Inconsistency of super-luminal Cern-Opera neutrino speed with observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Daniele Fargion, Daniele D’Armiento

Abstract

We tried to fit in any way the recent Opera-Cern claims of a neutrino super-luminal speed with observed Supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillation. We considered three main frame-works: (1) A tachyon imaginary neutrino mass, whose timing is forever in conflict with observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate SN1987A burst but greatly disagree with energy independent Cern-Opera super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic \(\nu_e \) component and a super-luminal \(\nu_{\mu} \)) in an ad hoc frozen speed scenario that is leading to the prompt neutrino de-coherence and the rapid flavor mixing (between \(\nu_e \) and \(\nu_{\mu}, \nu_{\tau} \)) that are in conflict with most oscillation records. Therefore we concluded that an error must be hidden in Opera-Cern time calibration (as indeed recent rumors seem to confirm). We concluded reminding the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a milliseconds graviton-neutrino split time delay among gravity burst and neutronization neutrino peak in any future SN explosion in Andromeda recordable in Megaton neutrino detector.

Keywords: Neutrino, Supernova, Tachyon, Relativity

1. Introduction: Any solution for super-luminal neutrinos?

A first preprint from Cern-Opera experiment hint for a muon neutrino faster than light [1], may be tachyon in nature. If all neutrino were just tachyon their arrival (at SN1987A-17 MeV energy) would be even much much faster than a 17 GeV Opera neutrino. Indeed Opera super-luminal neutrinos (at a speed \(2.5 \cdot 10^{-5} \) times faster than c), would lead to a SN1987A speed nearly 6.95 times faster than c, coming therefore much earlier, back nearly 134500 years ago from Large Magellanic Cloud, therefore unobservable. On the other side if all the neutrino velocity, independently on their energy, were frozen at a Opera speed \(2.5 \cdot 10^{-5} \) times faster than c, than Supernova 1987A had not to be observed (as it is well known to be) on February 23th 1987, but just 3.72 years before, in late 1982 early 1983: their signals would be eventually hidden in oldest IMB records. However in such tuned new physics no explanation will be of the same neutrino burst found on February 23 1987 by IMB-Kamiokande. An ad-hoc anti-tachyon neutrino law (opposite energy relation respect tachyon) may somehow fit the super-luminal result and SN87A but it disagrees with apparent energy independence in Opera \(\nu e \) speed. A more accommodating scenario is the one where electron neutrinos (and antineutrino) fly near velocity c, while muon neutrino are super-luminal: than SN1987A \(\nu e, \bar{\nu}e \) may be in agreement with observed signals; nevertheless even in this ideal scenario one should also find a coexisting precursor neutrino burst signal in early 1982-1983 inside IMB records (certainly unobserved), signal due to a partial muon to electron neutrino conversion in flight from the SN1987A to Earth. Moreover the electron muon different velocity is in obvious conflict with flavor interferences. Any different \(\nu e, \bar{\nu}e \) speed respect \(\nu_{\mu}, \nu_{\tau} \) strongly disagree with all the observed oscillations as the near distance neutrino flavor mixing in atmospheric neutrino (either muonic and in particular of electronic flavor in Super Kamiokande) as well as in Kamland electron neutrino oscillation record. Even Opera and Minos muon neutrino flux should have had to suffer by a prompt super-luminal muon neutrino de-coherence from slower electron \(\nu \) flavor in flight. In conclusion observed SN 1987A neutrino burst and known neutrino mixing strongly constrain any ad hoc super-luminal neutrino signal. Apparent Opera anomalous neutrino speed measure might be in debt, we claimed, to some misleading time calibrations. Of course we didn’t comment here the long list of puzzle in such violating special relativity, where one may imagine to sit along the neutrino super-luminal frame seing inverted time sequence of events. Surprisingly very recent test and preprint with unique sharp bunches from CERN once again reconfirmed such unbelievable (but widely applauded) super-luminal result [2]. We didn’t change our mind. However last minute rumors of experimental OPERA bugs finally shut down these, let say, imaginary results [10]. Nevertheless future Supernova gravitational waves a millisecond time precorsors (respect neutrino burst due to SN neutronization) from Andromeda may finally discover neutrino mass splitting, mostly of real guaranteed atmospheric nature.
2. Time precursor for imaginary tachyon

Let us assume, as Opera-CERN declared, that the time precursor neutrino arrival is \(\delta(t)_0 = 60 \) nanosecond. Its velocity of light fly-time on 720 km distance is \(\delta(t)_{\text{Cern-Opera}} = 2.4 \) ms. It implies for an energy independent neutrino speed nature, a precursor event at a-dimensional time

\[
\frac{\delta(t)_0}{\delta(t)_{\text{Cern-Opera}}} \approx 2.37 \pm 0.32 \cdot 10^{-5}
\]

and a consequent apparent precursor explosion from a SN1987A would be occurred 3.72 years before (the 23th February 1987) optical SN event reaching from 157k ly (light year) distances in Large Magellanic Cloud. Probably around 2th June 1983 (incidentally on Italian Nation Day). But this result do not takes into account of the needed tachyon neutrino behavior, where the energy is related to an imaginary mass time by a Lorentz factor \(E \nu = mc^2 \gamma \nu \). The Lorentz factor \(\gamma \nu = \frac{1}{\sqrt{1-\nu^2}} \) for a super-luminal particle is an imaginary value. Indeed the higher the energy (Opera 17 GeV) the slower (nearer to velocity of light) the speed. The lower the neutrino energy the faster its speed; in this case SN neutrino is nearly 6.95 times faster than the speed of light. The lower the neutrino energy the faster it spreads. For all flavor neutrinos, but whose directions and the SN1987A burst signal. This law may have a possible time spread within a few thousand of billion times the observed SN1987A neutrino time scale.

2.1. An anti-tachyon to save Opera and SN1987A \(\nu \) timing

Let us try for a while to fit this wrong SN1987A timing, imposing, just for hypothesis, a an invented ad hoc tachyon-like relativistic law, opposite to usual one : \(E \nu = -imc^2 / \gamma \nu \), with same expression for all flavors neutrinos, but whose different masses allow flavor mixing, just almost able to fit the Opera observation and the SN1987A burst signal. This law may have a minimal physical connection (respect to the above tachyon law) if one assumes that the new tachyon neutrino effective mass \(\tilde{m} \nu \) does depends on its speed in matter as \(\tilde{m} \nu = -m \gamma \nu \); one than obtains

\[
\frac{\delta(t)_0}{\delta(t)_{\text{Cern-Opera}}} \approx 2.5 \cdot 10^{-11}
\]

Therefore SN neutrinos fly almost at light velocity. This time spread corresponds nevertheless to a two minutes spread for the supernovas 1987A neutrino arrival from Large Magellanic Cloud. A value barely consistent with Kamiokande records and the IMB one signal spread: twelve sec. Just comparable in global time, but not in details. Assuming an even more ad hoc law \(E \nu = -imc^2 / \gamma \nu \) one may reconcile the time spread within 12 s. However both these new ad hoc tachyon laws strongly disagree with the negligible spread in different energies of the neutrino speed observed in OPERA itself: at a nominal Opera neutrino energy of 13.9 GeV the neutrino arrival is 53.1 ns earlier than c, while at 42.9 GeV the arrival is a little earlier, 67.1 ns before c; an observed difference of nearly 21%. On the contrary the \(E \nu = -imc^2 / \gamma \nu \) law would require at those higher energies (scaled by a factor 3.1 respect lower ones) an earlier arrival of neutrino 3.12 earlier, about 477 ns., or at a time difference above 900% the lower energy ones. Therefore the new tachyon law adapted to solve the SN1987A is in conflict with the OPERA almost un-variability of the neutrino speed with the energy. In conclusion this simplest anti-tachyon toy model has some global fit, but it is extremely unnatural and nevertheless inaccurate and against OPERA neutrino speed at two different energy. The extension to fit also the mixing among flavors is not forbidden but call for unnatural fine tuned tachyon masses values. Indeed the anti-tachyon mass value for the \(E \nu = -imc^2 / \gamma \nu \) law in Opera requires 2.4 TeV energy calling to a thousand billion time tuned mass splitting to solve observed flavor neutrino mixing. Therefore, because of all these failure, we try to accommodate OPERA result assuming, as a last attempt, that the muon (OPERA) and electron (SN1987A) neutrino velocity behavior is different and therefore uncorrelated.

3. Frozen neutrino speeds: Looking back in 1983 IMB

Let assume, following also most recent 2011 TAUP conference, MINOS result, that there is no (much) differences between the observed SN1987A \(\nu_e \), and the conjugate \(\nu_e \). In other words let us assume that we don’t face any relevant CPT violation. Moreover let us assume a frozen super-luminal neutrino velocity (not energy dependent), only for \(\nu_\mu, \nu_\tau \) flavors,
as early CERN-OPERA result seem to favor \[\text{[1]}.\] In this sce-
nario, if also electron neutrino share a frozen speed, as we al-
ready wrote in the abstract, there will be no room for any SN
eutrino signal on 1987A: any burst of few second would be
too much hidden in a precursor event few years (3.72) ear-
lier. If one really want to let survive SN1987A records with
OPERA, he may call for (an unnatural) different flavor neutrino
speeds: a scenario where electron neutrinos (and antineutrino)
fly nearly at velocity c, while muon neutrino \(\nu_\mu, \bar{\nu}_\mu\) (as well as its
mixed flavor \(\nu_e, \nu_\tau\)) in order to guarantee the solid \(\nu_\mu, \nu_\tau\) mixing
are super-luminal: than SN1987A \(\nu_e, \nu_\tau\) may be in agreement
with observed signals; nevertheless even in this ideal scenario
where \(\nu_\mu, \nu_\tau\) are reaching in time the SN1987A optical burst,
one should expect a coexisting precursor neutrino burst signal
in late 1982 or early 1983 (just 3.72 years earlier) inside IMB
records. This because the \(\theta_{12}\) mixing angle coupling electron and
muon flavors. Kamiokande was born on late 1983 and cannot
be searched in. This SN1987A neutrino burst precursor presen-
tance should rise in IMB detector because thermal SN1987A
muon neutrinos will fly faster but their faster mass eigen-states
should also oscillate reaching the Earth as electron flavor \(\nu_e, \bar{\nu}_e\).
The same for the tau neutrinos whose presence maybe coeval
with muon ones leading to a signal 3.72 years earlier. To find
such a \(\approx 8\) neutrino event (or even \(16\) because eventual thermal
tau neutrino conversion into electron ones) cluster in IMB
will be, in my eyes, the real surprising revolution offered by
OPERA. However nevertheless, any large different \(\nu_e, \bar{\nu}_e\) speed
respect \(\nu_\mu, \bar{\nu}_\mu\) strongly disagree also with other observed signal
at low (MeV) and high (GeV) energy neutrino flavor mixing,
mostly the Kamland results, see Fig. 5 as well as the corre-
lated atmospheric electron and muon neutrino angular spectra
see Fig. 3. In such a model one would expect not only a muon
neutrino anomaly in up-going vertical muon, but also a more
dramatic upward and downward electron neutrino suppression,
due to the flavor de-coherence to be discussed below, effect
that was never observed. In conclusion SN 1987A and known
neutrino flavor mixing strongly disagree with any ad hoc super-
luminal neutrino model or with the present frozen muon neutrino
super-luminal behavior.

Anyway, without prejudice, one may (or must) search in
oldest IMB records for the presence of any precursor twin neu-
trino burst in earliest 3.72 years since 1987, let say around June
1983, centered (within a spread of a couple of months) around
2 June 1983. The IMB detector was already recording since
1982 year, Kamiokande was not yet active. The presence of
such a precursor (that for different reasons is unrealistic) will
be boosting the hypothetical imaginary Opera-CERN discover
from its present unacceptable field to a more consistent experi-
mental arena. An even more revolutionary discovery may come
from an additional twin cluster of event due (for instance) to a
tau neutrino slightly different speed component; this possibility
(additional split in muon versus tau neutrino velocities) is nev-
ertheless much unexpected in view of the short oscillation scale
well observed for muon neutrino conversion into tau ones by
atmospheric SK muon neutrino and also in K2K records. In-
deed all such a frozen neutrino speed model should overcome
many other test, basically all the observed mixing data, with
very little hope of survival.

4. Neutrino \(\nu_e\) versus \(\nu_\mu\) in fast de-coherence

Once again, assuming that the frozen neutrino speed of \(\nu_\mu\)
(as well its twin \(\nu_\tau\)) decouples from the SN \(\nu_e\) and its antiparti-
cle states, in a CPT conserved physics, than the question is how
the flavor states separate in flight. Let us notice that an Opera
frozen speed \(\nu_\mu\) will anticipate (for Opera super-luminal neu-
trino velocity) a distance \(\delta l_{\nu_\mu} = 0.25 \mu m\). for each length \(L\)
of cm of flight.

\[
\frac{\delta l_{\nu_\mu}}{cm} = 0.25 \cdot 10^{-4}
\]

Consequently the Compton muon neutrino wave-length

\[
\delta l_{\nu_\mu\text{Compton}} = 1.24 \cdot 10^{-7} \frac{10^4 eV}{E_{\nu_\mu}} \cdot m.
\]

becomes comparable to its delayed distance (electron neutrino
at light velocity) very soon, for instance, at 10 MeV: just nearly
0.04 \(\mu m\). Therefore also electron anti neutrino from nuclear re-
actor will separate into their mass state (from muon flavors)
soon depleting the \(\nu_\mu\) by a large factor, almost a half. This
effect had to be observed already in atmospheric cosmic ray
neutrinos and in recent years Kamland signals, see Fig. 3. In
a more remarkable way the nuclear plant energy out put would
be correlated only to 57% of the anti neutrino flux, contrary
to well calibrated observations. Note that the so called reac-
tor antineutrino anomaly at a few percent cannot accommodate
the severe suppression above \(\text{[2]}\). The atmospheric signal must
combine both the early muon-electron mixing (because super-
luminal muon neutrino assumption) and the complete or partial
(muon-tau) mixing. These expected de-coherence imprint are
totally absent in long known atmospheric muon and electron
neutrino anisotropy, in conflict with such ad hoc frozen muon
super-luminal speed scenario. Let us remind that in the
following that we assume normal 3 flavor neutrino mixing,
where the probability of the muon to survive as a muon
is \(P(\nu_\mu \rightarrow \nu_\mu) = 0.357, P(\nu_e \rightarrow \nu_\mu) = 0.547, P(\nu_\tau \rightarrow \nu_\mu) = 0.264.\) See Fig. 2, see Fig 3, see Fig 4.

5. Conclusions: anti-tachyon or frozen super-luminal \(\nu_\mu\) ?

Assuming a nominal absolute imaginary neutrino (tachyon)
mass of 117 MeV and a Lorentz factor about 145, one may
fit a tachyon signal at Opera energy and precursor time, but it
is excluded because requires no SN1987A signal and a huge
neutrino spread (thousand years). We imagined a new ad hoc
(possibly wrong) anti-tachyon law (within a huge neutrino mass
about 2.4 eV) alleviating at best this spread within 2 minutes
or twelve seconds, but the model is unnatural, with no based
theoretical ground and already in remarkable conflict with en-
ergy independence in Opera neutrino speeds. These toy model
cannot match the well known mixing bounds. Finally the fixed
speed scenario option (where muon neutrino speed differ from
electron one) also suffer of different contradictions as shown
Figure 2: Our simulation of the expected zenith angle (cos θ) event count distribution for electron-muon ν mixing in the atmospheric νe signals in top figure, νµ signals in bottom figure, within a muon neutrino super-luminal scenario, where muon and electron ν are separated in speed and in fast de-coherence. The image is superimposed on last SK I,II, III data (2010) on neutrino mixing. Time integral is 1489 days as in SK in PDG 2010. The energies range in the windows 1.33−10 GeV. The zenith angle distributions for fully contained 1-ring, e-like and only µ-like events both with visible energy > 1.33 GeV.The back-ground black continuous histogram show the non-oscillating Monte Carlo events, and the solid thick gray histograms show the best-fit expectations for common neutrino oscillations [5]. Our frozen speed electron-muon neutrino mixing is described by a dashed gray histogram made by a complex combination of effects as the muon (over electron) flux ratio, the different muon neutrino (over electron) cross section, the muon into tau oscillation at different zenith-distance tracks, and the different distances for pions and muons in decay in flight at each zenith angles. Dashed gray histogram describes this new de-coherent scenario able to segregate the electron-muon flavor. However the departure from the data (mainly for electron flavors) is remarkable and in severe conflict with the observations. No way for frozen super-luminal neutrino speeds.

Above. Finally an even more ad hoc different frozen neutrino flavor speed, where the electron neutrino fly at (very near (1 ± 10−12) · c) speed while the muon ones at Opera frozen super-luminal speed (very near (1 − 2.37 · 10−5) · c)) agrees (apparently) with data, requires a hidden SN1987A neutrino precursor in June 1983 in IMB data. This model does suffer anyway in explaining the absent electron neutrino mixing within the atmospheric νe observed behavior as well in Kamland recent records (via θ12 oscillation and de-coherence, see Fig 3) as well as the same muon neutrino depletion due to de-coherence with electron flavor in OPERA and MINOS experiment. In conclusion the imaginary neutrino mass at the needed values (for Opera-Cern claim) is in disagreement with several data and by several order of magnitude. Because of the limited time accuracy in Opera-Minos any future OPERA or MINOS experiments, there is by present no-go arguments, no hope to test any observable self-consistent neutrino imaginary mass. Therefore we cannot imagine any imaginary mass able to fit the super-luminal data. Very last rumors seemed anyway to dismiss such unbelievable discover leading to a more realistic neutrino behavior.
6. Note after the submission

After this article has been submitted, a wide sequence (hundreds) of articles in these months discussed the Opera super-luminal neutrino claim. Earliest ones and most of all considered exotic possibilities to fit or explain the novel result [6]. A few, as those we do mention [7],[8] faced the eventual super-luminal consequences finding unacceptable consequences in Cerenkov-like neutrino emission and absorption or within arguments along pion decay kinematic inconsistence leading to a rejection of the Opera result as in our earliest and present study. Moreover recently OPERA CERN experiment was sending much narrow bunch leading to a confirm of their super-luminal neutrino claim [2]. But last minutes rumors [10] from OPERA seem to regard the key timing bug of the experiment. After all as someone said long time ago, Nature is subtle, but not malicious (or as we would add maliciously, a century after and later [2], nor perverse). Indeed the authors thanks the same Nature that forced us to the lucky privilege to be defending these (now) obvious relativistic arguments, in an embarrassing loneness, within a coral OPERA Seminar at Rome, on the 11th October 2011.

7. Appendix A: Neutrino mass by Andromeda SN ν delay

In next nearby super-novae event, possibly from Andromeda, it would be better testable the more conventional time delay of the prompt neutrino masses by their rapid neutralization NS signal versus the gravitational wave burst [3]. Indeed a millisecond prompt neutrino peak will obtain a comparable time delay (respect to SN gravitons) due to common (real mass) neutrino slower speed, and it may trace even the guaranteed (more mundane) real neutrino mass splitting (of atmospheric nature: \(m_\nu \geq 0.05 \) eV). In future few Mpc SN search (as toward Virgo) by future time correlated SN-GW (gravitational wave) detection the neutronization burst may lead to a neutrino mass discover. Indeed, after all, neutrino mass may be more real than imaginary one.

References

