A CHARACTERIZATION OF CAUSAL AUTOMORPHISMS
BY WAVE EQUATIONS

DO-HYUNG KIM

Abstract. A characterization of causal automorphism on Minkowski
spacetime is given by use of wave equation. The result shows that
causal analysis of spacetime may be replaced by studies of wave equa-
tion on manifolds.

1. Introduction

By causal automorphism, we mean a bijection between spacetimes t hat
preserves causal relations. In 1964, Zeeman has shown that causal auto-
morphisms on \mathbb{R}^{n+1} with $n \geq 2$ are generated by inhomogeneous Lorentz
group together with the dilatation.(Ref. [1]). As Zeeman commented, his
theorem does not hold in two-dimensional case. Recently, the solution to
two-dimensional case was given.(Ref. [2], [3], [4] and [5]) As Low has com-
mented in [5], each component of causal automorphisms on \mathbb{R}^{n} satisfies the
wave equation and so it is natural to ask the relationship between wave
equation and causal relation.

In this paper, we characterize causal automorphisms on \mathbb{R}^{n+1} by wave
equations. This gives a partial answer to the question raised by Low.

2. The case : \mathbb{R}^{n+1} with $n \geq 2$

We use the signature $(+,-,-,\ldots,-)$ for the metric of \mathbb{R}^{n+1}.

In general, the wave equation $\sum_{i=1}^{n} \frac{\partial^2 \phi}{\partial x_i^2} - \frac{1}{v^2} \frac{\partial^2 \phi}{\partial t^2} = 0$ represents a wave
with propagating speed v. From postulates in the theory of relativity, we assume that $v = c = 1$ and by setting $t = x_{n+1}$, the wave equation
becomes $\sum_{i=1}^{n} \frac{\partial^2 \phi}{\partial x_i^2} - \frac{\partial^2 \phi}{\partial x_{n+1}^2} = 0$. If we define ϵ_i by $\epsilon_1 = \cdots = \epsilon_n = 1$ and
$\epsilon_{n+1} = -1$, then the wave equation can be written by
$\sum_{j,k=1}^{n+1} \frac{\partial^2 \phi}{\partial y_j \partial y_k} \delta_{jk} \epsilon_k = 0$
or $\sum_{i=1}^{n} \epsilon_i \frac{\partial^2 \phi}{\partial x_i^2} = 0$.

Key words and phrases. Lorentzian geometry, general relativity, causality, Cauchy
surface, space-time.
Theorem 2.1. Let \((x_1, \ldots, x_{n+1})\) be the standard coordinate system on \(\mathbb{R}^{n+1}\) and \((y_1, \ldots, y_{n+1})\) be another coordinate system on \(\mathbb{R}^{n+1}\) with \(n \geq 2\). Assume that, for any smooth function \(\varphi\), \(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial x_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = 0\) if and only if
\(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial y_i^2} = 0\). Then, all rows of the Jacobian matrix \(\left(\frac{\partial y_j}{\partial x_i}\right)\) is mutually orthogonal and have the same length. Furthermore, the first \(n\) rows are spacelike vectors and the last row is a timelike vector.

Proof. By chain rule, we have

\[
\frac{\partial^2 \varphi}{\partial x_i^2} = \sum_{j=1}^{n+1} \frac{\partial \varphi}{\partial y_j} \frac{\partial^2 y_j}{\partial x_i^2}
\]

and,

\[
\frac{\partial^2 \varphi}{\partial y_i^2} = \sum_{j,k=1}^{n+1} \frac{\partial \varphi}{\partial y_{j+k}} \frac{\partial^2 y_{j+k}}{\partial y_i^2} + \sum_{j=1}^{n+1} \frac{\partial \varphi}{\partial y_j} \frac{\partial^2 y_j}{\partial x_i^2}.
\]

Therefore, we have

\[
\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial x_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = \sum_{i=1}^{n} \left(\sum_{j,k=1}^{n+1} \frac{\partial y_{j+k}}{\partial y_j} \frac{\partial^2 y_{j+k}}{\partial x_i^2} + \sum_{j=1}^{n+1} \frac{\partial y_j}{\partial y_i} \frac{\partial^2 y_j}{\partial x_i^2} \right) - \left(\sum_{j,k=1}^{n+1} \frac{\partial y_{j+k}}{\partial y_j} \frac{\partial y_{j+k}}{\partial x_i^2} + \sum_{j=1}^{n+1} \frac{\partial y_j}{\partial y_i} \frac{\partial^2 y_j}{\partial x_i^2} \right)
\]

\[
= \sum_{j,k=1}^{n+1} \frac{\partial^2 \varphi}{\partial y_j \partial y_{j+k}} \left(\sum_{i=1}^{n+1} \frac{\partial y_{j+k}}{\partial x_i} \frac{\partial y_j}{\partial x_i} - \frac{\partial y_{j+k}}{\partial x_{n+1}} \frac{\partial y_j}{\partial x_{n+1}} \right)
\]

\[
+ \sum_{j=1}^{n+1} \frac{\partial \varphi}{\partial y_j} \left(\sum_{i=1}^{n+1} \frac{\partial^2 y_j}{\partial x_i^2} - \frac{\partial^2 y_j}{\partial x_{n+1}^2} \right) = 0.
\]

From \(\sum_{j,k=1}^{n+1} \frac{\partial^2 \varphi}{\partial y_j \partial y_{j+k}} \delta_{j+k} \epsilon_k = 0\), we have

\[
\sum_{j,k=1}^{n+1} \frac{\partial^2 \varphi}{\partial y_j \partial y_{j+k}} \left(\sum_{i=1}^{n+1} \frac{\partial y_{j+k}}{\partial x_i} \frac{\partial y_j}{\partial x_i} - \frac{\partial y_{j+k}}{\partial x_{n+1}} \frac{\partial y_j}{\partial x_{n+1}} - \delta_{j+k} \epsilon_k \right) + \sum_{j=1}^{n+1} \frac{\partial \varphi}{\partial y_j} \left(\sum_{i=1}^{n+1} \frac{\partial^2 y_j}{\partial x_i^2} - \frac{\partial^2 y_j}{\partial x_{n+1}^2} \right) = 0.
\]

Since each \(y_i\) satisfies \(\sum_{i=1}^{n+1} \epsilon_i \frac{\partial^2 \varphi}{\partial y_i^2} = 0\), by the given assumption, it also satisfies the equation \(\sum_{i=1}^{n+1} \epsilon_i \frac{\partial^2 \varphi}{\partial y_i^2} = 0\), and thus the second terms of the above equation must vanish and thus the above equation becomes

\[
\sum_{j,k=1}^{n+1} \frac{\partial^2 \varphi}{\partial y_j \partial y_{j+k}} \left(\sum_{i=1}^{n+1} \frac{\partial y_{j+k}}{\partial x_i} \frac{\partial y_j}{\partial x_i} - \frac{\partial y_{j+k}}{\partial x_{n+1}} \frac{\partial y_j}{\partial x_{n+1}} - \delta_{j+k} \epsilon_k \right) = 0 \cdots \cdot (\ast).
\]
We now show the terms in the parenthesis of (\ast) vanish for $j \neq k$, which shows that all rows of $\left(\frac{\partial u}{\partial x_j} \right)$ are mutually orthogonal.

Let $\varphi(y_1, \ldots, y_{n+1}) = \exp(a_1y_1 + \cdots + a_{n+1}y_{n+1})$ with $a_1^2 + \cdots + a_n^2 = a_{n+1}^2$. Then, $\frac{\partial^2 \varphi}{\partial y_i \partial y_j} = a_j a_k \exp(a_1y_1 + \cdots + a_{n+1}y_{n+1})$, and since φ is a solution of $\sum_{i=1}^{n+1} \epsilon_i \frac{\partial^2 \varphi}{\partial y_i^2} = 0$, it must be that $\sum_{i=1}^{n+1} \epsilon_i \frac{\partial^2 \varphi}{\partial y_i^2} = 0$. Therefore, φ must satisfy the equation (\ast) for any real numbers a_i’s with $a_1^2 + \cdots + a_n^2 = a_{n+1}^2$.

For the sake of simplicity, we denote the term $\sum_{i=1}^{n+1} \frac{\partial \varphi}{\partial x_i} \frac{\partial \varphi}{\partial y_i} - \frac{\partial \varphi}{\partial x_{n+1}} \frac{\partial \varphi}{\partial y_{n+1}} - \delta_j k \epsilon_k$ by (k, j).

For $\alpha > 0$, by putting $a_i = a_{n+1} = \alpha$ and $-a_i = a_{n+1} = \alpha$ in (\ast), we have two equations. By subtracting two equations, we have $(i, n+1) = 0$, which means that all i-th rows of $\left(\frac{\partial u}{\partial x_j} \right)$ are orthogonal to the $(n+1)$-th row for $1 \leq i \leq n$.

For $i \neq j$, by putting $a_i = \frac{\alpha}{\sqrt{2}}$, $a_j = \frac{\alpha}{\sqrt{2}}$, $a_{n+1} = \alpha$ in (\ast) and then by putting $a_i = \frac{\alpha}{\sqrt{2}}$, $a_j = \frac{\alpha}{\sqrt{2}}$, $a_{n+1} = \alpha$ in (\ast), we have two equations. By subtracting them, we have $(i, j) = 0$, which means that all i-th and j-th rows are orthogonal for $1 \leq i \neq j \leq n$.

By considering the above two results, and if we put $a_i = a_{n+1} = \alpha$ in (\ast), we have $(i, i) + (n+1, n+1) = 0$ for $1 \leq i \leq n$, which implies that all rows have the same length.

From $(i, i) + (n+1, n+1) = 0$, we can see that if $(i, i) = 0$, then $(n+1, n+1) = 0$. In other words, all rows of the Jacobian matrix are null vectors. In general, mutually orthogonal null vectors are co-linear, which implies that all rows of the Jacobian are linearly dependent, which implies that $\left(\frac{\partial u}{\partial x_j} \right)$ is singular. This is a contradiction. Therefore, the first n rows are spacelike vectors and the $(n+1)$-th row is a timelike vector. \hfill \Box

In 1964, Zeeman has shown the following theorem. (Ref. [1]).

Theorem 2.2. Let $F : \mathbb{R}^{n+1}_1 \rightarrow \mathbb{R}^{n+1}_1$ be a causal automorphism with $n \geq 2$. Then, there exist a real number a, an orthochronous matrix A and $b \in \mathbb{R}^{n+1}_1$ such that $F(x) = a \cdot Ax + b$.

We now characterize causal automorphisms on \mathbb{R}^{n+1}_1.

Theorem 2.3. Let $F : \mathbb{R}^{n+1}_1 \rightarrow \mathbb{R}^{n+1}_1$ given by $(y_1, \ldots, y_{n+1}) = F(x_1, \ldots, x_{n+1})$ be a diffeomorphism with $n \geq 2$. Then the necessary and sufficient condition for F to be a causal automorphism on \mathbb{R}^{n+1}_1 is that $\frac{\partial y_{n+1}}{\partial x_{n+1}} \geq 0$, and for any smooth function φ, $\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial x_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = 0$ if and only if $\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial y_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = 0$.

Proof. Assume that F is a causal automorphism. Then, by Zeeman’s theorem, we have $y_1 = \alpha \sum_{k=1}^{n+1} a_{jk} x_k + b_k$ where (a_{jk}) is an orthochronous matrix.

Then, we have
\[
\frac{\partial f}{\partial x_i} = \sum_j \frac{\partial a_j}{\partial y_j} \frac{\partial y_j}{\partial x_i} = \sum_j \frac{\partial a_j}{\partial y_j} (a a_{ji}),
\]
\[
\frac{\partial^2 \varphi}{\partial x^2_j} = \sum_{j,k} \alpha^2 a_{kj} a_{ki} \frac{\partial^2 \varphi}{\partial y_k \partial y_j}.
\]
Therefore, we have
\[
\sum_i \epsilon_i \frac{\partial^2 \varphi}{\partial x^2_i} = \sum_{i,j,k} \epsilon_i \alpha^2 a_{kj} a_{ki} \frac{\partial^2 \varphi}{\partial y_k \partial y_j}
\]
\[
= \sum_{j,k} \alpha^2 \delta_{jk} \epsilon_j \frac{\partial^2 \varphi}{\partial y_k \partial y_j}
\]
\[
= \alpha^2 \left(\sum_j \epsilon_j \frac{\partial^2 \varphi}{\partial y^2_j} \right).
\]

In other words, $\sum_{i=1}^n \frac{\partial^2 \varphi}{\partial x^2_i} = 0$ if and only if $\sum_{i=1}^n \frac{\partial^2 \varphi}{\partial y^2_i} = 0$. Since (a_{ij}) is orthochronous, we must have $a_{n+1,n+1} \geq 1$, and thus $\frac{\partial y_{n+1}}{\partial x_{n+1}} = \alpha a_{n+1,n+1} > 0$.

Conversely, assume that $\sum_{i=1}^n \frac{\partial^2 \varphi}{\partial x^2_i} = 0$ if and only if $\sum_{i=1}^n \frac{\partial^2 \varphi}{\partial y^2_i} = 0$. If we consider $(x_1, \cdots, x_{n+1}) \mapsto (Y_1, \cdots, Y_{n+1})$ as a map from \mathbb{R}_{n+1}^1 to \mathbb{R}_{n+1}^1, then since $\left(\frac{\partial Y_i}{\partial y_j}\right) = \left(\frac{\partial y_i}{\partial y_j}\right) = \left(\frac{\partial y_i}{\partial y_j}\right)^{-1}$, $(\frac{\partial y_i}{\partial y_j})$ is a Lorentz matrix.

If we consider $(x_1, \cdots, x_{n+1}) \mapsto (Y_1, \cdots, Y_{n+1})$ as a map from \mathbb{R}_{n+1}^1 into \mathbb{R}_{n+1}^n, then since $(\frac{\partial Y_i}{\partial y_j})$ is a Lorentz matrix, the map is an isometry from \mathbb{R}_{n+1}^n into a subset of \mathbb{R}_{n+1}^n. Since \mathbb{R}_{n+1}^n can not be isometric to its proper subset, the map is surjective and thus the map is an isometry from \mathbb{R}_{n+1}^n onto \mathbb{R}_{n+1}^n. Therefore, by proposition 10 of chapter 9 in Ref. [6], we have $(Y_1, \cdots, Y_{n+1}) = A(x_1, \cdots, x_{n+1}) + b$ for some $(n+1)$-by-$(n+1)$ Lorentz matrix A. Therefore, we have $(y_1, \cdots, y_{n+1}) = fA(x_1, \cdots, x_{n+1}) + b$.

We now show that the function f is a constant function. From $\frac{\partial f}{\partial y_j} = \frac{\partial f}{\partial x_j} \left(\sum_{k=1}^{n+1} a_{n+1,k} x_k \right) + a_{n+1,j}$, since the vectors $\left(\frac{\partial y_{n+1}}{\partial x_j}\right)$ and $(a_{n+1,j})$ are timelike unit vectors, we can see that grad f is spacelike at all points. In the proof of theorem 2.11, we have shown that the condition, $\sum_{i=1}^n \frac{\partial^2 \varphi}{\partial x^2_i} = 0$
if and only if \[\sum_{i=1}^{n+1} \frac{\partial^2 \phi}{\partial x_i^2} - \frac{\partial^2 \phi}{\partial x_{n+1}^2} = 0. \] If we substitute \(y_i = f \sum_{k=1}^{n+1} a_{ik} x_k + b_i \) into \(\sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 y_i}{\partial x_j^2} = 0, \) we have,

\[\sum_{k=1}^{n+1} a_{ik} \left(\sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 f}{\partial x_j^2} \right) x_k + 2 \epsilon_k \frac{\partial f}{\partial x_k} = 0, \] for each \(i. \) \cdot \cdot \cdot \cdot \cdot (**) \]

Since \((a_{ik})\) is non-singular, we must have \(\left(\sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 f}{\partial x_j^2} \right) x_k + 2 \epsilon_k \frac{\partial f}{\partial x_k} = 0 \) for all \(k. \) In other words, \(\left(\sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 f}{\partial x_j^2} \right) \mathbf{x} + 2 \text{grad} f = 0 \) where \(\mathbf{x} = (x_1, \cdots, x_{n+1}) \) is a position vector.

Since \(\text{grad} \ f \) is spacelike, if we take \(\mathbf{x} \) to be timelike, we have a contradiction. Therefore, \(\text{grad} \ f = 0 \) and \(\sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 f}{\partial x_j^2} = 0 \) at each point in future and past time cone with apex at the origin. By continuity, they are zero on the closure of the time cone.

We let \(\tilde{f} = \sum_{j=1}^{n+1} \epsilon_j \frac{\partial^2 f}{\partial x_j^2}, \) and take divergence of both sides of the previous equation, we have \(\mathbf{x} [\tilde{f}] + (n+3) \tilde{f} = 0. \) This is the typical example of first-order partial differential equation, called Euler’s equation, and it has a unique solution 0. (See Section 6 of Chapter 1 in Ref. [7]). Therefore, \(\tilde{f} \) vanishes and from the equation (**) we have that \(\text{grad} f \) is constantly zero, and thus \(f \) is a positive real number \(\alpha. \)

Finally, since \(\frac{\partial y_{n+1}}{\partial x_{n+1}} = \alpha a_{n+1,n+1} > 0, \) we have \(a_{n+1,n+1} > 1 \) and thus \(A \) is an orthochronous matrix. In conclusion, by Zeeman’s theorem again, the map \(F \) is a causal automorphism.

It is a well-known fact that every \(C^2 \) function that satisfies Laplace equation is actually a \(C^\infty \) function. We can state a similar result by use of above results. In previous theorems, we have tacitly assumed that \(\phi \) and coordinate transformation \((x_1, \cdots, x_{n+1}) \mapsto (y_1, \cdots, y_{n+1}) \) are \(C^\infty. \) However, as can be seen in the proof, it suffices to assume that \(\phi \) and the coordinate transformation are \(C^2. \)

Then, we have the following corollary.

Corollary 2.1. Let \((x_1, \cdots, x_{n+1})\) be the standard coordinate system on \(\mathbb{R}^{n+1} \) and \((y_1, \cdots, y_{n+1})\) be another \(C^2 \) coordinate system on \(\mathbb{R}^{n+1}. \) For any \(C^2 \) function \(\phi, \) if \(\phi \) satisfies the wave equation with respect to \(x_i \)’s if and only if \(\phi \) satisfies the wave equation with respect to \(y_i \)’s, then the coordinate transformation is \(C^\infty. \)
Discussions

In elementary wave equation theory, it is known that, if φ is a solution of wave equation, then its value at $(\alpha_1, \cdots, \alpha_{n+1})$ with $\alpha_{n+1} > 0$ is completely determined by the values of φ on $C \cap \Sigma$ where Σ is a hyperplane $x_{n+1} = 0$ and C is the backward cone with apex at $(\alpha_1, \cdots, \alpha_{n+1})$. The values of φ on Σ outside $C \cap \Sigma$ can not affect the value of the solution at $(\alpha_1, \cdots, \alpha_{n+1})$. For this reason, $C \cap \Sigma$ is known as the domain of dependence of the solution at the point $(\alpha_1, \cdots, \alpha_{n+1})$.

In terms of causality theory, the set $C \cup \Sigma$ is a causally admissible subset with respect to the Cauchy surface Σ developed in Ref. [11]. To be precise, let Σ be the hyperplane defined by $x_{n+1} = 0$. Then Σ is a Cauchy surface and under the causal automorphism F, $F(\Sigma)$ is another Cauchy surface.

The condition that “for any smooth function φ, \(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial x_i^2} - \frac{\partial^2 \varphi}{\partial x_{n+1}^2} = 0 \) if and only if \(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial y_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = 0 \)” implies that there exists a one-to-one correspondence between the domain of dependence of φ at $(\alpha_1, \cdots, \alpha_{n+1})$ with respect to Σ and the domain of dependence of φ at $F(\alpha_1, \cdots, \alpha_{n+1})$ with respect to $F(\Sigma)$. In other words, the condition \(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial x_i^2} - \frac{\partial^2 \varphi}{\partial x_{n+1}^2} = 0 \) \Leftrightarrow \(\sum_{i=1}^{n} \frac{\partial^2 \varphi}{\partial y_i^2} - \frac{\partial^2 \varphi}{\partial y_{n+1}^2} = 0 \) implies the existence of causally admissible function with respect to Σ and $F(\Sigma)$.

As can be seen in theorem 2.1, 2.3 and the above argument, wave equation itself implies the causal relation. In fact, though we usually define causal relation on Minkowski spacetime on the basis of physical reason, it can be understood that, mathematically rigorously, the causal relation can be defined on the basis of theory of wave equation.

As commented in section 1, causal automorphism on \mathbb{R}^2_1 has some peculiar properties in contrast to higher dimensional Minkowski spacetimes. The method used in this paper does not work in two-dimensional case since causal automorphism on two-dimensional spacetime is not necessarily smooth and thus we can not convert the wave equation written in x_i’s into the wave equation written in y_i’s.

It is a well-known fact that, in more than two spacetime dimensions, any causal automorphism is a conformal diffeomorphism.(See Ref. [8], [9] and [10]). Also, it is known that a diffeomorphism $f : (M, g) \rightarrow (N, h)$ if a conformal transformation if and only if $g(v, v) = 0$ if and only if $h(F_v, F_v) = 0$. In other words, in more than two spacetime dimensions, any null vector preserving diffeomorphism is a causal isomorphism. Null vector preserving diffeomorphism can be interpreted as that any wave with propagation speed $c = 1$ must be sent to a wave with propagation speed $c = 1$. In other
words, it must be that \[\sum_{i=1}^{n} \frac{\partial^2 \phi}{\partial x_i^2} - \frac{\partial^2 \phi}{\partial x_{n+1}^2} = 0 \Leftrightarrow \sum_{i=1}^{n} \frac{\partial^2 \phi}{\partial y_i^2} - \frac{\partial^2 \phi}{\partial y_{n+1}^2} = 0. \] If we consider these, we can see that theorem [23] can be used to give a new proof of Zeeman’s theorem.

4. Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0022667).

References

[8] Department of Applied Mathematics, College of Advanced Science, Dankook University, San 29, Anseo-dong, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea

E-mail address: mathph@dankook.ac.kr