Black holes in scalar-tensor gravity

Thomas P. Sotiriou1 and Valerio Faraoni2
1SISSA–ISAS, Via Bonomea 265, 34136, Trieste, Italy and INFN, Sezione di Trieste, Italy
2Physics Department and STAR Research Cluster, Bishop’s University, 2600 College Street, Sherbrooke, Québec, Canada J1M 1Z7

Hawking has proven that black holes which are stationary as the endpoint of gravitational collapse in Brans–Dicke theory (without a potential) are no different than in general relativity. We extend this proof to the much more general class of scalar-tensor and $f(R)$ gravity theories, without assuming any symmetries apart from stationarity.

PACS numbers: 04.70.Bw, 04.50.Kd

In general relativity, spacetime singularities are inevitable, as established long ago by the celebrated singularity theorems of Hawking and Penrose \cite{1, 2}. It seems that, generically, spacetime singularities resulting from the collapse of concentrated distributions of mass-energy are cloaked by horizons, resulting in black holes \cite{3}. Additionally, these black holes, provided that they are stationary as end-states of collapse, also have to be axisymmetric \cite{4} and are, therefore, rather simple objects described by the Kerr–Newman line element.

One is tempted to ask whether black holes in gravity theories other than general relativity will also share this last property or whether they will be significantly different. This question becomes more pertinent if one considers the rather compelling indications that, when one attempts to formulate a quantum version of relativistic gravity, one is forced to introduce elements foreign to general relativity, such as extra fields coupling explicitly to the curvature or higher order curvature corrections, which amounts to introducing extra degrees of freedom as well. Theories with non-minimally coupled scalar fields are typical examples of low-energy effective actions for quantum gravity models. Additionally, scalar fields coupled minimally or non-minimally to gravity have been extensively studied in recent years as potential models of dark energy \cite{5} ($f(R)$ gravity theories, see Refs. \cite{6, 7} for reviews, can ultimately be reduced to particular scalar-tensor theories \cite{8–10}).

The prototypical scalar-tensor alternative to general relativity is Brans-Dicke theory \cite{11}, which contains a scalar field mimicking the dilaton of string theories, and is described by the action

\begin{equation}
S_{\text{BD}} = \int d^4 x \sqrt{-\hat{g}} \left(\varphi \hat{R} - \omega_{\varphi} \nabla^\mu \varphi \nabla_\mu \varphi + L_m (\hat{g}_{\mu\nu}, \varphi) \right),
\end{equation}

where \hat{g} is the determinant and \hat{R} is the Ricci scalar of the metric $\hat{g}_{\mu\nu}$, ∇_μ denotes the corresponding covariant derivative, L_m is the matter Lagrangian, and φ collectively denotes the matter fields. It is implicitly assumed that the matter fields couple minimally to $\hat{g}_{\mu\nu}$. This makes $\hat{g}_{\mu\nu}$ the \textit{Jordan frame metric} (per definition). It has been shown by Hawking in 1972 that black holes which are the endpoint of collapse can be solutions of Brans–Dicke theory if and only if they are also solutions of general relativity \cite{12}.

Brans–Dicke theory belongs to a more general class of theories, dubbed scalar-tensor theories of gravity, whose action has the form

\begin{equation}
S_{\text{st}} = \int d^4 x \sqrt{-g} \left(\varphi \tilde{R} - \frac{\omega(\varphi)}{\varphi} \nabla^\mu \varphi \nabla_\mu \varphi - V(\varphi) + L_m (g_{\mu\nu}, \varphi) \right).
\end{equation}

That is, with respect to Brans–Dicke theory, ω_0 has been turned into an arbitrary function of φ and a potential for φ has been added. One could think of generalizing the action further by turning the coupling to \tilde{R} into a general function of φ as well, but this essentially amounts to a re-definition of the scalar and does not really lead to a new theory (provided that the redefinition is regular with regular inverse). One could also think of coupling the matter minimally to some conformal metric $\Omega^2(\varphi) g_{\mu\nu}$. But, again, this would just mean expressing the same theory in a different conformal frame, not actually considering another theory (provided that the conformal factor remains regular). In conclusion, \textit{in the Jordan frame} the most general scalar-tensor theory is characterized by two arbitrary functions of φ, $\omega(\varphi)$ and $V(\varphi)$.

Our aim is to generalize Hawking’s results for black holes in Brans–Dicke theory to the more general class of actions of scalar-tensor gravity in eq. (2), \textit{i.e.}, to show that isolated black holes that are the end-state of collapse in these theories are no different than in general relativity. So far, this has been shown only under the additional assumption of spherical symmetry, see Refs. \cite{13, 14} and references therein. Instead, we will not impose any symmetry assumption apart from stationarity, which simply

\begin{footnotesize}
\begin{enumerate}
\item See Refs. \cite{13, 14} for clarifying discussions about the role of conformal frames in scalar-tensor gravity and the difference between different theories and different representations of the same theory.
\end{enumerate}
\end{footnotesize}
reflects the condition that the black hole be the endpoint of collapse. That is, we will only require spacetime to have a Killing vector which is timelike at infinity.

The field equation one derives from the action \((2)\) by varying with respect to \(g_{\mu \nu}\) and \(\varphi\) are

\[
\dot{R}_{\mu \nu} - \frac{1}{2} \dot{g}_{\mu \nu} - \frac{\omega(\varphi)}{\varphi^2} \left(\hat{\nabla}_\mu \hat{\nabla}_\nu \varphi - \frac{1}{2} g_{\mu \nu} \hat{\nabla}^\lambda \varphi \hat{\nabla}_\lambda \varphi \right) + \frac{1}{\varphi} \left(\hat{\nabla}_\mu \hat{\nabla}_\nu \varphi - \dot{g}_{\mu \nu} \hat{\Box} \varphi \right) - \frac{V(\varphi)}{2 \varphi} g_{\mu \nu} \, ,
\]

\[(2\omega + 3) \hat{\Box} \varphi = - \omega' \hat{\nabla}^\lambda \varphi \hat{\nabla}_\lambda \varphi + \varphi V' - 2V \, ,
\]

respectively, where \(\hat{\Box} = \hat{\nabla}^\lambda \hat{\nabla}_\lambda\), a prime denotes differentiation with respect to the argument, and we have neglected the matter since we are interested in vacuum solutions. The condition that the black hole be isolated can be translated into the requirement that it should be asymptotically flat, i.e., at spatial infinity the metric should approximate Minkowski space and the scalar should go over to a constant \(\varphi_0\). However, this can only be true if \(V(\varphi_0) = 0\) and

\[\varphi_0 V'(\varphi_0) - 2V(\varphi_0) = 0 \, .
\]

It might seem that our requirement for asymptotic flatness strongly restricts the type of theories which we can consider: it is quite common for instance (especially in cosmologically motivated models) for scalar-tensor theories to have \(V(\phi_0) \neq 0\), which would lead to an effective cosmological constant. However, one has to bear in mind that asymptotic flatness is clearly an idealization reflecting the requirement to consider an isolated black hole. Indeed, any realistic black hole is embedded in a cosmological background. To the extent that it is reasonable to expect this cosmological background not to affect local physics, which is the very assumption under which one effectively neglects the stress-energy tensor of the cosmic fluid in the first place in such considerations, we should be able to safely neglect a non-vanishing \(V(\varphi_0)\) as well. Formally, this can be achieved by shifting the potential by a suitable constant which one considers part of the stress-energy tensor of the cosmic fluid.

Based on this consideration, for what concerns us here, we restrict our attention to theories for which \(V(\varphi_0) = 0\) for concreteness, but we regard this condition as physically non-essential. On the other hand, the condition in eq. \((5)\) appears to be more fundamental. It essentially reflects the fact that, if the potential for the scalar has no extrema or is not bound, there cannot be constant \(\varphi\) solutions.

Provided that the aforementioned conditions hold, it is evident that vacuum solutions of scalar-tensor gravity with \(\varphi = \varphi_0\) will be solutions of general relativity. In the remainder of this paper we will argue that the only stationary, asymptotically flat black hole solutions of scalar-tensor gravity are indeed solutions with \(\varphi = \varphi_0\). Instead of using the Jordan frame, one can use a different conformal frame, which can prove very advantageous for certain calculations. The most commonly used alternative is the Einstein frame, which is defined as the frame in which the scalar couples minimally to gravity (and, therefore, non-minimally to matter). The conformal transformation \(g_{\mu \nu} = \varphi \, \hat{g}_{\mu \nu}\) together with the scalar field redefinition

\[d\phi = \sqrt{\frac{2\omega(\varphi) + 3}{16\pi}} \frac{d\varphi}{\varphi} \, ,
\]

brings the action \((2)\) to the form

\[S_{\text{st}} = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi} - \frac{1}{2} \nabla^\mu \phi \nabla_\mu \phi - U(\phi) + L_m(\hat{g}_{\mu \nu}, \psi) \right) \, ,
\]

where \(U(\phi) = V(\varphi)/\varphi^2\) and \(g_{\mu \nu}\) is (per definition) the Einstein frame metric. \(R\) is the Ricci scalar of that metric, \(g\) is its determinant, and \(\nabla_\mu\) is the corresponding covariant derivative. Note that \(\hat{g}_{\mu \nu}\) appears in \(L_m\), effectively signaling the non-minimal coupling between matter and \(\phi\).

Here we are interested in black hole solutions, which are vacuum solutions, and so we neglect again \(L_m\). It becomes immediately apparent that, in this case, we remain with only one free function specifying the theory within the class, \(U(\phi)\) (or \(V(\varphi)\)). The field equations that one derives by varying the action \((4)\) with respect to \(g_{\mu \nu}\) and \(\phi\) are

\[R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = 8\pi T_{\mu \nu}^\phi \, ,
\]

\[\hat{\Box} \phi = U'(\phi) \, ,
\]

respectively, where

\[T_{\mu \nu}^\phi = \nabla_\mu \phi \nabla_\nu \phi - \frac{1}{2} g_{\mu \nu} \nabla_\lambda \phi \nabla^\lambda \phi - U(\phi) g_{\mu \nu} \, .
\]

Given that the conformal factor in the transformation that relates the Einstein and the Jordan frame is just \(\varphi\), symmetries remain unaffected. That is, in the Einstein frame one will still have a Killing vector \(\xi^\mu\) which is timelike at infinity. At the same time, asymptotically flat solutions are mapped into asymptotically flat solutions (provided that \(\omega(\varphi) \neq -3/2\) and does not diverge\(^2\)). Finally, it is easy to verify that the condition \((5)\) corresponds to \(U'(\phi_0) = 0\) and that \(V(\varphi_0) = 0\) implies \(U(\phi_0) = 0\). These considerations provide the full set-up of the problem in the Einstein frame.

\(^2\) When \(\omega = -3/2\) the scalar does not have dynamics and the theory reduces to general relativity in vacuo. This theory is equivalent to Palatini \(f(R)\) gravity \([13\, 14]\).
The main reason for one to use the Einstein frame is that in this frame $T^\phi_{\mu
u}$ does not contain second derivatives of the scalar. It can, therefore, satisfy the Weak Energy Condition [10], with the mild assumption that U (or V in the Jordan frame) does not become overly negative. It has been shown in Ref. [4] that stationary, asymptotically flat black hole solutions are solutions of general relativity. The condition [11] has a straightforward physical interpretation: it is a local linear stability condition for the scalar, i.e., if $U'' < 0$ at a neighborhood of a spacetime point, then the scalar is unstable there. Therefore, in theories with multiple extrema in the potential, there can also exist stationary, asymptotically flat black hole solutions which are not solutions of general relativity, but they will be linearly unstable.

Let us now discuss the subtleties and limitations of the proof just presented. First of all, clearly our approach hinges on the assumption that $V(\varphi) \neq 0$ (or equivalently $U(\phi) \neq 0$) in the first place. However, when $V(\varphi) = 0$, Hawking’s original proof for Brans–Dicke theory applies unmodified to scalar-tensor theories with $\omega = \omega(\varphi)$, provided that $\omega(\varphi) \neq -3/2$ and does not diverge. This is simply because, in the absence of matter, ω can be absorbed in the scalar redefinition in the Einstein frame.

Theories where ω can diverge are not covered by our proof. Also, for all theories, there is the possibility to have solutions which are different from general relativity if φ diverges somewhere in spacetime, as this would signal a breakdown of the conformal transformation from the Jordan to the Einstein frame. For example, such a maverick solution where φ diverges on the horizon has been found for a conformally coupled scalar [3] (though it is linearly unstable [21]). It is worth mentioning that these restrictions on ω and φ do not apply if the scalar field is assumed to be minimally coupled in the Jordan frame (then Jordan and Einstein frame coincide), as for example in simple quintessence models. Lastly, as mentioned earlier, metric $f(R)$ theories of gravity are equivalent to the special class of scalar-tensor theories with $\omega = 0$ and a potential whose functional form is related to the functional form of f [8–10]. As such, they are covered by our proof.

In our approach we have completely neglected the matter sector of the theory. However, it is straightforward to verify that allowing the presence of conformally invariant matter will not affect the outcome. The requirement of conformal invariance guarantees that, given that matter does not couple to φ in the Jordan frame, it will also not couple to ϕ in the Einstein frame. Therefore, our results are actually applicable not only to vacuum, but also to electro-vacuum black holes.

Finally, let us re-examine our two assumptions, namely that the black holes should be stationary and asymptotically flat. The first assumption, as we have repeatedly mentioned, reflects the requirement that the black holes represent quiescent objects which are the final state of gravitational collapse. The second assumption stems from the requirement that the black holes be isolated objects. Imposing asymptotic flatness forces one to neglect

\[U''(\phi) \geq 0, \]

\[\int_{\mathcal{V}} d^4x \sqrt{-g} U''(\phi) \Delta = \int_{\mathcal{V}} d^4x \sqrt{-g} U'^2(\phi). \]

One can rewrite this equation as

\[\int_{\partial\mathcal{V}} d^3x \sqrt{|\mathbf{h}|} U' \nabla_\mu \phi n^\mu, \]

where $\partial\mathcal{V}$ denotes the boundary of \mathcal{V}, n^μ is the normal to the boundary, and \mathbf{h} is the determinant of the induced metric $h_{\mu\nu}$ on the boundary. Now split the boundary into its constituents. The black hole horizon part will not contribute to the integral because the normal to the horizon is a linear combination of the two Killing vectors ξ^μ and ζ^μ, which generate the symmetry that the scalar respects, so $\xi^\mu \nabla_\mu \phi = \zeta^\mu \nabla_\mu \phi = 0$. The integrals over the two Cauchy hypersurfaces will have opposite values and cancel each other. Finally, asymptotically flatness requires that the integral vanishes over the timelike surface at infinity, as $\phi \to \phi_0$. Therefore, one obtains

\[\int_{\mathcal{V}} d^4x \sqrt{-g} [U''(\phi) \nabla^\mu \phi \nabla_\mu \phi + U'^2(\phi)] = 0. \]
the contribution of a(n) (effective) cosmological constant, as well as of the background cosmology in which the black hole will realistically be embedded. However, to the extent that one can trust that local physics is not affected by such contributions, and for black holes whose characteristic scale is much smaller that the Hubble scale, we expect asymptotic flatness to be an excellent approximation (in fact it is the standard assumption in black hole physics and for solutions describing stars).

To summarize, we have considered the fairly general class of scalar-tensor theories of gravity (which also includes $f(R)$ gravity) and we have shown that isolated black holes which are the end-state of collapse are solutions of this class if and only if they are solutions of general relativity, unless: (i) they are linearly unstable, or (ii) the scalar is non-minimally coupled to gravity and diverges somewhere in spacetime, or (iii) the scalar violates the Weak Energy Condition in the Einstein frame.

Acknowledgments: We would like to thank Stefano Liberati, Matt Visser and Vincenzo Vitagliano for stimulating discussions. T.P.S. acknowledges partial financial support provided under the "Young SISSA Scientists' Research Projects" scheme 2011-2012, promoted by the International School for Advanced Studies (SISSA), Trieste, Italy. VF thanks Bishop’s University and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.