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Gravitationally-induced wave function collapse
time for molecules

Anderson A. Tomaz, a Rafael S. Mattos a and Mario Barbatti *ab

The Diósi–Penrose model states that the wave function collapse ending a quantum superposition occurs

due to the instability of coexisting gravitational potentials created by distinct geometric conformations

of the system in different states. The Heisenberg time-energy principle can be invoked to estimate the

collapse time for the energy associated with this instability, the gravitational self-energy. This paper

develops atomistic models to calculate the Diósi–Penrose collapse time. It applies them to a range of

systems, from small molecules to large biological structures and macroscopic systems. An experiment is

suggested to test the Diósi–Penrose hypothesis, and we critically examine the model, highlighting chal-

lenges from an atomistic perspective, such as gravitational self-energy saturation and limited extensivity.

1. Introduction

The time-dependent Schrödinger equation and wave function
collapse (or reduction) separately determine the time evolution
of quantum systems.1,2 Since the 1980s, objective collapse
theories have become relevant candidates for unifying quan-
tum time evolutions.3–6 One of the most intriguing of such
theories is the Diósi–Penrose model.7–10 Its central hypothesis
is that gravity causes the quantum superposition to collapse.
When two quantum superposed states are spatially separated,
two spacetime distortions associated with each state should co-
exist. However, according to Penrose,9 such a superposition of
distortions is unstable and spontaneously collapses the wave
function.

The Diósi–Penrose model holds the highest stakes among
the objective collapse theories because it explicitly attributes a
physical cause to the wave function collapse, proposing a route
to unify quantum mechanics and general relativity.7–9,11 If the
model is verified, it will profoundly impact fundamental phy-
sics. It will not only finally connect the quantum and classical
worlds but also explain why all the attempts to quantize gravity
have been deceivingly challenging.9,12 Indeed, Diósi has
recently highlighted exciting parallels between gravitationally-
induced collapse and quantum cosmology developments.13 For
all these reasons, significant effort has been dedicated to
understanding the Diósi–Penrose model’s theoretical basis
and seeking its experimental verification.14–16

Our understanding of the transition between quantum and
classical worlds is incomplete. Taken separately, quantum

mechanics and classical mechanics are astounding successes
in their respective validity domains. Nevertheless, ask most
physicists how a collection of quantum objects may engender a
classical system. We will inevitably listen to a historical digres-
sion with terms like ‘‘Copenhagen interpretation’’ and ‘‘Many-
worlds hypothesis,’’ followed by a candid admission that we
still do not know the answer to the measurement problem or
why quantum mechanics describe superpositions, but we only
observe definite results.

However, we can do better than that.
A good deal of the quantum-to-classical transition is

explained by decoherence.17 Decoherence is the delocalization
of the coherence of a subsystem over the environment
entangled with it. It plays two roles: it selects the preferred
basis through environment-induced superselection (einselec-
tion), which can eventually be measured, and it suppresses
any superposition of states on this basis.

For a molecule, decoherence will occur because of entangle-
ment with other molecules, thermal photons, background
radiation, or, if the molecule is vibrationally excited, blackbody
radiation it emits.18 Decoherence successfully explains why
superpositions are not easily observed in large systems. It is
formally expressed by the tendency of the nondiagonal terms of
the subsystem’s reduced density matrix to become zero with
time.19 For a two-state subsystem, decoherence looks like the
process illustrated on the left side of Fig. 1. (Decoherence can
also be formulated without referring to reduced density
matrices in the frame of environment-assisted invariance
(envariance).20)

After decoherence, only states A or B can be observed, not
any superposition of them. Nevertheless, the quantum-to-
classical transition is not complete yet in standard quantum
mechanics. Decoherence leaves the subsystem in an improper
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mixture, which still implies that the subsystem may be in either
state while we only actually observe one of the states. Thus, one
more step is needed to complete the transition, which is the
collapse. For the two-state example in Fig. 1, the collapse would
definitely bring the system to either state A or B. If one
considers an ensemble of identically prepared subsystems, it
yields a proper mixture. Although the figure is restricted to the
system (as the index S indicates), collapse extends over the
entire density matrix, including apparatus, environment, obser-
ver, and, in the limit, the universe.

This distinction between decoherence and collapse is not yet
fully established in the literature. Sometimes, the terms are used
interchangeably21 (which is not recommended); in others, deco-
herence time is taken as a proxy for collapse time22 (which is not
guaranteed). In this work, we assume that decoherence and
collapse are separate processes that may interfere with each other
and occur within much different time scales in principle.

At this point, there is no agreement on whether collapse
actually exists or if it is even needed. Relative state interpret-
ations23,24 (aka many-worlds interpretations) do not require col-
lapse. It assumes that a single quantum world following the
unitary Schrödinger evolution exists. However, this quantum
world is split into infinite noninteracting branches. The collapse
is, thus, an illusion of an observer whose wave function is trapped
in one of these branches. Decoherence is a fundamental piece of
relative state interpretations,20 as it establishes the preferred basis
for the branching. Epistemic interpretations also do not require
collapse.25,26 QBism, for example, considers collapse ‘‘nothing but
the updating of an agent’s state assignment on the basis of her
experience.’’27

The objective collapse theories3–5 share the core hypothesis
that a wave function is a real object (rather than a way of
interpreting reality28) and that a quantum superposition of
states occasionally collapses into a single state. The unified
unitary wave function plus collapse time evolution is achieved
by including nonlinear terms in the Schrödinger equation.4

These nonlinear terms give rise to a collapse time inversely
proportional to the system size, explaining why macroscopic
objects are never observed in quantum superposition.

Thus, objective collapse theories are not a mere interpreta-
tion of quantum mechanics. They are new theories with stan-
dard quantum mechanics as a limit. Moreover, objective

collapse is a nonunitary, irreversible process, making it entirely
distinguishable from decoherence, which is unitary and (in
principle) reversible.

Despite the large body of literature published about the
Diósi–Penrose model (the seminal paper by Diósi29 has been
cited nearly 600 times, and the one by Penrose8 received over
1600 citations), the modeling of realistic atomistic and mole-
cular systems is underdeveloped.15,30 This paper profits from
our experience developing nonadiabatic molecular dynamics
methods31 to derive general atomistic equations to compute
the Diósi–Penrose collapse time. We employ these equations
for systems ranging from small molecules to macrostructures,
propose an experiment, and critically discuss the Diósi–Penrose
model from the molecular perspective. (Note: during the revi-
sion of our work, Figurato et al.32 deposited a preprint with an
atomistic approach close to ours, although less general.)

2. Diósi–Penrose collapse time

The Diósi–Penrose model’s central assumption is that gravity
causes the quantum superposition to collapse.7–10 If an object is
in a superposition of two quantum states with different spatial
positions, it implies a gravitational instability, which spontaneously
collapses the wave function, with a time constant inversely propor-
tional to the gravitational self-energy of the difference between the
mass distributions of the two superposed states (Fig. 2).8

Suppose we have a system in a state |ci that is a super-
position between stationary states |Ai and |Bi33

|ci = cA|Ai + cB|Bi (1)

where cA and cB are complex coefficients (not both zero). Let
aA(r) and aB(r) be the free-fall accelerations at point r in the
respective spacetime of A and B. Penrose heuristically proposed
that the energy associated with the difference of these
accelerations8

EDðtÞ �
g
G

ð
aAðrÞ � aBðrÞð Þ2d3r (2)

Fig. 1 Decoherence and collapse in a two-state molecule. rij are the
elements of the reduced density matrix of the molecule traced over the
environment (which is indicated by the subindex S). The environment may
be other molecules, electromagnetic fields, or even black body radiation
the molecule emits if it is vibrationally excited.

Fig. 2 The Diósi–Penrose model predicts that superposed spacetimes,
occurring when quantum superposition diverges spatially, are unstable,
causing a wave function collapse within h�/ED, where ED is the gravitational
self-energy of the difference between the two mass distributions. The
figure schematically illustrates a coherent superposition of the up and
down states of NH3 (discussed in Section 3.1), which stochastically col-
lapses to one of the conformations after a time tC.
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is a measure of the incompatibility between these spacetimes.
In this equation, G is Newton’s gravitational constant and g is a
positive, open constant.

For small masses, we can develop ED in terms of the New-
tonian gravitational potentials of A and B to obtain (see
Appendix A)16

ED ¼ 4pGg
ð
d3r d3r0

mA r0ð Þ � mB r0ð Þð Þ mA rð Þ � mB rð Þð Þ
r� r0j j (3)

which is the gravitational self-energy of the difference between
the mass density distributions mA(r) and mB(r) of the two states.
Then, following the Heisenberg time-energy uncertainty prin-
ciple, the Diósi–Penrose collapse time is7

tC ¼
�h

ED
(4)

The gravitationally-induced collapse time expressed in (4)
has also been derived in other ways. The original proposal is
due to Diósi, who gets it from a master equation with gravita-
tional damping term.29 It also arises from a conflict between
quantum superposition and the equivalence principle of gen-
eral relativity when one considers the wave function phases of
systems evolving in accelerated and free-fall frames.16 The
collapse time in (4) is strictly valid for stationary states.9

Tackling the dynamical evolution of the collapse would require
solving the Diósi master equation.

For an ensemble of Nat nuclei, we can integrate analytically
(3) and get a simple expression for ED. To do so, we suppose
that each nucleus i has a Gaussian mass distribution

GiðrÞ �Mi
ai
p

� �3=2
e�ai r�Rij j2 (5)

where Mi, Ri, and ai are the nucleus mass, expected position
value, and Gaussian width. This is an approximation commonly
employed in quantum molecular dynamics simulations34 to
describe the nuclear wave function of a molecule. Note that,
despite the formal similarity, the Gaussian length ai

�1/2 should
not be mistaken for the correlation length rC discussed in the
continuous spontaneous localization model (CSL) literature
(see, for instance, ref. 35) and experimentally estimated.36

We show in Appendix B that using (5) and neglecting the
electron masses, ED becomes

ED ¼ 8p1=2gG
XNat

i¼1

XNat

j¼1
MiMj

aiaj
ai þ aj
� �

 !1=2
2
4

� F0
aiaj

ai þ aj
� � RiA � RjA

�� ��2" #
þ

bibj
bi þ bj
� �
 !1=2

� F0

bibj
bi þ bj
� � RiB � RjB

�� ��2" #
� 2

aibj
ai þ bj
� �

 !1=2

� F0

aibj
ai þ bj
� � RiA � RjB

�� ��2" ##

(6)

where RiA and ai are the expected position and Gaussian width

for particle i in state A. Equivalently, RiB, and bi are these
quantities for state B. In (6),

F0½x� ¼
1

2

p
x

� �1=2
erf x1=2
� �

(7)

We also show in Appendix C that for a homogeneous
medium of identical nuclei of mass M and Gaussian width a,
the gravitational self-energy is

ED ¼ 16p1=2gNatGM
2 a
2

� �1=2
1� F0

a
2
DR2

h ih
þ Nat � 1ð Þ F0

a
2
d�r2

h i
� F0

a
2
d�r2 þ DR2
� �h i� �i (8)

where DR is the displacement between equivalent atoms in
states A and B and d%r is the mean distance between any pair of
atoms. If DR { d%r,

ED ¼ 16p1=2gNatGM
2 a
2

� �1=2
1� F0

a
2
DR2

h ih i
(9)

Eqn (6)–(9) are our main theoretical results, derived for the
first time here. In the next section, we use them to evaluate the
Diósi–Penrose collapse times in different systems.

3. Results
3.1 Estimating the collapse time

As a first example, let us discuss the symmetry breaking in the
isolated ammonia molecule, NH3. For each rotational and
translational state, the nitrogen atom can be above or below
the plan formed by the hydrogen atoms (see Fig. 2). The lowest
energy state of a single isolated ammonia molecule |c+i is a
symmetric superposition of these two pyramidal states37,38

cþ
�� �

¼ 1ffiffiffi
2
p upj i þ downj i½ � (10)

We can estimate the Diósi–Penrose time of this system by
directly evaluating its gravitational self-energy with (6). To do
so, we need the mass distribution of states |upi and |downi. To
get them, we first optimized NH3 up-pyramidal ground state
geometry. (Here, we did it with density functional theory using
the B3LYP functional39 and the 6-311G(d,p) basis set.40 For a
more advanced discussion of NH3 geometry, see ref. 41.) The
down-pyramidal geometry is obtained by a simple symmetry
transformation. Additionally, we must translate both to ensure
that their center of mass coincides.

Next, we should determine the nuclear mass distributions
for these NH3 structures. We follow the approach Penrose
proposed,9 where the nuclear wave function determines the
mass distribution. The experiments of Donadi et al. have
contested this approach,15 and we return to this point later in
Section 3.3. Thus, each nucleus is represented by a Gaussian
function with the widths given in Table 1. These distributions
are illustrated in Fig. 3. For the nitrogen nucleus, with a
Gaussian width a of 19 a0

�2,42 the Gaussian standard deviation
RN = (2a)�1/2 is 0.09 Å. In the case of the hydrogen nucleus
(proton), it is 0.17 Å. However, we should be careful when
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interpreting this result.43 It does not mean that the nuclei have
this actual size. If they are measured, they collapse into their
standard femtometer scales. A better way to interpret the
distribution plotted in Fig. 3 is to consider that each dot
forming the nitrogen cloud corresponds to a single set of dots
in each of the three hydrogen clouds. We cannot pick the dots
from each nuclear cloud independently.

Now that we have a Gaussian representation of the nuclei,
the application of (6) is straightforward. The gravitational self-
energy of NH3 quantum superposition is ED = 1.1 � 10�51 J,
with g = 1/(8p) as proposed in ref. 16 (see also discussion in
Section 3.3). With (4), this extraordinarily tiny energy uncer-
tainty implies an immensely long collapse time of 1017 s or 109

years. (This and other collapse times estimated in this work are
collected in Table 2.) For comparison, the decoherence time of
isolated NH3 in perfect vacuum due to thermal photons at room
temperature is about 1020 s. Thus, under such conditions, the
collapse would occur much before the molecule could deco-
here. (For this estimate, we supposed that the NH3 molecule is
a small dielectric sphere of radius 1.5 Å, and followed the
treatment of Joos and Zeh.48) On the other hand, supposing
that the best laboratory vacuum has a number density 10�17

smaller than standard room pressure,17 decoherence toward
the residual gas would happen within 106 s, killing any sign of
quantum superposition much before the wave function col-
lapsed. (In these decoherence estimates, we neglected the recoil

of the molecule caused by the environmental scattering. This is
a valid approximation for photons but not suitable for a gas.
Still, the difference in many orders of magnitude between
collapse and decoherence times in the residual gas should be
observed if recoil were considered.)

Let us now consider the quantum superposition that
emerges when a medium-sized molecule like C70 diffracts as
a matter wave.49 These impressive experiments by Arndt, Zei-
linger, and co-workers detected such waves using a Talbot–Lau
interferometer with gold gratings with a 991 nm period of
476 nm slits. The successful detection of interference fringes
with about 40% visibility implies that C70 was in a state super-
position involving at least two neighbor slits. More recently,
Arndt and colleagues used a similar setup to demonstrate
quantum interference for molecules with up to 2000 atoms.36

Using the fullerene geometries from ref. 50 (available at
nanotube.msu.edu/fullerene), we estimated the Diósi–Penrose
collapse time of diverse fullerenes under conditions like those
of the Talbot–Lau interferometer. We only considered inter-
ference between two neighbor slits of the grating, simplifying
the estimate to a two-state problem. The original fullerene
geometry was assumed to correspond to one of the states. For
the second state geometry, we rigidly translated the original
geometry along direction x by 991 nm. This information and
the Gaussian width for carbon nuclei (given in Table 1) are all
we need to compute the gravitational self-energy with (6) and
the collapse time with (4).

Fig. 4 shows the Diósi–Penrose collapse times for diverse
fullerenes between C20 and C720. The collapse time for C70 is
2.4 � 1014 s. If the experiment were repeated with C720, a much
larger buckyball, the collapse time would be 8.4 � 1012 s.

Before moving to another application, let us check the effect
of the approximations introduced in the homogeneous models
(8) and (9) compared to the geometry-specific model (6). Fig. 5
shows ED computed with the three models as a function of the
superposition displacement DR for C70 displaced along the x
direction in the coherent states. The homogeneous model (8)
was computed with the mean interatomic distance of C70, d%r =
0.503 nm. It is in agreement with the geometry-specific model,
showing similar self-energy saturation values (see also discus-
sion in 3.3). At the maximum ED, the collapse times of the two
models are 2.4 � 1014 (geometry specific) and 2.7 � 1014 s
(homogeneous). The homogeneous model in the approxi-
mation d%r c DR (eqn (9)) agrees well with the other two results
for small values of DR but diverges later, with a much lower
saturation ED, corresponding to a collapse time of 8.0 � 1014 s.

Table 1 Frozen Gaussian widths a, as given in ref. 42–46. The length RN =
(2a)�1/2 corresponds to the Gaussian standard deviation. For elements not
given in the table, RN = 6255 exp(�Rat/0.139) + 0.0744, where Rat is the
atomic radius (in Å) given in ref. 47. This fitting was obtained by excluding
Cl from the dataset

Element a (a0
�2) RN (Å) Ref.

H 4.7 0.17 42
C 22.7 0.08 42
N 19.0 0.09 42
O 12.2 0.11 42
F 8.5 0.13 42
Si 16.7 0.07 44
S 16.7 0.09 42
Cl 7.4 0.14 42
Ge 30.0 0.07 45
Br 36.7 0.06 46
Cs 21.0 0.08 46
Pb 24.6 0.08 46

Fig. 3 Nuclear density distributions of the up and down pyramidal struc-
tures of NH3. The straight lines are to guide the eyes only.

Table 2 Some of the Diósi–Penrose collapse times estimated in this work

System Number of atoms Collapse time (s)

NH3 isomerization 4 1.0 � 1017

C20 diffraction 20 1.3 � 1015

C720 diffraction 720 8.4 � 1012

Neuron activation 106 1.1 � 1010

Iron vacancies 1.8 � 1015 1
Aluminum pointer 2 � 1022 6 � 10�21
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At small DR values, the ED in Fig. 5 grows proportional to the
total mass Mtot. In contrast, for larger values, it does with Mtot

2.
The reason for this difference is that for small DR values, the
(Nat � 1)2 crossing terms involving states A and B in (6) tend to
cancel out, leaving only the Nat same-atom terms. Indeed, this
feature motivates deriving (9) from (8).

Consider now quantum superpositions in a neuron. The
active (firing) and inactive (resting) states of this type of cell are
distinct by the sodium ions that can be inside the axon in the
active or outside in the inactive state.51 The inside/outside
positions DR are separated by an ion channel membrane (the
nodes of Ranvier) 8 nm wide. The number of Na+ ions involved
in the activation is about 106, distributed over all nodes, each
one with about 1 mm length (which we take as 2d%r). Thus,
supposing that we have a coherent state composed of the
active/inactive state superposition, where only the sodium ions
contribute to the gravitational self-energy, we can employ (9) to
estimate the collapse time. Using the fitting proposed in

Table 1, a = 24.9 a0
�2 for the atomic radius Rat = 2.25 Å,47

yielding a collapse time of about 1010 s. This value is tremen-
dously longer than the axon recovery time (10�3 s) and deco-
herence time due to water molecules and other ions in the
environment, estimated in 10�20 seconds by Tegmark.51 This
decoherence estimate should be taken cautiously as it does not
consider collective effects specific to the molecular structure.
For instance, Tegmark also used a similar approach to estimate
the decoherence in microtubules in 10�13 s.51 However, a
recent study by Babcock et al. detected superradiance effects
in microtubules due to the collective interactions protecting the
network against decoherence for more extended periods.52

As another example, let us gauge how long it takes for the
wave function of a large chunk of matter to collapse, according
to the Diósi–Penrose model. Consider a piece of iron crystal in
its lowest-energy bcc structure (a-Fe) with vacancies,53 as illu-
strated in Fig. 6. In principle, these two iron structures can exist
in a quantum superposition of the type |ci = c1|lefti + c2|righti.

We will not mind the geometric details of the structures and
suppose that the atom involved in the defect is displaced by
2.8 Å between the two states, and all the remaining atoms
remain fixed. Given a vacancy concentration of 1014 mol�1 and
a crystal volume much bigger than the superposition displace-
ment, we can use (9) for the homogeneous medium to estimate
the Diósi–Penrose collapse time as a function of the number of
atoms (and, equivalently, the total mass).

We must, however, note that not all atoms in the medium
are displaced by the superposition; only those creating the left/
right states are displaced. Thus, we split the iron atoms into
two sets: those in the system (which includes the NS = 1014

atoms per mol that have different positions in the superposi-
tion) and those in the environment (all remaining atoms that
remain in the same position). With such a split, the difference
in mass distribution that appears in (3) is

mA rð Þ � mB rð Þ ¼ mSA rð Þ þ mE rð Þð Þ � mSB rð Þ þ mE rð Þð Þ

¼ mSA rð Þ � mSB rð Þ
(11)

Fig. 4 Diósi–Penrose collapse times for diverse fullerenes crossing a
grating with slits separated by 991 nm.

Fig. 5 Gravitational self-energy difference for C70 as a function of the
superposition displacement DR. The vertical line indicates the value at
which the fullerene in state A touches that in B in a single point.

Fig. 6 Schematic double-well potential separating bcc iron structures
with vacancies at left and right. The dashed circle indicates the vacancy.
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where S and E stand for system and environment. Eqn (11)
implies that only the system’s gravitational self-energy contri-
butes to the Diósi–Penrose collapse time. Therefore, we should
replace Nat with NS in (8). Using the fitting proposed in Table 1,
a = 24.9 a0

�2 for the atomic radius Rat = 2.26 Å.47

The result is shown in Fig. 7. According to the Diósi–Penrose
model, the state superposition occurring in a 1 kg piece of iron
would last about 1 s. This is a surprising result, meaning that if the
Diósi–Penrose model is correct, quantum coherence could survive
for a long time for macroscopic systems. However, observing it in a
system like iron vacancy superposition at room temperature would
still be challenging because decoherence (toward the crystal struc-
ture) would select the position basis and suppress any sign of
quantum interference in a much shorter time scale.

When the superposition displacement increases, the grav-
itational self-energy saturates corresponding to the minimum
collapse time, tC,min. This quantity is plotted in Fig. 8 for a
homogeneous carbon atom distribution, which, although arti-
ficial, can be taken as representative of the mean mass and
width in organic matter. These values were obtained with (8) in
the saturation regime (DR -N). d%r is computed with (C.10) for
a number density of 7.5 � 1028 m�3, typical for coal. As
expected, the collapse time is tiny for a macroscopic system,
of the order of 10�27 s for a 1 kg mass. It increases to 10�7 s for
10�11 kg, the mass of a pollen grain. However, it is somewhat
surprising that it is highly long for isolated mesoscopic systems
like a virus (106 s) or a protein (1011 s).

3.2 Proposed experimental setup

Suppose we want to observe the wave function collapse. In that
case, we should guarantee (1) that it occurs within reasonable
times (neither too long nor too short from the experimental

perspective) and (2) that decoherence does not suppress the
quantum interference before collapse takes place. We can
control the first condition via the number of atoms, tuning
the collapse time as we wish. The second condition, however,
requires much more strict control of the environmental para-
meters. First, the entire system (as opposed to a subsystem)
should be in the quantum superposition to avoid coherence
delocalization over the environment. Second, for the same
reason, the experiment should be in an extreme vacuum,
possibly better than what we can achieve in conventional labs.
Third, the system must be as close to absolute zero as possible
to avoid decoherence due to the scattering of thermal photons
and blackbody radiation.18

If these pressure and temperature conditions could be
attained (in outer space, for instance6), we could consider a
matter-wave scattering experiment in a Talbot–Lau interferom-
eter like the one we discussed above in the case of C70. It would
be set up such that the collapse time and the travel time
between the last grating and the Tabolt point are similar. Then,
one could use the mass to tune the ratio tC/ttravel between these
times. If the ratio is above one (tC 4 ttravel), wave fringes should
be observed at the Talbot point; if it is below one, the system
would collapse before reaching L, and a Moiré pattern (expected
for particles crossing the grating) would be observed.

Nevertheless, balancing the precise measurement condi-
tions for such an experiment would still be a challenge. It
could be achieved, for instance, by diffracting small, charged
crystals of a dense material like osmium. If each crystal has
a mass M = 5.6 � 10�18 kg, its radius is about 0.04 mm
and could be diffracted at a grating with a d = 0.4 mm period
(Fig. 9). It would have a Diósi–Penrose collapse time of just
about 1334 s using (8) with a = 25.2 a0

�2 (fitting in Table 1 with
Rat = 2.44 Å given in ref. 47). If it is prepared at velocities as low
as v = 10�3 m s�1, the Talbot length (L = Mvd2/h, where h is the

Fig. 7 Diósi–Penrose collapse times computed with (9) as a function of
the number of atoms and total mass for a system composed of Fe atoms in
a quantum superposition of 1014 vacancies per mol. Note that the total
mass corresponds to the entire crystal and not only of the atoms in the
defects.

Fig. 8 Minimum Diósi–Penrose collapse time computed with (8) for an
isolated, homogeneous system composed of carbon atoms. The collapse
times for equivalent masses of a fullerene (840 Da), a rhodopsin protein
(85 kDa), an adenovirus (150 MDa), a pollen grain (10�11 kg), and a small
dog (10 kg) are indicated, too.
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Planck’s constant) would be about L E 1.3 m. With these
parameters, the wave/particle would travel for about one-third
of a day before reaching the first L point, which is (on purpose)
near the collapse time.

To give an idea of how far we are from such a setup, some of
the matter-wave diffraction studies with the biggest masses
were made with molecules with about 10�22 kg (2000 atoms)
and Talbot length under 2 m.36 In turn, quantum interference
with wave packets separated by 0.5 m on a scale of 1 s was
reported for ultracold atoms.54 Other proposed setups to verify
the Diósi–Penrose model experimentally are discussed in ref. 6,
15, 30, 33 and 55–59.

3.3 Critical appraisal of the Diósi–Penrose collapse

The Diósi–Penrose model has been under intense
theoretical14,60 and experimental15,58 scrutiny since it was
proposed. In this section, we will outline a few points related
to the atomistic approach to the model that needs to be
clarified by further research.

3.3.1 Mass distribution width. The width of the mass
distribution has been under discussion since Diósi’s initial
proposal.29,61 In ref. 10, for instance, Diósi equaled it to 10�5 Å,
a typical nuclear size. Penrose proposed that stationary-state
nuclear wave functions, which are about 10�2 to 10�1 Å,
provided a natural basis for mass distributions as long as their
spreading in nonbonding systems was limited by a Newtonian
gravitational potential.9 We agree that the nuclear wave func-
tion describes the mass distribution and, for molecules, in
particular, it is automatically bound by the Born–Oppenheimer
potential. This is indeed the approach we employed in all
simulations of this paper, with the parameters of Table 1.

Nevertheless, non-interferometric experiments reported in
ref. 15 (see also discussion in ref. 32), based on radiation
emission of charged particles during the collapse, go in a
different direction: they claim that the width of the mass
distribution should be at least one order of magnitude broader
than the nuclear wave function. For instance, for germanium
atoms, the material they measured, they claimed that the mass

distribution width must be bigger than R0 = 0.54 Å (where, in
their model, R0 is the radius of a rigid sphere representing the
nucleus). In contrast, using the fitting proposed in Table 1
(with Rat = 2.34 Å as given in ref. 47), the Gaussian standard
deviation would be RN = 0.07 Å. Comparing the sphere and the
Gaussian radius is somewhat arbitrary. Still, if we overlook it, it
is clear that RN is smaller than the lower bound width R0.

The gravitational self-energy heuristically derived from Pen-
rose’s incompatibility measure in (2) has a free parameter g.
Here, we assumed without discussing that it is valued 1/(8p),
following Howl, Penrose, and Fuentes.16 However, if this para-
meter is incorporated into the mass distribution m (see eqn (3)),
it would immediately imply that the Gaussian standard devia-
tion RN should be multiplied by a factor g�1/3 to ensure that the
integral over the mass distribution returns the nuclear mass, as
expressed in (B.2). For the g = 1/(8p), for example, all RN values
in Table 1 would be multiplied by 2.9. Any g value below 0.002
would suffice to bring the Gaussian distribution above the
lower bound set by Donadi et al.15

At this point, however, in view of all uncertainties associated
with the gravitational self-energy and radiation rate estimates,
we believe that it is still too early to rule out the nuclear wave
function as the measure of mass distribution width, especially
considering that there is no obvious replacement for it. Thus, it
may be more fruitful to investigate the hypothesis that collapse
in charged systems should be accompanied by radiation emis-
sion and invest in interferometric experiments to cross-check
results.

3.3.2 Preferred basis. In quantum mechanics, the wave
function can be expanded on arbitrarily different bases. Still, we
finally observe only a few bases, such as position. One of the
biggest successes of the decoherence research program has been
establishing that the continuous monitoring of the system by an
environment selects a preferred system basis, the pointer
states.62,63 These are the states with the least entanglement with
the environment and that, therefore, survive to the decoherence.

Indifferent to this decoherence einselection, the Diósi–Pen-
rose collapse necessarily implies that position should be the
preferred basis. However, how should the collapse be in sys-
tems where the superposition is not expressed on a position
basis? Consider, for example, superconducting quantum inter-
ference devices (SQUIDS),64 which show superpositions of
clockwise and counter-clockwise flux in the device loop. In
such a case, the gravitational self-energy is null, and collapse,
according to the Diósi–Penrose model, would never occur.

It may be that the isolated description of the device is not
enough to induce the collapse, and its correlations with the
environment lead to position distortions that are ultimately
responsible for it. This is the Bell conjecture,65 according to
which ‘‘the only observations we must consider are position
observations, if only the positions of instrument pointer.’’

We commonly see such a type of indirect correlation in the
nonadiabatic dynamics of molecules. During internal conver-
sion, coherent superposition of different electronic states is
formed. This superposition is not on a position basis but on the
energy eigenstates. However, immediately after it is formed, the

Fig. 9 Parameters for a Talbot–Lau interferometer to verify the Diósi–
Penrose collapse model. Only one of the gratings (in black) is illustrated.
The parameters are set up to have similar travel (ttravel) and collapse (tc)
times. Repeating the measurements with different masses (parameter k)
would allow tuning the ratio between these times and observing either
Talbot fringes (if ttravel o tc) or Moiré patterns (ttravel 4 tc).
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fractions of the nuclear wave packet on each electronic state
follow different paths on the potential energy surfaces till their
overlap is null, causing electronic decoherence19 and still
selecting the energy eigenstates as pointer states. Thus,
although the system’s superposition is initially in the electronic
energy eigenstates (not particularly sensitive to gravitationally
induced collapse), the nuclear wave function is driven to a
superposition of different positions, which in turn has a non-
null gravitational self-energy and may collapse.

3.3.3 Self-energy saturation. Another potential problem
with the Diósi–Penrose model is the dependency of the gravita-
tional self-energy on the superposition displacement DR. As
expected, the gravitational self-energy increases when this
displacement augments. However, it saturates to a maximum
value, as shown in Fig. 5. For a homogeneous medium of
identical nuclei, eqn (8) tells that this maximum value is

Emax
D 				!DR!1

16p1=2gNatGM
2 a
2

� �1=2
1þ Nat � 1ð ÞF0

a
2
d�r2

h ih i
(12)

Thus, after a certain displacement, no matter how far the
system in states A and B are pulled apart, the collapse time
will always be about tmin

C = h�/Emax
D , not depending on DR.

For comparison, decoherence has an entirely different
dependency on the superposition displacement. The decoher-
ence time over superposition displacement DR is proportional
to DR�2, ensuring that decoherence becomes faster for more
extensive separations.48

3.3.4 Extensivity. The gravitational self-energy increases
with the system’s size, yielding extremely tiny collapse times
if all atoms are displaced in the coherent state, as we can see in
the examples of Fig. 8. However, in realistic situations, the
quantum superposition may be restricted to small subregions
of the system, with most of the molecular environment undis-
turbed. In such cases, the collapse time would be long, even for
macroscopic objects. We saw such an example when we dis-
cussed the superposition of vacancies in iron crystals, where
the effective size factor in (9) was harshly reduced to NSM2

(NS { Nat). That was also the case of sodium ion superpositions
in a neuron (see Table 2), where only about a million atoms
matter for the coherent state.

Another example of this extensivity problem may occur in the
photoisomerization of retinal chromophores in proteins. Despite
the significant conformational changes that the chromophore
experiences when moving from the cis to trans conformations,
the geometric distortions in the protein and water environments
are limited. That is so to the point that in advanced atomistic
simulations, only the sidechain atoms of the residues forming the
cavity around the retinal and a few water molecules are geome-
trically relaxed.66 Most and all remaining protein is unchanged. It
could be that this initial photoisomerization process, with limited
geometric displacements, does not reflect later, more extensive
geometric distortions67 that could enhance the gravitational self-
energy. However, it could equally be that these later distortions
are still restricted to the immediate environment, implying a long
collapse time.

We could always argue that when the quantum state of the
systems entangles with the environment, the measuring appa-
ratus, and the observer through the von Neumann chain,17 the
gravitational self-energy increases, shortening the collapse
times. A 1-cm aluminum instrument pointer of 1 g in a two-
state superposition 1 cm apart would instantaneously collapse
within 6 � 10�21 s (in a direct application of (8), with a = 25.2
a0
�2 and d%r given by (C.10) with n = 6 � 1028 m�3). However,

such reasoning defeats the purpose of the collapse theories,
which is to attribute a naturally occurring collapse time inde-
pendent of any laboratory measurement.

4. Conclusions

Wave function collapse is postulated in standard quantum
mechanics to explain how the only possible result of the
measurement of a physical quantity is one of the eigenvalues
of the corresponding observable.1 However, standard quantum
mechanics does not explain how this nonunitary process
occurs; it only states its probability. In the frame of objective
collapse theories, which modify the Schrödinger unitary pro-
pagation to account for collapse, Diósi29 and, independently,
Penrose8 proposed that gravity induces collapse within a time
inversely proportional to the gravitational self-energy of the
quantum superposition.

Here, we developed models to compute the Diósi–Penrose
collapse time in general atomistic systems (eqn (6)) and homo-
geneous media (eqn (8) and (9)). We applied these models for
systems ranging from a small isolated molecule, for which the
collapse time is of the order of a billion years, to mesoscopic
crystals, whose collapse could occur within days, and macroscopic
systems, collapsing within a rontosecond (10�27 s). We also discuss
collapse in the context of decoherence, which is another essential
element in the route from quantum to classical, and propose an
interferometric experiment to verify the Diósi–Penrose hypothesis.

We critically appraised the Diósi–Penrose collapse model,
discussing diverse points that need to be clarified by further
research. They include the width of the mass distribution, whose
main proposal is at odds with non-interferometric experimental
results; the selection of preferred basis, whose status is not as
straightforward as in the decoherence program; the gravitational
self-energy saturation, which leads to a nonintuitive result where
the collapse time does not depend on the superposition displace-
ment; and the extensivity problem, which seems to imply that
macroscopic system may have too long collapse times.

It is still early to state if the Diósi–Penrose model can solve the
quantum measurement problem. However, the several drawbacks
pointed out by previous research and by the present work may
indicate that some reformulation of the theory is needed to retain
gravity-induced collapse theories as viable contenders among the
many proposed solutions to the problem.

This paper deals with a subject that dates to the beginning
of quantum mechanics, has no formed consensus, splits phy-
sicists and philosophers, and is still rapidly evolving. Thus, it is
impossible to credit all theories and authors. For instance,
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although we focused on the Diósi–Penrose model, it is not the
only objective collapse theory4 and not even the only proposal
to modify quantum mechanics to incorporate gravity.21,22,68

No field in physics invokes as many passionate philosophi-
cal debates as quantum mechanics. Interpretation of quantum
mechanics became so problematic that even outstanding scien-
tists seemingly gave up hope that we may reach a scientific
consensus. They think that the interpretation of quantum
mechanics is fated to be a matter of choice.69 We do not share
this opinion. As scientists, we must seek a realist (pretty much
as Einstein, Podolsky, and Rosen famously defined70) and
experimentally verifiable interpretation of the quantum world,
even if this interpretation costs us some foundational stone like
locality71,72 or means that we live in a universe where statistic
independence is a conceptual impossibility.73,74

Zeh, who developed the early concepts of what would later be
known as decoherence, considered the collapse a troublesome
superfluous hypothesis: ‘‘Any deviation from the global Schrödin-
ger equation must, in principle, lead to observable effects, and it
should be recalled that none have ever been discovered.’’75

However, proposing ways and attempting to verify such effects
are worth it. It may come the day we would have to bow to a realist
but unverifiable hypothesis based on some relative state
interpretation20,76 or admit that the wave function is a subjective
construct.27,28 But we are not quite there yet. Experiments such as
the cosmic Bell tests,77 the gradual formation of eigenstates,78 or
those reconstructing wave function phases out of measurements79

show we still have much to learn. The Diósi–Penrose model also
tells us that we have room for realist, testable theories of
measurement. We hope our atomistic modes of the Diósi–Penrose
will help in this endeavor.

Data availability

All data supporting this article can be directly recomputed with
the equations given in Section 2.
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Appendices
A Penrose’s incompatibility measure

We can develop ED expressed in (2) in terms of the Newtonian
gravitational potentials fA and fB of states A and B to obtain

ED ¼
g
G

ð
aA rð Þ � aB rð Þð Þ � aA rð Þ � aB rð Þð Þd3r

¼ � g
G

ð
rfA rð Þ � rfB rð Þð Þ � rfA rð Þ � rfB rð Þð Þd3r

¼ � g
G

ð
fA rð Þ � fB rð Þð Þ r2fA rð Þ � r2fB rð Þ

� �
d3r

(A.1)

where we used aS = �rfS.

The gravitational potential fS at point r due to the mass
density mS at point r0 are related either by the Poisson’s
equation

mS rð Þ ¼ 1

4pG
r2fS rð Þ (A.2)

or by the Green’s function

fS rð Þ ¼ �G
ð
mS r0ð Þ
r� r0j jd

3r0 (A.3)

Using these relations, ED becomes

ED ¼ 4pgG
ð ð

mA r0ð Þ
r� r0j jd

3r0 �
ð
mB r0ð Þ
r� r0j jd

3r0

 �

mA rð Þ � mB rð Þð Þd3r

¼ 4pgG
ð
mA rð Þ � mB rð Þð Þ mA r0ð Þ � mB r0ð Þð Þ

r� r0j j d3r d3r0

(A.4)

B Derivation of the gravitational self-energy

B.1 Gaussian particles distribution. To drive the gravita-
tional self-energy, we neglect the electron masses and exclu-
sively focus on the nuclear distribution. We assume that each
nucleus i in state A has a Gaussian mass distribution

G qiA;RiA; aið Þ �MiA
ai
p

� �3=2
e�ai qiAj j2 (B.1)

Centered in RiA with width ai and decreasing with a radial
distance qiA from this point. This mass distribution should
integrate into the full nuclear mass Mi, such that

ð
d3r GiA qiA;RiA; aið Þ ¼Mi (B.2)

The full mass density of state A at point r is a sum over the mass
distributions of all Nat nuclei

mA rð Þ ¼
XNat

i¼1
GiA qiA rð Þ;RiA; aið Þ (B.3)

where qiA(r) is

qiA(r) = r � RiA (B.4)

as illustrated in Fig. 10.
Following the same steps, the mass distribution of state B is

equivalently written as

mB rð Þ ¼
XNat

i¼1
GiB qiB rð Þ;RiB; bið Þ (B.5)

where bi is the Gaussian width of nucleus i in state B.
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Now, we turn our attention to the integral in (3). It can be
expanded as

ð
d3rd3r0

mA r0ð Þ � mB r0ð Þð Þ mA rð Þ � mB rð Þð Þ
r� r0j j

¼
ð
d3r d3r0

mA r0ð ÞmA rð Þ
r� r0j j �

ð
d3r d3r0

mA r0ð ÞmB rð Þ
r� r0j j

�
ð
d3r d3r0

mB r0ð ÞmA rð Þ
r� r0j j þ

ð
d3r d3r0

mB r0ð ÞmB rð Þ
r� r0j j

(B.6)

The last term is composed of integrals of the product of mass
distributions. Let us take, for example, the integral involving
the product mA(r0)mB(r). Replacing the mass distributions (B.3)
and (B.5) into that integral renders

ð
d3r d3r0

mA r0ð ÞmB rð Þ
r� r0j j

¼
XNat

i¼1

XNat

j¼1

ð
d3r d3r0

GiA r0 � RiA;RiA; aið ÞGjB r� RjB;RjB; bj
� �

r� r0j j

(B.7)

This type of integrals is analogous to 1s two-electron integrals80

and can be solved analytically, as discussed next.
B.2 Analytical Gaussian integrals. Consider the Gaussian

functions of the type

~G r� RA;RA; að Þ ¼ e�a r�RAj j2 (B.8)

The four-center integral is (see eqn (A.41) of ref. 80)

where

F0 x½ � ¼
1

2

p
x

� �1=2
erf x1=2
� �

(B.10)

and

RP � RQ ¼
aRA þ bRB

aþ b
� gRC þ dRD

gþ d
(B.11)

We can recast the integral (B.7) into such a format by rewriting
the Gaussian mass distribution (B.1) in the format of the
Gaussian functions in (B.8). For instance

G r� RA;RA; að Þ ¼ MA
a
p

� �3=2
~G r� RA;RA;

a
2

� �
� ~G r� RA;RA;

a
2

� � (B.12)

Therefore,

ð
d3r d3r0

GiA r0 � RiA;RiA; aið ÞGjB r� RjB;RjB; bj
� �

r� r0j j

¼
aibj
p2


 �3=2

MiAMjB AAjBBð Þ

(B.13)

According to (B.9), this integral is

AAjBBð Þ ¼ 2p5=2

aibj ai þ bj
� �1=2F0

aibj
ai þ bj
� � RiA � RjB

�� ��2" #
(B.14)

Thus,

ð
d3r d3r0

GiA r0 � RiA;RiA; aið ÞGjB r� RjB;RjB; bj
� �

r� r0j j

¼ 2

p1=2
aibj

ai þ bj

 !1=2

MiAMjBF0

aibj
ai þ bj
� � RiA � RjB

�� ��2" #

(B.15)

The other integrals we will need to solve (B.6) are

BBjAAð Þ ¼ 2p5=2

ajbi aj þ bi
� �1=2F0

ajbi
aj þ bi
� � RjA � RiB

�� ��2" #
(B.16)

AAjAAð Þ ¼ 2p5=2

aiaj ai þ aj
� �1=2F0

aiaj
ai þ aj
� � RiA � RjA

�� ��2" #
(B.17)

Fig. 10 Scheme of the A–B superposition of a two-nuclei system.

ABjCDð Þ �
ð
d3r d3r0

~G r� RA;RA; að Þ ~G r� RB;RB; bð Þ ~G r0 � RC;RC; gð Þ ~G r0 � RD;RD; dð Þ
r� r0j j

¼ 2p5=2

aþ bð Þ gþ dð Þ aþ bþ gþ dð Þ1=2
exp � ab

aþ bð Þ RA � RBj j2� gd
gþ dð Þ RC � RDj j2


 �

� F0
aþ bð Þ gþ dð Þ
aþ bþ gþ dð Þ RP � RQ

�� ��2� 

(B.9)
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BBjBBð Þ ¼ 2p5=2

bibj bi þ bj
� �1=2F0

bibj
bi þ bj
� � RiB � RjB

�� ��2" #
(B.18)

B.3 Gravitational self-energy. Using (B.15), integral (B.7)
becomes

ð
d3r d3r0

mA r0ð ÞmB rð Þ
r� r0j j ¼ 2

p1=2
XNat

i¼1

XNat

j¼1

aibj
ai þ bj

 !1=2

�MiAMjBF0

aibj
ai þ bj
� � RiA � RjB

�� ��2" #

(B.19)

We follow similar steps using eqn (B.16)–(B.18) for the other
integrals in (B.6)ð

d3r d3r0
mB r0ð ÞmA rð Þ

r� r0j j ¼ 2

p1=2
XNat

i¼1

XNat

j¼1

biaj
bi þ aj


 �1=2

�MiBMjAF0
biaj

bi þ aj
� � RiB � RjA

�� ��2" #

(B.20)

ð
d3r d3r0

mA r0ð ÞmA rð Þ
r� r0j j ¼ 2

p1=2
XNat

i¼1

XNat

j¼1

aiaj
ai þ aj


 �1=2

�MiAMjAF0
aiaj

ai þ aj
� � RiA � RjA

�� ��2" #

(B.21)

ð
d3r d3r0

mB r0ð ÞmB rð Þ
r� r0j j ¼ 2

p1=2
XNat

i¼1

XNat

j¼1

bibj
bi þ bj

 !1=2

�MiBMjBF0

bibj
bi þ bj
� � RiB � RjB

�� ��2" #

(B.22)

Finally, the total integral (B.6) isð
d3r d3r0

mA r0ð Þ � mB r0ð Þð Þ mA rð Þ � mB rð Þð Þ
r� r0j j

¼ 2

p1=2
XNat

i¼1

XNat

j¼1
MiMj

aiaj
ai þ aj
� �
 !1=2

F0
aiaj

ai þ aj
� � RiA � RjA

�� ��2" #2
4

þ
bibj

bi þ bj
� �
 !1=2

F0

bibj
bi þ bj
� � RiB � RjB

�� ��2" #

�2
aibj

ai þ bj
� �
 !1=2

F0

aibj
ai þ bj
� � RiA � RjB

�� ��2" #35
(B.23)

In (B.23), the factor 2 in the last term in the right hand comes
from recognizing that

(BB|AA) = (AA|BB) (B.24)

Returning to (3), the gravitational self-energy for an ensemble
of Gaussian particles is

ED ¼ 8p1=2gG
XNat

i¼1

XNat

j¼1
MiMj

aiaj
ai þ aj
� �

 !1=2
2
4

� F0
aiaj

ai þ aj
� � RiA � RjA

�� ��2" #
þ

bibj
bi þ bj
� �

 !1=2

� F0

bibj
bi þ bj
� � RiB � RjB

�� ��2" #
� 2

aibj
ai þ bj
� �
 !1=2

� F0

aibj
ai þ bj
� � RiA � RjB

�� ��2" ##

(B.25)

B.4 Sanity check: the single-particle limit. We can check
our result (B.25) by comparing it with the single-particle result
that Howl, Penrose, and Fuentes derived for Bosen–Einstein
condensates in the Gaussian approximation using a different
approach.16 If the system has a single particle, (B.25)
simplifies to

ED ¼ 8p1=2GM2g
a
2

� �1=2
þ b

2


 �1=2

�2 ab
aþ bð Þ


 �1=2
"

� F0
ab

aþ bð Þ RA � RBj j2
� 

 (B.26)

Considering that the Gaussian width is the same in the two
states, we get from (B.26)

ED ¼ 16p1=2gGM2 a
2

� �1=2
1� p1=2

2

erf
a
2

� �1=2
b


 �
a
2

� �1=2
b

2
664

3
775 (B.27)

with the distance between the two states given as b � |RA � RB|.
We can also write a = 1/(kR2), where R is the radius of the
Gaussian and recast the equation in terms of l � b/(2k1/2R)

ED ¼ 27=2p1=2g
GM2

k1=2R
1� p1=2

23=2
erf

ffiffiffi
2
p

l
� �
l

" #
(B.28)

In these equations, k is an open parameter. In particular, when
k = 2, R is the Gaussian standard deviation.

In ref. 16, g is taken as 1/(8p). We do the same here to obtain

ED ¼
GM2

R0

ffiffiffi
2

p

r
� 1

2l
erf

ffiffiffi
2
p

l
� � !

(B.29)

where R0 = k1/2R, which is the same result obtained by Howl,
Penrose, and Fuentes.16
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C ED in a homogeneous, isotropic, uniform medium

Supposing that both states in the superposition share the same
Gaussian width and all nuclei are identical, (B.25) becomes

ED ¼ 8p1=2gGM2 a
2

� �1=2
�
XNat

i¼1

XNat

j¼1
F0

a
2
RiA � RjA

�� ��2h ih

þ F0
a
2
RiB � RjB

�� ��2h i
� 2F0

a
2
RiA � RjB

�� ��2h ii (C.1)

Now, we separate diagonal and nondiagonal terms to write

ED ¼ 8p1=2gGM2 a
2

� �1=2 XNat

i¼1
fii þ

XNat

i¼1

XNat

jai

fij

" #
(C.2)

where

fii � 2 1� F0
a
2
RiA � RiBj j2

h i� �
(C.3)

and

fij � F0
a
2
RiA � RjA

�� ��2h i
þ F0

a
2
RiB � RjB

�� ��2h i
� 2F0

a
2
RiA � RjB

�� ��2h i (C.4)

For the diagonal terms, we assume the same scalar displace-
ment DR between equivalent atoms in states A and B, which
implies

fii � 2 1� F0
a
2
DR2

h i� �
(C.5)

To estimate fij, we assume

|RiA � RjA| = |RiB � RjB| E d%r (C.6)

where d%r is the mean distance between any pair of atoms in the
system. We also assume that the direction of d%r is approxi-
mately perpendicular to the direction of DR, which implies

RiA � RjB

�� �� � RiA � RjA þ DR
� ��� ��

� d�rþ DRj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�r2 þ DR2

p (C.7)

With these approximations, fij is

fij � 2 F0
a
2
d�r2

h i
� F0

a
2
d�r2 þ DR2
� �h i� �

(C.8)

If the particular case of Nat spherically distributed identical
atoms with number density n (atom/volume), these atoms fill a
sphere of radius

Nat

n
¼ 4

3
pr3 ! r ¼ 3Nat

4pn


 �1=3

(C.9)

Then, the mean distance between any two points i an j within a
sphere of radius r is

d�r ¼
Ð
Rijd

3Rid
3RjÐ

d3Rid3Rj
¼ 72r

35p
� 2r

p
¼ 2

p
3Nat

4pn


 �1=3

(C.10)

Now, we use (C.5) and (C.8) to evaluate the sums in (C.2):

XNat

i¼1
fii � 2Nat 1� F0

a
2
DR2

h i� �
(C.11)

and

XNat

i¼1

XNat

jai

fij � 2Nat Nat � 1ð Þ F0
a
2
d�r2

h i
� F0

a
2
d�r2 þ DR2
� �h i� �

(C.12)

Thus, the self-energy in this approximation is

ED ¼ 16p1=2gNatGM
2 a
2

� �1=2
1� F0

a
2
DR2

h i
þ Nat � 1ð Þ

h
� F0

a
2
d�r2

h i
� F0

a
2
d�r2 þ DR2
� �h i� �i

(C.13)

If d%r c DR, it simplifies to

ED ¼ 16p1=2gNatGM
2 a
2

� �1=2
1� F0

a
2
DR2

h ih i
(C.14)
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22 G. Gasbarri, M. Toroš, S. Donadi and A. Bassi, Phys. Rev. D:
Part., Fields, Gravitation, Cosmol., 2017, 96, 104013, DOI:
10.1103/PhysRevD.96.104013.

23 H. Everett, Rev. Mod. Phys., 1957, 29, 454–462, DOI: 10.1103/
RevModPhys.29.454.

24 D. Wallace, The Emergent Multiverse: Quantum Theory accord-
ing to the Everett Interpretation, Oxford University Press,
2012, DOI: 10.1093/acprof:oso/9780199546961.001.0001.

25 A. Barzegar and D. Oriti, arXiv, 2022, preprint, arXiv:2210.
13620 [quant-ph], DOI: 10.48550/arXiv.2210.13620.

26 C. Rovelli, Int. J. Theor. Phys., 1996, 35, 1637–1678, DOI:
10.1007/BF02302261.

27 C. A. Fuchs, N. D. Mermin and R. Schack, Am. J. Phys., 2014,
82, 749–754, DOI: 10.1119/1.4874855.

28 N. D. Mermin, Nature, 2014, 507, 421–423, DOI: 10.1038/
507421a.
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