Gravitino cosmology with a very light neutralino

Herbi K. Dreiner‡ and Marja Hanussek

Bethe Center for Theoretical Physics and Physikalisches Institut, University of Bonn, Bonn, Germany

Jong Soo Kim†

Institut für Physik, Technische Universität Dortmund, Dortmund, Germany, and
ARC Centre of Excellence for Particle Physics at the Terascale,
School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

Subir Sarkar

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK

It has been shown that very light or even massless neutralinos are consistent with all current experiments, given non-universal gaugino masses. Furthermore, a very light neutralino is consistent with astrophysical bounds from supernovae and cosmological bounds on dark matter. Here we study the cosmological constraints on this scenario from Big Bang nucleosynthesis taking gravitinos into account and find that a very light neutralino is even favoured by current observations.

I. INTRODUCTION

Within the minimal supersymmetric Standard Model (MSSM), the photon and the Z^0 boson, as well as the two neutral CP-even Higgs bosons, have SUSY spin-1/2 partners which mix. The resulting mass eigenstates are denoted neutralinos, χ^0_i, with $i = 1, \ldots, 4$, and are ordered by mass $m_{\chi^0_1} < \ldots < m_{\chi^0_4}$ [1]. The Particle Data Group quotes a lower mass bound on the lightest neutralino χ^0_1

$$m_{\chi^0_1} > 46 \text{ GeV},$$

which is derived from the LEP chargino search under the assumption of gaugino mass universality:

$$M_1 = \frac{5}{3} \tan^2 \theta_W M_2.$$

Here $M_{1,2}$ are the supersymmetry (SUSY) breaking bino mass and wino mass, respectively and θ_W is the electroweak mixing angle. If we relax this latter assumption, the bound [11] no longer applies. In fact for any value of M_2, μ, and $\tan \beta$ there is always a M_1

$$M_1 = \frac{M_2 M_Z^2 \sin(2\beta) \sin^2 \theta_W}{\mu M_2 - M_Z^2 \sin(2\beta) \cos^2 \theta_W},$$

$$\simeq 2.5 \text{ GeV} \left(\frac{10}{\tan \beta} \right) \left(\frac{150 \text{ GeV}}{\mu} \right),$$

such that the lightest neutralino is massless [3,4]. Here M_Z is the mass of the Z^0 boson, $\tan \beta$ is the ratio of the vacuum expectation values of the two CP-even neutral Higgs bosons in the MSSM and μ is the Higgs mixing parameter of the superpotential. A very light or massless neutralino is necessarily predominantly bino-like since the experimental lower bound on the chargino mass, sets lower limits on M_2 and μ [3,4]. Although Eq. 3 holds at tree–level, there is always a massless solution even after including quantum corrections to the neutralino mass [4].

Such a light or even massless neutralino is consistent with all laboratory data. The processes considered include the invisible width of the Z^0, electroweak precision observables, direct pair production, associated production, and rare meson decays. Note that a bino-like neutralino does not couple directly to the Z^0. The other production processes, including the meson decays, thus necessarily involve virtual sleptons or squarks. If these have masses of $\mathcal{O}(200) \text{ GeV}$ or heavier, then all bounds are evaded — for details on the individual analyses see Refs. [3–10]. The best possible laboratory mass measurement can be performed at a linear collider via selectron pair production with an accuracy of order 1 GeV, depending on the selectron mass [11].

Light neutralinos can lead to rapid cooling of supernovae, so are constrained by the broad agreement between the expected neutrino pulse from core collapse and observations of SN 1987A [12]. The neutralinos would be produced and interact via the exchange of virtual sleptons and squarks. For a massless neutralino which ‘free-streams’ out of the supernova, the selectron must be heavier than about 1.2 TeV and the squarks must be heavier than about 300 GeV. For light selectrons or squarks of mass $\sim 100–300 \text{ GeV}$, the neutralinos instead diffuse out of the supernova just as the neutrinos do and thus play an important role in the supernova dynamics. Hence lacking a detailed simulation which includes the effects of neutralino diffusion, no definitive statement can presently be made [10,12,14]. Recently the luminosity function of white dwarfs has been determined to high precision [15,16] and this may imply interesting new bounds on light neutralinos, just as on axions.

If a neutralino is stable on cosmological time scales it can contribute to the dark matter (DM) of the universe.

* dreiner@th.physik.uni-bonn.de
† hanussek@th.physik.uni-bonn.de
‡ jongsoo.kim@tu-dortmund.de

DO-TH-10/23
ADP-11-36/T758
doublet neutrinos: as a limit on the number of additional effective relativistic degrees of freedom is usually presented on new relativistic degrees of freedom and thus speeding up the expansion rate of the universe; consequently neutron-proton decoupling occurs earlier and the mass fraction of neutron will result in photo-dissociation of light elements, in particular ^4He [36]. The resulting (over) production of ^2H and ^3He is strongly constrained observationally and we present the resulting bounds in §III. This effect is only relevant for sub-eV mass gravitinos (for models see e.g. Ref. [40]). More commonly the gravitino has electroweak-scale mass and its decays into the light neutralino will result in photo-dissociation of light elements, in particular ^4He [36]. The resulting (over) production of ^2H and ^3He is strongly constrained observationally and we present the resulting bounds in §III. In §IV we examine under which conditions the gravitino itself can be a viable DM candidate in the presence of a very light neutralino. Conclusions are presented in §VI.

II. LIGHT NEUTRALINOS AND NUCLEOSYNTHESIS

In global SUSY models, or local SUSY models with a non-relativistic gravitino, the sub-eV neutralino is the only relativistic particle present at the onset of nucleosynthesis apart from the usual photons, electrons and 3 types of neutrinos. The contribution of the neutralino to the number of effective neutrino species is [36]:

$$\Delta N_\nu^{\text{eff}}(\chi_1^0) = \frac{g_{\chi}^0}{2} \left(\frac{T_\nu}{T_\chi} \right)^4 ,$$

(10)

where g_{χ}^0 is the number of internal degrees of freedom, equal to 2 due to the Majorana character of the neutralino. The ratio of temperatures is given by

$$\frac{T_\chi}{T_\nu} = \left[\frac{g^* (T_{\chi}^0)}{g^* (T_\nu)} \right]^{1/3} ,$$

(11)

Note that HDM cannot contribute more than a small fraction of the observed dark matter, so another particle is required to make up the cold dark matter (CDM). Potential candidates include the gravitino [32], the axion [33] or the axino [35].

Until recently, the BBN prediction and the inferred primordial ^4He abundance implied according to some authors [38, 39]

$$\Delta N_\nu^{\text{eff}} \lesssim 0 .$$

(7)

This is however in tension with recent measurements of the cosmic microwave background (CMB) anisotropy by WMAP, which suggest a larger value of [40, 41]:

$$\text{WMAP} : \quad \Delta N_\nu^{\text{eff}} = 1.34^{+0.86}_{-0.88} .$$

(8)

Recent measurements of the primordial ^4He abundance are also higher than reported earlier, implying [12, 13]:

$$\text{BBN} : \quad \Delta N_\nu^{\text{eff}} = 0.68^{+0.8}_{-0.7} .$$

(9)

Given these large uncertainties, a very light neutralino is easily accommodated, and even favoured, by the BBN and CMB data. In the near future, the Planck mission [44] is foreseen to determine N_ν^{eff} to a higher precision of about ± 0.26 [41], thus possibly constraining the light neutralino hypothesis.

Local SUSY models necessarily include a massive gravitino. Depending on its mass, the gravitino can also contribute to $\Delta N_\nu^{\text{eff}}$ as we discuss in §III. This effect is only relevant for sub-eV mass gravitinos (for models see e.g. Ref. [40]). More commonly the gravitino has electroweak-scale mass and its decays into the light neutralino will result in photo-dissociation of light elements, in particular ^4He [36]. The resulting (over) production of ^2H and ^3He is strongly constrained observationally and we present the resulting bounds in §III. In §IV we examine under which conditions the gravitino itself can be a viable DM candidate in the presence of a very light neutralino. Conclusions are presented in §VI.

In this paper we focus on a light neutralino which acts as hot dark matter (HDM), i.e. can suppress cosmic density fluctuations on small scales through free-streaming. In order for its relic abundance to be small enough to be consistent with the observed small-scale structure we require [4] following Ref. [35]:

$$m_{\chi_1^0} \lesssim 0.7 \text{ eV} .$$

(5)

Such ultralight neutralinos affect BBN by contributing to the relativistic degrees of freedom and thus speeding up the expansion rate of the universe; consequently neutron-proton decoupling occurs earlier and the mass fraction of primordial ^4He is increased [36]. The resulting constraint on new relativistic degrees of freedom is usually presented as a limit on the number of additional effective $SU(2)$ doublet neutrinos:

$$\Delta N_{\nu}^{\text{eff}}(\chi_1^0) \equiv N_{\nu}^{\text{eff}} - 3 .$$

(6)

In §III we calculate this number in detail and compare it with observational bounds on $\Delta N_{\nu}^{\text{eff}}$ from BBN [57].
where $T_{f_{i}}$ is the freeze-out temperature of particle i and

$$g^{*}(T) = \sum_{\text{bosons}} g_{b} \cdot \left(\frac{T}{T_{f_{i}}}\right)^{4} + \frac{7}{8} \sum_{\text{fermions}} g_{f} \cdot \left(\frac{T}{T_{f_{i}}}\right)^{4}, \quad (12)$$

with g_{i} being the internal relativistic degrees of freedom at temperature T. Usually T_{f} for a decoupled particle species i is lower than the photon temperature T_{γ} because of subsequent entropy generation.

The freeze-out temperature of $SU(2)$ doublet neutrinos is $T_{f_{\chi_{1}}} \sim 2 \text{ MeV}$ [17]. The interaction rate Γ_{i}^{ν} of the lightest neutralino is suppressed relative to that of neutrinos [4] because the SUSY mass scale $m_{\text{sUSY}} > M_{W}$, where m_{sUSY} denotes the relevant SUSY particle mass involved in the neutralino reactions. Hence the freeze-out temperature of the very light neutralino will generally be higher than T_{fr}.

Estimating the thermally-averaged neutralino annihilation cross-section via an effective vertex, we obtain the approximate interaction rate

$$\Gamma_{i}^{\nu}(T) = \frac{3 \zeta(3)}{4 \pi^{2}} G_{\text{sUSY}}^{2} T_{f_{i}}^{5}, \quad (13)$$

where $G_{\text{sUSY}} / \sqrt{2} = g^{2} / (8 m_{\text{sUSY}}^{2})$. Equating this to the Hubble expansion rate [30]

$$H(T) = \sqrt{\frac{4 \pi^{3} g^{*}(T)}{45} T^{2}} / M_{Pl}, \quad (14)$$

where g^{*} counts the relativistic degrees of freedom, yields the approximate freeze-out temperature:

$$T_{f_{i}}^{\chi_{1}} \approx \left(\frac{m_{\text{sUSY}}}{200 \text{ GeV}}\right)^{1/3} T_{f_{\nu}}^{\nu}. \quad (15)$$

Thus, for sparticle masses below $\sim 3 \text{ TeV}$, the neutralinos freeze-out below the temperature at which muons annihilate [4].

We now calculate the freeze-out temperature of a pure bino-like neutralino more carefully, considering all annihilation processes into leptons which are present at the time of neutralino freeze-out:

$$\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell \bar{\ell}, \quad \ell = e, \nu_{e}, \nu_{\mu}, \nu_{\tau}. \quad (16)$$

Assuming that sleptons and sneutrinos have a common mass scale m_{slepton}, the following relations hold

$$\sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell_{R} \bar{\ell}_{L}) = 16 \sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell_{L} \bar{\ell}_{R}) = 16 \sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \nu \bar{\nu}), \quad (17)$$

so the total annihilation cross section into leptons is given by

$$\sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell \bar{\ell}) = 20 \sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell_{L} \bar{\ell}_{R}), \quad (18)$$

where we have taken the electron to be massless. The thermally-averaged cross-section is then given by

$$\langle \sigma(\chi_{1}^{0} \chi_{1}^{0} \rightarrow \ell \bar{\ell}) \rangle_{\nu} = \frac{20}{9 \zeta(3)} \left(\frac{g^{*}}{3}\right) I(1)^{2} \hat{\sigma} T^{2}, \quad (19)$$

with $I(n) = \int_{0}^{\infty} \frac{y^{n+2}}{\exp(y) + 1} \quad (20)$

and

$$\hat{\sigma} = \frac{4^{4}}{8 \pi^{4} \theta_{W} m_{\text{slepton}}^{4}} \quad (21)$$

for $m_{\text{slepton}} \gg T$. In calculating the cross-section [19], we have neglected the Pauli blocking factors in the final state statistics [48].

Relating the reaction rate [19] to the Hubble expansion rate [14], we can now obtain the freeze-out temperature for a bino-like neutralino, shown in Fig. 1 as a function of the common mass scale $m_{slepton}$. Note that for m_{slepton} below a few TeV, the neutralino decouples below the muon mass as noted earlier. Thus neutrinos and neutralinos will have the same temperature,

$$T_{\chi_{1}^{0}} = T_{\nu}, \quad (22)$$

hence during BBN,

$$\Delta N_{\nu}^{\text{eff}}(\chi_{1}^{0}) = 1. \quad (23)$$

However, for slepton masses above a few TeV, the neutralino freeze-out temperature is close to the muon mass, and muon annihilation will influence the neutralino and neutrino temperature differently. For $T_{f_{\chi_{1}}}^{\chi_{1}} \gtrsim m_{\mu}$, the neutrinos are heated by the muon annihilations, whereas this affects the neutralinos only marginally. Therefore $T_{f_{\chi_{1}}}^{\chi_{1}} / T_{\nu}$ is reduced due to the conservation of comoving entropy. The muons contribute to $g^{*}(T_{\chi_{1}^{0}})$, such that

$$\frac{T_{\chi_{1}^{0}}}{T_{\nu}} = \left[\frac{g_{\nu} + \frac{7}{8} (g_{e} + 3 g_{\nu})}{g_{\nu} + \frac{2}{8} (g_{e} + 3 g_{\nu} + g_{\mu})} \right]^{1/3} = \left(\frac{43}{57} \right)^{1/3}. \quad (24)$$

Thus employing Eq. [10] we obtain

$$\Delta N_{\nu}^{\text{eff}}(\chi_{1}^{0}) = 0.69, \quad (25)$$

FIG. 1. Freeze-out temperature of the pure bino-like neutralino as a function of the common mass scale m_{slepton}.

\[\text{Diagram} \]
which is interestingly close to the observationally inferred central value of 0.68 in Eq. [2]. The LHC already restricts the masses of strongly coupled SUSY particles (squarks and gluinos) to be above several hundred GeV [49, 53] and the supernova cooling argument requires the selectron mass to also be above a TeV for a massless neutralino [11], so the picture is consistent.

Even for a neutralino freeze-out temperature somewhat below the muon mass, the effects from muon annihilation are notable. We now determine the effective number of neutrino species more carefully using the Boltzmann equation as in Refs. [17, 52], in order to determine the effect for arbitrary slepton masses. Consider a fiducial relativistic fermion x which is decoupled during $\mu\bar{\mu}$ annihilation, so that its number density, n_x, satisfies

$$\frac{d}{dt} \left(\frac{n_x}{n_{x_0}} \right) = n_x (\sigma v) \left[\frac{n_{x_0}}{n_{x}} - f(T_{x_0})^2 \right],$$

where

$$f(T_{x_0}) = \left[\frac{n_{x_0}(T_{x_0})}{n_{x}(T_{x_0})} \right]_{\text{equilibrium}}^2.$$

The cross-section $\mu\bar{\mu} \rightarrow \chi^0_1 \chi^0_1$ is given by

$$16\pi s^2 \frac{\cos \theta_W}{e^4} \sigma (\mu R\bar{\mu} \rightarrow \chi^0_1 \chi^0_1) =$$

$$2 \left(m_\mu^2 - m_\mu^2 \right) \ln \left(\frac{2 (m_\mu^2 - m_\mu^2) + s - \sqrt{s} \sqrt{s - 4 m_\mu^2}}{2 (m_\mu^2 - m_\mu^2) + s + \sqrt{s} \sqrt{s - 4 m_\mu^2}} \right) + \sqrt{s} \sqrt{s - 4 m_\mu^2} \frac{2 (m_\mu^2 - m_\mu^2)^2 + m_\mu^2 s}{(m_\mu^2 - m_\mu^2)^2 + m_\mu^2 s}. \quad (30)$$

Since this involves a cancellation between the two terms, we Taylor expand to ensure numerical stability:

$$16\pi \frac{\cos \theta_W}{e^4} \sigma (\mu R\bar{\mu} \rightarrow \chi^0_1 \chi^0_1) \approx \sqrt{1 - \frac{4 m_\mu^2}{s} (s - m_\mu^2)} \frac{1}{3 (m_\mu^2 - m_\mu^2)^2},$$

then take the thermal average $\langle \sigma v \rangle$ following Ref. [53].

In order to reformulate Eq. (27) in terms of dimensionless quantities, we define

$$\delta \equiv \frac{T_{x_0} - T_x}{T_x}, \quad \epsilon \equiv \frac{T_y - T_x}{T_x}, \quad y \equiv \frac{m_\mu}{T_y}. \quad (31)$$

Here δ measures the temperature difference between the decoupled particle x and the lightest neutralino and thus quantifies the heating of the lightest neutralino due to $\mu\bar{\mu}$ annihilation. We now evaluate n_{μ}/n_x numerically and expand $n_{\mu}/n_x \approx 1 + 3 \delta$ so Eq. (27) can be written as

$$\frac{d\delta}{dy} \approx \alpha y^{-2}(\epsilon - \delta), \quad (32)$$

for $\delta \ll 1$, i.e., for small temperature differences. The prefactor α depends on the size of the annihilation cross-section, and thus on y and the slepton mass:

$$a(y, m_\ell) = \frac{5.67 \times 10^{17}}{\sqrt{y}} \frac{\langle \sigma v \rangle}{\text{GeV}^{-2}}. \quad (33)$$

We approximate the drop in g^* when the muons become non–relativistic by a step-function with $g^*(y < 1) = 16$ and $g^*(y > 1) = 12.34$.

Now T_x and the photon temperature T_{γ} are related through entropy conservation [34]:

$$\frac{T_x}{T_{\gamma}} = \left(\frac{43}{57} \right)^{1/3} \langle \zeta(y) \rangle^{1/3}, \quad (34)$$

where

$$\zeta(y) = 1 + \frac{180}{43 \pi^4} \times \int_0^\infty \frac{x^2 \sqrt{x^2 + y^2 + \frac{1}{3} \sqrt{x^2 + y^2}^2}}{e^{\sqrt{x^2 + y^2}} + 1} \, dx. \quad (35)$$

We use Eqs. (34) and (35) to numerically evaluate $\epsilon(y)$ and then solve the differential equation (32) for $\delta(y, m_\ell)$. The solution asymptotically approaches a limit [denoted by $\delta_{\text{max}}(m_\ell)$] for $y \gtrsim 10$ because for temperatures far below the muon mass there is no further heating of the neutralinos from muon annihilation. This improves our estimate (29) to:

$$\Delta N^\text{eff}_{\nu} (\chi^0_1) = \left(\frac{T_{x_0}}{T_{\nu}} \right)^4 = 0.69 \left[1 + \delta_{\text{max}}(m_\ell) \right]^4. \quad (36)$$

In Fig. 2, we show $\Delta N^\text{eff}_{\nu} (\chi^0_1)$ as a function of the common slepton mass m_{slepton}. We see that for slepton masses above 3 TeV, our previous result of 0.69 in Eq. (29) is not modified. This is because if the interaction between the neutralinos and muons is too weak, then the neutralinos cannot stay in thermal contact with the muons. For slepton masses around 1 TeV, we get again 1 additional effective neutrino species. (Our numerical approximation is valid only for $\delta \ll 1$, so holds down to $m_{\text{slepton}} = 0.5$ TeV when $\delta \simeq 0.1$.)

Summarizing, the neutralino contribution to the effective number of neutrinos lies between 0.69 and 1, depending on the slepton mass as seen in Fig. 2. Thus, a very light neutralino is easily accommodated by BBN and CMB data and is in fact favoured by the recent observational indication [19] that $N_{\nu} \gtrsim 3$.

III. A VERY LIGHT NEUTRALINO AND A VERY LIGHT GRAVITINO

A very light gravitino (as realized e.g. in some models of gauge-mediated SUSY breaking) can constitute HDM. For its relic density to be small enough to be consistent with the observed small–scale structure requires \[m_{\tilde{G}} \lesssim 15 - 30 \text{ eV}. \] (37)

If the gravitino is heavier than the (very light) neutralino it will decay into it plus a photon with a lifetime \(\gtrsim 10^{38} \text{ s} \) [see Eq. (44) below] which is well above the age of the universe \(\sim 4 \times 10^{17} \text{ s} \). Conversely if the gravitino is lighter than the neutralino, the latter will decay to a gravitino and a photon with lifetime \[\tau_{\chi_1^0} \sim 7.3 \times 10^{41} \text{ s} \left(\frac{m_{\chi_1^0}}{1 \text{ eV}} \right)^{-5} \left(\frac{m_{\tilde{G}}}{0.1 \text{ eV}} \right)^2, \] assuming that there is no near–mass degeneracy between the neutralino and the gravitino. Again the lifetime is well above the age of the universe, therefore we can consider both the gravitino and the very light neutralino as effectively stable HDM.

The presence of a very light gravitino thus affects the primordial \(^4\)He abundance analogously to a very light neutralino. However, the contribution of the gravitino to the expansion rate depends on its mass, since it couples to other particles predominantly via its helicity–1/2 components with the coupling strength \(\Delta m^2/(m_{\tilde{G}}m_{\tilde{W}}) \), where \(\Delta m^2 \) is the squared mass splitting of the superpartners \[54]. For a very light gravitino, the interaction cross-section can be of order the weak interaction, leading to later decoupling. Hence it can have a sizeable effect on BBN.

The freeze-out temperature of a very light gravitino can be estimated from the conversion process with cross-section \[57 \]

\[\sigma(\tilde{G} e^\pm \to e^\pm \chi_1^0) = \frac{\alpha}{9} \frac{s}{m_{\tilde{G}}^2 m_{\chi_1^0}^2}. \] (39)

We neglect self–annihilations, \(\tilde{G}\tilde{G} \to \ell\ell \gamma \gamma \) since the annihilation rate into photons is \(\propto m_{\chi_1^0}^4 \) \[48, 55 \] hence suppressed for a light neutralino, while the annihilation rate into leptons is \(\propto T^6 \) \[48 \] so falls out of equilibrium much earlier than the conversions.

After thermal averaging of the conversion rate \[39 \] as before, we find

\[T_{\text{conversion}} \simeq 7.51 \frac{m_{\tilde{G}}^{2/3} m_{\chi_1^0}^{1/3} g_*^{1/6}}{10^{-5} \text{ eV}} \approx 100 g_*^{1/6} \left(\frac{m_{\tilde{G}}}{10^{-5} \text{ eV}} \right)^{2/3} \text{ MeV}. \] (40)

Since the goldstino coupling is enhanced for decreasing gravitino mass, the freeze-out temperature of the gravitino increases with its mass. For a gravitino mass of \(5.6 \times 10^{-4} \text{ eV} \) (\(7.8 \times 10^{-4} \text{ eV} \)) its freeze-out temperature equals the muon (pion) mass, so for heavier gravitinos the contribution to \(\Delta N_{\nu}^{\text{eff}} \) will decrease. We also consider the case \(m_{\tilde{G}} = 10 \text{ eV} \) which gives a freeze-out temperature of \(O(100) \) GeV, thus a negligible effect on \(\Delta N_{\nu}^{\text{eff}} \). (Note however that \(T_{\text{fr}}^{\tilde{G}} \) will now depend on the SUSY mass spectrum because above temperatures of a GeV or so other SUSY processes can also be in thermal equilibrium \[59, 60 \] and Eq. (40) may not apply.)

We can now evaluate the contribution of the gravitino, in conjunction with the very light neutralino, to the effective number of neutrino species. We need to keep in mind that the gravitino can affect neutralino decoupling since for very large slepton masses and/or very light gravitinos, the neutralino annihilation process \(\chi_1^0 \chi_1^0 \to \ell\ell \) becomes
subdominant to the conversion process \(\tilde{G} e^\pm \to e^\pm \chi_1^0 \) and therefore neutralino freeze-out is also governed by Eq. (30).

In Fig. 3, we show contour lines for the ratio of the cross-sections for neutralino annihilation (16), and the conversion process (39), in the slepton–gravitino mass plane. For a ratio less than 0.1, the freeze-out temperature of both particles is determined via the conversion process (39) and \(T_{\tilde{G}} = T_{\tilde{G}}^{\chi_1^0} \). Hence \(\Delta N_{\nu}^{\text{eff}}(\tilde{G}, \chi_1^0) = 1/0.69/0.57 \), the latter two cases corresponding to gravitino masses above \(5 \times 10^{-4} \) eV and \(7.8 \times 10^{-4} \) eV, respectively [corresponding to a freeze-out temperature below the muon and the pion mass, as determined from Eq. (30)]. The corresponding equivalent number of neutralino species is:

\[
\Delta N_{\nu}^{\text{total}} \equiv \Delta N_{\nu}^{\text{eff}}(\tilde{G}) + \Delta N_{\nu}^{\text{eff}}(\chi_1^0) = 2/1.38/1.14. \quad (41)
\]

Thus a very light gravitino is strongly constrained by the BBN bound (39), a mass below \(5.6 \times 10^{-4} \) eV being excluded at 3\(\sigma \). As the gravitino mass increases, \(\Delta N_{\nu}^{\text{total}} \) decreases because the gravitino and neutralino freeze-out earlier, hence are colder than the neutrinos at the onset of BBN.

One can see from Fig. 3 that a further increase of the gravitino mass (or smaller slepton mass) accesses parameter regions where the neutralino annihilation process dominates over the conversion process. When the ratio of their rates exceeds \(\sim 1 \), the freeze-out of the neutralino and the gravitino is governed by the processes (16) and (39) respectively. For a slepton mass above \(\sim 3 \) TeV, the lightest neutralino decouples above the muon mass hence yields \(\Delta N_{\nu}^{\text{eff}}(\chi_1^0) = 0.69 \). Fig. 2 shows that with decreasing slepton mass, this increases to \(\Delta N_{\nu}^{\text{eff}}(\chi_1^0) = 1 \) as before. Hence we obtain the same bounds on the gravitino mass for \(\Delta N_{\nu}^{\text{eff}}(\tilde{G}) = 1/0.69/0.57 \).

In summary for a slepton mass below \(\sim 1 \) TeV

\[
\Delta N_{\nu}^{\text{total}} = 2/1.69/1.57, \quad (42)
\]

while for a slepton mass above \(\sim 3 \) TeV

\[
\Delta N_{\nu}^{\text{total}} = 1.69/1.38/1.26; \quad (43)
\]

for intermediate slepton masses, there is a continuous transition between the two cases.

If the gravitino mass increases further its effect on the expansion rate continues to decrease, e.g. for \(m_{\tilde{G}} = 10 \) eV (corresponding to \(T_{R}^{G} \approx 100 \) GeV), we find \(g^* = 395/4 \) or \(\Delta N_{\nu}^{\text{eff}}(\tilde{G}) \approx 0.05 \). Thus, gravitinos with mass \(\gtrsim 1 \) eV do not significantly affect the expansion rate.

Summarising, \(\Delta N_{\nu}^{\text{total}} \) is between 1.14 and 2 for scenarios with both a relativistic neutralino and a relativistic gravitino (when their freeze-out temperature lies between the freeze-out temperature of the neutralino and the pion mass). As before we can use the Boltzmann equation if necessary to obtain exact values for \(\Delta N_{\nu}^{\text{eff}} \) around the mass thresholds. From Eq. (30), \(\Delta N_{\nu}^{\text{total}} > 4.9 \) is excluded at 3\(\sigma \) implying a lower bound on the gravitino mass of \(5.6 \times 10^{-4} \) eV, cf. Fig. 3. This bound is two orders of magnitude weaker than the one stated in Ref. [48] where a model with a very light gravitino but a heavy neutralino was considered. This is because the gravitino annihilation into di-photons or leptons is the relevant process when there is no light neutralino, also Ref. [48] assumed a more stringent BBN limit: \(N_{\nu}^{\text{total}} < 3.6 \).

IV. DECAYING GRAVITINOS

So far we have considered the increase in the expansion rate caused by sub–eV neutralinos and gravitinos which are quasi–stable (cf. §IV). We now consider a gravitino with a mass above \(\mathcal{O}(100 \) GeV\() \) as would be the case in gravity mediated SUSY breaking where the gravitino sets the mass scale of SUSY partners.

As the gravitino mass increases, the relative coupling strength of the helicity–1/2 components, \(\Delta m^2/(m_{\tilde{G}} m_{\text{Pl}}) \) decreases and the helicity–3/2 components come to dominate. These are however also suppressed by \(1/m_{\text{Pl}} \) hence gravitinos decouple from thermal equilibrium very early. During reheating, gravitinos are produced thermally via two–body scattering processes (dominantly QCD interactions) and the gravitino abundance is proportional to the reheating temperature \(T_R \). [61]. The gravitino is unstable and will decay subsequently into the very light neutralino and a photon with lifetime [32, 61–63].

\[
\tau \tilde{G} \approx 4.9 \times 10^8 \left(\frac{m_{3/2}}{100 \text{ GeV}} \right)^{-3} \text{ s}, \quad (44)
\]

where we have assumed for simplicity that the gravitino is the next-to-lightest-SUSY particle (NLSP) while the neutralino is the lightest–SUSY particle (LSP). If the gravitino decays around or after BBN, the light element abundances are affected by the decay products whether photons or hadrons. In particular there is potential over-production of D and \(^3\)He from photodissociation of (the much more abundant) \(^4\)He [32, 62], while for short lifetimes, decays into hadrons have more effect [63].

Therefore, the observationally inferred light element abundances constrain the number density of gravitinos. For a gravitino lifetime of \(\mathcal{O}(10^8 \) sec\) one obtains [61, 62] a severe bound on the abundance \(Y_{3/2} \equiv n_{3/2}/s \):

\[
Y_{3/2} \lesssim 10^{-14} \left(\frac{100 \text{ GeV}}{m_{\tilde{G}}} \right). \quad (45)
\]

This is proportional to the reheating temperature through [32, 61, 63]

\[
\left(\frac{T_R}{10^{10} \text{ GeV}} \right) \approx 3.0 \times 10^{11} Y_{3/2}, \quad (46)
\]

hence the latter is constrained to be

\[
T_R \lesssim 3.0 \times 10^{7} \text{ GeV} \times \left(\frac{100 \text{ GeV}}{m_{3/2}} \right). \quad (47)
\]
Note that a reheating temperature below $O(10^8 \text{ GeV})$ is not consistent with thermal leptogenesis, which typically requires $T_R \sim 10^{10} \text{ GeV}$ [60]. There are however other possible means to produce the baryon asymmetry of the universe at lower temperature [22 31].

The contribution to the present neutralino relic density from gravitino decays is

$$\Omega_{\tilde{\chi}_1^0}^{\text{decay}} h^2 \approx 0.28 Y_{3/2} \left(\frac{m_{\tilde{\chi}_1^0}}{1 \text{ eV}} \right).$$

This further restricts the gravitino mass and/or the reheating temperature in order not to exceed the observed value $\Omega_{\text{DM}} h^2 = 0.11$. The least restrictive upper bound on the reheating temperature from Eq. (61) is $O(10^5 \text{ GeV})$ for gravitino and gaugino masses of order 100 keV and 100 GeV, respectively. This could be alleviated if the gravitino density is diluted by the decay of particles (such as moduli fields [62] or the saxion from the axion multiplet [71 72]). In this context, there have been several detailed studies on gravitinos as light DM [72 82].

V. QUASI–STABLE GRAVITINOS

As mentioned in § [IV] when the gravitino mass is below $\sim 100 \text{ MeV}$ its lifetime is longer than the age of the universe so it is quasi–stable and can constitute warm dark matter. Decaying gravitino DM is constrained by limits on the diffuse γ–ray background. For a mass between $\sim 100 \text{ keV}$ and $\sim 100 \text{ MeV}$ the gravitino decays to a photon and a neutralino, and the photon spectrum is simply

$$\frac{dN_\gamma}{dE} = \delta(E - \frac{m_{\tilde{\chi}_1^0}}{2}).$$

The γ–flux from gravitinos decaying in our Milky Way halo dominates [62 68] over the redshifted flux from gravitino decays at cosmological distances. Using a Navarro-Frenk-White profile for the distribution of DM in our galaxy, we obtain

$$E^2 \frac{dJ}{dE}|_{\text{halo}} = \frac{2E^2}{2\pi \gamma_G m_{\tilde{\chi}_1^0}} \int_0^E \langle p_{\text{halo}}(\vec{v}) d\vec{v} \rangle/\Delta \Omega$$

$$= 31.1 \left(\frac{m_{\tilde{\chi}_1^0}}{1 \text{ MeV}} \right)^4 \delta(E - \frac{m_{\tilde{\chi}_1^0}}{2}) \frac{\text{MeV}}{\text{cm}^2 \text{ str s}}.$$

This implies that gravitinos with mass above $\sim 250 \text{ keV}$ would generate a flux exceeding the observed galactic γ–ray emission. On the other hand, constraints from small–scale structure formation set a lower mass bound on WDM of $O(\text{keV})$ [72 74].

Now we consider the relic density of those gravitinos. Due to the presence of the very light neutralino, all sparticles will decay into the latter before the onset of BBN. Therefore the gravitino will only be produced thermally with relic density [76]

$$\Omega_{\tilde{\chi}_1^0} h^2 \approx \left(\frac{1 \text{ keV}}{m_{\tilde{\chi}_1^0}} \right) \left(\frac{T_R}{10 \text{ TeV}} \right) \left(\frac{M_{\text{SUSY}}}{200 \text{ GeV}} \right)^2.$$
ACKNOWLEDGMENTS

We thank Manuel Drees and Nicolas Bernal for many useful discussions. MH and JSK would like to thank the Rudolf Peierls Center of Theoretical Physics at the University of Oxford for their hospitality. JSK also thanks the Bethel Center of Theoretical Physics and the Physikalisches Institut at the University of Bonn for their hospitality. This work has been supported in part by the ARC Centre of Excellence for Particle Physics at the Terascale and by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101 (Physics at the Terascale), the Deutsche Telekom Stiftung and the Bonn–Cologne Graduate School.

[59] P. Fayet.