Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology

Thomas Cailleteau1, Jakub Mielczarek2, Aurelien Barrau1 and Julien Grain3

1 Laboratoire de Physique Subatomique et de Cosmologie, UJF, CNRS/IN2P3, INPG
53, av. des Martyrs, 38026 Grenoble cedex, France
2 Astronomical Observatory, Jagiellonian University, 30-244 Kraków, Orla 171, Poland
2 Theoretical Physics Department, National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
3 Institut d’Astrophysique Spatiale, Université Paris-Sud 11, CNRS
Bâtiments 120-121, 91405 Orsay Cedex, France

Abstract. Holonomy corrections to scalar perturbations are investigated in the loop quantum cosmology framework. Due to the effective approach, modifications of the algebra of constraints generically lead to anomalies. In order to remove those anomalies, counter-terms are introduced. We find a way to explicitly fulfill the conditions for anomaly freedom and we give explicit expressions for the counter-terms. Surprisingly, the $\bar{\mu}$-scheme naturally arises in this procedure. The gauge invariant variables are found and equations of motion for the anomaly-free scalar perturbations are derived. Finally, some cosmological consequences are discussed qualitatively.
1. Introduction

Loop Quantum Gravity (LQG) is a tentative non-perturbative and background-independent quantization of General Relativity (GR) \[1\]. Interestingly, it has now been demonstrated that different approaches, based on canonical quantization of GR, on covariant quantization of GR and on formal quantization of geometry lead to the very same LQG theory. Although this is rather convincing, a direct experimental probe is still missing. One can easily argue that cosmology is the most promising approach to search for observational features of LQG or, more specifically, to its symmetry-reduces version, Loop Quantum Cosmology (LQC) \[2\].

Many efforts have been devoted to the search of possible footprints of LQC in cosmological tensor modes (see \[3\]). At the theoretical level, the situation is easier in this case as the algebra of constraints is automatically anomaly-free. But, as far as observations are concerned, scalar modes are far more important. They have already been observed in great details by WMAP \[4\] and are currently even better observed by the Planck mission. The question of a possible modification of the primordial scalar power spectrum (and of the corresponding TT C_l spectrum) in LQC is therefore essential in this framework.

Gravity is described by a set of constraints. However, for the (effective) theory to be consistent, it is mandatory that the evolution generated by the constraints remains compatible with the constraints themselves. This is always true if their mutual Poisson brackets vanish when evaluated in fields fulfilling the constraints, \textit{i.e.} if they form a first class algebra. This means that the evolution and the gauge transformations are associated with vector fields that are tangent to the manifold of null constraints. This obviously holds at the classical level. However, when quantum modifications are added, the anomaly freedom is not anymore automatically ensured. Possible quantum corrections must be restricted to those which close the algebra. This means that, for consistency reasons, the Poisson brackets between any two constraints must be proportional to one constraint of the algebra. This article is devoted to the search for such an algebra for scalar perturbations.

Our approach will follow the one developed by Bojowald \textit{et al.} in \[5\]. There are two main quantum corrections expected from LQC: inverse volume terms, basically arising for inverse powers of the densitized triad, which when quantized become an operator with zero in its discrete spectrum thus lacking a direct inverse, and holonomy corrections coming from the fact that loop quantization is based on holonomies, rather than direct connection components. In \[5\] the authors focused exclusively on inverse volume corrections. Here, we extend with work to the holonomy corrections. Scalar perturbations with holonomy corrections have been studied in \[6\]. However, the issue of anomaly freedom was not really addressed. Recently, a new possible way of introducing holonomy corrections to the scalar perturbations was proposed in \[7\]. Although it was interestingly shown that the formulation is anomaly-free, the approach is based on the choice of the longitudinal gauge and the extension of the method to the gauge-invariant
case is not straightforward. In contrast, the approach developed in our paper does not rely on any particular choice of gauge and the gauge-invariant cosmological perturbations are easily constructed.

The theory of anomaly-free scalar perturbations developed in this paper is obtained on a flat FRW background, such that the line element is given by:

\[
ds^2 = a^2 \left[-(1 + 2 \phi) d\eta^2 + 2 \partial_a B d\eta dx^a + ((1 - 2 \psi) \delta_{ab} + 2 \partial_a \partial_b E) dx^a dx^b \right],
\]

where \(\phi, \psi, E \) and \(B \) are scalar perturbation functions. The matter content is assumed to be a scalar field. This will allow us to investigate the generation of scalar perturbations during the phase of cosmic inflation while taking into account the quantum gravity effects.

Our analysis of the scalar perturbations is performed in the Hamiltonian framework developed in \([5, 8]\). As it was shown there, the background variables are \((\bar{k}, \bar{p}, \bar{\phi}, \bar{\pi})\), while the perturbed variables are \((\delta K_i, \delta E_i, \delta \phi, \delta \pi)\). The Poisson bracket for the system can be decomposed as follows:

\[
\{\cdot, \cdot\} = \{\cdot, \cdot\}_{\bar{k}, \bar{p}} + \{\cdot, \cdot\}_{\delta K, \delta E} + \{\cdot, \cdot\}_{\bar{\phi}, \bar{\pi}} + \{\cdot, \cdot\}_{\delta \phi, \delta \pi}
\]

where

\[
\{\cdot, \cdot\}_{\bar{k}, \bar{p}} := \frac{\kappa}{3V_0} \left[\partial_{\bar{k}} \partial_{\bar{p}} - \partial_{\bar{p}} \partial_{\bar{k}} \right],
\]

\[
\{\cdot, \cdot\}_{\delta K, \delta E} := \kappa \int_\Sigma d^3 x \left[\delta \frac{\partial}{\partial \delta K^i_a} \delta \frac{\partial}{\partial \delta E^a_i} - \delta \frac{\partial}{\partial \delta E^a_i} \delta \frac{\partial}{\partial \delta K^i_a} \right],
\]

\[
\{\cdot, \cdot\}_{\bar{\phi}, \bar{\pi}} := \frac{1}{V_0} \left[\partial_{\bar{\phi}} \partial_{\bar{\pi}} - \partial_{\bar{\pi}} \partial_{\bar{\phi}} \right],
\]

\[
\{\cdot, \cdot\}_{\delta \phi, \delta \pi} := \int_\Sigma d^3 x \left[\delta \frac{\partial}{\partial \delta \phi} \delta \frac{\partial}{\partial \delta \pi} - \delta \frac{\partial}{\partial \delta \pi} \delta \frac{\partial}{\partial \delta \phi} \right].
\]

Here, \(V_0 \) is the volume of the fiducial cell and \(\kappa = 8\pi G \).

The holonomy corrections are introduced by the replacement \(\bar{k} \to \mathbb{K}[n] \) in the classical Hamiltonian. We follow the notation introduced in \([9]\), where

\[
\mathbb{K}[n] := \begin{cases}
\sin(n\bar{\mu}\gamma k) / n\bar{\mu}\gamma & \text{for } n \in \mathbb{Z}/\{0\}, \\
\bar{k} & \text{for } n = 0,
\end{cases}
\]

for the correction function. In cases where \(\bar{k} \) appears quadratically, the integer \(n \) is fixed to two (See \([9]\)). In the other cases, the integers remain to be fixed from the requirement of anomaly freedom. The coefficient \(\gamma \) is the Barbero-Immirzi parameter and \(\bar{\mu} \propto \bar{\pi}^\beta \) where \(-1/2 \leq \beta \leq 0\). In what follows, the relation

\[
\bar{p} \frac{\partial}{\partial \bar{p}} \mathbb{K}[n] = [\bar{k} \cos(n\bar{\mu}\gamma \bar{k}) - \mathbb{K}[n]] \beta
\]

will be useful.

The organization of the paper is the following. In Sec. 2, the holonomy-corrected gravitational Hamiltonian constraint is defined. We calculate the Poisson bracket of the
Hamiltonian constraint with itself and with the gravitational diffeomorphism constraint.

In Sec. 3, scalar matter is introduced. The Poisson brackets between the total constraints for the system under consideration are calculated. In Sec. 4, the conditions for anomaly freedom are solved and the expressions for the counter-terms are derived. Based on this, in Sec. 5, equations of motion for the scalar perturbations are derived. The system of equations is then investigated in the case of the longitudinal gauge. Finally, gauge-invariant variables are found and the equations for the corresponding Mukhanov variables are derived. In Sec. 6, we summarize our results and draw out some conclusions.

2. Scalar perturbations with holonomy corrections

The holonomy-modified Hamiltonian constraint can be written as:

$$H_G^Q[N] = \frac{1}{2\kappa} \int_\Sigma d^3x \left[N(\mathcal{H}_G^{(0)} + \mathcal{H}_G^{(2)}) + \delta N \mathcal{H}_G^{(1)} \right],$$

where

$$\mathcal{H}_G^{(0)} = -6\sqrt{\bar{p}}(\mathbb{K}[1])^2,$$

$$\mathcal{H}_G^{(1)} = -4\sqrt{\bar{p}}(\mathbb{K}[s_1] + \alpha_1) \delta^c_j \delta K^j_c - \frac{1}{\sqrt{\bar{p}}} (\mathbb{K}[1]^2 + \alpha_2) \delta^c_j \delta E^c_j$$

$$+ \frac{2}{\sqrt{\bar{p}}}(1 + \alpha_3) \partial_c \partial^j \delta E^c_j,$$

$$\mathcal{H}_G^{(2)} = \sqrt{\bar{p}}(1 + \alpha_4) \delta K^c_j \delta K^d_k \delta^c_k \delta^d_j - \sqrt{\bar{p}}(1 + \alpha_5)(\delta K^c_j \delta^c_j)^2$$

$$- \frac{2}{\sqrt{\bar{p}}}(\mathbb{K}[s_2] + \alpha_6) \delta E^c_j \delta K^j_c - \frac{1}{2\bar{p}^{3/2}} (\mathbb{K}[1]^2 + \alpha_7) \delta E^c_j \delta E^d_k \delta^c_k \delta^d_j$$

$$+ \frac{1}{4\bar{p}^{3/2}} (\mathbb{K}[1]^2 + \alpha_8) (\delta E^c_j \delta^c_j)^2 - \frac{1}{2\bar{p}^{3/2}}(1 + \alpha_9) \delta^{ij}(\partial_c \delta E^c_j)(\partial_d \delta E^d_k).$$

The standard holonomy corrections are parametrized by two integers s_1 and s_2. The α_i are counter-terms, which are introduced to remove anomalies. Those factors are defined so that they vanish in the classical limit ($\bar{\mu} \to 0$). The counter-terms could be, in general, functions of all the canonical variables. We however assume here that they are functions of the gravitational background variables only.

In our approach, the diffeomorphism constraint holds the classical form

$$D_G[N^a] = \frac{1}{\kappa} \int_\Sigma d^3x \delta N^c \left[\bar{p} \partial_c (\delta^d_k \delta K^k_c) - \bar{p}(\partial_k \delta K^k_c) - \bar{k} \delta^k_k (\partial_d \delta E^d_k) \right].$$

In general, the diffeomorphism constraint could also be holonomy corrected. this possibility was studied, e.g., in [6]. However, in LQG the diffeomorphism constraint is satisfied at the classical level. Therefore, if LQC is to be considered as a specific model of LQG, the diffeomorphism constraint should naturally hold its classical form. Because of this, in this paper, the diffeomorphism constraint is not modified by the holonomies. It is worth stressing, that the classicality of the diffeomorphism constraint is also imposed by the requirement of anomaly cancelation. Namely, if one replaces
In \(\bar{k} \rightarrow \mathbb{K}[n] \) in (10), the condition \(n = 0 \) would anyway be required by the introduction of scalar matter. In fact, the same condition was obtained for vector modes with holonomy corrections [9].

Let us now calculate the possible Poisson brackets for the constraints \(H^Q_G[N] \) and \(D_G[N^a] \).

2.1. The \(\{H^Q_G, D_G\} \) bracket

Using the definition of the Poisson bracket (2), we derive:

\[
\begin{align*}
\{ H^Q_G[N], D_G[N^a] \} &= \delta N^a \partial_a \delta N + B \, D_G[N^a] \\
&+ \frac{\sqrt{\bar{\mu}}}{\kappa} \int_{\Sigma} d^3 x \delta N^a (\partial_a \delta N) \mathcal{A}_1 + \frac{\bar{N} \sqrt{\bar{k}}}{\kappa} \int_{\Sigma} d^3 x \delta N^a (\partial_i \delta K_{ia}) \mathcal{A}_2 \\
&+ \frac{\bar{N}}{\kappa \sqrt{\bar{\mu}}} \int_{\Sigma} d^3 x \delta N^i (\partial_a \delta E_{ia}) \mathcal{A}_3 + \frac{\bar{N}}{2 \kappa \sqrt{\bar{\mu}}} \int_{\Sigma} d^3 x (\partial_a \delta N^a) (\delta E^b \delta_{ia}) \mathcal{A}_4,
\end{align*}
\]

where

\[
B = \frac{\bar{N}}{\sqrt{\bar{\mu}}} \left[-2 \mathbb{K}[2] + \bar{k}(1 + \alpha_5) + \mathbb{K}[s_2] + \alpha_6 \right],
\]

and

\[
\begin{align*}
\mathcal{A}_1 &= 2 \bar{k} (\mathbb{K}[s_1] + \alpha_1) + \alpha_2 - 2 \mathbb{K}[1]^2, \\
\mathcal{A}_2 &= \alpha_5 - \alpha_4, \\
\mathcal{A}_3 &= -\mathbb{K}[1]^2 - \frac{\partial}{\partial \bar{\mu}} \mathbb{K}[1]^2 - \frac{1}{2} \alpha_7 \\
&+ \bar{k} (-2 \mathbb{K}[2] + \bar{k}(1 + \alpha_5) + 2 \mathbb{K}[s_2] + 2 \alpha_6), \\
\mathcal{A}_4 &= \alpha_8 - \alpha_7.
\end{align*}
\]

The functions \(\mathcal{A}_1, \ldots, \mathcal{A}_4 \) are the first anomalies coming from the effective nature of the Hamiltonian constraint. Later, we will set them to zero so as to fulfill the requirement of anomaly freedom. This will lead to constraints on the form of the counter-terms.

Beside the anomalies, the \(\{H^Q_G, D_G\} \) bracket contains the \(-H^Q_G[\delta N^a \partial_a \delta N]\) term, which is expected classically. There is also an additional contribution from the diffeomorphism constraint \(B \, D_G[N^a] \). This term is absent in the classical theory. This is however consistent as, for \(\bar{\mu} \rightarrow 0 \), the \(B \) function tends to zero.

2.2. The \(\{H^Q_G, H^Q_G\} \) bracket

The next bracket is:

\[
\begin{align*}
\{ H^Q_G[N_1], H^Q_G[N_2] \} &= (1 + \alpha_3)(1 + \alpha_5) D_G \left[\frac{N}{\bar{p}} \partial^a (\delta N_2 - \delta N_1) \right] \\
&+ \frac{\bar{N}}{\kappa} \int_{\Sigma} d^3 x \partial^a (\delta N_2 - \delta N_1) (\partial_i \delta K_{ia})(1 + \alpha_3) \mathcal{A}_5.
\end{align*}
\]
where

$$A_5 = \alpha_5 - \alpha_4,$$

$$A_6 = (1 + \alpha_9)(\mathbb{K}[s_1] + \alpha_1) - (1 + \alpha_3)(\mathbb{K}[s_2] + \alpha_6) + \mathbb{K}[2](1 + \alpha_3)$$

$$- 2\mathbb{K}[2]p_0 \frac{\partial \alpha_3}{\partial p_0} + \frac{1}{2} \left(\mathbb{K}[1]^2 + 2p_0 \frac{\partial \mathbb{K}[1]}{\partial p} \right) \frac{\partial \alpha_3}{\partial k} - \tilde{k}(1 + \alpha_3)(1 + \alpha_5),$$

$$A_7 = 4\mathbb{K}[2]p_0 \frac{\partial \mathbb{K}[s_1]}{\partial p_0} + \alpha_1 - \left(\mathbb{K}[1]^2 + 2p_0 \frac{\partial \mathbb{K}[1]}{\partial p} \right) \frac{\partial }{\partial k} \left(\mathbb{K}[s_1] + \alpha_1 \right)$$

$$+ \left(1 + \frac{3}{2} \alpha_5 - \frac{1}{2} \alpha_4 \right) \left(\mathbb{K}[1]^2 + \alpha_2 \right) - 2(\mathbb{K}[s_2] + \alpha_6)(\mathbb{K}[s_1] + \alpha_1)$$

$$+ 2\mathbb{K}[2](\mathbb{K}[s_1] + \alpha_1),$$

$$A_8 = \frac{1}{2} (\mathbb{K}[s_2] + \alpha_6)(\mathbb{K}[1]^2 + \alpha_2) - (\mathbb{K}[s_1] + \alpha_1)(\mathbb{K}[1]^2 + \alpha_7)$$

$$+ \frac{3}{2} (\mathbb{K}[s_1] + \alpha_1)(\mathbb{K}[1]^2 + \alpha_8) - \frac{1}{2} \mathbb{K}[2](\mathbb{K}[1]^2 + \alpha_2)$$

$$+ \mathbb{K}[2]p_0 \frac{\partial \mathbb{K}[s_1]}{\partial p_0} - \frac{1}{4} \left(\mathbb{K}[1]^2 + 2p_0 \frac{\partial \mathbb{K}[1]}{\partial p} \right) \frac{\partial }{\partial k} (\mathbb{K}[1]^2 + \alpha_2).$$

The A_5, \ldots, A_8 are the next four anomalies. Moreover, the diffeomorphism constraint is multiplied by the factor $(1 + \alpha_3)(1 + \alpha_5)$.

2.3. The $\{D_G, D_G\}$ bracket

The Poisson bracket between the diffeomorphism constraints is:

$$\{D_G[N^a_1], D_G[N^a_2]\} = 0. \tag{22}$$

3. Scalar matter

In this section, we introduce scalar matter. The scalar matter diffeomorphism constraint is

$$D_M[N^a] = \int_\Sigma \delta N^a \pi (\partial_a \delta \varphi). \tag{23}$$

The scalar matter Hamiltonian can be expressed as:

$$H_M^Q[N] = H_M[\tilde{N}] + H_M[\delta N], \tag{24}$$

where

$$H_M[\tilde{N}] = \int_\Sigma d^3x \tilde{N} \left[(H^{(0)}_\pi + H^{(0)}_\varphi) + (H^{(2)}_\pi + H^{(2)}_\varphi + H^{(2)}_\varphi) \right], \tag{25}$$

$$H_M[\delta N] = \int_\Sigma d^3\delta N \left[H^{(1)}_\pi + H^{(1)}_\varphi \right]. \tag{26}$$
The factors in equations (25) and (26) are
\begin{align*}
\mathcal{H}^{(0)}_\pi &= \frac{\pi^2}{2p^{3/2}}, \\
\mathcal{H}^{(0)}_\varphi &= \bar{p}^{3/2}V(\bar{\varphi}), \\
\mathcal{H}^{(1)}_\pi &= \frac{\pi \delta \pi}{\bar{p}^{3/2}} - \frac{\pi^2}{2\bar{p}^{3/2}} \frac{\delta \pi^2 E^c_j}{2\bar{p}}, \\
\mathcal{H}^{(1)}_\varphi &= \bar{p}^{3/2} \left[V,_{\varphi} (\bar{\varphi}) \delta \varphi + V(\bar{\varphi}) \delta E^c_j \frac{\delta \pi E^c_j}{2\bar{p}} \right], \\
\mathcal{H}^{(2)}_\pi &= \frac{1}{2} \frac{\pi^2}{\bar{p}^{3/2}} - \frac{\pi^2}{2\bar{p}^{3/2}} \left[\frac{(\delta^i \delta E^c_j)^2}{8\bar{p}^2} \right], \\
\mathcal{H}^{(2)}_\varphi &= \frac{1}{2} \bar{p}^{3/2} V,_{\varphi} (\bar{\varphi}) \delta \varphi^2 + \bar{p}^{3/2} V,_{\varphi} (\bar{\varphi}) \delta \varphi \frac{\delta E^c_j}{2\bar{p}} \left[\frac{(\delta^i \delta E^c_j)^2}{8\bar{p}^2} \right].
\end{align*}

Here, we have introduced the counter-term \(\alpha_{10} \) in the factor \(\mathcal{H}^{(2)}_\varphi \). Thanks to this, the Poisson bracket between two matter Hamiltonians takes the following form:
\[
\left\{ H_M^Q[N_1], H_M^Q[N_2] \right\} = (1 + \alpha_{10}) D_M \left[\frac{\bar{N}}{\bar{p}} \delta^2 (\delta N_2 - \delta N_1) \right].
\]
As will be explained later, the appearance of the front-factor \((1 + \alpha_{10}) \) will allow us to close the algebra of total constraints. In principle, other prefactors could have been expected, however they do not help removing anomalies.

3.1. Total constraints

The total Hamiltonian and diffeomorphism constraints are the following:
\begin{align*}
H_{\text{tot}}[N] &= H_G^Q[N] + H_M^Q[N], \\
\end{align*}

The Poisson bracket between two total diffeomorphism constraints is vanishing:
\[
\{ D_{\text{tot}}[N^a], D_{\text{tot}}[N^a] \} = 0.
\]

The bracket between the total Hamiltonian and diffeomorphism constraints can be decomposed as follows:
\begin{align*}
\{ H_{\text{tot}}[N], D_{\text{tot}}[N^a] \} &= \left\{ H_M^Q[N], D_{\text{tot}}[N^a] \right\} + \left\{ H_G^Q[N], D_G[N^a] \right\} \\
&\quad + \left\{ H_G^Q[N], D_M[N^a] \right\}.
\end{align*}

The first bracket in the sum (34) is given by
\[
\left\{ H_M^Q[N], D_{\text{tot}}[N^a] \right\} = -H_M^Q[\delta N^a \partial_a \delta N].
\]
The second contribution to Eq. (34) is given by (11), while the last contributions is vanishing:

$$\left\{ H^G_N[N], D_M[N^a]\right\} = 0.$$ \hspace{1cm} (36)

The Poisson bracket between the two total Hamiltonian constraints can be decomposed in the following way:

$$\left\{ H_{tot}[N_1], H_{tot}[N_2]\right\} = \left\{ H^G_N[N_1], H^G_N[N_2]\right\} + \left\{ H_M[N_1], H_M[N_2]\right\}$$

+ \left[\left\{ H^G_N[N_1], H_M[N_2]\right\} - (N_1 \leftrightarrow N_2) \right]. \hspace{1cm} (37)

The contribution from the last brackets can be expressed as

$$\left\{ H^G_N[N_1], H_M[N_2]\right\} - (N_1 \leftrightarrow N_2) =$$

$$= \frac{1}{2} \int \Sigma d^3 \vec{x} \vec{N}(\delta N_2 - \delta N_1) \left(\frac{\pi^2}{2p^3} - V(\vec{\varphi}) \right) (\partial \epsilon \partial \epsilon J^c) \mathcal{A}_9$$

+ \frac{3}{2} \int \Sigma d^3 \vec{x} \vec{N}(\delta N_2 - \delta N_1) \left(\frac{\pi C_5}{2p^3} - \vec{p} V_{\vec{\varphi}}(\vec{\varphi}) \right) \mathcal{A}_10$$

+ \int \Sigma d^3 \vec{x} \vec{N}(\delta N_2 - \delta N_1) (\delta \epsilon \delta K^c) \left(\frac{\pi^2}{2p^3} - V(\vec{\varphi}) \right) \mathcal{A}_11$$

+ \frac{1}{2} \int \Sigma d^3 \vec{x} \vec{N}(\delta N_2 - \delta N_1) (\delta \epsilon \delta E^c) \left(\frac{\pi^2}{2p^3} \right) \mathcal{A}_12$$

+ \frac{1}{2} \int \Sigma d^3 \vec{x} \vec{N}(\delta N_2 - \delta N_1) (\delta \epsilon \delta E^c) V(\vec{\varphi}) \mathcal{A}_13, \hspace{1cm} (38)

where

$$\mathcal{A}_9 = \frac{\partial \alpha_3}{\partial k},$$

$$\mathcal{A}_{10} = \mathbb{K}[2] - \mathbb{K}[s_1] - \alpha_1,$$

$$\mathcal{A}_{11} = -\frac{\partial}{\partial k}(\mathbb{K}[s_1] + \alpha_1) + \frac{3}{2}(1 + \alpha_3) - \frac{1}{2}(1 + \alpha_4),$$

$$\mathcal{A}_{12} = -\frac{1}{2} \frac{\partial}{\partial k}(\mathbb{K}[1]^2 + \alpha_2) + 5(\mathbb{K}[s_1] + \alpha_1) - 5\mathbb{K}[2] + \mathbb{K}[s_2] + \alpha_6,$$

$$\mathcal{A}_{13} = \frac{1}{2} \frac{\partial}{\partial k}(\mathbb{K}[1]^2 + \alpha_2) + \mathbb{K}[s_1] + \alpha_1 - \mathbb{K}[2] - \mathbb{K}[s_2] - \alpha_6. \hspace{1cm} (39)$$

The functions $\mathcal{A}_9, \ldots, \mathcal{A}_{13}$ are the last five anomalies.

4. Anomaly freedom

The requirement of anomaly freedom is equivalent to the conditions $\mathcal{A}_i = 0$ for $i = 1, \ldots, 13$.

Let us start form the condition $\mathcal{A}_9 = 0$. Since α_3 cannot be a constant, this condition implies $\alpha_3 = 0$. The condition $\mathcal{A}_{10} = 0$ gives $\alpha_1 = \mathbb{K}[2] - \mathbb{K}[s_1]$. Using this, the condition $\mathcal{A}_1 = 0$, can be written as $\alpha_2 = 2\mathbb{K}[1]^2 - 2k\mathbb{K}[2]$. The conditions $\mathcal{A}_2 = 0$
and $A_5 = 0$ are equivalent and lead to $\alpha_4 = \alpha_5$. Based on this, the requirement $A_{11} = 0$, leads to:

$$1 + \alpha_4 = \frac{\partial K_2}{\bar{k}} = \cos(2\bar{\mu}\gamma\bar{k}) =: \Omega.$$ \hspace{1cm} (44)

For the sake of simplicity we have defined here the Ω-function. With use of this, the condition $A_6 = 0$ leads to

$$\alpha_6 = K_2(2 + \alpha_9) - \bar{K}s_2 - \bar{k}\Omega.$$ \hspace{1cm} (45)

So, equation (42) simplifies to

$$A_{12} = \alpha_9 K_2.$$ \hspace{1cm} (46)

Therefore, requiring $A_{12} = 0$ is equivalent to the condition $\alpha_9 = 0$. Furthermore, $A_4 = 0$ gives $\alpha_7 = \alpha_8$. The expression for α_7 can be derived from the condition $A_3 = 0$. Namely, using Eq. (56) one obtains:

$$\alpha_7 = 2(2\beta - 1)K_1^2 + 4(1 - \beta)\bar{k}K_2^2 - 2\bar{k}^2\Omega.$$ \hspace{1cm} (47)

The condition $A_{13} = 0$ is fulfilled by using the expressions derived for α_1, α_2 and α_6. The last two anomalies (20) and (21) can be simplified to:

$$A_7 = 2(1 + 2\beta)(\Omega K_1^2 - K_2^2),$$ \hspace{1cm} (48)

$$A_8 = \bar{k}(1 + 2\beta)(\bar{K}^2 - \Omega K_1^2).$$ \hspace{1cm} (49)

The anomaly freedom conditions for those last terms, $A_7 = 0$ and $A_8 = 0$, are fulfilled if and only if $\beta = -1/2$.

It is also worth noticing that the function B given by Eq. (12) is equal to zero when the expression obtained for α_6 is used. There is finally no contribution from the diffeomorphism constraint in the $\{H_G^Q, D_G\}$ bracket.

Using the anomaly freedom conditions given above, the bracket between the total Hamiltonian constraints simplifies to

$$\{H_{tot}[N_1], H_{tot}[N_2]\} = \Omega D_{tot} \left[\frac{\bar{N}}{\bar{P}} \partial^a (\delta N_2 - \delta N_1) \right] + (\alpha_{10} - \alpha_4) D_M \left[\frac{\bar{N}}{\bar{P}} \partial^a (\delta N_2 - \delta N_1) \right].$$ \hspace{1cm} (50)

The closure of the algebra of total constraints implies the last condition $\alpha_{10} = \alpha_4 = \Omega - 1$.

To summarize, the counter-terms allowing the algebra to be anomaly-free are uniquely determined, and are given by:

$$\alpha_1 = K[2] - K[s_1],$$ \hspace{1cm} (51)

$$\alpha_2 = 2K[1]^2 - 2\bar{k}K[2],$$ \hspace{1cm} (52)

$$\alpha_3 = 0,$$ \hspace{1cm} (53)

$$\alpha_4 = \Omega - 1,$$ \hspace{1cm} (54)

$$\alpha_5 = \Omega - 1.$$ \hspace{1cm} (55)
\[\alpha_6 = 2K[2] - K[s_2] - \bar{k}\Omega, \]
\[\alpha_7 = -4K[1]^2 + 6\bar{k}K[2] - 2k^2\Omega, \]
\[\alpha_8 = -4K[1]^2 + 6\bar{k}K[2] - 2\bar{k}^2\Omega, \]
\[\alpha_9 = 0, \]
\[\alpha_{10} = \Omega - 1. \]

(56)
(57)
(58)
(59)
(60)

It is straightforward to check that the counter-terms \(\alpha_1, \ldots, \alpha_{10} \) are vanishing in the classical limit (\(\bar{\mu} \to 0 \)), as expected.

Those counter-terms are defined up to the two integers \(s_1 \) and \(s_2 \), which appear in (51) and (56). However, in the Hamiltonian (9), the factor \(\alpha_1 \) appears with \(K[s_1] \) and the factor \(\alpha_6 \) appears with \(K[s_2] \). Namely, we have \(K[s_1] + \alpha_1 = K[2] \) and \(K[s_2] + \alpha_6 = 2K[2] - \bar{k}\Omega \). Therefore, the final Hamiltonian will not depend on the parameters \(s_1 \) and \(s_2 \). No ambiguity remains to be fixed.

Moreover, the anomaly cancellation requires
\[\beta = -\frac{1}{2}, \]
which fixes the functional form of the \(\bar{\mu} \) factor. The fact that anomaly freedom requires \(\beta = -1/2 \) is a quite surprising result. The exact value of \(\beta \) is highly debated in LQC. The only \textit{a priori} obvious statement is that \(\beta \in [-1/2, 0] \). The choice \(\beta = -1/2 \) is called the \(\bar{\mu} \)–scheme (new quantization scheme) and is preferred by some authors for physical reasons [10]. Our result seems to show that the \(\bar{\mu} \)–scheme is embedded in the structure of the theory and this gives a new motivation for this particular choice of quantization scheme. The quantity \(\bar{\mu}^2 \bar{p} \) can be interpreted as the physical area of an elementary loop along which the holonomy is calculated. Because, in the \(\bar{\mu} \)–scheme, \(\bar{\mu}^2 \propto \bar{p}^{-1} \), the physical area of the loop remains constant. This elementary area is usually set to be the area gap \(\Delta \) derived in LQG. Therefore, in the \(\bar{\mu} \)–scheme,
\[\bar{\mu} = \sqrt{\frac{\Delta}{\bar{p}}}. \]

(62)

4.1. Algebra of constraints

Taking into account the previous conditions of anomaly-freedom, the non-vanishing Poisson brackets for the gravity sector are:
\[\left\{ H_G^Q[N], D_G[N^a] \right\} = -H_G^Q[\delta N^a \partial_a \delta N], \]
\[\left\{ H_G^Q[N_1], H_G^Q[N_2] \right\} = \Omega D_G \left[\frac{\bar{N}}{\bar{p}} \partial^c (\delta N_2 - \delta N_1) \right]. \]

(63)
(64)

This clearly shows that the \textit{gravity sector is anomaly free}. The remaining non-vanishing brackets are:
\[\left\{ H_M[N], D_{tot}[N^a] \right\} = -H_M[\delta N^a \partial_a \delta N], \]
\[\left\{ H_M[N_1], H_M[N_2] \right\} = \Omega D_M \left[\frac{\bar{N}}{\bar{p}} \partial^c (\delta N_2 - \delta N_1) \right]. \]

(65)
(66)
The algebra of total constraints therefore takes the following form:

\[
\{D_{\text{tot}}[N^a], D_{\text{tot}}[N^b]\} = 0, \quad (67)
\]

\[
\{H_{\text{tot}}[N], D_{\text{tot}}[N^a]\} = - H_{\text{tot}}[\delta N^a \partial_a \delta N], \quad (68)
\]

\[
\{H_{\text{tot}}[N_1], H_{\text{tot}}[N_2]\} = D_{\text{tot}} \left[\Omega \frac{\hat{N}}{\rho} \partial^a (\delta N_2 - \delta N_1) \right]. \quad (69)
\]

Although the algebra is closed, there are however modifications with respect to the classical case, due to presence of the factor \(\Omega\) in Eq. (69). Therefore, not only the dynamics, as a result of the modification of the Hamiltonian constraint, is modified but also the very structure of the space-time itself is *deformed*. This is embedded in the form of the algebra of constraints. The hypersurface deformation algebra generated by (69) is pictorially represented in Fig. 4.1. As \(\Omega \in [-1, 1]\), the shift vector

\[
N^a = \frac{\hat{N}}{\rho} \cos(2\bar{\mu} \gamma \bar{k}) \partial^a (\delta N_2 - \delta N_1) \quad (70)
\]

appearing in (69) can change sign in time.

In order to see when this might happen let us express the parameter \(\Omega\) as:

\[
\Omega = \cos(2\bar{\mu} \gamma \bar{k}) = 1 - 2 \frac{\rho}{\rho_c}, \quad (71)
\]

where \(\rho\) is the energy density of the matter field and

\[
\rho_c = \frac{3}{\kappa \gamma \bar{\mu}^2 \bar{p}} = \frac{3}{\kappa \gamma \Delta}. \quad (72)
\]

In the low energy limit, \(\rho \to 0\), the classical case (\(\Omega \to 1\)) is correctly recovered. However, while approaching the high energy domain the situation drastically changes. Namely, for \(\rho = \rho_c/2\), the shift vector (70) becomes null. At this point, the maximum value of the Hubble parameter is also reached. The maximum allowed energy density is \(\rho = \rho_c\) and corresponds to the bounce. Then the shift vector (70) fully reverses with respect to the low energy limit. One can interpret this peculiar behavior as a geometry change. Namely, when the universe is in its quantum stage (\(\rho > \rho_c/2\)), the effective algebra of constraints shows that the space is Euclidian. At the particular value \(\rho = \frac{\rho_c}{2}\), the geometry switches to the Minkowski one [11]. This will become even clearer when analyzing the Mukhanov equation in Sec. 5. The consequences of this have not yet
been fully understood, but it is interesting to notice that this model naturally exhibits properties related to the Hartle-Hawking no-boundary proposal [12].

5. Equations of motion

Once the anomaly-free theory of scalar perturbations with holonomy corrections is constructed, the equations of motion for the canonical variables can be derived. This can be achieved through the Hamilton equation

\[\dot{f} = \{ f, H[N, N^a] \}, \]

(73)

where the Hamiltonian \(H[N, N^a] \) is the sum of all constraints

(74)

5.1. Background equations

Based on the Hamilton equation (73), the equations for the canonical background variables are the following:

\[\dot{k} = -\frac{\bar{N}}{2\sqrt{\bar{p}}} \mathbb{K}[1]^2 - \bar{N}\sqrt{\bar{p}} \frac{\partial}{\partial \bar{p}} \mathbb{K}[1]^2 + \frac{\kappa}{2} \sqrt{\bar{p}}\bar{N} \left[-\frac{\bar{\pi}^2}{2\bar{p}^3} + V(\bar{\phi}) \right], \]

(75)

\[\dot{\bar{p}} = 2\bar{N}\sqrt{\bar{p}}\mathbb{K}[2], \]

(76)

\[\dot{\bar{\phi}} = \bar{N}\frac{\pi}{\bar{p}^{3/2}}, \]

(77)

\[\dot{\bar{\pi}} = -\bar{N}\bar{p}^{3/2}V_{,\bar{\phi}}(\bar{\phi}). \]

(78)

In the following, we choose the time to be conformal by setting \(\bar{N} = \sqrt{\bar{p}} \). The “·” then means differentiation with respect to conformal time \(\eta \).

Eqs. (77) and (78) can be now combined into the Klein-Gordon equation

\[\ddot{\bar{\phi}} + 2\mathbb{K}[2]\dot{\bar{\phi}} + \bar{p}V_{,\bar{\phi}}(\bar{\phi}) = 0. \]

(79)

Eq. (76), together with the background part of the Hamiltonian constraint

\[\frac{1}{V_0} \frac{\partial H}{\partial \bar{N}} = \frac{1}{2\kappa} \left[-6\sqrt{\bar{p}}(\mathbb{K}[1])^2 \right] + \bar{p}^{3/2} \left[\frac{\pi^2}{2\bar{p}^3} + V(\bar{\phi}) \right] = 0, \]

(80)

lead to the modified Friedmann equation

\[\mathcal{H}^2 = \bar{p}\frac{\kappa}{3}\rho \left(1 - \frac{\rho}{\rho_c} \right). \]

(81)

Another useful expression is:

\[3\mathbb{K}[1]^2 = \frac{\pi^2}{2\bar{p}^3} + \bar{p}V(\bar{\phi}). \]

(82)

Here \(\mathcal{H} \) stands for the conformal Hubble factor

\[\mathcal{H} := \frac{\dot{\bar{p}}}{2\bar{p}} = \mathbb{K}[2]. \]

(83)
The energy density and pressure of the scalar field are given by:

\[
\rho = \frac{\pi^2}{2p^3} + V(\varphi),
\]

\[
P = \frac{\pi^2}{2p^3} - V(\varphi). \tag{85}
\]

For the purpose of further considerations, we also derive the relation

\[
\kappa \left(\frac{\pi^2}{2p^2} \right) = \bar{k} \bar{k}[2] - \bar{k}, \tag{86}
\]

which comes from Eq. (75) combined with (80).

5.2. Equations for the perturbed variables

The equations for the perturbed parts of the canonical variables are:

\[
\delta \dot{E}_i^a = - \bar{N} \left[\sqrt{\bar{p}} \Omega \delta K_j^i \delta_i^a - \sqrt{\bar{p}} \Omega (\delta K_j^i \delta_j^a) \delta_i^a \frac{1}{\sqrt{\bar{p}}} (2\bar{k}[2] - \bar{k} \Omega) \delta E_i^a \right] + \\
+ \delta N (2\bar{k}[2] \sqrt{\bar{p}} \delta_i^a) - \bar{p} (\partial_i \delta N^a - (\partial_i \delta N^c) \delta_i^c), \tag{87}
\]

\[
\delta \dot{K}_a = \bar{N} \left[- \frac{1}{\sqrt{\bar{p}}} (2\bar{k}[2] - \bar{k} \Omega) \delta K_a \right] \\
- \frac{1}{2p^3} (-3\bar{k}[1]^2 + 6\bar{k} \bar{k}[2] - 2\bar{k}^2 \Omega) \delta E_j^i \delta_i^a \delta_c^a \\
+ \frac{1}{4p^3} (-3\bar{k}[1]^2 + 6\bar{k} \bar{k}[2] - 2\bar{k}^2 \Omega) (\delta E_j^i \delta_i^a) \delta_a + \frac{\delta_{ik}^c}{2p^3} \partial_{a} \partial_{d} \delta E_k^d \\
+ \frac{1}{2} \left[- \frac{1}{\sqrt{\bar{p}}} (3\bar{k}[1]^2 - 2\bar{k} \bar{k}[2]) \delta_i^a \delta N + \frac{2}{\sqrt{\bar{p}}} (\partial_i \delta \delta N) \right] \\
+ \delta_i^c (\partial_i \delta N^c) + \kappa \delta N \sqrt{\bar{p}} \left[- \frac{\pi^2}{2p^3} + V(\varphi) \right] \delta_i^a \\
+ \kappa \bar{N} \left[- \frac{\pi \delta \pi}{2p^3/2} \delta_a + \frac{\sqrt{\bar{p}}}{\delta V(\varphi)} \frac{\partial V(\varphi)}{\partial \varphi} \delta_i^a \delta_i^a + \left(\frac{\pi^2}{2p^3/2} + \bar{p}^{3/2} V(\varphi) \right) \frac{\delta_i^a \delta E_c^i}{4p^3/2} \frac{\delta_i^a}{\delta a} \right] \\
+ \left(\frac{\pi^2}{2p^3/2} - \bar{p}^{3/2} V(\varphi) \right) \frac{\delta_i^a \delta E_c^i}{2p^3/2}, \tag{88}
\]

\[
\delta \dot{\varphi} = \delta N \left(\frac{\pi}{p^{3/2}} \right) + \bar{N} \left(\frac{\delta \pi}{p^{3/2}} - \frac{\pi}{p^{3/2}} \frac{\delta \delta E_c^i}{2p} \right), \tag{89}
\]

\[
\delta \dot{\pi} = - \delta N \left(\frac{p^{3/2} V(\varphi)}{\bar{p}} \right) + \pi (\partial_\delta \delta N^a) \\
- \bar{N} \left[- \sqrt{\bar{p}} \Omega \delta_{ab} \partial_\delta \delta \varphi + \bar{p}^{3/2} V(\varphi) \delta \varphi + \bar{p}^{3/2} V(\varphi) \delta_{i}^a \delta E_c^i \right] \tag{90}.
\]

5.3. Longitudinal gauge

As an example of application we will now derive the equations in the longitudinal gauge. In this case, the \(E \) and \(B \) perturbations are set to zero. The line element (1) therefore simplifies to

\[
ds^2 = a^2 \left[-(1 + 2\psi)d\eta^2 + (1 - 2\psi)\delta_{ab}dx^adx^b \right], \tag{91}
\]
where \(\phi \) and \(\psi \) are two remaining perturbation functions and \(a \) is the scale factor. From the metric above, one can derive the laps function, the shift vector and the spatial metric:

\[
\begin{align*}
N &= a \sqrt{1 + 2\phi}, \\
N^a &= 0, \\
q_{ab} &= a^2 (1 - 2\psi) \delta_{ab}.
\end{align*}
\]

(92)

The lapse function can be expanded for the background and perturbation part as \(N = \bar{N} + \delta N \), where

\[
\begin{align*}
\bar{N} &= \sqrt{\bar{p}} = a, \\
\delta N &= \bar{N} \phi.
\end{align*}
\]

(95)

Using Eq. (94), the perturbation of the densitized triad is expressed as:

\[
\delta E^a_i = -2\bar{\rho}\psi \delta^a_i.
\]

(97)

The time derivative of this expression will also be useful and can be written as:

\[
\delta \dot{E}^a_i = -2\bar{\rho}(2\bar{K}[2] \psi + \dot{\psi}) \delta^a_i.
\]

(98)

Let us now find the expression for the perturbation of the extrinsic curvature \(\delta K^i_a \) in terms of the metric perturbations \(\phi \) and \(\psi \). For this purpose, one can apply the expression (97) to the left hand side of (87). The resulting equation can be solved for \(\delta K^i_a \), leading to:

\[
\delta K^i_a = -\delta^i_a \frac{1}{\Omega} \left(\psi + \bar{K} \psi + \bar{K}[2] \phi \right).
\]

(99)

The time derivative of this variable is given by

\[
\begin{align*}
\delta \dot{K}^i_a &= \delta^i_a \frac{1}{\Omega} \left[-\bar{\psi} - \bar{K} \psi + \psi \left(\frac{\dot{\Omega}}{\Omega} - \bar{K} \right) + \phi \bar{K}[2] \frac{\dot{\Omega}}{\Omega} \\
&\quad - \phi \bar{K}[2] - \bar{K}[2] \dot{\phi} \right].
\end{align*}
\]

(100)

Applying (100) to the left hand side of (88), the equation containing the diagonal part as well as the off-diagonal contribution is easily obtained. The off-diagonal part leads to

\[
\partial_a \delta^i (\phi - \psi) = 0.
\]

(101)

This translates into \(\psi = \phi \). In what follows, we will therefore consider \(\phi \) only. The diagonal part of the discussed equation can be expressed as:

\[
\begin{align*}
\ddot{\phi} + \dot{\phi} \left[3\bar{K}[2] - \frac{\dot{\Omega}}{\Omega} \right] + \phi \left[\ddot{\bar{K}}[2] + 2\bar{K}[2]^2 - \bar{K}[2] \frac{\dot{\Omega}}{\Omega} \right] \\
&= 4\pi G \Omega \left[\dot{\phi} \dot{\bar{\phi}} - \bar{p} \delta \varphi V_{\varphi}(\bar{\varphi}) \right].
\end{align*}
\]

(102)

One case now use the diffeomorphism constraint

\[
\kappa \frac{\delta H[N, N^a]}{\delta (\delta N^c)} = \bar{p} \partial_c (\delta^d_k \delta K^k_c) - \bar{p} (\partial_c \delta K^k_c) - \bar{k} \delta^k_c (\partial_d \delta E^d_k) + \kappa \bar{\pi} (\partial_c \delta \varphi) = 0.
\]

(103)
With the expressions for δK_i^a and δE_i^a, it can be derived that
\[
\partial_c [\dot{\phi} + \phi \mathcal{K}[2]] = 4\pi G\Omega \dot{\phi} \partial_c \delta \phi.
\] (104)

The next equation comes from the perturbed part of the Hamiltonian constraint:
\[
\frac{\delta H[N, N^a]}{\delta (\delta N)} = \frac{1}{2\kappa} \left[-4\sqrt{s\mathcal{K}[2]} \delta K_i^j - \frac{1}{\sqrt{p}} (3\mathcal{K}[1]^2 - 2\mathcal{K}[2]) \delta_i^j \delta E_j^c
\right.
+ \frac{2}{\sqrt{p}} \partial_c \partial_j \delta E_j^c
\left. + \frac{\pi \delta \pi}{p^{3/2}} - \frac{\pi^2}{2p^{3/2}} \frac{\delta_i^j \delta E_j^c}{2p}
+ p^{3/2} \left[V_{,\varphi}(\bar{\varphi}) \delta \varphi + V(\bar{\varphi}) \frac{\delta_i^j \delta E_j^c}{2p} \right] \right] = 0.
\] (105)

Using the expressions for δK_i^a and δE_i^a, this can be rewritten as:
\[
\Omega \nabla^2 \phi - 3\mathcal{K}[2] \dot{\phi} - \left[\mathcal{K}[2] + 2\mathcal{K}[2]^2 \right] \phi = 4\pi G\Omega \left[\dot{\phi} \delta \phi + \bar{p} \delta \varphi V_{,\varphi}(\bar{\varphi}) \right].
\] (106)

The last equality comes from (89) and (90):
\[
\delta \ddot{\varphi} + 2\mathcal{K}[2] \delta \dot{\varphi} - \Omega \nabla^2 \delta \varphi + \bar{p} V_{,\varphi}(\bar{\varphi}) \delta \varphi + 2p V_{,\varphi}(\bar{\varphi}) \phi - 4 \dot{\bar{\varphi}} \dot{\phi} = 0.
\] (107)

The equations (102), (104) and (106) can be now combined into:
\[
\ddot{\phi} + 2 \left[\mathcal{H} - \left(\frac{\dot{\bar{\varphi}}}{\bar{\varphi}} + \epsilon \right) \right] \dot{\phi} + 2 \left[\dot{\mathcal{H}} - \mathcal{H} \left(\frac{\dot{\bar{\varphi}}}{\bar{\varphi}} + \epsilon \right) \right] \phi - c_s^2 \nabla^2 \phi = 0,
\] (108)

with the quantum correction
\[
\epsilon = \frac{1}{2} \frac{\dot{\Omega}}{\Omega} = 3\mathcal{K}[2] \left(\frac{\rho + P}{\rho_c - \rho} \right),
\] (109)

and the squared velocity
\[
c_s^2 = \Omega.
\] (110)

The squared velocity of the perturbation field ϕ is equal to Ω. Because $-1 \leq \Omega \leq 1$, the speed of perturbations is never super-luminal. However, for $\Omega < 0$ perturbations become unstable ($c_s^2 < 0$). This corresponds to the energy density regime $\rho > \rho_c$, where the phase of super-inflation is expected.

At the point $\rho = \rho_c$, the velocity of the perturbation field ϕ is vanishing. Therefore, perturbations don’t propagate anymore when approaching $\rho = \rho_c$, where the Hubble factor reaches its maximal value. Moreover, at this point, the quantum correction $\epsilon \to \infty$. Because of this, Eq. (108) diverges and cannot be used to determine the propagation of the perturbations. However, as shown in the next section, the equation for the gauge-invariant Mukhanov variable does not exhibit such a pathology.

It is interesting to notice that the equations of motion derived in this subsection are the same as those found in [7]. This is quite surprising, because they were derived following independent paths. In our approach, we have introduced the most general form for the holonomy corrections to the Hamiltonian. Then, by adding counter-terms, anomalies in the algebra of constraints were removed. On the other hand, the method proposed in [7] is based on the diagonal form of the metric in the longitudinal gauge.
This enables one to introduce holonomy corrections in almost the same way as in the case of a homogeneous model. It was then shown that a system defined in this way stays on-shell, that is, is free of anomalies. The non-trivial equivalence of both approaches may suggest uniqueness in defining a theory of scalar perturbations with holonomy corrections in an anomaly-free manner.

5.4. Gauge invariant variables and Mukhanov equation

Considering the scalar perturbations, there is only one physical degree of freedom. As it was shown in [13], this physical variable combines both the perturbation of the metric and the perturbation of matter. The classical expression on this gauge-invariant quantity is:

\[v = a(\eta) \left(\delta \varphi^{GI} + \frac{\dot{\varphi}}{\mathcal{H}} \Psi \right), \]

(111)

and its equation of motion is given by

\[\ddot{v} - \nabla^2 v - \frac{\ddot{z}}{z} v = 0, \]

(112)

where

\[z = a(\eta) \frac{\dot{\varphi}}{\mathcal{H}}. \]

In the canonical formalism with scalar perturbations, the gauge transformation of a variable \(X \) under a small coordinate transformation

\[x^\mu \to x^\mu + \xi^\mu; \quad \xi^\mu = (\xi^0, \partial^\mu \xi), \]

(114)

is given by (see [8] for details):

\[\delta_{[\xi^0, \xi]} X = \{ X, H^{(2)}[\mathcal{N}\xi^0] + D^{(2)}[\partial^\mu \xi] \}, \]

(115)

and it is straightforward to see that, classically,

\[\delta_{[\xi^0, \xi]} v = 0. \]

(116)

This means that \(v \) is diffeomorphism-invariant and can be taken as an observable.

Taking into account the holonomy corrections introduced in this paper, the \(\Omega \) function will modify the gauge transformations of the time derivative of a variable \(X \), so that

\[\delta_{[\xi^0, \xi]} \dot{X} - (\delta_{[\xi^0, \xi]} X) = \Omega \cdot \delta_{[0, \xi^0]} X. \]

(117)

Using this relation and gauge transformations of the metric perturbations

\[\delta_{[\xi^0, \xi]} \psi = - \mathbb{K}[2] \xi^0, \]

(118)

\[\delta_{[\xi^0, \xi]} \phi = \xi^0 + \mathbb{K}[2] \xi^0, \]

(119)

\[\delta_{[\xi^0, \xi]} \xi = \xi, \]

(120)

\[\delta_{[\xi^0, \xi]} B = \dot{\xi}, \]

(121)
one can define the gauge-invariant variables (Bardeen potentials) as:

\[\Phi = \phi + \frac{1}{\Omega}(\dot{B} - \dot{E}) + \left(\frac{K[2]}{\Omega} - \frac{\dot{\Omega}}{\Omega} \right)(B - \dot{E}), \]

\[\Psi = \psi - \frac{K[2]}{\Omega}(B - \dot{E}), \]

\[\delta\varphi^{GI} = \delta\varphi + \frac{\dot{\varphi}}{\Omega}(B - \dot{E}). \]

The normalization of these variables was set such that, in the longitudinal gauge \((B = 0 = E)\), we have \(\Phi = \phi, \Psi = \psi\) and \(\delta\varphi^{GI} = \delta\varphi\). It is possible to define the analogous of the Mukhanov variable (111):

\[v := \sqrt{p} \left(\delta\varphi^{GI} + \frac{\dot{\varphi}}{K[2]} \Psi \right). \]

Writing the equations for \(\Psi\) and \(\delta\varphi^{GI}\), which are

\[\ddot{\Psi} + 2 \left[H - \left(\frac{\ddot{\varphi}}{\varphi} + \epsilon \right) \right] \dot{\Psi} + 2 \left[\dot{H} - H \left(\frac{\ddot{\varphi}}{\varphi} + \epsilon \right) \right] \Psi - c_s^2 \nabla^2 \Psi = 0 \]

and

\[\delta\varphi^{GI} + 2K[2]\delta\varphi^{GI} - \Omega \nabla^2 \delta\varphi^{GI} + \bar{p} \nabla \varphi (\bar{\varphi}) \delta\varphi^{GI} + 2p V(\varphi) \delta\varphi^{GI} + 4 \ddot{\varphi} \dot{\Psi} = 0, \]

one obtains equation for the variable (125):

\[\ddot{v} - \Omega \nabla^2 v - \frac{\ddot{z}}{z} v = 0, \]

\[z = \sqrt{\frac{p}{K[2]}}. \]

which corresponds to the Mukhanov equation for our model. As we see, the difference between the classical and the holonomy-corrected case is the factor \(\Omega\) in front of the Laplacian. This quantum contribution leads to a variation of the propagation velocity of the perturbation \(v\). This is similar to the case of the perturbation \(\phi\) considered in the previous subsection. The main difference is that there is no divergence for \(\rho = \rho_c/2\) and the evolution of perturbations can be investigated in the regime of high energy densities. It is once again worth noticing that for \(\rho > \rho_c/2\), \(\Omega\) becomes negative and Eq. (128) changes from an hyperbolic form to an elliptic one. This basically means that the time part becomes indistinguishable from the spatial one. This can be interpreted as a transition from a Minkowskian geometry to and Euclidean geometry, as mentioned earlier.

Finally, it is also possible to define the perturbation of curvature \(R\) such that

\[R = \frac{v}{z}. \]

Based on this, one can now calculate the power spectrum of scalar perturbations. This opens new possible ways to study quantum gravity effects in the very early universe. Promising applications of the derived equations will be investigated elsewhere.
6. Summary and conclusions

In this paper, we have investigated the theory of scalar perturbations with holonomy corrections. Such corrections are expected because of quantum gravity effects predicted by LQG. They basically come from the regularization of the curvature of the connection at the Planck scale. Because of this, the holonomy corrections become dominant in the high curvature regime. The introduction of ”generic type” holonomy corrections leads to an anomalous algebra of constraints. The conditions of anomaly freedom impose some restrictions on the form of the holonomy corrections. However, we have shown that the holonomy corrections, in the standard form, cannot fully satisfy the conditions of anomaly freedom. In order to solve this difficulty, additional counter-terms were introduced. Such counter-terms tend to zero in the classical limit, but play the role of regularizers of anomalies in the quantum (high curvature) regime. The method of counter-terms was earlier successfully applied to cosmological perturbations with inverse-triad corrections [3].

We have shown that, thanks to the counter-terms, the theory of cosmological perturbations with holonomy corrections can be formulated in an anomaly-free way. The anomaly freedom was shown to be fulfilled not only for the gravity sector but also when taking into account scalar matter. The requirements of anomaly freedom were used to determine the form of the counter-terms. Furthermore, conditions for obtaining and anomaly-free algebra of constraints were shown to be fulfilled only for a particular choice of the \(\bar{\mu} \) function, namely for the \(\bar{\mu} \)–scheme (new quantization scheme). This quantization scheme was shown earlier to be favored because of the consistency of the background dynamics [10]. Our result supports these earlier claims.

In our formulation, the diffeomorphism constraint holds its classical form, in agreement with the LQG expectations. The obtained anomaly-free gravitational Hamiltonian contains seven holonomy modifications. It was also necessary to introduce one counter-term into the matter Hamiltonian in order to ensure the closure of the algebra of total constraints. There is no ambiguity in defining the holonomy corrections after imposing the anomaly-free conditions. The only remaining free parameter of the theory is the area gap \(\Delta \) used in defining the \(\bar{\mu} \) function. This quantity can however be possibly fixed with the spectrum of the area operator in LQG. Based on the equations derived in this paper it will also be possible to put observational constraints on the value of \(\Delta \) and, hence, on the critical energy density \(\rho_c \).

Based on the studied anomaly-free formulation, equations of motion were derived. As an example of application, we studied the equations in the longitudinal gauge. We have also found the gauge-invariant variables, which are holonomy-corrected versions of the Bardeen potentials. Using this, we have derived the equation for the Mukhanov variable. This equation can be directly used to compute the power spectrum of scalar perturbations with quantum gravitational holonomy corrections. Similar considerations were studied in the case of inverse-triad corrections [14]. In that case, observational consequences have been derived and compared with CMB data [15, 16].
Acknowledgments

The authors would like to thank M. Bojowald, G. Calcagni and E. Wilson-Ewing for the discussions. TC and JM were supported from the Astrophysics Poland-France (Astro-PF). JM has been supported by Polish Ministry of Science and Higher Education grant NN203 386437 and by Foundation of Polish Science award START.

References

