0^1 dx \int \frac{d^2\ell}{(2\pi)^2} \frac{1}{[\ell^2 - \Delta(x)]} \sum_{s,s'} \ell_+ \ell_- s_{ss'}^B$$

$$= 2 \int_0^1 dx \left[ I_{s=0}^2 B_{00} + I_{s=1}^2 B_{11} + I_{s=2}^2 B_{22} \right].$$

$^6$We define $\ell_0 = iL_0$, $\ell_1 = L_1$ and $L_\mu = L_\mu = (\sin \theta, \cos \theta)$. Then the denominator is $[L^2 - \Delta(x)]^2$, and in the numerator, any nonzero power $\ell_n$ will lead to $\int_0^{2\pi} d\theta e^{-in\theta} = 0.$
Here $B$ has the same meaning, but is much more complicated since, expanding $(L_3)^2$, there are in all 25 terms, and the propagators (11) give various powers of the momenta. After writing $B$ in terms of $\ell^+_s \ell^-_t$, terms with $s \neq s'$ still vanish, but there are now also divergent terms, with one or two powers of $\ell_+ \ell_- = \ell^2$ in the numerator.

As we noted below (17), the fact that left-moving momenta $k_+$ and $q_+$ appear in $B$, and produce divergences, is a crucial qualitative difference from the $AdS_5 \times S^5$ case.

We will treat the resulting divergent integrals using dimensional regularisation. Here is the generic integral, including the case $n \neq 2$ for later use:

$$I_n^s(\Delta) = \int \frac{d^d\ell}{(2\pi)^d} \left( \frac{\ell^+_s \ell^-_t}{[\ell^2 - \Delta]^n} \right)^s, \quad d = 2 - \epsilon$$

$$= \frac{i}{(2\pi)^d \Gamma(\frac{d}{2})} \int_0^{\infty} dL \frac{(-1)^s L^{2s+d-1}}{[L^2 + \Delta]^n}$$

$$= \frac{i(-1)^s}{(4\pi)^{d/2} \Gamma(\frac{d}{2})} \left( \frac{1}{\Delta} \right)^{n-s-d/2} \frac{\Gamma(n-s-\frac{d}{2})\Gamma(s+\frac{d}{2})}{2\Gamma(n)} \quad (25)$$

(See appendix C for comment on these expansions.)

The coefficients of these integrals are as follows, after using $\rho_+ \rho_- = \frac{1}{4}$:

$$B_{00} = -\frac{3x^4 - 6x^3 - 8x^2 + 20x - 8}{32} p_-^2$$

$$B_{11} = -\frac{19x^2 - 22x}{16} p_-^2$$

$$B_{22} = -\frac{1}{4} p_-^2 .$$

After integrating on $x$, the log divergence $s = 1$ will cancel against the quadratic divergence $s = 2$. Then the final result for the fermion bubble is

$$A_F = \frac{+i}{16\pi} p_-^2 \quad \Rightarrow \quad \delta m^2 = \frac{-1}{8\pi} \gamma p_-^2 . \quad (26)$$

### 3.2 Tadpole diagrams for $\langle \omega \omega \rangle$

The tadpoles made with two 3-vertices can be seen to vanish by looking at $L_3$, equation (17):

$$\begin{array}{c}
\end{array} = 0 .$$

But the ones constructed with one 4-vertex are more interesting. We use (19) to calculate the first two diagrams. The only nonzero terms are those where both decorations $\partial_-$ act on the

---

7Somewhat arbitrarily, the factors from the fermion loop (i.e. re-ordering fields) and the $\sum_a$ in the loop are part of the prefactor, not $B$.
8Here of course $2\pi^{d/2}/\Gamma(\frac{d}{2})$ is the volume of a unit $(d-1)$-sphere, and $\gamma_E = 0.577\ldots$. 

---
external legs, which for $\omega$ running in the loop gives

$$A_{T1} = \omega_\alpha(p) \omega_\beta(k) = \frac{1}{32} 2p^2 \int \frac{d^d=2-\epsilon k}{(2\pi)^2 k^2 - \frac{1}{4}}$$

$$= -\frac{p^2}{8} I_{n=1}^s (\Delta = \frac{1}{4}).$$

For a heavy mode running in the loop, we get:

$$A_{T2} = \psi^b(k) \omega_\alpha(p) \omega_\beta(k) = \frac{1}{8} (3 - 1) p^2 \int \frac{d^d=2-\epsilon k}{(2\pi)^2 k^2 - \frac{1}{4}}$$

$$= \frac{p^2}{4} I^b_1 (1).$$

There are also diagrams of this topology with a light fermion running in the loop. The terms in (19) which contribute are those on the last line, and they give the following two integrals (including the only quadratically divergent tadpole):

$$A_{T3} = \psi^b(k) \omega_\alpha(p) \omega_\beta(k) = \frac{i}{8} 2p^2 \int \frac{d^d=2-\epsilon k}{(2\pi)^2 k^2 - \frac{1}{4}} + \frac{i}{8} 4p^2 \int \frac{d^d=2-\epsilon k}{(2\pi)^2 k^2 - \frac{1}{4}}$$

$$= \frac{p^2}{2} I^b_1 (1) - \frac{p^2}{4} I^b_1 (1).$$

The diagrams with a heavy fermion in the loop can be seen to vanish by just looking at (19).

All of the tadpole integrals are $n = 1$ cases of (25) above, with $\Delta = \frac{1}{4}$ or 1. The expansions needed are:

$$I_{n=1}^s (\Delta) = \frac{i}{2\pi} \left\{ \frac{1}{\epsilon} + \frac{\gamma \epsilon - \log \pi - 2 \log 2 + \log \Delta}{2} + O(\epsilon), \quad s = 0 \right\}$$

$$= -\frac{1}{\epsilon} + \Delta \frac{\gamma \epsilon - \log \pi - 2 \log 2 + \log \Delta}{2} + O(\epsilon), \quad s = 1.$$ (28)

Adding the bosonic and fermionic terms, the divergences cancel leaving a total tadpole contribution of

$$A_T = \frac{i}{4} p^2 \log \frac{2}{2\pi} \Rightarrow \delta m_T^2 = -\frac{1}{2} \gamma p^2 \log \frac{2}{2\pi}. $$ (29)

### 3.3 Total for the light boson

Adding up all of these terms, the total amplitude is $A_B + A_F + A_T = \frac{i}{4} p^2 \log \frac{2}{2\pi} + \frac{3\epsilon}{32\pi} p^2$. As a mass correction this is

$$\delta m^2 = -\frac{\log \frac{2}{2\pi}}{2\pi} \gamma p^2 - \frac{3}{16\pi} \gamma p^2.$$

Comparing this to (21), we see that the term with log 2 (from the tadpoles) is perfect so long as $\gamma = \sqrt{2/\lambda}$. The extra term is perhaps unexpected, and we commend on this in the conclusions.
### 3.4 Corrections for the light fermion $\langle \bar{\psi}\psi \rangle$

We now turn to the case of corrections to the light fermion propagators, (11). The two bubble diagrams we need are these:

\[ A_\psi = \omega_\alpha(k) \langle \bar{\psi}(p) \omega^\alpha(k) \rangle + \psi^\beta(k) \langle \bar{\psi}(p) \psi^\beta(p) \rangle Z^\beta_{\alpha}(q) \]

\[ = \int \frac{d^2 k}{(2\pi)^2} \frac{s_\alpha^\alpha B}{(k^2 - \frac{1}{4})(q^2 - 1)}. \]

The integrals are of course the same as (24) above, with different coefficients $B = \sum_{s,s'} c^s c^{s'} B_{ss'}$. As noted above, $B$ now includes the numerators $D_\psi\psi$ of the two amputated propagators (as well as the vertices and internal propagators). We must calculate the coefficients separately for each of the four cases $\langle \bar{\psi}^+ \psi^+ \rangle$, $\langle \bar{\psi}^- \psi^- \rangle$, $\langle \bar{\psi}^- \psi^- \rangle$ and $\langle \bar{\psi}^+ \psi^+ \rangle$, and the results are all different until the point at which we use $p^2 = \frac{1}{4}$ to get the shift near to the pole of the unperturbed propagator. Then they all agree, and we obtain

\begin{align*}
B_{00} &= -\frac{1}{128} \left( 64 + 24x - 32x^2 - 8x^3 + x^4 + 2x^5 \right) p^2_-
B_{11} &= -\frac{1}{16} \left( -12 - 7x + 6x^3 \right) p^2_-
B_{22} &= -\frac{1}{8} (6x - 1) p^2_-. 
\end{align*}

Then using the expansions of the integrals in (25), we find

\[ \delta m^2 = \frac{1}{64\pi} \gamma \left( -\frac{42}{\epsilon} + 21 \gamma_E - 26 \log 2 + 21 \log \pi \right) p^2_. \] \hfill (31)

There is an important observation we can make at this stage. In this expansion in $1/\epsilon$, there is no order 1 term with a rational coefficient (inside the bracket).\(^9\) Since no such terms will appear in any of the tadpole integrals (28), we conclude that there will be no ‘extra’ term like that seen in (30). A further difference from the $\omega$ case above is that the total of the bubble diagrams is not finite.

Next we turn to the tadpole diagrams, using (19) and (20). We must compute these for each of the four cases $\langle \bar{\psi}^+ \psi^+ \rangle$, $\langle \bar{\psi}^- \psi^- \rangle$, $\langle \bar{\psi}^+ \psi^- \rangle$ and $\langle \bar{\psi}^+ \psi^+ \rangle$ separately, but again the final coefficients work out to be the same.\(^{10}\) Those with a light mode in the loop are

\[ A_L = \omega_\beta(k) \langle \bar{\psi}(p) \omega^\beta(k) \rangle + \psi^\beta(k) \langle \bar{\psi}(p) \psi^\beta(p) \rangle Z^\beta_{\alpha}(q) \]

\[ = p^2 \left[ \frac{9}{16} I^\beta_1(\frac{1}{4}) - \frac{3}{8} I^\beta_1(\frac{1}{4}) \right]. \]

\(^9\)Such terms do occur in the individual bubble diagrams drawn, which contribute $\pm \frac{3}{64\pi} p^2_-$, but these cancel out of the total.

\(^{10}\)Note also that whether we use (53) or the simplified (20) makes no difference to these coefficients.
With a heavy mode in the loop, we find

\[
A_H = \int_{\psi^a(p)} y(k) \text{ or } z_i(k) \cdot s^\delta_{ij}(k) \int_{\psi^a(p)} \frac{3}{2} L_1^0(1) + \frac{3}{8} L_1^1(1).
\]

(32)

After using the expansions of the integrals in (28), the total is as follows:

\[
\delta m^2 = \frac{\gamma^2}{64\pi} \left( -\frac{2}{\epsilon} + \gamma_E + \log 2 - 2 \log 2 \right) p_+^2.
\]

Happily the divergent \(1/\epsilon\) term cancels that of (31).

Adding the bubble and tadpole contributions gives us that the full mass shift, which for all the \(\langle \overline{\psi}\psi \rangle\) cases is

\[
\delta m^2 = -\frac{\gamma \log 2}{4\pi} p_+^2.
\]

(33)

This is exactly what we would expect from \(c = -\frac{\log 2}{2\pi}\) in (21). Unlike the bosonic case (30), there are no extra terms.

4 A Detour via some Delicate Cutoffs

In this section we look at some effects of employing explicit energy or momentum cutoffs \(\Lambda\) instead of dimensional regularisation.

The main reasons for doing so are to try to better understand the extra terms in the mass correction (30), and to explore the prescription-dependence of \(c\) by looking at ‘old’ and ‘new’ cutoffs (in section 4.3). We will also get extra cross-checks between the bubble (\(\mathcal{L}_3\)) and the tadpole (\(\mathcal{L}_4\)) calculations.

Most of this section will be about only the light boson case. We comment briefly on other cases in section 4.4.

4.1 Using hard cutoffs

The first observation is that if we work with hard momentum cutoffs \(|k| < \Lambda\), instead of dimensional regularisation, then the cancellation of infinities is different. Each of \(A_F\) and \(A_T\) contains a logarithmic and a quadratic divergence, and above we cancelled these within them, since all are \(1/\epsilon\) terms when working in \(d = 2 - \epsilon\) dimensions. However in terms of a hard cutoff, instead these \(\Lambda^2\) terms cancel between them. This cancellation provides a useful cross-check between the bubble (\(\mathcal{L}_3\)) and the tadpole (\(\mathcal{L}_4\)) calculations.

The only quadratically divergent terms are the \((\ell_+ \ell_-)^2\) part of the fermionic bubble integral\(^{11}\)

\[
A_F^{\varepsilon=2} = 2B_{22} \int_{2\pi}^i \frac{dL}{[L^2 + \Delta(x)]^2} = \frac{-ip_+^2}{4\pi} \left[ \frac{\Lambda^2}{2} - \frac{7}{6} \log \Lambda + \frac{\log 2}{6} - \frac{7}{72} + \mathcal{O} \left( \frac{1}{\Lambda} \right) \right].
\]

\(^{11}\)We note in passing the following issue [31]. In four dimensions, the shift from integrating over \(k_\mu\) with \(|k| < \Lambda\) to integrating over \(\ell_\mu\) with \(|\ell| < \Lambda\) would change the value of the \(\Lambda^2\)-divergent integral, and thus not be allowed. (The finite and log \(\Lambda\) integrals are unchanged.) This is however not a problem in two dimensions. Nor is it a problem in dimensional regularisation, in any number of dimensions.
and the fermionic tadpole integral

\[ A_{T3} = \frac{p^2}{2} \frac{i}{2\pi} \int_0^\Lambda dK \frac{K^3}{K^2 + \frac{1}{4}} = \frac{ip^2}{4\pi} \int_0^\Lambda dK \frac{-K}{K^2 + \frac{1}{4}} \]

\[ = \frac{ip^2}{4\pi} \left[ \frac{\Lambda^2}{2} - \frac{1}{4} \log \Lambda - \frac{\log 2}{4} \right] + \frac{ip^2}{4\pi} \left[ 2 \log \Lambda + 2 \log 2 \right] + O\left( \frac{1}{\Lambda} \right). \quad (35) \]

The log \( \Lambda \) divergences similarly cancel. They are:

\[ A_s = \int_0^1 dx B_{11} \int_0^\Lambda dL \frac{-L^3}{(L^2 + \Delta(x))^2} = \frac{ip^2}{4\pi} \left[ -\frac{7}{6} \log \Lambda - \frac{17 \log 2}{6} + \frac{155}{72} + \ldots \right] \]

\[ A_{T1} = \frac{-p^2}{8} \int_0^\Lambda dK \frac{-K}{K^2 + \frac{1}{4}} = \frac{ip^2}{4\pi} \left[ \frac{1}{4} \log \Lambda + \frac{1}{4} \log 2 + \ldots \right] \]

\[ A_{T2} = \frac{p^2}{4} \frac{i}{2\pi} \int_0^\Lambda dK \frac{-K}{K^2 + 1} = \frac{ip^2}{4\pi} \left[ -\frac{1}{2} \log \Lambda + \ldots \right] \quad (36) \]

and the finite terms are of course unchanged:

\[ A_F^{=1} = 2 \int_0^1 dx B_{11} \int_0^\Lambda dL \frac{2\Delta(x)}{L^2} = \frac{ip^2}{4\pi} \left[ 3 \log 2 - 2 \right] \]

\[ A_B = \frac{ip^2}{4\pi} \frac{1}{8} \]

Adding these up, we obtain the same finite result as before:

\[ \delta m^2 = -\frac{\log 2 \gamma}{2\pi} \frac{2}{p^2} - \frac{3}{16\pi} \gamma p^2. \quad (30) \]

Note in particular that we have exactly the same ‘extra’ term as we did using dimensional regularisation. We now turn to looking for other explanations of this term, for this case.

### 4.2 High-precision cutoffs

Notice that the finite part after the cancellation of quadratic divergences (between bubble and tadpole) is sensitive to very small changes in the cutoff. In this section we investigate the effects of such small changes, replacing \( \Lambda \) with one of these:

\[ \Lambda_{\text{light}} = \Lambda - \frac{i}{2\Lambda}, \quad \text{light modes} \]

\[ \Lambda_{\text{heavy}} = \Lambda - \frac{\kappa}{2\Lambda}, \quad \text{heavy modes}. \quad (37) \]

For the next page or so we leave \( \iota \) and \( \kappa \) arbitrary.

- For the tadpole we can simply write down the result, since the only \( \Lambda^2 \) divergent integral (35) involves only a light mode. The effect of changing from \( \Lambda \rightarrow \Lambda_{\text{light}} \) is one iota:

\[ \Lambda^2 \rightarrow \Lambda^2 - \iota. \quad (38) \]

- For the bubble’s \( s = 2 \) term (34), we expect some change involving both heavy and light modes, but it is not obvious what mixture of \( \iota \) and \( \kappa \) should appear. In fact it is not clear that there will be any way of implementing both cutoffs (37) in the same loop integral. But we can make an attempt, by introducing Pauli–Villars regulators [32], replacing in the
heavy and light propagators the following:

\[
\frac{1}{k^2 - \frac{1}{4}} \rightarrow_{PV} \frac{1}{k^2 - \frac{1}{4}} - \frac{1}{k^2 - \Lambda_{\text{light}}^2},
\]

\[
\frac{1}{q^2 - 1} \rightarrow_{PV} \frac{1}{q^2 - 1} - \frac{1}{q^2 - \Lambda_{\text{heavy}}^2}.
\]

The propagators are unchanged for \( k^2 \ll \Lambda^2 \), but when \( k^2 \gg \Lambda^2 \) they die like \( \frac{1}{k^4} \).

Defining a generalisation of the integral in (24) to allow two arbitrary masses

\[
J(m, M) = \int \frac{d^2k}{(2\pi)^2} \frac{B}{(k^2 - m^2)(q^2 - M^2)}
\]

the effect of imposing the Pauli–Villars regulators is to replace \( J(\frac{1}{2}, 1) \) with four terms:

\[
J(\frac{1}{2}, 1) \rightarrow_{PV} J(\frac{1}{2}, 1) - J(\Lambda_{\text{light}}, 1) - J(\frac{1}{2}, \Lambda_{\text{heavy}}) + J(\Lambda_{\text{light}}, \Lambda_{\text{heavy}}).
\]

Each of these terms can be treated exactly as we did before, simply re-using the integrals (25) with the appropriate effective masses \( \Delta(x, m, M) \). Thus the \( s = 2 \) part of each is given by this:

\[
J_{s=2}(m, M) = \int_0^1 dx \int \frac{d^2\ell}{(2\pi)^2} \frac{(\ell_+ \ell_-)^2}{|\ell^2 - \Delta(x, m, M)|^2},
\]

\[
\ell_\mu = k_\mu - (1 - x)p_\mu,
\]

\[
\Delta = x m^2 + (1 - x)M^2 + x(1 - x)p^2.
\]

Notice that \( \ell_\mu \) is defined in the same way in all four terms, so that the identification of the term \( (\ell_+ \ell_-)^2 \) in \( B \) is the same here as before. (It comes with the same coefficient \( B_{22} \).) The final result for the \( s = 2 \) integral (at \( p^2 = \frac{1}{4} \)) is then

\[
J_{PV}^{s=2}(\frac{1}{2}, 1) = \frac{\Lambda^2}{2} - \frac{7}{6} \log \Lambda + \left( \frac{\log 2}{6} - \frac{5}{48} - \frac{\xi - \frac{\lambda}{2}}{4} \right) + O\left( \frac{1}{\Lambda} \right).
\]

Thus the effect on the bubble diagram of turning on \( \xi, \kappa \) can be summarised as

\[
\Lambda^2 \rightarrow \Lambda^2 - \frac{\xi - \frac{\lambda}{2}}{2}.
\]

This makes some sense, in that if you change both cutoffs by the same amount \( \xi = \kappa \) then this becomes an overall change of \( \Lambda^2 \). What you can’t predict without calculation is that the effect of \( \xi \neq \kappa \) shouldn’t be some other mixture.

The total effect on \( A \) of both (38) and (40) is then as follows. Using (34) and (35) above, we have \( A \rightarrow A + \frac{i p^2}{8\pi} \left( \xi - \frac{\lambda}{2} \right) \), or, in terms of the mass shift,

\[
\delta m^2 = 2iA \rightarrow \delta m^2 + (\xi - \frac{\lambda}{2}) \frac{p^2}{8\pi}.
\]

It remains to argue what tiny shifts \( \xi, \kappa \) we should use.

Ideally one would like to impose exactly the same cutoff on the physical energy of all the modes. Unlike the worldsheet momentum \( k_1 \), or worse the Euclidean energy \( K_0 \), the energy is a physical, gauge-invariant quantity.

---

12This means we are regulating each of the four terms with dimensional regularisation. We can instead use another hard cutoff \( \Lambda' \) for all the terms, and as long as \( \Lambda' \gg \Lambda_{\text{heavy}}, \Lambda_{\text{light}} \) the result is identical. (If \( \Lambda' = \Lambda \) then (40) becomes \( \Lambda^2 \rightarrow \Lambda^2 - (\xi + \frac{\lambda}{2}) \) instead.)
One argument is this: in the original Lorentzian momentum, $E^2 = k_0^2 = k_1^2 + m^2$ on the mass shell. Imposing $|E| < \Lambda$ thus reads $k_1^2 < \Lambda^2 - m^2$. If we impose this momentum cutoff on both of the Euclidean directions, then we are led to $K^2 < \Lambda^2 - m^2$. For the light modes this means $\iota = \frac{1}{4}$, while for the heavy modes $\kappa = 1$. This gives

$$\delta m^2 \to \delta m^2 + \frac{3}{32} \frac{p^2 \gamma}{\pi}. \quad \text{(41)}$$

Sadly this is too small to cancel the extra term in (30), by a factor of 2.

The attentive reader will by this point have smelled something a little fishy. Not only have we made up a fairly strange cutoff, (37), we have also mixed the results of using this in the Pauli–Villars bubble integral (39) with that of using it in a tadpole integral calculated with a hard momentum cutoff, (35). The reason for doing so is that Pauli–Villars is not strong enough to regulate the tadpole integral, and we do not know of any regulator both strong enough, and potentially sensitive to independent variations of $\Lambda_{\text{heavy}}$ and $\Lambda_{\text{light}}$. Nevertheless the complaint is well-founded: note that one of the finite terms from Pauli–Villars differs from that given by the hard cutoff — compare (39) to (34).

What we believe we have shown is that justifiable alterations to the cutoffs used alter $\delta m^2$ by terms of the form $\gamma p^1 / \pi \times$ (rational), which is the same shape as the extra term in (30). And also that these do not produce terms of the form $p^2 \log 2 / \pi$. That the cancellation is not perfect is perhaps a limitation of our implementation of this physical cutoff.

### 4.3 ‘Old’ and ‘new’ prescriptions

We have discussed above very small changes to the cutoffs, and now turn to a large one.

First of all, recall how $c = -\log(2)/2\pi$ was found in [2, 16]. There, the energy corrections coming from light modes or heavy modes alone diverge as follows:

$$\delta E \propto \log \Lambda_{\text{heavy}} - \log 2 \Lambda_{\text{light}}.$$  

If we use the same cutoff $\Lambda$ for both of them, they cancel leaving a factor of $\log 2$. This we call the old sum [33, 16] which is what was used in [13–15, 2]. If however we use $2\Lambda$ for heavy and $\Lambda$ for light, then they cancel precisely, leaving $c = 0$. This is called the new sum,\(^\text{13}\) and was originally suggested by [3], see also [33,16,18].

What we are doing above is equivalent to the old sum: we treat all loop momenta $k$ alike. In order to implement the new sum, we should change the heavy tadpole integral (36) as follows:

\[
\begin{align*}
\mathcal{A}_{T2} = & \quad \Rightarrow \quad \tilde{\mathcal{A}}_{T2} = \frac{p^2}{4} \frac{i}{2\pi} \int_0^{2\Lambda} dK \frac{-K}{K^2 - 1} \\
&= \mathcal{A}_{T2} - \frac{i}{4} p^2 \log \frac{2}{2\pi}. \quad \text{(42)}
\end{align*}
\]

This change precisely cancels the final finite tadpole total, (29), leaving $\tilde{\mathcal{A}}_T = 0$. This can perhaps be viewed as taking us to $c = 0$, as expected for the new sum. To make this change in dimensional regularisation, we can write the integral (27) in terms of $\tilde{k} = k/2$, and then treat $\tilde{k}$

---

\(^{13}\)The new sum is very simple from the algebraic curve perspective, and thus sometimes goes by this name. Likewise the old sum is a cutoff on worldsheet mode number, which is simple to implement in that formalism. But both sums can be implemented using any technology.
in the same way as $k$ for the light mode integrals, obtaining the same effect:

\[
I_0^0(1) = \int \frac{d^2k}{(2\pi)^2} \frac{1}{k^2 - 1} \rightarrow_{\text{new}} I_1^1(\frac{1}{4}) = \int \frac{d^2\tilde{k}}{(2\pi)^2} \frac{1}{\tilde{k}^2 - \frac{1}{4}} = I_0^0(1) + \frac{i}{2\pi} \left\{ \log \frac{1}{4} - \log \frac{1}{2} \right\}
\]

\[
\Rightarrow A_T^2 = \frac{\rho^2}{4} I_1^1(1) \rightarrow_{\text{new}} A_T^2 - \frac{i}{4\rho^2} \log \frac{2}{2\pi}.
\]

However this tadpole diagram is not the only place in which the heavy modes play a role: each bubble diagram also has one heavy propagator. But there is no obvious way to impose a very different cutoff compared to the light mode in the same bubble. (Attempting to use the Pauli–Villars procedure above with $\Lambda_{\text{heavy}} = 2\Lambda + \ldots$ does not work: the most divergent term is then $I_s^2 \sim \Lambda^2 \frac{22}{3} \log 2$, which no longer cancels that from the tadpole.) Thus we see no way to implement something like the new sum for all terms, tadpole and bubble.

This argument is in some sense the inverse of that made by [18], from much the same data. Their cubic interaction $H_3$ is essentially our $\mathcal{L}_3$ written in momentum space, and there is of course a delta function conserving momentum at the vertex. If both light modes (say $\omega$ and $\overline{\omega}$) carry momentum $\Lambda$, then the heavy mode ($y$) can carry momentum up to $2\Lambda$. It is our understanding that this observation is the heart of that paper’s argument in favour of the ‘new’ prescription. While instead we use the same vertex to draw the bubble diagram, in which it is difficult to adjust the heavy and light cutoffs independently, leading us to the ‘old’ prescription.

### 4.4 Modes other than the light boson

So far we have discussed in section 4 only the $\omega$ particle. Let us first comment on how the issues of section 4.3 translate to other cases:

- For the heavy bosons which we treat in the next section, the observation that the new sum sets the tadpoles to zero carries over trivially: the calculation of the tadpole contribution is identical. However, the bubble diagram contains two light modes, thus our objection to the new sum does not hold for these.

- For the light fermion $\psi$, the tadpole (32) also contains the $\Lambda^2$-divergent integral $I_1^1(1)$, for which

\[
I_1^1(1) \rightarrow_{\text{new}} 4 I_1^1(\frac{1}{4}) = I_1^1(1) + \frac{i}{2\pi} \log \frac{1}{2}.
\]

This change is identical to that for $I_0^0(1)$ above. Then it is easy to see that while we do not create a divergence, the finite change (from trying to go to the new sum) is not so simple in this case, i.e. it does not cancel the log $2$ term in (33).

The fact that we cannot cancel the log $2$ like this for $\psi$ is possibly related to another issue. If we attempt to do the whole calculation with a momentum cutoff $\Lambda$ (generalising section 4.1) then we do not get a finite result. The reason for this is not entirely clear to us, but let us observe here that the cancellations of $1/\epsilon$ terms which make the result using dimensional regularisation finite are highly nontrivial — see (33), and (47) below.

This is true also for the heavy bosons of the next section, where for instance it is clear that the bubble $A_y$ is finite (44), but the tadpoles $A_T$ are as for the $\omega$ case, and thus $\Lambda^2$ divergent (35).
5 Correction to the Heavy Boson Propagators

For a heavy mode we should start with the following dispersion relation:

\[ E_{\text{heavy}} = \sqrt{1 + 16h(\lambda)^2 \sin^2 \frac{P_{\text{chain}}}{4}} = 2E_{\text{light}} \left( \frac{P_{\text{chain}}}{2} \right). \]

This is simply the energy of two superimposed light modes, written in terms of their total momentum. This relation was confirmed to hold at one loop in the giant magnon regime \( P_{\text{chain}} \sim 1 \) in [16]. Expanding \( E^2 \) in \( 1/\sqrt{\lambda} \) exactly as for the light mode case, and in particular using the same normalisation \( \frac{p_1}{\sqrt{2\lambda}} = \frac{p_{\text{chain}}}{2\lambda} \), we obtain:

\[ p_0^2 - p_1^2 = 1 + \left( \frac{c P^2}{\sqrt{2\lambda}} - \frac{p^4}{384\lambda} \right) + O\left( \frac{1}{\sqrt{\lambda}} \right). \tag{43} \]

The mass correction \( \delta m^2 \) is again the term in brackets. Its first term, which we aim to compute here, should be identical to that for the light modes.

The calculation of course uses a similar geometric series to (22), although this time \( \delta m^2 = i\gamma A \) since \( y \) and \( z_i \) (unlike \( \omega^\alpha \)) are canonically normalised.

After working out the corrections for fields \( y \) and \( z_i \) we discuss the issue of their stability in section 5.3.

5.1 Diagrams correcting \( \langle yy \rangle \)

Recall that for the light boson, the bosonic tadpoles came from (18) and the fermionic ones from the last line of (19), which is this:

\[ L_{\text{tad}} = -\frac{1}{8} \left[ \partial_+ z_i \partial_- z_i + (\partial_- y)^2 + \partial_+ \omega^\alpha \partial_- \omega_\alpha \right] \left( \overline{\psi}_- b \psi_+ + \overline{\psi}_- b \psi_+ + \overline{\psi}_- b \psi_+ \right). \]

Both of these terms share the same first factor, and by looking at this factor it is clear that we can re-use exactly the same diagrams when the external particle is \( y \). The only change is a factor of 2 because \( y \) is real while \( \omega_\alpha \) was complex, but since we now have \( \delta m^2 = i\gamma A \) (without a 2), the correction \( \delta m^2 \) is unchanged:

\[
\mathcal{A}_T = \begin{array}{c}
\omega_\alpha \text{ or } \psi^a \\
y \text{ or } z_i
\end{array} \begin{array}{c}
\text{y} \\
\text{y}
\end{array} = 2\mathcal{A}_T
\]

\[
= \frac{i}{2} p^2 \frac{\log 2}{2\pi}
\]

\[
\Rightarrow \delta m_T^2 = -\frac{1}{2} \gamma p^2 \frac{\log 2}{2\pi} \text{ the same as (29).}
\]

There is only one bubble diagram to draw, which has two \( \omega_\alpha \) particles in the loop. The

\[\text{[Footnote: This giant magnon, in an } RP^2 \text{ subspace, is a nonlinear superposition of two elementary magnons, as was shown by [34]. When discussing giant magnons it is often convenient to write } E = \sqrt{1 + 8\lambda \sin(p'/2)}, \text{ where } p' \text{ is the momentum of one of the constituent magnons, not the total. (See for instance section 4.3 of [35].)]}\]
contribution is as follows:

\[
A_y = \omega_\alpha(q) \omega_\alpha(p), \quad \text{now with } q_\mu = k_\mu - p_\mu
\]

\[
= i^2 2 \int \frac{d^2k}{(2\pi)^2} \frac{2i}{(k^2 - \frac{1}{4})} \left( \frac{k_- + q_-}{8} \right)^2
\]

\[
= \frac{1}{8} \int_0^1 dx \int \frac{d^2\ell}{(2\pi)^2} \frac{(2\ell_+ + (1 - 2x)p_-)^2}{|\ell^2 - \Delta'(x)|^2}
\]

\[
\Delta' = x^2 - x + \frac{1}{4} = \frac{1}{4} \Delta(4x)
\]

Thus the total mass shift for the \(y\) particle is

\[
\delta m^2 = -\frac{1}{2} \gamma p_- \log \frac{2}{2\pi} - \frac{1}{8\pi} \gamma p_-^2.
\]

As for the light boson \(\omega\) in (30), there is an extra term not expected from the dispersion relation (43). This now comes from the only bubble diagram possible, rather than the addition of a bosonic and a fermionic bubble, and thus it is difficult to imagine a cancellation of this term.

### 5.2 Diagrams correcting \(\langle z_i z_j \rangle\)

The tadpole corrections are completely identical to those for the \(\langle yy \rangle\) case above, by the same argument used there.

The only bubble diagram has \(\psi\) fields in the loop:

\[
A_z = \omega^a(k)
\]

Since the terms in \(L_3\) are written with \(Z^a\) instead of \(z_i\), it is easiest to work in terms of these, and so we write \(A_z = 2A_{01}^{10}\) and calculate the latter. Here is the integral:

\[
A_{01}^{10} = -i^2 \int \frac{d^2k}{(2\pi)^2} \frac{B}{(k^2 - \frac{1}{4})(q^2 - \frac{1}{4})}
\]

\[
= \int_0^1 dx \int \frac{d^2\ell}{(2\pi)^2} \frac{B_{00} + \ell_+ \ell_- B_{11} + (\ell_+ \ell_-)^2 B_{22}}{|\ell^2 - \Delta'(x)|^2}, \quad \Delta' = x^2 - x + \frac{1}{4}
\]

where as before \(B = \sum s,s' \ell_s^+ \ell_s' B_{ss'}\), and we use the same \(\Delta'(x)\) as for the \(\langle yy \rangle\) case above. After using \(p_+p_- \approx 1\), the coefficients needed are:

\[
B_{00} = -\frac{1}{8} (2x - 1)^2 (3x^2 - 3x - 2) p_-^2
\]

\[
B_{11} = \frac{-22x^2 + 22x - 3}{4} p_-^2
\]

\[
B_{22} = -p_-^2.
\]
Expanding using (25), once again the logarithmic and quadratic divergences cancel within the bubble term. The final result is this:

\[ A_z = 2 \left( -\frac{i \gamma p^2}{8\pi} \right). \]

The total mass shift for the \( z \) particles is thus

\[ \delta m^2 = -\frac{1}{2} \gamma p^2 \log \frac{2}{2\pi} + \frac{1}{4\pi} \gamma p^2. \]

5.3 Breaking of mass co-incidence

The heavy modes have \( m = 1 \), precisely twice the light modes’ \( m = \frac{1}{2} \). And the quantum numbers work out that there is a pair of light modes which carries all the same indices as each heavy mode.\(^{15}\) One can ask how this gets modified at one loop, and we begin with some rather simple observations:

1. By expanding the dispersion relation we had that, for both heavy and light modes,

\[ \delta m^2 = c \frac{p^2}{\sqrt{2\lambda}} + \text{two loops}. \]

This implies \( 2 \times \Delta m_{\text{light}} = 2\delta m^2 \), and \( \Delta m_{\text{heavy}} = \frac{1}{2} \delta m^2 \). Using \( c = -\log 2/2\pi \approx -0.11 < 0 \), we conclude that after these corrections the heavy mode is more massive than a pair of light modes. Thus it is kinematically allowed to decay into two light modes.

2. By direct calculation, we find in addition to this some other terms. These are not large enough to alter the conclusion. Here are the numbers after including these terms:

\[ 2 \Delta m_\omega = -0.23 \gamma p^2, \]
\[ 2 \Delta m_\psi = -0.11 \gamma p^2 \]

and for heavy modes,

\[ \Delta m_y = -0.13 \gamma p^2 \]
\[ \Delta m_z = -0.071 \gamma p^2. \]

The decays \( y \to \omega + \bar{\omega} \) and \( z \to \psi + \bar{\psi} \) are thus still allowed.

3. If \( c = 0 \), then we expect that \( \delta m^2 = 0 \), and so at this order the co-incidence of masses remains unbroken.

This issue was investigated in a more subtle way by Zarembo in [21], and this was continued in [4]. The idea is this: instead of working exactly at the pole of the original propagator, \( p^2 = 1 \) for a heavy mode, we can make an expansion in \( p^2 - 1 \), and look at the effect of the second term.

If we assume that \( p^2 < 1 \), then the following integral is real:

\[
\int_0^1 dx \frac{(1 - 2x)^2}{\frac{1}{4} - x(1-x)p^2} = \frac{4}{p^2} \frac{4\sqrt{1-p^2}}{p^3} \arcsin(p) + O(1-p^3)^{3/2}.
\]

\(^{15}\)As can be seen from the interaction terms in (17). The decomposition of course matches that used in the algebraic curve for the construction of off-shell frequencies [36,33,16].
This integral is the generalisation away from $p^2 = 1$ of that appearing in the $\langle yy \rangle$ bubble (44). It comes with a factor $i/2\pi$ in $A$ and a further factor $i\gamma$ in $\delta m^2$ — in all a minus sign. Thus the term 4 here contributes to $\delta m^2 < 0$, ensuring $p^2 < 1$ self-consistently. In our full calculation there is also the tadpole contribution (proportional to log 2), but this too is negative, as noted above. The conclusion is that even including the expansion in $p^2 - 1$, the mass corrections are all real, and so the pole of the corrected propagator $G_y(p)$ remains on the real axis.

While this integral diverges for real $p^2 > 1$, the expansion given does hold for complex $p^2$.

One might wonder whether, if something cancelled the leading term 4, the second term might amount to a complex mass correction. The clearest way (we can think of) to investigate this as follows. Define some coefficients $B, C, D, F$ like this:

$$p^2 = 1 + \delta m^2,$$
$$\delta m^2 = -\gamma \left[ B + C \sqrt{1-p^2} + D(1-p^2) + O(1-p^2)^{3/2} \right] + \gamma^2 F + O(\gamma^3).$$

Then $B > 0$ is the simple case already discussed. If $B = 0$, then $C > 0$ looks like it will guarantee you a negative mass shift, thus keeping $\sqrt{1-p^2}$ real, while $C < 0$ ... is harder to think about. But we can solve this equation explicitly for $p^2$, and expanding in $\gamma$, we get

$$p^2 = 1 - B \gamma \pm \sqrt{B} C \gamma^{3/2} + \left( -\frac{C^2}{2} - BD + F \right) \gamma^2 + O(\gamma^{5/2}).$$

Now it seems clear what happens if $B = 0$: regardless of the sign of $C$ the correction is still a real number, but it enters only at two loops.

### 6 Corrections in the BMN Limit

In this section we repeat our calculations above using the BMN Lagrangian of [4]. The physical reason for doing so is that we want to check that the near-flat-space limit and the diagrammatic calculation of $\delta m^2$ commute.

When taking the near-flat-space limit of our BMN results, in fact we recover not only the term from the expansion of the dispersion relation, but also the extra terms which we found before. This indicates that these extra terms cannot be artefacts of the simpler limit. In the BMN calculation, we also find some constant terms which are not visible in the near-flat-space limit, but which also break supersymmetry.

The approach and the diagrams needed are identical to those for the near-flat-space limit, but the number of terms involved is much greater. Consequently we show much less detail here. But this also means that the cancellation of divergences is more delicate than it was, and this provides further checks on our work.

#### 6.1 The dispersion relation

We can expand the dispersion relation (2) in the same way as for the near-flat-space case (21). The normalisation of the worldsheet momentum is exactly the same $p_{\text{chain}} \sqrt{\lambda/2} = p_1$, as this is a statement only about the gauge we are in. But now we have $p_{\text{chain}} \sim \lambda^{-1/2}$ from (1), which changes the result to

$$E^2 = \frac{1}{4} + p_1^2 + \frac{2\sqrt{2}}{\sqrt{\lambda}}e^{p_1^2} + O\left( \frac{1}{\lambda} \right).$$

(45)
This reads $p_0^2 - p_1^2 = \frac{1}{4} + \delta m^2$, and thus we expect to see
\[
\delta m^2 = \frac{2\sqrt{2}}{\sqrt{\lambda}} c p_1^2.
\]
This time, the correction term $\delta m^2$ is order $1/\sqrt{\lambda}$ while $p_0^2$ and $p_1^2$ are order 1. (The two-loop term we wrote in (21) is now order $1/\lambda$.)

For a heavy mode, $E_{\text{heavy}}(p) = 2E(p/2)$, we again get $p_0^2 - p_1^2 = 1 + \delta m^2$ with the same $\delta m^2$ at this order.

### 6.2 Results for light modes

For the light bosonic propagator we find:
\[
\langle \bar{\omega} \omega \rangle: \quad \delta m^2/\gamma = \frac{9}{16\pi \epsilon} - \frac{3}{4\pi} p_1^2 + \ldots \quad \text{from bubble diagrams}
\]
\[
- \frac{9}{16\pi \epsilon} - \frac{\log 2}{\pi} p_1^2 + \ldots \quad \text{from tadpoles}
\]
\[
= - \frac{5}{96\pi} - \frac{3}{4\pi} p_1^2 - \frac{\log 2}{\pi} p_1^2 \quad \text{in total.} \quad (46)
\]

The dots for bubble and tadpole contributions are constant (and non-divergent) terms. If we now write $p_1 = \frac{1}{2}(p_+ - p_-)$ and perform the worldsheet boost, then we end up with the result obtained starting from the near-flat-space Lagrangian. Thus the limit commutes with the calculation.

However, for the BMN case, we see that there is one additional non-trivial $1/\epsilon$ cancellation between the bubbles and the tadpoles which is invisible in the near-flat-space calculation (where all $1/\epsilon$ canceled within each diagram). This provides a further consistency check.

For the light fermionic propagator we have:
\[
\langle \bar{\psi}_- \psi_+ \rangle: \quad \delta m^2/\gamma = \frac{7}{64\pi \epsilon} + \frac{1}{8\pi} \left( \frac{21}{\epsilon} - \frac{21\gamma_E}{2} + 13 \log 2 - \frac{21 \log \pi}{2} \right) p_1^2 + \ldots \quad \text{bubbles}
\]
\[
- \frac{7}{64\pi \epsilon} - \frac{1}{8\pi} \left( \frac{21}{\epsilon} - \frac{21\gamma_E}{2} + 21 \log 2 - \frac{21 \log \pi}{2} \right) p_1^2 + \ldots \quad \text{tadpoles.}
\]

The coefficients in this depend on which of the four cases $\langle \bar{\psi}_{\pm} \psi_{\pm'} \rangle$ we consider. But for all cases, the total is the same:
\[
\langle \bar{\psi} \psi \rangle: \quad \delta m^2/\gamma = - \frac{1}{96\pi} - \frac{\log 2}{\pi} p_1^2. \quad (47)
\]
Again we see a cancellation of $1/\epsilon$ divergences in both the constant and the $p_1^2$ terms. And again the result reduces to the near-flat-space one, (33).

Notice that in both of these results there are extra constant terms. These are of course invisible in the near-flat-space limit. But like the extra terms seen there, they are not the same for the boson and the fermion, thus breaking supersymmetry.
6.3 Results for heavy bosons

Starting out with the $y$ mode, we have

$$
\langle yy \rangle : \quad \frac{\delta m^2}{\gamma} = \frac{1}{2\pi \epsilon} - \frac{1}{2\pi} p_1^2 + \ldots \quad \text{bubble}
$$

$$
- \frac{1}{2\pi \epsilon} - \frac{\log 2}{\pi} p_1^2 + \ldots \quad \text{tadpoles}
$$

$$
= -\frac{1}{4\pi} - \frac{1}{2\pi} p_1^2 - \frac{\log 2}{\pi} p_1^2.
$$

The complex piece of $\delta m^2$ comes from the $x$ integration in the Feynman parameterisation.

Finally, for the $z_i$ modes (transverse $AdS_4$ directions) we have

$$
\langle z_i z_j \rangle : \quad \frac{\delta m^2}{\gamma} = \frac{1}{4\pi \epsilon} - \frac{p_1^2}{\pi} + \ldots \quad \text{bubble}
$$

$$
- \frac{1}{4\pi \epsilon} - \frac{\log 2}{\pi} p_1^2 + \ldots \quad \text{tadpoles}
$$

$$
= -\frac{2}{3\pi} - \frac{p_1^2}{\pi} - \frac{\log 2}{\pi} p_1^2.
$$

As with the light propagators, all corrections reduce to those calculated using the near-flat-space Lagrangian. Thus, at least for two-point functions, the truncation of the BMN theory to the near-flat-space limit is one-loop quantum consistent.

7 Conclusions

The results of this paper are as follows:

1. We have computed one-loop corrections to propagators in both the near-flat-space and BMN limits, and we find that our calculations ‘commute with the limit’, meaning that the near-flat results are recovered as limits of the BMN ones. This is the first such comparison in $AdS_4 \times CP^3$, and is evidence that the near-flat-space limit is a consistent truncation at one loop.

2. Comparing our results to the dispersion relation, we expect $\delta m^2$ to be proportional to the $c = -\log 2 / 2\pi$ in the expansion of $h(\lambda)$, and we correctly find this term. We also (in most cases) find some extra terms. Our results are always of the form

$$
\delta m^2 = -\frac{\log 2}{2\pi} 2\gamma p_1^2 + U \frac{\gamma p_1^2}{\pi} + V \frac{\gamma}{\pi} \quad \text{BMN limit}
$$

$$
\to -\frac{\log 2 \gamma p_1^2}{2\pi} + U \frac{\gamma p_1^2}{4\pi} \quad \text{near-flat-space},
$$

where $U$ and $V$ are rational numbers depending on the mode being studied.

3. The term with $\log 2$ comes from the tadpole diagrams, and for these diagrams, we can implement the ‘new’ summation prescription of Gromov and Mikhailov [3]. Doing so changes the result to remove this $\log 2$ term perfectly, corresponding to $c = 0$. This agrees with expectations from [3, 2, 16, 18]. However we cannot make this change of prescription for the bubble diagrams, since the same loop momentum applies to both heavy and light modes.

\footnote{This statement is strictly true in cases where the bubble alone is finite. However the argument that we can remove the $\log 2$ term holds for all the bosons (but fails for the light fermion).}
7.1 Extra terms $U$ and $V$ in (50)

Perhaps the first thing to note is that these terms break supersymmetry. Most of our calculation is done using dimensional regularisation, and so it is natural to suspect that this regulator is the culprit. (Supersymmetry after all is very different in different dimensions of spacetime.) It is possible that the terms $U$ and $V$ should be absorbed into a (finite) renormalisation of the bare masses $m = \frac{1}{2}, 1$, restoring supersymmetry [37]. In this case the correct attitude towards our calculation is that we have used the exact answer for the mass shift (from the dispersion relation) to work out what bare masses must be used in the propagators for future calculations, done with the same regulator.

For the light boson, we were able to repeat our calculation using instead an explicit momentum cutoff (in section 4.1) and we found exactly the same term $U$. In this case, we gave an argument that using a more precise cutoff on energy might cancel this term. The energy, unlike the worldsheet momentum, is a gauge-invariant physical quantity. This led us in section 4.2 to consider cutoffs on the Euclidean momentum of $|K| < \Lambda^2 - m^2$, with $m^2 = \frac{1}{2}$ or 1 for light or heavy modes. Then because of a cancellation of $\Lambda^2$ divergences, the final result changes by terms of the form $\gamma p_+^2 / \pi \times$ (rational). It is difficult however to implement an independent cutoff on the heavy and light modes in the bubble diagram. We gave one rather Heath Robinson construction, involving two Pauli–Villars regulators, which manages to cancel half of the extra term $U$, see (41).

The reason that these regulators are needed at all is essentially that the leading interaction term $L_3$ contains both left- and right-moving fields, and derivatives. This does not happen in the $\text{AdS}_5 \times S^5$ case, and as a result the analogous leading diagrams give only finite integrals.

We stress that these extra terms are not an artefact of the near-flat-space limit: the exact terms we find there are also obtained by taking the limit of our BMN results, as in (50). And further, the extra term $U$ seen in the near-flat case scales like $p_+^2$ in the same way as the log 2 term, thus there is no obvious explanation for why they should not be seen in the giant magnon case [16], although the $V$ terms would be invisible.

7.2 Group parameterisation

Finally, it seems that these extra terms may be altered by the choice of group parameterisation used. A different parameterisation was defined in [21], replacing our equation (5) with

$$G = \Lambda(t, \phi) e^X$$

where $X$ contains both bosons and fermions. The resulting fields will be related in some complicated nonlinear way, but all physical results must agree. Using this parameterisation, $L_3$ was calculated by the authors of [38], who were kind enough to share this term with us. This allows us to repeat the bubble calculation, and again we find an extra term. But the result is different: for the bubbles correcting the light boson, equivalent to (23) + (26), we now get

$$\delta m^2_{\text{bubble}} = -\frac{1}{16\pi} \gamma p_+^2 + \frac{7}{128\pi} \gamma p_+^2 = -\frac{1}{128\pi} \gamma p_+^2 .$$

(51)

This involves a cancellation of $1/\epsilon$ terms in the fermionic piece which is as nontrivial as those from our parameterisation.\(^{18}\)

\(^{17}\)By this we mean the two-loop ‘sunset’ diagram correcting the propagator in [7], since the leading interaction there is $L_4$.

\(^{18}\)For the BMN case of this we see terms that reduce to these, plus terms free of $p_1$ including $1/\epsilon$ terms, much like those in section 6.
The quadratic term $L_4$ has not been calculated, thus we cannot repeat the tadpole calculations. But we note that in the integrals used, (28) has no terms $1/\pi$, and thus the tadpoles never contribute to terms of the form $\gamma p^2 / \pi \times \text{(rational)}$. So this result should survive in the complete answer.

We do not wish to place too much emphasis on (51), which depends on many details of the fermions. We can however make the simpler observation that the bosonic term in $L_3$ is the same in both parameterisations. This term alone makes the bubble term for the $(yy)$ correction nonzero, (44), producing an extra term not expected from the dispersion relation (43).

### 7.3 Interpretation of the heavy modes

The heavy modes are something of a puzzle in this example of the AdS/CFT correspondence. They are not present in the Bethe ansatz description, although each one can be made as a simple superposition of two light modes. But from the point of view of classical strings on $AdS_4 \times CP^3$, the heavy (bosonic) modes are simply 4 of the 8 transverse spatial dimensions.

In [21] Zarembo began the investigation of what loop corrections can teach us about this puzzle. With the corrections that we find, we can make the simpler observation that the heavy mode becomes heavier than a pair of light modes, and is thus kinematically allowed to decay. We discussed this further in section 5.3.

### 7.4 Parallels to [18]

This recent paper has some similarities to ours. First of all note that the $1/R^2$ corrections computed there are analogous to the $1/\sqrt{\lambda}$ corrections computed here, since $1/\sqrt{\lambda} \sim \alpha'/R^2$. Both papers find a cubic interaction (which was absent in the $AdS_5 \times S^5$ case), and while in [18] this is at order $1/R$, it only contributes at $1/R^2$, much like our bubble diagram needing two cubic vertices.

Some of the results in both papers are small-$p$ limits of the giant magnon case studied in [16]. In particular both can see the $- \log 2/2\pi$ term seen there, and by altering the prescription can remove this (although here subject to the limitations mentioned above).

However an important difference is that the present paper is strictly in infinite volume, $J = \infty$, whereas [18] computes also some finite-$J$ effects. (For instance we believe that equation (61) there is a Lüscher F-term.)

### Acknowledgements

For discussions of this work, we thank Dmitri Bykov, Valentina Giangreco M. Puletti, Tristan McLoughlin, Sameer Murthy, Jeff Murugan, Olof Ohlsson Sax and especially Konstantin Zarembo. We would also like to thank Olof and Tristan for comments on the manuscript.

We are very grateful to the authors of [38], Chrysostomos Kalousios, Cristian Vergu and Anastasia Volovich, for sharing their cubic interaction term with us.

P.S. would also like to thank Nordita for hospitality while working on this project. M.C.A. also thanks, in TIFR tradition, the people of India for their support of basic science.

### A Fermionic Matrices and Notation

A given matrix $M$ in $osp(2,2|6)$ can be represented as a $10 \times 10$ super matrix as

$$M = \left( \begin{array}{cc} X & \theta \\ \eta & Y \end{array} \right)$$
where the bosonic blocks satisfy
\[ X^i = -C_4 X C_4, \quad X^\dagger = -\Gamma_0 X \Gamma_0, \quad Y^i = -Y, \quad Y^* = Y, \]
and \( X \) correspond to \( \mathfrak{sp}(2,2) \) and \( Y \) to \( \mathfrak{so}(6) \). The odd blocks are fermionic, in the sense of having Grassmanian matrix elements, and satisfy
\[ \eta = -\theta^t C_4, \quad \theta^* = C_4 \theta. \]

The matrices \( C_4 \) and \( \Gamma_0 \) are charge conjugation and \( \Gamma \)-matrices of the \( \text{AdS}_4 \) space and are given explicitly in [4]. After kappa gauge fixing [26], the fermionic 4 \( \times \) 6 block \( \theta \) is given by\(^\text{19}\)
\[
\theta = \frac{1}{\sqrt{2}} \begin{pmatrix}
\theta_{1,1} & \theta_{1,2} & \theta_{1,3} & \theta_{1,4} & i\theta_{1,4} & i\theta_{1,3} \\
\theta_{2,1} & \theta_{2,2} & \theta_{2,3} & \theta_{2,4} & i\theta_{2,4} & i\theta_{2,3} \\
\theta_{1,1}^t & \theta_{1,2}^t & \theta_{1,3}^t & \theta_{1,4}^t & -i\theta_{1,4}^t & -i\theta_{1,3}^t \\
-\theta_{1,1}^t & -\theta_{1,2}^t & -\theta_{1,3}^t & -\theta_{1,4}^t & i\theta_{1,4}^t & i\theta_{1,3}^t
\end{pmatrix}.
\]
The eight independent components are given by\(^\text{20}\)
\[
\begin{align*}
\theta_{1,1} &= \frac{1}{\sqrt{2}} (\overline{\psi}_2 - \overline{\psi}_+^2 + \psi_1^t + \psi_1^1), \\
\theta_{1,2} &= i \frac{1}{\sqrt{2}} (\overline{\psi}_2 - \overline{\psi}_+^2 - \psi_-^1 - \psi_1^1), \\
\theta_{2,1} &= \frac{1}{\sqrt{2}} (-\overline{\psi}_- + \overline{\psi}_+^t + \psi_2^t + \psi_3^t), \\
\theta_{2,2} &= i \frac{1}{\sqrt{2}} (-\overline{\psi}_- + \overline{\psi}_+^t - \psi_2^t - \psi_3^t), \\
\theta_{1,3} &= \frac{1}{2\sqrt{2}} (i(s_-)_3^t - i(s_-)_1 + (s_+)_3 - (s_+)_1), \\
\theta_{1,4} &= \frac{1}{2\sqrt{2}} ((s_-)_3^t + (s_-)_1^t - i(s_+)_3^t - i(s_+)_1^t), \\
\theta_{2,3} &= \frac{1}{2\sqrt{2}} (i(s_-)_3^t - i(s_-)_1^t + (s_+)_3^t - (s_+)_1^t), \\
\theta_{2,4} &= \frac{1}{2\sqrt{2}} ((s_-)_3^t + (s_-)_1^t + i(s_+)_3^t - i(s_+)_1^t).
\end{align*}
\]

In the Lagrangians (4) and (6), we single out the various graded parts of the current, \( A = -G^{-1} dG \), using an automorphism \( \Omega \)
\[ \Omega(M) = \Upsilon M \Upsilon^{-1}, \quad \Omega(M^{(k)}) = i^k M \]
where \( \Upsilon \) is a constant matrix satisfying \( \Upsilon^2 = -1 \). For (6), the auxiliary field \( \tilde{\pi} \) is given by
\[ \tilde{\pi} = \frac{i}{2} \tilde{\pi}_+ \Sigma_+ + \frac{i}{4} \tilde{\pi}_- \Sigma_- + \tilde{\pi}_t, \]
where
\[ \tilde{\pi}_t = \begin{pmatrix}
\frac{i}{2} \tilde{\pi}_i^{(x)} & \Gamma_i \\
0 & \frac{i}{2} \tilde{\pi}_i^{(y)} \, T_5 + \tilde{\pi}_i^{(\omega)} \, \tau_t + \tilde{\pi}_i^{(\overline{\pi})} \, \tau_i
\end{pmatrix}. \]

Once again, we point to [4] for explicit representation of the various matrices. However, note that a nice property of \( \tilde{\pi} \) is that it projects to \( M^{(2)} \) for even elements,
\[ \text{Str} \tilde{\pi} \, A^{(2)} = \text{Str} \, \tilde{\pi} \, A. \]

\(^{19}\)Note that we have performed \( \theta \to \Gamma_0 \theta \) and a simple rescaling with \( 1/\sqrt{2} \) compared to [4].

\(^{20}\)We will denote the \( \text{AdS}_4 \) \( \text{SU}(2) \) with indices in the set \{1,2\} and the \( \text{CP}_3 \) \( \text{SU}(2) \) with indices in the set \{3,4\}. We also adopt the somewhat sloppy notation \( \tau = \chi^t \).
B Simplifying the Quartic Lagrangian

After performing the near-flat-space boost from the quartic BMN Lagrangian, the pure fermionic quartic piece comes out as

\[
\mathcal{L}_{FF} = -\frac{1}{16} \left( (s_-)_a^\beta (s_-)_\beta^a (s_+)_\gamma^d (s_+)_{\delta}^d - (s_-)_a^\beta (s_-)_\beta^a (s_+)_{\gamma}^d (s_+)_{\delta}^d \right) - \frac{1}{8} \left( \overline{\psi}_- \psi_- \right)^2 \\
+ \frac{1}{8} \left( \overline{\psi}_- \partial_+ \psi_- \right) \left( \overline{\psi}_- \partial_+ \psi_- \right) + \frac{1}{4} \left( \overline{\psi}_- \partial_+ \psi_- \overline{\psi}_- \partial_- \psi_- + \overline{\psi}_- \partial_+ \psi_- \partial_- \overline{\psi}_- \psi_- - \overline{\psi}_- \psi_- \partial_- \overline{\psi}_- \partial_+ \psi_- \right) \right. \\
- \partial_+ \overline{\psi}_- \partial_- \overline{\psi}_- \overline{\psi}_- \psi_-) + \frac{i}{16} \overline{\psi}_- \partial_+ \psi_- \left( \partial_+ \psi_- - \overline{\psi}_- \psi_- \right) - \frac{i}{16} \overline{\psi}_- \partial_- \left( \partial_+ \psi_- - \overline{\psi}_- \psi_- \right) \\
+ \frac{i}{2} \overline{\psi}_- \psi_- \left( \partial_+ \psi_- - \partial_- \overline{\psi}_- \psi_- \right) - \frac{3i}{8} \left( \partial_- \psi_- \overline{\psi}_- \psi_- - \partial_- \overline{\psi}_- \psi_- \right) \\
\left. + \left[ - \partial_+ (s_-)_a^\alpha (s_-)_c^a \overline{\psi}_{-a} \partial_- \psi_-^c + \frac{1}{2} \partial_+ (s_-)_a^\alpha (s_-)_c^a \partial_- \overline{\psi}_{-a} \psi_-^c + \frac{1}{2} \partial_+ (s_-)_a^\alpha (s_-)_c^a \partial_- \overline{\psi}_{-a} \psi_-^c \\
+ \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \overline{\psi}_{-a} \partial_- \psi_-^c - (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c + \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c \\
- \frac{1}{4} (s_-)_a^\alpha (s_-)_a^\alpha \overline{\psi}_{-a} \partial_- \psi_-^c + \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c + \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c \\
- \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \partial_- \psi_-^c - \frac{1}{2} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \partial_- \psi_-^c - 2(s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c \\
- 2(s_-)_a^\alpha (s_-)_a^\alpha \overline{\psi}_{-a} \partial_- \psi_-^c + i \partial_- (s_-)_a^\alpha (s_-)_a^\alpha \overline{\psi}_{-a} \psi_-^c - i (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c \right]. \right) 
\]  

(53)

The first thing to notice is that, using total derivatives, the piece quartic in \( \psi \) and \( s \) and involving one left-mover can be written as

\[
- \frac{1}{24} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- (s_+)_{\gamma}^d + \frac{i}{8} \left( 3 \overline{\psi}_- \partial_- \psi_- + \partial_- \overline{\psi}_- \psi_- \right) \overline{\psi}_- \psi_- + \frac{i}{8} \left( 3 \overline{\psi}_- \partial_- \psi_- + \partial_- \overline{\psi}_- \psi_- \right) \overline{\psi}_- \psi_- - \frac{i}{2} \overline{\psi}_- \psi_- \left( \partial_- \overline{\psi}_- \psi_- - \partial_- \overline{\psi}_- \psi_- \right). \right) 
\]  

(54)

If we now perform the following redefinitions of the fermions (and corresponding ones for conjugated \( \psi \)),

\[
\delta \psi_+^a = -\frac{1}{2} \overline{\psi}_- \psi_-^a, \quad \delta \psi_-^a = -\frac{i}{4} \psi_-^a \left( 3 \overline{\psi}_- \partial_- \psi_- + \partial_- \overline{\psi}_- \psi_- \right), \\
\delta (s_+)_{\gamma}^d = -\frac{i}{24} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- (s_-)_a^\alpha, 
\]

the mass term in the quadratic Lagrangian (8) removes (54). However, the kinetic term induces additional terms giving

\[
\mathcal{L}_{FF} = \frac{3}{8} \left( \overline{\psi}_- \psi_- \right)^2 - \frac{1}{4} \overline{\psi}_- \psi_- \left( \partial_+ \overline{\psi}_- \partial_- \psi_- + \partial_- \overline{\psi}_- \partial_+ \psi_- \right) - \frac{3}{8} \left( \overline{\psi}_- \partial_+ \psi_- \overline{\psi}_- \partial_- \psi_- + \partial_+ \overline{\psi}_- \partial_- \overline{\psi}_- \psi_- \right) \\
+ \partial_- \overline{\psi}_- \overline{\psi}_- \partial_+ \psi_- + \partial_+ \overline{\psi}_- \overline{\psi}_- \partial_- \psi_- \right) - \frac{1}{24} (s_-)_a^\alpha (s_-)_a^\alpha \partial_- (s_-)_a^\alpha + \ldots 
\]

where the dots denotes the unchanged terms mixing \( s_\pm \) and \( \psi_\pm \). The mixing terms linear in left movers

\[
\frac{1}{4} \left( (s_-)_a^\alpha (s_-)_a^\alpha \partial_- \overline{\psi}_{-a} \psi_-^c - (s_-)_a^\alpha (s_-)_a^\alpha \overline{\psi}_{-a} \partial_- \psi_-^c + i \overline{\psi}_{-a} \partial_- (s_-)_a^\alpha \psi_-^c - \frac{i}{2} \overline{\psi}_{-a} \partial_- (s_-)_a^\alpha \psi_-^c \right) 
\]  

(55)

can be removed by performing a similar field redefinition. That is, we introduce

\[
\delta (s_-)_a^\alpha = -\frac{i}{4} (s_-)_a^\alpha \left( \partial_- \overline{\psi}_{-a} \psi_-^c + \overline{\psi}_{-a} \partial_- \psi_-^c \right), \quad \delta \psi_-^a = \frac{i}{4} \partial_- (s_-)_a^\alpha \psi_-^c 
\]
which removes (55) at the cost of additional quartic terms. Adding it all together gives the $L_{FF}$ presented in (20).

C Expansions in Dimensional Regularisation

In this appendix we consider some changes to our calculation which would produce terms of the form $\gamma p^2 / \pi \times (\text{rational})$, thus altering the terms $U$ in (50). While we believe that what we have done is correct, we include these other options as a matter of curiosity.

The integrals we write in (25) for $s = 1, 2$ are closely related to these two:

$$
\int \frac{d^d k}{(2\pi)^d} \frac{k_\mu k_\nu}{|k^2 - \Delta|^n} = \frac{-i}{(4\pi)^{d/2}} \frac{g_{\mu\nu}}{2} \left( \frac{1}{\Delta} \right)^{n-1-d/2} \frac{\Gamma(n - 1 - \frac{d}{2})}{\Gamma(n)} \frac{\Gamma(n)}{\Gamma(n)}
$$

$$
\int \frac{d^d k}{(2\pi)^d} \frac{k_\mu k_\nu k_\xi k_\varsigma}{|k^2 - \Delta|^n} = \frac{i}{(4\pi)^{d/2}} \frac{g_{\mu\nu}g_{\xi\varsigma} + g_{\mu\xi}g_{\nu\varsigma} + g_{\mu\varsigma}g_{\nu\xi}}{4} \left( \frac{1}{\Delta} \right)^{1-d/2} \frac{\Gamma(n - 2 - \frac{d}{2})}{\Gamma(n)}.
$$

Tracing produces the factors of $d/2$ and $\frac{d}{4}(d + 2)$, which in (25) are written as a quotient of gamma functions:

$$
g_{\mu\nu} \frac{g_{\mu\nu}}{2} = \frac{d}{2} = \Gamma\left( \frac{d}{2} + 1 \right) \frac{\Gamma\left( \frac{d}{2} \right)}{\Gamma(d/2)}
$$

$$
g_{\mu\nu}g_{\xi\varsigma} + g_{\mu\xi}g_{\nu\varsigma} + g_{\mu\varsigma}g_{\nu\xi} = \frac{1}{4} d(d + 2) = \frac{\Gamma\left( \frac{d}{2} + 2 \right)}{\Gamma\left( \frac{d}{2} \right)}.
$$

These factors are multiplied by the divergent gamma function $\Gamma\left( \frac{d}{2} \right)$ or $\Gamma\left( -1 + \frac{d}{2} \right)$, and to get the finite terms shown in (25) we have expanded these (and the other non-divergent factors) up to order $\epsilon$. This seems like the most natural and correct thing to do, when starting from integrals with $k^2$ or $(k^2)^2$ in the numerator. There are however some other options:

2. We could expand neither of the factors in (57). In other words, use both of the integrals (56) rather than (25), and trace them only at the end. This produces changes to the various $1/\pi$ terms, which (in the BMN case) lead to the following:

$$
\delta m^2 = -\frac{\log 2}{\pi} \gamma p_1^2 + \gamma \begin{cases}
-\frac{13}{12\pi} p_1^2 + \frac{19}{64\pi} - \frac{9a}{32\pi} & \text{for } \omega \\
-\frac{17}{9\pi} p_1^2 - \frac{35}{96\pi} - \frac{9a}{4\pi} & \text{for } \psi \\
-\frac{1}{4\pi} p_1^2 - \frac{17}{48\pi} - \frac{i}{4} & \text{for } y \\
-\frac{11}{12\pi} p_1^2 + \frac{1}{12\pi} - \frac{3a}{4\pi} & \text{for } z
\end{cases}
$$

None of these are preferable to our results above. Note the appearance of the gauge parameter $a$ in some of these, although only in the constant the term (and not visible in the near-flat limit).

3. We could expand the $(d + 2)$ but not the $d/2$ in (57). This would mean in some sense that we are keeping the same indices $\mu\nu$ outside the integral in all cases — we use the first integral in (56) but trace the second integral once, like this:

$$
g_{\mu\nu}g_{\xi\varsigma} + g_{\mu\xi}g_{\nu\varsigma} + g_{\mu\varsigma}g_{\nu\xi} = \frac{g_{\mu\nu}(d + 2)}{4}
$$

$$
\Rightarrow \int \frac{d^d k}{(2\pi)^d} \frac{k_\mu k_\nu k_\xi k_\varsigma}{|k^2 - \Delta|^n} = \frac{i}{(4\pi)^{d/2}} \frac{g_{\mu\nu}(d + 2)}{4} \left( \frac{1}{\Delta} \right)^{1-d/2} \frac{\Gamma(n - 2 - \frac{d}{2})}{\Gamma(n)}.
$$

21Here we note that [39] has a misprint in (A.47), which is the $s = 2$ case of our (25), as well as in (A.51).
This third option leads to the following results:

\[
\delta m^2 = -\frac{\log 2}{\pi} \gamma p_1^2 + \gamma \begin{cases} 
-\frac{1}{2\pi} p_1^2 + \frac{5}{32\pi} - \frac{9\pi}{32\pi} & \text{for}\ \omega \\
\frac{3}{2\pi} p_1^2 - \frac{1}{16\pi} - \frac{1}{4} & \psi \\
-\frac{1}{4\pi} p_1^2 - \frac{17}{4\pi} - \frac{3}{4} & y \\
-\frac{1}{4\pi} p_1^2 - \frac{5}{24\pi} - \frac{3a}{4\pi} & z 
\end{cases}
\]

Again these are not any better than our initial results.

References


