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Abstract

In the first part of this thesis, we consider the scattering problem for the massless modes that appear
in the context of AdS3/CFT2 from the perspective of integrable models. We start by considering the
extension of the psu(1|1)2 symmetry algebra by a Modified Poincaré algebra. Having found a consistent
Hopf algebra structure, we construct suitable R-matrices, both for the undeformed and the q-deformed
case of the su(1|1)2

c.e. algebra, and study the found coproducts in detail. We find interesting connections
between the boost operator J and the R-matrices. In addition, we encounter a non-coassociative structure
for one of the cases we are interested in. This prompts us to make use of the notions of quasi-Hopf algebras
and coassociators.

We then move from the framework of a 1 + 1-dimensional short representation to the analysis of
the boost operator and its coproduct in a universal, representation-independent sense. This leads us to
establish a classification of boost algebras and coproducts. We arrive at six different algebraic structures,
each with its own universal coproduct for the boost operator. Finally, we put particular focus on the
cases that can sensibly appear within the context of AdS3 physics.

Moving on from Hopf algebraic considerations, we stay within the context of AdS3 string theory,
and consider a particular 3-parameter deformed background in the Landau-Lifshitz limit. We construct
an effective field theory from the Polyakov action associated to this background. This way, we obtain
a Lagrangian up to next-to-leading order in the energy parameter κ, allowing us to find kinematical
quantities such as the dispersion relation of these theories. We then introduce one single complex field
that parametrises the relevant coordinates of the theory (corresponding to one mode stemming from
the S3 part), allowing us to canonically quantise it in the standard way. Analysing the diagrammatics
of the so-obtained quantum field theory, we find interesting peculiarities related to the propagator and
the ground state, and proceed to compute two-body S-matrix elements, both at leading and subleading
order in the string tension λ.

In the latter part of this thesis, we then move on to a study in linear algebra, as well as particular
spin chains and their Hamiltonians. We first construct an algorithmic framework that allows us to infer
the generalised eigensystem of a defective complex matrix by perturbing it in such a way that it becomes
diagonalisable. In this case, the eigensystem is directly accessible, and from there we can then go back to
the limiting case of non-diagonalisability by again turning off the perturbation. In this construction, we
find curious particularities and differences for the case of singular and non-singular geometric multiplicity
of the considered eigenvalue, the latter case needing more caution in its analysis. In order to apply this
recipe to the eclectic spin chain, we make use of the Nested Coordinate Bethe Ansatz and find that the
analysis of the spectrum of the twisted spin chain contains sufficient information about the generalised
eigensystem of the eclectic spin chain for our developed methodology to be successful.
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Lay Summary

From the earth going around the sun to our smartphones working the way they do, everything in
the universe happens for four reasons: The fundamental interactions. These are comprised of gravity,
electromagnetism, as well as the strong and weak interaction, which can mathematically all be described
as fields. Gravity, the theory dominant on large scales, can be embedded into a purely geometrical
description, the general theory of relativity. The latter three forces are dominant when describing very
small scales, and are described by a field theory that takes into account the quantum nature that we
encounter at these scales - quantum field theory. Both of these theories are overwhelmingly successful
in the description of their respective regimes, yet break down when trying to be connected. Quantum
field theory relies on the idea that the interactions are mediated by point particles. The central idea
of string theory is to do away with the notion of point particles and consider strings with no thickness
in their stead. As simple as this conceptual replacement may be, it proves to be equally consequential:
String theory features a graviton in its spectrum, making it a hopeful candidate for a quantum theory
that describes gravity. String theory can be formulated on any geometrical background, but it turns out
that some are more interesting and rich to analyse than others. In this PhD thesis, it will always be a
particular class of geometric backgrounds that are in the focus - so-called AdS backgrounds. In these
settings, two things will be accompanying us throughout this report, integrability - a particularly useful
feature of some physical systems - and deformations - a way of continuously generating new physical
models from already analysed ones, hoping that they retain crucial properties.

There will be three projects that, from different perspectives, will shine a light on string theories
of this kind. In the first part, we will embark on an algebraic study related to the massless scattering
in the AdS3 context. The algebraic objects named Hopf algebras intrinsically feature a way that lends
itself nicely to describing scattering processes, of which we will make use for both the undeformed and
deformed setting. In the second project, instead of using an algebraic approach to analyse a string
theoretical problem, we make use of an effective field theory approach in the context of a deformed AdS3

background. These approaches allow us to analyse an a priori complicated theory in the limit of some
parameter appearing in the theory, corresponding to some regime where the theory is more manageable
to analyse. In this simplified theory that only describes our model under some effective assumptions,
we can then use standard quantum field theoretic tools to gain insight on the scattering processes that
occur. In the last part of this thesis, we move on to the topic of spin chains, which are quantum models
that share a deep connection with AdS string theories and often feature properties of integrability. To
gain a deeper insight into the energy structure of the specific spin chain we are looking at, we develop a
method based on linear algebra, and successfully apply it to our problem.
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1 | String Theory and the
AdS/CFT Correspondence

“... Und jedem Anfang wohnt ein Zauber inne.” [“... A magic dwells in each beginning.”]
– Hermann Hesse, Stufen

1.1 Motivation and Historical Context
The initial goal of string theory is an ambitious one: to formulate a single comprehensive quantum
theory of all four forces that we (currently) consider to be governing the universe, namely gravity, the
electromagnetic, weak and strong forces.

One of Sir Isaac Newton’s main contribution to the scientific understanding of nature was formulating
the first widely accepted description of gravity in the late 17th century. In his law of universal gravitation,
every body of mass exerts a force on every other body of mass in an instant fashion and with infinite
range. Its force is proportional to the product of the two masses m1,m2 and decreases with distance r:

F ∝ m1m2

r2 . (1.1.1)

While Newton’s empirical result was astounding, it needed further modifications later on. Before any
meaningful amendments to the theory of the gravitational force were made, however, it was James Clerk
Maxwell who in the 19th century identified the electromagnetic interaction and described it using his
famous equations:

∇ · E = ρ

ϵ0
,

∇ · B = 0 ,

∇ × E = −∂B
∂t

,

∇ × B = µ0j + 1
c2
∂E
∂t

. (1.1.2)

Maxwell’s theory successfully unified electricity and magnetism and described them as effects of more
general electromagnetic fields. To be able to work with them, the language of vector calculus needed to be
developed, and apart from more involved mathematics, the (finite) speed of light in a vacuum (commonly
referred to as c) also made its first prominent appearance in a physical theory. Newton’s theory of
mechanics and Maxwell’s equations were fundamentally incompatible, and it took none other than Albert
Einstein to understand this problem in his annus mirabilis at the beginning of the last century, when
he formulated the special theory of relativity (SR). This theory, where c is of utmost importance again,
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amends Newtonian mechanics to describe physical systems with bodies moving close to the speed of
light. Finally, with more advancement in astrophysical experiments and apparent discrepancies between
Newton’s theory and observations - such as the precession of Mercury - it was becoming more and more
clear that a fundamental revolution of the understanding of mass, time and space was needed. In 1915,
Einstein refined his special theory of relativity into the general theory of relativity, which is commonly
formulated in the even more advanced mathematical language of differential geometry, whose central
equation is Einstein’s field equation

Gµν ≡ Rµν − 1
2
Rgµν = 8πG

c4 Tµν . (1.1.3)

Einstein’s theory of gravity is in overwhelming agreement with experimental data, and is able to explain
phenomena like gravitational red shift - where Newton’s theory fell short. The scientific community
also acknowledges General Relativity to be an extraordinarily beautiful theory - the left-hand side of
Einstein’s equations contains spacetime, whereas the right-hand side contains the matter content, inviting
one to think of the famous phrase “matter tells spacetime how to bend, curvature tells matter how to
move”.

Einstein’s theory provides us with a marvellously successful model of the very large, i.e. cosmology and
gravitation, however, it seems to break down when trying to describe the very small, i.e. the (sub)atomic
physical regime. It was a monumental effort of scientists in the 20th century to formulate and develop a
theory of the quantum. At this point, we will gloss over the very beginnings of quantum mechanics (QM)
involving advancements such as the proposal of particle-wave duality, the uncertainty principle and the
Schrödinger and Dirac equations, and move on to quantum theories that involve fields. In quantum field
theory (QFT), the quantum mechanical wave function is upgraded to a dynamical state. At the bottom
of QFT lies the idea that particles are just quantised excitations of an underlying quantum field, that in
turn depend on the coordinates of the spacetime they live in with certain dynamical constraints (as in
classical Lagrangian field theory). Building on the behaviour of the operators present in QM, these fields
are operator-valued and expected to satisfy certain commutation relations that do not violate the causal
framework of SR (c.f. canonical quantisation, or for the other prominent quantisation approach, see path
integrals). The tools of QFT allow one to (perturbatively) compute physical quantities, most notably the
amplitude, i.e. the probability that a given initial state evolves into a specific final state over some time.
For scattering processes, its square-root is proportional to the modulus of the scattering cross-section.
With the instruments of QFT, the Standard Model (SM) of particle physics is able to describe the three
other fundamental forces of nature other than gravity: The electromagnetic one (which Maxwell worked
on), the weak and strong one - the former two of which can be unified. As electric and magnetic forces
appear to be two independent forces in our everyday life but can be described as one single force, the weak
and electromagnetic forces at low energies also appear to be two independent fundamental interactions,
however, above a certain energy scale, we observe that they are two manifestations of the same force.
The quantum field theoretic formulation at the bottom of this is based on work from Weinberg and
Salam and involves very important descriptive tools such as the Higgs mechanism and spontaneous
symmetry breaking. Beyond the electroweak unification, there have been proposals to unify the strong
force together with the electromagnetic and weak forces as well into a single Grand Unified Theory,
which is schematically summarised in 1.1.
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Figure 1.1: A qualitative diagram of the couplings (“force strengths”) of the three SM forces at different
energy scales. It is the (as of yet) unfulfilled hope of beyond SM phenomenologists that at some GUT
scale, the three forces merge and can be described as one unified force.

A prominent example of such a theory is the Pati-Salam model with SU(4) × SU(2)L × SU(2)R as
the gauge group, which recently has experienced a renaissance in interest due to anomalies in flavour
physics.1 The framework of QFT is not without problems, however, and a common issue that arises is
divergent behaviours and, as a consequence, the failure to make perturbative calculations work. Under
certain preconditions, these pathologies can be remedied using different procedures of renormalisation,
which is the case for the Standard Model. Unfortunately, GR seen as a (quantum) field theory is not
renormalisable and therefore, while GR is a fantastic model for “all things large” and QFT together with
the SM is a splendid predictor for processes related to “all things small”, they are highly incompatible.

At first, this seems very contradictory - after all, stars and planets are made of the very same things
as bosons and mesons. Thus, it boggles the mind why a model that describes the universe very well on
small scales should not also describe it well on larger scales. This motivates the quest to find a more
universal description of nature that does justice to both ends of the scale of magnitudes, but so far, this
search has been largely unsuccessful.

1.2 String Theory and the Polyakov Action
The fundamental assumption of string theory is to replace the notion of (point-like) particles with
(excitations of) strings, and the new action and properties that come with this (closedness/openness,
length, and so on). While this might seem like a fairly inconsequential generalisation, it turns out, it
changes everything.

For a point particle, the dynamical action is proportional to the length of the worldline that it sweeps
out in spacetime. In the case of a string, it sweeps out what is called a worldsheet, and we want2 the

1This is not the same kind of anomalies as the ones in QFT symmetries.
2Also for reasons of reparametrisation invariance.
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action to be proportional to the worldsheet area. The worldsheet is a curved 2-dimensional surface
embedded in spacetime - or target space, geometrically speaking. Then, the induced metric γαβ on the
worldsheet is the pullback of the target space metric gµν of the target space, i.e.

γαβ = ∂Xµ

∂σα
∂Xν

∂σβ
gµν , (1.2.1)

which then lets us construct the so-called Nambu-Goto action for a relativistic string,

S = −T
∫
d2σ
√

− det γ = −T
∫
d2σ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2 , (1.2.2)

where we identify T to be the tension of the string. We will always use X to refer to target space
coordinates and σ to indicate worldsheet coordinates. This action is by construction proportional to
the worldsheet area, but is in some regards incommodious: The equations of motion of this action are
nasty, with a lot of square-root expressions that are rather complicated to deal with, especially for path
integral quantisation techniques. But it describes the dynamics of a string, so whatever action we choose
in its stead needs to be (classically) equivalent, i.e. have equivalent equations of motions. The so-called
Polyakov action fits our bill:

S = −T

2

∫
d2σ
√

− det γγαβ∂αXµ∂βX
νgµν , (1.2.3)

where gµν is again the target space metric (and thus can depend on the coordinates X). Apart from the
manifest Poincaré-invariance of S, it is also invariant under reparametrisations (i.e. diffeomorphisms)
and conformal Weyl transformations of the worldsheet metric (classically).3 At this point, we will skip
a detailed discussion on gauge fixing (that will sometimes let us choose γ in Sylvester form), mode
expansions and quantisation. In this quantisation process, however, a quantity called the central charge
arises (which in CFT is just a c-number commuting with everything), and it shares a connection with
the target space dimension D. For the theory to be consistent on a quantum level, we need to set the
central charge to a value that implies D = 26, called the critical dimension of bosonic string theory. In
the second chapter of this thesis, the bosonic Polyakov action will be of great importance and interest:
The background metric gµν will be an AdS3 one (that is deformed in a specific way), and in addition to
the symmetric metric, there will also be a term present that couples to a 2-form, called the B-field or
Kalb-Ramond field, which can be understood as a generalisation of the electromagnetic potential.

Moving away from a purely bosonic theory and adding fermions to our model, we introduce supersym-
metry, enhancing the previous purely bosonic symmetry of our theory to a Z2-graded one. To formulate
a theory possessing supersymmetry, we need additional mathematical ingredients in our description,
such as Lie superalgebras and Graßmannian graded variables. Skipping here again the details of the
quantisation mechanism and, more importantly, if we have to introduce supersymmetry on the target
space or on the worldsheet, we arrive at the critical dimension D = 10 for superstring theory to be
consistent. An extensive explanation and review of this can be found in [GSW12b], [GSW12a], [Zwi09],
[Pol05b], [Pol05a] and [Ton09], to name a few.

So far, although interesting and mathematically richer, we have not made an argument as to why
we put our hope in string theory as a candidate to describe all forces and interactions of nature in a
unified way. If anything, the fact that we need to work in an at least 10-dimensional spacetime to make
it work makes it tempting to dismiss it right away.4 However, string theory seems to have an enigmatic

3We also want this to hold on the quantum level, with the Polyakov action thus describing a 2-dimensional conformal
field theory (CFT).

4In addition, supersymmetry is also far from established as a likely occurrence in nature.

9



connection to gravity. For instance, using the bosonic Polyakov action in a curved background, with
the help of the partition function formulation and vertex operators, one finds that after expanding in
metric coupling constants, a vanishing β functional implies the vacuum Einstein equations. And more
straightforwardly, the spectrum of the closed string contains a spin-2 particle that one can identify
with the graviton, the supposed elementary particle for the fundamental gravitational interaction, while
the spectrum of the open string contains fields that we can identify with SM gauge fields. So although
formulating string theory as a consistent quantum theory might seem laborious and complicated, it offers
a lot of possibilities that makes one consider it to be a viable candidate for a theory of everything in a
very natural way. Apart from this prospect, studying string theory has also led to interesting results in
mathematics and related disciplines. We shall focus on one particular instance and type of background,
where the study of strings is of particular interest.

1.3 The AdS/CFT correspondences

1.3.1 The AdS5 / CFT4 Case

In general, holography in physical systems describes the duality (i.e. equivalence in some defined sense) of
a d-dimensional theory and a d+1-dimensional theory.5 Here, we will focus our interest on the AdS/CFT
duality, which, roughly speaking, relates a gravitational theory d+ 1-dimensional in Anti-de Sitter space
(× compact space) with a conformal field theory (CFT) formulated on the (conformal) boundary of
this space. Juan Maldacena proposed that Type IIB AdS5 × S5 String theory is dual to an N = 4
supersymmetric SU(N) gauge theory. The original paper from Maldacena [Mal98] has sparked great
interest in this subject, with close to 16’000 citations. In that same article, he also proposes a smaller
sibling to this, namely AdS3/CFT2 - where an AdS3 string theory denotes a string theory on a background
of the form AdS3 × S3 × M4, withM4 some suitable 4-dimensional manifold that complements the AdS3

× S3-factor to a 10-dimensional supergravity background (see e.g. the introductory part of [Ebe18]). On
the CFT2 side, we have the symmetric orbifold CFT over T 4 , which is trickier to formulate and has
been, until recently, a subject of research and uncertainty. Though starting from a different dimension,
the moral of this endeavour is the same: Every physical observable in AdS3 has a partner-observable
on the CFT2 side (by considering the former on ∂AdS3) which we expect it to coincide with, allowing
us to make use of two different physical languages to describe the same physics. We shall give a brief
overview of the holographic setting pertinent to our projects. At the bottom of why this concept is
interesting for us lies the fact that the coupling constant of the string theory maps to the one of the
(quantum) field theory, as more explicitly the weak coupling regime of the former corresponds to the
strong coupling regime of the latter. We will outline this more in section 3.4. Important or pedagogical
references that discuss this more comprehensively and beyond the case we are focussing on are e.g.
[Wit98], [GKP02], [Nas07], [Zaf00], [DV00], [DF02], [Spi07] - all of which we are drawing inspiration
from for this introduction. In our research, we shall mostly be dealing with mathematical questions
relating to integrability or deformations that are motivated by a string theoretic or holographic origin,
and thus we shall go over the important key points of AdS string theory, holography, and we shall do so
in a very brief manner. Doing this, we also would like to comment on why approaching this topic with
integrability in mind has proven to be useful.

As mentioned above, the most studied example of AdS string theory is superstring theory on a
supersymmetric AdS5 × S5 background, married to N = 4 SYM conformal theory with gauge group

5With the feature that the former is formulated on the boundary of the latter.
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SU(N). On the CFT side, we have gauge bosons Aµ, six massless real scalars ϕk, k = 1, ..., 6, four chiral
and anti-chiral fermions each Ψa

α/ᾱ, a = 1, ..4, α/ᾱ = 1, 2 - all transforming in the adjoint representation.
In broad terms, conformal symmetry can be expressed by extending the Poincaré symmetry with a
dilation generator D and special conformal generator K:

[D,Pµ] = −iPµ ,

[D,Mµν ] = 0 ,

[D,Kµ] = +iKµ ,

[Mµν , Pλ] = −i(ηµλPν − ηλνPµ) ,

[Mµν ,Kλ] = −i(ηµλKν − ηλνKµ) ,

[Mµν ,Mρσ] = i(ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ) ,

[Pµ,Kν ] = 2i(Mµν − ηµνD) . (1.3.1)

Counting the indices while taking into account the restrictions on the generators, we can see that, in 3+1
spacetime dimensions, that we now have a 15-dimensional algebra. In addition to conformal symmetry
and supersymmetry, curiously, the fields of the N = 4 SYM model exhibit a global SU(4) symmetry6,
called the R-symmetry.7 The R-symmetry, supersymmetry and conformal symmetry of N = 4 SYM
are part of the larger superconformal group PSU(2, 2|4). Within this larger supergroup, the conformal
algebra lies in the SU(2, 2) ' SO(2, 4) factor of the (maximal) bosonic subgroup SU(2, 2)×SU(4), while
the R-symmetry is given by the latter SU(4) ' SO(6) factor. We will go into more algebraic detail of
this CFT in the discussion about its connection to spin chains later on in the next chapter. For now,
one further peculiarity of this theory is that it can also be proven that the running one-loop β-function
vanishes; for the one-loop case, this can be seen easily by expanding β in terms of Casimir coefficients -
for any SU(N) gauge theory, we have that (c.f. [GW73]),

β(gYM ) = µ
∂gYM (µ)

∂µ
= − g3

YM

96π2

[
22N −

∑
i

Ci − 2
∑
j

C ′j
]

= − g3
YM

96π2

[
22N − (6 ·N) − 2 (8 ·N)

]︸ ︷︷ ︸
for N = 4 SYM

= 0 , (1.3.2)

where the i-sum is over real scalars, and the j-sum over Weyl fermions. To argue for the β-function to
also vanish at higher orders, one needs to make use of superspace considerations and light cone arguments
(see [GRcvS80], [BLE83], [Man83]).

On the string theory side, we are dealing with a background that decomposes into the following
factors:

AdSn+1 = SO(n, 2)
SO(n, 1)

, Sn = SO(n+ 1)
SO(n)

, Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

= U(1)n . (1.3.3)

For AdS5 × S5, this translated to the spaces SO(4, 2) × SO(6) (modulo some smaller homogeneous
factors), which is isomorphic to SU(2, 2) × SU(4). This is our bosonic ingredient, however, we want to
realise a supersymmetric target space, and in a minimal fashion, we can embed this bosonic isometry

6With fundamental SO(6) ' bifundamental SU(4) in the boson representation.
7Technically, R-symmetry is part of supersymmetry, as it can be seen as the symmetry that “rotates” amongst the

different copies of supersymmetry (in this case, N = 4).
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group into the supergroup PSU(2, 2|4), giving us the target space (with quotient factors):

PSU(2, 2|4)
SO(4, 1) × SO(5)

⊃ AdS5 × S5 . (1.3.4)

The isometry group of this space is the (superconformal) psu(2, 2|4) algebra which is, consequently,
according to the Wigner theorem, also the algebra that states from this theory transform under in
the scattering problem. From the target space given above, one could follow the Metsaev-Tseytlin
construction in [MT98] and formulate a supersymmetric coset action8 - however, this might overload
this introductory part whose main purpose is to motivate why we are dealing with certain structures
that we are going to introduce later on.

In the context of the AdS/CFT correspondence, one particular limit in SU(N) Yang-Mills gauge
theories plays a central role: the so-called ’t Hooft limit (see [Hoo74]). This idea starts with classifying
the resulting Feynman diagrams according to their topologies. One can see that a diagram with P prop-
agators, V vertices and C closed lines comes with the prefactor g2P−2V

YM NC . Identifying the propagators
as edges and the closed lines as faces of a 2-dimensional surface, we can make use of the Euler formula
relating the genus H of a surface with the number of faces, vertices and edges and write:

g2P−2V
YM NC ≡ NC−P+V λP−V = N2−2HλP−V . (1.3.5)

The ’t Hooft limit is defined by the prescription N → ∞ while keeping the ’t Hooft coupling λ =
g2
YMN fixed. We can see that in this limit, higher-genus diagrams get suppressed while planar diagrams
dominate. This is also why the ’t Hooft limit sometimes is referred to as the planar limit. With the
aforementioned 2-dimensional identification in mind, one can think of these planar diagrams building
a tessellation of a continuous worldsheet of a string theory. Having this in mind, this observation of ’t
Hooft already suggests some kind of relationship with string theory.

In any concrete formulation of the AdS/CFT correspondence, one needs to make use of so-called
Dp-branes (see [Ton09], [Pit16], [Val14], which we drew inspiration from). They arise in the context of
open strings, which have - in contrast to closed strings - two end points, and their dynamics are also
governed by the Polyakov action. If the latter is expressed in conformal gauge, we can see that for the
end points of the string (Xµ at σ = 0, π), we demand the boundary equation

∂σX · δX = 0 . (1.3.6)

This can be fulfilled by either requiring ∂σXµ = 0 (corresponding to end points move freely) or δXµ = 0
(corresponding to end points are fixed in space) at the end points. The former requirement is called
Neumann boundary condition, the latter is called Dirichlet boundary condition. In a d-dimensional space,
one can impose X0,..,p to fulfil Neumann and Xp+1,...,d−1 Dirichlet boundary conditions. This way, the
end points of the string lie in a p+ 1-dimensional hyperplane, called the Dp-brane9, see 1.2.

8This idea of constructing an action within a supertrace sTr(...) as invariant bilinear is also why the p in psu(n, n|2n)
sometimes is omitted, as the projective factor is irrelevant.

9Though sometimes the p is suppressed.
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Figure 1.2: Visualisation of a D-brane.

In the AdS5/CFT4 correspondence, the stringy setup starts with N D3-branes, whose action can
be divided into a bulk, a brane and an interaction part (that vanishes for when the Regge parameter
approaches α → 0):

STot = SBrane + SBulk + SInt . (1.3.7)

An explicit U(N) gauge symmetry is realised by the open strings with end points on the branes. However,
since a U(1) symmetry is associated to the stack of branes as a whole (visualised in 1.3), we are only
interested in the SU(N) = U(N)/U(1) factor in this description (see Chan-Paton index in this context).

open closedopen closed   

Figure 1.3: Open strings ending on a stack of D-branes, with (closed) strings propagating in the bulk.
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For the (closed) string dynamics in the bulk part, we have the following metric:

ds2 = 1√
H(z)

dx2
|| +

√
H(z)(dz2 + z2dΩ2

5, ) , (1.3.8)

where z4H(z) = z4 + 4πgsN(α′)2, z measures the stack distance, xµ|| is the spacetime coordinate parallel
to the orientation of the branes. For small z compared to the parameters, we have

ds2 = z2

2
√
πgsN(α′)2

dx2
|| +

2
√
πgsN(α′)2

z2 dz2 + 2
√
πgsN(α′)2(dz2 + z2dΩ2

5) . (1.3.9)

This is exactly an AdS5 ×S5 metric with radii RAdS5 = RS5 = 4
√

4πgsN(α′)2 - this means that we have
a (type IIB) string theory in AdS5 × S5 from the bulk part, and a N = 4 SU(N) gauge theory on the
boundary (branes).

Strictly speaking, in order to prove the duality, one would want to show that the coupling constants
coincide gs = g2

YM for all N ∈ N, rather than just in some limit as e.g. the one we took above. This, as of
yet, still remains unproven, however recent developments in holography - especially using the techniques
of integrability - let us remain hopeful to get deeper insight into both sides of this.

1.3.2 The AdS3 / CFT2 Case

In AdS3, the motivation is much the same. However, here we have several different candidates for
backgrounds: AdS3 ×S3 ×M4, whereM4 is some suitable 4-dimensional manifold, restricted to either of
the cases: M4 ∈ {K3, S3 ×S1, T 4}. Only these 4-dimensional backgrounds are actually supersymmetric
in the sense that they solve the supergravity equations. For us, the M4 = K3 case is not of interest and
will not be considered at any point in this thesis,10 and the super-cosets we will look into are11

AdS3 × S3 × S3 × S1 ∼=
D(2, 1;α)2

SL(2) × SU(2)2 × U(1) , (1.3.10)

AdS3 × S3 × T 4 ∼=
PSU(1, 1|2)2

SL(2) × SU(2)
× U(1)4 . (1.3.11)

We are not going into excessive detail about the underlying brane configurations and arising metrics
(see [CT98], [Mal98], [CT98] for specific derivations). However, the latter - being the slightly simpler of
the two siblings - is achieved by compactifying four spacetime directions on T 4, and afterwards putting
Q1 D1-branes along one of the remaining non-compact directions and then Q5 D5-branes along this
direction and wrapping the former four compactified ones.12 The metric associated with the T 4-coset
case is given by

ds2 =
dx2
||√

H1H5
+
√
H1H5

(
dz2 + z2dΩ2

3
)
, (1.3.12)

where the functions Hi are again related to the separation of the Di-branes and given by H5 = 1 + c5
Q5
z2

and H1 = 1 + c1
Q1
z2 , with ci being coefficients depending on coupling constants,α′ and manifold volumes.

We chose the x-coordinate to go along the D1-brane and dx2
|| = dx2 − dt2. In the near-horizon limit, we

end up with radii R2
AdS3

= R2
S3 =

√
Q5Q1

13 and superisometry algebra

psu(1, 1|2)L ⊕ psu(1, 1|2)R . (1.3.13)
10The integrability analysis of the T 4 background is assumed to give rise to similar results as the K3, as the K3 manifold

can be seen as a kind of discrete quotient of T 4.
11Here, we already present the super-cosets, i.e. the below “∼=” signs are to be understood as some kind of super-embedding

rather than isomorphisms.
12There is also another realisation based on a F1 −NS5 setup, for which mixed fluxes can be more naturally formulated.
13To make sense of the units here, we need to remember that in our framework units are distinct up to standard quantities

such as c, ~, the Planck mass/length, and so on. See also the convention used in [Sfo15].
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For the setup of AdS3 × S3 × S3 × S1, rather than a D1 − D5 brane stacks setup, we now deal with a
D1 −D5′ −D5 brane stacks setup, with the metric in this case looking like

ds2 =
ds2 (M(1,1)

)
H1

+H ′5dz
′2 +H5dz

2 , (1.3.14)

where M(1,1) is the 1 + 1-dimensional Minkowskian metric, and the harmonics H5 = 1 + 1
z2 and H ′5 =

1 + 1
z′2 , and H1 = H ′5H5. The separations of the two branes are measured by z and z′. Similar to the

above, we then get as superisometry algebra of the background

d(2, 1;α)L ⊕ d(2, 1;α)R , (1.3.15)

and the radii R1, R2 of the two spheres satisfy

1
R2

AdS3

= 1
R2

1
+ 1
R2

2

⇔ (1.3.16)
R2

AdS3

R2
1

+
R2

AdS3

R2
2

= 1 , (1.3.17)

where RAdS3 is the AdS3 radius, as before. This condition on the radii follows from the fact that we want
our background to satisfy the supergravity equations. We can see the α parameter of the superisometry
group D(2, 1;α)2 appearing through

R2
AdS3

R2
1

= α,
R2

AdS3

R2
2

= 1 − α , (1.3.18)

which satisfies the above-mentioned constraint on the radii. For α ∈ {0, 1}, the AdS radius RAdS3 and
either R1 or R2 coincide, with the other one decompactifying - in this limit, we get the other super-
background of AdS3 ×S3 ×T 4 which has the superisometry group PSU(1, 1|2)2, as we previously stated.
Up to some subtleties, the dual CFT to the string theory on one kind of this background is given by
the large N limit of the (free) symmetric product orbifold SymN (T 4), which is to this day not as fully
understood as its AdS5/SYM counterpart. We will go into more details about different regimes, limits
and aspects of the correspondences later on when motivating the utility of integrability.
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1.4 Outline of the Thesis

This thesis is based on a collection of papers I published with my collaborators ([GW21], [NGTW20],
[GTW20], [NGW22]). These projects were, in their topics and subject matter, quite different: Whereas
[GTW20] was a natural continuation of [NGTW20], the topics of [GW21] and [NGW22] are of a distinct
nature. However, in all of the efforts presented in this thesis, we are always revolving around the topics
of integrability and deformation in AdS/CFT, and we shall always try to motivate this bigger picture in
our endeavours.

In chapter 1, we motivated the historical context of string theory, different AdS/CFT correspondences,
and explained the first appearances of algebraic structures within this.

In chapter 2, we outline the algebraic background necessary to understand chapters 4 and 6, as
well as 3 to some extent. In this chapter, we will first go over the fundamentals of spectral theory
in linear algebra, the canonical Jordan Normal Form for endomorphisms on finite dimensional vector
spaces over an algebraically closed field. We then enter the field of Lie theory, and comment on the
canonical classifications that exist to categorise (some) Lie algebras and Lie superalgebras. After this,
we will review general notions appearing in algebra such as the ones of coalgebras and bialgebras. Lastly,
we will discuss in more detail the theory of Hopf algebras, as they share an intimate connection with
quantum integrability.

Moving on from mathematical preliminaries, we start to delve into the topic of integrability in chap-
ter 3. To this end, we start by motivating the concept of integrability and explaining important concepts
of classical integrability and their appearances in physics - we will not make use of integrability in the
strictly classical sense, but a brief motivation of this is sensible before moving on to its quantum ana-
logue. Here, we briefly talk about the appearance and properties of R-matrices, and how they connect to
the algebraic exposition we made one chapter prior. We then make things more concrete by introducing
the concept of spin chains - which often constitute prime examples of quantum integrable systems - and
then illustrate many features by the example of different spin chains. In this context, we also present one
example of the different Bethe Ansätze - the Coordinate Bethe Ansatz - and apply it to the spin chain
systems that we introduced. We end the chapter about integrability by talking about its applications,
appearances and successes within the physical context that we are interested in.

In chapter 4, we then move on to our projects that we studied in [NGTW20] and [GTW20]. Here,
our setting was the algebraic study of the massless AdS3/CFT2 scattering problem from an integrability
perspective. Proceeding analogously, first with a chosen representation, and then moving on to the
representation independent case, we endow the generators of our algebra with a Hopf algebraic structure,
including the additional boost generator J that we introduce. In the representation-dependent case, we
find suitable R-matrices for each of the particular Hopf algebraic structures that we chose initially, while
for the representation-independent case we focus on a purely algebraic study that will give rise to a
categorisation of boost relations and algebras.

Leaving the realm of algebraic study of integrability, we move on to present the work conducted in our
publication [GW21] in chapter 5. Here, we are remaining within the context of AdS3 and deformations,
but choose an effective field theory approach by considering a limit where it reduces to a deformed LL
model. We canonically quantise our effective Lagrangians and compute 2-body S-matrix elements by
means of Feynman diagrammatics. For this chapter, we try to make all calculations explicit in a detailed
and illustrative manner in the main part of the text and make an exposition of some standard tools of
QFT within the presentation of our work, rather than dedicating a separate section or appendix to the
calculations or methods.
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In the last chapter of the main part, chapter 6, we move on to studying spectral and analytical
properties of operators, and apply the results we find and methodology we develop to the case of the
eclectic spin chain. In the first part of this chapter, we analyse operators with singular geometric
multiplicity. We then proceed with relaxing this condition. This requires us to refine the algorithmic
framework we developed in the first part of the chapter. The strongly twisted Hamiltonian appearing in
the context of the eclectic spin chain then proves to be an ideal candidate for our methods to be applied
to. We then successfully cross-check our results with known results within the literature available to us.

In chapter 7, we present conclusions on the chapters 4, 5 and 6, going over the contextual questions
we posed ourselves initially as well as the important results. We then propose possible directions for
future research for each of the projects we presented.

Lastly, in appendix A, we provide details on the calculations and extend some considerations of
chapters 4 and 6. For the former chapter, since most algebraic computations in the representation-
dependent case (quasi-cocommutativity relations, supercommutators, et cetera) have been performed
using computer algebra, we limit ourselves to illustrate in the appendix the computations regarding
the non-coassociative curiosity we found. For the representation-independent case, we try to place the
necessary calculations already in the main part of this thesis. For the project of the latter chapter,
we placed the more general cases as well as some more involved calculations in the appendix for the
interested to study.
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2 | Algebraic Footing

“Wer fremde Sprachen nicht kennt, weiß nichts von seiner eigenen.” [“He who knows no foreign
languages knows nothing of his own.”]

– Johann Wolfgang von Goethe, Maximen und Reflexionen

In this chapter, we want to give a brief introduction to the pertinent algebraic theory for this thesis.
Although it might seem an excessive excursion to the mathematical fundamentals, we shall delve into
some aspects of linear algebra in the beginning of this chapter. The reason for this is that in the
penultimate project that we present in this thesis, we will heavily rely on (and, in some part, extend)
results from spectral theory of linear algebra. As our methodology will involve a lot of technical intricacies
and subtleties, a more comprehensive recapitulation is reasonable. The standard literature of linear
algebra that we will rely on and refer the reader to encompasses the works [MK08], [Jän03], and [Fis13].
Going beyond linear algebra and delving into the field of quantum algebra, for further reading on this,
we refer the reader to [Kas95], [FH04], [Hum72], [Maj03] and - for a more geometric approach [Fec11].
With regard to a more pedagogical introduction, we recommend looking at the lecture notes of [Bei15].
We will to some extent follow these references when giving this introduction.

Hereinafter, whenever we refer to a field K, we mean K = R or C, and likewise, we will omit the word
“linear” when referring to maps. Particularly for the latter part of this introduction, it is also true that
whenever we mention vector spaces (which we generally assume to be finite-dimensional), we can define
analogous algebraic structures on modules over unital rings.

2.1 Linear Algebra

Naturally, we will assume familiarity of the reader with concepts such as vector spaces, homomorphisms,
matrices and determinants and start our exposition with the most basic definitions of eigentheory. Let
M ∈ Md×d(C) be a complex square matrix of dimension d× d. For any such matrix, we can define the
associated characteristic polynomial1 as2

charM (x) = det(x1 −M) . (2.1.1)

1Many authors define the characteristic polynomial as det(M − x1d), thus differing from our definition of a (monic)
characteristic polynomial by a factor of (−1)d. This does not affect the important properties of it, such as the roots and
polynomial divisors.

2In the context of linear algebra, we denote the identity matrix as 1. If we additionally want to specify the dimension
of the identity matrix, we refer to the r × r identity matrix as 1r, but its dimensions can in most instances in this thesis
be directly inferred.
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The fundamental d’Alembert-Gauss theorem tells us that this polynomial has n roots, if multiplicity
is factored in.3 The roots x = λ of this polynomial are called eigenvalues of M and have the defining
property that a non-zero vector v ∈ Cd exists such that

v ∈ ker(M − λ1), or equivalenty Mv = λv , (2.1.2)

in which case we call v an eigenvector of M associated with the eigenvalue λ, and ker(M − λ1) the
eigenspace associated with λ. Any eigenvalue of a matrix carries two types of multiplicities: the algebraic
and the geometric multiplicity. The algebraic multiplicity n of an eigenvalue λ is the degree of the root
of λ in charM (x), which is another way of saying that n ∈ N0 is maximal such that (x− λ)n

∣∣charM (x).
The geometric multiplicity α is the dimension of the associated eigenspace, i.e. α = dim (ker(M − λ1)) =
nul(M−λ1). For any of the eigenvalues {λ1, · · · , λr} ofM , we always have αi ≤ ni.4 For the case where
we have αi = ni ∀i ∈ {1, · · · , r}, we say that M is diagonalisable (or semi-simple). In this case, there
exist d linearly independent eigenvectors of M , which spans out the whole space using this eigenbasis.
Equivalently, this means that there exists a diagonal matrix that M is similar to via basis change to the
eigenbasis, i.e.

M ∼


D1 0 0 . . .

0 D2 0 . . .

0 0 D3 . . .
...

...
... . . .

 , with each block being of the form Di =



λi 0 0 0 . . .

0 λi 0 0 . . .

0 0 λi 0 . . .

0 0 0 λi . . .
...

...
...

... . . .


.

(2.1.3)
At first, it might seem that amongst the totality of complex d × d matrices, diagonalisable ones might
constitute a minority5 - after all, the above stated feature of diagonalisable is immensely powerful.
However, within the space of Md×d(C), the set of diagonalisable matrices lies dense. Nonetheless, for
the cases where αi < ni, we have no such relation at our disposal, and these matrices cannot be brought
into diagonal form, in which case we call it defective. This is most obvious when considering that, since
at least for some j ∈ {1, · · · , r}, we have αi < ni and thus∑

i

dim ker(M − λi1) =
∑
i

αi <
∑
i

ni = d = dim(Cd) , (2.1.4)

which means we cannot construct a basis solely consisting out of eigenvectors. However, we can generalise
the concept of eigenvectors in order to rectify this. We can relax the condition (2.1.2), and define a
generalised eigenvector (or hauptvector) of rank n of M associated to the eigenvalue λi as a vector v(n)

i,α

satisfying

(M − λi1)v(n)
i,α = v

(n−1)
i,α , (2.1.5)

where αi is the geometric multiplicity associated with λi with v(1) being the eigenvector. Recall that a
true eigenvector (for which we shall drop the (1) superindex) is by definition non-zero, which means that
the above condition defining a vector space flag does not trivialise.6 The property that (M−λi1)nv(n)

i,α = 0
3This statement hinges on the fact that we are considering a polynomial over the complex numbers. Over R, charM (x)

does not necessarily split into linear factors, as some polynomials of degree 2 (such as x2 + 1) are irreducible in R[x].
4We will suppress the index of α wherever it clutters the notation (producing indices of depth 2) and its reference is

clear.
5Of course, only in a figurative sense, as both sets are infinite.
6This only defines a vector space flag if, for the next higher space in the flag chain, one considers the generalised

eigenvectors up to that rank to be part of it, too.
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follows immediately, as

(M − λi1)nv(n)
i,α = (M − λi1)n−1v

(n−1)
i,α

= · · · = (M − λi1)vi,α

= 0 . (2.1.6)

Furthermore, the vectors defined by (2.1.5) form a chain that spans out a proper flag, meaning that they
are linearly independent (but not necessarily orthogonal).7

As we have stated before, non-diagonalisable d× d matrices cannot generate d linearly independent
eigenvectors that can then form a basis of the vector space. However, from these chains, we can indeed
define n linearly independent generalised eigenvectors that in turn can form a basis of our underlying
vector space, called the generalised eigenbasis. While we can never bring a non-diagonalisable matrix
M into diagonal form using automorphisms (i.e. basis changes), we can bring it into a canonical block-
diagonal form called the Jordan Normal Form (JNF), first stated by Camille Jordan in 1870.8 In its
generalised eigenbasis, any given complex matrix M takes the form

M =


J1 0 0 . . .

0 J2 0 . . .

0 0 J3 . . .
...

...
... . . .

 , with each block being of the form Ji =



λi 1 0 0 . . .

0 λi 1 0 . . .

0 0 λi 1 . . .

0 0 0 λi . . .
...

...
...

... . . .


, (2.1.7)

where we refer to Ji as a Jordan block. The following main properties hold for the JNF of M :

• The geometric multiplicity of a given eigenvalue λi indicates how many Jordan Blocks associated
to it we find in the JNF.

• The total sum of the sizes of all Jordan blocks associated to λ corresponds to its algebraic multi-
plicity, as this is simply the number of times λi appears on the diagonal of the JNF.

• The JNF of a diagonalisable matrix is purely diagonal, i.e. all Jordan blocks are of size 1. In this
case, the notion of eigenbasis and generalised eigenbasis coincide.

There are several other illustrative properties of the JNF related to the minimal polynomial, but for the
sake of brevity, we will not elaborate on this aspect of eigentheory.9 Linear combinations of generalised
eigenvectors of rank p again constitute a generalised eigenvector of the same rank, however, the gener-
alised eigenvectors of rank p − 1 that they are associated with may change. Even more so, any linear
combination of generalised eigenvectors featuring just one generalised eigenvector of higher rank p than

7There exists the equivalent definition of generalised eigenvectors of rank n, demanding them to simultaneously satisfy

(M − λi1)nv
(n)
i,α = 0

(M − λi1)n−1v
(n)
i,α 6= 0 .

This characterisation seems more straightforward, as there is no necessity to define any generalised eigenvector of lower
rank that is necessary to define generalised eigenvectors of higher rank. However, as we shall see later on, we will be very
interested in the eigenvectors of different rank associated to a given generalised eigenvector, as they form a chain that
permits us to know more about the Jordan structure of the matrix that they are stemming from. More concisely, it allows
us to define a strict filtration.

8Not to be confused with Pascual Jordan or Wilhelm Jordan.
9For the interested reader, we recommend the study of [Yan14], where Cayley theory and minimal polynomials are

discussed in some detail.

21



the others constitutes a generalised eigenvector of rank p with the same generalised eigenvector of rank
p− 1 that was associated to originally. With this in mind, we are led to conclude the following:

Theorem 2.1.1. The dimension of the vector space spanned out by generalised eigenvectors of rank l is
smaller or equal than the dimension of the true eigenspace. This means that we have dim

{
ker (M − λ1)l

}
−

dim
{
ker (M − λ1)l−1} ≤ dim {ker (M − λ1)}.

More generally, we have that dim
{
ker (M − λ1)l

}
−dim

{
ker (M − λ1)l−1} ≤ dim {ker (M − λ1)n}−

dim
{
ker (M − λ1)n−1} holds for any two integers n < l.

Proof. We want to use the first isomorphism theorem to prove the former claim. Let us therefore establish
the following first: Given any vector w ∈ ker (M − λ1)l, we have that (M − λ1)l−1w ∈ ker (M − λ1) by
definition. Therefore, we have the domain and codomain of the following set of maps:

(M − λ)l−1 : ker (M − λ1)l → ker (M − λ1) , (2.1.8)

which implies together with the first isomorphism theorem that

ker (M − λ1)l
/
ker (M − λ1)l−1 ' Im(M − λ1)l−1 ⊆ ker (M − λ1) , (2.1.9)

where the last inclusion is only an equality for surjective induced maps. By comparison of their dimen-
sions, we then arrive at the claim.

The second claim is a generalisation of the first, which we can prove similarly:
Given any vector v ∈ ker (M − λ1)l with the feature that (M − λ1)l−1v 6= 0, meaning that

v ∈ ker (M − λ1)l
/
ker (M − λ1)l−1 , (2.1.10)

we know that for vp := (M − λ1)pv and l > p the following holds:

(M − λ1)l−pvp = 0 ,

(M − λ1)l−p−1vp 6= 0 . (2.1.11)

This is another way of saying that we have

vp ∈ ker (M − λ1)l−p
/
ker (M − λ1)l−p−1 . (2.1.12)

With this latter ingredient, we can construct the following chain of maps, in a similar vein to before:

(M − λ)p : ker (M − λ1)l
/
ker (M − λ1)l−1 → ker (M − λ1)l−p

/
ker (M − λ1)l−p−1 . (2.1.13)

As we mentioned before we have l > p, which using the same isomorphism theorem to before leads us
to:10

ker (M − λ1)l /
ker (M − λ1)l−1 ' Im(M − λ1)p ⊂ ker (M − λ1)l−p /

ker (M − λ1)l−p−1 . (2.1.14)

Defining p ∈ N in such a way that l − p = n, we arrive at the following implication for the dimensions:
dim

{
ker (M − λ1)l

}
− dim

{
ker (M − λ1)l−1} ≤ dim {ker (M − λ1)n} − dim

{
ker (M − λ1)n−1}

This theorem is saying that, given a certain geometric multiplicity αi associated to an eigenvalue
λi, when we go deeper into the flag of generalised eigenspaces, at every step there are at most αi new
generalised eigenvectors that can appear. Even more so, the second part of the theorem implies that the
number of linearly independent new generalised eigenvectors decreases with increasing rank.

10Obviously,
(

ker (M − λ1)l
/

ker (M − λ1)l−1
)/

ker (M − λ1)p = ker (M − λ1)l
/

ker (M − λ1)l−1 if p < l.
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The eigenvectors of a Hermitian matrix are orthogonal - in this context, we mean orthogonal in the
sense that v†1v2 = 0.11 Hermitian matrices do not possess any proper generalised eigenvectors, since they
are a priori diagonalisable. For our study of non-Hermitian matrices, we should not be so lucky: Even
for non-Hermitian matrices whose true eigenvectors are orthogonal we have that, while the generalised
eigenvectors are linearly independent, they do not need to be orthogonal.12 We can recover a sense of
orthogonality for generalised eigenvectors, but we need to further broaden the notion of eigenvectors
first.

Definition 1. Analogous to the notion of a usual (right) eigenvector of M , there exists the notion of
left eigenvectors, defined to be the right eigenvectors of the Hermitian conjugate of M , meaning a vector
that fulfils

M†v̂ = λ∗v̂ ⇔ v̂†M = λv̂†. (2.1.15)

Consequently, a generalised left eigenvector of rank n of M associated to the eigenvalue λ satisfies the
relation

(M† − λ∗)v̂(n)
iα = v̂

(n−1)
iα . (2.1.16)

For Hermitian matrices, i.e. M = M†, we also have that left eigenvectors and right eigenvectors are
equivalent.13 This is obviously not true for non-Hermitian matrices, but we can still find an interesting
relation amongst the two different types of eigenvectors for any matrix M :

Theorem 2.1.2. The left and right generalised eigenvectors of a matrix M can be chosen in such a way
that the following biorthogonality relations hold:

(v̂(ni,α+1−p)
i,α )† · v(q)

j,β = δijδαβδpq , (2.1.17)

where nj,α is the size of the Jordan block associated with the α-th geometric multiplicity of λj.

Proof. We first prove a small lemma for this:

Lemma 2.1.3. Given a left eigenvector v̂i,α associated to the eigenvalue λi and a right eigenvector vj,β
associated to the eigenvalue λj 6= λi. We then have v̂i,α ⊥ vj,β.

Proof.
0 = v̂†i,αMvj,β − v̂†i,αMvj,β = (λi − λj)v̂†i,α · vj,β , (2.1.18)

as we are considering λi 6= λj , the only possibility is that v̂i,α and vj,β are orthogonal. ■

To make a similar statement of generalised eigenvectors, we will make use of the following two relations

(λi − λj)(v̂(1)
i,α)† · v(p)

j,β = (v̂(1)
i,α)†Mv

(p)
j,β − (v̂(1)

i,α)†λjv(p)
j,β = (v̂(1)

i,α)†(M − λj1)v(p)
j,β = (v̂(1)

i,α)† · v(p−1)
j,β ,

(v̂(q−1)
i,α )† · v(p)

j,β+(λi − λj)(v̂(q)
i,α)† · v(p)

j,β = (v̂(q)
i,α)†(M − λj1)v(p)

j,β = (v̂(q)
i,α)† · v(p−1)

j,β . (2.1.19)

The first equation in (2.1.19) allows us to deduce that a (true) left eigenvector associated to λi is
orthogonal to generalised right eigenvectors associated to an eigenvalue λj 6= λi: Given that we know

11In terms of notation, we shall sometimes make the · when referring to scalar products explicit when it is beneficial
to the readability, and sometimes we shall drop it when the situation allows it. The operations we refer to, however, are
identical.

12For the case of a matrix with Jordan block sizes not exceeding 2, there is a more explicit way to reconstruct orthogonality.
13As left eigenvectors are technically covectors, we cannot claim them to be equal. However, where this abuse of notation

generates no confusion, we shall still write equalities for the sake of brevity.
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from before that (v̂(1)
i,α)† ·v(1)

j,β = 0, we can simply inductively (over p) reason that indeed (v̂(1)
i,α)† ·v(p)

j,β = 0.14

Similarly, the second equation of (2.1.19) then extends this orthogonality to hold amongst generalised
eigenvectors of any rank: For p = 2, we can inductively infer orthogonality with any q by making use of
the second equation; starting from q = 2, one can infer that (v̂(2)

i,α)† · v(2)
j,β = 0 (as all the other summands

of that equation vanish), and then move on q → q+1 drawing the analogous conclusions. This induction
over q is then performed for each increasing value of p. This gives us the claim for λj 6= λi.

For coinciding λi = λj , we have the following equality that holds for all k, l, p, q ∈ N simultaneously
(and, of course, transitively):

(v̂(p)
j,α)†(M − λj1)k+lv

(q)
j,β =


(v̂(p)
j,α)† · v(q−k−l)

j,β

(v̂(p−k−l)
j,α )† · v(q)

j,β

(v̂(p−k)
j,α )† · v(q−l)

j,β

. (2.1.20)

As this holds for all k, l, p, q ∈ N, it particularly holds for the case of k = p− 1 and l > 0, which gives us:

0 = (v̂(p)
j,α)† · v(q−p−l+1)

j,β = (v̂(−l+1)
j,α )† · v(q)

j,β = (v̂(1)
j,α)† · v(q−l)

j,β , (2.1.21)

because p + l − 1 ≥ p and thus (v̂(p)
j,α)†(M − λj1)p+l−1 = 0. Thus, we have that an eigenvector is

orthogonal to all the generalised eigenvectors except for the ones of maximal rank nj , since nj ≥ q as
the rank of the generalised eigenvector is bounded by the geometric multiplicity.

If the geometric multiplicity of the eigenvalue is one, our claim is proven: In this case, v̂(1)
j,α is orthog-

onal to all right generalised eigenvectors except the one of maximal rank v(nj)
j,β . As this set of generalised

eigenvectors spans the full nj-dimensional vector space and v̂(1)
j,α is non-vanishing, (v̂(1)

j,α)†v(nj)
j,β 6= 0, v̂(1)

j,α

can be normalised such that (v̂(1)
j,α)†v(nj)

j,β = 1. Additionally, by considering the above equation for the
extremal case of nj = q, (v̂(1+l)

j,α )†v(nj−l)
j,β = 1 can be derived with the other possible combination of

parameters giving us zero.
For the above argument to close our proof, we assumed the geometric multiplicity to be one. If it

exceeds that, the proof is analogous - but a bit more technical - further details on this are provided in
the appendix A.1. This concludes our proof. □

While it might seem so at first, biorthogonality does not imply that v̂(ni,α+1−p)
i,α = v

(p)
i,α due to the

generalised eigenvectors generally not being an orthogonal basis, unfortunately. However, there are two
important exceptions:

Corollary 2.1.3.1. The following equalities between left and right generalised eigenvectors of maximal
rank hold: v̂(ni,α)

i,α = v
(1)
i,α and v̂(1)

i,α = v
(ni,α)
i,α .

Proof. The set of generalised eigenvectors form a basis of the vector space corresponding to its Jordan
block, and since any left generalised eigenvector to the same block lies within the same vector space, we
can expand it in terms of right generalised eigenvectors

v̂
(ni,α+1−p)
i,α =

∑
k,γ,l

mi,k,α,γ,p,lv
(l)
k,γ . (2.1.22)

14It is immediate that one is analogously able to prove that we have (v̂(p)
i,α)† · v(1)

j,β
= 0. Consider the left-right symmetric

of the first equation, i.e.

(λj − λi)(v̂
(p)
i,α)† · v(1)

j,β
= (v̂(p)

i,α)†Mv
(1)
j,β

− (v̂(p)
i,α)†λiv

(1)
j,β

= (v̂(p)
i,α)†(M − λi1)v(1)

j,β
= (v̂(p−1)

i,α )† · v(1)
j,β

.

Once more, from the fact that we have (v̂(1)
i,α)† · v(1)

j,β
= 0, we can inductively infer that (v̂(p)

i,α)† · v(1)
j,β

= 0 holds.
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Then applying biorthogonality, we find that the coefficients m have to satisfy the relation

δijδαβδpq =
∑
k,γ,l

mi,k,α,γ,p,l(v(l)
k,γ)†v(p)

j,β . (2.1.23)

We cannot set m to a Kronecker delta δ, because the generalised eigenvectors are not a priori orthogonal.
For true eigenvectors, the above restriction does not apply: As the linear combination of a generalised
eigenvector of rank q and a true eigenvector is again a generalised eigenvector of rank q without changing
the vector they are associated with, we are able to construct linear combinations of generalised eigen-
vectors that are orthogonal to all the generalised eigenvectors of rank 1, i.e. true eigenvectors. With
this in mind, we can indeed set m to a Kronecker delta for the case of p = 1, i.e. v̂(ni,α)

i,α = v
(1)
i,α. The

other relation is then obtained by expanding a right generalised eigenvector in terms of the basis of left
generalised eigenvectors, and then repeating the same arguments.

2.2 Lie Algebras

In this first section, we shall elaborate on the general theory of Lie algebras, a topic arguably familiar
to most readers.

Definition 2. A vector space g over K together with a bilinear map [·, ·] : g × g → g is called a Lie
algebra iff

• [·, ·] is alternating15

• [·, ·] fulfils the Jacobi identity, i.e.

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 ∀X,Y, Z ∈ g, (2.2.1)

in which case we call [·, ·] the Lie bracket.

For later convenience, we shall also quickly define two important types of Lie algebras.

Definition 3. Let g be a Lie algebra over K. We call g solvable iff the so-called derived series

g ≥ [g, g] = D1g ≥ [[g, g], [g, g]] = D2g ≥ [[[g, g], [g, g]], [[g, g], [g, g]]] = D3g ≥ ... (2.2.2)

eventually arrives at the zero subalgebra 0 = {0}. Similarly, we call a Lie algebra g nilpotent iff the
so-called lower central series

g ≥ [g, g] = D1g ≥ [g, [g, g]] = D2g ≥ [g, [g, [g, g]]] = D3g ≥ [g, [g, [g, [g, g]]]] ≥ ... (2.2.3)

eventually arrives at the zero subalgebra 0. From this definition, it is also evident that D1g = D1g, and
that every nilpotent Lie algebra is solvable due to the inclusion Dkg ⊃ Dkg. The reverse implication,
however, does generally not hold.

We can now introduce the adjoint map, i.e. ad : g → gl(g) via adX(Y ) = [X,Y ] ∀X,Y ∈ g, as well
as an important definition relating to this:

15In this context, the alternativity property means [X,X] = 0 ∀X ∈ g. For char(K) = 0, this is equivalent to saying it is
antisymmetric.
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Definition 4. Let g be a Lie algebra over K. We call a subalgebra h ≤ g16 the (maximal) Cartan
subalgebra of g if it is a nilpotent subalgebra that is self-normalising, in the sense

{a ∈ g|[a, h] ⊂ h}︸ ︷︷ ︸
=:Ng(h)

= h, (2.2.4)

where we call Ng(h) the normalisator of h in g. Additionally (for vanishing characteristic of the field),
adh : g → g is diagonalisable.

We now make another definition that will be important for us to distinguish certain Lie algebras
that, as a class, share useful properties:

Definition 5. Let g be a Lie algebra over K, and let i ≤ g be a subalgebra. We call i an ideal of g iff we
have

[i, g] ⊆ i , (2.2.5)

and we call i proper iff i 6= {0}, g, as both of those sets are always ideals, trivially.

With this definition at hand, we can state that a complex Lie algebra is simple iff it is non-abelian
and contains no proper ideals. Similarly, we call a complex Lie algebra semi-simple if the bilinear form
defined via κ : g × g → C, κ(X,Y ) = Tr(adX adY ) is non-degenerate. This specific bilinear form is
called the Killing form, and it is of central importance in Lie theory. Then, for semi-simple Lie algebras
over C, it can be shown that every Cartan subalgebra is abelian, which we shall keep in mind. In this
thesis, Cartan elements will be of immense importance, as the energy is represented by an element in
the Cartan subalgebra h. For complex Lie algebras g, we could have stated the semisimplicity condition
equivalently as

• g having no proper abelian ideals, or

• g having no proper solvable ideals, or

• g being the sum of simple complex Lie algebras.

In what follows, we assume K = C and g to be semi-simple and non-trivial, and we denote its dual
algebra as h∗. For H ∈ h and α ∈ h∗, the generalised α(H)-eigenspace of adH is gα(H)(H) = {X ∈
g|(adH − α(H) id)dim(g)X = 0}. With this, we can introduce the following:

Definition 6. Given a K-Lie algebra g and defining gα :=
⋂
H∈h gα(H)(H) for α ∈ h∗, one can show

that

g = h ⊕
⊕
α∈h∗

gα . (2.2.6)

For gα 6= 0, we call α a root of g and gα the corresponding root space. The totality of all roots is denoted
by the set Φg.

Furthermore, by choosing an element H̃ ∈ h, 17 this induces a partial ordering on h∗ via

α ≤ β ⇔ α(H̃) ≤ β(H̃) , (2.2.7)

16A subalgebra is a subvector space h ⊆ g with [h, h] ⊆ h. As we did in (3), we denote this by h ≤ g.
17With the restriction that H̃ /∈ kerα ∀α ∈ Φg ⊆ h∗.

26



which allows us to decompose the roots into positive and negative ones, i.e. Φg = Φg
+ ∪ Φg

−, where

α ∈ Φg
± ⇔ α(H̃)

> 0 for +

< 0 for −
as one might expect. (2.2.8)

Likewise, this allows us to decompose the Lie algebra itself into g = h⊕g+ ⊕g−, where g± =
⊕

α∈Φg
±
gα.

Finally, we say αs ∈ Φg
+ is a simple root iff it cannot be written as the sum of two elements of Φg

+ with
positive coefficients. We denote the totality of all simple roots as Φg

s ⊆ Φg
+ ⊂ Φg.

It can also be shown that we have |Φg
s | = dimh∗ = dimh := r, the rank of g. The latter statement of

sums in h∗ connects to the commutator relation [gα, gβ ] ⊆ gα+β .
It is easy to see that every root space gα of a semi-simple Lie algebra is 1-dimensional. Thus,

for all positive simple roots {αs1, ..., αsr}, we find (simple) generators {E1, ..., Er} (and their negative-
rooted pendants {F1, ..., Fr}). For a Cartan basis span(H1, ..., Hr) = h, we define the Cartan matrix as
Aij := αsj(Hi) 18, which leads us to define the following:

Definition 7. We call a set of generators {Ei, Fi,Hi} for i = 1, .., rank g Chevalley-Serre generators if
they fulfil

[Hi,Hj ] = 0 ,

[Hi, Ej ] = AijEj ,

[Ei, Fj ] = δijHj ,

[Hi, Fj ] = −AijFj , (2.2.9)

where span(H1, ..., Hr) = h. So far, we have not dealt with composite (i.e. non-simple) generators, and
the a priori non-zero commutators they might produce. For this, we introduce the Serre relations, given
by

(adEi)NijEj = 0

(adFi)NijFj = 0
where i 6= j and Nij =


1 for Aii = Aij = 0

2 for Aii = 0, Aij 6= 0

1 − 2Aij

Aii
for Aii 6= 0

. (2.2.10)

Naively, one might interpret the above as a prescription stating that every complex semi-simple Lie
algebra g with rank r can be seen as r different sl2-triplets whose interaction is given by Aij . While
this might be in essence correct, this interpretation might lead one to believe that e.g. sl3 is the sum
of two copies of sl2, which of course dimensionally does not suffice. Nevertheless, sl2, being a very
straightforward rank r = 1 Lie algebra, plays an important role for considering Lie algebras of higher
rank.

While this concludes our general discussion of the structure of Lie algebras, we want to add a very
brief note as to why it is a rather rewarding task to consider Lie algebras of low dimension, before moving
on to the example of sl3 and carrying on with our algebraic discussion. The Lie (super)algebras that
will be pertinent to our project are all of relatively low dimension. The fact that there are not a large
number of distinct low-dimensional - or, more precisely, small rank - Lie algebras can best be seen by
looking at the Dynkin classification, which we shall briefly do.

18One needs to be careful with this definition of the Cartan matrix, but for our purposes, it will do. There also exist
notions of symmetrised and unsymmetrised Cartan matrices, for a more comprehensive discussion, please see [FH04].
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Firstly, we state that we can use a well-known invariant bilinear form, the Killing form κ, to construct
a scalar product on h∗, essentially by first restricting κ

∣∣
h×h to the Cartan subalgebra19, and then taking

its dual inverse, such that we end up with a scalar product 〈·, ·〉 : h∗ × h∗ → C, with the property that

Aij = αsj(Hi) = 2
〈αsi , αsj〉
〈αsi , αsi 〉

. (2.2.11)

One can show that this20 implies Aii = 2 and, for i 6= j,

(Aij , Aji) ∈ {(0, 0), (−1,−1), (−2,−1), (−3,−1)} , (2.2.12)

which simplifies the situation (see e.g. [Bei15]).
Cartan matrices, as constrained as we stated them to be, can be represented by Dynkin diagrams.

Given a specific Cartan matrix Aij , they can be constructed as follows:

• For a rank r Lie algebra g, first, we must draw r nodes, one for each diagonal element Aii = 2.
Each node carries a (mental) label from 1 to r.

• Nodes no. i and j are connected by max(|Aij |, |Aji|) ∈ {0, 1, 2, 3} edges, where i 6= j.

• In case of (Aij , Aji) ∈ {(−2,−1), (−3,−1)}, the edge carries an arrowhead pointing from node
number i to j for |Aji| > |Aij |.

As it turns out, there are only so many different Dynkin diagrams - and correspondingly semi-simple
complex Lie algebras - that can exist: There are 4 distinct infinite families An, Bn, Cn, Dn, and a handful
of exceptional cases E6, E7, E8, F4, G2. Their diagrammatic representation can be seen in 2.2.

An

Bn

Cn

Dn

(a) The infinite families

E6

E7

E8

F4

G2

(b) The exceptional cases

Figure 2.1: The different Dynkin diagrams

With regard to the Cartan structure, An, Bn, Cn, Dn correspond to sln+1, so2n+1, sp2n, so2n, respec-
tively. From this, it is also obvious that for the small-rank Lie algebras we have e.g. A1 = B1 = C1 and
B2 = C2.

Lastly, we shall just quickly illustrate what we have discussed here by making an example, namely
sl3. It has rank r = 2.

19Whose representation matrix is, naturally, related to the Cartan matrix.
20We again need to stress that we are only interested in the finite-dimensional case.
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h∗

αs1

α̃s1

α12

α̃12 αs2

α̃s2

h∗

αs1

α̃s1

α12

α̃12 αs2

α̃s2

(a) The root system of sl3.

A2

(b) The Dynkin diagram of sl3.

Figure 2.2: The Lie algebraic structure of sl3.

In figure 2.2a, we see the positive (teal) and negative (õrange) roots of sl3, where a superscript s
indicates that they are simple roots. For instance, αs1, αs2 are the positive simple roots, while the root
α12 = αs1 +αs2 is composite, which can also be seen by [Eαs

1
, Eαs

2
] = Eα12 . sl3 has a rather trivial Dynkin

diagram, as can be seen in figure 2.2b, stemming from the Cartan matrix

A =

[
2 −1

−1 2

]
. (2.2.13)

With respect to simple complex Lie algebras, one can state that g is simple iff its Dynkin diagram is
connected, indicating to us that e.g. D2 = so(4) is not simple.

This concludes our discussion about ordinary (bosonic) Lie algebras. Before moving on to the gener-
alisation of these notions in form of the super-case, we shall briefly introduce the very basic ingredients
of representation theory.

Definition 8. Let g be a Lie algebra and V a vector space over K. A linear map ρ,

ρ : g → gl(V ) = End(V ) , (2.2.14)

is called a representation of g on V iff it is a Lie algebra homomorphism, i.e.

ρ([X,Y ]) = [ρ(X), ρ(Y )] ∀X,Y ∈ g , (2.2.15)

where the Lie brackets are defined on g and gl(V ) (the latter of which can be understood as the commutator
for us). If ρ is a injective map, we call the representation faithful. In mathematics, the tuple (ρ, V ) is
referred to as a g-module.21

Obviously, there exist many possible representations for any given Lie algebra - e.g. the trivial rep-
resentation ρ ≡ 0 always exists for any g. There exists one particular notion that distinguishes one type
of representation from others that we shall highlight.

Definition 9. Let g be a Lie algebra and V a vector space over K, and ρ : g → gl(V ) a representation.
A subspace W ⊂ V is invariant under ρ iff have

ρ(X)w ∈ W ∀w ∈ W and ∀X ∈ g . (2.2.16)

ρ̃ = ρ
∣∣
W

is then a subrepresentation. A representation ρ 6≡ 0 on V is called irreducible iff V has no
proper invariant subspaces. Otherwise, we call it reducible. In the language of modules, we call an
irreducible representation a simple module. Additionally, if (a reducible) ρ on V can be decomposed into
a direct sum irreducible subrepresentations, we call it completely reducible.

21In the literature, the nomenclature is sometimes used in a confusing way, by e.g. referring to V as the representation
itself.
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One important result within the field of representation theory is that for complex semi-simple Lie
algebras, every reducible representation is also completely reducible.

Definition 10. For a Z2-graded vector space g = g0 ⊕ g1, we define the degree of an element |A| = a for
A ∈ ga, a = 0, 1. We say g is a Lie superalgebra iff it is equipped with a bilinear map [·, ·] : g × g → g if
it fulfils (∀X,Y, Z ∈ g)

• |[X,Y ]| = |X| + |Y | mod 2, i.e. it respects the grading,

• [X,Y ] = (−1)1+|X||Y |[Y,X], i.e. it is super-alternating,

• (−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X]] + (−1)|Z||Y |[Z, [X,Y ]] = 0, the super-Jacobi identity.

In this case, we call [·, ·] a (Lie) superbracket.22

The entire discussion about definitions, Cartan classifications, Chevalley bases, roots and Dynkin
families generalised straightforwardly (or linearly, more precisely) to the super case, which is why we
will not reiterate this in a comprehensive “super-introduction” here. However, we would not do the topic
justice if we did not explain some important super-notions.

For this, it is helpful to introduce a prime example: Given a (finite-dimensional) superspace V =
V0 ⊕ V1 with homogeneous basis B(m|n) = e1, ..., em, em+1, ..., em+n (where the first m basis elements
span V0, and the latter n basis elements V1), we can equip the superalgebra End(V ) with the standard
Lie superbracket for associative superalgebras

[a, b] = ab− (−1)|a||b|ba, (2.2.17)

it has the structure of a (m|n)-dimensional (or m + n-dimensional) Lie superalgebra and is commonly
referred to as gl(m|n). In the basis B(m|n), we can identify the elements of gl(m|n) with blockmatrices
of the form

gl(m|n) =̇

{[
A B

C D

]}
, (2.2.18)

where even and odd parts - i.e. the parts with respective 0, 1 mod 2 grading - of it can be represented
by23

gl(m|n)0 =̇

{[
A 0
0 D

]}
, gl(m|n)1 =̇

{[
0 B

C 0

]}
, (2.2.19)

where the dimensions of the submatrices A,B,C,D should be self-evident. All of the relevant Lie super-
algebras will be subalgebras of gl(m|n) or closely related to them, so we can stick with this identification
with blockmatrices for the following definitions.

Definition 11. For a given element X ∈ gl(m|n) realised through

X =̇

[
A B

C D

]
, (2.2.20)

we define the supertransposition through

st : gl(m|n) → gl(m|n)

22There exist many superbracket choices in many instances.
23Note here that the odd part does not form a subalgebra, whereas the even part does.
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X 7→ Xst, (2.2.21)

where Xst :=

[
At −Ct

Bt Dt

]
. For supermatrices X,Y , the supertransposition fulfils the identity (XY )st =

(−1)|X||Y |Y stXst, which naturally reduces to the known property (M1M2)t = M t
2M

t
1 for ordinary matrices

Mi.
For the above X, there also exists a super-equivalent of the trace:

sTr : gl(m|n) → K

X 7→ sTr(X), (2.2.22)

where sTr(X) := Tr(A) − Tr(D). For the Lie superbracket on gl(m|n), the supertrace fulfils the identity
sTr([X,Y ]) = 0.

Using the supertrace, we can define an important subalgebra of gl(m|n):

sl(m|n) :=
{
X ∈ gl(m|n)

∣∣ sTr(X) = 0
}
. (2.2.23)

While one can prove that sl(m|n) is simple for m + n > 1 and m 6= n, for m = n we have sTr(1) = 0,
thus sl(m|m) has a 1-dimensional centre Z = span(1), which makes the algebra non-simple ([FSS96]). It
makes therefore sense to look at the projective algebra

psl(m|m) := sl(m|m)/Z (2.2.24)

instead. psl(m|m) is simple for m > 1.
As mentioned before, not all Lie superalgebras will be relevant for our project. In fact, we will be

focusing our efforts to basic Lie superalgebras, meaning the ones whose even parts are reductive and who
admit to a so-called invariant (super)form. For a given Lie superalgebra g, this means that a bilinear
form

(·, ·) : g × g → K (2.2.25)

fulfils

([X,Y ], Z) + (−1)|X||Y |(Y, [X,Z]) = 0 ∀X,Y, Z ∈ g , (2.2.26)

which also can be reformulated by making use of the properties of the Lie superbracket as

([X,Y ], Z) = (X, [Y, Z]) ∀X,Y, Z ∈ g . (2.2.27)

In most of the literature, to be a basic Lie superalgebra, this invariant form is required to be non-
degenerate. In the super-case, the Killing form of g is defined as follows:

κ(X,Y ) = sTr(adXadY ) for X,Y ∈ g . (2.2.28)

The Killing form is invariant in the above sense, and also invariant under automorphisms of g. Fur-
thermore, for simple Lie superalgebras g, the Killing form is graded symmetric satisfying (X,Y ) =
(1)|X||Y |(Y,X) ∀X,Y ,24 invariant, and fulfils κ(g0, g1) = 0. Additionally,

• for g of the type Am,n 6=m, Bm,n, Cn+1, Dm,n 6=m−1, or F4, G3, its Killing form is non-degenerate,
and

24This is also sometimes referred to as “supersymmetric” or “super-symmetric”.
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• for g of the type Am,m, Dm+1,m, D2,1;α, its Killing form is identically zero.

In this thesis, most of the above algebras will not play a role and we shall forego an extensive exposition
of their definitions and properties, and the reader is referred to consult [Kac77] for a comprehensive
discussion.

The notion of (simple) roots ∆(s) = {α1, ..., αr}, Cartan subalgebras h, Serre relations and generators
Eα, Fα stays mostly the same for the super case, with the difference being now that there are even and
odd generators and roots and the Lie bracket gets replaced by the Lie superbracket. Reminiscent of
the ordinary case, all basic Lie superalgebras admit a non-degenerate inner product (., .) : g × g → K
with (Eαk

, E−αl
) = (Eαk

, E−αk
)δkl and (Hk,Hl) = (Eαk

, E−αk
)Akl, where A is the Cartan matrix

analogously. Except for the simple Lie superalgebras of type An,n, Dn+1,n, D2,1;α, this inner product
always coincides with the Killing form (that is non-degenerate in these cases).

In the Cartan theory of Lie superalgebras, there is one subtlety to be addressed: Generally, there
exist an infinite number of choices of generators and roots for any given Lie (super)algebra a priori. For
a basic Lie superalgebra, there always exists a simple root system ∆s which has the fewest odd roots.25

We call this root system the distinguished root system ∆d
s of the Lie superalgebra, which gives rise to the

distinguished Cartan matrix. Lastly, as in the bosonic case, these Cartan matrices can be symmetrised
canonically, but we will skip the procedural details of this and assume the Cartan matrices As to be
symmetrised wherever necessary.

As a last step, let us discuss briefly the Dynkin classification in the super-case. We consider a basic
Lie superalgebra g of dimension n and rank r = dim(h), with simple root system ∆s and symmetric
Cartan matrix Askl = (αk, αl). The Dynkin-recipe is then the following:

1. For each even root in ∆s, we draw a white node. For the odd roots in ∆s, we have to distinguish
between roots of length zero (Askk = 0) and of positive length (Askk 6= 0) - for the former, we draw
a grey (or marked) node, for the latter we draw a black node. The nodes are (mentally) numbered
by the index of their corresponding root.

2. Nodes k and l are then linked by zkl lines, with

• zkl = 2|Akl|
min(|As

kk
|,|As

ll
|) for Askk 6= 0 6= Asll,

• zkl = 2|Akl|
minAs

ii
6=0(|As

ii
) for Askk 6= 0, Asll = 0,

• zkl = |Askl| for Askk = 0 = Asll.

3. Lastly, we add an arrow to the line between nodes k and l,

• pointing from k to l for Askk 6= 0 6= Asll and |Askk| > |Asll|, or for Askk = 0 6= Asll and |Asll| > 2,

• pointing from l to k for Askk = 0 6= Asll and |Asll| > 2.

As we mentioned before, there are many different, inequivalent choices for simple root systems for any
basic Lie superalgebra. Had we started this procedure with the distinguished one ∆d

s , we would have
constructed the distinguished Dynkin diagram for g. In this kind of diagram, the fewest odd roots are

25Although this may only seem to be a mathematical curiosity, it actually has important physical implications. One
example can be found in [HS19] or [Sei19], where depending on the Dynkin diagram used to deform the string background,
it will satisfy supergravity equations or generalised supergravity equations.
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pictured. For completeness’ sake, we list the Dynkin super-families

Am,n

Bm,n

Dm 6=1,n

Cn+1


corresponding to



slm+1,n+1

osp2m+1,2n

osp2m,2n

osp2,2n

,

and the exceptional super-cases D2,1;α for α /∈ {0,−1} (which can be understood as a deformation of
D(2, 1)), F4 and G3. Again, for a comprehensive discussion on this, we refer the reader to [Kac77],
[FSS96] and [Ser17]. For our purposes, the Am,n family will be the most important one, but we outline
the diagrammatic overview of the basic cases in 2.3 (see also [FSS96]).

Am,n m m m m m m m1 1 1 1 1
�@

1 1

︸ ︷︷ ︸
m times

︸ ︷︷ ︸
n times

Bm,n m m m m m m m2 2 2 2 2 2
�@ @

�

2

︸ ︷︷ ︸
n−1 times

︸ ︷︷ ︸
m−1 times

B0,n mm m }2 22 2
@
�︸ ︷︷ ︸

n−1 times

Cn+1

2m m m m m1 2 2 1
�@ �

@︸ ︷︷ ︸
n−1 times

Dm,n m m m m m m2 2 2 2 2
�@

2
��

HH

m1

m1
︸ ︷︷ ︸

n−1 times
︸ ︷︷ ︸
m−2 times

Figure 2.3: Distinguished Dynkin diagrams of the infinite families of the basic Lie superalgebras.

The above shows again the infinite families, and in 2.4 we find the exceptional cases.
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F4 m m m m2 3 2 1
�@ �

@

G3 m m m2 4 2
�@ �

@

D2,1;α m2 �@
��

HH

m1

m1

Figure 2.4: Distinguished Dynkin diagrams of the exceptional cases of the basic Lie superalgebras.

From a representation theoretic perspective, for the practical scope of this thesis, there are no par-
ticularly intricate differences: The grading of a superalgebra has to be respected by the representation
space we choose and the representation we construct - and we will straightforwardly see this in the
representations we are dealing with in chapter 4. The only subtlety that frequently appears within the
context of superalgebras that we shall point out is the one of short and long representations. We first
recall one important fact about semi-simple complex Lie algebras, namely that every representation that
is not irreducible is completely reducible. For simple complex basic Lie superalgebras, the situation is
unfortunately not quite the same, as there exist many representations for them that are reducible but
not completely reducible. This fact is what prompts us to introduce the notion of typical and atypical
representations of superalgebras.26 The situation as it presents itself for semi-simple complex Lie alge-
bras finds its analogue in the typical representation of superalgebras. We refrain from going beyond the
scope of this thesis by means of providing a detailed exposition on highest weight representations, and
simply state that if (ρ, Vλ) is an irreducible highest-weight representation of a superalgebra g with the
property that any highest-weight representation of g to the same highest weight λ can be written as the
direct sum Vλ ⊕W (where W is some other representation of g), then (ρ, Vλ) is a typical representation.
If an irreducible representation of g is not typical, then we call it atypical. For a more comprehensive
discussion on these results, please see [Kac78]. In the language of physicists, typical and atypical mod-
ules are referred to as long and short representations, respectively. For a representation to be short, it
has to fulfil a so-called shortening condition, and shortening conditions play an important role in the
discussion of physical representations within string theory (see e.g. [Tor11], [FZ00], [AGH97]), restricting
the representation to some extent.27

Lastly, representations of the algebraic objects we are about to introduce work straightforwardly as
expected, with some of the theorems and lemmata also holding for analogous structures.28 We shall
therefore not reintroduce all of the representation theoretic definitions for them.

26Strictly speaking, we are here talking about basic classical simple complex Lie superalgebras, which is a mouthful.
27Long and short representations share a meaningful connection with the appearance of anomalous dimensions, see e.g.

[DO03].
28Schur’s lemma, for example, also finds its analogue for algebras.
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2.3 Algebras, Coalgebras and Bialgebras
We will now take a step back in our (Lie) algebraic discussion, and we shall introduce some more
fundamental algebraic notions (for additional examples and explanations, [Kas95] is a good pedagogical
introduction). We start with the most fundamental structure, the algebra.

Definition 12. Let A be a vector space over K, and µ : A⊗ A → A and υ : K → A be maps. (A,µ, υ)
is called an (associative) algebra iff the following diagrams commute

K ⊗A ' A ' A⊗ K A⊗A

A⊗A A

ν⊗id

id⊗ν

id µ

µ

unital

A⊗A⊗A A⊗A

A⊗A A

µ⊗id

id⊗µ

µ

µ

associative

In this case, we call µ the multiplication (or product) and υ the unit.
The diagram regarding unitality translates to the following relation,

µ ◦ (ν ⊗ id) = id = µ ◦ (id ⊗ ν) . (2.3.1)

The diagram regarding associativity implies that we have

µ ◦ (µ⊗ id) = µ ◦ (id ⊗ µ) . (2.3.2)

We call an algebra (A,µ, υ) commutative or abelian iff µ(x, y) is symmetric under the exchange of
x and y. Defining the permutation map πX,X : X ⊗ X → X ⊗ X, a ⊗ b 7→ b ⊗ a, we can also say that
(A,µ, υ) is commutative iff µ = µ ◦ πA,A.

Lastly, we call a map F : A → A′ an algebra morphism iff F ◦ µ = µ′ ◦ (F ⊗ F ) and υ′ = F ◦ υ.

We now introduce a concept that is in a sense dual to the one of the algebra - the coalgebra.

Definition 13. Let C be a vector space over K, and let ∆ : C → C ⊗ C and χ : C → K be maps. We
call (C,∆, χ) a coalgebra iff the following diagrams commute

C C ⊗ C

C ⊗ C K ⊗ C ' C ' C ⊗ K

∆

∆
id

id⊗χ

χ⊗id

counital

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆
∆ ∆⊗id

id⊗∆

coassociative

In this case, we call ∆ the coproduct (or comultiplication) and χ the counit. We call (C,∆, χ)
cocommutative iff πC,C ◦∆ = ∆. We shall henceforward denote the opposite coproduct as πC,C ◦∆ = ∆op.
These two diagrams are, similarly to before, implying the equations29

(id ⊗ χ) ◦ ∆ = id = (χ⊗ id) ◦ ∆ , (2.3.3)
29One could also dualise the unitality diagram by flipping all the arrows and arrive at the way of representing the

counitality relations.
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and

(id ⊗ ∆) ◦ ∆ = (∆ ⊗ id) ◦ ∆ , (2.3.4)

respectively.30

We call a map F : C → C ′ a coalgebra homomorphism iff ∆′ ◦F = (F ⊗F ) ◦ ∆ and χ′ ◦F = χ hold.

For expressions involving the coproduct, Sweedler ([SU69]) introduced a useful notation. For ∆(c) ∈
C ⊗ C, we write (in three variants)

∆(c) =
∑
k

c′k ⊗ c′′k =
∑
(c)

c′ ⊗ c′′ = c(1) ⊗ c(2) . (2.3.5)

Finally, we mend the notions of algebras and coalgebras together and arrive at something new: the
notion of a bialgebra.

Definition 14. If (B,µ, υ) is an algebra, (B,∆, χ) is a coalgebra and µ, υ are coalgebra homomor-
phisms31, respectively, then we call (B,µ, υ,∆, χ) a bialgebra.32

2.4 Hopf Algebras
Having gone through a plethora of new algebraic definitions, let us now finally come to the pièce de
résistance of this algebraic discussion: the introduction of Hopf algebras. Hopf algebras will be of
singular importance for the latter part of this report. For a very brief and pedagogical introduction that
is pertinent to our efforts, we refer the reader to [Hec18], and also [PTV13].

Definition 15. Let (H,µ, υ,∆, χ) be a bialgebra and let S : H → H be a map. We call (H,µ, υ,∆, χ, S)
a Hopf algebra iff the following diagram commutes

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

S⊗id

µ
∆

∆

χ υ

id⊗S

µ

antipodal

In this case, we call S the antipode. Hopf homomorphisms are just maps that are algebra and coalgebra
homomorphisms that are compatible with the antipode(s). The above diagram can be expressed with the

30Notice that we will use id,1 and 1 all meaning essentially the same thing - fortunately, there will never be an ambiguity
on what it means. However, we shall try to use the 1 symbol when talking about evaluated expressions for instance, and
id when we want to stress the identity as a map.

31This is equivalent to ∆, χ being algebra homomorphisms.
32There is a subtlety to be understood in the above statement: Using for example the definition of a coalgebra homo-

morphism as introduced before, one would try to combine the maps µ and ∆ via ∆ ◦µ = (µ⊗µ) ◦ ∆′ - which is ill-defined.
This is actually understood as coalgebra homomorphism µ : B ⊗ B → B, where the (B,∆, χ) is the coalgebra-part of the
bialgebra, and (B ⊗B,∆ ⊗ ∆, χ⊗ χ) is the tensored coalgebra that is the codomain of the µ-map mentioned before. The
statement that µ is a coalgebra homomorphism then translates to the following condition

∆ ◦ µ = (µ⊗ µ) ◦ (∆ ⊗ ∆) ,

which is a map from B ⊗B → B ⊗B.
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equations

S ⋆ 1 = µ ◦ (S ⊗ id) ◦ ∆ = υ ◦ χ , (2.4.1)

1 ⋆ S = µ ◦ (id ⊗ S) ◦ ∆ = υ ◦ χ , (2.4.2)

where the ⋆-operation is the convolution defined by the equations above.

Definition 16. Let (H,µ, υ,∆, χ, S) be a Hopf algebra. We call H quasi-triangular if there exists an
invertible element R ∈ H ⊗H such that

• ∆op(h)R = R∆(h) ∀h ∈ H,

• (∆ ⊗ 1)(R) = R13R23,

• (1 ⊗ ∆)(R) = R13R12,

where Rij ∈ H ⊗H ⊗H has R(1) as the i-th tensor factor, R(2) as the j-th tensor factor, and 1 as the
remaining tensor factor, e.g. R12 = R⊗1. In this case, we call R the universal R-matrix of H. Leaning
on this superscript-notation, we may introduce the notation

R =
∑
i

R(1)
i ⊗ R(2)

i ,

wherever it is convenient. In this context, the superscript (i) refers to the order of tensorial factors
(exactly as before), whereas the subscript i refers to the summand of the linear decomposition.

For such an R, the above axioms and properties of a Hopf algebra automatically imply on the one
hand

[(π ◦ ∆) ⊗ id] (R) =
∑
i

[∆op ⊗ id] (R(1)
i ⊗ R(2)

i )

=
∑
i

∆op(R(1)
i ) ⊗ R(2)

i

=
∑
i

R∆(R(1)
i )R−1 ⊗ R(2)

i

=R12

[∑
i

∆(R(1)
i ) ⊗ R(2)

i

]
R−1

12

=R12 [(∆ ⊗ id)(R)] R−1
12

=R12R13R23R−1
12 , (2.4.3)

where we have in the third step that

R12

[∑
i

∆(R(1)
i ) ⊗ R(2)

i

]
R−1

12 =
∑
i

(R ⊗ id)
[
∆(R(1)

i )R−1 ⊗ R(2)
i

]
=
∑
i

R∆(R(1)
i )R−1 ⊗ R(2)

i . (2.4.4)

However, on the other hand we also have

[(π ◦ ∆) ⊗ id] (R) =π12(∆ ⊗ id)(R)

=π12(R13R23)

=R23R13 . (2.4.5)
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Equating both these expressions, we then get by transitivity that

R12R13R23R−1
12 =R23R13

⇔

R12R13R23 =R23R13R12 , (2.4.6)

where we used the invertibility of the R-matrix. We call the last equality the so-called the Yang-Baxter
equation (YBE). This equation will be important, even central, in the next chapter when we talk about
integrability. Quasi-triangularity also implies the following antipodal relations:

(χ⊗ id)(R) = (id ⊗ χ)(R) = 1 ,

R = (id ⊗ S)(R−1) , R−1 = (S ⊗ id)(R) ,

(S ⊗ S)(R) = R . (2.4.7)

The first two equations follow from counitality and from the quasi-triangularity relations that involve
R, in the sense that we have:

R = (id ⊗ id)(R)

= ((id ⊗ χ) ◦ ∆) ⊗ id)(R)

= ((id ⊗ χ) ⊗ id)(R13R23)

= R ((id ⊗ χ) ⊗ id)(R23)︸ ︷︷ ︸
has to be =1

. (2.4.8)

Since the first tensorial factor in R23 is the identity, and the latter two are just R, we have that the
following needs to hold,

(χ⊗ id)(R) = 1 , (2.4.9)

proving our claim. The equation (1 ⊗ χ)R = 1 is proved in a similar way. Furthermore, the relations
in the second line can be proved as follows by recalling the antipodal relations proposed before, namely
via the following:

1 = (ν ⊗ id)((χ⊗ id)(R)︸ ︷︷ ︸
=1

)

= (ν ◦ χ⊗ id)(R)

= ((µ ◦ (S ⊗ id ◦ ∆)) ⊗ id)(R)

= ((µ ◦ (S ⊗ id)) ⊗ id)(R13R23)

= ((µ ◦ (S ⊗ id)) ⊗ id)(R13)︸ ︷︷ ︸
(S⊗id)(R)

R , (2.4.10)

where we again made use of the fact where the identity appears in the triple tensor products.33 The last
equation implies that we have

(S ⊗ id)(R) = R−1 . (2.4.11)
33To get from the penultimate to the last line of this equation, we shall make things explicit in index notation for the

curious reader. With the expansion of the R-matrix in some appropriate basis R = Rij Xi ⊗Xj (and we shall refrain from
displaying the identity with Kronecker-indices for ease of reading), we deduce the following:

((µ ◦ (S ⊗ id)) ⊗ id)(R13R23) = ((µ ◦ (S ⊗ id)) ⊗ id)
(

(Rij Xi ⊗ id ⊗Xj)(Rab id ⊗Xa ⊗Xb)
)

= ((µ ◦ (S ⊗ id)) ⊗ id)
(
RijRab Xi ⊗Xa ⊗XjXb

)
(∗)
= RijRab S(Xi)Xa ⊗XjXb

= (Rij S(Xi) ⊗Xj) (Rab Xa ⊗Xb)
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The other equation on line two is proved in an analogous way. Lastly, the third equation is proved using
the ones appearing on the second line, namely via:

R = (id ⊗ S)(R−1)

= (id ⊗ S)((S ⊗ id)(R))

= (S ⊗ S)(R) . (2.4.12)

So far, all things that we discussed here foots on the fact that we have coassociativity. However, there
exist analogous notions of bialgebras and Hopf algebras that survive even if we relax this condition. While
this might seem like something solely interesting to purely algebraic considerations, as we shall later see,
it will play a curious role in this thesis. For this particular topic, we recommend the mathematically
inclined reader to have a look at [Hal02], whose definitions we will use and where a comprehensive
discussion can be found, but also [Dri98], [CBPV19], [MS92], and a perhaps more relevant approach is
presented in [DZ19].

Definition 17. A quasi-Hopf algebra H satisfies all algebraic axioms of a Hopf algebra but for the ones
concerning coassociativity. A quasi-Hopf algebra satisfies the relaxed set of the following conditions:

• (id ⊗ ∆) ◦ ∆ = Φ
[

((∆ ⊗ id) ◦ ∆)
]
Φ−1,

• (id ⊗ χ) ◦ ∆ = (χ⊗ id) ◦ ∆ = id,

•
[
(id ⊗ id ⊗ ∆)Φ

][
(∆ ⊗ id ⊗ id)Φ

]
=
[
(id ⊗ Φ)

][
(id ⊗ ∆ ⊗ id)Φ

][
(Φ ⊗ id)

]
,

• (id ⊗ χ⊗ id)Φ = id ⊗ id,

where Φ ∈ H ⊗ H ⊗ H is an invertible element we call the coassociator. For Φ ≡ 1, we recover a
coassociative Hopf algebra.34

Similarly to the coassociative case, for quasi-Hopf algebras, there exists also a notion of quasi-
triangularity and, subsequently, a quasi-YBE.

Definition 18. We call a quasi-Hopf algebra H quasi-triangular iff there exists an invertible element
R ∈ H ⊗H called again the universal R-matrix of H, fulfilling

• ∆op(h)R = R∆(h) ∀h ∈ H,

• (∆ ⊗ id)R = Φ312R13(Φ132)−1R23Φ123,

= (S ⊗ id)(R)R

= ((µ ◦ (S ⊗ id)) ⊗ id)(R13)R ,

In the three equalities following
(∗)
= , we made the multiplication µ implicit factors together, i.e. µ ◦ (a ⊗ b) = ab, for

presentation purposes.
34The above equations in bulletpoints 1, 3 and 4 are to be understood in the following way, respectively:

• For h ∈ H, this equation is to be understood as

((id ⊗ ∆) ◦ ∆)(h) = Φ
[

((∆ ⊗ id) ◦ ∆) (h)
]
Φ−1

• This equation is to be understood as written not as a map, meaning it is just an element (or multiplicative factor)
in the quartic tensorial space of H.

• This equation is to be understood as written not as a map, meaning it is just an element (or multiplicative factor)
in the double tensorial space of H.
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• (id ⊗ ∆)R = (Φ231)−1R13Φ213R12(Φ123)−1,

where Φσ =
∑
i Φσ

−1(1)
i ⊗ Φσ

−1(2)
i ⊗ Φσ

−1(3)
i for Φ = Φ123 =

∑
i Φ(1)

i ⊗ Φ(2)
i ⊗ Φ(3)

i and σ ∈ S3. For a
quasi-triangular quasi-Hopf algebra, the universal R-matrix fulfils the quasi Yang-Baxter Equation

R12Φ312R13(Φ132)−1R23Φ123 = Φ321R23(Φ231)−1R13Φ213R12 . (2.4.13)

We can easily see that for the coassociative case, this reduces to the ordinary Yang-Baxter equation.

Technically, we additionally have to require the existence of a quasi-antipode S accompanied by two
α, β ∈ H, i.e. a triple (S, α, β)) satisfying∑

i

S(a(1)
i )αa(2)

i = χ(a)α ,∑
i

αa
(1)
i βS(αa(2)

i ) = χ(a)β , (2.4.14)

for all ∆(a) =
∑
i a

(1)
i ⊗ a

(2)
i , as well as ∑

i

Φ(1)
i βS(Φ(2)

i )αΦ(3)
i = id ,

∑
i

S(Φ−1
i

(1))αΦ−1
i

(2)
αS(Φ−1

i

(3)) = id , (2.4.15)

where we used the notation

Φ = Φ123 =
∑
i

Φ(1)
i ⊗ Φ(2)

i ,Φ−1 = (Φ−1)123 =
∑
i

Φ−1
i

(1) ⊗ Φ−1
i

(2) ⊗ Φ−1
i

(3)
, (2.4.16)

for the coassociator and its inverse. However, if for α = β = id the equations in (2.4.14) still hold, then
the antipode-coassociator equations in (2.4.15) heavily simplify and can be more compactly written as

µ(1 ⊗ µ)
[
S ⊗ 1 ⊗ S

]
Φ−1 =1

µ(µ⊗ 1)
[
1 ⊗ S ⊗ 1

]
Φ =1 . (2.4.17)

As it turns out, the only instance where we shall ever make use of quasi-triangular quasi-Hopf algebras,
we are allowed to make this simplification, as we shall see in chapter 4.

This concludes our algebraic discussion in this preliminary part of the thesis. We again note that the
generalisation is straightforward for the case of graded algebra: Wherever tensor products appear, we
have to make use of graded tensor products in their stead, and rather than permutation maps we have
to use graded permutation maps, and so on - the exposition stays the same mutatis mutandis.
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3 | Integrability

“It is better to solve one problem five different ways, than to solve five problems one way.”
– George Polya

Integrability is incredibly rare in the vast landscape of theories and models in physics (see e.g.
[MM74]), especially within higher-dimensional theories.1 They form a special class of physical models
that can be solved exactly, rather than perturbatively or in the form of some kind of approximation.
Though rare, integrability appears in classical mechanics and field theory, condensed matter physics and,
more recently, in gauge theory and string theory - most importantly in the AdS/CFT context.

The ambitious goal of this chapter is to provide the reader with an introduction to the vast topic
of integrability, brief and fragmentary as it may be. We will do this in two subsections: One dealing
with classical integrability, one with quantum integrability - where we also shall emphasise the aspects
most relevant to our later considerations. For the keenly interested reader, there are many references
to choose from that cover these topics more extensively, e.g. [Tor16], [Lam15], and an excellent course
whose notes can be found in [Bei16]. In our presentation of this we will at some points loosely follow
the approaches of these references.

3.1 Classical Integrability

The natural way to start reviewing classical integrability is in the context of Hamiltonian mechanics.
Given a 2n-dimensional phase space manifold M with (canonical) coordinates qi and momenta pi

with i ∈ {1, ..., n}, and a Hamiltonian2 H : M → R, a curve γ = (qi(t), pi(t)) ⊂ M is a solution to the
Hamiltonian system iff it fulfils the equations of motion

∂H

∂pi
= q̇i,

∂H

∂qi
= −ṗi, (3.1.1)

which in terms of Poisson-Hamilton brackets {f, g} =
∑
i

(
∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

)
can be expressed as

{H, qi} = − d

dt
qi, {H, pi} = − d

dt
pi. (3.1.2)

Given initial conditions at some initial time t = t0, one wants to find a general expression for the
solutions (qi(t), pi(t)) at all times3. Given all the Hamiltonian systems possible, it is frequently very
difficult or infeasible to find a closed expression for a general solution in terms of elementary functions.
Therefore, it makes sense to take a step back and see if the Hamiltonian system can be analysed by

1See also: Coleman-Mandula Theorem [CM67].
2We assume, for this introduction, our H to be time-independent, i.e ∂H

∂t
vanishes.

3Depending on the situation, one could also look for this on some interval t ∈ (a, b) instead.
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different means - finding conserved quantities, properties such as periodicity or boundedness of the
solution, behaviour near critical points, and so on.

We now arrive at a very important notion in classical integrability in Hamiltonian systems: the
existence of integrals of motion. A function F (qi, pi) on M is called an integral of motion iff

{F,H} = d

dt
F = 0, (3.1.3)

where we also assumed F to be time-independent in the same sense that H is assumed to be. It
is immediate that H is an integral of motion every Hamiltonian system possesses. Now, if the 2n-
dimensional phase space manifold M features n independent, smooth integrals of motion whose Poisson
pairwise brackets vanish, then M is (classically) integrable. A system of this kind can be solved by
solving a (finite) number of integrals and algebraic equations, so-called quadratures.4 These so-called
Liouville-integrable systems have many interesting mathematical properties, most of which we shall not
allude to in this introduction - for further reading, see e.g. [BBT03].

We can approach this in a more algebraic way, for which we need to introduce some new notions first,
the first of which is the so-called Lax pair: We call two k× k-matrices L,M with entries that depend on
qi, pi Lax-related, or more simply the Lax pair, iff the resulting Lax equations,

dL

dt
= [M,L], (3.1.4)

are equivalent to the Hamiltonian equations of motion. Provided such L,M exist for a given Hamiltonian
system, we can automatically generate a family of conserved quantities Fm = TrLm, which is an integral
of motion by virtue of the cyclicity of the trace, as we can easily derive:

dFm
dt

= Tr
(
d

dt
Lm
)

=
m−1∑
k=0

Tr
(
Lk
(
dL

dt

)
Lm−k−1

)

=
m−1∑
k=0

Tr
(
Lk[M,L]Lm−k−1)

=
m−1∑
k=0

(
Tr
(
LkMLm−1)− Tr

(
Lk+1MLm−k−1))

= 0 . (3.1.5)

Finding such a Lax pair is often difficult and by no means straightforward, as it is not unique and there
is no canonical way to construct it and k is undetermined a priori.

If we want our Lax pair to describe an integrable system, we have not specified how the fact that
integrals of motion Fm should pairwise Poisson-commute manifests in the Lax formalism. For this to be
the case, we require the existence of the classical r-matrix which fulfils

{L1, L2} = [r12, L1] − [r21, L2], (3.1.6)

where we introduced the tensorial notations L1 = L ⊗ 1 and L2 = 1 ⊗ L as well as r12 = r and
r21 = π(r12), where π is the permutation. In this context, we recommend the reader to read the
first chapter in [ARU20] which outlines this theory masterfully, and whose explanation we shall draw

4Keep in mind that these integrals can be tricky: In the case of a massive particle in a central potential V (r) with
Lagrangian 2L = mṙ2 + mr2ϕ̇2 − 2V (r), we can find an expression for the angular coordinate ϕ. However, depending on
the potential V (r), the resulting integrals cannot be expressed using elementary functions.
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inspiration from. Note that r lives in the tensor product space with two factors (i.e. r ∈ Mk×k ⊗Mk×k).
The Jacobi identity associated with the above equation (3.1.6) lives in the double tensor product space
with three factors. This means that we also defined now

L1 = L⊗ 1 ⊗ 1 , (3.1.7)

L2 = 1 ⊗ L⊗ 1 , (3.1.8)

L3 = 1 ⊗ 1 ⊗ L . (3.1.9)

The Jacobi identity of (3.1.6) constrains the r-matrix in the following way:

0 =[L1, [r12, r13] + [r12, r23] + [r32, r13] + {L2, r13} − {L3, r12}] + cyclical permutations . (3.1.10)

In order to further illustrate that the above equation follows from the Jacobi identity, it is easiest to
make the underlying calculation more explicit. The Jacobi identity of (3.1.6) is given by:

{L1, {L2, L3}} + cyclical permutations = 0 . (3.1.11)

Using (3.1.6), we have

{L1, [r23, L2] − [r32, L3]} + cyclical permutations = 0 , (3.1.12)

or, more explicitly,

{L1, r23L2 − L2r23 − r32L3 + L3r32} + cyclical permutations = 0 . (3.1.13)

Besides the Jacobi identity, the {·, ·}-bracket also fulfils the Leibniz property in both arguments. For
the second argument, it looks as follows for arbitrary arguments f, g, h of the underlying space:

{f, gh} = {f, g}h+ g{f, h} . (3.1.14)

With this, (3.1.13) becomes the following:

{L1, r23}L2 + r23{L1, L2} − {L1, L2}r23 − L2{L1, r23}

− {L1, r32}L3 − r32{L1, L3} + {L1, L3}r32 + L3{L1, r32} + cyclical permutations = 0 .
(3.1.15)

Using now (3.1.6) for all brackets of the form {Li, Lj}, we arrive at the following expression:

[{L1, r23}, L2] − [{L1, r32}, L3]

+r23r12L1 − r23L1r12 − r23r21L2 + r23L2r21 − r12L1r23 + L1r12r23 + r21L2r23 − L2r21r23

−r32r13L1 + r32L1r13 + r32r31L3 − r32L3r31 + r13L1r32 − L1r13r32 − r31L3r32 + L3r31r32

+ cyclical permutations = 0 . (3.1.16)

Now we need to make two important comments: Firstly, looking at (3.1.10), as the commutator with
the Li is the outermost bracket, we would want the Li’s to appear on the “edge” as a factor of the terms
for this. To this end, we observe that Lk and rij commute provided i 6= k 6= j due to their tensorial
structure, which means e.g. L1r23 = r23L1. Wherever we will move the Li’s to the right, we colour the
term in blue, and wherever to the left, we will use the colour orange. Some of the terms above have Li’s
sandwiched in the middle, which cannot be moved to the edge of the term, e.g. r23L2r21. We want to see
that these terms cancel out, as they are not appearing in (3.1.10). Secondly, while we have so far only
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a third of the terms explicit (as the other two thirds are cyclically related to the former), for the next
intermediate steps we will make all terms explicit to allow for the possibility that for some cancellations
or combinations related to a term in the “first third” might otherwise not explicitly appear. With these
considerations, we have:

0 =[{L1, r23}, L2] − [{L1, r32}, L3] + [{L2, r31}, L3]−[{L2, r13}, L1]+[{L3, r12}, L1] − [{L3, r12}, L2]

+r23r12L1−r23L1r12 − r23r21L2������: 1
+r23L2r21 −r12L1r23+L1r12r23������: 6

+r21L2r23 − L2r21r23

−r32r13L1+r32L1r13 + r32r31L3������: 2
−r32L3r31 +r13L1r32−L1r13r32������: 3

−r31L3r32 + L3r31r32

+ r31r23L2−r31L2r23 − r31r32L3������: 3
+r31L3r32 −r23L2r31 + L2r23r31������: 2

+r32L3r31 − L3r32r31

− r13r21L2+r13L2r21+r13r12L1������: 4
−r13L1r12 +r21L2r13 − L2r21r13������: 5

−r12L1r13 +L1r12r13

+ r12r31L3−r12L3r31−r12r13L1������: 5
+r12L1r13 −r31L3r12 + L3r31r12������: 4

+r13L1r12 −L1r13r12

− r21r32L3+r21L3r32 + r21r23L2������: 6
−r21L2r23 +r32L3r21 − L3r32r21������: 1

−r23L2r21 + L2r23r21 .

(3.1.17)

Above, we can see that indeed all “Li sandwich terms” cancel, and if we collect illustratively all terms
that could be related to an outer L1 commutator (which were underlined in the equations above), we
get:

−[{L2, r13}, L1] + [{L3, r12}, L1] + r23r12L1 − r32r13L1 + r13r12L1 − r12r23L1

−r12r13L1 + r13r32L1 − L1r23r12 + L1r12r23 + L1r32r13 − L1r13r32 + L1r12r13 − L1r13r12 , (3.1.18)

which is exactly the term explicitly written in (3.1.10). For the remaining two thirds of the terms, the
situation is analogous and thus (3.1.10) is obtained this way.

If r does not depend on the dynamics, then we can disregard the Poisson bracket terms in the above
equation, as it is just equal to

0 =[L1, [r12, r13] + [r12, r23] + [r32, r13]] + cyclical permutations (3.1.19)

in this case. While this is of course not exhausting all possible solutions of r, the above equation is
fulfilled if

0 =[r12, r13] + [r12, r23] + [r32, r13] (3.1.20)

holds. This equation is called the classical Yang-Baxter equation. In many instances - and in the
immediate surrounding of the famous Belavin-Drinfeld theorems - one encounters r-matrices that fulfil
r12 = −r21, which simplifies subsequent calculations hugely.

More often than not, we can parametrise L,M such that it depends on one common variable, often
denoted as u, a spectral parameter. All equations and quantities (such as r) related to L,M then depend
on this auxiliary parameter,

dL(u)
dt

= [M(u), L(u)], (3.1.21)

and for r which lives in the tensored space (and has thus one parameter per each space)

[r12(u1, u2), r13(u1, u2)] + [r12(u1, u2), r23(u2, u3)] + [r13(u1, u3), r23(u2, u3)] = 0. (3.1.22)
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Most of the time, the r-matrix can be written in difference form, meaning that r(u1, u2) = r(u′1 − u′2)
for some other spectral parameter u′. The reason why this can often be achieved is related to results
by Belavin and Drinfeld, which we shall not reiterate in full - the interested reader is recommended to
consult [BD98] and [BD83] in this context.

As the Lax matrix L can depend on u, so can the family of conserved quantities Fm it generates.
All in all, this means given such a parameter u, our whole problem now has a functional character, and
we can take a look at the analytic properties of our u-dependent quantities and make use of tools from
functional and complex analysis. In fact, the analytic study of the eigenvalues λj(u) of L(u), amongst
others, has proven to be a fruitful and interesting field of research (c.f. the so-called spectral curve).

In much the same way when one goes from classical harmonic oscillators to classical field theory -
before any kind of quantisation is even thought of - we now go from coordinates qi, pi to fields ϕ and
conjugate/derivative quantities related to it, which leaves us with infinitely many degrees of freedom
and, thus, an infinite-dimensional phase space manifold M .5 On the one hand, this changes things
considerably, on the other hand not so much: We still have the analogous notions of integrability.
There are a few new formulations, such as the zero-curvature formulation, that essentially defines a new
local gauge field A, whose defining property is that its associated connection LA = Ȧx(u) − A′t(u) +
[Ax(u), At(u)] vanishes iff the equations of motion are satisfied, i.e. as the entries of A involve fields and
quantities of our theory, the resulting equations from imposing flatness of LA are the Hamilton-Lagrange
equations exactly. Using this Lax connection, one can also define a field-theoretic version of the Lax pair
(c.f. monodromy matrix). A stellar and succinct review of this can be found in [BBT03]. However, in this
project, this will not be of utmost importance, and we shall distance ourselves from the Lax formalism,
and only mention this in the context of the historical exposition of integrability within AdS/CFT. This
concludes our introduction of classical integrability.

3.2 Quantum Integrability
In this section, we would like to introduce integrability in a quantum sense, however, this is more
difficult than it might seem: To formulate a (universally accepted) definition of quantum integrability
for a quantum system is rather difficult. What we can do is look for the usual suspects that we associate
with a notion of quantum integrability, and identifying and elaborating on these indicators is what this
subchapter is going to address.

From quantum theory, be it quantum mechanics or quantum field theory, we recall the existence of
the scattering matrix, or in short, the S-matrix. The S-matrix relates free states of the asymptotic past
and free states of the asymptotic future, thus containing information about the interaction.6 Given the
S-matrix of a quantum theory, we define the R-matrix by

R = π(S), (3.2.1)

where π is the permutation, either graded or ungraded, depending on whether there are fermionic
elements in our theory.

Mathematically speaking, the R-matrix is an endomorphism between tensorial spaces R : V ⊗ V →
V ⊗V , that can depend on parameters underlying the fields of V , i.e. R(u1, u2) (c.f. spectral parameters
of the classical r-matrix).

5Which also makes M less useful to think of.
6We shall not delve into the long but beautiful motivation for S-matrices in either of these realms, for a reference to

this, see e.g. [Sch07] or [Sch14].
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Within the framework of integrable theories, the factorisability of the S-matrix plays an important
rôle (and the R-matrix, subsequently), which is to say that higher S-matrices can be reduced to the
product of 2-particle S-matrices. In 3.1, we are looking at a 3 → 3-process in this context.

= ==R

R R

R R

RR

12

12 23

23

13 13

Figure 3.1: Factorisability of a 3-particle process.

We can see this as a graphical representation of the quantum Yang-Baxter equation:

R12R13R23 = R23R13R12. (3.2.2)

We will revisit this equation later on in this project.
Quantum integrable models are usually characterised by a solution to the quantum YBE (ABA,

parametrisation of the Hamiltonian, etc). The nomenclature of this equation is by no means coincidental
- let us demonstrate the correspondence of both the classical and quantum analogues by the following
consideration: Start with the (quasi-classical) ~-expansion R = 1 + ~r + ~2ρ + O(~3) and look at the
right-hand side and left-hand side of the quantum YBE (see [Kup99]):

R12R13R23 = 1 + ~ (r12 + r13 + r23)

+ ~2 (ρ12 + ρ13 + ρ23)

+ ~2 (r12r13 + r12r23 + r13r23)

+O(~3) , (3.2.3)

and

R23R13R12 = 1 + ~ (r23 + r13 + r12)

+ ~2 (ρ23 + ρ13 + ρ12)

+ ~2 (r23r13 + r23r12 + r13r12)

+O(~3) . (3.2.4)
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Comparing both sides of the equation, we see that they differ (in order ~2) exactly by

[r12, r13] + [r12, r23] + [r13, r23] = 0 , (3.2.5)

which is exactly the classical YBE for r.
The property of a theory not to allow particle production in processes also has a deep connection

with integrability - one illustrative example of this can be found within 1 + 1 dimensional QFT. If one
starts with the Lagrangian of a ϕ4 theory,

L = 1
2

(∂ϕ)2 − 1
2
m2ϕ2 − λ

ϕ4

4!
, (3.2.6)

supplemented by the usual Feynman diagrammatics, one can then start to compute the Feynman am-
plitudes of scattering processes. We shall do so for one specific setup at tree level. If one starts with 2
particles as incoming legs, the number of outgoing legs has to be even in this theory. As our interaction
vertex is of order 4, going beyond the 2 → 2 process to the 2 → 4 process, one can show that the 2 → 4
amplitude is constant and can be cancelled by adding another interaction vertex of the form

− λ2

m2
ϕ6

6!
, (3.2.7)

to the Lagrangian. We define

β2 = λ

m2 , (3.2.8)

with which the modified Lagrangian then takes the following form:7

L = 1
2

(∂ϕ)2 − 1
2
m2ϕ2 − λ

ϕ4

4!
− λ2

m2
ϕ6

6!

= 1
2

(∂ϕ)2 − m2

β2

(
1
2
β2ϕ2 + 1

4!
β4 + 1

6!
β6ϕ6

)
. (3.2.9)

Having dealt with the 2 → 4 process, one can then go to the 2 → 6 process and find again that its
amplitude can again by counteracted by the addition of another interaction term, this time of order ϕ8.
This procedure then goes on for all 2 → 2n processes with n ∈ N, and after an infinite series of added
interaction terms, the Lagrangian then takes the form

L = 1
2

(∂ϕ)2 − m2

β2 (cosh(βϕ) − 1) , (3.2.10)

which after the substitution β → iβ reduces to the known sine-Gordon model,

L = 1
2

(∂ϕ)2 − m2

β2 (cos(βϕ) − 1) . (3.2.11)

We know that the sine-Gordon theory is a prototypical example of an integrable model, and we were led
to this theory by the sole imposition of there being no other 2 particle processes apart from the 2 → 2
process, which forbids particle production. A more detailed exposition of this argument can be found in
[Dor96], whose structure we tried to follow. More generally, the feature of no particle production can be
seen as a consequence of factorisability (reflected in the R-matrix YBE), which is the central equation
in quantum integrability.

Rather than try to provide a general exposition on the notion of quantum integrability, it is more
instructive if we illustrate what we have discussed so far by means of an example that will also be
imperative for us to be familiar with to understand the latter parts of this thesis.

7The fact that we can add terms of this form to our Lagrangian without spoiling renormalisability is connected to the
fact that we are formulating our theory in a 1 + 1 dimensional space.
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3.3 Spin Chains and Bethe Ansätze
Having talked about quantum integrability, it is only appropriate to also talk about some of the models
where integrability can be found. Though few and far between, integrable systems can appear in many
different settings. One prominent and historical example of quantum mechanical models that are known
to frequently feature integrability are spin chains. A fantastic introduction to this topic was laid down in
[Bei16], and further references are [Fad96] and [LM16]. We will follow these references for the motivation
and structure of this chapter, as well as [Sta05] and [BS05].

Originally, the concept of a spin chain arose within the study of magnetic materials, which was
assumed to be a system with a certain number (finite or infinite) of sites that possess a particular spin
configuration. The totality and interplay of these configurations (described by the Hamiltonian) then
gives rise to the energy of the system.

A priori, any Hamiltonian that has terms connecting any two sites is an admissible operator, however,
more often than not one focuses on Hamiltonians that only exhibit nearest-neighbour interaction terms.
Of course, there exist integrable spin chains with larger interaction range,8 but the treatment of those
spin chains is less standard ([KL22]) and we shall forget about the existence of these spin chains for the
scope of this chapter.

3.3.1 The Heisenberg Spin Chain

The su(2) Case

A pedagogical and prototypical type of a spin chain is the so-called Heisenberg spin chain. In order to
define this model, we need to define the space where a potential Hamiltonian can act on. We assume
that for one site, the spin configuration state |χ〉 can be any (complex) linear combination of |0〉 and
|1〉 - meaning that |χ〉 ∈ V ≡ C2. This space of L ∈ N sites is then just the L-fold tensor product of
V , V L =

⊗L
k=1 Vk ≡ C2L . For our case, we will always assume the chain to be periodic, meaning we

understand any label k ≡ k mod L. A convenient basis to choose for V L is given by simple states,
meaning states of the form

|χ1 · · ·χL〉 , where χi ∈ {0, 1} . (3.3.1)

V L is our (Fock) vector space of states, and as with every vector space, we can straightforwardly de-
fine linear operators on it. The most important one is the Hamiltonian H : V L → V L, that can be
decomposed into a sum of local Hamiltonians Hi,j : Vi ⊗ Vj → Vi ⊗ Vj ,

H =
L∑
k=1

Hk,k+1 , (3.3.2)

where again the indices are to be understood mod L. The local Hamiltonians of the Heisenberg spin
chain are given by

Hi,j = λ0(1i ⊗ 1j︸ ︷︷ ︸
1i,j

) + λx(σxi ⊗ σxj︸ ︷︷ ︸
σx

i,j

) + λy(σyi ⊗ σyj︸ ︷︷ ︸
σy

i,j

) + λz(σzi ⊗ σzj︸ ︷︷ ︸
σz

i,j

) , (3.3.3)

where the subindices are referring to the space (i.e. the site) on which a certain operator acts, and σi are
the su(2) Pauli matrices. One can show that this Hamiltonian gives rise to a quantum integrable model

8Inozemsev’s spin chain, for example, has a Hamiltonian kernel for which every site interacts with the other, see e.g.
[BFGLR10].
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for any value of the constants λi, however, we will focus on the particular case where 2λ0 = −2λx =
−2λy = −2λz = 1.9 With this choice that is referred to as the XXX Heisenberg spin chain, our local
Hamiltonians reduce to:

Hi,j = 1i,j − Pi,j , (3.3.4)

which is manifestly su(2)-invariant, with Pi,j being the permutation operator of the indexed spaces and
1i,j acting as the identity on all sites

3.3.2 The Coordinate Bethe Ansatz

Now that we have defined the space and the Hamiltonian, we can finally state and tackle the spectral
problem, i.e. the problem of diagonalising the Hamiltonian. Rather than making this a purely compu-
tational problem of linear algebra, in the Coordinate Bethe Ansatz (CBA), we proceed by making a
reasonable ansatz for our eigenstates, and perhaps adding corrections to it later on. In our approach,
we start by defining the vacuum state via:

|0〉 = |0 · · · 0〉︸ ︷︷ ︸
L times

, (3.3.5)

with vanishing energy asHi,i+1 |0〉 = (1i,i+1 − Pi,i+1) |0〉 = |0〉−|0〉 = 0. Since we have that [
∑
i σ

z
i ,H] =

0, we will categorise our eigenstates in terms of how many |1〉 excitations or spin flips we add to |0〉, and
we shall denote this number with M . 10 The vacuum eigenstate with the energy E = 0 solves the case
for M=0 .

For M=1 , we first observe that there exists another operator that commutes with our Hamiltonian
H - the shift operator U : The shift operator in the spin chain picture can be defined as the discrete
version of the operator generated by the momentum, which means that its eigenstates have plane wave
form. For M = 1, we can propose the eigenstates of H to have the following form:

|p〉 =
L∑
k=1

eipk |0 · · · 0
site k︷︸︸︷

1 0 · · · 0〉︸ ︷︷ ︸
=:|k〉

, (3.3.6)

and when acting on this state with the Hamiltonian, we get

H |p〉 =
L∑
k=1

eipk( 1 − eip︸ ︷︷ ︸
from Hk−1,k

+ 1 − e−ip︸ ︷︷ ︸
from Hk,k+1

) |k〉 = 4 sin2
(p

2

)
︸ ︷︷ ︸
EM=1(p)

|p〉 , (3.3.7)

which indeed proves that |p〉 is an eigenstate associated to eigenvalue E(p). For closed chains, the fact
that L shifts should leave a state invariant further puts a constraint on the permitted values of p, in the
sense that this condition quantises the momentum to fulfil p = 2πm

L , m ∈ {0, · · · , L− 1}.
For M = 2 , we start with the following expansion:

|Ψ〉 =
∑

1≤k1<k2≤L

Ψ(k1, k2) |0 · · · 0
site k1︷︸︸︷

1 0 · · · 0
site k2︷︸︸︷

1 0 · · · 0〉︸ ︷︷ ︸
=:|k1,k2〉

. (3.3.8)

9Notice here that one of the constants λi was free to choose from the beginning (non-trivially), as overall normalisations
of the Hamiltonian only scale the spectrum, but do not alter the spectral problem. Additionally, we are also free to shift
λ0 without any such change.

10We can do this because the Hamiltonian H commutes with the total spin operator, as mentioned before, thus the
eigenstates of H must also be arranged in terms of M .
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Now, when acting with our Hamiltonian H on a state like this, we need to distinguish two cases; when
k2 = k1 + 1, and when k2 > k1 + 1 because of its nearest neighbour structure. Then, H |Ψ〉 = E |Ψ〉
takes the form:

EΨ(k1, k2) =

2Ψ(k1, k2) − Ψ(k1 − 1, k2) − Ψ(k1 + 1, k2) + 2Ψ(k1, k2) − Ψ(k1, k2 − 1) − Ψ(k1, k2 + 1)

2Ψ(k1, k2) − Ψ(k1 − 1, k2) − Ψ(k1, k2 + 1) ,

(3.3.9)

for k2 > k1 + 1 and k2 = k1 + 1, respectively. Bethe proposed an ansatz for this (see [Bet31]),11

Ψ(k1, k2) = eip1k1+ip2k2 + S(p2, p1)eip2k1+ip1k2 . (3.3.10)

Without any restriction on the function S(p2, p1), this ansatz plugged into the first equation of (3.3.9)
gives us the 2-particle energy, which is just EM=2(p1, p2) = EM=1(p1) + EM=1(p2).12 The second
equation of (3.3.9) then gives us the su(2) S-matrix,

S(p2, p1) = −eip1+ip2 − 2eip2 + 1
eip1+ip2 − 2eip1 + 1

, (3.3.11)

In the case of M = 1, the L-fold shifting provided us with a quantisation constraint for our momenta
- so far for the M = 2 case, our momenta values are unconstrained. We can make a similar argument
again, though: We are defining our quantities always mod L, which means that k1 ≡ k1 +L, and likewise
k2 ≡ k2 − L, which is something our wave function needs to reflect, i.e. Ψ(k1, k2) ≡ Ψ(k2, k1 + L). This
then gives rise to the conditions:

eip1L = S(p1, p2) , eip2L = S(p2, p1) . (3.3.12)

We call these conditions the Bethe equations, and with those restrictions on our momentum variables,
we have solved the spectral problem.

For M ≥ 3 , the story can be generalised quite straightforwardly. We start with an expansion for
the eigenstate in line with what we did above:

|Ψ〉 =
∑

1≤k1<···<kM≤L

Ψ(k1, · · · , kM )|k1, · · · , kM 〉 , (3.3.13)

for which we again use Bethe’s ansatz of plane waves,

Ψ(k1, · · · , kM ) =
∑
σ∈SM

Aσe
ipσ(1)k1+···+pσ(M)kM . (3.3.14)

Using the Schrödinger equation, we get that the energy dispersion relation is again just given by the
sum of the M 1-particle energies. It also constrains the coefficients, as for e.g. M = 3, the Schrödinger
equation also implies13

S(p1, p2) = A213

A123
= A321

A312
,

S(p1, p3) = A312

A132
= A231

A213
,

11This ansatz is also in line with features of integrability: For an su(2) integrable scattering system, momenta either
exchange or stay the same. The first summand represents the former in a scattering process, while the second summand
represents the latter.

12The fact that the energy can be written in a decomposed way like this is a sign of integrability.
13The subindices of the A follow from the elements of S3.
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S(p2, p3) = A321

A231
= A132

A123
. (3.3.15)

Imposing periodicity then gives rise to the following equations:

eip1L = A132

A321
= A123

A132
,

eip2L = A213

A132
= A231

A312
,

eip3L = A321

A213
= A312

A123
. (3.3.16)

Moving to general values of M , the computations are similar and the Bethe equations can be generalised
to take the following form14 given by

eipjL =
M∏
m=1
m6=j

S(pj , pm) , (3.3.17)

where m = 1, · · · ,M , S is the same 2-particle S-matrix as above. From an eigenvalue perspective, this
concludes our discussion for general M . However, we have not made explicit how we would extract the
eigenstate coefficients for this case. The end result is the same as for the M = 3 case above: It indeed
turns out that, for the su(2) case, the conditions given by the nearest-neighbour Hamiltonian equation
together with the periodicity equation suffice. This means that for every M , enough equations can be
generated with this to find all the necessary coefficients this way.

The su(3) case

So far, we have discussed the case of two flavour excitations, meaning that each spin site can either be |0〉
or |1〉. We now delve into a system of higher rank - meaning that we additionally allow another flavour,
|2〉, to appear on the sites.15 Provided we choose a Hamiltonian analogous to the one for su(2), i.e. being
built from a sum over the local Hamiltonians as in (3.3.4), we will still find integrability, factorisability
will apply, and, in order to analyse the many-body processes, it suffices to study the 2-body case. As
the other cases are already encompassed in our discussion, it is enough for us to analyse the case of
one excitation of |1〉 and |2〉 each to exhaustively describe the 2-body problem of this higher rank. We
denote by M the total number of non-|0〉 excitations, and by K the number of |2〉 excitations. For the
M = 2,K = 1 case, we make the following ansatz:

|Ψ〉 =

[
|12〉
|21〉

]
=


∑

1≤k1<k2≤L Ψ12(k1, k2)| · · · 0 1︸︷︷︸
k1

0 · · · 0 2︸︷︷︸
k2

0 · · · 〉∑
1≤k1<k2≤L Ψ21(k1, k2)| · · · 0 2︸︷︷︸

k1

0 · · · 0 1︸︷︷︸
k2

0 · · · 〉

 . (3.3.18)

The crucial difference to the discussion before is that the 2-body S-matrix has to take into account that
our excitations are of distinguishable flavour - something that our ansatz of course has to reflect, too.

14The fact that the M particle process can be described in terms of the 2-particle variables again foots on integrability
and factorisability.

15We are well advised to point out one subtlety here: In both the case of higher rank (i.e. going from the fundamental
su(2) → su(3)) and higher spin (i.e. going from su(2) spin 1

2 → su(2) spin 1), we are dealing with representations on spaces
with 3 flavour states. However, they are not equivalent: In the su(2) spin 1, we still have only one raising operator that
can be applied twice on the lowest weight state, whereas in the su(3) we have two (both of which can only be applied once
on the lowest weight state) due to their ranks being different.
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Having now an ansatz for an eigenstate, we get two equations for the cases k2 > k1 +1 and k2 = k1 +1
when acting with the Hamiltonian on it (H |Ψ〉 = E |Ψ〉):

EΨ12(k1, k2) =


2Ψ12(k1, k2) − Ψ12(k1 − 1, k2) − Ψ12(k1 + 1, k2)

+2Ψ12(k1, k2) − Ψ12(k1, k2 − 1) − Ψ12(k1, k2 + 1)

3Ψ12(k1, k2) − Ψ12(k1 − 1, k2) − Ψ12(k1, k2 + 1) − Ψ21(k1, k2) ,

(3.3.19)

and two more equivalent equations for swapping Ψ21 ↔ Ψ12. Once more we make an appropriate ansatz
inspired by the one from Bethe for the position space wave functions:

Ψ12(k1, k2) = A12e
ip1k1+ip2k2 + Ã12e

ip2k1+ip1k2 ,

Ψ21(k1, k2) = A21e
ip1k1+ip2k2 + Ã21e

ip2k1+ip1k2 . (3.3.20)

The A and Ã terms again symbolise the cases where the momenta just pass through each other and
are exchanged, respectively. The first equation (k2 > k1 + 1) of (3.3.19) again reassures us that the
dispersion relation is given by

E =
M∑
j=1

4 sin2
(pj

2

)
, (3.3.21)

where we still have M = 2 for the moment but the generalisation is immediate. The latter equation
in (3.3.19) (with k2 = k1 + 1) is again addressing the case when particles hit each other and exchange
their momenta in a non-diffractive way,16 but this time, the exchange of momenta also can come with an
exchange of the flavour. This again is a restriction on our coefficients A, Ã, and can choose the following
way to relate them: [

Ã21

Ã12

]
=

[
T 12

12 (p2, p1) R21
12(p2, p1)

R12
21(p2, p1) T 21

21 (p2, p1)

][
A12

A21

]
. (3.3.22)

T and R are the transmission and reflection amplitudes, respectively, meaning the amplitudes when
particle pass through each other or back-scatter. Equation (3.3.19) (i.e. the case k2 = k1 + 1) can then
be solved, yielding

R21
12(p1, p2) = R12

21(p1, p2) = − (1 − eip1)(1 − eip2)
eip1+ip2 − 2eip2 + 1

, (3.3.23)

T 12
12 (p1, p2) = T 21

21 (p1, p2) = eip1eip2

eip1+ip2 − 2eip2 + 1
. (3.3.24)

With this result, we can then finally state the 2-body S-matrix in the basis of the 2-particle states
|22〉 , |12〉 , |21〉 , |11〉:

S(pi, pj) =


S22

22(pi, pj)
T 12

12 (pi, pj) R21
12(pi, pj)

R12
21(pi, pj) T 21

21 (pi, pj)
S11

11(pi, pj)

 =: Si,j , (3.3.25)

where with the methods from the previous chapter we have

S11
11(pi, pj) = S22

22(pi, pj) = − eipi+ipj − 2eipi + 1
eipi+ipj − 2eipj + 1

, (3.3.26)

16As in the su(2) case, non-diffractivity (and in the same sense integrability) is an assumption when making Bethe
ansätze of this form. While the specific momenta are not conserved, the conservation of the total set of the M momenta
{p1, · · · , pM } as an unordered (and consequently also the total sum of them) is.
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as this can just be seen as two lower-rank su(2) ≤ su(3) subsectors that we already solved before. One
can check that, when evaluated on a basis of 2M=3 = 8 three particle states17 that the above S-matrix
satisfies the quantum YBE that we know from previous chapters, as well as unitarity, i.e.

S3,2S3,1S2,1 = S2,1S3,1S3,2 , (3.3.27)

S1,2S2,1 = 1 . (3.3.28)

These properties of factorisability are ultimately the features of integrability that allow us to reduce the
setting of an arbitrary number of particles to the 2-particle case - which is more easily analysed. For the
general M particle case, the position space wave function comes with the following Bethe-style ansatz
(with ki < ki+1):

Ψ···2122···(k1, · · · , kM ) =
∑
σ∈SM

A
(σ)
···2122···e

i
∑M

j=1
pσ(j)kj . (3.3.29)

We again derive some kind of quantisation condition for the momenta that appear in our spectral
parametrisations, as they are a priori unconstrained. This is the case because so far we have not made
use of any boundary conditions - which is another way of saying that we are working within the framework
of an infinite chain that can (and most of the time, will) indeed feature a non-discrete spectrum. If we
demand periodic boundary conditions on |Ψ〉, with the analogous arguments as we made before, we
arrive at the Bethe equations for our case, explicitly,

eipjL |Ψ〉 = Sj,j+1 · · ·Sj,MSj,1 · · ·Sj,M · · ·Sj,j−1 |Ψ〉 , (3.3.30)

with the subtle difference that this time around, these equations are equations of matrices. This concludes
the generalisation for the higher rank case for arbitrary M to the extent that we will need.

For our spectral discussion, we have left out one detail in the su(3) case: While the spectrum is
determined with the methods we established, we have not explained in a concise manner how we get the
eigenstates in an explicit way. This is because this discussion involves further intricacies - especially for
the case of twisted spin chains - that will be the cornerstone of our discussion in the chapter revolving
around our publication [NGW22].

3.4 Why Integrability?

In the former part of this thesis, we introduced different AdS/CFT correspondences, however, we have
not motivated in a concise way why integrability can be particularly useful in this context. For one,
integrability has been observed in both the string side (see e.g. [BPR04]) and the CFT side (see e.g.
[MZ03]) - given how rare integrability is, the appearance of it on both sides of the correspondence
can be seen as an indication that there is connection that relates them. To discuss the appearance of
integrability within one instance of an AdS/CFT correspondence in more detail, we shall outline in 3.2
a map of the different parameters of the theories that appear, what regimes they control and how they
are connected:18

17These are the 8 states in the su(2)⊗3 ⊂ su(3)⊗3. Likewise, for the su(2), the S-matrix is given by a phase as
u(1)⊗3 ⊂ su(2)⊗3.

18For an even more comprehensive discussion on this, we refer the reader to [BAA+11].
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Figure 3.2: Parameter space map N = 4 SYM or strings on AdS5 × S5.

Starting on the left-hand side of our map, we find the regime of weak coupling (with small λ =
g2

YMNc), corresponding to classical gauge theory. In this region, going to higher loop orders in the
Feynman expansion will generate perturbatively accurate results in gYM (but exact in Nc). On the
diametrically opposite side at large λ (and small gstr), we are in the regime of free classical strings,
where we can move perturbatively around the λ = ∞, gstr = 0 point via an expansion in λ (i.e. the
σ-model receiving quantum corrections) or an expansion in gstr (i.e. the genus/handle expansion of
the worldsheet). Lastly, the planar limit, where we have N−1

c → 0, we have discussed before that
planar diagrams dominate, but expanding away from this limit would mean also taking diagrams of
non-planarity degree > 0 into account. The grey area in the map corresponds to the region where we
do not have straightforward limits that allow us to probe for information on both models, so there is a
large perturbative region where the above approaches are well-separated, unfortunately - in very general
regimes, we do not really know how to handle these theories. Integrability is in a sense a global property,
and we hope integrability can connect the regimes to which we have perturbative access to the ones we
do not. And indeed, the tools of integrability have proven themselves useful in the context of AdS5,
and recently, developments in AdS3 have sparked new hope for the lower dimensional sibling.19 Many
integrability techniques (such as Bethe ansätze of different kinds, spectral curve approaches, et cetera)
have been successfully applied to different parts of the above map, and a comprehensive discussion on
all techniques and appearances would go beyond the scope of this introduction. However, it is sensible
for us to illustrate that integrable features on both sides of the correspondence exist and motivate some
of our approaches to analysing the correspondence that are to follow.

3.4.1 Spin Chains and Conformal Field theories

So far, we have motivated and established the connection between the AdS-part and the CFT -part of the
duality and how it arises within the different contexts of AdS5/CFT4 and AdS3/CFT2 settings. Aside
from these two obvious entry points, there is another approach to shed light on (one side of) this duality:

19For a more comprehensive introduction on this lower dimensional duality, we refer to [BSZ10].
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The study of certain spin chains. To justify why we dedicated a considerable part of this preliminary
chapter as well as the thesis later on to spin chains and tools to analyse them, we shall now try to
explain this seemingly implausible connection that spin chains and conformal field theories share. In this
effort, we shall - for illustrative reasons - again stick to the case of AdS5/CFT4, where the conformal
field theory part is given by N = 4 SYM. References that we refer the reader to and whose pedagogical
structure we will draw inspiration from include [Min12], [Min06].

In conformal field theories, the crucial new ingredient on the level of the algebra is D, the generator
associated to dilations. Conformal scalings act on coordinates via

x → λx , (3.4.1)

where λ is a constant. These scale transformations preserve “angles”, but obviously do not preserve
the metric/distances. In quantum field theories generally and conformal field theories more particularly,
we deal with the notion of local operators that are evaluated at some specific spacetime point x. It
is common to see that local operators are just defined via their charges/quantum numbers that they
have with respect to the symmetries of the system. For a local operator O(x), the generator D acts via
conjugation (on the level of the group), meaning

O(x) → λ−iDO(x)λiD = λ−∆O(λx) , (3.4.2)

where we call the spectral quantity ∆ the conformal dimension.20 On the level of the representation of
the algebra, we have then

[D,O(x)] = i

[
−∆O(x) + x

∂

∂x
O(x)

]
. (3.4.3)

Using the Jacobi identity as well as the conformal commutation relations, one can then prove that, if a
given local operator O(x) has conformal dimension ∆, then [Kµ,O(x)], the commutator of a generator
of a special conformal transformation with this local operator, has conformal dimension ∆ − 1:

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)] + [Kµ, [D,O(0)]]

= i[Kµ,O(0)] − i∆[Kµ,O(0)]

= −i (∆ − 1) [Kµ,O(0)] , (3.4.4)

where we made use of the fact that ∆ does not depend on spacetime and the fact that at the origin, we
have

[D,O(0)] = −i∆O(0) . (3.4.5)

With this property, we can define primary operators Õ(0) as the local operators that are annihilated by
the special conformal transformations and have a definite conformal dimension ∆, i.e.

[Kµ, Õ(0)] = 0 ,

[D, Õ(0)] = −i∆Õ(0) . (3.4.6)

While primary operators might seem scarce as they need to fulfil an intricate set of conditions, we
can define other operators from primary operators, that inherit some of their properties: A descendant
operator associated to Õ(x) is generated by taking Õ(x) and commuting it with the other generators

20The terms scaling and dilation, as well as scaling dimension and conformal dimension, are used interchangeably within
QFT. At times, the latter notion is just referred to as dimension.
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of the conformal algebra.21 Additionally, we call a primary operator chiral iff it is annihilated by some
part of the supersymmetry, having as a consequence that the scaling dimension does not receive any
(quantum) corrections. Chiral primaries are the prime ingredients to build local operators from - keeping
in mind that while the scaling dimensions of chiral operators does not receive corrections, other operators
built from several chiral operators might. The primary operator, which forms the highest weight of
the representation, together with its descendants forms an irreducible representation of PSU(2, 2|4).22

Apart from being a defining property for local operators and their descendants, the conformal dimension
appears in other places too in a crucial way: Within a conformal field theory, the observables associated
to local operators that we are interested in are give by the n-point correlation function,

〈O1(x1) · · · On(xn)〉 . (3.4.7)

Lest we forget that we are dealing with a QFT that possesses conformal symmetry - this heavily restricts
how correlation functions can look like: For the case of two scalar local operators, translational, rotational
and conformal invariance imply that the 2-point function has to be of the following form

〈O1(x1)O2(x2)〉 ∝ 1
x∆

12
, (3.4.8)

where we define x12 = x1 − x2, as translational invariance implies dependence on the difference of
two spacetime points only. The correlation functions of primary operators determine those of their
descendants, whose functional form is (in part) characterised by the conformal dimension they carry. It
is therefore hugely important to know about the conformal dimension spectrum of our operators if we
want to compute the theory.

We now make more explicit what we expect of these local operators O(x) in our N = 4 SYM setting.
Imposing gauge invariance on the physical observables coming from the theory, one quickly finds that the
local operators that fit the bill are given by products of traces of fields that transform under the gauge
group in a covariant way. For single trace operators (STO), we can prove this quite straightforwardly:
Let us start with a scalar field ϕ.23 In N = 4, the fields in question transform all under the adjoint
representation, implying the gauge transformation behaviour

ϕ → ϕ+ [a, ϕ] , (3.4.9)

where a generates the gauge transformation applied (and might be local) and ϕ is a covariant scalar. Its
covariant derivative we define via

Dµϕ = ∂µϕ+ [ϕ,Aµ] , (3.4.10)

where the gauge connection (non-covariantly) transforms as Aµ → Aµ + ∂µa + [a,Aµ]. Expressed with
the exponential transformation E = ea, we have the following transformation behaviours:

ϕ → EϕE−1 , (3.4.11)

Aµ → EAµE
−1 + (∂µE)E−1 . (3.4.12)

21One can show that the supercharges have scaling dimension 1
2 and one can build operators with 1

2 higher dimension.
22In general, these representations are infinite dimensional, but by imposing some conditions on the primary operator

Õ(x), the amount of independent descendants can be restricted - for example by letting Õ(x) commute with (some of) the
supercharges. This is why, for superconformal theory, the crucial ingredients are the superconformal primaries, see [Ebe21]
for a comprehensive discussion on this.

23We shall drop the spacetime dependence of the field ϕ, the generator a, and the gauge connection Aµ.
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Now, we can see why the covariant derivative is a suitable building block in gauge theories, because the
trace of it is gauge invariant:

Dµϕ → EDµϕE
−1 . (3.4.13)

Thus, the single trace operator of fields Ξi which are either covariant fields or covariant derivatives
thereof,

O(x) = Tr [Ξ1 · · · ΞL] , (3.4.14)

is a gauge invariant quantity.24 From this point, we could analyse the possible operators that could
appear within our theory because, as it turns out, there are only so many, although infinitely many,
allowed distinct combinations that the rules of the theory allow us to build. However for the sake of
illustrating the connection between spin chains and CFT this is not necessary, thus let us assume them
to have the form above for our arguments.25 As we mentioned before, in our specific model, we classify
our STO in terms of the sextuplet of charges given by the rank 6 Cartan subalgebra of the bosonic
symmetry group SU(2, 2) × SU(4) ⊂ PSU(2, 2|4),

(∆,
Lorentz SO(1, 3) spins that sit in SU(2, 2)︷ ︸︸ ︷

S1, S2 ; J1, J2, J3︸ ︷︷ ︸
R-charges that sit in SU(4)

) . (3.4.15)

The spins and R-charges can be computed in the usual way, the (bare) dimension ∆0, meaning ∆(gYM →
0), can be guessed by looking at the way they appear in the Lagrangian: For scalar fields ϕ in 3 + 1
dimensions, we know that the kinetic term together with the measure of the action integral has to be
dimensionless. Thus,

0 = [d4x(∂ϕ)2] = [d4x] + 2[∂ϕ] = −4 + 2 + 2[ϕ] ⇒ [ϕ] = 1 = ∆0(ϕ) . (3.4.16)

Expanding our (scalar) single trace operators in a basis representative of the SO(6) labels that they
carry,

Ost = αi1,··· ,iLTr
[
ϕ̄i1 · · · ϕ̄iL

]
, (3.4.17)

with ij ∈ {1, · · · , 6}, and αi1,··· ,iL being the SO(6) indices, allows us to write α ∈
⊗L

k=1 C2
k. We can

therefore interpret this SO(6)-tensor system as spin set up with a natural Hilbert space structure.
We are now going to be brief in our exposition of what initially was the great feat of the authors in

[MZ03]: To show that there exists an isomorphic identification of the N = 4 SYM spectral dimension
problem (for scalars) and the Hamiltonian spectral problem of an SO(6) spin chain with nearest neigh-
bour interaction - in the planar limit. If one starts with a (more general and normalised) form of a scalar
operator,

Oα(x) = (4π2) L
2√

CαNL
Tr [ϕi1 · · ·ϕiL ] , (3.4.18)

where we compactly write α = i1 · · · iL, similarly to before. Turning the coupling off, we find a tree-level
2-point correlation function of the form〈

Oα(x1)Ōβ(x2)
〉 ∣∣

tree-level =
δj1
i1

· · · δjL

iL
+ σ(β)-terms
Cα

1
(x2

12)∆0
, (3.4.19)

24This is even more straightforward if the induced adjoint representation on the level of the group is considered, since it
acts conjugatively.

25One can also prove that, in the N → ∞ limit, the dimension of a product of STO equals the sum of the dimension of
the factors, so the spectral information of local operators (that are in their most general form products of STO) is fully
described by the spectral information of STO, with some caveats.
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where β = j1 · · · jL, ∆0 = L for L scalar fields, the constants Cα are a factor from symmetry, and the
σ(β)-terms refer to cyclic permutations of the δj1

i1
· · · δjL

iL
factor in its SO(6) indices stored in β. If we

want to compute the 1-loop contribution to our 2-point correlation function, the large N limit heavily
simplifies our problem, because (for the justifiable assumption that L << N) the index contractions
that correspond to non-planar diagrams get suppressed by a factor of 1

N2 . We end up summing only the
scalar diagrammatic contractions corresponding to a gluon exchange, the self-energy corrections and Φ4

interaction terms contributing involving adjacent fields, and end up with the following expression (after
some compact rewriting and introducing the t’Hooft coupling λ as a convenient expansion parameter in
the N → ∞ limit):〈

Oα(x1)Ōβ(x2)
〉 ∣∣

1-loop =

λ

16π2
log
(
Λ2x2

12
)

x2L
12

L∑
k=1

(2Pk,k+1 −Kk,k+1 − 1 + C)

[
δj1
i1

· · · δjL

iL√
CαCβ

+ σ(β)-terms
]
,

(3.4.20)

where C is a constant, and Pk,k+1 and Kk,k+1 are the permutation and trace operators that exchange
and contract the SO(6) flavour indices of the k-th and k + 1-th slot site within the trace, respectively,

Pk,k+1δ
j1
i1

· · · δjk−1
ik−1

δjk

ik
δ
jk+1
ik+1

· · · δjL

iL
= δj1

i1
· · · δjk−1

ik−1
δjk

ik+1
δ
jk+1
ik

· · · δjL

iL
(3.4.21)

Kk,k+1δ
j1
i1

· · · δjk−1
ik−1

δjk

ik
δ
jk+1
ik+1

· · · δjL

iL
= δj1

i1
· · · δjk−1

ik−1
δikik+1δ

jkjk+1 · · · δjL

iL
, (3.4.22)

meaning that Kk,k+1 also alters the tensorial degree of the quantity (as contraction always does).26

Adding the tree-level and one-loop contributions of the 2-point correlation function that gives us summa
summarum:〈

Oα(x1)Ōβ(x2)
〉∣∣

tree-level + 1-loop =

1
x2L

12

[
1 − λ

16π2 log
(
Λ2x2

12
) L∑
k=1

(2Pk,k+1 −Kk,k+1 − 1 + C)

]
δj1
i1

· · · δjL

iL
+ σ(β)-terms .

(3.4.23)

had we started with (3.4.8) and expanded then for relatively small γ << ∆0 (from small coupling gYM ,
with ∆0 being the bare dimension and γ being the anomalous dimension with ∆ = ∆0 + γ), we would
have ended up with

〈O1(x1)O2(x2)〉 ∝ 1
x∆

12
' 1
x∆0

12

[
1 − γ log

(
Λ2x2

12
)]

, (3.4.24)

we can see that, in spirit, we are able to replace γ with the operator

Γ = λ

16π2

L∑
k=1

(−2Pk,k+1 +Kk,k+1 + 1 − C) , (3.4.25)

and through this transform the problem of finding the anomalous conformal dimensions of our theory
from a diagrammatic computation into the spectral problem of the matrix Γ. Even more so, we can
therefore map the entire problem onto one of spin chains: Any scalar STO containing L fields27 can be
identified with a state of a Hilbert space V = V1 ⊗ · · · ⊗VL, where every Vi is the representation space of
an SO(6) representation (c.f. (3.4.17)), and V can be identified with the state space of a 1-dimensional
spin chain of length L. On this space, Γ acts as an operator

Γ : V 1 ⊗ · · · ⊗ VL → V1 ⊗ · · · ⊗ VL , (3.4.26)
26One should note that, however, Kk,k+1 is not a true contraction in the differential geometric sense.
27More directly, the identification can be made for the previously defined α-tensor.
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and one can show that Γ is Hermitian and that it commutes with the shift operator U that we introduce
and discuss later in the chapter about spin chain methods. We can therefore see Γ as the Hamiltonian
of the so-defined spin chain, and due to the operator structure of Pk,k+1 and Kk,k+1, it only carries
nearest neighbour interactions amongst the spin chain sites. This Hamiltonian is integrable (see [Res83],
[Res85]), and we may make use of the toolset of spin chain integrability techniques, such as Bethe ansätze.

We have so far only illustrated the correspondence only for an algebraic subsector, but there have been
efforts to extend that: At one loop, the above identification has been extended to the full superconformal
PSU(2, 2|4) symmetry (c.f. [Bei04] [BKS03]), although a similarly extensive description for arbitrary
loops is still to be developed. However, all of these efforts have the analogous goal: At any given
higher loop order, we would just be confronted again with another spectral problem given by an effective
Hamiltonian.

For the AdS3/CFT2 correspondence, CFT-based spin chain developments are, unfortunately, few
and far between.28 The reason here again is connected to the insufficient knowledge in detail about this
CFT side: In contrast to its higher dimensional sibling, within the AdS3/CFT2 correspondence we find
that it can be supported by both an RR and NSNS flux. Usual superstring techniques work for the sole
appearance of RR fluxes, however, the symmetric orbifold CFT that we mentioned before is built on the
NSNS formulation.

3.4.2 String Theory

When motivating the AdS/CFT correspondence and its origins, we came across the ’t Hooft limit
involving the ’t Hooft coupling λ. Taking particular limits within analysing a theory allows us to focus
on the behaviour of the model in certain regimes. The Lagrangian structure of both the AdS5×S5 and the
AdS3 ×S3 ×M4 (super)string is very involved in the general case, but reduces to a more manageable form
expanding around some useful limiting parameters. For the former background, a prominent approach is
taking the BMN limit, after Berenstein, Maldacena and Nastase (see [BMN02]). In their seminal paper,
the authors choose the limit where the angular momentum J and N have the following behaviour:

J → ∞ ,

N → ∞ ,

N

J2 → fixed . (3.4.27)

The strings the authors are considering then give rise to a vacuum ground state that, a priori, does not
receive quantum corrections (c.f. BPS states), and on which the spectrum of excitations can be built
using creation operators. The specific string setup they choose, which is related to point-like strings in
a pp-wave background, then lets us find the following energy relation:

E − J =
∑
n

√
1 + 4πgNn2

J2 Nn , (3.4.28)

where E is the energy of the corresponding string state, g is the string coupling, n is the mode number
associated to the Fourier expansion in modes and Nn is the number of oscillators. In this limit, the AdS
radius is given by

RAdS = 4
√

4πgNα′2 . (3.4.29)
28Nevertheless, there have been developments of spin chains from the string theory perspective (see [BOSS+13a],

[BOSS+13b], [BOSSS14b], [BOSSS14a], [LOSSS15], [FS22a], [FS22c], [FS22b] and [BOSS+17]). However, there are also
issues with these spin chains due to the presence of massless modes (see [AA16]).
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In this regime, the Hamiltonian that lends itself to the description is the light-cone one, which takes the
form

p− = E − J

2
, (3.4.30)

and for the ground state BMN vacuum we have that p− = 0, meaning that in that case we have E = J . In
this particular regime of our theory, the spectral information is directly accessible by applying bosonic
and fermionic creation operators to this BMN vacuum, and more importantly, for the unique BMN
vacuum we can identify the ground state (with light-cone momentum p+) |0, p+〉 with the scalar chiral
primary operator of N = 4 SYM consisting of J scalar complex fields, i.e.

|0, p+〉︸ ︷︷ ︸
the l.c. string side

↔ 1√
JNJ

Tr
(
ZJ
)

︸ ︷︷ ︸
=OJ , the CFT side

. (3.4.31)

The conformal dimension ∆ of OJ is then equivalent to the energy E of |0, p+〉. Due to the chirality of
the primary operator, the conformal dimension is protected from quantum corrections, and likewise due
to the BPS-nature of the string state, the energy will not receive quantum corrections either - further
reassuring us in this identification. Going beyond the ground state, while the string state can just be
manipulated by creation operators, the chiral operator on the field theory side gets decorated with fields
different from Z. In summary, while in the previous section we motivated a close connection between
local operators and spin chain states, here the connection is between local operators and string states.
In some sense, the BMN picture was a bellwether for the later application of spin chains and their
integrability techniques to AdS/CFT correspondences.

So far, we have discussed this relation for the AdS5/CFT4 correspondence, and much of the discussion
is analogous for the massive part of the spectrum of AdS3/CFT2. However, the fact that we have massless
excitations within the setting of AdS3/CFT2 makes things arguably more intricate, both on the CFT
level as well as in the relationship amongst spin chains and AdS3/CFT2 consequentially, as we mentioned
before. However, both the AdS5/CFT4 and the AdS3/CFT2 correspondence share a different link to
integrability: For each of their background worldsheet σ-models, classical integrability has been proven.
For the AdS5 × S5 case (endowed with a particular RR-flux), the Lax connection has been found (see
[MSW02], [BPR04], [AAT05], [AFPZ07], [AFZ07]), where in the latter references the authors proved that
the resulting S-matrix can be made equivalent to the one of the corresponding CFT of the correspondence.
For the AdS3/CFT2 case, the construction of the Lax connection is more intricate due to the presence
of the massless modes that are absent in the AdS5/CFT4 case. However, classical integrability of the
GS supercoset action featuring a crucial Z4 symmetry has also been proven for the AdS3 backgrounds
of our interest (see [SW12], [BSZ10], [CZ12], for a comprehensive contextual introduction also [Sfo15]).
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4 | The q-Poincaré Algebra

“Un tas de pierres cesse d‘être un tas de pierres, dès qu’un seul homme le contemple avec, en
lui, l’image d’une cathédrale.” [“A rock pile ceases to be a rock pile the moment a single man
contemplates it, bearing within him the image of a cathedral.”]

– Antoine de Saint-Exupéry

Paul Dirac proposed what is often referred to as the relativistic dispersion relation, or more canonically
energy-momentum relation,

E2
rel = p2 +m2 , (4.0.1)

which is well known due to its abundant occurrence in modern quantum field theory. However, this is
not the dispersion relation that appears within the AdS/CFT context. Within the CBA and spin chain
considerations we have made in the previous chapter in the context of AdS5/CFT4, had we gone beyond
the first loop order of and considered the all-loop case of the su(2) ≡ so(3) ≤ so(6) subsector of the spin
chain, we would have encountered a dispersion relation of the form

E2 ∝ m2 + 4h2 sin2 p

2
, (4.0.2)

where h is constant and m = ±1. The AdS3/CFT2 case is arguably more difficult and richer. Most
importantly, here we are allowed to assume massless modes in the spectrum, leaving us with a massless
dispersion relation of the form1

E2 ∝ sin2 p

2
. (4.0.3)

In our efforts, we will solely focus on the massless sector of the AdS3/CFT2 scattering.
AIt was [GH07], amongst others, who pointed out that one can interpret the connection of Erel with

E - essentially a difference between having p and sin p
2 - as a so-called q-deformation: One can indeed

see that [p]
e

i
2

= e
i
2 p−e− i

2 p

e
i
2−e− i

2
∝ sin p

2 , where we introduced notation that will be clarified later on. The
relativistic dispersion relation is a crucial element in a theory with Poincaré symmetry, embodied in the
dispersion relation by the Poincaré algebra. It is then a natural question to ask for a different theory
with q-related dispersion relation E: Does a q-analogue of the Poincaré algebra exist as a symmetry of
this system? E and p, which are Lorentz quantities, appear in a natural way in our theory, so we only
have to see whether we can define a boost operator J in our theory to complement them.

We will define these q-analogues, or q-deformations, more concisely later on, but we shall point out
that they have been studied within the context of quasi-triangular Hopf algebras long ago (see e.g.
[Jim85], [Dri86]). This has also been previously analysed in the Poincaré context (c.f. [LRNT91]).

1For more details on the emergence of the magnon dispersion relation within AdS/CFT and the spectral differences of
the AdS5 and AdS3 cases (massive and massless) within our field of research, one can consult [BDS04], [AF09] or [BAA+11],
to name a few references.
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In our analysis of our q-analogue of the Poincaré symmetry, we will mostly be concerned with one
generator: the boost J. In [GH07], the authors considered a 1 + 1-dimensional Poincaré algebra in the
N = 4 SYM context of AdS5/CFT4 which they identify with the Eq(1, 1) algebra, which is a deformation
of the pseudoeuclidean algebra. They then introduce the boost generator as the translation generator of
an elliptic rapidity variable z, meaning J = ∂

∂z and transforming

J : z 7→ z + c . (4.0.4)

Here, the dispersion relation of the present excitations was identified with the quadratic Casimir of the
deformed algebra via C = H2 + h2(eip/2 − e−ip/2)2, with H playing the role of the energy generator, and
h is connected to the tuning of the deformation. Building upon this, supersymmetric considerations of
this have been made in [You07], although falling short in lifting the entire algebra to a Hopf structure.
The work presented in [BT18] further refined this idea by analysing the coproduct of the boost more
closely. One might also add that our particular interest in boost operators is by no means novel: Boost
operators have been studied in different contexts, such as the study of σ-models and spin chains (see e.g.
[SW83], [BBL08], [KY11]).

Within the context of AdS3/CFT2, we again have the main difference of massless modes being allowed,
which makes the theory richer (see e.g. [OSST13]), yet sometimes more involved to deal with. In our
case, focussing on massless excitations will be of crucial importance and allow for additional freedoms
in the choice of the Hopf algebraic embedding of the energy. We adopt the motivations outlined for the
AdS5/CFT4 case, following [BT18], as well as the problem studied in [ST16], and revisited in [BST18].
They studied q-deformations in the massless sector of the AdS3/CFT2 integrable scattering problem,
where they also underline the intricacies that the presence of a boost operator in this context brings.

4.1 The Algebra and its Satellites

4.1.1 The Algebra

Recall that our setting is AdS3 ×S3 superstring theory, the algebra in question for the scattering problem
can be reduced to just studying su(1|1)2 = su(1|1)L⊕su(1|1)R. Throughout this report, when we use the
index A we refer to left or right handednesses, i.e. A = L,R. Introducing this notation, the non-vanishing
relations and generators of our algebra are the following:

{QA,SA} = HA , [JA, pA] = iHA , [JA,HA] = iHAΦA ,

[JA,QA] = ϕQAQA , [JA,SA] = ϕSASA . (4.1.1)

The grading of the respective elements can be inferred from the nature of the (anti-)commutation relations
they obey. A priori, ϕQA, ϕSA and ΦA are functions of the momentum generators pA, with no immediate
restrictions, and JA are the boost generators. However, as we want our superalgebra to satisfy super-
Jacobi identities2, they fulfil

iHAΦA = [JA,HA] = [JA, {QA,SA}] = {[JA,QA],SA} + {[JA,SA],QA} = (ϕQA + ϕSA)HA . (4.1.2)

So, we already got acquainted with one central element: the energy Cartan element HA that contains
the dispersion relation.3

2We shall drop the “super” from now on where it is obvious.
3Actually, also pA is central, though not as interesting as HA. Whenever we refer to the centrality of operators in this

context, we mean that a generator is central with respect to every operator but the boost generator.
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In addition, we are interested in centrally-extending our su(1|1)2 to su(1|1)2
c.e. by assuming the anti-

commutators involving fermionic generators of different handedness not to vanish:

{QL,QR} = P , {SL,SR} = K . (4.1.3)

Central extensions have also played a role within the context of AdS5 (see [BdLH16]), and we can
interpret their appearance as our approach reflecting the presence of quantum effects.4

For the sake of clarity in nomenclature, let us summarise the different algebra “types” that appear:5

su(1|1) central−−−−−−→
extension

su(1|1)c.e.
adding−−−−−−−−−−→

boost/momenta
Boost superalgebras B .

4.1.2 Outer Automorphism Symmetry

su(1|1)2
c.e. has another fascinating feature, as was discussed in e.g. [Reg16]: su(1|1)2

c.e. possesses a large
outer automorphism group, GL(2)2. This means that it features an outer symmetry that, when acting
on the generators, leaves the algebraic relations invariant. Automorphisms have been proven to be
vital within the field we are studying, see e.g. [BdLH16] and [BHH17]. Within our context, this outer
GL(2)2-action is defined as:(

QL

SR

)
7−→ λ

(
QL

SR

)
,

(
SL

QR

)
7−→ ρ

(
SL

QR

)
, (4.1.4)

where (λ, ρ) is in GL(2)2. In addition, we can define an algebra from the group action in the following
way

[tλ0 ,QL] = [tλ3 ,QL] = QL , [tλ0 ,SR] = −[tλ3 ,SR] = SR , [tλ+,SR] = QL , [tλ−,QL] = SR ,

[tρ0,QR] = [tρ3,QR] = QR , [tρ0,SL] = −[tρ3,SL] = SL , [tρ+,QR] = SL , [tρ−,SL] = QR . (4.1.5)

The commutation relations of the outer symmetry generators with p vanish, and the commutation
relations with the central elements can be inferred by means of super-Jacobi identities, always being of
the schematic form:

[t, {F,F′}] = −{[t,F],F′} + {F, [t,F′]} , (4.1.6)

where t is any of the outer symmetry generators, and F,F′ are fermionic generators that in a super-bracket
{·, ·} give rise to a central element. One example of this relation is given by6

[tρ−,HL] = [tρ−, {QL,SL}] = P . (4.1.7)

The action of the outer symmetry generators on the boost generators follows from the action on its
ingredient generators - we will see that the boost generators will always be chosen to consist of central

4We make one small remark regarding the underlying algebra we established: It is clearly not simple. One easy way to
see this is that (p)su(1|1)c.e. possesses a centre, which already constitutes a non-trivial ideal. Disregarding the center, even
(p)su(1|1) is not simple. Simple algebras and their quasi-triangularity properties have been studied and classified within
this context in more detail, and further analysed (see [KT94], [BD98], [BD83]), but we cannot build upon this in a direct
way.

5We will sometimes refer to su(1|1)c.e. as a “boost algebra” already, as we will - in the setting of the 2-dimensional short
representation - not introduce separate symbolical nomenclature for the superalgebra enhanced by the boost.

6Here, the second superbracket vanishes, as

[tρ−,HL] = [tρ−, {QL,SL}] = −{[tρ−,QL]︸ ︷︷ ︸
=0

,SL} + {QL, [tρ−,SL]︸ ︷︷ ︸
=QR

} = P .

.
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elements and differential p-operators, whose commutations relations with the outer symmetry generators
we have already discussed.

Given our notation, one can infer that the generator basis for one GL(2) given by t0, t3, t+, t− can
be understood as the following set of matrices (see 4.1.4)(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
. (4.1.8)

It is worth singling out one special linear combination of symmetry generators, namely what is commonly
referred to as the hypercharge operator B = 2i(tλ0 − tρ0):

[B,QL] = 2iQL , [B,SL] = −2iSL , [B,QR] = −2iQR , [B,SR] = 2iSR . (4.1.9)

Interestingly enough, the action of GL(2)2 leaves the B-charge invariant.

4.2 The 2-Dimensional Short Representation

4.2.1 The Representation

In a first step, we consider the above algebra to admit a certain representation, more precisely a 2-
dimensional short one.7 In a 1 + 1-dimensional space with basis {|Φ〉, |Ψ〉} with charges {i,−i} under
B, we define the following representation for the fermionic elements

SL ≡ QR ≡
√
E(p)

2

(
0 1
0 0

)
, QL ≡ SR ≡

√
E(p)

2

(
0 0
1 0

)
, (4.2.1)

which is a representation that is well-defined if the two copies are considered independently. With the
above representation, we consequently have that H = HL = HR = h sin p

2 = 1
2E(p), where E(p) is the

energy and p the momentum without any reference to handedness.
What we left out so far, however, is how a boost operator of handedness A acts on a boost operator

of handedness B 6= A. Within this particular representation, this question can be answered immediately
and we can consistently set

[JA,QB ] = i

2√
µ

ei
p
2 + e−i

p
2

2
QB , [JA,SB ] = i

2√
µ

ei
p
2 + e−i

p
2

2
SB ,

[JL,P] = [JR,P] = [JL,K] = [JR,K] = −[JA,HB ] = e−ip − eip

2µ
, (4.2.2)

where A 6= B, keeping in mind that HA,B contains the (massless) dispersion relation E, and we have
µ = 4

h2 . We will later see that, for the algebraic relations of J to be satisfied, it will always feature a
∂p term, and the commutator of the boost operator with a generator involving (or depending on) p will
just be given by the derivative action. Furthermore, it is sensible for us to comment on the appearance
of the momentum generator p: A priori, we view p like any other generator from our algebra, but then
also see that the momentum appears in exponential functions within our algebraic relations, dispersions
relations and, later on, coproduct braiding factors. If featured in this non-trivial way, we always have to
think about the momentum as being evaluated, meaning that the corresponding momentum charge (i.e.
eigenvalue) takes its place - for unambiguous well-definedness.

7In [Reg16], short representations are referred to as atypical modules.
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4.2.2 Different Hopf Algebra Structures

As a next step, we want to endow our superalgebra with a Hopf structure and find suitable R-matrices.
This mostly boils down to finding consistent coproducts for our algebra. We will do this once for the
undeformed algebra we defined in (4.1.1) and (4.2.2), and once for a q-deformed algebra we introduce
later. For the former, we will only review briefly the modus operandi and the results we found in
[NGTW20], which is where a full discussion can be found. For the latter, whose approach is a bit more
intricate but grosso modo quite the same, we shall be more detailed in our explanation.

The Undeformed Case

We start with the very general coproduct ansatz for our fermionic elements

∆SL = SL ⊗ eiap/4 + eicp/4 ⊗ SL , ∆QL = QL ⊗ eibp/4 + eidp/4 ⊗ QL , (4.2.3)

where a, b, c, d are constants. Keep in mind that defining coproducts for the fermionic generators
immediately defines the coproduct structure for all central elements. We know p to be primitive, i.e.
∆p = p⊗1+1⊗ p, so apart from the fermionic elements, there will only be ∆JA left to be determined.
The constants in (4.2.3) are restricted by [∆QA,∆SA] = ∆HA, which we shall make explicit by example

{∆QA,∆SA} =
(
QA ⊗ eibp/4 + eidp/4 ⊗ QA

)(
SA ⊗ eiap/4 + eicp/4 ⊗ SA

)
+
(
SA ⊗ eiap/4 + eicp/4 ⊗ SA

)(
QA ⊗ eibp/4 + eidp/4 ⊗ QA

)
=QASA ⊗ e(a+b)p/4 + QAe

icp/4 ⊗ SAe
ibp/4 − SAe

idp/4 ⊗ eiap/4QA + ei(c+d)p/4 ⊗ QASA

+ SAQA ⊗ e(a+b)p/4 + SAe
idp/4 ⊗ eiap/4QA − QAe

icp/4 ⊗ SAe
ibp/4 + ei(c+d)p/4 ⊗ SAQA

= {QA,SA}︸ ︷︷ ︸
=HA

⊗ei(a+b)p/4 + ei(c+d)p/4 ⊗ {QA,SA}︸ ︷︷ ︸
=HA

=HA ⊗ ei(a+b)p/4 + ei(c+d)p/4 ⊗ HA

=∆HA . (4.2.4)

The condition ∆HA = ∆opHA is necessary to hold for the existence of an R-matrix, since HA is central,
since we have

∆op(HA)R = R∆(HA) = ∆(HA)R , (4.2.5)

from the centrality of HA, and since R is invertible, we have indeed ∆HA = ∆opHA. This means we
want

∆H = H ⊗ ei(a+b)p/4 + ei(c+d)p/4 ⊗ H , ∆opH = ei(a+b)p/4 ⊗ H + H ⊗ ei(c+d)p/4 (4.2.6)

to coincide, which happens if8

a+ b = c+ d . (4.2.7)

At first, it might seem that we have four independent (physical) parameters a, b, c, d that span out all
possible coproducts. However, this not quite accurate: Redefining our supercharges via the exponential
shift

SL → S̃L = eiaSSL ,

8Note that, depending on the form of the H, this is a sufficient condition but not necessarily a requirement for ∆HA =
∆opHA to hold - see the bosonically braided family introduced below.
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QL → Q̃L = eiaQQL , (4.2.8)

and requiring that aS = −aQ, as we do not want the eigenvalues of the energy Cartan generator to
change, we can see that (4.2.6) is unchanged regardless of whether we choose the redefined supercharges
or the original ones. A straightforward way to see this is the following relation, of which we will also
make use later on,9 namely

∆(eiαpT) = eiαp ⊗ eiαp∆(T) , (4.2.9)

where T is any element of the Hopf algebra. Thus, one realises that the only physical directions in
parameter space are along a− c and b− d - a fact that we will come back to later on.

At this point it is imperative to emphasise once again that the results dependent on the coproduct
of the energy are very much dependent on the form of the energy H: This analysis heavily relies on the
fact that H ∝ e

i
2p − e

−i
2 p, as for generic forms of H the coproduct choice we made above would not yield

∆H = ∆opH, which needs to hold for all central elements. We will elaborate on this further when we
specify scenarios different than the massless one in the outlook. Summa summarum, this constrains our
ansatz to appear in two families:

• The bosonically unbraided family, a+b = c+d = 0, which contains the trivial braiding a, b, c, d = 0
and the braiding a = −b = −c = d = −1, which are the ones most commonly used in literature.

• The bosonically braided family, a+ b = 2 and c+ d = −2, as well as its parity transform obtained
by the parity transformation p → −p.

For this undeformed present case, we shall be brief in our explanations, and mention the crucial
results succinctly. Later, when dealing with the q-deformed case, we will be more comprehensive in the
explanation of our modus operandi, which will be much the same for either case.

For the R-matrix, we start with an ansatz (c.f. 6-vertex models)

R =


1 0 0 0
0 r11 r12 0
0 r21 r22 0
0 0 0 −1

 . (4.2.10)

Having the coproducts for X = QA,SA at hand, one can make use of the quasi-cocommutativity condition
that ∆opXAR = R∆XA. One would best go about this by evaluating this condition on all 2-particle
basis states, i.e.

〈χ1χ2|∆opXAR−R∆XA|χ3χ4〉 = 0 , χi ∈ {Φ,Ψ}. (4.2.11)

These equations give rise to the following R-matrices:
9This relation amongst primitive elements and group like coproducts holds more generally. This is the only instance

where we will make use of it, however. It can easily be proven the following way:

eiαp ⊗ eiαp =
(
eiαp ⊗ 1

)(
1 ⊗ eiαp

)
=

((∑
n

(iαp)n

n!

)
⊗ 1

)(
1 ⊗

(∑
m

(iαp)m

m!

))
=
(
eiαp⊗1

)(
e1⊗iαp

)
=eiαp⊗1+1⊗iαp

=eiα∆(p) .
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bosonically braided family bosonically unbraided family

r11 =
e

− i
4 p1(x+y) sin p2

2 − e
− i

4 p2(x+y) sin p1
2

sin p1+p2
2

r12 =
2e

− i
8 (p1−p2)(x−y)

√
sin p1

2 sin p2
2

sin p1+p2
2

cos

(
(x + y)(p1 − p2) − 2(p1 + p2)

8

)
r21 =

2e
i
8 (p1−p2)(x−y)

√
sin p1

2 sin p2
2

sin p1+p2
2

cos

(
(x + y)(p1 − p2) + 2(p1 + p2)

8

)
r22 = −

e
i
4 p1(x+y) sin p2

2 − e
i
4 p2(x+y) sin p1

2

sin p1+p2
2

r11 =
−e

i
4 (b+c)p2 sin p1

2 + e
i
4 (b+c)p1 sin p2

2
sin p1

2 + sin p2
2

r12 =
2e

i
8 [(b+d)p1+(a+c)p2] cos

[
a−c

8 (p1 − p2)
]√

sin p1
2 sin p2

2

sin p1
2 + sin p2

2

r21 =
2e

i
8 [(a+c)p1+(b+d)p2] cos

[
a−c

8 (p1 − p2)
]√

sin p1
2 sin p2

2

sin p1
2 + sin p2

2

r22 =
e

i
4 (a+d)p2 sin p1

2 − e
i
4 (a+d)p1 sin p2

2
sin p1

2 + sin p2
2

Here, we re-expressed our braiding parameters as a = 1 + x, c = −1 − y with respect to our original
parameters for the bosonically unbraided family.10

It is sensible to first make a few comments about what we expect the boost operator J to look like.
Here, we can let ourselves be inspired by the approaches we outlined in the motivation for this problem,
such as [GH07], and thus a particularly useful representation of the J is in differential form:

JA = iHA∂p . (4.2.12)

Apart from producing consistent commutation relations, it makes sense for the boost operator to have
this form. As conventional Lorentz boosts can just be understood as transformations that lead to
translations in the rapidity variable, the differential nature of the representation is to be expected. If
we want the boost to feature the momentum differential (rather than some uniformised rapidity as in
[GH07] as mentioned before), the appearance of the energy as a prefactor is naturally warranted. Later
on, this so-called differential representation will be examined more closely. On the level of the coproduct,
we can expect the algebraic form to be

∆JA = i(∆HA)(∆∂p) + tail. (4.2.13)

The tail will involve fermionic elements, the most important condition that ∆JA remains bosonic, mean-
ing that the tail has to contain an even number of fermionic generators. We start with a very general
ansatz that fulfils this:

∆JA = A(p1, p2) (∂p1 + ∂p2) +B(p1, p2) (∂p1 − ∂p2)

+ C(p1, p2)S ⊗ Q +D(p1, p2)Q ⊗ S + F (p1, p2)B ⊗ 1 +G(p1, p2)1 ⊗ B . (4.2.14)

10It might be useful at this point to give an example of how the evaluated coproduct of a fermionic element looks like in
the 4 × 4 matrix representation that we use in the quasi-cocommutativity equation. For QR (4.2.1), we arrive at

∆QR =


0 e− i

4 p1(1+y)E(p2) e
i
4 p2(1+x)E(p1) 0

0 0 0 e− i
4 p1(1+x)E(p1)

0 0 0 −e− i
4 p1(1+y)E(p2)

0 0 0 0

 ,

and

∆opQR =


0 e

i
4 p1(1+x)E(p2) e− i

4 p2(1+y)E(p1) 0
0 0 0 e− i

4 p1(1+y)E(p1)
0 0 0 −e

i
4 p1(1+x)E(p2)

0 0 0 0

 ,

where one needs to pay attention to the fermionic signs arising in the computations.
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Having this at hand, once again, we impose the coproduct to be an algebra (homo)morphism.11 In this
case, this is to say that we want [∆JA,∆T] = ∆[JA,T] to hold for any fermionic operator T. After
solving some involved system of equation, we find the following coefficients:

bosonically braided family bosonically unbraided family
A =

ih

2
sin

p1 + p2
2

B =
ihβ(p1, p2)

2
sin

p1
2

sin
p2
2

C =
e

i
4 [p2(x+1)+p1(y−1)]

8

[
Υ(p1, p2)

− i cot
p1
2

+ i cot
p2
2

− iβ(p1, p2)
cot p1

2 + cot p2
2 − i(x + y)

cot p1
2 + cot p2

2

]
D =

e
i
4 [p2(1−x)−p1(y+1)]

8

[
4 − Υ(p1, p2)

− i cot
p1
2

+ i cot
p2
2

− iβ(p1, p2)
cot p1

2 + cot p2
2 + i(x + y)

cot p1
2 + cot p2

2

]
F =

ih

8

[
e

− i
2 p1 [Υ(p1, p2) − 2] sin

p2
2

− x sin
p1 + p2

2
+ β(p1, p2)

xe
i
2 p2 sin p1

2 − ye
− i

2 p1 sin p2
2

cot p1
2 + cot p2

2

]
G =

ih

8

[
e

i
2 p2 [Υ(p1, p2) − 2] sin

p1
2

+ y sin
p1 + p2

2
− β(p1, p2)

xe
i
2 p2 sin p1

2 − ye
− i

2 p1 sin p2
2

cot p1
2 + cot p2

2

]

A =
ih

2

(
sin

p1
2

+ sin
p2
2

)
B = ih cot

p1 − p2
2

cos
p1 − p2

2

(
cos

p1
2

+ cos
p2
2

− 2 cos
p1 + p2

2

)
C =

e
i
4 (ap2−cp1)

8(cos p1
2 − cos p2

2 )

((
2i sec

p1
2

sin
3p1

2
+ a − c − Υ(p1, p2)

)
cos

p2
2

+
(

2i sec
p2
2

sin
3p2

2
+ a − c + Υ(p1, p2)

)
cos

p1
2

)
D =

e
− i

4 (ap2−cp1)

8(cos p1
2 − cos p2

2 )

((
2i sec

p1
2

sin
3p1

2
+ a − c + Υ(p1, p2)

)
cos

p2
2

+
(

2i sec
p2
2

sin
3p2

2
+ a − c − Υ(p1, p2)

)
cos

p1
2

)
F =

ih

32(cos p1
2 − cos p2

2 )

(
4 cos

p1 + p2
2

(
a sin

p1
2

+ c sin
p2
2

)
− 2(a + c) cos

p1
2

sin
p2
2

− 2a sin p1 + (a − c) sin p2

+ 2
(

cos
p1
2

− cos
p2
2

)
Υ(p1, p2) sin

p2
2

)
G =

ih

32(cos p1
2 − cos p2

2 )

(
2(a + c) cos

p1
2

sin
p2
2

− 4 cos
p1 + p2

2

(
a sin

p1
2

+ c sin
p2
2

)
+ (a − c) sin p1 + 2c sin p2

+ 2(cos
p1
2

− cos
p2
2

)Υ(p1, p2) sin
p1
2

)
In either of the cases, Υ(p1, p2) and β(p1, p2) are an arbitrary even and odd function, respectively,

representing some residual freedom unfixed by the requirement of the algebra homomorphism property
of the coproduct: The former ambiguity arises from the fact that the algebra homomorphism property of
the boost coproduct for Q compared to S does not give rise to independent constraints on ∆J, while the
other comes from the fact that the quasi-cocommutativity relation with the R-matrix allows us to add an
op-invariant term to it. By making use of our representation and seeing how the respective coefficients
appear in the Boost coproduct, we can construct operators from these functions, which we denote by Υ̂
and β̂. We can make the ambiguities explicit, and express the quasi-cocommutativity relation as

(∆opJ + β̂op + Υ̂op)R = R(∆J + β̂ + Υ̂) . (4.2.15)

For the bosonically braided family, we have

β̂ = β(p1, p2) (∂p1 − ∂p2) − β(p1, p2)e i
4 (p2−p1) csc p1

2 csc p2
2

4h

×
cot p1

2 + cot p2
2 − i(x+ y)

cot p1
2 + cot p2

2

[
e

i
4 (xp2+yp1) S ⊗ Q + e−

i
4 (xp2+yp1) Q ⊗ S

]
, (4.2.16)

as well as

Υ̂ = Υ(p1, p2)e i
4 (p2−p1)

[
e−

i
4 (xp2+yp1)S ⊗ Q − e−

i
4 (xp2+yp1) Q ⊗ S

]
+

+ Υ(p1, p2) ie
− i

2p1

2
B ⊗ H + Υ(p1, p2) ie

i
2p2

2
H ⊗ B . (4.2.17)

The op-quantities related to the above are obtained by exchanging p1 ↔ p2 and add fermionic signs
where necessary.

11In the literature, the words homomorphism and morphism are used interchangeably oftentimes. While we introduced
functions like the above as (co)algebra morphisms, we will refer to this as the homomorphism property, as is standard in
the literature (outside of purely algebraic fields such as category theory).
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For a particular choice of Υ̂ and β̂ (x = y = 0), we can write a kind of evolution equation for R using
β̂:

(∂p1 − ∂p2)R− [β̂, R] = 0 , (4.2.18)

and likewise, Υ̂ also gives rise to an interesting equation,

(∂p1 − ∂p2)R− (Υ − Υop) = 0 , (4.2.19)

if we fix

Υ(p1, p2) =
cos p1−p2

2
4ih sin p1

2 sin p2
2 sin p1+p2

2
. (4.2.20)

For the bosonically unbraided family, we find

Υ̂ = Υ(p1, p2)e i
4 (dp1+ap2) S ⊗ Q − Υ(p1, p2)e i

4 (cp1+bp2) Q ⊗ S+

+ Υ(p1, p2) ie
i
4 (a+b)p1

2
B ⊗ H + Υ(p1, p2) ie

i
4 (a+b)p2

2
H ⊗ B . (4.2.21)

We also find an evolution-like equation for R, this time for a particular choice of Υ̂,

(∂p1 − ∂p2)R− [Υ̂, R] = 0 , (4.2.22)

in the setting of

a = −b = c∓ 2 = d = ±1 ,

Υ =
±e i

4 (p1+p2) (sin p1
2 + sin p2

2
)

4h sin p1
2 sin p2

2 sin p1+p2
4

. (4.2.23)

Unfortunately, we still lack a good explanation for both the occurrence of these ambiguities in the
coefficients, as well as for their curious connection with the R-matrices. We plan to perhaps address this
in the future.

Deformed case

We now turn our attention to the q-deformed case, whose motivation we outlined in the very beginning
of this chapter. We first define q-analogues or q-deformed quantities via

[x]q = qx − q−x

q − q−1 . (4.2.24)

One can easily see that we have

[x]q→1 = lim
q→1

qx − q−x

q − q−1 = x . (4.2.25)

With this, the su(1|1) algebra gets deformed to:

{Q,S} = [H]q , (4.2.26)

with the following new q-action for the boost operator defined as follows

[J,Q] = ϕQ(p)Q = β[2H]q sin p
4[H]2q

Q , [J,S] = ϕS(p)S = β[2H]q sin p
4[H]2q

S ,
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[J, p] = α[H]q , [J,H] = q − q−1

log q
β sin p , (4.2.27)

where both α and β are constants depending on the deformation q and the coupling constant h. Similarly
to how the previous algebra appears in the context of strings in AdS3 × S3, this algebra appears in the
context of a well-known algebra called η-deformation,

(
AdS5 × S5)

η
, where the deformation parameters

q and η are related as q = e
− 2η

g(1+η2) , with g being the string tension. Furthermore, in the following,
we are going to identify H = E/2 per our dispersion relation, exactly as we did in the undeformed case
before.

Regarding the representation, we can use the same one as for the undeformed case, with the sole
change of H(p) → [H(p)]q. Much like we did before, we can again make the distinction between the cases
of braided and unbraided energy, which we will now analyse step by step. That is the main reason why
we are considering these two algebras together. In either case, rather than analysing general coproduct
braiding with parameters a, b, c, d, we focus on one representative case each.

In the unbraided energy case, we have the following Hopf algebraic structure to deal with:

∆S = S ⊗ e−
i
4pq−

E
4 + e

i
4pq

E
4 ⊗ S , ∆Q = Q ⊗ e

i
4pq−

E
4 + e−

i
4pq

E
4 ⊗ Q ,

∆p = p⊗ 1 + 1 ⊗ p , ∆[H]q = [H]q ⊗ q
E
2 + q−

E
2 ⊗ [H]q . (4.2.28)

Making again the same ansatz for the R-matrix and imposing quasi-cocommutativity with the fermionic
elements, we arrive at the following R-matrix elements:

r11 =
e

ip1
2
[
E2
2
]
q

− e
ip2

2
[
E1
2
]
q[

E1+E2
2

]
q

,

r12 =

(
e

i
2 (p1−p2)q−

E1+E2
4 + e−

i
2 (p1−p2)q

E1+E2
4

)√[
E1
2
]
q

[
E2
2
]
q[

E1+E2
2

]
q

,

r21 =

(
e

i
2 (p1−p2)q

E1+E2
4 + e−

i
2 (p1−p2)q−

E1+E2
4

)√[
E1
2
]
q

[
E2
2
]
q[

E1+E2
2

]
q

,

r22 =
e

ip2
2
[
E1
2
]
q

− e
ip1

2
[
E2
2
]
q[

E1+E2
2

]
q

. (4.2.29)

One can check that in the limit of no deformation, i.e. q → 1, as the R-matrix above we recover the
one we obtained when we considered the undeformed case (for the same choice of braiding parameters).
Regarding the coproduct for the boost, we start with the following ansatz (resembling the ansatz we
chose before):

∆J = A(p1, p2) (∂p1 + ∂p2) +B(p1, p2) (∂p1 − ∂p2)

+ C(p1, p2)ei
p1+p2

4 S ⊗ Q +D(p1, p2)e−i
p1+p2

4 Q ⊗ S + F (p1, p2)B ⊗ 1 +G(p1, p2)1 ⊗ B , (4.2.30)

where we, with great foresight, already extracted some bosonic, op-invariant factors out of D and C.
Again, in order to arrive at an algebraically consistent expression for our coproduct, it is enough to
check the algebra homomorphism property with the supercharges as well as the momentum operator -
this fixes the action on the central elements automatically. Furthermore, we glossed over the fact that
while ∆p is unambiguously defined, the story for ∆ sin p is not quite the same: While one could think
about expanding sin p as a series and then assuming that the algebra homomorphism property for ∆
to hold for polynomials of arbitrary order, and thus arrive at sin ∆p. One can see that

[
E
2
]
q

cos(p2 ),
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sin(p2 )∂p
[
E
2
]
q
or ∂p

[
E
2
]2
q
are indistinguishable at the level of the representation, but they have different

coproducts. Whatever choice one prefers to make, we shall denote it by ∆ sin p. In any case, we arrive
at the following solutions for the coefficients of ∆J:

A(p1, p2) = α

2
∆[E]q = α

2
[E1 + E2]q (4.2.31)

B(p1, p2) = α

2

2(∆ sin p) − [E1 + E2]q
(

sin p1
[E1]q

− sin p2
[E2]q

)
sin p1
[E1]q

− sin p2
[E2]q

(4.2.32)

C(p1, p2) −D(p1, p2)
2

= q
E1−E2

4
iB(p1, p2) + Υ(p1, p2)[

E1+E2
2

]
q

, (4.2.33)

where a similar ambiguity or freedom is present as we have seen in the undeformed case. This time, we
shall make it explicit:

Υ̂ = q
E1−E2

4 Υ(p1, p2)[
E1+E2

2
]
q

(
ei

p1+p2
4 S ⊗ Q + e−i

p1+p2
4 Q ⊗ S + q

E1−E2
4

2i
B ⊗ [H]q + q−

E1−E2
4

2i
[H]q ⊗ B

)
,

(4.2.34)
where again Υ(p1, p2) is some arbitrary, op-invariant function. Sadly, par contre to the undeformed case,
we still have not found a relation between the ambiguity of this case and the corresponding R-matrix,
be it in the form of an evolution equation or by any other means.

For the case where the energy coproduct has a non-trivial braiding, our approach is much the same.
The fermionic coproducts for the braided energy case that we shall consider read:

∆S = S ⊗ e−
i
4pq−

E
4 + e

i
4pq

E
4 ⊗ S , ∆Q = Q ⊗ e−

i
4pq

E
4 + e

i
4pq−

E
4 ⊗ Q ,

∆p = p⊗ 1 + 1 ⊗ p , ∆[H]q = [H]q ⊗ e−
i
2p + e

i
2p ⊗ [H]q , (4.2.35)

where, keep in mind, this is again just one representative choice of braiding parameters. Imposing again
that the R-matrix be quasi-cocommutative with our algebra elements, we arrive at:

r11 =
q−

E1
2 sin p2

2 − q−
E2
2 sin p1

2
sin p1+p2

2
,

r12 =

(
e

i
4 (p1+p2)q−

E1−E2
4 + e−

i
4 (p1+p2)q

E1−E2
4

)√
sin p1

2 sin p2
2

sin p1+p2
2

,

r21 =

(
e

i
4 (p1+p2)q

E1−E2
4 + e−

i
4 (p1+p2)q−

E1−E2
4

)√
sin p1

2 sin p2
2

sin p1+p2
2

,

r22 =
q

E2
2 sin p1

2 − q
E1
2 sin p2

2
sin p1+p2

2
. (4.2.36)

Once more, we make an ansatz for what we expect the boost coproduct to look like:

∆J = A(p1, p2) (∂p1 + ∂p2) +B(p1, p2) (∂p1 − ∂p2)

+ C(p1, p2)q−
E1+E2

4 S ⊗ Q +D(p1, p2)q
E1+E2

4 Q ⊗ S + F (p1, p2)B ⊗ 1 +G(p1, p2)1 ⊗ B , (4.2.37)

where we again already extracted some bosonic factors out of some of the coefficients. Using this, we
arrive at the following solution:

A(p1, p2) =
α

2
[E]q(p1 + p2) ,

B(p1, p2) ∝ A(p1, p2)
[(

ϕQ(p1)
α[E1]q

+
i

4

)
e

i
4 (p1+p2)

[
E1

2

]
q

+
(
ϕQ(p2)
α[E2]q

−
i

4

)
e− i

4 (p1+p2)
[
E2

2

]
q

]
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− ϕQ(p1 + p2)
[
e

i
4 (p1+p2)

[
E1

2

]
q

+ e− i
4 (p1+p2)

[
E2

2

]
q

]
= 0 ,

C(p1, p2) = −
1
2i

(
A(p1, p2) log q

∂p2E2

4
+
F −G

2
e− i

4 (p1+p2)
[
E2

2

]
q

)
,

D(p1, p2) =
1
2i

(
A(p1, p2) log q

∂p1E1

4
−
F −G

2
e

i
4 (p1+p2)

[
E1

2

]
q

)
,

F (p1, p2) +G(p1, p2)
2

= −e− i
4 (p1−p2) iA(p1, p2)

2
[

E(p1+p2)
2

]
q

(
2 − i cot

p1

2
+ i cot

p2

2

)
,

F (p1, p2) −G(p1, p2)
2

=
e− i

4 (p1−p2)[
E(p1+p2)

2

]
q

(
A(p1, p2) log q

∂p1E1 − ∂p2E2

4
+ Υ(p1, p2)

)
, (4.2.38)

where we abbreviated Ei = E(pi). We need to address some particularities of this solution: The
|ΦΦ〉 component of the quasi-cocommutativity condition fixes all the functions appearing in our ansatz -
however, the resulting coproduct does not fulfil the remaining components of said condition, meaning we
find a contradiction. Furthermore, the Υ̂ operator does not seem to quasi-cocommute with the R-matrix
as it did before.

The braided and deformed case bears yet another important distinction compared to the cases anal-
ysed before: The coproduct choices we have made turn out to be non-coassociative. Thus, not all Hopf
algebraic requirements are fulfilled. We are going to address this in the subsection to follow.

4.2.3 A Non-Coassociative Curiosity

One can readily check that the coproduct of q E
4 is not group-like, namely ∆q E

4 6= q
E
4 ⊗ q

E
4 .12 As the

coproduct of the supercharges that we proposed involves this factor, this implies that (1 ⊗ ∆)∆Q 6=
(∆ ⊗ 1)∆Q and (1 ⊗ ∆)∆S 6= (∆ ⊗ 1)∆S.13

In chapter 2, we introduced the non-coassociative analogues of Hopf algebras - quasi-Hopf algebras.
We can find a coassociator for our case that is a hopeful candidate to let us define a quasi-Hopf algebra
with the structure we have, and it has the following form:

Φ = exp(B ⊗ ω23 + ω12 ⊗ B), ωjk = 1
8i

log q
(
E(pj + pk) − E(pj) − E(pk)

)
1 ⊗ 1 . (4.2.39)

The coassociator is measuring in a very direct sense by how much the coproduct fails to be coassociative.
In our case, this is directly visible by the abstract relation:

ω = 1
8i

log q(∆(E) − ∆trivial(E)) , (4.2.40)

where ∆trivial(x) = x⊗1+1⊗x. To see why this coassociator is indeed correct, the Weyl-type relations:

eαB Q = Q eα(B+2i1), eαB S = S eα(B−2i1) , (4.2.41)

are helpful. The pentagon relation can be proven straightforwardly, i.e.[
(1 ⊗ 1 ⊗ ∆)Φ

] [
(∆ ⊗ 1 ⊗ 1)Φ

]
= (1 ⊗ Φ)

[
(1 ⊗ ∆ ⊗ 1)Φ

]
(Φ ⊗ 1) , (4.2.42)

and one can see that we also have

(1 ⊗ χ⊗ 1)Φ = 1 ⊗ 1 , (4.2.43)
12See footnote 9 for an elaboration on the origin of group-like coproducts as the exponential of primitive ones, and the

inverse implication thereof.
13As will be made more explicit later on as well as in the appendix A, this arising non-coassociativity only appears when

the deformation is turned on, connected to the facts that p is primitive and the energy corpoduct is braided here. This is
most evidently visible in 4.2.39, which trivialises for the undeformed case of q = 1 (or for a primitive E, for that matter).
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(1 ⊗ χ)∆ = (χ⊗ 1)∆ = 1 , (4.2.44)

the latter of which we already knew to be the case for the counit χ, as the quasi-coassociative structure
does not enter this equation (for more detail, see the appendix A).

Finally, the Hopf algebraic relations for the antipode S,

µ ◦ (S ⊗ id) ◦ ∆ = υ ◦ χ , (4.2.45)

µ ◦ (id ⊗ S) ◦ ∆ = υ ◦ χ , (4.2.46)

evaluated on any generator x of our algebra give

µ(S ⊗ 1)∆(x) = 0 ,

µ(1 ⊗ S)∆(x) = 0 . (4.2.47)

From this, we can directly conclude that for x = p, which is primitive, we have

0 = µ(S ⊗ 1)∆(p)

= µ(S ⊗ 1)(p⊗ 1 + 1 ⊗ p)

= µ(S(p) ⊗ 1 + 1 ⊗ p)

= S(p) + p , (4.2.48)

from which we can follow that S(p) = −p. With this result, we can also conclude that S(E) = −E since
[E2 ]q ∝ sin

(
p
2
)
is an odd function of p and we have −[E2 ]q = [−E2 ]q. The antipode-coassociator relations

our antipode needs to fulfil, as mentioned before, are then1415

µ(1 ⊗ µ)
[
S ⊗ 1 ⊗ S

]
Φ−1 =1 (4.2.49)

µ(µ⊗ 1)
[
1 ⊗ S ⊗ 1

]
Φ =1 . (4.2.50)

In order to understand this equation for our concrete coassociator, we will need to make the following
considerations: Let us, for instance, start with the equation

µ(µ⊗ 1)
[
1 ⊗ S ⊗ 1

]
Φ = 1 . (4.2.51)

If we evaluate this on a given sate, for example |ΦΦΦ〉, we have to first consider what the antipode does
to what is to its right-hand side:[

1 ⊗ S ⊗ 1
]
Φ|ΦΦΦ〉 =

[
1 ⊗ S ⊗ 1

]
exp(B ⊗ ω23 + ω12 ⊗ B)|ΦΦΦ〉

=
[
1 ⊗ S ⊗ 1

]
exp(1 ⊗ ω23 + ω12 ⊗ 1)|ΦΦΦ〉

= exp
(
1 ⊗ log q

8i
(E(−p2 + p1) + E(p2) − E(p1))

+ log q
8i

(E(−p2 + p3) + E(p2) − E(p3)) ⊗ 1
)
|ΦΦΦ〉 . (4.2.52)

The term µ(µ ⊗ 1) then, in terms of domains and codomains, takes a 3-particle space and returns a
1-particle space - it therefore “collapses” all of the momentum labels into one, i.e. p2 = p1 = p3. We see
then that the exponent of the above vanishes. This is the case for any state we evaluate the equation (and

14Recall here that our multiplication is associative, and we can choose either one of µ(1 ⊗ µ) = µ(µ⊗ 1) in the relations
- whichever lends itself more conveniently.

15As briefly alluded to before in the preliminary part of this thesis, in the non-coassociative context the antipode appears
as a triplet (S, α, β), with generally more complicated relations to fulfil than the ones we prescribe (see e.g. [Dri98]).
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its partner equation) on: The antipode will always flip the sign of the momentum/energy corresponding
to one of the tensorial spaces appearing in the exponent of Φ(−1), meaning the exponent will always be
proportional to

E(−pi + pj) + E(pi) − E(pj) . (4.2.53)

Again, once the nested multiplication is performed, all indices of the tensorial spaces have to coincide,
and thus all exponents of Φ(−1) become zero.16 With this, (4.2.49) is clearly fulfilled, and we can thus
conclude we have a true quasi-Hopf algebra on our hands.

The natural question we ask ourselves now is whether our quasi-Hopf algebra is also quasi-triangular.
For the R-matrix we introduced above, one can indeed prove that the generalised Yang-Baxter equation
holds for the above coassociator. More interestingly, even though we are dealing with a non-coassociative
case, this R-matrix also satisfies the regular Yang-Baxter equation of quasi-triangular Hopf algebras.
This rather curious result is owed to the structure of the coassociator: Although Φ is not proportional
to 1⊗1⊗1, it is purely diagonal and thus rather simple. The hands-on computation of the generalised
Yang-Baxter equation revealed that, evaluated on 3-particle states, each of its components is indeed
equal to its regular counterpart times qE/2 factors. To make things more explicit, let us start with a
given 3-particle state |χ1χ2χ3〉 and let us denote the generalised Yang-Baxter equation

GYBE := R12Φ312R13(Φ132)−1R23Φ123 − Φ321R23(Φ231)−1R13Φ213R12 . (4.2.54)

Evaluating this equation on all 3-particle states (which is a lengthy calculation that we discuss in the
appendix), we indeed find that for our coassociator we can write more compactly that

〈χ′1χ′2χ′3| exp(−ω12 ⊗ B)GYBE exp(−ω12 ⊗ B)|χ1χ2χ3〉 = 〈χ′1χ′2χ′3|YBE|χ1χ2χ3〉 , (4.2.55)

∀ |χ′1χ′2χ′3〉 and |χ1χ2χ3〉 3-particle states, where

YBE := R12R13R23 −R23R13R12 , (4.2.56)

denotes the regular Yang-Baxter equation. In particular, this implies that, indeed, for our case, the
GYBE and YBE are algebraically equivalent.

This quasi-Hopf structure, as it turns out, can be reduced to a twist. If a coassociator is induced by
a twist F , it can be written as

Φ = F23(1 ⊗ ∆)(F)(∆ ⊗ 1)(F−1)F−1
12 , (4.2.57)

from one can check that F = qB⊗α−α⊗B generates a coassociator of the form

Φ = qB⊗(∆α−1⊗α−α⊗1)+(∆α−1⊗α−α⊗1)⊗B , (4.2.58)

for any [α,B] = 0. We can see that the coassociator from our quasi-Hopf algebra corresponds to setting
α = E(p)

8i . Undoing this twist implies stripping the coproduct entirely of all qE/4 factors, leaving only
the braiding factors that depend on the momentum. We can clearly see in this example how twists

16The reason why in (4.2.52) chose the specific way of evaluation to show this is the following: A priori, the term

µ(µ⊗ 1)
[
1 ⊗ S ⊗ 1

]
Φ

needs to be evaluated on a 1-particle state - this way, the calculation gets less straightforward. It is easier to first evaluate
the term

[
1 ⊗ S ⊗ 1

]
Φ on a generic 3-particle state (after which the expression depends on three spectral parameters

p1, p2, p3), and only then let the µ(µ ⊗ 1) “collapse” it and give zero once only one spectral parameter is present - given
the specific form of the exponent in (4.2.52).
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dramatically alter the physics, since removing the non-coassociativity lands us in a completely different
model with a different R-matrix, R̃ = F−1

21 RF12, that, as one expects, still fulfils the ordinary Yang-
Baxter equation.

It would be interesting to investigate what precise conditions a coassociator has to fulfil in order for
the algebra to be non-coassociative (i.e. the coassociator not being the identity), but the YBE and GYBE
still coinciding, as was the case for us, and, ultimately, if this has a physical explanation or reasoning.
One could state a conjecture that block-diagonal coassociators of a similar form to ours fulfil exactly
that.

4.3 The Generalised Boost Superalgebra
In this section, we are going to generalise the algebra we have worked with thus far. While we have
up to this point assumed that the two momenta of the su(1|1)L ⊕ su(1|1)R are identical, i.e. pL = pR.
We will now drop this assumption, and allow the two momenta of the su(1|1) algebras to be a priori
uncorrelated.

In the previous part of this chapter, we circumvented the question of how a boost generator J acted
on remaining generators of different handedness, by looking at a particular representation. Given now
our assumption of uncorrelated pL, pR, we will answer this question in the most general way possible.

Inspired by what we know about energy and dispersion relations, we assume the Cartan energy
generators HA to be positive even functions of the momentum generators in the sense that HA = HA(pA).
Drawing inspiration from a differentially acting form of the boost, we postulate the action of a boost of
one handedness on the momentum generator of opposite handedness to be

[JL, pR] = iHLdLR , [JR, pL] = iHRdRL , (4.3.1)

where the functions dAB resemble momentum Jacobians and are assumed to commute with HA. Deter-
mining these functions will be instrumental in getting insight into the possible algebraic structures that
allow for a boost operator of any handedness to act consistently. As we assume the other generators of
the algebra to be momentum-dependent as well, we generalise the above relation to

HB [JA, XB ] = HAdAB [JB , XB ] , (4.3.2)

where XB represents a generator of the algebra with well-defined handedness B 6= A, and the action on
central elements with no defined handedness is deduced by means of either Jacobi identities or Leibniz
rules, such as [JL,P] = (ϕQLHR + ϕQRHLdLR)P.

The equation (4.3.2) is supposed to hold for all generatorsXB with definite handedness in our algebra,
that also includes boosts JB . Obviously, since [JB , JB ] vanishes, by (4.3.2) we also expect [JA, JB ] to
vanish. There is a second argument to be made for [JA, JB ] = 0, namely the underlying Z2-symmetry
given by the L ↔ R exchange, which would require that [JL, JR] = [JR, JL] for the (bosonic) JA, which
together with the antisymmetry of the superbracket for bosonic elements implies [JL, JR] = 0. We will
revisit this point when we see how that is non-trivially realised in a particular representation.

We now elaborate on the functions dAB , which control how the left-handed and right-handed side of
our algebra interact with each other. The Jacobi identities involving JA, JB , pB give us restrictions for
dAB (A 6= B)

0 = [JL, [JR, pR]] − [JR, [JL, pR]] + [pR, [JL, JR]]

= [JL, iHR] − [JR, iHLdLR] , (4.3.3)
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where we used the argument above to assume the pure-boost commutators to vanish. This, after evalu-
ating the commutators, gives us:17

− iHL[JR, dLR] + HRdRLΦLdLR = HLdLRΦR . (4.3.4)

Of course, there are more equations for the dAB given by additional Jacobi identities generated, such as:

[JL, [JR,HR]] = [JR, [JL,HR]] ,

[JL,HRΦR] = [JR,HLdLRΦR] ,

[JL,HR]ΦR + HR[JL,ΦR] = [JR,HLdLR]ΦR + HLdLR[JR,ΦR] ,

HLdLRΦ2
R = −iHL[JR, dLR]ΦR + HRdRLΦLΦRdLR , (4.3.5)

and their L ↔ R exchanges. As an example, the last equation of the above was obtained the following
way: Starting with the third equation, i.e.

[JL,HR]ΦR + HR[JL,ΦR] = [JR,HLdLR]ΦR + HLdLR[JR,ΦR]

= [JR,HLdLR]ΦR + HR[JL,ΦR] , (4.3.6)

and noting the following relation

HL[JR,HL] = HRdRL[JL,HL] = iHRdRLHLΦL , (4.3.7)

we can show that:

[JL,HR]ΦR + ������:cancels
HR[JL,ΦR] = [JR,HL]dLRΦR + HL[JR, dLR]ΦR +

��������:cancels
HLdLR[JR,ΦR] ,

(4.3.8)

leaving us with:

[JL,HR]︸ ︷︷ ︸
=iHLdLRΦR

ΦR = [JR,HL]︸ ︷︷ ︸
=iHRdRLΦL

dLRΦR + HL[JR, dLR]ΦR , (4.3.9)

giving us the wanted relation. However, all these relations above do not add any further restrictions on
our first Jacobi identity, so it suffices to consider (4.3.4).

(4.3.4) gives us the guideline to find the different solutions for dAB , and we can see five distinct ones
right away: A first solution is the trivial case dAB = 0. A second solution is dRL = 0 and dLR = ζHR,
and a third solution is obtained from the second one by swapping handedness, where ζ is assumed to
be a constant with respect to the momentum. The remaining two solutions are given by dAB = 1 and
dAB = −1.

Let us now check more thoroughly to see if there is any other possibility. For this, we will start by
showing that any possible solution for dAB has to fall into one of two categories: either dLRdRL = 1, or
at least one of the functions dLR = 0 is vanishing. To see this, we need to analyse the the equation

dLRdRL(1 − dLRdRL)(HLΦR − dRLΦLHR) = 0 , (4.3.10)

as well as its handedness-swap. To derive them, one starts by considering the Leibniz rule, i.e.

[JR, dLRdRL] = [JR, dLR]dRL + dLR[JR, dRL] . (4.3.11)
17For this, as well as for the equation before, we are using the following relations:

[JL,HL] = iHLΦL , [JR,HR] = iHRΦR , [JR,HL] = iHRdRLΦL , [JL,HR] = iHLdLRΦR .
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For the next step, it is in this context prudent to remember that the action of the boost operator on dRL

and its handedness-swap was consistently found using Jacobi identities, but is not initially covered by
(4.3.2), and we need to impose this to be the case for mathematical coherence. Similarly, we also need
to impose the equations

HL[JR, dRL] = dRLHR[JL, dRL] ,

HL[JR, dLRdRL] = dRLHR[JL, dLRdRL] , (4.3.12)

which is just an extension of the already imposed (4.3.2) to the d-algebra ingredients above. These
equations can then, with a little bit of algebra, be combined: Multiplying (4.3.11) with −iHL, we get

−iHL[JR, dLRdRL] = −iHL[JR, dLR]dRL︸ ︷︷ ︸
1©

−iHLdLR[JR, dRL]︸ ︷︷ ︸
2©

. (4.3.13)

The term 1© can be easily evaluated by (4.3.4) directly, while for the term 2© we need a handedness-swap
of (4.3.4), i.e.

−iHR[JL, dRL] + HLdLRΦRdRL = HRdRLΦL , (4.3.14)

together with the first equation in (4.3.12) in order to get the wanted handedness of the boost generator
and indices of the d, giving us in total

−iHL[JR, dLRdRL] = dLRdRLHLΦR(1 − dLRdRL) , (4.3.15)

and similarly for its handedness-swap. By the second equation of (4.3.12), we know that HL[JR, dLRdRL]−
dRLHR[JL, dLRdRL] = 0, which when evaluated leads us to the equation

dLRdRL(1 − dLRdRL)︸ ︷︷ ︸
1

(HLΦR − dRLΦLHR)︸ ︷︷ ︸
2

= 0 , (4.3.16)

and the analogous equation for the handedness-swap. As we are operating in an integral domain, we can
look at the factors 1 , 2 separately. The above consistency conditions can be simultaneously fulfilled
for dLR = 0, dRL = 0 or (1 − dLRdRL) = 0 if we require the vanishing of 1 . One can show that no
further solutions for dAB come from requiring simultaneously

HLΦRdRL − HRΦL = 0 ,

HRΦLdLR − HLΦR = 0 , (4.3.17)

which would originate from assuming 1 6= 0: By taking e.g. the first equation in (4.3.17) and left-
multiplying them by dLR, we get:

HLΦRdRLdLR = HRΦLdLR
(∗)= HLΦR ⇒ dRLdLR = 1 , (4.3.18)

where we used the second equation of (4.3.17) after the equality (∗)= and always assume that d commute
with the central elements (and consequently, Φ). By the deduction that dRLdLR = 1, we proved our
initial claim that no further solutions arise.

So far we have found five solutions, and the defining equations are relatively transparent if we assume
one of the dAB to vanish. Let us see if there exist any other and less obvious cases that fulfil the condition
dLRdRL = 1. Then, the constraining equation reduces to

HL[JR, dLR] = iHLdLRΦR − iHRΦL . (4.3.19)
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We can now define an auxiliary d variable via dLR = d̂LRHR. Together with the above equation, we then
also have

−iHL[JR, dLR] = −iHLHR[JR, d̂LR] + HLHRd̂LRΦR = HLHRd̂LRΦR − HRΦL . (4.3.20)

Therefore, iHL[JR, d̂LR] = ΦL notably simplifying the constraint. Using Jacobi identities or Leibniz
rules, one can then also prove that dLRHL is central with respect to all elements of the algebra including
the boosts,

HR[JL, d̂LRHL] = HR[JL, d̂LR]HL + HRd̂LR[JL,HL] = d̂LRHL[JR, d̂LR]HL + iHRd̂LRHLΦL

= −id̂LRHRΦLHL + iHRd̂LRHLΦL = 0 . (4.3.21)

From this centrality property, we deduce that d̂LRHL needs to be proportional to the identity, with a
proportionality constant we shall call ζ ∈ C. This then gives us the relation,

HLdLR = ζHR , (4.3.22)

which constitutes another solution. This is leaving us with six possible solutions, which we classify as:

separable algebras =


Bs

1 : dAB = 0

Bs
2 : dLR = 0 and dRL = ζHL

Bs
2̄ : dRL = 0 and dLR = ζHR

differential algebras =


Bd

1 : dAB = +1

Bd
1̄ : dAB = −1

Bd
2 : HLdLR = ζHR

.

This is a nomenclature that lends itself to our situation nicely, separable and differential, but we shall
go into more detail on that in due time.18

Before delving into all of these algebras, and in spite of the fact that we want to lay our focus on
a representation-independent analysis, we shall describe in greater detail what is arguably the most
important representation of our algebra - the differential representation:

JA = iHA
d

dpA
. (4.3.23)

The differential is to be understood like a material derivative e.g. from fluid mechanics, in the sense that

d

dpR
= ∂

∂pR
+ dpL
dpR

∂

∂pL
. (4.3.24)

dAB , P and K depend explicitly on both momenta, for which this representation is convenient. Thinking
of the boost as some kind of decorated derivative, we can understand

ΦA = H′A = dHA
dpA

, (4.3.25)

and dLR and dRL as nothing but momentum derivatives of generators. In addition, dAB assume the rôle
of Jacobians. In this sense, we can also display the material derivative nature of the boost as

d

dpR
= ∂

∂pR
+ dRL

∂

∂pL
. (4.3.26)

18While the Bd
2 can consistently be formulated for any value of ζ ∈ C, for it to be a true differential algebra, we need to

impose ζ2 = 1.
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In this representation, we can also write our postulated starting equation in (4.3.4) and its L ↔ R

symmetric as

HLHR
ddLR
dpR

= (HLΦR − HRΦLdRL) dLR , HLHR
ddRL
dpL

= (HRΦL − HLΦRdLR) dRL . (4.3.27)

The six solutions naturally acquire an induced representation in this way. Bs
1 is the case where pR and

pL are independent of each other. Bs
2 and Bs

2̄ imply instead pR = ±pL and HR(pR = ±pL) = λHL, for
λ constant.

Furthermore, we can infer the algebraic action of the outer symmetry generators on the boost operator
within this differential framework, since it reduces to computing the action of the outer automorphisms
on HA, as e.g.

[tρ−, JL] = [tρ−, iHL
d

dpL
] = i[tρ−,HL] d

dpL
, (4.3.28)

and where we have [tρ−,HL] = P.
[JL, JR] should vanish in this representation too, as we generally stated, and we quickly want to

demonstrate that this is indeed the case. The differential representation for the boost features a material
derivative, and as dAB depends on the momenta pA, pB , [JL, JR] also features such derivatives, as for
example (with (4.3.25) in mind)

[JL, JR]
∣∣∣
∂L coeff.

= −HLHR(∂pL
dRL) − HLdLR(∂pR

HR)dRL − HLdLRHR(∂pR
dRL) + HRdRL(∂pL

HL),

(4.3.29)

which is exactly the right-hand equation (4.3.27) after expressing the material derivative in terms of
partial derivatives - and thus vanishes. Analogously, the vanishing of the ∂pR

coefficient can be proven
by a L ↔ R handedness exchange.

Above, we were able to see that a decisive difference of the material derivative with respect to the
ordinary (holonomic) partial derivatives is that two material derivatives might not commute due to the
possible momentum-dependence of dAB . However, this in turn is an essential ingredient for the vanishing
of [JL, JR] = 0.

The Different Algebras

We have established the six different solutions to our algebraic problem, and divided them into two
different categories: If (at least) one of the dAB vanishes, we are dealing with a separable algebra, and
differential if it fulfils the relation dABdBA = 1. We shall now examine more closely the cases we have
established.

Separable Algebras

We shall start our closer inspection with the Bs
1 case. The algebraic relations are as follows:

[JA, pA] = iHA , [JA,HA] = iHAΦA ,

[JL, pL] = HL , [JR, pR] = HR ,

[JA,QA] = ϕQAQA , [JA,SA] = ϕSASA ,

[JL, XR] = 0 , [JR, XL] = 0 ,

[JA,P] = ϕQAP , [JA,K] = ϕSAK , (4.3.30)

81



where XA is any generator with well-defined handedness A. In the language of the differential represen-
tation, we can see this case as pL and pR being wholly uncorrelated, making all Jacobians (and cross
commutators, by consequence) vanish.

In the first chapter, we spoke at length about the importance of dispersion relations. And as we
will see, the separation of this algebra is best explained when we assume relativistic H2

A = p2
A + m2.

Focusing on the bosonic part of our algebra spanned by boost generators, momentum generators and
energy generators, we see that this subalgebra reduces to a known finite-dimensional Lie algebra, as
pA = HAΦA. We then want to compare the case to the standard solvable Lie algebras of dimension 6,
and use the notation and classification of [Tur90] with basis choice

x1,2 = −iJL,R ,

n1,2 = HR,L − pR,L ,

n3,4 = HR,L + pR,L , (4.3.31)

where the ni span the nilradical (which in this case forms an abelian subalgebra) and the xi form
its algebraic complement (that itself does not form a subalgebra). Our algebra corresponds to Nαβγδ

6,1

with α = δ = 0 and β = γ = −1 in the notation of [Tur90]. Nαβγδ
6,1 , however, is indecomposable for

γ2 + δ2 6= 0 and αβ 6= 0, which is not our case and implies that our algebra corresponds to a direct
sum of the 3-dimensional left-handed and right-handed sides. For HAΦA ∝ [pA]q, this is the case as
well, which corresponds to the magnonic dispersion relation by selecting a particular value of q, i.e.
H2
A = h2

A sin2 pA

2 +m2 with hA a constant, as we’ve already elaborated on in the motivation.
As mixed-handed commutators vanish in Bs

1, the functions ϕQA and ϕSA (as defined in (4.1.1)) in this
setting can be constrained more straightforwardly. The algebraic relations (4.3.30) together with 4.1.2
constrain the expressions for the central elements:

iKPΦA = K
(
ϕQAP

)
+ P

(
ϕSAK

)
= [JA,P] + [JA,K] , (4.3.32)

since ΦA depends on pA only, while P and K can depend on both momenta. However, the Jacobi identity
involving two boosts of different handednesses and one supercharge gives the restriction

[JA, ϕQB ] = [JA, ϕSB ] = 0 , (4.3.33)

for A 6= B. Assuming we can write the boost to be proportional to a derivative of the momentum, this
can be interpreted as the functions ϕSA and ϕQA only depending on the momentum pA. This forces the
central elements to be separable in the momenta, i.e. P = PRPL and K = KRKL. In the differential
representation of the boost, this is immediate:

iHA
d

dpA
P = [JA,P] = ϕQAP =⇒ i

d

dpA
logP = H−1

A ϕQA︸ ︷︷ ︸
only depends on pA

. (4.3.34)

The same argument can be made without referring to this assumption, as (4.3.33) still holds since the
adjoint action of JA only vanishes on pA-independent elements because of dAB = 0. Thus, the same
argument follows as JA vanishes on P−1[JB ,P] for A 6= B.

Sadly, the central elements in AdS3 physics are ∝ sin(pL+pR

4 ), thus the Bs
1 algebra is not suitable for

any serious application in this regard.
For the Bs

2 algebra, we can see that this case can be transformed back to the Bs
1 algebra by redefining

one of the boosts in terms of the Bs
1-boosts J0

A

ĴR = J0
R − ζHRJ

0
L , (4.3.35)
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so all of the reasoning applies here with minimal changes. Similarly can be done for the Bs
2̄ with the

redefinition
ĴL = J0

L − ζHLJ
0
R . (4.3.36)

In all of the Bs algebras, it is fairly easy to see that [JA, JB ] = 0, as mixed commutators vanish for the
“maternal” Bs

1 algebra.

The Bd
1,1̄ algebras

From the differential perspective, dAB = ±1 implies that we have either pL = pR or pL = −pR.
This means that either the two copies built on each su(1|1) are exactly the same or one is the parity-
transformed of the other. This solution only exists provided

HR [pR(pL)] = dLR
hR
hL

HL(pL) , (4.3.37)

with hA constants such that sign(dAB hB

hA
) = +1, as can be easily understood in the framework of the

differential representation. After performing the identifications (4.3.37), the algebra can be simplified to

{QA,SA} = HA , [JA, pA] = iHA , [JA,HA] = iHAΦA ,

[JA,QA] = ϕQAQA , [JA,SA] = ϕSASA ,

{QL,QR} = P , {SL,SR} = K ,

hA[JB ,P] =
(
hLϕ

Q
R + hRϕ

Q
L

)
P , hA[JB ,K] =

(
hLϕ

S
R + hRϕ

S
L

)
K ,

[JA, XB ] = hA
hB

[JB , XB ] , (4.3.38)

with A,B = L,R, A 6= B, and X being any generator with well-defined handedness. Here, we explicitly
have made use of hAHB = dABhBHA. The above relations also imply [JL, JR] = 0, as JL and JR also
coincide for dAB = ±1.

Once more, concentrating on the 6-dimensional algebra formed by the bosonic generators JA, HA and pA
with relativistic dispersion relation H2

A = p2
A+m2, it is now reduced to a 5-dimensional algebra by iden-

tifying HR = HL = H. We find that this algebra has a 2-dimensional centre spanned by the generators
pL ∓ pR and JL − JR. In the algebra of Bd

1, the remaining 3-dimensional algebra obtained after we
mod-out the centre is the following:[

JL + JR
2

,
pL + pR

2
± H

]
= ±

(
pL + pR

2
± H

)
, (4.3.39)

which correspond to one of the four irreducible 3-dimensional solvable algebras presented in [dG05]. This
construction can be extended to different dispersion relations, thanks to the restriction HR = HL, which
keeps pL ∓ pR and JL − JR as central elements.

Differential Representation

Let us briefly examine the differential representation for the Bd
1 algebra. We are going to choose the

following particular dependence on the momenta for the central generators, motivated by the AdS3

setting:

HL = hL

∣∣∣∣ sin pL2
∣∣∣∣1 , HR = dLR hR

∣∣∣∣ sin pR2
∣∣∣∣1 , K ∝ P ∝

∣∣∣∣ sin(pL + dLRpR
4

) ∣∣∣∣1 , (4.3.40)
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where 1 is the identity matrix in 1|1-dimensional space, and hL and hR are positive constants.19 More-
over, we set the two boost to be equal up to a multiplicative factor hRJL ≡ hLJR, which is consistent with
the constraints imposed by the Jacobi identities specialised to the algebra in question. This, together
with the constraint pL = ±pR, also implies dLRhRHL = hLHR for this representational setting.

We shall now assume that pL ≡ pR ≡ p > 0, in order to simplify the expressions that have absolute
values - this is without loss of generality. The supercharges can be rescaled by setting ϕQ = ϕS , and
thus:

[JA,QB ] = iΦA
2

QB , (4.3.41)

[JA,SB ] = iΦA
2

SB , (4.3.42)

for arbitrary A,B. We now want to redefine our supercharges in such a way that their momentum
dependence can be viewed separately to their purely algebraic features, by:

QL =
√
αhL sin p

2
Q̂L , QR =

√
βhR sin p

2
Q̂R ,

SL =
√
hL
α

sin p
2
ŜL , SR =

√
hR
β

sin p
2
ŜR , (4.3.43)

where α and β are real numbers and {Q̂L, ŜL} = {Q̂R, ŜR} = 1 as a consequence of the algebraic relation
for HA. For the other two central elements P and K, we can proceed with the same motivation and see

P =
∣∣∣∣hLhRαβ∣∣∣∣ sin p2 P̂ , K =

∣∣∣∣hLhR 1
αβ

∣∣∣∣ sin p2K̂ . (4.3.44)

Using the fermionic anticommutation relations and the fact that P̂ , K̂ ∝ 1 from centrality, we can find
constants γ and η such that we can write

{Q̂L, Q̂R} = P̂ = γ1 , {ŜL, ŜR} = K̂ = η1 . (4.3.45)

We can set one of the parameters, e.g. γ, to be equal to 1 by redefining Q̂A → 1√
γ Q̂A and ŜA → √

γŜA,
however, there is no way to simultaneously be able to set η = 1 and γ = 1. Recalling the anticommutation
relations of our algebra, one can see that η is connected to the shortening condition: More concretely,
η = 1 is a precondition for the representation to be short. Letting η thus be unconstrained, the hatted
quantities give rise to the following relations for any values of x and y:

{(1 + xη)Q̂L − (1 + x)ŜR, xŜL + Q̂R} = 0 , (4.3.46)

{yQ̂L + ŜR, (y + 1)ŜL − (y + η)Q̂R} = 0 . (4.3.47)

Therefore, the relevant relations in this representation are:20[
JL + JR,

pL + pR
2

]
= HL + HR , [JL + JR,HL + HR] = i(HL + HR)(ΦL + ΦR) ,

{Q̂L, ŜL} = {Q̂R, ŜR} = {Q̂L, Q̂R} = η−1{ŜL, ŜR} = 1 , (4.3.48)

which constitutes a complete separation of the su(1|1) algebra from the modified Poincaré algebra, as
we initially expected. η here is chosen such that the anti-commutation relations can be normalized in
this way, making α and β obsolete.

19hL +hR is usually identified as a coupling constant appearing in the dispersion relation of the fundamental excitations
in the context of the AdS3/CFT2 duality.

20We could just as well state the algebra without reference to handedness for this particular case.
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The Bd
2 algebra

Using our paramount equation (4.3.2) for the Bd
2 algebra, we arrive at:

[JA, XB ] =
(
ζ + (1 − ζ)dAB

)
[JB , XB ] , (4.3.49)

for any generator X and any A,B. No linear combination of pL and pR is central, thus our momentum
centre is empty. However, we can construct the boost operators JL and JR of this algebra from J0

L and
J0
R from the Bs

1 algebra by making the following identifications:

JL = J0
L + ζJ0

R ,

JR = J0
R + ζJ0

L . (4.3.50)

The above also implies [JL, JR] = 0, as we can just re-express [JL, JR] in terms of [J0
L, J

0
R] = 0.

We shall omit the discussion of the differential representation for this algebra, as it follows from the
considerations that we have already made in this regard.

4.4 The Coproduct Map for the Boost Operator for the Bd
1,1̄

Algebras
In the previous chapter within the framework of the 1 + 1-dimensional short representation, we have
already acquainted ourselves with the intricacies and non-trivial structure that arise when trying to
construct and understand the coproduct of the boost. In this chapter, we shall do the same from a
representation-independent point of view. As we will see, we have to go beyond the elements of our
algebra in our construction, and we have to make use of elements of the GL(2)2 outer automorphism
generators of su(1|1)2

c.e.. This is in analogy to what has been observed in [Hec18], but in the study of
the universal R-matrix of psu(2|2)c.e. of the AdS5 scattering problem. There, it also was found that it
is essential to utilise the generators associated to the outer automorphisms, which are dual in the sense
of the non-degenerate Killing form to the central elements.

4.4.1 The Braided Energy Coproduct Case

In the case of our energy coproduct being braided, we start off with the ansatz

∆SL = SL ⊗ eipL/4 + e−ipL/4 ⊗ SL , ∆QL = QL ⊗ eipL/4 + e−ipL/4 ⊗ QL , (4.4.1)

with similar coproducts for the right supercharges, with pL substituted by ±pR. From this, our central
elements are forced to take the form

HL ∝
∣∣∣∣eipL/2 − e−ipL/2

∣∣∣∣1 HR ∝
∣∣∣∣eipR/2 − e−ipR/2

∣∣∣∣1 ,

P ∝ K ∝
(
ei(pL±pR)/4 − e−i(pL±pR)/4)1 , (4.4.2)

where the ± corresponds to the sign of the respective R-handed coproduct choice. These constraints are
due to the fact that central generators of the algebra need to be of cocommutative form.

In each of our algebras, we face different challenges regarding the coproduct prescription. In Bs
1, P

and K need to be separable to be consistent, while the coproduct imposes them to be a trigonometric
function of the sum or difference of the two momenta. These two restrictions together make the situation a
bit intricate, but a simple way to simultaneously accommodate for them is to set them to zero and consider
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the algebra dAB = 0 as separate su(1|1) algebras. Furthermore, we run into trouble for pL ± pR = 0,
but this is just a consequence of ∆P and ∆K becoming trivial in such cases, therefore eliminating the
restriction that allowed to fix them, as we will see later.

Looking where we came from, in the setting of the representation in the previous chapter with Bd
1

and SR ≡ QL,SL ≡ QR, we had

∆J = ∆0J + e−
i
4p ⊗ e

i
4p

4
[S ⊗ Q + Q ⊗ S] , (4.4.3)

where the derivative part is given by ∆0J = JA ⊗ cos p2 + cos p2 ⊗ JA.
This map did its job within the borders of the short representation, but for a generic representation,

the following, unfortunately, does not vanish any more

[(SL ⊗ QL + QL ⊗ SL) ,∆QR] = e−
i
4pRSL ⊗ P + P ⊗ e

i
4pRSL . (4.4.4)

However, when computing the commutator of a coproduct of the boost with ∆QR, we would want
the terms involving SL to disappear completely. Unfortunately, no matter how creative we try to be
with the tools and ingredients provided to us from within the algebra su(1|1)2, we cannot find a remedy
for this. Thus, we need to go beyond that: We need to make use of the outer automorphisms to get rid
of the unwanted contributions:

tailL = SL ⊗ QL + QL ⊗ SL − αR
(
P ⊗ tρ+ + K ⊗ tλ+

)
− βR

(
tρ+ ⊗ P + tλ+ ⊗ K

)
, (4.4.5)

where αA = −e i
4pA ⊗ e

i
4pA and βA = e−

i
4pA ⊗ e−

i
4pA . Now, the situation seems to be rectified: The

commutators with all the labelled R fermionic generators vanish and the commutator with L fermionic
generators, which were already zero, are not modified. For the right-handed copy of the algebra, we can
similarly write:

tailR = SR ⊗ QR + QR ⊗ SR − αL
(
P ⊗ tλ− + K ⊗ tρ−

)
− βL

(
tA− ⊗ P + tρ− ⊗ K

)
. (4.4.6)

This expression commutes with the two labelled L fermionic generators, and the two ingredients we just
introduced will form a centrepiece in our tactic to tackle to problem of the dAB = ±1 construction.

The Bs
1 Algebra

The Bs
1 algebra will be our first focus point, as the restriction P = K = 0 completely separates the

two algebras. This makes our job easier: We can just consider equation 4.4.3 and write the appropriate
subindices. Mostly for purposes that will be clear later, we will upgrade the fermionic tail with the
expressions we wrote above even though the new terms give no contribution for the case at hand:

∆JL(dAB = 0) = ∆0JL(dAB = 0) + e−ip/4 ⊗ eip/4

4
tailL ,

∆JR(dAB = 0) = ∆0JR(dAB = 0) + e−ip/4 ⊗ eip/4

4
tailR . (4.4.7)

The Bd
1 Algebra

Let us now focus on the Bd
1 algebra. By the identifications that the algebra allows us to make, we

can set JL = JR = J, then, the action of J is perfectly analogous to what the action of JL + JR is
in the case where dLR = dRL = 0, which we just discussed. At the level of the algebra, this relation
is unproblematic. At the level of the Hopf algebra, the situation changes: The dLR = dRL = 0 case
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exhibits problems between coproducts and the constraint of the central elements, so we are forced to set
the latter to zero. However, if we want to draw some parallels between how the boost operators act for
the different values of dAB rather than redevelop all ingredients and tools for each algebraic case from
scratch, the upgraded tails we used in equation (4.4.7) are necessary. One needs to be aware that by
simply adding two dLR = dRL = 0 boost coproducts (or boost coproducts of any kind, for that matter),
the derivative term would appear twice, hence it is necessary to subtract the so-obtained result by one
∆0J. This happens because at the end we have to identify pL = pR, which makes it appear twofold.
Therefore, the combination of generators that makes the coproduct map a homomorphism and that
reduces to the correct expression for the short representation is

∆J(dAB = 1) = ∆JL(dAB = 0) + ∆JR(dAB = 0) − ∆0J , (4.4.8)

∆J = ∆0J + tailL + tailR = ∆0J + e−
i
4p ⊗ e

i
4p

4
{SL ⊗ QL + QL ⊗ SL + SR ⊗ QR + QR ⊗ SR

−α
[
P ⊗ (tρ+ + tλ−) + K ⊗ (tλ+ + tρ−)

]
− β

[
(tρ+ + tλ−) ⊗ P + (tλ+ + tρ−) ⊗ K

]}
. (4.4.9)

To illustrate that this does indeed render the results of the 1 + 1-dimensional short representation
once this representation is chosen, we shall make things more explicit. This representation is poten-
tially problematic as not all the outer automorphism generators are well-defined there, however, the
identification P ≡ HA ≡ K gives us

∆J = ∆0J + e−
i
4p ⊗ e

i
4p

4
[2S ⊗ Q + 2Q ⊗ S − αH ⊗ T − βT ⊗ H] , (4.4.10)

with T = tλ+ + tλ− + tρ+ + tρ−, which is well-defined in this representation. Indeed, we can easily see that
[T,Q] = Q and [T,S] = S, which implies that

[2S ⊗ Q + 2Q ⊗ S − αH ⊗ T − βT ⊗ H,∆X] = [S ⊗ Q + Q ⊗ S,∆X] , (4.4.11)

for either X = Q or S. Thus, our coproduct map for the boost for the dLR = dRL = 1 reduces to the
appropriate one in this representation, which supports that our result is indeed correct.

The Bd
1̄ Algebra

In the Bd
1̄ algebra, (4.4.2) appears to fix two of the central elements to be trivial in this case, by virtue

of how the momenta are correlated. However, this is not true as the coproduct structure allows us more
freedom as the central elements P and K, compared to the Bs

1 case, now fulfil

∆P = P ⊗ 1 + 1 ⊗ P ,

∆K = K ⊗ 1 + 1 ⊗ K . (4.4.12)

Then, we can fix the four central elements to be

HL ∝ HR ∝ P ∝ K ∝ (eip/2 − e−ip/2)1 , (4.4.13)

and a similar approach to the Bs
1 algebra can be used.

4.4.2 The Unbraided Energy Coproduct Case

The bosonically unbraided coproduct is defined by the following choice of coproducts for the fermionic
generators 21

∆QA = QA ⊗ ei
p
4 + e−i

p
4 ⊗ QA ,

21Of course, there are many equivalent coproduct choices to choose from, we choose the most natural one.
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∆SA = SA ⊗ e−i
p
4 + ei

p
4 ⊗ SA . (4.4.14)

In contrast with the bosonically braided case, here the coproduct of the boost also involves the hyper-
charge operator, as we have already seen in the short representation (thus the universal expression must
account for that, also). In order to construct an analogous expression to tailA for this case, we also
need to substitute any B operator present in the tail of ∆JA by another operator that acts as the usual
hypercharge on A-handed operators, whereas they would have to vanish on operators with the opposite
handedness. We call these operators BA and they can be written in terms of the outer automorphisms
generators as

−iBR = tλ0 − tρ0 − tλ3 − tρ3 ,

−iBL = tλ0 − tρ0 + tλ3 + tρ3 , (4.4.15)

which allows us to write

tailL =G [BL ⊗ 1 − 1 ⊗ BL] + F+
[
SL ⊗ QL − βRt

ρ
+ ⊗ P + βRK ⊗ tλ+

]
+ F−

[
QL ⊗ SL − αRP ⊗ tρ+ + αRt

λ
+ ⊗ K

]
, (4.4.16)

tailR =G [BR ⊗ 1 − 1 ⊗ BR] + F+
[
QR ⊗ SR + αLt

ρ
− ⊗ K − αLP ⊗ tλ−

]
+ F−

[
SR ⊗ QR + βLK ⊗ tρ− − βLt

λ
− ⊗ P

]
, (4.4.17)

where G,F± are suitable functions of the momenta and we once more have αA = −e i
4pA ⊗ e

i
4pA and

βA = e−
i
4pA ⊗ e−

i
4pA .

Having constructed the tailA-equivalent for this fermionic coproduct, we can follow the prescription
we used above, giving us

∆JL(dAB = 0) =∆0JL(dAB = 0) + tailL , ∆JR(dAB = 0) = ∆0JR(dAB = 0) + tailR , (4.4.18)

∆J(dAB = 1) =∆JL(dAB = 0) + ∆JR(dAB = 0) − ∆0J

=∆0J +G (B ⊗ 1 − 1 ⊗ B)

+ F+
(
SL ⊗ QL + QR ⊗ SR − β

(
tρ+ ⊗ P − K ⊗ tλ+

)
− α

(
P ⊗ tλ− − tρ− ⊗ K

))
+ F−

(
QL ⊗ SL + SR ⊗ QR − α

(
P ⊗ tρ+ − tλ+ ⊗ K

)
− β

(
tλ− ⊗ P − K ⊗ tρ−

))
,

(4.4.19)

keeping in mind that we have imposed the identifications pL = pR ≡ p as well as BR + BL = B.
With this, we have analysed all the pertinent cases and can conclude this line of investigation.
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5 | Deformed AdS3 in the
Landau-Lifshitz Limit

“Es gibt zwei Arten, sein Leben zu leben: entweder so, als wäre nichts ein Wunder, oder so, als
wäre alles ein Wunder.” [“There are only two ways to live your life. One is as though nothing
is a miracle. The other is as though everything is a miracle.”]

– Albert Einstein

5.1 The Setting
As was alluded to in the introductory part of this thesis, the powerful tools of integrability have been
astoundingly effective and successful in the setting of AdS5 × S5, and more recently also within the
AdS3 × S3 ×M4 context (we want to cite [BAA+11] for an extensive review on the former). Given this
amazing track record, it makes sense to, when looking for specific backgrounds to study, look out for
integrability as a feature. One approach to this is to study novel backgrounds with the somewhat starry-
eyed hope that they can be proven to be integrable - in the sense that the generated physical theory is
integrable - thus having the powerful integrability toolset at one’s disposal. However, in the totality of
all possible backgrounds to study, integrability is likely to be a rare occurrence, unfortunately (see e.g.
[MM74]). A more prudent course of action is to pick a starting point, i.e. an integrable background, that
we already analysed and see if we can change it into something new that still exhibits the initial features
that we want it to preserve. Following the previous chapters of this thesis, this is a roundabout way of
saying that we want to deform a background in an integrable way. A methodological way of tackling this
is needed, and has been done (see [Kli02], and then [DMV13], [DMV14], [KMY14b], [KMY14a]) - leading
to so-called Yang-Baxter deformed backgrounds. In contrast to the AdS5 setting, the AdS3×S3×T 4 space
admits two independent Yang-Baxter deformations, meaning that two a priori independent deformation
parameters appear in the model.1 Additionally, the AdS3 ×S3 ×T 4 background is supported by both an
RR and an NS-NS flux, which yield an additional deformation parameter (and, like the YB deformations,
is integrable [CZ12]). Since both of these ways of deforming an AdS3×S3×T 4 background do not depend
on one another, we may hope they can also be applied in tandem, leading to an integrable background
that is deformed in a three-fold way. This is indeed the case (see e.g. [DHK+19]), and we shall refer to
backgrounds deformed in this particular way as 3-deformed.2 It is this setting that we will delve into
with our analysis that is to follow based on our publication [GW21].

1This is due to the (super)coset structure of the embedded superbackground for AdS3 × S3 × T 4, see the introductory
chapter for details.

2In this exposition of these backgrounds, we will refrain from addressing the question of whether they are suitable
supergravity backgrounds. This discussion involves a lot of subtleties, such as the particular and inequivalent fermionic
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5.2 The three-deformed R × S3 action in the Landau-Lifshitz
Limit

We already stated the (bosonic) Polyakov action before, this time however, we add the so-called Kalb-
Ramond term to it,

S =
√
λ

4π

∫
dτ

∫
dσ
(√

− det γγαβ∂αXµ∂βX
νgµν + ϵαβ∂αX

µ∂βX
νBµν

)
, (5.2.1)

where we re-expressed the string tension using a rescaled parameter λ, γ is the worldsheet metric, g
the target space metric and B the Kalb-Ramond field. We shall always stick to choosing α, β, · · · as
worldsheet coordinate labels, and µ, ν, · · · as target space coordinate labels. Abbreviating worldsheet
coordinate derivatives, we shall refer to τ -derivatives of a quantity x as ẋ, and σ-derivatives as x′. Since
B is a two-form, we need to introduce the completely alternating tensor symbol ϵ, where we choose the
convention

ϵτσ = −ϵστ = 1. (5.2.2)

The metric and B-field we are interested in, g and B, written as infinitesimal form elements, appear in
the following way:

ds2 = 1
FA

[ 1 − q2ρ2(1 + ρ2)
1 + ρ2 dρ2 − 2qχ−ρ(1 + ρ2) dρ dt+ 2qχ+ρ

3 dρ dψ

−
(
1 + χ2

−(1 + ρ2)
)
(1 + ρ2) dt2 + 2χ+χ−ρ

2(1 + ρ2) dt dψ + ρ2(1 − ρ2χ2
+) dψ2

]
,

+ 1
FS

[ 1 + q2r2(1 − r2)
1 − r2 dr2 − 2qχ−r(1 − r2) dr dϕ1 − 2qχ+r

3 dr dϕ2

+
(
1 + χ2

−(1 − r2)
)
(1 − r2) dϕ2

1 + 2χ+χ−r
2(1 − r2) dϕ1 dϕ2 + r2(1 + χ2

+r
2) dϕ2

2

]
, (5.2.3)

dB = − a q

FA
(1 + ρ2)

[
2 − ρ2q2 − (2 + ρ2)χ2

− − ρ2χ2
+

]
dt ∧ dψ

− a q

FS
(1 − r2)

[
2 + r2q2 + (r2 − 2)χ2

− + r2χ2
+

]
dϕ1 ∧ dϕ2 , (5.2.4)

where

FA = 1 − χ2
+ρ

2 + χ2
−(1 + ρ2) − q2ρ2(1 + ρ2) , (5.2.5)

FS = 1 + χ2
+r

2 + χ2
−(1 − r2) + q2r2(1 − r2) , (5.2.6)

a = 1√(
q2 + χ2

+ + χ2
−
)2 + 4

(
q2 − χ2

+χ
2
−
) . (5.2.7)

Here, {t, ρ, ψ} are the coordinates of the AdS3 part, whereas {r, ϕ1, ϕ2} are the ones of the S3. χ±

are the deformation parameters originating from the two-fold YB deformation, and q the one from the
flux-based deformation.

In any study of a classical Lagrangian, looking for conserved charges from the beginning might
simplify the analysis to follow. In our case, four of the coordinates, Q = {t, ψ, ϕ1, ϕ2}, are cyclical, and
translations in these variables leave the action invariant, thus quantities of the form ∂L

∂q̇i
are constant for

any q ∈ Q.3 The conserved charges associated to shifts in angles are associated with angular momenta
(S, J1, J2), whereas shifts in time as usual correspond to conservation of the energy E.
Dynkin diagram one chooses at the foundation of the YB deformation (for both the two-fold and one-fold case, see [Sei19]
and [HS19], respectively) and properties such as unimodularity.

3This assumption is correct only if the equations of motion are of Euler-Lagrange form.
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Computing these conserved charges (as well as defining calligraphic analogues that are normalised
by

√
λ), we arrive at the following expressions: 4

E =
√
λE

=
√
λ

2π

∫ 2π

0

dσ

FA

{
qχ−ρ(1 + ρ2)ρ̇− χ−χ+ρ

2(1 + ρ2)ψ̇ + [1 + χ2
−(1 + ρ2)](1 + ρ2)ṫ

− aq(1 + ρ2)[2 − ρ2q2 − (2 + ρ2)χ2
− − ρ2χ2

+]ψ′
}
, (5.2.8)

S =
√
λS

=
√
λ

2π

∫ 2π

0

dσ

FA

{
− qχ+ρ

3ρ̇− χ−χ+ρ
2(1 + ρ2)ṫ− ρ2(1 − ρ2χ2

+)ψ̇

− aq(1 + ρ2)[2 − ρ2q2 − (2 + ρ2)χ2
− − ρ2χ2

+]t′
}
, (5.2.9)

J1 =
√
λJ1

=
√
λ

2π

∫ 2π

0

dσ

FS

{
− [1 + χ2

−(1 − r2)](1 − r2)ϕ̇1 − χ+χ−r
2(1 − r2)ϕ̇2 + qχ−r(1 − r2)ṙ

− aq(1 − r2)[2 + r2q2 + (r2 − 2)χ2
− + r2χ2

+]ϕ′2
}
, (5.2.10)

J2 =
√
λJ2

=
√
λ

2π

∫ 2π

0

dσ

FS

{
− r2(1 + χ2

+r
2)ϕ̇2 − χ+χ−r

2(1 − r2)ϕ̇1 + qχ+r
3ṙ

+ aq(1 − r2)[2 + r2q2 + (r2 − 2)χ2
− + r2χ2

+]ϕ′1
}
. (5.2.11)

We have already mentioned that the T 4 coset factor will not carry any dynamics in our case, there is
another simplification we are going to make: We want to truncate the AdS3 factor by setting ρ → 0,
heavily simplifying our metric.5 Thus, the only coordinate from the AdS3 part surviving is the time,
contributing with a −dt2 factor in the metric. This reduces the dynamical part of our product manifold
to R × S3 ⊂AdS3 × S3 × T 4.

In this study, we want to analyse the S-matrix that arises from the 3-deformed model. This action,
rich and intricate as it may be, is too complicated still to analyse in the detail we would like to (see
[BMSS20]). Therefore, we will choose an approach that makes physical quantities more computationally
accessible - by constructing an effective field theory associated to it. For the case of AdS5 ×S5, although
less rich in deformations, this has already been done in a particular way (see e.g. [ST04] or [KRT04] for
related work) that we shall try to imitate called the Landau-Lifshitz limit, or LL-limit in short. In this
limit, one assumes the total angular momentum, i.e. J = J1 + J2, and string tension to be large. The
construction starts by defining the “fast” and “slow” coordinates of the theory, for instance given by
ϕ1 ∓ ϕ2 for us, respectively, and in the case of AdS5 × S5, the leading contribution essentially describes
a (classical) ferromagnet.

Before performing any expansion, there is an important topic to discuss. On the worldsheet side, the
metric γ is so far undetermined and to be constrained by the action as the other variables are. However,
due to our reparametrisation symmetry, we are allowed to pick any particular gauge. While - a priori
- the gauge choice should be irrelevant for any physical quantities we compute, it turns out that some
gauge choices are more apt than others for our expansion. The simplest and most natural choice of gauge

4Here, there was a typo in our original paper [GW21] in the definition of E.
5For this to be a consistent truncation, ρ = 0 needs to be an admissible solution to the (untruncated) equations of

motions of our model. Luckily, in our case this holds true, as one can check by evaluating the equations of motions for ρ.
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for γ is the conformal gauge, meaning

γαβ =

(
−1 0
0 1

)
, (5.2.12)

which heavily simplifies the metric part of the Polyakov action to

Sg =
√
λ

4π

∫
dτ

∫
dσ
(
−Ẋ · Ẋ +X ′ ·X ′

)
, (5.2.13)

where the ·-product signifies the implicit contraction with the (curved) target space metric, as it did
in the introduction. With the residual conformal diffeomorphism symmetry, we then would also choose
t = κτ , exhausting our full reparametrisation freedom, which also fixed E = κ and S = 0. The natural
expansion parameter within the conformal gauge is κ, however, we are interested in taking the limit of
large J (or J = J1 + J2, equivalently). To do so, we would need to make use of less trivial so-called
non-diagonal uniform gauge (see [KRT04] for the appearance of this in the AdS5 × S5 case), making
computational efforts more difficult and the procedure we described before inadmissible. However, we
are bound to make a curious finding: At leading order, the expansions in inverse powers of κ and J
agree (see (2.28) in [KRT04], where λ̃ ∝ κ−2):

λJ−2 = κ−2 + O(κ−4). (5.2.14)

This implies that it is pragmatic for us to simply expand the action in conformal gauge in inverse powers
of κ and limit our considerations to the leading order terms only. We will follow this approach for the
remainder of this chapter.

We have to identify some of the coordinate combinations to be fast and slow to then re-express our
Lagrangian accordingly. To this end, we introduce slow coordinates α, β and rewrite6

ϕ1 = κτ + α+ β ,

ϕ2 = κτ + α− β . (5.2.15)

In these coordinates, our Lagrangian takes the following form:

4π√
λ
FSL =

[
q2r2 (r2 − 1

)
− 1
] (
ṙ2 − r′

2
)

r2 − 1
+
(
1 − r2) [1 + χ2

−
(
1 − r2)] [(κ+ α̇+ β̇

)2 − (α′ + β′)2
]

− 2χ−χ+
(
r2 − 1

)
r2
[
(κ+ α̇)2 − β̇2 − α′

2 + β′
2
]

+ r2 (1 + χ2
+r

2) [(κ+ α̇− β̇
)2 − (α′ − β′)2

]
− 2aq

(
1 − r2) [r2 (χ2

+ − χ2
− + q2)+ 2χ2

− + 2
] [
β′ (κ+ α̇) − β̇α′

]
− κ2FS , (5.2.16)

where we can see (only) the lattermost term to originate from the time contribution from the AdS3 part.

5.2.1 Leading Order in κ

Rescaling τ → κτ and ∂τ → ∂τ

κ and expanding (5.2.16) in (inverse) powers of κ, we arrive at the
following:

L =
∑
k

L(k)

κn
,

6In the cited literature, it is common to first express the fast coordinates as u± β, and then later fix u = t− α, with u

exhibiting the fast behaviour. Given the static choice we made above, we shall express our coordinates in their final form
right away.
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L(j<2) = 0 ,

L(2) = r2(1 − r2) (χ+ − χ−)2 + q2

FS
, (5.2.17)

with odd orders in κ vanishing. We immediately are confronted with an issue: There are no time
derivatives appearing at leading order, i.e. in L(2), and only constant radius solutions would emerge from
this alone.

To arrive at the above expression, we have assumed that the deformation parameters χ± and q are
of order κ0. A priori, this assumption was only justified by convenience, but we now need to make an
adjustment to it: In the concrete case above, we want to “downgrade” the leading order contribution
to appear in L(0) only, where we encounter dynamics (τ -derivatives) for the first time. Performing the
rescaling

χ± → χ±
κ

,

q → q

κ
, (5.2.18)

would indeed produce the desired result. However, this assumption would give rise to a different problem:
Recall that the B-field term only appears with a factor of aq in front, then the above redefinition would
yield

aq ' 1
2
, (5.2.19)

where the above equality is true in the limit large κ. Instead, the redefinition

χ± → χ±
κ

,

q → q

κ3 , (5.2.20)

however, does the trick: The flux term appears now with a tunable parameter at leading order. If we
further disregard total derivative terms with respect to time of α in the Lagrangian (as they leave the
equations of motion invariant), we arrive at the following expression for the leading order Lagrangian:

L(0) = −2(1−2r2)β̇+ r′2

1 − r2 +α′2 +β′2 +2(1−2r2)α′β′+4q̃(1−r2)β′−(χ+ −χ−)2r2(1−r2)+O
(

1
κ2

)
,

(5.2.21)
where q̃ = q√

(χ2
+−χ2

−)2 . For the non-linear sigma model that we are studying, there exists an additional

set of constraints called the Virasoro constraints. In our gauge choice, they can be written as7

Ẋ ·X ′ = 0, (5.2.22)
1
2

(Ẋ2 +X ′
2) = 0. (5.2.23)

For our metric and fields, we arrive at:

[α′ + (1 − 2r2)β′]κ = O
(

1
κ

)
, (5.2.24)

r′2

1 − r2 − (χ+ − χ−)2r2(1 − r2) + 2[α̇+ (1 − 2r2)β̇] + (1 − 2r2)[α′2 + β′2] + 2α′β′ = O
(

1
κ2

)
.

(5.2.25)

7Here, the prefactor 1
2 is convention, as that is how it appears for the stress-energy tensor (which is the variation of the

action with respect to the metric) to vanish in the bosonic Polyakov framework.
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The former of the two equations implies α′ = −(1 − 2r2)β′ + O
( 1
κ2

)
, from which (5.2.21) yields upon

substitution:

L(0) = −2(1 − 2r2)β̇ + 4r2(1 − r2)β′2 + 4q̃(1 − r2)β′ + r′2

1 − r2 − (χ+ − χ−)2r2(1 − r2) + O
(

1
κ2

)
.

(5.2.26)

We have performed several limits and rescalings to our fields and Lagrangian, it might therefore be
prudent to have a sanity check available as to whether what we ended up with is still sensible. Indeed,
looking at the result of [KY14] in (2.28), which describes the leading-order action of a fast-moving string
in R × S3,

L = −1
4
κ2κ2 sin2 2θ + 2κ

[ ˙̃φ1 + cos 2θφ̇2
]

− θ́2 − sin2 2θφ́2
2 , (5.2.27)

we can identify the above with (5.2.26) with the identification of sin θ = r, helped by the fact that
then sin2 2θ = 4r2(1 − r2), cos 2θ = (1 − 2r2) and θ′2 = r′2

1−r2 , and recalling that we need to κ-rescale
τ -derivatives and the deformation parameter κ2κ2 = χ+, and that 2 ˙̃φ1 is a total time derivative.8

We now arrived at a Lagrangian that features two real fields (as we were able to completely eliminate
α), and ultimately, we would like to compute the S-matrix associated to it. In that light, it is more
useful to merge β and r into one single complex field via the definition:

ϕ =
√

1 − r2e2iβ ,

ϕ† =
√

1 − r2e−2iβ . (5.2.28)

Re-expressing (5.2.26) in terms of this new field, we arrive at

L(0) = i(1 − 2|ϕ|2)ϕ†ϕ̇
2|ϕ|2

− i(1 − 2|ϕ|2)ϕϕ̇†

2|ϕ|2
+ iq̃ϕ†ϕ′ − iq̃ϕϕ†′ − (χ+ − χ−)2|ϕ|2(1 − |ϕ|2)

− 1
2

(1 − |ϕ|2)ϕ′ϕ†′ − (ϕ†)2(2 − |ϕ|2)ϕ′2 + 2ϕ′ϕ†′ + ϕ2(2 − |ϕ|2)(ϕ†′)2

4(1 − |ϕ|2)
. (5.2.29)

We started with a real Lagrangian containing real fields only and rewrote them in terms of one complex
field, the resulting Lagrangian, however, should still be a real expression in its totality. The is appearing
might seem disconcerting, however, one can find that our Lagrangian is of Hermitian form. In the
beginning of this chapter, we tried to motivate why expanding in inverse powers of κ is the most natural
approach for the worldsheet gauge we chose. With our next goal being the computation of S-matrix
elements, it makes sense to choose a formulation for large J and λ, and we want to decompactify the
coordinate σ. With large J , one method to do this is by redefining σ → σ

J (and keeping the scaling
difference of σ and τ , also imposing τ → τ

J2 ). As a consequence, the deformation parameters receive a
rescaling as well:

q̃ → Jq̃ (5.2.30)

χ± → Jχ± (5.2.31)

Now we will follow the approach from section 3 of [MTT05]: The expansion around ϕ = 0 corresponds
to evaluating the corrections around the BMN solution. As the overall J factor in front of the action in
the Landau-Lifshitz limit has the role of the Planck constant, we can choose to expand around ϕ = 0 by
rescaling

ϕ → ϕ√
J
. (5.2.32)

8Since the authors in [KY14] use a different coordinate parametrisation (e.g. defining their S3 angles with a minus sign),
there are some relative sign differences in two of the terms in their Lagrangian compared to ours.
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The power of J that accompanies a given term is then a simple indicator of the order in which any
products of ϕ and ϕ† appear, and if we keep contributions up to quartic order in the fields, meaning
quadratic order in 1

J , and adding a total time derivative −2β̇ to make a form of the kinetic term easier
to deal with, we arrive at

J−1L(0) =
(
ϕ†(−i∂t + iq̃∂σ)ϕ− ϕ(−i∂t + iq̃∂σ)ϕ† − (χ+ − χ−)2ϕ†ϕ− ϕ†′ϕ′

)
− 1

2J
[
(ϕ†)2ϕ′2 + ϕ2(ϕ†′)2 − 2(χ− − χ+)2ϕ2(ϕ†)2]+ O

(
1
J3

)
. (5.2.33)

We will only use quartic interaction term for our S-matrix calculations regardless of the order in κ, and
we shall later see that the diagrams generated by this interaction term are indeed sufficient to compute
the contribution to the 2-body S-matrix that we are going to look for. Thus, while higher interaction
terms in 1

J exist, we do not need them for our purposes.
After having introduced yet another expansion parameter, it might be prudent to recapitulate all the

expansion parameters, where they come from, what scale they control and what their purpose is: We
began by wanting to analyse our model within the effective theory framework of the Landau-Lifshitz
limit. To this end, we demand the angular momentum J and the string tension λ to be large in such
a way that the “dimensionless” angular momentum, J , is also large. Our gauge choice then made us
choose (large) κ instead of the angular momentum as the initial expansion parameter of our Lagrangian
- but fortunately the two expansions coincide at leading order. After calculating within the large κ
framework and performing some rescalings, J appears in front of the Lagrangian and serves as pseudo
~-constant for the expansion of our fields around the BMN solution, and then indicates the interaction
order of our effective Lagrangian featuring ϕ (i.e. whether the contribution of a certain 1

J is quadratic,
quartic, et cetera). Simultaneously, the other parameter that sets the LL scale, λ, is then used as the
expansion parameter of our vertices, kinematical factors and dispersion relations - our ingredients for
the Feynman diagrammatics - and finally the S-matrix elements. The different rescalings and particular
expansion parameters we were focusing on also allowed us to compare our results with other authors
that used those expansion parameters.

5.2.2 Next-to-leading Order in κ

So far, our considerations ultimately regarded only the leading order, we now want to expand our analysis
beyond this. With the first step being again the unaltered Lagrangian,

4π√
λ
FSL =

[
q2r2 (r2 − 1

)
− 1
] (
ṙ2 − r′

2
)

r2 − 1
+
(
1 − r2) [1 + χ2

−
(
1 − r2)] [(κ+ α̇+ β̇

)2 − (α′ + β′)2
]

− 2χ−χ+
(
r2 − 1

)
r2
[
(κ+ α̇)2 − β̇2 − α′

2 + β′
2
]

+ r2 (1 + χ2
+r

2) [(κ+ α̇− β̇
)2 − (α′ − β′)2

]
− 2aq

(
1 − r2) [r2 (χ2

+ − χ2
− + q2)+ 2χ2

− + 2
] [
β′ (κ+ α̇) − β̇α′

]
− κ2FS , (5.2.34)

with the same rescalings in τ and the deformation parameters, we arrive the NLO contribution in κ

orders of

L(2) =(χ− − χ+)2r2(1 − r2)(χ2
+r

2 + χ2
−(1 − r2)) + ṙ2

1 − r2 +
χ2

+r
2 − χ2

−(1 − r2)
1 − r2 r′

2 + α̇2

+ (χ− − χ+)2r2(1 − r2)α′2 + β̇2 + 2(χ− − χ+)2r2(1 − r2)β̇

+ 2q̃(1 − r2)(4q̃2 + (χ2
+ − χ2

−)r2)β′ + (χ−χ+)2r2(1 − r2)β′2

− 2(1 − r2)α′((χ2
− − χ2

+)r2β′ − 2q̃β̇)
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+ α̇((1 − 2r2)β̇ − (1 − r2)((χ− − χ+)2r2 + 2q̃β′)). (5.2.35)

The same modus operandi applies: Now we want to get rid of the coordinate α in our Lagrangian by
making use of the Virasoro constraints - this time expanding them up to second order in 1

κ . The crossed
Virasoro constraint (i.e. the one involving terms that feature both t and σ derivatives) serves to eliminate
spatial derivatives of α, whereas the non-crossed Virasoro constraint serves to eliminate time derivatives
(in both the Lagrangian and the aforementioned constraint for α′). It is prudent to recall one thing in
this instance: L(0) does not feature any α̇ terms (except for a total derivative −2α̇ that we can disregard).
This implies that for the non-crossed Virasoro constraint to second order,

r′2

1 − r2 − (χ+ − χ−)2r2(1 − r2) + 2[α̇+ (1 − 2r2)β̇] + (1 − 2r2)[α′2 + β′2] + 2α′β′ + C

κ2 = O
(

1
κ4

)
,

(5.2.36)

any term C would neither contribute in L(0) nor L(2) upon resubstitution for α̇, and we can therefore
stick to the leading order expression for this constraint. The same holds for the other one: For the
Virasoro constraint with cross-derivatives we go one order beyond, yielding

0 + O
(

1
κ4

)
=
[(

1 − 2r2)β′ + α′
]

+ 1
κ2

{
α′
[
(χ2
− − 4χ−χ+ + χ2

+)r2(r2 − 1) + α̇+ (1 − 2r2)β̇
]

+
[
−(χ2

− − χ2
+)r2(r2 − 1) + (1 − 2r2)α̇+ β̇

]
β′ − r′ṙ

r2 − 1

}
. (5.2.37)

In the constraint above, α̇ appears in the second order 1
κ term only. Thus, we only need to substitute

the leading order expression for α̇ from the other Virasoro constraint in order to consistently make (5.2.37)
free from α̇ appearances, and then solving the resulting equation for α′ as we did before. However, this
time as the leading order expression for α̇ involves α′, (5.2.37) would be an equation cubic in α′ upon
this substitution - rather tedious to solve. Lest we forget: We are only looking for an expression for α′

that is correct up to the order we are considering. With this in mind, we can eliminate α′ from our
constraint for α̇ first, only using the leading order expression in 1

κ for α′ since we substitute it into the
constraint for α̇ that we also only need up to leading order. With this subtle trick, we first end up with
an α-free expression for α̇,

α̇ =

(
r2 − 1

) ((
4r2 − 2

)
β̇ − r2 (r2 − 1

) (
(χ− − χ+)2 +

(
4 − 8r2)β′2))+ r′

2

2 (r2 − 1)
, (5.2.38)

that we can insert into the constraint for α′ without generating a cubic equation for it. Imposing then
α′ to be of the form α′ = A0 + A2

κ2 (which again, is correct because we are looking for a result up to
this order) and solving for the coefficients Ai, we arrive at an expression for α′ that we can use in our
Lagrangian to take care of the α′-appearances,

α′ = − (1 − 2r2)β′

− 1
(1 − r2)κ2

(
ṙr′ − 2r2(1 − r2)2((χ2

+ − 4χ+χ− − χ2
−) − χ−(χ− − 2χ+) − 2β̇)β′

)
, (5.2.39)

while the isolated total derivative α̇-appearances can be disregarded and for the residual (non-leading
order) appearances, we can use (5.2.38), and arrive at a Lagrangian without any α at all:

L(2) = ṙ2

1 − r2 − 4r2(1 − r2)β̇2 + · · · , (5.2.40)

where, for brevity, we only display the terms involving a time derivative here. Our Lagrangian now
features two fields only, r and β, and is in a sense much simpler than what we started with. There is a
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different issue that we have not addressed so far: After the above substitutions and expansions, our L(2)

features squares of time derivatives of our fields, i.e. ṙ2 and β̇2. Non-standard contributions like these
make further computations more difficult. Additionally, if there was a way to construct a Lagrangian
that is (classically) equivalent to ours without these squared derivatives, we could make an argument
that these squared derivative terms are in a sense unphysical and an artefact of our particular choice of
fields and expansion. Indeed, there exists a classical field redefinition such that these unwanted terms
are no longer present - we will follow the methodology summarised in the appendix of [KRT04]. Since
we want to change our Lagrangian at order κ−2, the way we redefine our fields will reflect this, i.e.

β → β + β̃

κ2 + . . . ,

r → r + r̃

κ2 + . . . . (5.2.41)

These redefinitions affect the Lagrangian expansion via

L(β + β̃

κ2 , r + r̃

κ2 ) = L(0)(β + β̃

κ2 , r + r̃

κ2 ) +
L(2)(β + β̃

κ2 , r + r̃
κ2 )

κ2 + · · · (5.2.42)

↓

L(β + β̃

κ2 , r + r̃

κ2 ) = L(0)(β, r) + L(2)(β, r) + β̃δβL(0)(β, r) + r̃δrL(0)(β, r)
κ2 + . . . , (5.2.43)

where δF is the variational derivative with respect to F , and we shall drop the dependence of the
Lagrangians on arguments for simplicity’s sake from now on. While this is a legitimate way to redefine
our fields, we have not explained why we have hope for this to be our remedy. The crucial observation
is that our Lagrangian, i.e. the first two leading order, depend at most linearly on the time derivatives
of the fields, meaning it is of the form

L(0) = A(r, β)β̇ +B(r, β)ṙ + V (r, β) , (5.2.44)

which implies the variational derivatives to be at most linearly dependent on time derivatives as well

δβL(0) =∂βA(r, β)β̇ + ∂βB(r, β)ṙ + ∂βV − ∂

∂τ
A(r, β) , (5.2.45)

δrL(0) =∂rA(r, β)β̇ + ∂rB(r, β)ṙ + ∂rV − ∂

∂τ
B(r, β) , (5.2.46)

or, more concretely,

1
8
δβL(0) =

[(
2 − 4r2)β′ − q̃

]
rr′ +

(
1 − r2) r2β′′ + rṙ , (5.2.47)

δrL(0) = r

{
−2
[
(χ− − χ+)2 − 4q̃β′ + 4β′2

]
+ 2 (r′)2

(r2 − 1)2 − 8β̇

}
+ 4r3

(
(χ− − χ+)2 + 4β′2

)
− 2r′′

r2 − 1
.

(5.2.48)

Thus, it is possible to find two functions β̃ and r̃ such that

L(2) + β̃δβL(0) + r̃δrL(0) (5.2.49)

contains no square time derivatives. We directly find as solutions for our wanted field redefinitions

β̃ =
r′
[
q̃ +

(
4r2 − 2

)
β′
]

+ r
(
r2 − 1

)
β′′

8r (r2 − 1)
+ ṙ

8r(r2 − 1)
,

8r̃ = r′′ − r(1 − r2)
[
((1 + 2r2)(χ+ + χ−)2 − 4χ−(χ− + 2χ+r

2) − 4q̃β′ + 4(1 − 2r2)β′′
]
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+ rr′2

(1 − r2)
+ 4r(1 − r2)β̇ . (5.2.50)

With the prescription we established in (5.2.41) and the so-generated new fields, we find for our next-
to-leading order Lagrangian the expression

L(2) = − r′4

4(1 − r2)3 +
r′2
[
(1 − r2)(χ2

+r
2(2 − r2) − 2χ+χ−r

2(1 − r2) + χ2
−(2 − r4)) + rr′′

]
2(1 − r2)2

+ 4q̃2r′2 + (r′′)2

4(1 − r2)
+ 1

4
(χ− − χ+)2r2(1 − r2)[(χ− − χ+)2(1 + r2 − r4) − 4χ−χ+]

+ 1
2

(χ2
− − χ2

+)rr′′ + terms involving β , (5.2.51)

which is now free from squared time derivatives. With this Lagrangian, we then make use of the same
way of re-expressing β and r simultaneously with a single complex field, i.e.

ϕ =
√

1 − r2e2iβ ,

ϕ† =
√

1 − r2e−2iβ . (5.2.52)

and, as before, rescale as we did in (5.2.30) for t and the deformation parameters, and for large J , we
then arrive at the following expression for the next-to-leading order Lagrangian written in terms of the
field ϕ:

L =
√
λκ

4π

[
L(0) + λ−1L(2) + λ−2L(4) + . . .

]
, (5.2.53)

J−1L(2) = 1
4

[
(ϕ†′′ϕ′′ + (χ2

− − χ2
+)2|ϕ|2 − (χ2

− − χ2
+)(ϕ†′′ϕ+ ϕ†ϕ′′) − 2iq̃(ϕ†′′ϕ′ + ϕ†′ϕ′′)

+ 4(χ2
+ + q̃2)ϕ†′ϕ′ + 8iq̃3(ϕ†′ϕ− ϕ†ϕ′)

]
+ 1

8J

[
2(ϕ†′)2ϕ′2 − 2ϕ†ϕ†′′ϕ′2 − 2(ϕ†′)2ϕϕ′′

+ 4ϕ†′ϕ′
(
ϕ†ϕ′′ + ϕ†′′ϕ

)
+ (ϕ†)2ϕ′′2 + (ϕ†′′)2ϕ2 + (χ2

− − χ−χ+ + χ2
+)[(ϕ†)2ϕ′2 + (ϕ†′)2ϕ2]

− 8χ−χ+(χ− − χ+)2|ϕ|4 − 4iq̃(ϕ†′ϕ− ϕ†ϕ′)[(χ− − χ+)2|ϕ|2 + 2ϕ†′ϕ′] + 4q̃2[(ϕ†)2ϕ′2

+ (ϕ†′)2ϕ2]
]

+ O
(

1
J2

)
, (5.2.54)

where the 1
κ2 expansion became 1

λ after the rescaling of the fields.

5.3 Canonical Quantisation of the Field Theory and S-matrix

5.3.1 Canonical Quantisation and Dispersion Relation

Following [BMSS20], we want to compute the S-matrix related to the Lagrangian analysis that we
conducted, and later cross-check their results with ours. To this end, we shall fall back on one of the
standard tools in QFT that we mentioned briefly in the introductory chapter: Canonical Quantisation.
Our Lagrangian, after all the rescalings we performed and limits we assumed, is akin to the one for a
complex scalar field,9 and we shall borrow a lot of methodology from the quantisation of such a field for
our purposes. The standard mode expansion of a complex scalar field (in two dimensions) is given by:

ϕ(t, σ) =
∫

dp√
2πω(p)

(
ape
−iω(p)t+ipσ + b†pe

iω(p)t−ipσ
)
, (5.3.1)

9Or, to be precise, the positive-energy part thereof and after adding a boundary term to it, to get the canonical
representation.
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ϕ†(t, σ) =
∫

dp√
2πω(p)

(
bpe
−iω(p)t+ipσ + a†pe

iω(p)t−ipσ
)
, (5.3.2)

where a(†)
p and b(†)

p are the creation and annihilation mode operators. While we remain inspired by this,
our case allows for a handy simplification of this ansatz. Let us consider our Lagrangian again,

J−1(L(0) + λ−1L(2)) =ϕ†(−i∂t + iq̃∂σ)ϕ− ϕ(−i∂t + iq̃∂σ)ϕ† − (χ+ − χ−)2ϕ†ϕ− ϕ†′ϕ′

− 1
2J
[
(ϕ†)2ϕ′2 + ϕ2(ϕ†′)2 − 2(χ− − χ+)2ϕ2(ϕ†)2]

+ 1
4λ

(
(ϕ†′′ϕ′′ + (χ2

− − χ2
+)2|ϕ|2 − (χ2

− − χ2
+)(ϕ†′′ϕ+ ϕ†ϕ′′) − 2iq̃(ϕ†′′ϕ′ + ϕ†′ϕ′′)

+4(χ2
+ + q̃2)ϕ†′ϕ′ + 8iq̃3(ϕ†′ϕ− ϕ†ϕ′)

)
+ 1

8Jλ

(
2(ϕ†′)2ϕ′2 − 2ϕ†ϕ†′′ϕ′2 − 2(ϕ†′)2ϕϕ′′

+ 4ϕ†′ϕ′
(
ϕ†ϕ′′ + ϕ†′′ϕ

)
+ (ϕ†)2ϕ′′2 + (ϕ†′′)2ϕ2 + (χ2

− − χ−χ+ + χ2
+)[(ϕ†)2ϕ′2 + (ϕ†′)2ϕ2]

− 8χ−χ+(χ− − χ+)2|ϕ|4 − 4iq̃(ϕ†′ϕ− ϕ†ϕ′)[(χ− − χ+)2|ϕ|2 + 2ϕ†′ϕ′] + 4q̃2[(ϕ†)2ϕ′2

+ (ϕ†′)2ϕ2]
)

+ O
(

1
J2

)
, (5.3.3)

where the blue part is the part of our Lagrangian that is quadratic in fields, and after normalising it
in a canonical way by dividing it by a factor of −2 (to get a canonically normalised kinetic term), we
shall from now onwards refer to it as our quadratic (free) Lagrangian LF . There is, however, a decisive
difference between the relativistic Lagrangian of the standard complex field and LF : In the former, the
kinetic term features a second order time derivative, i.e. within the contraction · · · − ϕ∂2ϕ† · · · , whereas
our Lagrangian only features a single first order time derivative. This allows us to work with mode
expansions that only feature positive frequencies for ϕ:

ϕ(t, σ) =
∫

dp

2π
ape
−iω(p)t+ipσ︸ ︷︷ ︸
=:ϕ̂

, ϕ†(t, σ) =
∫

dp

2π
a†pe

iω(p)t−ipσ︸ ︷︷ ︸
=:ϕ̂†

, (5.3.4)

with [ap, a†k] = (2π)δ(p − k) canonically satisfied. We can then define a ground state |0〉 such that
ϕ(t, σ)|0〉 = 0 holds.

Defining our (now quantised) fields in this way, we can find the dispersion frequency relation ω(p)
using the equations of motion for one of our fields, e.g. 10

∂LF
∂ϕ†

− ∂t
∂LF
∂ϕ̇†

− ∂σ
∂LF
∂ϕ′†

= 0, (5.3.5)

with the observation that

∂nϕ̂

∂tn
= (−iω(p))nϕ̂ ,

∂nϕ̂

∂σn
= (ip)nϕ̂ ,

∂nϕ̂†

∂tn
= (iω(p))nϕ̂ ,

∂nϕ̂†

∂σn
= (−ip)nϕ̂ , (5.3.6)

we finally get, acting on a state, the following equation for the dispersion relation at leading order:[
−ω(p) − q̃p− (χ+ − χ−)2]− [ω(p)] −

[
q̃p+ p2] = 0

10The contraction ∂µ

(
∂L

∂(∂µϕ)

)
is to be understood as a sum, and not as a metric contraction - this has already happened

on the level of the Lagrangian.
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⇔

2ω(p) = p(p− 2q̃) + (χ− − χ+)2 . (5.3.7)

For the O(λ−1) order, the calculation is analogous, and summa summarum we get the following expres-
sion for the dispersion relation

ω(p) = (χ− − χ+)2 + p(p− 2q̃)
2

−
(χ2
− − χ2

+)2 + p2(p− 2q̃)2 + 2(χ2
− + χ2

+)p2 − 16q̃3p

8λ
+ O

(
1
λ2

)
.

(5.3.8)
In [BMSS20], the authors computed the (exact) dispersion relation within the framework of light-cone
gauge quantisation,

Ω−(p) =
√
p2 − 2aqp(2 + q2 + χ2

− + χ2
+) + q2 + (1 + χ2

+)(1 + χ2
−) − χ+χ− . (5.3.9)

though in order to draw a comparison of this with our result, we need to make the same assumptions that
are made in [BMSS20], namely small momentum and deformation, achieved by continuing to assume λ
is large and setting in their result

q → q√
λ3

,

χ± → χ±√
λ
,

p → p√
λ
, (5.3.10)

giving us11

Ω−
( p
λ

)
− 1 = ω(p)

λ
+ O(λ−3) , (5.3.11)

where the offset by 1 comes from the subtraction of the fast coordinate. Thus, we can see that our
results coincide in the first two orders in 1

λ . We therefore establish consistency between their approach
and ours.

Having now established the free (quadratic) part of our Lagrangian, LF that we work with, canonically
quantised the complex field ϕ appearing in it after identifying its equations of motion and dispersion
relation, it is time to deal with a quantity that lies at the heart of QFT: The propagator. The propagator,
or the 2-point correlation function for the (free) field ϕ, represents the amplitude for a given particle
to travel from one point in spacetime to another - which is another way of saying the amplitude that a
particle is annihilated in one point and a particle created at another point. Without going into too much
detail about Green’s functions and similar considerations, knowing that our quantised fields (in their
mode expansions) are constructed precisely to describe these events, it makes sense for our propagator
to be of the form12

D(t, σ) = 〈0|T
{
ϕ(t, σ)ϕ†(0, 0)

}
|0〉 , (5.3.12)

where T stands for the time-ordering. There are different ways to account for this time ordering, and for
the order of succession in which these events happen, leading to different propagators describing different
amplitudes of scenarios. Canonically, there are three different propagators: The advanced, retarded and

11In [BMSS20], the flux deformation parameter q is accompanied by an additional sign factor that we need to take into
account when making this comparison.

12Here, we use the fact that our propagator has to be (Lorentz-)translation invariant and therefore only needs to depend
on the difference of two spacetime points, which allows us to place one on the origin.
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Feynman propagators.13 The advanced propagator DA(t, σ) described the scenario where the particle is
created at σ before being annihilated at 0, while the retarded propagator DR(t, σ) represents annihilation
before creation. For the standard complex scalar field with squared time derivatives appearing in its
Lagrangian, the (Feynman) propagator features two poles consequently - switching to momentum space
via a Fourier transform and looking at its equation of motions shows that imminently.14 The equations of
motion for LF only feature a single time derivative, leading to a simple pole in the propagator.15 DR(t, σ)
only features one pole, and the time ordering of this choice can be represented with the insertion of a
Heaviside function:

DR(t, σ) = Θ(t)〈0|ϕ(t, σ)ϕ†(0, 0)|0〉

= Θ(t)〈0|
(∫

dp

2π
ape
−iω(p)t+ipσ

)(∫
dp′

2π
a†p′

)
|0〉

= Θ(t)〈0|
(∫

dpdp′

(2π)2 (a†p′ap + 2πδ(p− p′))e−iω(p)t+ipσ
)

|0〉 . (5.3.13)

The term involving the annihilation and creation operator vanishes, and we can use the fact that we
represent a Heaviside function in the complex plane as

2πΘ(t− t′) = i

∫
dΩ′ e

−iΩ′(t−t′)

Ω′ + iϵ
, (5.3.14)

and then arrive at after redefining Ω = ω(p) + Ω′:

DR(t, σ) =
∫

dpdΩ
(2π)2 e

−iΩt+ipσ i

Ω − ω(p) + iϵ

=
∫

dpdΩ
(2π)2 e

−iΩt+ipσD̃R(Ω, p) , (5.3.15)

where D̃R(Ω, p) is the retarded propagator in Fourier space. Thus far, the features of our quantised
fields, their mode expansions in the interaction picture, and their propagators have been similar to the
analysis in section 3 of [KZ06], and their observations are applicable to our case, too. Firstly, the 2-body
S-matrix only consists of a sum of bubble diagrams:

· · · · · ·

p

p′

k

k′

The reason that only bubble diagrams contribute is fairly easy to see: If we were to truncate any
diagram at any point, due to U(1) charge conservation of the Lagrangian (i.e. the invariance under
ϕ → eiaϕ), the number of forward-time propagators minus the number of backward-time propagators

13The sum of the former two equal the sum of Feynman and anti-Feynman propagators.
14Here, what we left out for brevity would be brilliant to illustrate this point: In the language of Green’s functions, in

momentum space the equation (of motion) for the propagator function can be directly “inverted” using distributions, and
double derivatives that lead to squared appearances of the momentum variable leading in turn to double poles, loosely
speaking.

15Similar to the argument and situation in [KZ06], we argue that the particles we created cannot travel back in time,
which makes the choice of propagator that we are about to make sensible.
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has to be a constant for any truncation point. In addition, we established before that, due to our field
annihilating the ground state, our particles do not travel backwards in time, which means we only have
forward-time propagators in our diagrams. Since we also can truncate a diagram at the very beginning,
i.e. when only external legs are present, this means that the number of these propagators is always
equal to the number of incoming or outgoing external legs of the diagram. As we are considering the
2-body S-matrix, only quartic vertices will be present and only Lagrangian interacting terms involving
(no more than) four fields shall be relevant. This leaves us with the only possibility of bubble diagrams.
Furthermore, this has a similar consequence on the non-renormalisability of the ground state and the
propagator/Green’s function: For there to be any correction to the energy, for the ground state, there
would need to exist non-trivial vacuum diagram contributions. Likewise for the propagator, there would
need to be higher order 1-particle propagator contributions arising from our theory for there to be any
corrections (c.f. mass-renormalisation of the propagator). However, those diagrams precisely, e.g.

vacuum contributions

propagator contributions

are not allowed in our theory. The most straightforward way to see this again is by considering the
total number of propagating lines at any truncation point: For the vacuum contributions, we start and
end with 0 external legs, but have non-zero external legs if we were to truncate it at any point in the
middle. Similarly, while propagator diagrams always have one initial and final external leg, higher order
contributions will feature point-loops that cause the number of the external legs to be higher if we were
to truncate the diagram at any point involving a loop.

In our Lagrangian, the quartic contribution (orange) is

J−1(L(0) + λ−1L(2)) =ϕ†(−i∂t + iq̃∂σ)ϕ− ϕ(−i∂t + iq̃∂σ)ϕ† − (χ+ − χ−)2ϕ†ϕ− ϕ†′ϕ′

− 1
2J
[
(ϕ†)2ϕ′2 + ϕ2(ϕ†′)2 − 2(χ− − χ+)2ϕ2(ϕ†)2]

+ 1
4λ

(
(ϕ†′′ϕ′′ + (χ2

− − χ2
+)2|ϕ|2 − (χ2

− − χ2
+)(ϕ†′′ϕ+ ϕ†ϕ′′) − 2iq̃(ϕ†′′ϕ′ + ϕ†′ϕ′′)

+4(χ2
+ + q̃2)ϕ†′ϕ′ + 8iq̃3(ϕ†′ϕ− ϕ†ϕ′)

)
+ 1

8Jλ

(
2(ϕ†′)2ϕ′2 − 2ϕ†ϕ†′′ϕ′2 − 2(ϕ†′)2ϕϕ′′

+4ϕ†′ϕ′
(
ϕ†ϕ′′ + ϕ†′′ϕ

)
+ (ϕ†)2ϕ′′2 + (ϕ†′′)2ϕ2 + (χ2

− − χ−χ+ + χ2
+)[(ϕ†)2ϕ′2 + (ϕ†′)2ϕ2]

−8χ−χ+(χ− − χ+)2|ϕ|4 − 4iq̃(ϕ†′ϕ− ϕ†ϕ′)[(χ− − χ+)2|ϕ|2 + 2ϕ†′ϕ′] + 4q̃2[(ϕ†)2ϕ′2

+(ϕ†′)2ϕ2]
)

+ O
(

1
J2

)
, (5.3.16)

which we shall refer to as V4, which itself is expanded in λ−1,

V4 =
∞∑
i=0

V
(i)

4 λ−i , and more revelantly for us,
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V4 = V
(0)

4 + V
(1)

4
λ

+ O(λ−2) . (5.3.17)

As we alluded to before, the order of the appearing fields can more easily be seen by the order of 1
J that

is accompanying a given term, as is evident above.

5.3.2 The 2-body S-matrix

The creation and annihilation operators a†p, ap in the (quantised) mode expansion create and annihilate
a state with momentum p and energy ω(p), respectively. The 2-particle in-states and out-states that we
need in order to compute 2-body S-matrix elements later can be defined the following way,

|p, p′〉 = a†pa
†
p′ |0〉 , 〈k, k′| = 〈0|ak′ak . (5.3.18)

With our quartic vertex contribution that incorporates the relevant interacting terms, we define the
S-matrix via

S(p, p′, k, k′) = 〈k, k′|Te−i
∫
dtdσV4 |p, p′〉 . (5.3.19)

In our expansion approach for the S-matrix, its leading-order in λ consists of all the bubble diagrams
with V (0)

4 vertices (i.e. such that the total order of any particular contributing term stays O(λ0))). For
the O(λ−1)) contribution, we will have to take all diagrams into account that feature one single V (1)

4

vertex and all others being V (0)
4 vertices (i.e. such that the total order of any particular contributing term

stays
[
O(λ−1))

][
O(λ0))

]
=
[
O(λ−1))

]
). For each order in λ, this combinatorial approach in building

the terms works analogously.
In our action, we integrate over the worldsheet coordinates t, σ, but our action does not feature them

in an explicit way - which makes the action as a whole invariant under shifts in these coordinates. For the
quantities conjugate to them, this leads to conservation laws at every vertex. The S-matrix is therefore
expected to include the following delta functions:

δ(ω(p) + ω(p′) − ω(k) − ω(k′))δ(p+ p′ − k − k′) (5.3.20)

Using some re-expression tricks, we can reformulate this product of δ-functions into an easier expression
involving a kinematical factor K: For any δ(f(x))-function whose conditional argument f ∈ C2(R) only
has simple roots {x1, · · ·xn} 16, then

δ(f(x)) =
n∑
j=1

δ(xj − x)
|f ′(xj)|

. (5.3.21)

For δ(ω(p) + ω(p′) − ω(k) − ω(k′)), i.e. f(p) := ω(p) + ω(p′) − ω(k) − ω(k′), the expressions get a bit
complicated. For the sake of the argument, let us assume an easy homogeneously quadratic dispersion
relation ω(p) = p2, and then argue why for our dispersion relation, the same result holds. Firstly,
δ(p+ p′ − k − k′) implies that we can re-express p′ = k + k′ − p in f(p), leading us to:

1
2
f(p) = p2 − kp− k′p+ kk′,

1
2
f ′(p) = 2p− k − k′, (5.3.22)

whose two simple poles are at p = k and p = k′. Thus, we have so far that (again with p′ = k + k′ − p)

δ(ω(p) + ω(p′) − ω(k) − ω(k′)) = δ(p− k)
2|k − k′|

+ δ(p− k′)
2|k′ − k|

. (5.3.23)

16We also assume the derivative of the argument function not to vanish at the root points, for well-definedness.
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We reinstate the appearance of p′ now, and remember that we have another δ-function as a factor, and
can establish that

δ(p− k)δ(p+ p′ − k − k′) = δ(p− k)δ(p′ − k′)

δ(p− k′)δ(p+ p′ − k − k′) = δ(p− k′)δ(p′ − k), (5.3.24)

which finally gives us for (5.3.20)

δ(ω(p) + ω(p′) − ω(k) − ω(k′))δ(p+ p′ − k − k′) = δ(p− k)δ(p′ − k′) + δ(p− k′)δ(p′ − k)
2|k − k′|

= 1∣∣∣dω(p)
dp − dω(p′)

dp′

∣∣∣︸ ︷︷ ︸
K(p,p′)

(δ(p− k)δ(p′ − k′) + δ(p− k′)δ(p′ − k)) .

(5.3.25)

One can check that for the expression of our ω(p) in (5.3.8), we arrive at the same final expression.
This comes from the fact that the δ-function for total momentum conservation is the same (and a linear
constraint for p′ in terms of p) and f(p) gives rise to an analogous pole structure, leading to (5.3.24) and
eventually the same kinematical factor in terms of ω(p).

Our focus is still expressions only up to a certain order in terms of our expansion parameter, and if
we substitute our expression for ω(p) into the expression for our kinematical factor, we get

K(p, p′) = 1
p− p′︸ ︷︷ ︸
K(0)

+ 1
λ

p2 + pp′ + p′2 + χ2
− + χ2

+ − 3q̃(p+ p′) + 2q̃2

2(p− p′)︸ ︷︷ ︸
K(1)

+O
(

1
λ2

)
. (5.3.26)

Leading Order in λ

In a first step, we single out the leading order quartic vertex in λ that we need in order to generate the
tree-level contribution17 and diagrammatically illustrate it in 5.1,

−〈k, k′|V (0)
4 |p, p′〉 = −V (0)

4 (p, p′, k, k′) = 2(χ− − χ+)2 + pp′ + kk′ . (5.3.27)

V (0)

p

p′

p

p′

Figure 5.1: The diagram of (5.3.27), already imposing {k, k′} = {p, p′}, as we will later discuss amply.
We will not make the diagrams that differ only by a permutation of momenta pictorially explicit.

In the expression of K(p, p′), we also only need the leading order term, and arrive at the expression
of the tree-level matrix element (having in mind the momentum implications from the δ-functions):

S
(0)
tree = − i

2

(
V

(0)
4 (p, p′, p, p′) + V

(0)
4 (p, p′, p′, p)

)
K(0)(p, p′)

17The symmetry factor for standard diagrams is (2!)2, which is needed for the computation of the correct contributions.
For simplicity’s sake, we will suppress the 1/J factors, as they can be reinstated at the end of the computations by
substituting i → i/J (if the complex units are consistently carried).
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= −iV (0)
4 (p, p′, p, p′)K(p, p′) = 2ipp

′ + (χ− − χ+)2

p− p′
. (5.3.28)

From [BMSS20], we can take the S-matrix element SY Y to compare our expression against. To this end,
we need to perform the following rescaling again:18

pi → pi
λ
,

χ± → χ±
λ

,

q → q

λ3 . (5.3.29)

Then, the leading order in large λ gives us

S
(0)
Y Y = i

[
4(χ− − χ+)2 + (p+ p′)2

2(p− p′)
+ (α− 1

2
)(p− p′)

]
, (5.3.30)

and when setting the light-cone gauge parameter to α = 0, our S-matrix elements coincide.

Staying at the leading order in λ for the vertex, we go one order beyond in the order of the diagram
we are considering, as illustrated in 5.2 below.

V (0) V (0)

p

p′

ρ

p+ p′ − ρ

p

p′

Figure 5.2: The diagram corresponding to the above.

We therefore need to perform the following loop integral

I(1) =
∫

dΩdρ
(2π)2 D̃R(Ω, ρ)D̃R(ω(p) + ω(p′) − Ω − ω(ρ), p+ p′ − ρ)

[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

=
∫

dΩdρ
(2π)2

[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

[Ω − ω(ρ) + iϵ][ω(p) + ω(p′) − Ω − ω(p+ p′ − ρ) + iϵ]
, (5.3.31)

which has two simple poles, at Ω1 = ω(ρ) − iϵ and at Ω2 = ω(p) + ω(p′) − ω(p+ p′ − ρ) + iϵ, as can be
seen in 5.3.

18Here, λ in [BMSS20] has a different meaning. Additionally, the appendix in [BMSS20] has typos whenever Ωi is
addressed, which should be kept in mind when performing the calculation.
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Re(Ω)

Im(Ω)

Λ1

Λ2

Ω2

Ω1

Figure 5.3: The poles of I(1).

We can compute I(1) using the residue theorem, as the integration over the arcs tends to zero for arc
radii ri → ∞. It does not matter which integration contour we choose, so we shall go with Λ1:

I(1) = 2πi lim
Ω→Ω1

(Ω − Ω1)
∫

dρ

(2π)2
[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

[Ω − ω(ρ) + iϵ][ω(p) + ω(p′) − Ω − ω(p+ p′ − ρ) + iϵ]

=
∫

dρ

2π
i[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
. (5.3.32)

Inserting the leading order in λ of ω(p) into the equation, we can see that the resulting integral is
divergent by mere power counting:

I(1) ≈
∫

dρ

2π
−[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

p(p− 2q̃) + p′(p′ − 2q̃) − ρ(ρ− 2q̃) − (p+ p′ − ρ)(p+ p′ − ρ− 2q̃) + O(λ−1) + 2iϵ

=
∫

dρ

2π
−[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

p2 + p′2 − ρ2 − (p+ p′ − ρ)2 + O(λ−1) + 2iϵ
. (5.3.33)

Again, we approach this integral using contour integration: Here, we implicitly assume p > p′. The
poles of ρ are at p and p′, and which pole receives a positive and negative imaginary part from the iϵ
prescription we chose depends on how we interpret |p−p′|, meaning which of the two momenta is larger.
In our case of p > p′, the pole at p has a positive imaginary ϵ correction.

Re(ρ)

Im(ρ)

p+ iϵ′

−Ξ Ξ

Figure 5.4: The pole of ρ at p, the ϵ′ here represents some momentum-rescaled quantity that leads to an
imaginary part in the upper half plane allowing us to choose the upper half-circle as a consistent arc.

As illustrated in 5.4, we close the arc parametrised as a half-circle in the upper half plane, and expand
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the (divergent) arc part in terms of a sharp cut-off parameter Ξ we introduce:

I(1) ≈ Res
ρ→p

1
2π

i[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

p2 + p′2 − ρ2 − (p+ p′ − ρ)2 + O(λ−1) + 2iϵ︸ ︷︷ ︸
residue part (R)

−
∫ π

0
Ξeiθ dθ

2π
−[2(χ− − χ+)2 + pp′ + Ξeiθ(p+ p′ − Ξeiθ)]2

p2 + p′2 − Ξ2e2iθ − (p+ p′ − Ξeiθ)2 + O(λ−1) + 2iϵ︸ ︷︷ ︸
arc part (A)

. (5.3.34)

For the residue part, as we are dealing with a simple pole, we can simply evaluate it as

R = 2πi lim
ρ→p
ϵ→0+

i[2(χ− − χ+)2 + pp′ + ρ(p+ p′ − ρ)]2

p2 + p′2 − ρ2 − (p+ p′ − ρ)2 + O(λ−1) + 2iϵ

= 2(p− p′)
(
pp′ + (χ− − χ+)2

p− p′

)2

, (5.3.35)

while the arc part gives us once expanded in powers of Ξ:

A =
∫ π

0
Ξeiθ dθ

2π
−[2(χ− − χ+)2 + pp′ + Ξeiθ(p+ p′ − Ξeiθ)]2

p2 + p′2 − Ξ2e2iθ − (p+ p′ − Ξeiθ)2 + O(λ−1) + 2iϵ
(5.3.36)

≈
∫ π

0
Ξeiθ dθ

2π

[
Ξ2e2iθ

2
+ (p+ p′)

2
Ξeiθ +2(χ− − χ+)2 + pp′ − (p+ p′)2

4
+ p2 + p′2

4
+ 0 · Ξ−1 + O(Ξ−2)

]
.

As a regularisation scheme, we choose to impose that positive exponential power integrands of ρ to
vanish, i.e.

∫
dρρα = 0 for α ≥ 0. For Ξ, this lets us disregard all Ξn with n > 0 in the integral. Thus,

we have that A = 0, and finally for the total I(1)

I(1) = (p− p′)
(

2(χ− − χ+)2 + 2pp′

p− p′

)2

. (5.3.37)

From the two vertices in the diagram we get an imaginary unit factor each of (−i), and from the overall
δ-functions we get the kinematical factor K(p, p′) for the S-matrix element. Lastly, not forgetting that
the diagram illustrating the process has a symmetry factor of 2 that we need to divide by, we arrive at:

S
(0)
1-loop = (−i)2

2
K(p, p′)I(1) = −2

(
(χ− − χ+)2 + pp′

p− p′

)2

. (5.3.38)

We can immediately generalise this computation to the n-bubble case, as each loop bubble contributes
with precisely this factor, i.e. 19

S
(0)
(n-1)-loop = 2in

(
(χ− − χ+)2 + pp′

p− p′

)n
. (5.3.39)

Summa summarum, we can sum all the relevant contributions to the S-matrix

S(0)(p, p′) = 1 + S
(0)
tree +

∞∑
n=1

S
(0)
n-loop = 1 + 2

∞∑
n=0

in
(

(χ− − χ+)2 + pp′

p− p′

)n

= p− p′ + i[(χ− − χ+)2 + pp′]
p− p′ − i[(χ− − χ+)2 + pp′]

=
1
p − 1

p′ − i (χ−−χ+)2+pp′

pp′

1
p − 1

p′ + i (χ−−χ+)2+pp′

pp′

. (5.3.40)

Curiously, this S-matrix does not depend on the deformation parameter q coming from the flux, which
might be due to the particular rescalings we performed on all of our deformation parameters. Further-
more, for χ± ∈ R, this is a unitary S-matrix. Lastly, in the limit of zero deformation χ± → 0, we recover
the Heisenberg S-matrix, which is consistent with what we expect.

19Here, there was a typo in our original paper, as the exponent n of the imaginary unit and the S-matrix factor describes
the case of n− 1 bubbles, rather than n. For the summation of

∑∞
n=0, this is inconsequential, though.
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The S-matrix we obtained appears in a very compact form - perhaps even suspiciously so: A priori,
one may think that the set of assumptions that led to our S-matrix was incomplete, and that we
oversimplified the problem at hand. After all, we are restricting our considerations to a purely bosonic
model and consider no coordinate contributions coming from the T 4 factor of our manifold which could
potentially lead to other fields contributing to our S-matrix processes. The authors in [BMSS20], for
example, consider four possible field excitations rather than just one. However, here we can make use
of arguments akin to the ones outlined in [RTT06], where the authors discuss (within the undeformed
AdS5 × S5 context) LL-type models with larger sectors containing the SU(2) one. Firstly, each type of
excitation is associated to a Dynkin node in its diagram, and thus one can assign an abelian conserved
charge to them. Therefore, each appearing term in the Lagrangian has to be uncharged with respect
to these charges, and conserve the quantum numbers associated to them. Two important implications
follow from this: The first one is the absence of cubic vertices, and the second one is that, because the
excitations appearing in this Lagrangian are magnons around the ferromagnetic ground state, we can
always choose all present propagators to be of retarded nature. We also have as a consequence that
there exist no interaction terms that could correspond to the annihilation of one type of excitation pair
and pair-creation of another type of excitation. With the restriction on the vertices and propagators
that can appear in our diagrams, we can therefore assert that loop contributions that (for example
as intermediaries) contain different excitations than the excitations that appear on their incoming and
outgoing legs are indeed absent. Therefore, the S-matrix that we computed is not incomplete.

Next-To-Leading Order in λ

All of our tree level and next-to-leading order level considerations have so far been limited to the case
of the leading order λ setting. In order to get the first-order correction in λ to the S-matrix we just
computed, we need to be aware that our S-matrix is built out of different ingredients: The vertex
contribution, and the kinematical contribution from the rewriting of the δ-functions that appear - they
both feature contributions of order O(λ−1) as we can see in (5.3.16) and (5.3.26). The first-order
correction to the tree-level S-matrix is given by

λS
(1)
tree = −i

[
K(0)V

(1)
4 (p, p′, p, p′) +K(1)V

(0)
4 (p, p′, p, p′)

]
. (5.3.41)

This expression features no summands involving K(1) and V (1)
4 at the same time, as this would result

in the term being a correction to the S-matrix of order O(λ−2), thus it makes sense for the leading and
subleading corrections of the vertex and the kinematical factor to appear in this chiastic way.

While we have a handy expression for K(1), we need to find one for V (1)
4 :

4λ〈k, k′|V (1)
4 |p, p′〉 =4λV (1)

4 (p, p′, k, k′) = 8χ+χ−(χ− − χ+)2 + pp′k(p+ p′ + k + 4q̃)

+ pp′k′(p+ p′ + k′ + 4q̃) + pkk′(p+ k + k′ + 4q̃) + p′kk′(p′ + k + k′ + 4q̃)

+ 2q̃(χ− − χ+)2(p+ p′ + k + k′)

− (pp′ + kk′)
[
pp′ + kk′ − 4χ+χ− − 4(χ− − χ+)2 − 4q̃2] . (5.3.42)

Proceeding methodologically exactly as we did for the leading order λ calculation, with (5.3.41) we then
arrive at

λS
(1)
tree = − i

[
K(0)V

(1)
4 (p, p′, p, p′) +K(1)V

(0)
4 (p, p′, p, p′)

]
= − i

2(χ+χ− + pp′)(χ− − χ+)2 + pp′(p2 + p′2) + q̃(p+ p′)[2pp′ + (χ− − χ+)2] + 2pp′
[
χ+χ− + q̃2]

p− p′
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+ i
[pp′ + (χ− − χ+)2][p2 + pp′ + p′2 + χ2

− + χ2
+ − 3q̃(p+ p′) + 2q̃2]

(p− p′)2 . (5.3.43)

While this was straightforward enough, for the case of next-to-leading order λ contributions on the 1-loop
level, things are a bit more tricky, as there are three distinct origins of contributing terms, and one is
quick to lose oversight.

The first and arguably easiest contribution comes from taking the O(λ0)-order term I(1) that stems
from taking O(λ0)-order vertices,20 but taking the O(λ−1)-order correction to the kinematical factor,
K(1), when constructing the S-matrix:

S
(1)
1-loop,1 =

(
(−i)2

2
K(p, p′)I(0)

) ∣∣∣
O(λ−1)

= (−i)2

2
K(1)(p, p′)I(1)

= (−i)2

2
(p− p′)K(1)(p, p′)

(
2(χ− − χ+)22pp′

p− p′

)
. (5.3.44)

Considering just K(0) as contributing kinematical factor, there are still two other contributions at next-
to-leading order we need to consider: One from the next-to-leading order contribution to the vertex
(leading to S(1)

1-loop,2) and one from the next-to-leading order contribution to the dispersion relation ω(p)
that appears in the propagators (leading to S(1)

1-loop,3)). Diagrammatically, this is illustrated in 5.5.

V V =×K

∣∣∣∣∣∣∣∣∣∣∣∣
O(λ−1)

p

p′

p

p

ω

V (0) V (0) ×K(1) + V (0/1) V (0/1) ×K(0) + V (0) V (0) ×K(0)

p

p′

p

p′

ω(0)
p

ω(0)
p

p′p′

p

p′

ω(0/1)
p

p′

Figure 5.5: Schema of the contributions that lead to S(1)
1-loop,1, S

(1)
1-loop,2, and S

(1)
1-loop,3, respectively. The

index (0/1) refers to the fact that both O(λ0) and O(λ−1) ingredients are present.

The latter two contributions emerge from the following 1-loop integral that we need to analyse

I(2) =
∫

dΩdρ
(2π)2

[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ) + V

(1)
4 (p,p′,ρ,p+p′−ρ)

λ

]2

[Ω − ω(ρ) + iϵ][ω(p) + ω(p′) − Ω − ω(p+ p′ − ρ) + iϵ]
. (5.3.45)

The
∫
dΩ integration can be performed immediately as we did before (with pole in the upper and lower

half plane that we can equivalently choose for our Cauchy arc), leading us to:

I(2) =
∫

dρ

2π

i

[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ) + V

(1)
4 (p,p′,ρ,p+p′−ρ)

λ

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
. (5.3.46)

20And O(λ0)-order dispersion relations in the propagator, consequently.
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Using the expansion in λ of the energy, i.e.

ω(p) = ω(0)(p) + ω(1)(p)λ−1 + O
(
λ−2) , (5.3.47)

we arrive at the following expression:

I(2) =
∫

dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ

+ 1
λ

∫
dρ

2π
2iV (0)

4 (p, p′, ρ, p+ p′ − ρ)V (1)
4 (p, p′, ρ, p+ p′ − ρ)

ω(0)(p) + ω(0)(p′) − ω(0)(ρ) − ω(0)(p+ p′ − ρ) + 2iϵ
+ O

(
1
λ2

)
=Ī(2) + Ĩ(2) + O

(
1
λ2

)
. (5.3.48)

The latter term is manifestly of order O
( 1
λ

)
, and can be solved similarly to the integral before, just now

dealing with a different numerator (again with pole at ρ = p+ iϵ′):

λĨ(2) =
∫

dρ

2π
2iV (0)

4 (p, p′, ρ, p+ p′ − ρ)V (1)
4 (p, p′, ρ, p+ p′ − ρ)

ω(0)(p) + ω(0)(p′) − ω(0)(ρ) − ω(0)(p+ p′ − ρ) + 2iϵ
= 2(χ− − χ+)2 + 2pp′

p− p′
(5.3.49)

×
(

2(χ+χ− + pp′)(χ− − χ+)2 + pp′(p2 + p′2) + q̃(p+ p′)[2pp′ + (χ− − χ+)2] + 2pp′
[
χ+χ− + q̃2]) .

Re-expressing this compactly, this gives rise to the S-matrix contribution:

S
(1)
1-loop,2 = (−i)2

2
K(0)Ĩ(2)

= (−i)2

2
K(0)2

V
(0)

4 (p, p′, p, p′)V (1)
4 (p, p′, p, p′). (5.3.50)

The integral Ī(2), however, is not yet manifestly of the order we want it to be. We can again use the
λ-expansion for ω(p), and the fact that for large λ, we have

1
a+ b

λ

= 1
a

+ b

a2λ
−1 + O(λ−2) . (5.3.51)

Applied to our case, we then get:

Ī(2) =
∫

dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(0)(p) + ω(0)(p′) − ω(0)(ρ) − ω(0)(p+ p′ − ρ) + 2iϵ︸ ︷︷ ︸
=I(1),as we calculated before

+ 1
λ

∫
dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2 [
ω(1)(p) + ω(1)(p′) − ω(1)(ρ) − ω(1)(p+ p′ − ρ)

]
[
ω(0)(p) + ω(0)(p′) − ω(0)(ρ) − ω(0)(p+ p′ − ρ) + 2iϵ

]2 + O
(

1
λ2

)
.

(5.3.52)

The leading order λ contribution (that is not of our interest when computing the first order λ correction
to the S-matrix) appears in a natural way in this setting. The second term is computable using Cauchy’s
trick, as well - here we are dealing with second order poles though, and things are a bit involved, but still
within computational means. Nevertheless, we shall choose a different approach to evaluate Ī(2): Let us
consider the zero-order vertex integral without expanding the dispersion relation ω(p) in terms of λ, i.e.

∫
dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
. (5.3.53)
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This is an integral with simple pole at ρ = p and ρ = p′ (ignoring the imaginary ϵ shifts), and for an
integration contour closing around the former, we get

∫
dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
= 2πi lim

ρ→p
(ρ− p)

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
.

(5.3.54)

In order to see how the denominator behaves when computing the residue, the following two Taylor
expansions (both around the point ρ = p) are useful:

ω(ρ) ' ω(p) + (ρ− p)ω′(p) + O
(
(ρ− p)2) ,

ω(p+ p′ − ρ) ' ω(p′) − (ρ− p)ω′(p′) + O
(
(ρ− p)2) . (5.3.55)

This means that we have the following:

∫
dρ

2π

i
[
V

(0)
4 (p, p′, ρ, p+ p′ − ρ)

]2

ω(p) + ω(p′) − ω(ρ) − ω(p+ p′ − ρ) + 2iϵ
=

−
[
V

(0)
4 (p, p′, p, p′)

]2

limρ→p
(ρ−p)ω′(p)−(ρ−p)ω′(p′)+O((ρ−p)2)

(ρ−p) + 2iϵ

=

[
V

(0)
4 (p, p′, p, p′)

]2

∂ω(q)
∂q

∣∣∣
q→p

− ∂ω(q)
∂q

∣∣∣
q→p′

. (5.3.56)

We are in luck, as this just corresponds to
[
V

(0)
4 (p, p′, p, p′)

]2
K(p, p′), of which we just need to isolate

the λ−1 term, meaning K(1)(p, p′)
[
V

(0)
4 (p, p′, p, p′)

]2
. Thus, we get

S
(1)
1-loop,2 = (−i)2

2
K(0)Ī(2)

= (−i)2

2
K(0)K(1)(p, p′)

[
V

(0)
4 (p, p′, p, p′)

]2
. (5.3.57)

Having now all of our S-matrix contributions at hand, we can state our final result for the next-to-leading
order S-matrix element:

λS
(1)
1-loop = λS

(1)
1-loop, 1 + λS

(1)
1-loop, 2 + λS

(1)
1-loop, 3

= (−i)2

2

[(
K(0)

)2
V

(0)
4 (p, p′, p, p′)V (1)

4 (p, p′, p, p′) + 2K(0)K(1)
(
V

(0)
4 (p, p′, p, p′)

)2
]
. (5.3.58)

Now, we could in principle repeat the same calculations that we performed for the tree level λ case and
arrive at the n-bubble contribution - which, in turn, can be divided into three contributions, depending
on whether the next-to-leading order contribution from the kinematical factor, from the vertices or from
the dispersion relations are taken into account. Likewise, we could compute further terms of higher order
in the Lagrangian and use them to compute higher corrections in λ of the S-matrix. As this is not very
illuminating, we shall make here a caesura.
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6 | Jordan Blocks and the Eclectic
Spin Chain

“Sólo el misterio nos hace vivir, sólo el misterio.” [“Only mystery allows us to live, only
mystery.”]

– Federico García Lorca

6.1 The Eclectic Spin Chain

In the preliminary chapters of this thesis, we have elaborated on the fact that spin chain Hamiltonians
appear in the effective expansion of the dilatation operator acting on STO. We have discussed how
this arises in undeformed theories, but as this thesis is revolving about deformed settings, we are also
interested whether this method can be extended to theories exhibiting some kind of deformation. This
has been done within the context of a special case of a deformed AdS5 × S5 theory called the fishnet
theory (see [GK16]), a non-hermitian QFT, which means that the spin chain associated to it has a non-
hermitian Hamiltonian. The γi-deformation is, roughly speaking, obtained by deforming the product of
the fields in the Lagrangian within N = 4 SYM theory in an integrable way - losing conformal invariance
outside of the limit of infinite twisting in the process. As we have motivated in the preliminary part of
this thesis, these theories can then also be studied by analysing an effective spin chain associated to it,
as has been done in e.g. [FSW14] or [ISZ19], and then revisited in [AS21], whose su(3)-notation we shall
follow.1 On this conformal field theory side (in the limit of the strong twist), we will care about three
distinct (bosonic) scalar fields ϕi, which the leading order dilatation operator sees as three distinct spin
chain states |i〉, with i ∈ {1, 2, 3}, being of the form

D = D0 + g2Ĥξ1,ξ2,ξ3 + O(g4) = D0 + g2

[
L∑
l=1

P̂l,l+1

]
+ O(g4) , (6.1.1)

where we assume the spin chain to be closed - as this will let us connect the spin chain picture to STO
later on - and of length L. The first term of the expansion of the dilatation operator D is the bare scaling
dimension of the operator - which is just D0 = L for scalar fields like ours. P̂j,k is an operator that is -
or resembles half of - a permutation and whose action is defined as

P̂ |21〉 = ξ3 |12〉 , P̂ |32〉 = ξ1 |23〉 , P̂ |13〉 = ξ2 |31〉 , (6.1.2)

1In contrast to the notation we used in the introductory part of this thesis for su(3) spin chains, instead of flavours
|0〉 , |1〉 , |2〉, in our notation the flavours present on the spin chain sites will be |1〉 , |2〉 , |3〉. This is a mere reflection of the
different notations used in this context, and we shall choose ours in such a way that it is consistent with [AS21].
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while all other matrix elements vanish. The twisting parameters are allowed to take any complex value
ξ ∈ C. We will define the single trace operator consisting of L ϕ1 fields as the ground or vacuum state,
meaning on the spin chain side that we define

| 1, · · · , 1︸ ︷︷ ︸
L times

〉 (6.1.3)

as the ground state onto which we put excitations. Following (6.1.2), we can identify ϕ2 with the right-
moving excitations and ϕ3 with the left-moving excitations. This nomenclature comes from the notion
of left- and right-movers in CFT, and the fact that our Hamiltonian lets us make this identification
straightforwardly. We will denote the number of ϕ2 states present in a given state as M − K, whereas
the number of ϕ3 states is represented by K, such that the total number of excitations, i.e. non-ϕ1 states
is given by M , consistent with the notation we introduced before. For example, the state

|1, 2, 1, 1, 2, 3, 3, 1, 1, 1〉 (6.1.4)

is then an L = 10,M = 4,K = 2 state. We will always assume K ≤ M − K ≤ L − M without loss of
generality. If we have K = 0, then our spin chain only features one type of excitation - this case resembles
the much simpler su(2) setting that we are already familiar with (barring the new permutation), and the
Hamiltonian can be diagonalised straight away. If K > 0, however, the situation is quite the opposite:
The Hamiltonian is nilpotent in this case, and no nilpotent operator (that is not identically zero) is
diagonalisable. The simplest way to see this is to understand in more direct terms what it is that our
Hamiltonian does to a given state:

|· · · , 1, 2, 1, · · · , 1, 2, 3, · · · , 3, 1, · · · , 1, 3, · · · 〉
|2〉→ ←|3〉

. (6.1.5)

Our Hamiltonian moves |2〉 states to the right, and |3〉 states to the left. Since Ĥ|23〉 = 0, they are not
able to pass through each other and have to accumulate at some point, Thus, a “23 wall” (of which there
may be several) forms after successive application of the Hamiltonian, meaning2

|· · · , 1, 1, 1, · · · , 1, 1, 2, · · · , 2, 3, · · · , 3, 1, · · · , 1, 1, · · · 〉
|2〉→ 23 wall ←|3〉

. (6.1.6)

After having applied the Hamiltonian a sufficient number of times (for which we will provide an upper
bound later on), all non-|1〉 states will have accumulated around the 23 walls and form a locked state,
and these locked states vanish when applying the Hamiltonian once more on them). Periodic spin chains
featuring this nilpotency property are called eclectic, as coined in [ISZ19].

After a first situational overview, we can more concisely recapitulate our intentions now: With our
strongly twisted Ĥ, we have a linear operator on a finite dimensional vector space whose basis we can write
down - we have all the necessary ingredients at hand to start our JNF triangularisation: Find eigenvalues,
eigenvectors, hauptvectors, and then generate the necessary JNF basis similarity transformation matrix
out of the latter two. We shall not go down this road, instead, we will diagonalise the Hamiltonian
associated with the γi-deformation, which is diagonalisable in general, and after having solved the spectral
problem for this Hamiltonian (which is much simpler due to its semi-simplicity), we will consider the
limit of large twists.

Let us now talk about the spin chain associated to the γi deformation. In the introduction, we
studied the su(3) XXX Heisenberg spin chain, whose analysis will lend itself nicely to the case we are

2To see this, we also need to keep in mind that our chain is periodic.
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about to explore: The effective spin chain that originates from considering γi deformation is given by an
integrable deformed su(3) XXX chain, and in this context we shall refer to the process of deforming it
as twisting. The maximal number of independent twisting parameters qi an su(3) spin chain can exhibit
is 3 - this is because we have three different flavour states |i〉, and any permutation operator in the
Hamiltonian ideally still has to satisfy P̃ ◦ P̃ = 1 (which links any matrix elements to its transposed
pendant). In terms of such a maximally twisted permutation operator P̃, we can write the Hamiltonian
we are interested in as

H̃(q1,q2,q3) =
L∑
l=1

P̃l,l+1 , (6.1.7)

where our twisted permutation operator P̃i,j acts non-trivially on sites i and j as follows

P̃ |11〉 = |11〉 , P̃ |22〉 = |22〉 , P̃ |33〉 = |33〉 , (6.1.8)

P̃ |12〉 = 1
q3

|21〉 , P̃ |23〉 = 1
q1

|32〉 , P̃ |31〉 = 1
q2

|13〉 ,

P̃ |21〉 = q3 |12〉 , P̃ |32〉 = q1 |23〉 , P̃ |13〉 = q2 |31〉 .

The so-constructed Hamiltonian is only Hermitian for q∗i = q−1
i , i.e. when the twisting parameters are

complex phases |qi| = 1. Fortunately, it is semi-simple for any finite value of the twisting parameters,
though, as was remarked in footnote 2 in [AS21].

In the (normalised) limit of strong twisting, we recover the eclectic spin chain Hamiltonian we alluded
to before, i.e.

Ĥξ1,ξ2,ξ3 = lim
ϵ→0

ϵH̃( ξ1
ϵ ,

ξ2
ϵ ,

ξ3
ϵ ) , (6.1.9)

however, the eigenbasis for the Hilbert space stemming from H̃ ceased to be a basis once the limit of
strong twisting is applied: The Bethe vectors (i.e. eigenstates of the energy) of H̃ for any finite value of
qi = ξi

ϵ coalesce into states of the following form in the limit of vanishing ϵ:

|ψ(k)〉 =
L∑
l=1

e2πkli/LU l|1, . . . , 1, 2, . . . , 2, 3, . . . , 3〉 , (6.1.10)

where L is the length of the spin chain, and U is the shift operator whose action is defined via
U |n1, . . . , nL−1, nL〉 = |n2, . . . , nL, n1〉. Excitations are not able to move from their relative positions in
states with this configuration, and we call these states locked. They are, of course, eigenstates of the
Hamiltonian Ĥ for any ξ1, ξ2, ξ3, but since they do not span out our Hilbert space but only a subspace
thereof, so we do need more advanced methods to be able to make up for this loss in dimensions, which
is going to be the goal of the sections to follow.

6.2 Exceptional Points and Jordan Blocks

6.2.1 A Twisted Warm Up: The L = 3, M = 2, K = 1 Case

As we explained before, the strongly twisted limit of H̃ is non-diagonalisable for K > 0, and since
L − M ≥ M − K ≥ K, the simplest non-diagonalisable case is K = 1,M = 2, L = 3. It is our
intention now to compute the eigenvectors of H̃q1,q2,q3 , and then study the spectrum’s behaviour as the
twisting parameters approach exceptional points, meaning points where the Hamiltonian ceases to be
diagonalisable.
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Without any previous knowledge about the situation, the most general ansatz we can make for a
state of an L = 3 spin chain is given by3

ψ =
∑
σ∈S3

ψ(σ)|σ(1)σ(2)σ(3)〉 . (6.2.1)

The twisted Hamiltonian transforms even elements of S3 into odd elements of S3 - this is because it
consists of transposition permutations only, and the signature of an element in Sn is multiplicative. In
the basis

{|123〉, |231〉, |312〉, |213〉, |132〉, |321〉} , (6.2.2)

it takes the following form

H̃(q1,q2,q3) =



0 0 0 q3 q1 q2

0 0 0 q2 q3 q1

0 0 0 q1 q2 q3
1
q3

1
q2

1
q1

0 0 0
1
q1

1
q3

1
q2

0 0 0
1
q2

1
q1

1
q3

0 0 0


. (6.2.3)

As we mentioned before, for any choice of qi’s, this matrix is diagonalisable. The characteristic polynomial
(which has to be even for matrices of this form) is,

charH̃(q1,q2,q3)
(x) = x

6 − 9x
4 −

3q5
1q2

2q2
3 + 3q4

1q2q3
(

q3
2 + q3

3

)
− 18q3

1q3
2q3

3 + 3q2
1q2

2q2
3

(
q3

2 + q3
3

)
+ 3q1q4

2q4
3

q3
1q3

2q3
3

x
2 (6.2.4)

−
q6

1

(
q3

2 + q3
3

)
− 3q5

1q2
2q2

3 − 3q4
1q2q3

(
q3

2 + q3
3

)
+ q3

1q6
2 + 12q3

1q3
2q3

3 + q3
1q6

3 − 3q2
1q2

2q2
3

(
q3

2 + q3
3

)
− 3q1q4

2q4
3 + q3

2q3
3

(
q3

2 + q3
3

)
q3

1q3
2q3

3
.

The evenness of the characteristic polynomial for this case forces the eigenvalues to come in pairs,4

λ±1 = ±
√∑

i,j

qi
qj

, (6.2.5)

λ±2 = ± 1√
2

√√√√9 + (q1 − q2)(q2 − q3)(q3 − q1)
q1q2q3

−
∑
i,j

qi
qj

, (6.2.6)

λ±3 = ± 1√
2

√√√√9 − (q1 − q2)(q2 − q3)(q3 − q1)
q1q2q3

−
∑
i,j

qi
qj

. (6.2.7)

We can check that, indeed, the Hamiltonian becomes nilpotent in the limit of strong twists, meaning
that all its eigenvalues will vanish: E±i = limϵ→0 ϵλ

±
i = 0. The analysis to follow is the same for all three

pairs of eigenvectors (and their eigenvalues), but focusing on the eigenvectors associated to the first pair
of eigenvalues,

v±1 =

√
(q1 + q2 + q3)2

2(q1 + q2 + q3)2 + 3(λ±1 )2

(
q1 + q2 + q3

λ±1
,
q1 + q2 + q3

λ±1
,
q1 + q2 + q3

λ±1
, 1, 1, 1

)
, (6.2.8)

they become collinear (and thus linearly dependent) in the large twist limit

lim
ϵ→0

v±1 = ±1√
3

(1, 1, 1, 0, 0, 0) . (6.2.9)

3Here, once more we are dealing with the change in notation - our choice here merely reflects the most natural choice
in each situation.

4The sums
∑

i,j
run over the all possible combinations, also the ones where i and j coincide.
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Here, we can explicitly see how we lose vectors of our base when we approach the non-diagonalisable
limit, as in the strong twist limit, the Hamiltonian has the following JNF form,

Ĥ '



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


, (6.2.10)

meaning that we have three 1-dimensional eigenspaces (represented by one block of size 2 each), and
therefore cannot span out the 6-dimensional space. This illustrates that, pairwise, eigenvectors will
coalesce and we will only have their distinct true eigenvectors after having taken the limit. We “lose”
half of our Hilbert space - as was what the authors observed in [AS21].

We shall try to gain deeper insight as to whether we can make up for these lost dimensions by
finding information about the eigensystem of the Hamiltonian before the limit is taken. The authors
in [GN16] had a similar motivation when analysing a spin chain in a slightly different context, and
although the ideas in that work did not treat any Jordan blocks bigger than size 2, their initial intention
was instrumental in the formulation of our methodology.

The starting point and guiding philosophy for our approach is that, while the twist parameters still
are of finite value, we want to consider linear combinations of eigenvectors that coalesce to the same
vector and analyse their behaviour once we take our limit. To show in a first instance that there is some
promise in this idea, for the case above, if we consider the following linear combinations of eigenvectors5

vexample = v+
1 + v−1

|v+
1 + v−1 |

= 1√
3

(0, 0, 0, 1, 1, 1) . (6.2.11)

One can check that

(Ĥ − 01)2vexample = 0 while (Ĥ − 01)1vexample 6= 0, (6.2.12)

making vexample a generalised eigenvector of rank 2 of limϵ→0 v
+
1 = limϵ→0 v

−
1 . For the other two pairs

of eigenvectors, the same procedure reveals all the missing generalised eigenvectors in the limit of strong
twisting, and our Hilbert space basis is completed. We, although coincidentally for the moment it might
seem, in this way recover information about the generalised eigentheory problem of the strongly twisted
Hamiltonian prior to twisting, which is precisely what we wanted. We systematise this procedure in a
formal way in the next subsection.

We will in the next subsections go on to motivate that the geometric multiplicity of the eigenvalues
of the defective matrix in the limit is indicative of how involved our analysis is going to be. As one might
expect, the study will turn out to be much more involved as soon as the geometric multiplicity of any
eigenvalue exceeds one, as in this case the eigenvalue has several Jordan blocks in the JNF - so when
we refer to “the” Jordan block associated to λ, there is ambiguity. Our introductory example might at
first glance seem already to be more involved than any preliminary minimal case we could consider, as

5In the normalisation that we chose, the linear combination does not depend on the twist parameters anymore - however,
we are still in the setting of finite twist.
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the three Jordan blocks featured in the JNF are all associated to the eigenvalue 0 - we have geometric
multiplicity three! The reason why the eigenvectors associated to the different blocks do not “interfere”
with each other is that they are associated with different total twisted momenta, where the momentum
operator is the generator of the shift operator U we introduced before. We have [Ĥ, U ] = 0, thus the
eigenvectors that correspond to different momenta cannot mix, even if they are associated to the same
(vanishing) energy. This is most easily made apparent if we make the representation of the U operator
in the basis we used for (6.2.3) explicit,

U
.=



0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0


. (6.2.13)

In the block diagonal form, we can easily see that the eigenvectors in (6.2.8) are also eigenvectors of U ,
and that each of the three pairs share indeed the same charge under U , explaining the pairwise grouping
and non-mixing.

6.2.2 Distinguishable Jordan Blocks

In a first, we limit our considerations to the cases where all the eigenvalues of a matrix have geometric
multiplicity one - meaning that at most one Jordan block is generated by each distinct eigenvalue, we
call this the distinguishable case.

We first introduce the necessary ingredients for the methodology we want to develop: LetM ∈ MN (C)
be a complex N × N matrix. Furthermore, let M = M(ϵ) also continuously depend on a complex
parameter ϵ. It is our assumption that M(ϵ) is semi-simple almost everywhere, meaning ∀ϵ ∈ C except
for finitely many. We will parametrise the ϵ-arc in such a way, that M(ϵ) ceases to be diagonalisable at
ϵ = 0, forming an exceptional point, where it becomes a defective matrix whose JNF exhibits a single
Jordan block of size N . The eigenvectors and eigenvalues of M(ϵ), vi and λi, naturally depend on ϵ, too:
As the entries of M(ϵ) depend on ϵ, so will the characteristic polynomial and the eigenvector equation,
subsequently. We will, however, suppress making this dependence explicit wherever it is natural to do
so with the aim of uncluttering our expressions.

Let σ(M(ϵ)) = {λ1, · · · , λr} be the spectrum of M(ϵ). Since we assume that in the limit of ϵ → 0,
the matrix is similar to M(ϵ) ∼−→ J , where J is a Jordan block of size N associated to an eigenvalue, let
us call it λ. As we have σ(limϵ→0 M(ϵ)) = σ(J) = {λ}, we have limϵ→0{λ1, · · · , λr} = {λ}, implying
that in the limit all the eigenvalues coincide and we get

lim
ϵ→0

λi = lim
ϵ→0

λj = λ (6.2.14)

for any two eigenvalues λi, λj ofM(ϵ). This has an important implication on the eigenvectors in the limit:
As the relevant functions in our quantities depend continuously on ϵ and products of finite well-defined
limits equal the limit of the product, we have that

0 = lim
ϵ→0

[(M(ϵ) − λi1)vi] =
[
lim
ϵ→0

(M(ϵ) − λi1)
] [

lim
ϵ→0

vi

]
=
[
M(0) − 1 lim

ϵ→0
λi

] [
lim
ϵ→0

vi

]
. (6.2.15)
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We argued before that all the eigenvalues coincide in the limit, and therefore [M(0) − 1 limϵ→0 λi] is
independent of the index i. Furthermore, limϵ→0 vi solves the eigenvector equation for M(0), and we
know that M(0) is similar to a Jordan block and thus only has one true eigenvector,6 implying that all
the eigenvectors vi ofM(ϵ) coincide in the limit as well (up to scalar factors, so they are collinear). What
the authors in [AS21] call the “collapse of Bethe vectors” reflects this fact and is only to be expected.
As the geometric multiplicity in this setting is one - we are in the distinguishable case - we cannot draw
the same conclusion for the indistinguishable case, and things will be more involved later on.

We have now seen how eigenvectors can appear in the limit this way, it is only natural to ask ourselves
now whether generalised eigenvectors can appear as limits, too. Let us first look at the following linear
combination

[M(ϵ) − λ11][M(ϵ) − λ21](α1 v1 + α2 v2) = 0 , (6.2.16)

where αi ∈ C might depend on ϵ. In the ϵ → 0 limit, this equation becomes

[
M(0) − 1 lim

ϵ→0
λ1

] [
M(0) − 1 lim

ϵ→0
λ2

] [
lim
ϵ→0

(α1 v1 + α2 v2)
]

=

=
[
M(0) − 1 lim

ϵ→0
λi

]2 [
lim
ϵ→0

(α1 v1 + α2 v2)
]

= 0 , (6.2.17)

with λi being eigenvalues of M(ϵ). The last equality in (6.2.17) is the defining equation of generalised
eigenvectors of rank 2, and it implies that, somehow, this linear combination in the limit encodes some
information about the generalised eigensystem of the matrix we are considering. We have shown above
that the linear combination (α1 v1 + α2 v2) satisfies one of the two conditions that could make it a
candidate for a rank 2 generalised eigenvector, however, for general values αi it is just a true eigenvector
only, since

lim
ϵ→0

[M(ϵ) − λ11](α1 v1 + α2 v2) = lim
ϵ→0

α2 (λ2 − λ1)︸ ︷︷ ︸
=0 in the limit

v2 = 0 . (6.2.18)

Therefore, the limit of (α1 v1 + α2 v2) is only part of ker{[M(0) − 1 limϵ→0 λi]2} because it is also part
of ker{[M(0) − 1 limϵ→0 λi]}, but we do not want the latter to be the case. This can be avoided by
considering a coefficient α2 that diverges as (λ2 − λ1)−1. The same must hold for α1. It is particularly
useful to assume that indeed both α−1

i ∝ |v1−v2|, all while assuming that limϵ→0(λ2−λ1)(α1 v1+α2 v2) =
0 for well-definedness. Conversely, if we find two (finite) α1 and α2 such that they do not vanish in the
ϵ → 0 limit and limϵ→0(α1 v1 + α2 v2) = 0, then limϵ→0

α1 v1+α2 v2
λ1−λ2

gives us the generalised eigenvector
of rank 2, since in this case we have

lim
ϵ→0

[M(ϵ) − λ11] (α1 v1 + α2 v2)
λ1 − λ2

= lim
ϵ→0

α2 v2 6= 0 , (6.2.19)

and likewise for λ2 as a starting point.

We need to remind ourselves that we are working with complex vector spaces, meaning that collinear
unital vectors can differ by a phase factor (as opposed to just a sign), which means that for coalescing
eigenvectors we can have limϵ→0 vi = eiϕij limϵ→0 vj . We introduce a factor β to take this phase difference

6Recall that the number of Jordan blocks in a JNF corresponds to the dimension of the eigenspace associated to an
eigenvalue.
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into account in the following linear combinations7

w±ij = vi ± βjivj
|vi ± βjivj |

, with βji = v†jvi , (6.2.20)

with |v|2 = v†v being the usual vector norm. Then, limϵ→0 w
+
ij is equal - up to a potential phase factor

- to limϵ→0 vi. The expression limϵ→0 w
−
ij is in the limit indeterminate (of type “ 0

0”). With our previous
considerations, the latter can then be seen to be the generalised eigenvector of rank 2 when applying
L’Hôpital’s rule. In proposition 4.3 in [GN16], a similar result was motivated, for which we have now
found first-hand explanation. The choice of vi, vj is inconsequential, and limϵ→0 w

−
ij will always equal

the generalised eigenvector of rank 2 (see 2.1.1). This is a consequence of the fact that we are in the
case of geometric multiplicity 1, so we know that we (at most) get one linearly independent eigenvector
of rank 2.

Having discussed how we get generalised eigenvectors of rank 2, we now extend this procedure to
generalised eigenvectors of rank n: For this to be achievable, we need linear combinations of M(ϵ) of
order n. The “candidate” vector combination from which we want to construct a generalised eigenvector
of rank n satisfies [

M(0) − 1 lim
ϵ→0

λi

]n [
lim
ϵ→0

(
n∑
i=1

αi vi

)]
= 0 , (6.2.21)

for any constants αi provided that vi are, as before, eigenvectors. Here again, as this is one of the two
defining equations for generalised eigenvectors of rank n, so we want to manipulate the combination
limϵ→0 (

∑n
i=1 αi vi) in such a way that we can extract the generalised eigenvectors of rank n from this.

The previous method can recursively be extended by substituting the (true) eigenvectors vi by the
appropriate ones89

w
(n)
ij =

w
(n−1)
ji − β

(n−1)
kj w

(n−1)
ki

|w(n−1)
ji − β

(n−1)
kj w

(n−1)
ki |

, with β
(n−1)
kj = (w(n−1)

ki )†w(n−1)
ji and w

(0)
ij = vi . (6.2.22)

There are some caveats associated to this: With the above, we are actually solving the condition[
M(0) − 1 lim

ϵ→0
λi

]n+1
w(n) = 0 , (6.2.23)

which does not provide us with the full picture, as we do impose [M(0) − 1 limϵ→0 λi]n w(n) 6= 0 (recalling
the definition of a generalised eigenvector of rank n+ 1), but we do not impose[

M(0) − 1 lim
ϵ→0

λi

]
w(n) = w(n−1) . (6.2.24)

By solving for a weaker condition, we do not get “pure” generalised eigenvectors of rank n + 1, but
rather a linear combination of generalised eigenvectors up to rank n+ 1 (as all of them also satisfy the
relation (6.2.23)), with the guarantee that there is a non-zero contribution of the generalised eigenvector

7Throughout this project, we will encounter normalised limits of this form which, technically speaking, are indefinite -
in 1 dimension, the limit

lim
x→0

x

|x|
is not defined. This is because the limit value depends on the “direction” with which x is approaching 0. For some
directional choices of x → 0, the above limit exists. Likewise, for limits of this form in our context, we just need to think
of the limits as directional limits where necessary, as the resulting vector - which might get a different phase depending on
the direction we choose - will have the desired properties.

8In the introduction (see (2.1.5)), we defined v(n) as the generalised eigenvector of rank n, and here w(n)
ij will give rise

to the generalised eigenvector of rank n+ 1.
9Here, k is not being summed over, but we choose a compact form of notation that lets us drop the k-dependence where

it is inconsequential.
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of rank n+ 1 in this linear combination. Finally, it goes without saying that we cannot recursively use
this process ad infinitum: As a starting point, we used n distinct eigenvectors to arrive at a generalised
eigenvector of rank n. As a Jordan block of size N (which M(ϵ) in the ϵ → 0 limit is similar to) can only
give rise to N independent generalised eigenvectors, we can only repeat this recursion until w(N−1)

ij . To
go beyond N − 1 as a superindex, we just do not have the necessary ingredients.

Let us state and prove the following proposition that addresses the completeness of our recipe:

Proposition 6.2.1. Let n ≤ N − 1, and be the setting as above. Then the following hold:

• Every limϵ→0 w
(n)
ij is neither zero nor does it diverge.

• limϵ→0 w
(n)
ij is orthogonal to any limϵ→0 w

(m)
ij with m 6= n.

Proof. • All w(n) are normalised for any ϵ, and as the norm is the composition of continuous functions,
we know that the limit of the norm is equal to the norm of the limit. Therefore, limϵ→0 w

(n)
ij /∈

{0,±∞} as it is normalised to be 1 for any value of ϵ.

• n = 2,m = 1 We start with generalised eigenvectors of rank 1 and 2. The claim is then that
(limϵ→0 vj)†(limϵ→0 w

(1)
ij ) vanishes. Rather than computing this limit, it is more straightforward

to equivalently compute limϵ→0 limϵ′→ϵ(vj(ϵ))†(w(1)
ij (ϵ′)). The ϵ′ → ϵ limit can be continuously

taken right away, and using (6.2.20), we arrive at

(lim
ϵ→0

vj)†(lim
ϵ→0

w
(1)
ij ) = lim

ϵ→0
lim
ϵ′→ϵ

(vj(ϵ))†(w(1)
ij (ϵ′)) = lim

ϵ→0
(vj(ϵ))†(w(1)

ij (ϵ)) = lim
ϵ→0

(v†j · vi) − βji(v†j · vj)
|vi − βjivj |

.

(6.2.25)
If we now use the definition of βji and use the fact that the eigenvectors are normalised, the
numerator vanishes for any ϵ, including in the (continuous) point ϵ = 0:

(v†j · vi) − v†j · vj

=1︷ ︸︸ ︷
(v†j · vj)

|vi − v†j · vjvj |
= 0

|vi − v†j · vjvj |
. (6.2.26)

Analogously for n,m = n− 1 , we can more generally prove the orthogonality between the vectors
w

(n)
ij (ϵ) and w(n−1)

jk (ϵ) in the limit

(w(n−1)
jk (ϵ))†(w(n)

ij (ϵ)) =
(w(n−1)

jk )† · w(n−1)
ik − β

(n−1)
ji (w(n−1)

jk )† · w(n−1)
jk

|w(n−1)
ik − β

(n−1)
ji w

(n−1)
jk |

=
(w(n−1)

jk )† · w(n−1)
ik − (w(n−1)

jk )† · w(n−1)
ik

=1︷ ︸︸ ︷
(w(n−1)

jk )† · w(n−1)
jk

|w(n−1)
ik − (w(n−1)

jk )† · w(n−1)
ik w

(n−1)
jk |

= 0
|w(n−1)
ik − (w(n−1)

jk )† · w(n−1)
ik w

(n−1)
jk |

, (6.2.27)

which vanishes in the same way.

The remaining scalar products n,m are proven inductively: Using the definition of w(m+1)
ij (ϵ), it

is easy to similarly show that w(n)
ij (ϵ) and w(m+1)

ij (ϵ) are orthogonal provided w(n)
ij (ϵ) and w(m)

ij (ϵ)
are orthogonal (assuming that the superindices never coincide). With our starting point that we
have proven the claim for indices pairs (n, n−1), the just established fact that (n,m) ⇒ (n,m+1)
and that (n,m) ⇔ (m,n). Thus, we have the claim for the following index pairs:
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(1, 2) (1, 3) · · · (1, N − 1)

(2, 3) (2, 4) · · · (2, N − 1)

(N − 6, N − 5) (N − 6, N − 4) · · · (N − 6, N − 1)

(N − 5, N − 4) (N − 5, N − 3) (N − 5, N − 2) (N − 5, N − 1)

(N − 4, N − 3) (N − 4, N − 2) (N − 4, N − 1)

(N − 3, N − 2) (N − 3, N − 1)

and, finally, (N − 2, N − 1) .

This concludes our induction and proves our claim.

From this proposition, we can infer an important isomorphism corollary:

Corollary 6.2.1.1. The span{limϵ→0 vi, limϵ→0 w
(1)
ij , . . . , limϵ→0 w

(N−1)
ij } is a vector space of dimension

N and isomorphic to the vector space spanned by the set of generalised eigenvectors of M(0) in the sense
that the identification of each individual w(n) with its corresponding ker (M − λ1)(n+1)/ker (M − λ1)(n)

can be made.

Proof. For the resulting limϵ→0 w
(n−1)
ij , it is irrelevant what initial choice of eigenvectors we make in

their construction, and we shall take one representative for each w(n)
ij . The previous proposition implies

that the N vectors that generate this space are all non-zero and orthogonal, proving the former part of
the claim.

limϵ→0 w
(n−1)
ij is a linear combination of generalised eigenvectors of up to rank n. We are still in

the case of geometric multiplicity 1, and ker{(M(0) − λ1)n}/ker{(M(0) − λ1)n−1} is one-dimensional.
Hence, ker{(M(0) −λ1)n} and span{limϵ→0 vi, limϵ→0 w

(1)
ij , . . . , limϵ→0 w

(n−1)
ij } are isomorphic as vector

spaces in the sense that we established that each of these sub-vector spaces are as was stated in the
claim.

Indeed, we have now shown that the vectors {limϵ→0 vi, limϵ→0 w
(1)
ij , . . . , limϵ→0 w

(N−1)
ij } that we

generate using our methodology correspond to the full set of generalised eigenvectors of M(0), and
we can read off the rank of each generalised eigenvector by the superindex (plus one) we assigned it.
However, in addition to the restriction that the geometric multiplicity of the eigenvalue λ is not allowed
to be larger than 1, we implicitly also assumed that M(0) is not allowed to feature any other eigenvalues
- this of course is not true in general. However, it suffices to analyse each eigenvalue separately, and our
methodology is correct as long as all the present eigenvalues have geometric multiplicity one.
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From the point of view of constructing an algorithmic method to find the generalised eigensystem of
matrix that is non-diagonalisable for some values of the parameter that it depends on, we provided a
concise recipe of steps to follow - but some of the steps featured expressions that, while correct, are not
particularly “user-friendly” in computations.10 We shall make two simplifying remarks to make things
more computationally accessible:

• In (6.2.20), we always make sure to normalise our vectors - by dividing by the norm. However, this
is not wholly necessary: The reason for the normalisation was mainly to provide us with the correct
power in ϵ of a given vector. Therefore, instead of dividing by the whole norm in denominator, we
can just divide by the ϵ-power that arises from it. We shall make use of this fact while applying
our methodology within the context of spin chains later on.

• While we always assume the limits to exist and be well-defined where we take them, there is another
subtlety we have not addressed so far: In order to get the generalised eigenvector of rank n+ 1, we
need to compute the difference between eigenvectors of a diagonalisable matrix. If however, in the
process, we already take the limit at some point when dealing with the w(n−1) vectors and end up
continuing our computation with the generalised eigenvectors of the non-diagonalisable matrix in
the limit, we potentially end up with the generalised eigenvector of the wrong rank. This is due to
the fact that

lim
ϵ→0

w
(n−1)
ji − β

(n−1)
kj w

(n−1)
ki

|w(n−1)
ji − β

(n−1)
kj w

(n−1)
ki |

6= lim
ϵ→0

w
(n−1)
ji − limϵ→0[β(n−1)

kj w
(n−1)
ki ]

|w(n−1)
ji − β

(n−1)
kj w

(n−1)
ki |

, (6.2.28)

for general w(n−1). It is therefore imperative to always observe the correct order of “limits”, as to
avoid spoiling the result, which is a key difference between our method and [GN16]. We illustrate
this in the appendix.

6.2.3 Indistinguishable Jordan Blocks

We now want to extend our methodology for the case of a matrix that (at an exceptional point) is defective
possessing eigenvalues with geometric multiplicity larger than 1 - so far our recipe and statements
depended heavily on this fact. As we shall see in an instant, there are some intricacies associated to
the non-distinguishable case, and we will illustrate this both by making examples within this subsection
(related to the spin chain scenario we are interested in) and more algebraic ones in the appendix.

We are starting this off by considering the simplest setting where the strong-limit Hamiltonian
Ĥξ1,ξ2,ξ3 develops more than one Jordan block (of non-minimal size) and that exhibits the subtlety
that we want to illustrate - with the additional assumption that the total twisted momentum of the
states vanishes. This is given by the L = 5,M = 3,K = 1 spin chain. A priori, this spin chain has(

5
2, 2, 1

)
= 30 (6.2.29)

10To mention one such instance: We will later apply our methodology to the context of Bethe ansätze, where the
(diagonalisable) eigensystem is already presented in an involved form. With these starting ingredients, it might be difficult
to compute scalar products and norms of linear combinations were we to blindly follow our presented expressions thus far.
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states that we need to include in our basis. Thanks to the shift operator commuting with the Hamil-
tonian, we can focus only on the vanishing momentum sector,11, as the other sectors have the same
structure (as discussed in [AS21]), reducing the number of states to 30

5 = 6 - which is manageable as a
matrix representation. This case has already been studied in [AS21], and the authors claimed that the
Hamiltonian was similar to a JNF with one Jordan block of size 5 and one of size 1, i.e.

H̃L=5,M=3,K=1 '



0
0

J1 0
0
0

0 0 0 0 0 J2


. (6.2.30)

Before applying the limit of strong twist, the finite twist (spin chain) Hamiltonian takes the following
form for the same restriction of zero total momentum:

H̃L=5,M=3,K=1
(q1,q2,q3) =



2 q3 q1 q2 0 0
1
q3

0 q3 q3 q1 + q2 0
1
q1

1
q3

1 0 q3 q1
1
q2

1
q3

0 1 q3 q2

0 1
q1

+ 1
q2

1
q3

1
q3

0 q3

0 0 1
q1

1
q2

1
q3

2


. (6.2.31)

In an initial step, we shall still stick to the methodology for the case of geometric multiplicity not
exceeding 1 in order to precisely see where our established toolset breaks down, and only then try to
find a remedy for it. We first shall use (6.2.31) to make its eigensystem more accessible, as this matrix
is otherwise very tedious to diagonalise. Here it is important to remember that H̃L=5,M=3,K=1 has an
auxiliary role in so far as we are only interested in what it approaches in the limit, but not how. We are
therefore free to choose a matrix A(q) that parametrises the approach to the limit in a different, perhaps
more convenient way. Therefore, we are free to modify (6.2.31) in whatever way pleases us provided
that in some continuous limit (that for simplicity’s sake we assume to still be at the same point) it still
coincides with the defective limit of H̃L=5,M=3,K=1. We do this to arrive at a spectral problem that
we can actually solve, since for generic characteristic polynomials of degree 6, the solution is not always
attainable in terms of elementary functions. The following two modifications fulfil this requirement and
are choices for A(q):

H̃(1) =



2 q3 q1 q2 0 0
0 0 q3 q3 q1 + q2 0
0 0 1 0 q3 q1

0 0 0 1 q3 q2

0 0 0 0 0 q3

0 0 0 0 1
q3

2


, H̃(2) =



2 q3 q1 q2 0 0
0 0 q3 q3 q1 + q2 0
0 0 1 0 q3 q1

0 1
q3

0 1 q3 q2

0 0 0 0 0 q3

0 0 0 0 1
q3

2


. (6.2.32)

Substituting qi → ξi

ϵ , the six distinct eigenvectors of H̃(1) are

v1 = (1, 0, 0, 0, 0, 0) ,

11The zero-momentum restriction corresponds to us restricting our analysis to one block appearing in the Hamiltonian,
as the analysis for the different momenta values is analogous. In (6.2.10) for example, the zero momentum restriction
corresponds to us only looking at the very first block in the top left corner.
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v2 = (ξ3,−2ϵ, 0, 0, 0, 0) ,

v3 =
(
ξ2

3 + ξ2ϵ,−2ξ3ϵ, 0,−ϵ2, 0, 0
)
,

v4 =
(
ξ2

3 + ξ1ϵ,−2ξ3ϵ, 0,−ϵ2, 0, 0
)
,

v5 =
(
ξ4

3 − 1 + 2
√

2
2 +

√
2

(ξ1 + ξ2)ξ2
3ϵ+ 2 −

√
2

2 +
√

2
(ξ2

1 + ξ2
2)ϵ

2

2
,−4 + 3

√
2

2 +
√

2
ξ3

3ϵ+ 8 + 5
√

2
2 +

√
2

(ξ1 + ξ2)ξ3
ϵ2

2
,

ξ2
3ϵ

2

2
+ 1 −

√
2

2
ξ1ϵ

3,
ξ2

3ϵ
2

2
+ 1 −

√
2

2
ξ2ϵ

3,−1 +
√

2
2 +

√
2
ξ3ϵ

3,
ϵ4

2 +
√

2

)
,

v6 =
(
ξ4

3 − 1 − 2
√

2
2 −

√
2

(ξ1 + ξ2)ξ2
3ϵ+ 2 +

√
2

2 −
√

2
(ξ2

1 + ξ2
2)ϵ

2

2
,−4 − 3

√
2

2 −
√

2
ξ3

3ϵ+ 8 − 5
√

2
2 −

√
2

(ξ1 + ξ2)ξ3
ϵ2

2
,

ξ2
3ϵ

2

2
+ 1 +

√
2

2
ξ1ϵ

3,
ξ2

3ϵ
2

2
+ 1 +

√
2

2
ξ2ϵ

3,−1 −
√

2
2 −

√
2
ξ3ϵ

3,
ϵ4

2 −
√

2

)
, (6.2.33)

all approaching û1 in the ϵ → 0 limit, where we introduced the notation

ûi = (0, · · · , 0, 1︸︷︷︸
index i

, 0, · · · , 0) . (6.2.34)

That means in the limit, we are dealing with one true eigenvector. We go on in our recipe and find the
following five vectors12

w
(1)
i,1 = vi − (vi · v1)v1

ϵ
, (6.2.35)

and we find that they all are proportional to û2 = (0, 1, 0, 0, 0, 0) in the limit of vanishing ϵ. Going one
step further and constructing the four vectors

w
(2)
i,2 =

w
(1)
i,1 − (w(1)

2,1 · w(1)
i,1 )w(1)

2,1

ϵ
, (6.2.36)

we find that, in the ϵ → 0 limit, they span out a two-dimensional space given by span{û3, û4}, which
initially might seem to be contradicting 2.1.1 given that we only found one true eigenvector in the limit.
However, one can find that the two vectors û3, û4 differ by a true eigenvector, (0, ξ2 − ξ1, ξ3,−ξ3, 0, 0),
of the strongly twisted Hamiltonian. One step further in the recipe, we end up finding

lim
ϵ→0

w(3) = (0, 0, 0, 0, 1, 0) = û5 ,

lim
ϵ→0

w(4) = (0, 0, 0, 0, 0, 1) = û6 . (6.2.37)

Summa summarum, we can display the genealogy of our limits in the following way:

Span{lim vi} Span{limw
(1)
ij } Span{limw

(2)
ij } Span{limw

(3)
ij } Span{limw

(4)
ij }

û3

û1 û2 û5 û6

û4

In this horizontal “family tree” of vectors, we find the true eigenvector to be on the very left. As we move
up generation by generation to the right, we get the vectors that our algorithmic framework generates
at each subsequent step. Looking at the above diagram, it might be tempting to conclude that the JNF

12Notice that here we made use of one of the simplifying prescriptions.
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associated to our problem exhibits one Jordan block of size 5 and one Jordan block of size 1. We need to
show this explicitly, however, by finding two Jordan chains of generalised eigenvectors satisfying (2.1.5)
- one of length 5 and one of length 1. Indeed, this is what we find after a healthy dose of algebra:

Ĥ5 2ξ3
3 û6 − 3ξ2

3(ξ1 + ξ2)û5 + 2ξ3(ξ2
1 + ξ2

2 + 3ξ1ξ2)(û3 + û4) − 2(ξ3
1 + ξ3

2 + 4ξ2
1ξ2 + 4ξ1ξ

2
2)û2

4ξ7
3

=

Ĥ4 2ξ2
3 û5 − ξ3(3ξ1 + ξ2)û4 − ξ3(ξ1 + 3ξ2)û3 + (ξ2

1 + ξ2
2 + 6ξ1ξ2)û2

4ξ5
3

= Ĥ3 ξ3(û3 + û4) − (ξ1 + ξ2)û2

2ξ3
3

=

Ĥ2 û2

ξ3
= Ĥû1 = 0 ,

Ĥ[ξ3(û3 − û4) − (ξ1 − ξ2)û2] = 0 , (6.2.38)

where we implied Ĥ = limϵ→0 H̃( ξ1
ϵ ,

ξ2
ϵ ,

ξ3
ϵ ). This is consistent with what the authors found in [AS21],

but we shall improve on this method later on.
Let us now analyse the case of H̃(2), whose six eigenvectors are

v1 = (1, 0, 0, 0, 0, 0) ,

v2 =
(

(1 +
√

5)ξ2
3 − 2ξ2ϵ

3 +
√

5
,−(1 +

√
5)ξ3

ϵ

2
, 0, ϵ2, 0, 0

)
,

v3 =
(

(1 −
√

5)ξ2
3 − 2ξ2ϵ

3 −
√

5
,−(1 −

√
5)ξ3

ϵ

2
, 0, ϵ2, 0, 0

)
,

v4 = (ξ1 − ξ2, 0,−ϵ, ϵ, 0, 0) ,

v5 =
(

2(2 −
√

2)ξ4
3 − [(1 − 3

√
2)ξ1 + (3 − 5

√
2)ξ2]ξ2

3ϵ+ [(1 +
√

2)ξ2
1 + (3 −

√
2)ξ1ξ2 + 4ξ2

2 ]ϵ2,

− 4(1 −
√

2)ξ3
3ϵ− 2(3 −

√
2)(ξ1 + ξ2)ξ3ϵ

2

2 +
√

2
,−(1 −

√
2)ξ2

3ϵ
2 + ξ1ϵ

3,

(1 −
√

2)[(1 − 2
√

2)ξ2
3ϵ

2 − 4ξ2ϵ
3 − (3 −

√
2)ξ1ϵ

3, (2 −
√

2)ξ3ϵ
3,

√
2ϵ4
)
,

v6 =
(

−2(2 +
√

2)ξ4
3 + [(1 + 3

√
2)ξ1 + (3 + 5

√
2)ξ2]ξ2

3ϵ− [(1 −
√

2)ξ2
1 + (3 +

√
2)ξ1ξ2 + 4ξ2

2 ]ϵ2,

4(1 +
√

2)ξ3
3ϵ− 2(3 +

√
2)(ξ1 + ξ2)ξ3ϵ

2

2 +
√

2
, (1 +

√
2)ξ2

3ϵ
2 − ξ1ϵ

3,

−(1 +
√

2)[(1 + 2
√

2)ξ2
3ϵ

2 − 4ξ2ϵ
3 − (3 +

√
2)ξ1ϵ

3,−(2 +
√

2)ξ3ϵ
3,

√
2ϵ4
)
. (6.2.39)

As before, the six eigenvectors all collapse into û1 in the ϵ → 0 limit. However, if we go one step further,
the first difference with the H̃(1) analysis already arises, and we get that the vectors

w
(1)
i,1 = vi − (vi · v1)v1

ϵ
, (6.2.40)

lie within a two-dimensional space spanned by the two vectors û2 and û3 − û4, which both fulfil the
properties of generalised eigenvectors of rank 2. And indeed again, it is true that û2 and û3 − û4 differ
by the true eigenvector (0, ξ2 − ξ1, ξ3,−ξ3, 0, 0). Continuing the prescriptions in our recipe, we find:

lim
ϵ→0

w(2) = û3 + û4 , lim
ϵ→0

w(3) = û5 , lim
ϵ→0

w(4) = û6 . (6.2.41)

Our “family tree” of generalised eigenvectors then looks like

û2

û1 û3 + û4 û5 û6

û3 − û4
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In the end, the structure of H̃(2) that we computed is similar to the one of H̃(1), with the sole difference
that instead of a “fake generalised eigenvector of rank 3”, we found a “fake generalised eigenvector of
rank 2”.13 The results of our analysis are not a particularity of the L = 5,M = 3,K = 1 case: Performing
the same analysis for the L = 7,M = 3,K = 1 case, the structure we would arrive at implies the case to
feature one Jordan block of size 9, one Jordan block of size 5, and one Jordan block of size 1, which we
colour-code in the genealogical diagram to illustrate our point:14

û5

û3 û4 û9 û12

û1 û2 û8 û14 û15

û6 û7 û11 û13

û10

This is consistent with the result the authors found in [AS21], in their Table 1, and the computation in
[ACS22].

The Untangling of Mixed Jordan Chains

We have now, as a representative example, analysed some cases where degenerate Jordan blocks appear.
We have seen that, although the core assumption of onefold geometric multiplicity that we used in the
formal construction of our tools was not fulfilled, our recipe still manages to shed light on the Jordan
structure of our cases. We shall now, in more detail, study which steps of our recipe remain untouched
by the relaxation to allow higher geometric multiplicities, and which steps we need to alter.

Our starting point will be again a matrixM(ϵ) that is diagonalisable a.e., but that at ϵ = 0 it becomes
defective. This time, we assume geometric multiplicity to exceed one, meaning that the eigenvalue
appears in more than one Jordan block of the JNF of the defective matrix. Revisiting (6.2.15),[

M(0) − 1 lim
ϵ→0

λi

] [
lim
ϵ→0

vi

]
= 0 , (6.2.42)

we remind ourselves that this gives us a sufficient (though not necessary in the strict sense) condition
implying that, in the limit, any eigenvector of M(ϵ) becomes an eigenvector of M(0). This still holds for
higher geometric multiplicities, naturally, but, we no longer have the promise that whatever vectors we
get in this limit suffice to span out the eigenspace ker{(M(0) − λ1)}, as this eigenspace is now higher-
dimensional and we might only get a limiting space by the vectors [limϵ→0 vi] that is one dimensional
(for example, all limit eigenvectors might be collinear). One can check that for the L = 5,M = 3,K = 1
case, the “naive” limit space of span{limϵ→0 vi} (ker{(M(0) − λ1)} does not give the full eigenpicture,
and true eigenvectors appear as generalised eigenvectors of higher rank. We shall later on refer to this
phenomenon of misplaced eigenvectors as chain mixing.

13By “fake” we are referring to the fact that it these vectors might, mendaciously, give us the impression that there are
multiple generalised eigenvectors of a certain rank, but they can be connected by ones of lower rank.

14Recall that this is just illustrating how we count, not whether what we get are true or fake eigenvectors of a certain
rank.
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At its core, this is due to the fact that there exist linear combinations of eigenvectors of M(ϵ) whose
coefficients diverge at the exceptional point ϵ = 0 and fulfil

[M(ϵ) − 1λ1(ϵ)]
n−1∑
i=1

αivi(ϵ) = O(ϵ)︸ ︷︷ ︸
eigenvector equation fulfilled only for ϵ = 0

while lim
ϵ→0

n−1∑
i=1

αivi(ϵ) = O(ϵ0)︸ ︷︷ ︸
constant ϵ behaviour in the limit

. (6.2.43)

What the above equation describes is that there exist (true) eigenvectors of M(0) that cannot be ex-
tended to true eigenvectors of M(ϵ). A priori, there is no way for us to know which of the true eigen-
vectors of M(0) cannot be accessed in the limit by true eigenvectors of M(ϵ) (as this depends on the
ϵ-parametrisation of M(ϵ)). We will exemplify this by finding four different parametrisations of matrices
that all coincide in the ϵ → 0 limit to the same matrix,

0 1 0
0 0 0
0 0 0

 . (6.2.44)

Our parametrisations are given by
0 1 ϵ2

ϵ2 ϵ4 ϵ2

0 0 ϵ6




0 1 ϵ2

ϵ2 ϵ4 ϵ

0 0 ϵ6




0 1 ϵ2

ϵ5 0 0
ϵ 0 0




0 1 ϵ2

0 ϵ4 ϵ2

0 0 ϵ6

 . (6.2.45)

If we were to apply our recipe to these cases, we get, in order, the following genealogical diagrams:

û1 û2

û3

û1 û2

û3

û3 û1 û2 û1 û2 û3 .

We get four different diagrams! Therefore, having a limit matrix with a JNF possessing geometric
multiplicity higher than one makes the analysis less transparent, and it is impossible to separate one
Jordan chain ofM(0) from the other, as the above diagrams show (hence the term “chain mixing”). The
situations only gets direr as Jordan blocks grow bigger; e.g.

ϵ 1 ϵ 0 0
0 ϵ4 1 ϵ 0
0 0 ϵ7 ϵ9 0
0 0 0 ϵ6 1
0 0 0 0 ϵ8


, (6.2.46)

which has the following genealogical diagram (notice the “double jump” containing the û4 vector on the
bottom),

û1 û2 û3 û5

û4

,

which implies that we cannot determine whether limϵ→0 w
(3) = û5 is a true eigenvector, a generalised

eigenvector of rank 4 or one of rank 2.15

15We shall make the rectified analysis of this example explicit in the appendix.
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Before we lose all hope, let us stress two important observations: The first one is the fact that our
methodology is still complete - in the sense that, in the end, the complete generalised eigenspectrum of
M(0) will be generated. It is fairly straightforward to see this: Similarly to the case of distinguishable
Jordan blocks, this method gives us non-zero, non-divergent and most importantly orthogonal (and,
thus, linearly independent) vectors, and we just plainly repeat this process as many times as M(ϵ) has
distinct eigenvectors. Additionally, the assertion that eigenvectors of M(ϵ) become eigenvectors of M(0)
in the ϵ → 0 limit still holds.

The second key observation is that for any generalised eigenvector of rank n found at a given step,
its associated eigenvector of one rank lower has to appear one step prior. This can be understood the
following way: Let us assume that we have a “misplaced” eigenvector in the n-th step of our method,
then we may find a generalised eigenvector of rank m at the n+m− 1-th step. By the earlier statement,
then we have a linear combination of vectors satisfying:

[M(ϵ) − 1λn(ϵ)]
n∑
i=1

αivi = O(ϵ) . (6.2.47)

If we now define coefficients

βi = γ
αi∏m

j=1(λi − λn+j−1)
(6.2.48)

for 1 ≤ i < n, where λj is the eigenvalue associated with vj and γ is a constant, then the following linear
combination of n+m− 1 vectors fulfils

m∏
j=1

[M(ϵ) − 1λn+j−1(ϵ)]
n+m−1∑
i=1

βivi = O(ϵ) . (6.2.49)

This implies that linear combination of this form contain information about generalised eigenvectors of
higher rank, which we might be able to extract by applying the tools we already established.

Let us now motivate how we plan to separate the mixed Jordan chains: If we still were in the case of
distinguishable Jordan blocks, then the number of different vectors we obtained in the n-th step would
equal dim(ker{(M(0) − λi1)n}/ker{(M(0) − λi1)n−1}). With theorem 2.1.1, we could then assume to
find the same number or fewer vectors in the n-th step as in the first step. Therefore, if the dimension
of a vector space we obtain in a given step is greater than the dimension of the vector space we obtained
one step prior, that is a clear indication that we have found an eigenvector “in disguise”.

Our chain mixing problem is then solved by the following consideration: As we are able to find at
least some of the true eigenvectors of M(0), it would suffice to untangle the mixed chains if we were able
to reconstruct a Jordan chain from its generalised eigenvector of rank 1.

This can be achieved by first using corollary 2.1.3.1 in order to identify a right generalised eigenvector
of rank 1 ofM(0) with a left generalised eigenvector of maximal rank (i.e. a right generalised eigenvector
of highest rank of M†(0)), and then using the definition (2.1.5) we can find a left generalised eigenvector
of rank 1. Using then again 2.1.3.1, the vector we found this way can be identified with the generalised
eigenvector of maximal rank of the same Jordan chain as the generalised eigenvector of rank 1, that was
our initial ingredient. From this point, we simply need to go down in our Jordan chain like in (2.1.5),
and we are done. Recapitulating, if v is a generalised eigenvector of rank 1 of M(0), then the generalised
eigenvectors of the Jordan chain it is associated with can be generated via

M(0)l
[
M(0)†

]m
v with 0 ≤ l ≤ m , (6.2.50)

and m ∈ N0 such that
[
M(0)†

]m
v 6= 0 while also

[
M(0)†

]m+1
v = 0. The issue of chain mixing was also

found in [AS21], where the authors called it unexpected shortening, however the authors did not provide
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a method to deal with it. We have this addressed this point, and put the final cornerstone in our recipe
that now gives us unambiguous results for any Jordan setting.

6.3 Coordinate Bethe Ansatz for Twisted Spin Chains
In the previous sections, we established a comprehensive toolset to construct the generalised eigensystem
of a defective matrix by perturbing it in a diagonalisable way, and then using our prescriptions when
taking the limit. We now want to apply our machinery to the case of the eclectic spin chain with
an unrestricted number of excitations of flavour 2, but only one excitation of flavour 3, which is the
M > 1,K = 1 case. We want to assume that M > K, since the M = K = 1 case just featured two
flavours on the spin chain (namely flavour 3 and 1), and is therefore diagonalisable and thus there is no
need for our machinery to be involved. As was the setting for matrices, we first needed to diagonalise
M(ϵ), and likewise we first construct the eigensystem of the twisted Hamiltonian (6.1.7), still assuming
general (non-exceptional) values of the twist parameters. We can then make use of our recipe and analyse
the defective K = 1 case in full.

Our first step involves then the construction of the eigensystem of (6.1.7) for general length L,
featuring excitations of two different flavours (meaning that, with the ground state flavour 1, three
distinct flavours are appearing). To this end, we shall use a slightly modified (i.e. twisted) version of the
Nested Coordinate Bethe Ansatz (NCBA) that we introduced for the su(3) spin chain in 3.3.2. For the
original method, we again refer the reader to [BS05], but also to section II.O in [SJS06], although the
latter, while more complete, is arguably harder to consult due to its datedness.16

Our first step in the CBA was to make an ansatz for the position space wave functions. In this, it
was particularly helpful that our Hamiltonian in the untwisted case commuted with the shift operator
- hinting at an invariance that we also want the eigensystem to reflect. This is no longer true: the
twisted Hamiltonian in (6.1.7) no longer commutes with the (usual) permutation operator, however, it
still commutes with the shift operator U that we have defined before. We can still make a plane-wave
ansatz (c.f. [Blo29]) in spite of the twisting parameters appearing, although we have to include them in
some non-trivial way in our ansatz:

|ψ23(p1, p2)〉 =
∑

1≤n1<n2≤L

[
A23e

i(p1n1+p2n2) q
n1
3
qn2

2
+ Ã23e

i(p1n2+p2n1) q
n1
3
qn2

2

]
S2,+
n1

S3,+
n2

|0〉

+
∑

1≤n1<n2≤L

[
A32e

i(p1n1+p2n2) q
n2
3
qn1

2
+ Ã32e

i(p1n2+p2n1) q
n2
3
qn1

2

]
S3,+
n1

S2,+
n2

|0〉 , (6.3.1)

where we again define the pseudo-vacuum17 as the L-fold tensor product of states of type 1, meaning
|0〉 = ⊗L

n=1|1〉. As a notational difference compared to the introductory chapter, we introduced “creation
operators” for the excitations of flavours 2 and 3, that work as

Sj,+n |0〉 = |1, · · · , 1, j︸︷︷︸
at site n

, 1, · · · , 1〉 . (6.3.2)

To make our notation a bit more economical, we suppress the explicit momentum dependence, which
we shall understand to be one on p1 and p2 if not specified another way. As in the introduction, we

16In [dL07], a version of the Nested Coordinate Bethe Ansatz using ZF operators is presented. However, we will not
make use of it.

17Here, we speak of a pseudo-vacuum rather than an ordinary one since the signs and constants appearing in our
Hamiltonian determine which configuration corresponds to the ground state, meaning there is a priori no unique notion of
a ground state (e.g. ferromagnetic vs. anti-ferromagnetic).
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analyse as a next step the Schrödinger equation H̃(q1,q2,q3)|ψ23〉 = E|ψ23〉 - again, we will make the
distinction between the case where the well separated case of the 2 and 3 excitations gives rise to the
energy equations, yielding

E = L− 4 + 2 cos(p1) + 2 cos(p2) , (6.3.3)

which is the same as for the untwisted case (the twist parameters do not make an appearance), and the
case where the 2 and 3 excitations are next to each other, giving rise to(

Ã32

Ã23

)
=

(
1

q1q2q3
eip2−eip1

1−2eip1 +ei(p1+p2)
−(1−eip1 )(1−eip2 )
1−2eip1 +ei(p1+p2)

−(1−eip1 )(1−eip2 )
1−2eip1 +ei(p1+p2) q1q2q3

eip2−eip1

1−2eip1 +ei(p1+p2)

)(
A23

A32

)
. (6.3.4)

So far, we have only dealt with the mixed-flavour case, where the two non-1 excitations of the spin state
are of different flavour (which is why the wave function carries the index ψ23). In order to get the full
2 → 2 S-matrix, we also need to consider the single-flavour cases, for which we will make the following
ansätze:

|ψ22〉 =
∑

1≤n1<n2≤L

[
A22e

i(p1n1+p2n2)qn1+n2
3 + Ã22e

i(p1n2+p2n1)qn1+n2
3

]
S2,+
n1

S2,+
n2

|0〉 , (6.3.5)

|ψ33〉 =
∑

1≤n1<n2≤L

[
A33

ei(p1n1+p2n2)

qn1+n2
2

+ Ã33
ei(p1n2+p2n1)

qn1+n2
2

]
S3,+
n1

S3,+
n2

|0〉 , (6.3.6)

whose dispersion relation and S-matrix element are the same as the (untwisted) su(2) spin chain. Thus,
the full 2-particle S-matrix for the twisted case is of the following form:

S(p2, p1) =


− 1−2eip2 +ei(p1+p2)

1−2eip1 +ei(p1+p2) 0 0 0
0 1

q1q2q3
eip2−eip1

1−2eip1 +ei(p1+p2)
−(1−eip1 )(1−eip2 )
1−2eip1 +ei(p1+p2) 0

0 −(1−eip1 )(1−eip2 )
1−2eip1 +ei(p1+p2 q1q2q3

eip2−eip1

1−2eip1 +ei(p1+p2) 0
0 0 0 − 1−2eip2 +ei(p1+p2)

1−2eip1 +ei(p1+p2)

 .

(6.3.7)
So far, our momenta are not quantised. As we are dealing with a closed spin chain, we expect our
spectrum to end up being discretised. Similar to the untwisted case in our introduction, we do this by
imposing a periodicity condition on our wave function (keeping in mind that we are now dealing with
a twisted theory). Expressing the wave function as a sum over the sites, |ψij〉 =

∑
n1<n2

|ψij(n1, n2)〉,
imposing periodicity on this wave function is tantamount to having |ψij(n1, n2)〉 = |ψij(n2, n1 + L)〉, as
we already mentioned in the introduction in a different context. With our ansätze for the different wave
function components, the so-generated matrix Bethe equations are

eip1L


qL3 A22

qL3 A23

q−L2 A32

q−L2 A33

 =


Ã22

Ã23

Ã32

Ã33

 = S(p1, p2)


A22

A23

A32

A33

 , eip2L


qL3 Ã22

q−L2 Ã23

qL3 Ã32

q−L2 Ã33

 =


A22

A23

A32

A33

 = S(p2, p1)


Ã22

Ã23

Ã32

Ã33

 .

(6.3.8)
We know that our theory factorises, because we still have an integrable theory with an R-matrix, and
thus like before we can immediately extend these equations to larger M (and K):

eipkLq
(3−fk)L
3 q

(2−fk)L
2 = S(pk, pk+1) . . . S(pk, pM )S(pk, p1) . . . S(pk, pk−1) . (6.3.9)

In (6.3.9), fk indicates the flavour of the k-th excitation, which consequently gives us a dressing factor
q−L2 if fk = 3 and a one of qL3 if fk = 2, consistently. These additional factors are forcing us to adapt
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the regular NCBA (for the su(3) spin chain) to accommodate for the twisted nature of our model. For
general values of M , the twisted generalisation follows closely our outline in the introduction, and we
can postulate the following ansatz:

|ψ〉 =
M∑
k=1

∑
σ∈SM

ψk(σ)ei
∑

j
pσ(j)nj q

∑
j
nj

3
(q2q3)nk

S2+
n1
S2+
n2

· · ·S3+
nk

· · ·S2+
nM

|0〉 , (6.3.10)

where we kept in mind that we are and will only ever be interested in the case K = 1. In (6.3.10), we are
adopting the notation of [SJS06] (or are at least inspired by it), and we are re-expressing the coefficients
from before via

ψ2(id) = A23 ,

ψ1(id) = A32 ,

ψ1(τ) = Ã32 ,

ψ2(τ) = Ã23 , (6.3.11)

where τ ∈ S2 is the transposition τ = (12) = (21) in cycle notation. Acting with the matrix Bethe
equations on this, we can extract a recursive recipe out of it that was outlined in [SJS06] and we shall
extend to twisted models.

In order to make our computations more compact in their expressions, we shall work with a normalised
S-matrix of the following form:

λkq
(3−fk)L
3 q

(2−fk)L
2 |ψ〉 = s(pk, pk+1) . . . s(pk, pM )s(pk, p1) . . . s(pk, pk−1) |ψ〉 ,

(6.3.12)

s(pi, pj) = −1 − 2eipj + ei(pi+pj)

1 − 2eipi + ei(pi+pj) S(pi, pj) =


1 0 0 0
0 1

q1q2q3
eipj−eipi

1−2eipi +ei(pj +pi)
(1−eipj )(1−eipi )

1−2eipi +ei(pj +pi) 0

0 (1−eipj )(1−eipi )
1−2eipi +ei(pj +pi

q1q2q3
eipj−eipi

1−2eipi +ei(pj +pi) 0
0 0 0 1

 .

(6.3.13)

In the literature, it is more common to see these quantities written in terms of rapidities rather than in
their explicit momenta formulation. We will choose the rapidity variable eipi = ui

ui+1 .18 This makes our
expressions much more compact, and the undressed S-matrix is then

s(ui, uj) =


1 0 0 0
0 1

q1q2q3

uj−ui

uj−ui+1
1

uj−ui+1 0
0 1

uj−ui+1 q1q2q3
uj−ui

uj−ui+1 0
0 0 0 1

 . (6.3.14)

Let us now analyse the product and the action in (6.3.12) and try to untangle it. We shall only focus
on coefficients of the form ψk(id), and consequently drop the (id) argument for compactness. We then
start with the action in (6.3.12) from the inside

s(uk, uk+1) . . . s(uk, uM )s(uk, u1) . . . s(uk, uk−1) |ψ〉︸ ︷︷ ︸
only relevant action on ψk−1

, (6.3.15)

18This definition of the rapidity variable is the inverse of the one used in [AS21], coming from the opposite momenta
definition that they choose in comparison. With these rapidity variables, we can directly compare our Bethe equations
against the ones of [AS21].
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which lets us quickly write down the equation for ψk−1,19

qL3 λkψk−1 = 1
uk−1 − uk + 1

ψk + q1q2q3
uk−1 − uk

uk−1 − uk + 1
ψk−1 . (6.3.16)

Further untangling this product, we can likewise extract equations for the other coefficients ψl,

qL3 λkψk−l−1 = 1
uk−l−1 − uk + 1

ψ
(l−1)
k + q1q2q3

uk−l−1 − uk
uk−l−1 − uk + 1

ψk−l−1 , (6.3.17)

ψ
(l)
k = 1

q1q2q3

uk−l−1 − uk
uk−l−1 − uk + 1

ψ
(l−1)
k + 1

uk−l−1 − uk + 1
ψk−l−1 , (6.3.18)

where we defined
ψ

(1)
k = 1

q1q2q3

uk−1 − uk
uk−1 − uk + 1

ψk + 1
uk−1 − uk + 1

ψk−1 , (6.3.19)

and, naturally, k − l − 1 and the other superscripts are integers implicitly understood as mod M . We
should also stress that (6.3.17) holds for all l with the sole exception of l = M − 1 (corresponding to
k − l − 1 mod M = k), where one has to substitute qL3 by q−L2 . This is due to the fact that fk = 3 and
fl = 2 if l 6= k for the part of the wavefunction associated with the coefficient ψk.

So far, we have only talked about the coefficients appearing in the wave function with argument (id)
that we suppressed, but more often than not does ψ(id) carry this argument. Fortunately, there are
not one but two ways to get from the (id) to the (σ): Either by using the periodicity condition, or by
applying the S-matrix to ψ(id) in an appropriate way (as we implicitly for the M = 2 case in (6.3.8),
comparing both orders of the momenta).

We can combine (6.3.17) and (6.3.18) by finding equations for ψ(l−1)
k and ψ

(l)
k using (6.3.17), and

then resubstituting it into (6.3.18), finding the following equation

ψk−l−1

ψk−l
= 1
q1q2q3

q1q2q3 + (uk − uk−l)(q1q2q3 − qL3 λk)
qL3 λk + (q1q2q3 − qL3 λk)(uk − uk−l−1)

. (6.3.20)

Akin to the considerations the authors made in [SJS06], we can analyse the dependencies of the above
equation: the right-hand side depends on indices k and k − l, whereas the left-hand side only depends
on k − l. We therefore argue that, if we define

x̄ = q1q2q3

q1q2q3 − λkqL3
+ uk , (6.3.21)

then (6.3.20) takes the form20

ψk−l−1

ψk−l
= 1
q1q2q3

uk−l − x̄

uk−l−1 − x̄+ 1
. (6.3.22)

Therefore, x̄ must be a constant, or else (6.3.22) would not depend only on the difference k− l. We can
then solve for the eigenvalue λk, we arrive at

qL3 λk = q1q2q3
x̄− uk − 1
x̄− uk

. (6.3.23)

In [SJS06], the authors would take (6.3.22) to find an expression for a general ψl in terms of a ψ1

(that can be normalised, as the ψi form a representative of an “eigenvector”), and then substituting this
19We are only allowed to do that because no other s-matrix factors will act on ψk−1, and we can equate it to the l.h.s.

of (6.3.12).
20Had we stuck to momenta variables, then (6.3.20) takes the form

ψk−j−1

ψk−j
=

(eipk−j−1 − 1)[q1q2q3(1 − 2eipk−j + ei(pk−j +pk)) + qL
3 λk(eipk − eipk−j )]

q1q2q3(eipk−j − 1)[qL
3 λk(1 − 2eipk + ei(pk−j−1+pk)) − q1q2q3(eipk − eipk−j−1 )]

,

which is arguably harder to manipulate in a transparent way.
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expression into (6.3.17). The presence of the twist factors does not allow us to do the same; we need to
find a way to relate a general ψl to ψk, from which we have

ψk−l =

 1
(q1q2q3)l

l−1∏
j=0

uk−j − x̄

uk−j−1 − x̄+ 1

ψk = q1q2q3
uk − x̄+ 1
uk−l − x̄

ψk∏l
j=0(qL3 λk−j)

. (6.3.24)

Furthermore, the ψ(l)
k are of the form

ψ
(l−1)
k = q1q2q3

uk−l−1 − x̄+ 1
uk − x̄

ψk−l−1 = ψk∏l−1
j=1(qL3 λk−j)

. (6.3.25)

As a concluding step, we periodically identify the equations where we need to, by imposing the identifi-
cation of the excitation M + 1 with the excitation 1. This implies that we need to equate the function
ψ

(M−1)
k with q−L2 λkψk. This constrains the eigenvalues λk, which in turn translates into a constraint for

x̄

λk
qL2

M∏
j=1
j 6=k

qL3 λj = 1 =⇒ (q2q3)L

(q1q2q3)M
M∏
j=1

x̄− uj
x̄− uj − 1

= 1 . (6.3.26)

This constraint for the constant x̄ is the auxiliary Bethe equation of our model, which we have not come
across in our introduction. We have now established all three main equations of interest: The Bethe
equations, the auxiliary Bethe equations, and the recursive eigenstate equations, and the example that
is to follow will put them into context.

If the matrix Bethe equations for the normalised S-matrix are solved, solving then the matrix Bethe
equations for the original S-matrix is straightforward: They reduce to the algebraic equations

eipkL = λk
∏
j 6=k

(
−1 − 2eipk + ei(pk+pj)

1 − 2eipj + ei(pk+pj)

)
, (6.3.27)

with λk being the computed eigenvalues. Switching to rapidity variables and substituting them into the
expression, we arrive at Bethe equations of the following form:

qL3
q1q2q3

x̄− uk
x̄− uk − 1

∏
j 6=k

uk − uj + 1
uk − uj − 1

=
(
uk + 1
uk

)L
. (6.3.28)

Our expressions for the Bethe equations and the auxiliary Bethe equation coincide with the ones ap-
pearing in [AS21] (we need to identify our x̄ with their v + 1), which is a great reaffirmation for our
results.

6.3.1 Generalised Bethe System for M = 2

We have now analysed the diagonalisable case of our (finitely) twisted Hamiltonian, and with this we
have all the ingredients at hand that are necessary to find the generalised eigensystem of (6.1.7) for the
defective large twist limit qi, which we shall reparametrise again as qi → ξi

ϵ with ϵ → 0, meaning that the
three twist parameters approach infinity at the same rate. In this section, we shall focus on the analysis
of the M = 2 case, and then analyse the M = 3 and M > 3 cases in the appendix, as the expressions
will prove to be more involved and we need to go on a tangent on algebraic polynomials for the general
M case.

We analysed the M = 2 case in full, and we now want to study how the A and Ã coefficients (as first
presented in (6.3.1)) and the momenta pi behave in the limit of large twists. For this, we also need to
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study the equations for which the former are solutions in this limit, and will borrow the ϵ-expansions of
our quantities from the computation in [AS21],

u1 ≈ ϵαu−

u2 ≈ −1 + ϵαu+

x̄ ≈ u2 + ϵγ v̂ , (6.3.29)

with the spin chain-specific constants defined as α = L−3
L−1 and γ = 2L− 6. In the M = 2 case, the Bethe

equations and the auxiliary Bethe equations take the following form, respectively:21

qL3
q1q2q3

x̄− u1

x̄− u1 − 1
u1 − u2 + 1
u1 − u2 − 1

=
(
u1 + 1
u1

)L
, (6.3.30)

(q2q3)L

(q1q2q3)2
x̄− u1

x̄− u1 − 1
x̄− u2

x̄− u2 − 1
= 1 . (6.3.31)

With the substitutions in (6.3.29), we then arrive at

uL− = ξ

ξL3
(u− − u+) , (−u+)L = ξ

ξL2
(u− − u+) , v̂ = − 2ξL1

ξL−2 , (6.3.32)

where we defined ξ = ξ1ξ2ξ3, and we will also define Q = q1q2q3 wherever it appears from now on.
Furthermore, the momenta variables have the following ϵ-behaviour:

eip1 = u−ϵ
α

u−ϵα + 1
≈ u−ϵ

α ,

eip2 = −1 + ϵαu+

ϵαu+
≈ −u−1

+ ϵ−α . (6.3.33)

For the both plane wave factors, we have then the following behaviours, depending solely on the site
indices n1, n2:

ei(p1n1+p2n2) ∼ ϵα(n1−n2) ,

ei(p1n2+p2n1) ∼ ϵα(n2−n1) . (6.3.34)

Having now analysed how our momentum variables and rapidity variables scale, we now turn our atten-
tion to the eigenstate coefficients A and Ã. We already mentioned before that, as these coefficients are
nothing else but “vector entries” of an eigenstate whose direction is of our interest, we can choose one
of the coefficients freely. To make computations simpler, we choose A23 = 1, and in the language of the
coefficients appearing in the equation of our interest, (6.3.22), we are then interested in the following
ratio:

ψ1

ψ2
= A32

A23
= A32 , (6.3.35)

which we can then express as
A32 = 1

Q

u2 − x̄

u1 − x̄+ 1
. (6.3.36)

These considerations give us the un-tilded coefficients. The relation in (6.3.4) then gives us the tilded
coefficients via (

Ã23

Ã32

)
=

(
1

q1q2q3

u2−u1
u2−u1+1

1
u2−u1+1

1
u2−u1+1 −q1q2q3

u2−u1
u2−u1+1

)(
A23

A32

)
. (6.3.37)

21These equations are for k = 1, we arrive at another analogous set of equations for u2.
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We remind ourselves that we are primarily interested in the ϵ-behaviour of our coefficients, which allows
us to only care about the (far simpler) relevant parts of the coefficients - meaning for the computation
that is to follow, we can limit ourselves to the leading order contributions for small ϵ:(

A23

A32

)
=

(
1

1
q1q2q3

−v̂ϵγ

2+(u−−u+)ϵα−v̂ϵγ

)
≈

(
1

− v̂
2ξ ϵ

γ+3

)
,

(
Ã32

Ã23

)
=

(
ϵ−α+u−−u+

q1q2q3u−−q1q2q3u+
+ −v̂ϵγ−α

q1q2q3(u−−u+)(2−u−ϵα+u+ϵα−v̂ϵγ )
ϵ−α

u−−u+
− −v̂ϵγ−α(−1+u−ϵ

α−u+ϵ
α)

(u−−u+)(2−u−ϵα+u+ϵα−v̂ϵγ )

)
≈

(
1

ξ(u−−u+)ϵ
3−α

1
u−−u+

ϵ−α

)
. (6.3.38)

We now want to put all of these considerations together and find out, what the ϵ of our mixed-flavour
wave function is. We recall that the only ϵ-relevant terms in its expression are the summands, i.e.

|ψ23(p1, p2)〉 = · · ·
[ A23︷ ︸︸ ︷
A23e

i(p1n1+p2n2) q
n1
3
qn2

2
+

Ã23︷ ︸︸ ︷
Ã23e

i(p1n2+p2n1) q
n1
3
qn2

2

]
· · ·

+ · · ·
[
A32e

i(p1n1+p2n2) q
n2
3
qn1

2︸ ︷︷ ︸
A32

+ Ã32e
i(p1n2+p2n1) q

n2
3
qn1

2︸ ︷︷ ︸
Ã32

]
· · · , (6.3.39)

whose powers we can now infer:

A23 ∼ ϵ(1−α)(n2−n1)

Ã23 ∼ ϵ(1+α)(n2−n1)−α

A32 ∼ ϵγ+3−(1+α)(n2−n1)

Ã32 ∼ ϵ3−α−(1−α)(n2−n1) . (6.3.40)

We can make our lives easier by reminding ourselves of the ranges the indices can take values in: The
difference of site indices is bound by n2 − n1 ∈ {1, · · · , L− 1} (as n2 ≥ n1), thus with (6.3.39)

• We have that (1 −α)(n2 −n1) < (1 +α)(n2 −n1) −α, since n2 −n1 ≥ 1, and thus will A23 always
dominate over Ã23 in the limit. We can therefore neglect the summands associated to Ã23 going
forward.

• Likewise, 3 − α − (1 − α)(n2 − n1) < γ + 3 − (1 + α)(n2 − n1) holds, and implies that Ã32 is
dominating over A32, allowing us to neglect summands associated to the latter.

Summa summarum, we only have two types of summands in the sum for our wave function that are
asymptotically relevant,

|ψ23〉 ≈
∑
n1<n2

[
A23e

i(p1n1+p2n2) q
n1
3
qn2

2
S2,+
n1

S3,+
n2

+ Ã32e
i(p1n2+p2n1) q

n2
3
qn1

2
S3,+
n1

S2,+
n2

]
|0〉

≈
∑
n1<n2

[
(ξ3u−)n1

(−ξ2u+)n2
ϵ(1−α)(n2−n1)S2,+

n1
S3,+
n2

+ 1
ξ(u− − u+)

(ξ3u−)n2

(−ξ2u+)n1
ϵ3−α−(1−α)(n2−n1)S3,+

n1
S2,+
n2

]
|0〉 .

(6.3.41)

We defined α = L−3
L−1 , which means it fulfils

3 − α− (1 − α)(L− 1) = 3 − α−
(

1 − L− 3
L− 1

)
(L− 1)

= 3 − α− L+ 1 + L− 3 = 1 − α , (6.3.42)
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which allows us to write the dominating terms as

|ψ23〉
ϵ1−α

≈

[
L−1∑
n1=1

−1
ξ2u+

(
−ξ3u−
ξ2u+

)n1

S2,+
n1

S3,+
n1+1

]
|0〉 + 1

ξ(u− − u+)
(ξ3u−)L

(−ξ2u+)1S
3,+
1 S2,+

L |0〉 . (6.3.43)

We can combine the latter term with the other summands using the Bethe equation (−ξ2u+)L = ξ(u−−
u+), giving rise to the following expression:

|ψ23〉
ϵ1−α

≈ −1
ξ2u+

L∑
n1=1

(
−ξ3u−
ξ2u+

)n1

S2,+
n1

S3,+
n1+1|0〉 = |ψ(1)(u−/u+)〉 , (6.3.44)

where the indices of the position of the operators Si,+n should, as always, be understood mod L. This
result is consistent with [AS21]: |ψ(1)(u−/u+)〉 is indeed nothing else but the locked state the authors
also found.

In the previous section, we argued that the defective limit of eigenvectors gives rise to eigenvectors
of the defective matrix - we can therefore claim that |ψ(1)(u−/u+)〉 are true eigenvectors of (6.1.7) for
its defective limit, where it approaches the strongly twisted Hamiltonian Ĥξ1,ξ2,ξ3 . One curiosity that
we find is that the eigenstates only depend on the rapidity combination u−

u+
, and not on either u±

separately.22 u−
u+

is equivalent to the total momentum p1 + p2 in momentum variables. The first step in
our recipe is therefore complete, we have the generalised eigenvectors of rank 1 (i.e. the true eigenvectors)
to proceed with our algorithm.

Computing now the vectors w(1)
ij as defined in (6.2.20), we need two eigenvectors of the non-defective

case that coalesce to the same exceptional point, and then find a linear combination thereof that vanishes
in the defective limit. Then, w(1)

ij is given by the normalised linear combination that stays finite in the
defective limit (where we only care about the correct normalisation in terms of ϵ power, as commented
on before). Candidates for two such vectors are now |ψ23(p1, p2)〉 and |ψ23(p′1, p′2)〉, which coalesce to
the same eigenvector |ψ(1)(u−/u+)〉 provided their respective total momentum coincide, i.e. if p1 + p2 =
p′1 + p′2. In explicit momentum variables, we can also immediately see that

eip1 |ψ23(p1, p2)〉 − eip
′
1 |ψ23(p′1, p′2)〉 = 0 . (6.3.45)

In the large twist limit, meaning when we have ϵ → 0, we find that the terms with n2 = n1 + 1 of
eip1 |ψ23(p1, p2)〉 cancel with the ones from eip

′
1 |ψ23(p′1, p′2)〉, meaning that the leading order leftovers of

(6.3.45) are given by

eip1 |ψ23(p1, p2)〉 − eip
′
1 |ψ23(p′1, p′2)〉 ≈

ϵ2−α
L−2∑
n1=1

[
u−

(−ξ2u+)2

(
−ξ3u−
ξ2u+

)n1

−
u′−

(−ξ2u′+)2

(
−
ξ3u
′
−

ξ2u′+

)n1]
S2,+
n1

S3,+
n1+2|0〉

+ ϵ3−(1−α)(L−2)
[

u−
ξ(u− − u+)

(ξ3u−)L

(−ξ2u+)2 −
u′−

ξ(u′− − u′+)
(ξ3u

′
−)L

(−ξ2u′+)2

]
S3,+

2 S2,+
L |0〉

+ ϵ3−(1−α)(L−2)
[

u−
ξ(u− − u+)

(ξ3u−)L−1

(−ξ2u+)1 −
u′−

ξ(u′− − u′+)
(ξ3u

′
−)L−1

(−ξ2u′+)1

]
S3,+

1 S2,+
L−1|0〉 .

(6.3.46)

All of these contributions are of the same ϵ-order, as

3 − (1 − α)(L− 2) = 2 + L− 1
L− 1

− 2
L− 1

(L− 2)

22This is to be understood in the sense that any eigenstate can be reduced to only depend on the ratio (u−/u+) - of
course, we can multiply any given state by an arbitrary combination of either rapidity, this is however only an artefact of
the particular normalisation we choose. |ψ(1)(u−/u+)〉 also possesses such a factor, 1

ξ2u+
, but we can normalise that away

when analysing rapidity dependencies.

138



= 2 + L− 1 − 2L+ 4
L− 1

= 2 + −L+ 3
L− 1

= 2 − α . (6.3.47)

Assuming coinciding total momentum, i.e. u−
u+

= u′
−
u′

+
, and choosing u± in such a way that the Bethe

equations in (6.3.32) hold, we can then recast the before leading order expression into the more compact

eip1 |ψ23(p1, p2)〉 − eip
′
1 |ψ23(p′1, p′2)〉

ϵ2−α
≈ u−
u+

u′+ − u+

ξ2
2u+u′+

L∑
n1=1

(
−ξ3u−
ξ2u+

)n1

S2,+
n1

S3,+
n1+2|0〉 = |ψ(2)(u−/u+)〉 ,

(6.3.48)
where the leading order exponent is more transparently presented. With the analysis from the previous
sections, we can therefore state that |ψ(2)(u−/u+)〉 are the generalised eigenstates of Ĥξ1,ξ2,ξ3 , which
again only depend on the total momentum combination of the rapidities.

Going one step further, we build the vectors w(2)
ij , for which we find the following expression

ei(p1+p′
1)

eip
′
1 − eip1

(
eip1 |ψ23(p1, p2)〉 − eip

′
1 |ψ23(p′1, p′2)〉

)
− ei(p1+p′′

1 )

eip
′′
1 − eip1

(
eip1 |ψ23(p1, p2)〉 − eip

′′
1 |ψ23(p′′1 , p′′2)〉

)
,

(6.3.49)
which we want to take the ϵ → 0 limit of. We find that, for small ϵ, it behaves as

const. ϵ3−α
L∑

n1=1

(
−ξ3u−
ξ2u+

)n1

S2,+
n1

S3,+
n1+3|0〉 = ϵ3−α|ψ(3)(u−/u+)〉 . (6.3.50)

Our recipe dictates that we need to take the finite part of the above vector (which we achieve by
normalising it), so in this case again, this can be easily read off as the ϵ-dependence is fully separated.
Thus, |ψ(3)(u−/u+)〉 is a generalised eigenvector of rank 3 of Ĥξ1,ξ2,ξ3 .23

We can continue this process for the M = 2,K = 1 case in accordance with our recipe, and we find
that the generalised eigenvector of rank k of Ĥξ1,ξ2,ξ3 are

|ψ(k)(u−/u+)〉 = const.
L∑

n1=1

(
−ξ3u−
ξ2u+

)n1

S2,+
n1

S3,+
n1+k|0〉 . (6.3.51)

For k ≥ L, the site indices of the above expression are not sensible, which is why we can assume
k ∈ {1, · · ·L − 1}. Moreover, for any given value of the total momentum we find exactly one such
vector at any step of the process.24 This is an indication that, in the sector of M = 2 and K = 1, we
find Jordan chains of size L − 1 for every permitted value of the total momentum. This reaffirms the
numerical results from [AS21] and the combinatorial results from [ACS22], which we are in complete
agreement with.

We have not mentioned anything regarding the potential danger of chain mixing so far, which might
spoil our results if inspected more closely. Fortunately, chain mixing will not be present in our case, and
we will show this with the arguments we outlined in the section about indistinguishable Jordan blocks;
consider the Hermitian conjugate of Ĥξ1,ξ2,ξ3 ,

Ĥ†ξ1,ξ2,ξ3
=

L∑
l=1

(P̂l,l+1)† , (6.3.52)

P̂† |12〉 = ξ∗3 |21〉 , P̂† |23〉 = ξ∗1 |32〉 , P̂† |31〉 = ξ∗2 |13〉 . (6.3.53)

23This is always to be understood up to a possible additional contribution proportional to |ψ(2)(u−/u−)〉.
24It is important to remember, once again, that the u± parameters need to satisfy the Bethe equations, meaning that

these ξ and u combinations are not free (and free to produce pathologies): (6.3.29) tells us that −ξ3u−/ξ2u+ = L
√

1, which
is precisely the factor appearing as total momentum.
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In 2.1.3.1, we proved that the generalised eigenvector of rank 1, |ψ(1)(u−/u+)〉, must behave like a
generalised eigenvector of highest rank of Ĥ†ξ1,ξ2,ξ3

. Moreover, it is easy to see that25

Ĥ†ξ1,ξ2,ξ3
S2,+
n S3,+

n+1|0〉 = ξ∗3S
2,+
n−1S

3,+
n+1|0〉 + ξ∗1S

3,+
n S2,+

n+1|0〉 + ξ∗2S
2,+
n S3,+

n+3|0〉 ,

Ĥ†ξ1,ξ2,ξ3
|ψ(1)(u−/u+)〉 = ρ(ξ∗2 + ξ∗3)|ψ(2)(u−/u+)〉 + ρ′ξ∗1 |ψ(L−1)(u−/u+)〉 ,

Ĥ†ξ1,ξ2,ξ3
Ĥ†ξ1,ξ2,ξ3

|ψ(1)(u−/u+)〉 ∝ (ξ∗2 + ξ∗3)2|ψ(3)(u−/u+)〉 ,

(Ĥ†ξ1,ξ2,ξ3
)k|ψ(1)(u−/u+)〉 ∝ (ξ∗2 + ξ∗3)k|ψ(k+1)(u−/u+)〉 ,

(Ĥ†ξ1,ξ2,ξ3
)L−1|ψ(1)(u−/u+)〉 ∝ Ĥ†ξ1,ξ2,ξ3

(ξ∗2 + ξ∗3)L−2|ψ(L−1)(u−/u+)〉 = 0 , (6.3.54)

with ρ, ρ′ being two constants irrelevant to our discussion. Curiously, the above generalised eigenvector
of maximal rank is in appearance similar to a locked state, however, the 2’s and 3’s are swapped. We
refer to states of these kind as anti-locked states (for obvious nomenclatural reasons), and the authors
in [AS21] proved them to be generalised eigenvectors of maximal rank. With this result, we have the
generalised eigenvectors of highest rank of the Jordan chain at our hands, and we can apply the reasoning
from the section before: By applying (2.1.5) in order to generate the remaining generalised eigenvectors
of the Jordan chain;

Ĥk
ξ1,ξ2,ξ3

|ψ(L−1)(u−/u+)〉 = ρ′′(ξ2 + ξ3)k|ψ(L−k−1)(u−/u+)〉 + ρ′′′ξ1δk,1|ψ(1)(u−/u+)〉 , (6.3.55)

where ρ′′, ρ′′′ are yet another pair of constants irrelevant to our considerations. Provided ξ2 6= −ξ3, we
are therefore able to act L − 2 times with Ĥξ1,ξ2,ξ3 on |ψ(L−1)(u−/u+)〉 and can show that we have
Jordan cells of size L− 1. However, for ξ1 6= 0, ξ2 = −ξ3, our reasoning is does not hold and we have in
fact a Jordan chain of size 2 and L − 3 eigenvectors. Lastly, for ξ1 = 0, ξ2 = −ξ3, we do not have any
non-trivial Jordan chains and have L− 1 eigenvectors.

In [ACS22], the authors discussed the issue of chain mixing for ξ1 = ξ2 = 0 and proved numerically
chain mixing not to be present up to L = 30,M = 6, although no formal proof was given.

We have now analysed the M = 2 case in a comprehensive way and successfully applied the algo-
rithmic machinery that we developed earlier. The remaining cases (M ≥ 3) are similar in analysis, but
arguably feature more involved expressions, and requires us to embark on a satellite discussion about
Diophantine equations, removing ourselves a bit from our topic. For these reasons, these cases are
discussed - in full - in the appendix.

25Nota Bene: Not all the left generalised eigenvectors are orthogonal to the left generalised eigenvector of rank 1,
|ψ(L−1)(u−/u+)〉. 2.1.3.1 only requires orthogonality with respect to the eigenvector we are initially starting with, not
necessarily with the one associated with the generalised eigenvector of maximal rank we are computing.
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7 | Conclusions and Outlook

“The time has come,” the walrus said, ”to talk of many things: Of shoes and ships - and sealing
wax - of cabbages and kings.”

– Lewis Carroll, Alice’s Adventures in Wonderland

7.1 The q-Poincaré Algebra

The work presented in chapter 4 builds upon the considerations of [GH07] and [You07], who were
concerned with quantum deformed kinematical (super)algebras. In these two articles, the authors connect
the quadratic Casimir operator with the N = 4 SYM dispersion relation, and they search for an operator
J that acts as a translation of the rapidity variable, i.e. the variable that parametrises and homogenises
the dispersion relation. The authors in [ST16] and [BST18] then build on and further extend these works.
They find a realisation of a q-Poincaré algebra within the massless AdS3 scattering problem and study
the coproduct of the boost operator J. Our work is a direct continuation of the latter two works: In
the setting of string theories in AdS3 ×S3 and their q-deformed counterpart (that can be identified with
(AdS3 × S3)η), we examined the algebras of the associated massless scattering problem - su(1|1)2 and
Uq[su(1|1)]2. In both cases, at first we restrict our algebraic analysis on the choice of a 1+1-dimensional
representation, but we later attempt to go beyond that.

In contrast to massive modes, the massless modes admit two different sets of coproducts, which we
denote as bosonically braided and bosonically unbraided. This terminology refers to the braiding of
the Cartan (energy) generator coproduct ∆H, which are fundamentally inequivalent. Imposing quasi-
cocommutativity with the R-matrix, which we assume is of 6-vertex type, we arrive at suitable Rmatrices
for each case. In the q-deformed case, the entries of the R-matrices depend on the deformation parameter
as well but reduce consistently to the undeformed case for q → 1. With this information, we construct the
coproduct for the boost operators JA, which we obtain by imposing the algebra homomorphism property
of the coproduct as well as the R-matrix cocommutativity relations. For each of the expressions of ∆JA,
we are left with some ambiguities or freedoms, which we decompose in even and odd parts as functions
of the momenta, denoted by Υ̂ and β̂, respectively. Both Υ̂ and β̂ fulfil interesting relations with their
respective R-matrices, whose origin and significance is not yet fully clear to us.

Of all the cases studied, one deserves special attention. We find that, due to the form of ∆E, the
q-deformed bosonically-braided case is not a Hopf algebra, but an example of a quasi-Hopf algebra, as
it is not coassociative. This vanishes for q → 1 and is not present for trivial braiding of HA, which is
why we do not see it in any of the undeformed cases. We are not able to formulate precise physical
implications of this non-coassociative structure, and we plan to address this in the future.

Building upon this, in the second part of chapter 4 we try to generalise the results we have obtained

142



in the 1 + 1-dimensional short representation to universal, representation-independent statements.
The first main question we investigated was how the left copy communicates with the right copy

of our algebra, especially with respect to the boost generators of different handedness. Starting with
the most general algebraic relations and postulates, we arrived at a classification of 6 different types of
algebras - mostly by studying the resulting Jacobi identities and general properties of the algebra. These
six algebras can be classified into two groups: separable algebras, which can be split into two disjoint
subalgebras, and the differential algebras, which fulfil dLRdRL = 1 - this, in a sense, is a version of the
inverse function theorem if we understand the boost as a differential operator. Amongst the algebras
that we found, there was one special case, namely the one defined by the relation HLdLR = ζHR, that
belongs to both algebra types: On the one hand, it is differential because it fulfils the defining equation
of differential algebras, dLRdRL = 1. On the other hand, it can be expressed via a generator redefinition
based on a separable algebra. This relationship is represented in 7.1 below.

Bd
2

Bd
1

Bd
1̄

Bs
1

Bs
2

Bs
2̄

differential algebras separable algebras

pL = ±pR

(4.3.49)

(4.3.
49)

(4.3.50), (4.3.49)

(4.3.35)

(4.3.36)

Figure 7.1: Left: The differentiable algebras and their relations. Right: The genealogy of separable
algebras.

Having established all these algebraic structures, we want to establish the corresponding Hopf alge-
braic structures. In contrast to our analysis within the context of the 2-dimensional short representation,
we here need to make use of generators of the outer symmetry group of our algebra order to formulate
a universal coproduct for J. Despite that, the process is the same: we have to impose the coproduct to
be an algebra homomorphism to obtain the wanted expressions.

A natural extension of our work relating to our boost algebraic efforts is to consider the massive
case. It would be very interesting to analyse the massive case for the 2-dimensional short representation,
whose massless sibling we discussed in section 4.2. The main obstruction to be considered in this case is
that the dispersion relation changes with respect to the massless case. This has an effect on the kinds
of coproducts we can choose: For example, for the following choice for energy coproduct

∆HA = HA ⊗ eip/2 + e−ip/2 ⊗ HA , (7.1.1)
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we no longer have ∆HA = ∆opHA, which we need to hold for central elements. The construction of the
massive representation would be an interesting extension of our results we presented here (see [Hoa15]
for related work).

We have so far made no representation-independent analyses with respect to the study of quasi-
triangularity and R-matrices. This is not a coincidence, rather unfortunately it is more difficult to
do so: We expect our centrally extended, q-deformed Poincaré algebra to have a universal R-matrix.1

There also exists a consistent and systematic way to go about constructing this object - the Drinfeld
Double/Khoroshkin-Tolstoy construction [KT94] (with a pedagogical exposition in [Hec18]). Focusing
on the dLR = +1 case, we would cast our (enveloping) algebra into a Serre form, meaning such that the
generators or Chevalley-Serre that fulfil the Serre relations. Constructing then a dual algebra H∗2 to
our original algebra H, the quantum double D(H) is defined as the union of these two algebras. This
new algebra has a well-defined bilinear, non-degenerate map 〈·, ·〉 : H ⊗ H∗ → K, which can be used to
construct the universal R-matrix.

However, it turns out that this is not quite as easy to achieve in our setting as one could hope:
Our algebra is defined through intricate relations, and the presence of outer symmetry generators in
coproducts of algebra elements make the construction non-trivial. This hinders us from straightforwardly
applying the Drinfeld/Khoroshkin-Tolstoy recipe.

Additionally, it would be also be interesting to find a representation-independent, universal realisation
of the coproduct of boost generators for the q-deformed case. However, we recall again that in the tail
of the non-q-deformed boost coproduct, the generators of the outer automorphism symmetry appear.
Thus, for any further analyses of the universal picture, it would be crucial to understand what form of
the outer symmetry of our algebra that can be lifted to the q-deformed case (see [Reg16]).

Lastly, as we mentioned in different points throughout the chapter pertaining to the boost superal-
gebra constructions, we have not attended to the problem of finding an antipodal map, and so far the
algebraic structure we found - though intrinsically consistent - is not a true Hopf algebra per se, but
rather a bialgebra. Finding a suitable antipode would lift our structure to the Hopf level, and perhaps
this antipodal map would then hold further valuable information on other aspects of this problem, such
as the ambiguities Υ̂ and β̂. However, in order to find such a map, we would also have to have a
clearer idea about how the bialgebraic elements, most prominently the coproduct and counit, behave
with respect to the outer automorphism generators, which is by no means at all trivial.

7.2 Deformed AdS3 in the Landau-Lifshitz Limit
In chapter 5, our starting point was the 3-deformed AdS3 ×S3 ×T 4 background, as studied in [BMSS20].
In our approach, we constructed the effective field theory associated to the Landau-Lifshitz limit of the
subspace R × S3 ⊂ AdS3 × S3 × T 4, i.e. slow modes around a constant radius classical solution. In
particular, we consider the effective Lagrangian at leading and next-to-leading order in κ, the energy
constant associated to time-translation invariance. With these classical considerations, we proved that
the so-constructed action gives rise to a near-BMN dispersion relations in agreement with the results the
authors computed in [BMSS20].

Within the LL regime, we then computed the λ-leading order all-loop for the 2-to-2-particle S-matrix,
and got a deformation of the Heisenberg su(2) S-matrix (with sole dependence on χ± out of the three
deformation parameters). The tree level contribution to this S-matrix is congruent with [BMSS20] at

1In fact, the central-extension here is crucial for this statement to be true.
2Technically, one often considers the dual (c)op algebra, i.e. H∗(c)op.
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leading order in λ. One order beyond in the string tension λ, the S-matrix we computed only shows
dependence on some particular combinations of the deformation parameters q̃, χ±.

One natural continuation of our study involving the Landau-Lifshitz limit of our model is to also in-
vestigate whether it shows features of integrability. So far, by only considering 2-to-2-particle scattering,
we have not been able to make any statements regarding factorisability of the higher particle S-matrix - a
key indicator of quantum integrability. In [MPRW08], the authors compute the 3-to-3-particle S-matrix
elements for the Landau-Lifshitz model. Similarly to our analysis, they proceed by means of canonical
quantisation of a conveniently defined complex field, a process that requires very involved Feynman
diagrammatics and kinematical considerations. They find particular QFT behaviours that hint at the
integrability of the theory, such as the absence of particle creation and annihilation (i.e. the set, though
not the order, of incoming and outgoing momenta is identical), and a non-trivial mechanism behind the
factorisation of the 3-particle S-matrix. Similar considerations can be made for our model, involving the
analogous set of computations. If successful, one could then consider a generalisation of this factorisation
approach to the N -particle scattering amplitude.

Although it might seem straightforward, going one order beyond in the initial leading order corrections
that we limited ourselves to is far from immediate. As we explained, this happens because we cannot
continue using conformal gauge, meaning that there would be no way around using a gauge like the
non-diagonal uniform one presented in [KRT04]. Going beyond the orders we considered might uncover
interesting subtleties of the S-matrix computation that did no appear in our case (such as a dressing
phase appearance), although this approach is arguably more involved in terms of the expressions that it
produces.

Lastly, we could also perform the analogous computations and considerations for the inverted mode
expansion of ϕ, meaning that we would essentially switch the creators and annihilators within the mode
expansion (recalling that either choice is legitimate). We could then compare the so-obtained results
against the SY Y matrix element in [BMSS20], rather than the SȲ Ȳ one as we did for this project. This
would then further reaffirm us in our chosen approach.

7.3 Jordan Blocks and the Hypereclectic Spin Chain

In chapter 6, we focused our efforts on two subjects: (perturbative) linear algebra and spin chain appli-
cations.

In the former, we devised a recipe to find the generalised eigensystem of non-diagonalisable matrices
by mean of perturbations: We started with a one-parameter family of matrices {M(ϵ)|ϵ ∈ R} which only
at a chosen point ϵ = 0 gives rise to a defective matrix, but remains diagonalisable in its neighbourhood
(illustrated in Figure 7.2). Then, we show that it is necessary to consider appropriate linear combinations
of eigenvectors ofM(ϵ) to construct generalised eigenvectors ofM(0). In particular, we show that we need
a linear combination of at least n different eigenvectors of M(ϵ) to recover the generalised eigenvector of
rank n of M(0).

In our analysis, we found that the cases of the Jordan Normal Form of M(0) having only one or
several Jordan blocks associated to the same eigenvalue behave differently, depending on whether we are
in the distinguishable or indistinguishable Jordan setting. Starting with the former case, we are able to
construct the complete generalised eigensystem of the defective matrix, with our recipe also indicating
us what rank and eigenvalue is associated to each generalised eigenvector we construct. For the latter
case, however, we saw our recipe break down and in need of some adjustments: While we still generate
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Figure 7.2: The one parameter family of matrices, M(ϵ), and the defective/exceptional point at ϵ = 0.

the complete set of generalised eigenvectors of the defective matrix this way, the ranks that the “naive”
recipe indicates us are wrong. This would make the recipe less useful, as the Jordan structure that we
read off the generated genealogical diagram might be wrong. To this end, we supplemented our recipe
with an additional step for the indistinguishable case to untangle the mixing of Jordan chains in our
genealogical diagrams, an effect that we called “chain mixing” for obvious reasons. With this additional
step for the indistinguishable case, we then fully established a complete and exhaustive method to find
the generalised eigensystem of a defective matrix regardless of its Jordan structure or form.

With a fully working methodology at hand, we then proceeded to apply this to the case of the eclectic
spin chain (see [ISZ19],[ISZ19],[AS21]). In this setting of this spin chain, coalescence of eigenstates of
the Hamiltonian appears, as the strongly twisted Hamiltonian ceases to be diagonalisable. Applying our
algorithm to this setup with K = 1, we find the generalised Bethe system of the spin chain, confirming
and extending some of the results of [AS21], where the authors were not able to find the complete
generalised eigensystem and were not able to provide an explanation for the unexpected shortening that
they found, remedied by the untanglement of the mixed Jordan chains.

Throughout this thesis, we only considered the case of one excitation of type 3, i.e. the case of K = 1.
In [NG22], the author then extends our analysis to the setting where K > 1. In this paper, our results
and methodology are extended, and the characterisation of the Jordan chains associated to our specific
spin chain setting is completed. It was shown that the information on the Jordan structure for generic
values of L,M and K can be condensed into a product of K q-deformed binomial coefficients, in analogy
to the single one we found in this thesis for K = 1.

Furthermore, there are plenty of potential settings where we can apply our algorithmic method-
ology to, and some of them also appear within the context of integrable systems: In the papers
[dLPP+21], [dLPP+20], [DLPRR20] and [DLPR19], the authors classified all integrable systems with
nearest-neighbour interactions exhibiting su(2)(⊕su(2)) symmetry in a systematic way, and some of the
R-matrices therein are defective. This way, the transfer matrix associated to any such R-matrix - whose
eigensystem solves the spectral problem of the Hamiltonian (and the commuting charges) - is then a
potential place for us to use our algorithmic machinery.
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A | Appendix

“Tâchez de garder toujours un morceau de ciel au-dessus de votre vie.” [“Always try to keep a
patch of sky above your life.”]

– Marcel Proust, Du côté de chez Swann

A.1 Further Details on the proof of Lemma 2.1.3 for non-singular
geometric multiplicity

In this section, we want to outline some further details on the proof of Lemma 2.1.3 for when the
geometric multiplicity exceed one. In short, we need to make use of Gram-Schmidt-like orthogonalisation
arguments that makes use of the fact that any linear combination of generalised eigenvectors of rank p
and true eigenvectors associated to the same eigenvalue is a generalised eigenvector of rank p. While
we have already illustrated what orthogonality/duality relations that can be found between eigenvectors
of different eigenvalues, we still need to clarify and expand on the relations that can be found within
same-eigenvalue eigenvectors. We shall make the logic more explicit by starting with the geometric
multiplicity 2-case, and for clarity’s sake “abbreviate” our notation compared to the notation used in the
main text. For the case of geometric multiplicity 2, we take two left eigenvectors to the same eigenvalue
λ,

v1, v2 , (A.1.1)

and, correspondingly, two right eigenvectors

u1, u2 . (A.1.2)

We can remind ourselves that this must be true by recalling that, over C, every matrix is similar (i.e.
has the same JNF) as its transpose, because they can be related through a similarity transformation.
Therefore, since transposing is relating the notions of left and right eigenvectors, we can conclude that
the number of linearly independent ones must be the same. We want to relate a left eigenvector v1 and
a corresponding “top” generalised eigenvector u1 such that they fulfil

v†1 · u1 = 1 . (A.1.3)

Using Gram-Schmidt logic, we can then define a vector in the span of left eigenvectors, i.e. ṽ2 = γv1 +δv2

with γ, δ ∈ C, that fulfils
ṽ†2 · u1 = 0 . (A.1.4)

Likewise, on the right eigenvector side, we can define a vector in the span of right eigenvectors, i.e.
ũ2 = αu1 + βu2 with α, β ∈ C, such that

ũ†2 · v1 = 0 , (A.1.5)
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that additionally fulfils
ũ†2 · v2 = 1 , (A.1.6)

after normalisation, if necessary. The vectors {v1, ṽ2} and {u1, ũ2} have now the desired properties for the
rest of our initially outlined proof to work, and we can conclude the case of geometric multiplicity 2. For
even higher geometric multiplicities, this orthogonalisation/dualisation process works analogously: For
the case of geometric multiplicity 3, we start with left and right eigenvectors {v1, v2, v3} and {u1, u2, u3},
respectively, start with the initial pairing of v1 and u1, proceed identically the same, and then use the
same logic for the additionally introduced v3 and u3 vectors. This concludes this elaboration.

A.2 The q-Poincaré Algebra

A.2.1 The Coassociator Relations

In what follows, we want to provide more details on the calculation regarding the coassociator in (4.2.39).
The relatively simple structure of our coassociator makes it manageable to prove the defining relations
in a compact way:

• (id ⊗ χ⊗ id)Φ = id ⊗ id - this computation almost trivialises if we recall that χ ≡ 0 on the whole
superalgebra. Relation (4.2.40) (with (4.2.6)) allows us to assume that

8i
log q

ω = ∆(E) − ∆trivial(E) = E ⊗ C1 + C2 ⊗ E , (A.2.1)

for appropriate Ci. We can see that also χ(Ci) = 0 must hold, since we schematically have

(χ⊗ 1)(∆ − ∆trivial)E = ���*
0

χ(E) ⊗ (eαp − 1) + χ(eβp − 1)︸ ︷︷ ︸
=1−1=0

⊗E ,

(1 ⊗ χ)(∆ − ∆trivial)E = E ⊗ χ(eαp − 1)︸ ︷︷ ︸
=1−1=0

+(eβp − 1) ⊗ ���*
0

χ(E) , (A.2.2)

where α and β are constants representing the appearing factors, and in the latter arguments we
also used that χ(p) = 0. Expanding the coassociator via

Φ = 1 ⊗ 1 ⊗ 1 + B ⊗ ω + ω ⊗ B + higher order exponent terms with B, ω , (A.2.3)

we can immediately see that for the subleading terms, χ will always make them vanish as it will
hit either an exponential p or an E term. Thus, we end up with

(id ⊗ χ⊗ id)Φ = 1 ⊗ 1 + 0 + 0 + .....

= 1 ⊗ 1 . (A.2.4)

• (id ⊗ ∆) ◦ ∆ = Φ ((∆ ⊗ id) ◦ ∆) Φ−1 - here, we only need to check this relation where both sides
are evaluated on the supercharges Z, meaning

(id ⊗ ∆)∆(Z) != Φ ((∆ ⊗ id)∆(Z)) Φ−1 , (A.2.5)

as the other coproducts are fixed from theirs. The calculation to prove this coassociator relation
in analogous for any of them, so we shall exemplify this using Q. The left-hand side of the relation
then gives us:

(id ⊗ ∆)∆(Q) =(id ⊗ ∆)
(
Q ⊗ e−

i
4pq

E
4 + e

i
4pq−

E
4 ⊗ Q

)
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=Q ⊗ ∆
(
e−

i
4pq

E
4

)
+ e

i
4pq−

E
4 ⊗ Q ⊗ e−

i
4pq

E
4 + e

i
4pq−

E
4 ⊗ e

i
4pq−

E
4 ⊗ Q

=Q ⊗
(
e−

i
4p ⊗ e−

i
4p
)
q

∆(E)
4︸ ︷︷ ︸

Co1

+ e
i
4pq−

E
4 ⊗ Q ⊗ e−

i
4pq

E
4︸ ︷︷ ︸

Co2

+ e
i
4pq−

E
4 ⊗ e

i
4pq−

E
4 ⊗ Q︸ ︷︷ ︸

Co3

.

(A.2.6)

Similarly, the right-hand side of this coassociator relation is given by:

Φ ((∆ ⊗ id)∆(Q)) Φ−1 = Φ(Q ⊗ e−
i
4pq

E
4 ⊗ e−

i
4pq

E
4 )Φ−1︸ ︷︷ ︸

Co′
1

+ Φ(e i
4pq−

E
4 ⊗ Q ⊗ e−

i
4pq

E
4 )Φ−1︸ ︷︷ ︸

Co′
2

+ Φ
((
e

i
4p ⊗ e

i
4p
)
q−

∆(E)
4 ⊗ Q

)
Φ−1︸ ︷︷ ︸

Co′
3

. (A.2.7)

Due to the position of the fermionic charge on the second tensorial slot, the coassociator conjugation
does not affect Co′2, and we can immediately see that the terms Co′2 = Co2 agree. Regarding Co′1,
we find that

Φ(Q ⊗ e−
i
4pq

E
4 ⊗ e−

i
4pq

E
4 )Φ−1 =eB⊗ω23+ω12⊗B(Q ⊗ e−

i
4pq

E
4 ⊗ e−

i
4pq

E
4 )e−B⊗ω23−ω12⊗B

=eB⊗ω23(Q ⊗ e−
i
4pq

E
4 ⊗ e−

i
4pq

E
4 )e−B⊗ω23 , (A.2.8)

where the other part of the coassociator is irrelevant for this term due to the position of the
fermionic generator. We then make use of the Weyl-type relations in (4.2.41), the relation in
(4.2.40) and the fact that

e1⊗M = 1 ⊗ eM , (A.2.9)

giving us

eB⊗ω23(Q ⊗ e−
i
4pq

E
4 ⊗ e−

i
4pq

E
4 )e−B⊗ω23 =(Q ⊗ e−

i
4pq

E
4 ⊗ e−

i
4pq

E
4︸ ︷︷ ︸

=
(
e− i

4 p⊗e− i
4 p

)
q

∆trivial(E)
4

)

=q
∆(E)−∆trivial(E)

4︷ ︸︸ ︷
e2iω23

= (Q ⊗
(
e−

i
4p ⊗ e−

i
4p
)
q

∆trivial(E)
4 q

∆(E)−∆trivial(E)
4 )

= Q ⊗
(
e−

i
4p ⊗ e−

i
4p
)
q

∆(E)
4 , (A.2.10)

which is nothing else than Co1. In a similar way, Co3 = Co′3 is shown.

• Lastly, the pentagon relation (id ⊗ id ⊗ ∆)Φ(∆ ⊗ id ⊗ id)Φ = (id ⊗ Φ)(id ⊗ ∆ ⊗ id)(Φ ⊗ id) can
be proved quite directly using similar manipulations. In particular, by expanding both terms and
making use of

(∆ ⊗ 1)(ωij) = 1
8i

log q
(
E(pi + pj + pk) − E(pi + pj) − E(pk)

)
1 ⊗ 1 ⊗ 1 ,

(1 ⊗ ∆)(ωij) = 1
8i

log q
(
E(pi + pj + pk) − E(pi) − E(pj + pk)

)
1 ⊗ 1 ⊗ 1 . (A.2.11)

Here, we can also immediately see again that the structure of the coassociator trivialises for additive
energy, as it does for q → 1. Having this at hand, the pentagon relation follows immediately.

With the relations we used above, it is straightforward to prove the coassociator equations related to
quasi-triangularity. However, to see that our quasi-Hopf algebraic setup satisfies the generalised YBE, we
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need to make things more explicit. As we mentioned before in the main part of this thesis, our strategy
here is to show that, for each of the states we evaluate it on, the GYBE reduces to the ordinary YBE
equations - modulo a prefactor in each case. To this end, we want to exemplify the coassociator YBE
equations by explicitly evaluating both sides of the GYBE in (2.4.13) applied on some representative set
of 3-particle states. To this end, we first introduce our notation for this:

• In order to abbreviate our expressions, we introduce the following notation,

Eij = Eji = Ei+j − Ei − Ej
4

, (A.2.12)

which then lets the coassociator appear in a more compact way, e.g.

Φ123 = q
1
4 (B

2i⊗E2+3−E2−E3)q
1
4 (E1+2−E1−E2)⊗B

2i )

= q(
B
2i⊗E23)q(E12⊗B

2i ) . (A.2.13)

• We further abbreviate h̄i =
√
h sin pi

2 .

• We will write the R-matrix components as:

R = α1 ⊗ 1 + βB ⊗ 1 + β̃ 1 ⊗ B + γB ⊗ B + sQ ⊗ S + s̃S ⊗ Q , (A.2.14)

and we shall refer to the specific momenta space dependence in the coefficient functions by use of
superindices, e.g. α12.

In total, we have 23 = 8 3-particle states that we need to test the GYBE on. The two cases of three
identical states, |ΦΦΦ〉 and |ΨΨΨ〉 , are immediate when evaluated.

For the remaining two sets of three states each, namely the set of states containing one fermionic or
two fermionic states, respectively, we shall fully discuss one representative example. In a second step,
we prove the equivalence concretely by eventually showing that the aforementioned prefactor appears on
both sides of the GYBE in the same way. To this end, we shall always compute the expressions in all
detail, in order to illustrate how computations of this kind work for our representation (recall that the
usual YBE computation can also be read off by just setting Φ ≡ 1). Notice also that once the coassociator
and coefficients of the R-matrix have been evaluated, they reduce to being scalar functions, and their
order is inconsequential; we shall therefore make the evaluation evident with indices and superindices,
and change the order of the expressions then in such a way to provide the clearest oversight. In what is to
follow, one should remember how the B operator acts on the states, which one can infer by considering
the algebraic relations and the representation, yielding:

B|Φ〉 = i , B|Ψ〉 = −i . (A.2.15)

|ΦΦΨ〉
For the representative case of one fermion, the left-hand side of the equation yields:

R12Φ312R13Φ132−1
R23Φ123|ΦΦΨ〉 =

(
α12 + i

(
β12 + β̃12)− γ12)Φ312

|ΦΦΨ〉
(
α13 + i

(
β13 − β̃13)+ γ13)Φ132

|ΦΦΨ〉
−1

×
(
α23 + i

(
β23 − β̃23)+ γ23)Φ123

|ΦΦΨ〉|ΦΦΨ〉

+ Φ312
|ΨΦΦ〉

(
s̃13h̄1h̄2

)
Φ132
|ΦΦΨ〉

−1 (
α23 + i

(
β23 − β̃23)− γ23)

× Φ123
|ΦΦΨ〉

((
α12 − i

(
β12 − β̃12)− γ12) |ΨΦΦ〉 − s12h̄1h̄2|ΦΨΦ〉

)
+ Φ312

|ΦΨΦ〉
(
α13 + i

(
β13 + β̃13)+ γ13)Φ132

|ΦΨΦ〉
−1
s̃23h̄2h̄3Φ123

|ΦΦΨ〉
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×
((
α12 + i

(
β12 − β̃12)− γ12) |ΦΨΦ〉 + s̃12h̄1h̄2|ΨΦΦ〉

)
.

(A.2.16)

With (A.2.14) in mind, it is immediate what our evaluation strategy is: We must start with the term
that is “closest” to the state and evaluate it. In the above, this was the Φ123 which after evaluation
carries a label, i.e. Φ123

|ΦΦΨ〉. We then work our way to the next term to act on the state, which is R23.
Whenever an R-matrix hits our state, our state might “split” into a linear combination of states, which
needs to be taken into account for all subsequent terms to hit the states, and a kind of “evaluation tree”
forms, gaining a new branching whenever such a split happens. It is therefore hugely important that we
keep track of labels and indices, which was the reason why this particular notation was chosen. Similarly,
the right-hand side gives us:

Φ321R23Φ231−1
R13Φ213R12|ΦΦΨ〉 =Φ213

|ΦΦΨ〉
(
α12 + i

(
β12 + β̃12)+ γ12)Φ231

|ΦΦΨ〉
−1 (

α13 + i
(
β13 − β̃13)− γ13)

×
(

Φ321
|ΦΦΨ〉

(
α23 + i

(
β23 − β̃23)− γ23) |ΦΦΨ〉 + Φ321

|ΦΨΦ〉s̃
23h̄2h̄3|ΦΨΦ〉

)
+ Φ213

|ΦΦΨ〉
(
α12 + i

(
β12 + β̃12)+ γ12)Φ231

|ΨΦΦ〉
−1
s̃13h̄1h̄3Φ321

|ΨΦΦ〉

×
(
α23 + i

(
β23 + β̃23)+ γ23) |ΨΦΦ〉 . (A.2.17)

We now only need to compare whether, the coassociator contributions going along with each type of
final 3-particle state are the same on both sides of the equations:

• ΦΦΨ type:

Φ312
|ΦΦΨ〉Φ

132
|ΦΦΨ〉

−1Φ123
|ΦΦΨ〉

!= Φ321
|ΦΦΨ〉Φ

231
|ΦΦΨ〉

−1Φ213
|ΦΦΨ〉 , (A.2.18)

which is fulfilled, most easily checked by comparing the exponents:

(−��E12 + ��E31 ) − (��E32 + ��E13 ) + (��E23 − ��E12 ) != (��E13 − ��E21 ) + (−��E21 + ��E32 ) − (��E31 + ��E23 ) .
(A.2.19)

• ΦΨΦ type:

Φ312
|ΨΦΦ〉Φ

132
|ΦΦΨ〉

−1Φ123
|ΦΦΨ〉# + Φ312

|ΦΨΦ〉Φ
132
|ΦΨΦ〉

−1Φ123
|ΦΦΨ〉#

′ != Φ321
|ΦΨΦ〉Φ

231
|ΦΦΨ〉

−1Φ213
|ΦΦΨ〉 , (A.2.20)

where, in this instance, we introduced # symbols to indicate that there are different coassociator
factors for the different terms appearing on the same side of the equation. This translates to:

[(��E12 + ��E31 ) − (��E32 + ��E13 ) + (��E23 − ��E12 )]# + [(��E12 − ��E31 ) − (��E32 − ��E13 ) + (��E23 − ��E12 )]#′

!= (��E13 − ��E21 ) − (��E31 + ��E23 ) + (��E21 + ��E32 ) . (A.2.21)

• ΨΦΦ type:

Φ312
|ΨΦΦ〉Φ

132
|ΦΦΨ〉

−1Φ123
|ΦΦΨ〉# + Φ312

|ΦΨΦ〉Φ
132
|ΦΨΦ〉

−1Φ123
|ΦΦΨ〉#

′ != Φ312
|ΨΦΦ〉Φ

132
|ΦΦΨ〉

−1Φ123
|ΦΦΨ〉 , (A.2.22)

translates to

[(��E12 + ��E31 ) − (��E32 + ��E13 ) + (��E23 − ��E12 )]# + [(��E12 − ��E31 ) − (��E32 − ��E13 ) + (��E23 − ��E12 )]#′

!= (��E12 + ��E31 ) − (��E32 + ��E13 ) + (��E23 − ��E12 ) . (A.2.23)
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Thus, we have proven that the YBE and the GYBE are equivalent on the state |ΦΦΨ〉, too. For the
next state containing two fermions, we shall again show that the appearing factors from the coassociator
can be reduced away, but we shall skip the making the first step of the calculation explicit this time.
|ΦΨΨ〉
For the representative case of two fermions, the GYBE evaluated on it,

R12Φ312R13Φ132−1
R23Φ123|ΦΨΨ〉 = Φ321R23Φ231−1

R13Φ213R12|ΦΨΨ〉 , (A.2.24)

will produce more fermionic signs and is slightly more involved to tackle, but in essence the same. The
contributions and factors can be categorised in the following way:

• ΦΨΨ type:

Φ312
|ΦΨΨ〉Φ

132
|ΦΨΨ〉

−1Φ123
|ΦΨΨ〉

!= Φ321
|ΦΨΨ〉Φ

231
|ΦΨΨ〉

−1Φ213
|ΦΨΨ〉 , (A.2.25)

translates to

(��E23 − ��E12 ) − (��E32 − ��E13 ) + (−��E12 − ��E31 ) != (−��E13 − ��E21 ) − (−��E31 + ��E23 ) + (−��E21 + ��E32 ) .
(A.2.26)

• ΨΦΨ type:

Φ321
|ΨΦΨ〉Φ

231
|ΨΨΦ〉

−1Φ213
|ΦΨΨ〉# + Φ321

|ΨΦΨ〉Φ
231
|ΨΦΨ〉

−1Φ213
|ΨΦΨ〉#

′ != Φ312
|ΦΨΨ〉Φ

132
|ΦΨΨ〉

−1Φ123
|ΦΨΨ〉 , (A.2.27)

which translates to

(−��E13 − ��E21 ) − (−��E31 + ��E23 ) + (−��E21 − ��E32 )# + (��E13 − ��E21 ) − (��E31 + ��E23 ) + (−��E21 − ��E32 )#′

!= (��E23 − ��E12 ) − (��E23 − ��E13 ) + (−��E12 − ��E31 ) . (A.2.28)

• ΨΨΦ type:

Φ321
|ΨΨΦ〉Φ

231
|ΨΨΦ〉

−1Φ213
|ΦΨΨ〉# + Φ321

|ΨΨΦ〉Φ
231
|ΨΦΨ〉

−1Φ213
|ΨΦΨ〉#

′ != Φ312
|ΨΨΦ〉Φ

132
|ΦΨΨ〉

−1Φ123
|ΦΨΨ〉 , (A.2.29)

which translates to

(−��E13 − ��E21 ) − (−��E31 + ��E23 ) + (��E21 − ��E32 )# + (��E13 − ��E21 ) − (��E31 + ��E23 ) + (��E21 − ��E32 )#′

!= (��E23 − ��E12 ) − (��E23 − ��E13 ) + (��E12 − ��E31 ) . (A.2.30)

With this, all the states are checked. Notice that, due to statistical conservation, the sectors with 0, 1, 2
or 3 fermions are only able to be mapped onto (linear combinations of) states of the same sector.

A.3 Spin Chains and Jordan Blocks

In this appendix that concerns chapter 6, we want to both make examples of our algorithmic framework
in practice, and point out certain caveats to be aware of during the computation. As with our exposition,
we divide this endeavour into the distinguishable and the indistinguishable case.
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A.3.1 The Distinguishable Case And A Caveat Regarding Limits

Let us consider the following complex 3 × 3 matrix:

M(ϵ) =


0 1 ϵ2

ϵ2 0 1
0 0 0

 . (A.3.1)

M(ϵ) has the following eigenvalues and eigenvectors

λ1 = 0 , v1 = (1, ϵ4,−ϵ2) ,

λ2 = −ϵ , v2 = (1,−ϵ, 0) ,

λ3 = ϵ , v3 = (1, ϵ, 0) . (A.3.2)

We can see that limϵ→0 vi = (1, 0, 0) for the three vectors - so indeed, all eigenvectors collapse to the same
eigenvector in the defective limit. We now want to make the subtlety in limit-taking that we alluded to
in (6.2.28) explicit while computing the generalised eigenvectors, by also doing it the “wrong way” on
the right-hand side below (i.e. by subtracting limits of eigenvectors instead of computing the limit only
at the end). Going one rank up to computing w(1), we find

v1 − β21v2

|v1 − β21v2|
≈ (ϵ4, 1,−ϵ) , v1 − limϵ→0(β21v2)

|v1 − β21v2|
≈ (0,−ϵ2, 1) ,

v2 − β32v3

|v2 − β32v2|
≈ (−ϵ, 1, 0) , v2 − limϵ→0(β32v3)

|v2 − β32v3|
≈ (0, 1, 0) . (A.3.3)

Thus, were we to proceed the wrong way, we will incorrectly generate two generalised eigenvectors of
rank 2 rather than one - this directly contradicts 2.1.1 as our geometric multiplicity is just one, providing
an upper bound for the number of linearly independent generalised eigenvectors that can appear with
each step. So, correctly we find that limϵ→0 w

(1)
12 = (0, 1, 0) is the generalised eigenvector of rank 2.

Going one step beyond, we then find

w
(1)
12 − β32w

(1)
23

w
(1)
12 − β32w

(1)
23

≈ (1, 0, 1) , (A.3.4)

which is then implying that limϵ→0 w
(2)
12 = (1, 0, 1).1 In [GN16], the authors use the “wrong” method

of constructing generalised eigenvectors, however, in their case it is inconsequential due to their Jordan
Blocks being of minimal size 2.

A.3.2 The Indistinguishable Case

In this chapter, we want to fully and correctly examine the example briefly mentioned in the correspond-
ing section 6.2.3 concerning chain mixing, we recall the matrix we mentioned where this issue arises in
(6.2.46):

M(ϵ) =



ϵ 1 ϵ 0 0
0 ϵ4 1 ϵ 0
0 0 ϵ7 ϵ9 0
0 0 0 ϵ6 1
0 0 0 0 ϵ8


, (A.3.5)

giving rise to the following genealogical diagram:
1Here, it is again apparent that this is not a “pure” generalised eigenvector of rank 2: It is the sum of a true eigenvector

and the “pure” generalised eigenvector of rank 2, (1, 0, 1) = (1, 0, 0) + (0, 0, 1).
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û1 û2 û3 û5

û4

We can straightforwardly see that in the defective limit, M(0) ≡ M is in JNF form, and has Jordan
blocks of sizes 3 and 2 - not reflected in the diagram above. We need to make use of our remedy in
(6.2.50), and proceeding systematically, we find two things at first, namely that we have two admissible
m values and associated generalised eigenvectors of rank 1:

M†M†M†û1 = 0 6= M†M†û1 ,

M†M†û4 = 0 6= M†û4 , (A.3.6)

while also satisfying the eigenvector condition (recall that M is nilpotent and has therefore only 0 as
eigenvalues)

Mû1 = Mû4 = 0 . (A.3.7)

This implies we have admissible m ∈ {1, 2} for v ∈ {u4, u1} in (6.2.50). We can thus generate |{1, 2}| = 2
untangled chains, and find:

m = 2-chain


M†M†û1 = û3

MM†M†û1 = û2

MMM†M†û1 = û1

(A.3.8)

m = 1-chain

M†û4 = û5

MM†û4 = û4

(A.3.9)

This implies that indeed we have a Jordan chain of length 3 and one of length 2, and we can untangle
the genealogical diagram above in the following way:

û1 û2 û3 û5

û4

Using this untangling recipe, any chain mixing can be resolved and the correct Jordan structure com-
puted. With this example, one can also see that the above recipe is consistent with the case where there
is no chain mixing, as is to be expected. Of course, the cases of chain mixing are more likely to appear
for bigger Jordan blocks, and we have dealt so far with a “minimal” example to illustrate things, but
the recipe we introduced works just the same for more intricate Jordan structures, too.

A.3.3 Generalised Eigensystem for M = 3

In this section, we will analyse the generalised Bethe system for the M = 3 case, whose analysis will
closely follow the one for the M = 2 case but does come with some new caveats that we shall emphasise
before moving on to the case of arbitrary M , on which we shall only make some comments. In either
case, our starting case will again be studying both sets of Bethe equations ((6.3.26) and (6.3.28)) in the
defective limit, parametrised by ϵ → 0. Proceeding again as in [AS21], we expand the physical rapidities
u1, u2, u3 and the auxiliary rapidity x̄ around the defective limit,

u1 → ϵαu− + ϵ2αũ− ,
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u2 → ϵαu′− + ϵ2αũ′− ,

u3 → −1 + ϵβu+ ,

x̄ → u3 + ϵγ v̂ , (A.3.10)

where we redefine the constants to account for M 6= 2,

α = L−M − 1
L−M + 1

,

β = L− 3M − 3
L−M + 1

,

γ = 2L− 3M , (A.3.11)

and the Bethe equations take the following form

uL− = (−1)M−1 ξ

ξL3
u+ ,

u2
− − ũ−

uL+1
−

= 2ξ
L
3
ξ

ũ− − ũ′−
u+

,

(u′−)L = (−1)M−1 ξ

ξL3
u+ ,

u′2− − ũ′−
(u′−)L+1 = 2ξ

L
3
ξ

ũ′− − ũ−

u+
,

− (−u+)L−M+1 = ξL3
2M−1ξ

v̂ , v̂ = −2M−1ξL1
ξL−M

. (A.3.12)

Expressed in momentum variables rather than rapidities, we have the following relations (using again
that eipk = uk

uk+1 ):

eip1 ≈ u−ϵ
α + (ũ− − u2

−)ϵ2α ,

eip2 ≈ u′−ϵ
α + (ũ′− − u′2−)ϵ2α ,

eip3 ≈ −u−1
+ ϵ−β . (A.3.13)

This means that in the plane wave ansatz, where we have in general summands of the form

|ψ〉 = · · · ei
∑

j
pσ(j)nj q

∑
j
nj

3
(q2q3)nk︸ ︷︷ ︸

F(M,σ)

· · · , (A.3.14)

we have the following behaviour:

F(3, Id) = ei(p1n1+p2n2+p3n3) q
n1
3 qn2

3
qn3

2
∼ ϵ(α−1)(n1+n2)−(β−1)n3 = ϵ(α−1)[(n1−n3)+(n2−n3)] , (A.3.15)

where we make use of the relation (M −K)(α− 1) = K(β− 1) amongst our constants in the exponents.
The Hamiltonian that describes our model is still invariant under the shift operator U , meaning that
we would expect only a dependence on the relative positions of the excitations, and indeed the sole
dependence on (n1 − n3) and (n2 − n3) indicates precisely that.

Having now discussed the ϵ-behaviour of the rapidities and the momenta, we now analyse the be-
haviour of the coefficients ψk(σ), that were previously in the M = 2 case represented by the A, Ã
coefficients. We are again free to normalise one of the coefficients (which corresponds to an over normal-
isation of the eigenstate), and we shall choose ψ3(id) = 1. For the two cases k − l = 3, 2 in (6.3.22), we
then have

ψ2(id)
ψ3(id)

= 1
Q

u3 − x̄

u2 − x̄+ 1
,

ψ1(id)
ψ2(id)

= 1
Q

u2 − x̄

u1 − x̄+ 1
. (A.3.16)
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As for the case of M = 2, in this first step we have dealt with the coefficients that carry (id) as an
argument. The coefficients carrying transposition τ ∈ S3 as arguments, i.e. ψi((jk)), with i, j, k different
integers, are straightforwardly computed, as the transposition occurs amongst labels of excitations of
flavour 2, and for these cases we simply have:

ψi((jk)) = − 1 − 2eipj + ei(pj+pk)

1 − 2eipk + ei(pj+pk)︸ ︷︷ ︸
S22(pj ,pk)

ψi(id) . (A.3.17)

This is enough to fix 3! = 6 coefficients of the wave functions, as we have to choose pairwise different
integers i, j, k for expressions ψi((jk)). For all the other cases, we can use the periodicity condition to
relate terms of the following form in a particular way:

S2+
n1

S2+
n2

S3+
n3

S3+
n′

1
S2+
n′

2
S2+
n′

3

S2+
n′′

1
S3+
n′′

2
S2+
n′′

3

Examples of such a connection are

ψ1((321)) = ψ3(id)e
ip3L

qL2
,

ψ2((123)) = ψ3(id)ei(p2+p3)L q
L
3
qL2

. (A.3.18)

Needing to fix 18 coefficients in total, and having had computed 6 before, for each one of them we can
derive 2 more, meaning we exhaust all the freedoms the coefficients might possess and fix them fully.
Having now all the coefficients in our quiver, we can start to link them together, and we see that the
coefficients associated with ψ3(id) are the dominant terms. For instance, we can take a look at the part
of the wave function associated with the creation operators S2+

n1
S2+
n2
S3+
n3

:

ψ3(id)ei(p1n1+p2n2+p3n3) q
n1+n2
3
qn3

2
∼ ψ3((12))ei(p2n1+p1n2+p3n3) q

n1+n2
3
qn3

2
∼ ϵ(α−1)[(n1−n3)+(n2−n3)] ,

ψ3((123))ei(p2n1+p3n2+p1n3) q
n1+n2
3
qn3

2
∼ ψ1(id) qL2

eip1L
ϵα(n1+n3)−βn2ϵn1+n2−n3

∼ ϵγ−3ϵ−(1+α)Lϵ(α−1)[(n1−n3)+(n2−n3)]+(α+β)(n3−n2) ,

ψ3((13))ei(p3n1+p2n2+p1n3) q
n1+n2
3
qn3

2
∼ ψ1(id)S22(p3, p2) qL2

eip1L
ϵα(n2+n3)−βn1ϵn1+n2−n3

∼ ϵγ−3ϵ−βϵ−(1+α)Lϵ(α−1)[(n1−n3)+(n2−n3)]+(α+β)(n3−n1) ,

ψ3((321))ei(p3n1+p1n2+p2n3) q
n1+n2
3
qn3

2
∼ ψ2(id) qL2

ei(p1+p2)LqL3
ϵα(n2+n3)−βn1ϵn1+n2−n3

∼ ϵ3ϵ−2αLϵ(α−1)[(n1−n3)+(n2−n3)]+(α+β)(n3−n1) ,

ψ3((23))ei(p1n1+p3n2+p2n3) q
n1+n2
3
qn3

2
∼ ψ2(id) qL2

ei(p1+p2)LqL3
S22(p1, p3)ϵα(n1+n3)−βn2ϵn1+n2−n3

∼ ϵ3ϵ−2αLϵβϵα(n1+n3)−βn2ϵn1+n2−n3 . (A.3.19)

There is one more caveat that we should be aware of: In the defective ϵ → 0 limit, the momenta p1 and
p2 coincide, implying that the leading contribution of ψ3(id)ei(p1n1+p2n2+p3n3) q

n1+n2
3
q

n3
2

exactly cancels the
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leading contribution of ψ3((12))ei(p2n1+p1n2+p3n3) q
n1+n2
3
q

n3
2

, as S22(p, p) = −1 if the two excitations have
identical flavours and coinciding momenta. However, the next-to-leading contribution to the rapidities
u1 and u2 makes them different, appearing an additional ϵα factor compared to our initial computation
from before

ψ3(id)ei(p1n1+p2n2+p3n3) q
n1+n2
3
qn3

2
+ ψ3((12))ei(p2n1+p1n2+p3n3) q

n1+n2
3
qn3

2
∼ ϵαϵ(α−1)[(n1−n3)+(n2−n3)] .

(A.3.20)
Nonetheless, the situation is much alike to the one we found in the setting of M = 2, in the sense that
we have two dominating contributions, the ones associated with ψ3(id) and ψ3((12)), and we can restrict
our considerations from now on to contributions associated with the coefficient ψ3(id), as we similarly
did in the M = 2 case for the dominating terms.

Having analysed all the ϵ-behaviours of the coefficients and the rapidities (and momenta), the mise-
en-place for our recipe is now complete. In the defective limit, the wave function behaves as

|ψ〉 ≈
L∑

n1<n2<n3
1≤ni≤L

[(
ψ3(id)ei(p1n1+p2n2) + ψ3((12))ei(p2n1+p1n2)) eip3n3 q

n1+n2
3
qn3

2
S2,+

n1 S2,+
n2 S3,+

n3

+
(
ψ1((321))ei(p1n2+p2n3) + ψ1((13))ei(p2n2+p1n3)) eip3n1 q

n2+n3
3
qn1

2
S3,+

n1 S2,+
n2 S2,+

n3

+
(
ψ2((23))ei(p1n1+p2n3) + ψ2((123))ei(p2n1+p1n3)) eip3n2 q

n1+n3
3
qn2

2
S2,+

n1 S3,+
n2 S2,+

n3

]
|0〉

≈
L∑

n1<n2<n3
1≤ni≤L

ϵα+(α−1)[(n1−n3)+(n2−n3)]
[

(n1 − n2) ũ− − ũ′
−

u−

(ξ3u−)n1+n2

(−ξ2u+)n3
S2,+

n1 S2,+
n2 S3,+

n3

+(n2 − n3) ũ− − ũ′
−

u−
· (ξ3u−)n2+n3

(−ξ2u+)n1+L
S3,+

n1 S2,+
n2 S2,+

n3 + (n1 − n3 − L) ũ− − ũ′
−

u−

(ξ3u−)n1+n3+L

(−ξ2u+)n2+L
S2,+

n1 S3,+
n2 S2,+

n3

]
|0〉 .

(A.3.21)

The permitted combinations of the three different ni and the parts of the sum that dominate are

|ψ〉
ϵ3−2α ≈

[
L−2∑
n1=1

ξ3(ũ′− − ũ−)
ξ2

2u
2
+

(
−
ξ2

3u
2
−

ξ2u+

)n1

S2,+
n1

S2,+
n1+1S

3,+
n1+2

]
|0〉 +

ũ′− − ũ−

u−

(ξ3u−)2L−1

(−ξ2u+)L+1

· S3,+
1 S2,+

L−1S
2,+
L |0〉 +

ũ′− − ũ−

u−

(ξ3u−)2L+1

(−ξ2u+)L+2S
2,+
1 S3,+

2 S2,+
L |0〉 . (A.3.22)

We can recast all of these contributions into a single sum in the following way:

|ψ〉 ≈ ϵ3−2α ξ3(ũ′− − ũ−)
ξ2

2u
2
+

L∑
n1=1

(
−
ξ2

3u
2
−

ξ2u+

)n1

S2,+
n1

S2,+
n1+1S

3,+
n1+2|0〉 , (A.3.23)

where again we understand the subindices of the creation operators Si,+n are to be floored modulo L.
Curiously, we again have that, symbolised by the ratio u2

−
u+

, this expression only depends on the total
momentum P3 = p1 + p2 + p3. Additionally, once more as in the M = 2 case, we can see that the (finite
part of the) eigenvector corresponds exactly to what in [AS21] is referred to as locked state.

We now go one step further in our recipe, and, analogously to theM = 2 case, try to furnish a suitable
linear combination of eigenvectors, that we just now have computed. If two eigenstates |ψ(p1, p2, p3)〉 and
|ψ(p′1, p′2, p′3)〉 have the same total momentum, P3 = P ′3, then they coalesce to the same (true) eigenstate
of the defective strongly twisted Hamiltonian. Similarly to the M = 2, the linear combination that we
want to analyse the limit behaviour of,

ei(2p1+p2)|ψ(p1, p2, p3)〉 − ei(2p′
1+p′

2)|ψ(p′1, p′2, p′3)〉 , (A.3.24)
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then lets us deduce that

ei(2p1+p2)|ψ(p1, p2, p3)〉 − ei(2p′
1+p′

2)|ψ(p′1, p′2, p′3)〉
ϵ4

≈ const.
L∑

n1=1

(
−
ξ2

3u
2
−

ξ2u+

)n1

S2,+
n1

S2,+
n1+2S

3,+
n1+3|0〉 .

(A.3.25)
The finite part of the above state corresponds to a generalised eigenstate of rank 2. Things get more
interesting when we turn to constructing the generalised eigenvectors of rank 3. Proceeding along the
same lines as in theM = 2 case, we end up finding that the suitable linear combination of eigenstates (of
the non-defective Hamiltonian) can, in the limit, be written as the linear combination of two excitations
that solely depend on P3,

a1

[
L∑

n1=1

(
−
ξ2

3u
2
−

ξ2u+

)n1

S2,+
n1

S2,+
n1+3S

3,+
n1+4|0〉

]
+ a2

[
L∑

n1=1

(
−
ξ2

3u
2
−

ξ2u+

)n1

S2,+
n1

S2,+
n1+1S

3,+
n1+3|0〉

]
, (A.3.26)

where ai are coefficients that are functions of the individual momenta, too. This is indicative that there
is another true eigenvector hidden somewhere in disguise.

The situation gets more involved the deeper we get into our recipe, and we need to construct a
more streamlined approach to find the number of independent vectors that is found at each step. When
analysing |ψ〉 more closely, we find that, similar to before, the relevant ϵ-order contributions of the wave
function are controlled by the separation of the excitations, most directly seen by analysing the (twisted)
M = 3 plane wave factor (as already stated before),

F(3, Id) = ei(p1n1+p2n2+p3n3) q
n1
3 qn2

3
qn3

2
∼ ϵ(α−1)(n1+n2)−(β−1)n3 = ϵ(α−1)[(n1−n3)+(n2−n3)] . (A.3.27)

The question regarding the number of independent vectors found at each step can therefore be reformu-
lated as the question of how many solutions does the equation n = (n1 − n3) + (n2 − n3) possess, for a
given suitable n. There is the additional restriction of 1 ≤ n1 < n2 < n3 ≤ L, as this is how we build
our wave functions (see (6.3.10)), which means that the separations of two states can at most be L− 1,
but has to be larger than 0. Thus, the set of equations whose number of solutions we are interested in
looks as follows:

(n3 − n1) + (n3 − n2) = n ,

1 ≤ (n3 − n2) < (n3 − n1) ≤ L− 1 . (A.3.28)

We are standing on the shoulders of giants, as this is nothing else but a (restricted form of a) Diophantine
equation, and we shall dedicate a large portion of the remainder of this chapter to the study of such
equations.2 To write this equation in a more compact form, we perform the following change of variables

(n3 − n2) = x2 + 1 , (n3 − n1) = x1 + x2 + 2 , (A.3.29)

with which our equations that the following form

x1 + 2x2 = n− 3 = ∆ , x1 ≥ 0 , x2 ≥ 0 , x1 + x2 + 2 ≤ L− 1 . (A.3.30)

Furthermore, we can simplify these equations even more by introducing the slack variable (Schlupfvari-
able) x0 ≥ 0 that allows us to re-express the latter inequality as an equality, and finally lets us write the

2The field of algebraic number theory has a rich history a plethora of interesting approaches to study Diophantine
equations. It would go beyond the scope of this thesis to, in addition to algebraic notions already introduced and discussed,
fruitlessly attempt to formulate an adequate overview of this fascinating topic. For historical and introductory references
on Diophantine equations and related algebraic topics, we refer the reader to [Mor69], [Sma98], [YT04], [VE06], in no
particular order.
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Diophantine equations in a more standard form,
x0 + x1 + x2 = L− 3

x1 + 2x2 = ∆
xj ≥ 0

. (A.3.31)

∆ (x0, x1, x2) Number of sol.
0 (3, 0, 0) 1
1 (2, 1, 0) 1
2 (1, 2, 0), (2, 0, 1) 2
3 (0, 3, 0), (1, 1, 1) 2
4 (0, 2, 1), (1, 0, 2) 2
5 (0, 1, 2) 1
6 (0, 0, 3) 1

∆ (x0, x1, x2) Number of sol.
0 (4, 0, 0) 1
1 (3, 1, 0) 1
2 (2, 2, 0), (3, 0, 1) 2
3 (1, 3, 0), (2, 1, 1) 2
4 (0, 4, 0), (1, 2, 1), (2, 0, 2) 3
5 (0, 3, 1), (1, 1, 2) 2
6 (0, 2, 2), (1, 0, 3) 2
7 (0, 1, 3) 1
8 (0, 0, 4) 1

Table A.1: Solutions to the system of Diophantine equations (A.3.31) for the cases of L = 6 and L = 7.
In both cases, we consider M = 3 and K = 1.

The above table in A.1 gives us information on the cases of L = 6 and L = 7. We count the number
of different solutions for ∆, as ∆ is connected to the order of the ϵ-exponent n, and it is the ϵ-orders
that are material to our Jordan construction. For the former case, we find that the system of equations
has one (or more) solutions for 7 different values of ∆ and two (or more, but in this case no more)
solutions for three different values of ∆. This lets us claim that in the L = 6 case, the strongly twisted
Hamiltonian has a JNF features one Jordan block of size 7, and one of size 3. This is consistent with
[AS21]: With the condition of zero total momentum, we have that( 6

2,1,3
)

6
= 10 = 7 + 3 . (A.3.32)

Likewise for the L = 7, we find that the system of equations admits one (or more) solutions for 9 different
∆, two (or more) solutions for 5 different values of ∆, and three solutions for 1 value of ∆. Similarly, we
therefore expect the Hamiltonian to be similar to a JNF matrix with three blocks; one of size 9, one of
size 5 and one of size 1. We also have that( 7

2,1,4
)

7
= 15 = 9 + 5 + 1 . (A.3.33)

These results are in agreement with the results in [AS21].
We have now exemplified that our method indeed works by discussing the cases of L = 6 and L = 7,

and we now want to analyse the case of general length L. To this end, the realisation that if (x0, x1, x2)
is a solution for length L then (x0 + 1, x1, x2) is a solution for length L + 1 is particularly helpful. We
can start by finding the number of solutions for when we have x0 = 0, and then proceeding recursively,
meaning finding solutions for 

x1 + x2 = L− 3
x1 + 2x2 = ∆

xj ≥ 0
. (A.3.34)
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This system of equation has precisely one solution for any given value of ∆ given by

x2 = ∆ + 3 − L (A.3.35)

x1 = 2L− 6 − ∆ . (A.3.36)

Lest we forget about our restriction that xi ≥ 0, implying that ∆ ∈ {L− 3, · · · , 2L− 6}. One can then
prove by induction that there are a total number of b ∆

2 c + 1 solutions for the case where 0 ≤ ∆ ≤ L− 3,
and a total number of bL−3− ∆

2 c+1 solution for L−3 ≤ ∆ ≤ 2L−6. bxc is the usual floor function, i.e.
the function that gives us the largest integer that is smaller (or equal) to x. We shall show that this result
can be written more compactly in terms of a special function later on. Once this result is established,
the Jordan structure of the spin chain with general length L can be easily computed. We can already
see that the system of equations (A.3.31) has one or more solutions for a total of 2L − 6 + 1 = 2L − 5
different values of ∆, two or more solutions for a total of 2L− 5 − 4 = 2L− 9 different values of ∆, three
or more solutions for a total of 2L−13 different values of ∆, et cetera. Concluding, the Jordan structure
for the M = 3,K = 1 case is such that the Jordan blocks are of size 2L− 5 − 4n, with n ∈ N0, which is
in agreement with [AS21] and [ACS22], reassuring us in our efforts.

A.3.4 Generalised Eigensystem for General M and an Interlude on Gauss
Polynomials

For the case of arbitrary M , our approach will be much the same: The relevant terms in the wave
function scale as

ei
∑

i
pini

∏
i q
ni
3

qnM
2 qnM

2
∼ ϵ(α−1)(

∑
i
ni)−(α+β−2)nM = ϵ(α−1)

∑
i
(ni−nM ) , (A.3.37)

where K(β−1) = (M−K)(α−1) lets us combine the exponents. We again want to compute the number
of different generalised eigenvectors appearing at each step of our method, which is again equivalent to
the solution counting of the (linear) Diophantine equations,∑

i

(nM − ni) = n , (A.3.38)

with the restriction that the excitation separations are bound by (nM − ni) ∈ {1, · · · , L − 1} for a
spin chain of length L. Akin to the case before, we want to bring the Diophantine equations (and the
restrictions) into a more standard form using the variables xi, defined by

ni+1 − ni = xi + 1 ⇔ (nM − ni) = (M − i) +
M−1∑
j=i

xj , (A.3.39)

and we introduce the slack variable x0 ≥ 0 again to transform in the inequality (nM − n1) ≤ L − 1
into the equality (x0 + nM − n1) = L − 1. With these redefinitions, we arrive at the system of linear
Diophantine equations 

∑M−1
j=0 xj = L−M∑M−1
j=0 (jxj) = ∆
xj ≥ 0

. (A.3.40)

The following table A.2 shows the solutions for the case L = 8,M = 4,K = 1; we can again see that the
system of equations possesses one or more solutions for 13 different values of ∆, two or more solutions
for 9 different values of ∆, three or more solutions for 7 different values of ∆, four or more solutions for
5 different values of ∆, and five solutions for one particular value of ∆. This implies that we expect the
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Jordan chains for this case to have lengths 13, 9, 7, 5 and 1, which matches the results from Table 2 in
[AS21].

∆ (x0, x1, x2, x3) Number of sol.
0 (4, 0, 0, 0) 1
1 (3, 1, 0, 0) 1
2 (2, 2, 0, 0), (3, 0, 1, 0) 2
3 (1, 3, 0, 0), (2, 1, 1, 0), (3, 0, 0, 1) 3
4 (0, 4, 0, 0), (1, 2, 1, 0), (2, 0, 2, 0), (2, 1, 0, 1) 4
5 (0, 3, 1, 0), (1, 2, 0, 1), (1, 1, 2, 0), (2, 0, 1, 1) 4
6 (0, 2, 2, 0), (0, 3, 0, 1), (1, 0, 3, 0), (1, 1, 1, 1), (2, 0, 0, 2) 5
7 (0, 2, 1, 1), (0, 1, 3, 0), (1, 0, 2, 1), (1, 1, 0, 2) 4
8 (0, 1, 2, 1), (0, 0, 4, 0), (1, 0, 1, 2), (0, 2, 0, 2) 4
9 (0, 1, 1, 2), (0, 0, 3, 1), (1, 0, 0, 3) 3
10 (0, 1, 0, 3), (0, 0, 2, 2) 2
11 (0, 0, 1, 3) 1
12 (0, 0, 0, 4) 1

Table A.2: Solutions to the system of linear Diophantine equations in (A.3.40) for L = 8, M = 4 and
K = 1.

Moving on from this case with specified length, let us consider general values of L. Similarly to the
M = 3 case, we have that if (x0, x1, . . . , xM−1) is a solution for length L, then (x0 + 1, x1, . . . , xM−1) is
a solution for length L+ 1. Therefore, we start by analysing the x0 = 0 case of (A.3.40) first again and
proceed then iteratively:


∑M−1
j=1 xj = L−M∑M−1

j=1 [(j − 1)xj ] = ∆ +M − L

xj ≥ 0
, (A.3.41)

where we subtracted the first equation from the second equation in (A.3.40) to arrive at this form. We can
see that (A.3.41) corresponds to the system of Diophantine equations for the case L− 1,M − 1,K = 1,
implying that we can arrive at the number of solutions to (A.3.40) with ∆, L and M by taking the
number of solutions for ∆, L− 1 and M and adding the number of solutions for ∆ +M − L, L− 1 and
M − 1.

Table A.3 below shows the sum rule we just derived for the case of L = 9,M = 4,K = 1, where
we have Jordan chains of lengths 6, 8, 10, 12 and 16, while the case of L = 10, M = 4,K = 1 exhibits
Jordan chains of lengths 3, 7, 7, 9, 11, 13, 15 and 19, in agreement with [AS21]:
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HHHHHHH(L,M)
∆

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(8, 4) 1 1 2 3 4 4 5 4 4 3 2 1 1 0 0 0 0 0 0
(8, 3) · q8−3 0 0 0 0 0 1 1 2 2 3 3 3 2 2 1 1 0 0 0

(9, 4) 1 1 2 3 4 5 6 6 6 6 5 4 3 2 1 1 0 0 0
(9, 3) · q9−3 0 0 0 0 0 0 1 1 2 2 3 3 4 3 3 2 2 1 1

(10, 4) 1 1 2 3 4 5 7 7 8 8 8 7 7 5 4 3 2 1 1

Table A.3: Explicit computation of the number of solutions for the cases L = 9, M = 4 and K = 1 and
L = 10, M = 4 and K = 1, starting from the number of solutions for the case with L = 8, M = 4 and
K = 1.

Taking one step back, if we consider general values of L,M , we can write the recursive relation that
connects solutions for the cases L with L− 1 by first defining the generating function F (L,M, x) as

F (L,M, x) =
∞∑

∆=0

x∆#{Solutions of eq. (A.3.40) for given values of L,M,∆} , (A.3.42)

that we can use in establishing

F (L,M, x) = F (L− 1,M, x) + xL−MF (L− 1,M − 1, x)

F (L, 2, x) =
L−2∑
j=0

xj . (A.3.43)

In (A.3.43), the second equation is the result from theM = 2 case (where we found a single Jordan chain
of length L− 1), which serves as a base condition for our recursive relation to foot on. This recurrence
relation has been studied before in the context of combinatorial analysis: The generating function is
nothing else but a type of Gaussian polynomial (or q-deformed binomial coefficient), i.e.

F (L,M, x) =
(
L− 1
M − 1

)
x

, (A.3.44)

where we define (
m

r

)
q

= (1 − qm)(1 − qm−1) . . . (1 − qm−r+1)
(1 − q)(1 − q2) . . . (1 − qr)

. (A.3.45)

The nomenclature comes from the fact that in the q → 1 limit, we recover the usual binomial coefficient,
i.e.

lim
q→1

(
m

r

)
q

=
(
m

r

)
. (A.3.46)

We can see that the values in table A.3 are identical to the coefficients of the polynomials
(8−1

4−1
)
x
,

x9−4(8−1
3−1
)
x
,
(9−1

4−1
)
x
, x10−4(9−1

3−1
)
x
and

(10−1
4−1

)
x
, respectively. In [ACS22], the authors found this generating

function without using integrability, strengthening our confidence in these results as different approaches
led to the same findings.

We conclude this section by making some remarks about Gaussian polynomials and prove some of
their properties.3 We start with the fact that it is immediate from (A.3.45) that they fulfil the properties

3For a larger discussion on this, we refer the reader to the references [vLW01] and [Sz�13]. We shall stick to their
definitions, and also use their schematic sketches of proofs for two of the properties they show in a more detailed way.
Further helpful references include [Cig81] and [Kro22].
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• Reflection Property: (
m

r

)
q

=
(

m

m− r

)
q

. (A.3.47)

• 1st Pascal identity: (
m

r

)
q

= qr
(
m− 1
r

)
q

+
(
m− 1
r − 1

)
q

. (A.3.48)

• 2nd Pascal identity: (
m

r

)
q

=
(
m− 1
r

)
q

+ qm−r
(
m− 1
r − 1

)
q

. (A.3.49)

In order to get more acquainted with these polynomials, we shall prove these three properties at once:

Proof. In the same order as above, we have:

• For the Reflection property, we can see that(
m

r

)
q

=(1 − qm)(1 − qm−1) . . . (1 − qm−r+1)
(1 − q)(1 − q2) . . . (1 − qr)

=(1 − qm)(1 − qm−1) . . . (1 − qm−r+1)
(1 − q)(1 − q2) . . . (1 − qr)

× (1 − qr+1) . . . (1 − qm−r)
(1 − qr+1) . . . (1 − qm−r)

=(1 − qm)(1 − qm−1) . . . (1 − qr+1)
(1 − q)(1 − q2) . . . (1 − qm−r)

=
(

m

m− r

)
q

. (A.3.50)

• The 1st Pascal identity is proven by noticing that we have(
m

r

)
q

=(1 − qm)(1 − qm−1) . . . (1 − qm−r+1)
(1 − q)(1 − q2) . . . (1 − qr)

=(1 − qm) × (1 − qm−1) . . . (1 − qm−r+1)(1 − qm−r)
(1 − q)(1 − q2) . . . (1 − qr)︸ ︷︷ ︸

=(m−1
r )

q
, since m− r = (m− 1)− r + 1

× 1
1 − qm−r

= 1 − qm

1 − qm−r

(
m− 1
r

)
q

. (A.3.51)

Similarly, we also have that (
m

r

)
q

= 1 − qm

1 − qr

(
m− 1
r − 1

)
q

, (A.3.52)

as well as (
m− 1
r − 1

)
q

= 1 − qr

1 − qm−r

(
m− 1
r

)
q

, (A.3.53)

With these identities, we can show that(
m

r

)
q

= 1 − qm

1 − qm−r︸ ︷︷ ︸
=qr+ 1−qr

1−qm−r

(
m− 1
r

)
q
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=qr
(
m− 1
r

)
q

+ 1 − qr

1 − qm−r

(
m− 1
r

)
q︸ ︷︷ ︸

=(m−1
r−1 )

q
, using (A.3.53)

=
(
m

r

)
q

= qr
(
m− 1
r

)
q

+
(
m− 1
r − 1

)
q

. (A.3.54)

• Lastly, we can also prove the 2nd Pascal identity in a similar way, starting with (A.3.52) and
proceeding then like(

m

r

)
q

= 1 − qm

1 − qr︸ ︷︷ ︸
= 1−qm−r

1−qr +qm−r

(
m− 1
r − 1

)
q

= 1 − qm−r

1 − qr

(
m− 1
r − 1

)
q︸ ︷︷ ︸

=(m−1
r )

q
, using the inverted relation of (A.3.53)

+qm−r
(
m− 1
r − 1

)
q

=
(
m− 1
r

)
q

+ qm−r
(
m− 1
r − 1

)
q

, (A.3.55)

concluding our proof.

We can also prove that we have (1 − q)(1 − q2) . . . (1 − qr)|(1 − qm)(1 − qm−1) . . . (1 − qm−r+1), in the
polynomial ring R[q], by applying binomial rules, meaning that they are indeed polynomials (not just
meromorphic or rational functions). We shall prove this by induction:

Lemma A.3.1.
(
m
r

)
q

is a polynomial in q of degree deg
((
m
r

)
q

)
= (m− r)r for r ∈ {0, · · · ,m}.

Proof. Since we have that, for m = 0, (
0
0

)
q

= 1 , (A.3.56)

which is a polynomial in q, and we can therefore proceed to the induction step over m. With the 2nd
Pascal identity for m+ 1, (

m+ 1
r

)
q

=
(
m

r

)
q

+ qm−r+1
(

m

r − 1

)
q

, (A.3.57)

we infer that
(
m+1
r

)
q
is a polynomial in q since, by inductive assumption, we assume

(
m
r

)
q
and qm−r+1( m

r−1
)
q

to be polynomials in q. By then counting the degree in q of the numerator polynomial and subtracting
from it the degree of the denominator polynomial, we get

1
2

(1 + 2m− r)r︸ ︷︷ ︸
numerator

− 1
2
r(1 + r)︸ ︷︷ ︸

denominator

= (m− r)r , (A.3.58)

proving our claim. We will now make use of these properties to get information regarding our Jordan
chains. ■

Additionally, it is for example easy to see that we have(
m

1

)
q

=
m−1∑
j=0

qj , (A.3.59)
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since we have that (1 + q + q2 + · · · + qm−1)(1 − q) = 1 − qm. This Gaussian polynomial’s coefficients
contain the information about the Jordan cells of the case of length L = m+ 1 and two excitations with
different flavours (corresponding to the M = 2,K = 1 that we studied already). The polynomial goes
up to order qm−1, and all the coefficients are identical 1, implying that we have a single Jordan chain of
length L− 1 for each value of the total momentum. The iterative application of the 1st Pascal identity
on
(
m
1
)
q
then implies

Coeff
((

m

r

)
q

; q0

)
= 1 , (A.3.60)

where Coeff(P (q); qn) represents the coefficient associated to qn in the polynomial P (q). Moreover, one
can prove that the highest non-vanishing coefficient is

Coeff
((

m

r

)
q

; q(m−r)r

)
= 1 , (A.3.61)

implying that the longest Jordan chain for the case of length L, M excitations and K = 1 has size
(L−M)(M − 1) + 1. This result perfectly reproduces the values L− 1 and 2L− 5 which we found for
M = 2 and M = 3, respectively.

In the body of the thesis, we proved that our Hamiltonian was nilpotent, but were not able to exactly
state that the degree of nilpotency is. We can now produce the upper bound using this result: As we
know that the largest Jordan block associated to the Hamiltonian for the spin chain of length L with
general M and K = 1 has size (L − M)(M − 1) + 1, this means that we need to exponentiate the
Hamiltonian (L−M)(M − 1) + 1 times for it to vanish. More generally, if we do not know about M , the
largest possible nilpotency order our Hamiltonian associated to a spin chain with length L can possess
is dL+1

2 e.
Furthermore, we can argue in the same way as in the M = 2 case that chain mixing do not spoil

the above result. However, this is more easily shown by setting first ξ1 = ξ2 = 0, as Ĥ†0,0,ξ3
can only

move the 2’s in the state to the left until they find a 3. By definition, we have a total of L−M 1’s and
can apply Ĥ†0,0,ξ3

a total of (M − 1)(L−M) times, which implies that the Jordan chain has indeed size
(L−M)(M − 1) + 1. This proves the conjecture the authors in [AS21] made regarding chain mixing for
the longest Jordan chain.

However, we have still not proven that chain mixing is not affecting the chains apart from the longest
one, and many of our claims rest on the assumption that chain mixing never enters. However, all the
cases we have checked explicitly as well as the before argument leave us hopeful about this conjecture.

Lastly, with a bit of algebra, the following properties can be shown:

• We firstly have that

Coeff
((

m

r

)
q

; q1

)
= 1 , (A.3.62)

Coeff
((

m

r

)
q

; q(m−r)r−1

)
= 1 , (A.3.63)

for general r and m > r, of which we shall sketch the proof of the former. The latter follows from
the palindromic property, that we will prove later on.

Proof. Our inductive proof starts by (re-)stating that, for all m, we have that
(
m
1
)
q

= 1 + q + · · · ,
meaning that already fulfils our claim. By proceeding by induction over r, we now show that if
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(
m
r−1
)
q
fulfils Coeff

((
m
r−1
)
q
; q1
)

= 1 (with r ≥ 2), then
(
m
r

)
q
fulfils Coeff

((
m
r

)
q
; q1
)

= 1 as well.
The 1st Pascal identity gives us that(

m− 1
r − 1

)
q︸ ︷︷ ︸

=1+q+···

=
(
m

r

)
q

− qr
(
m− 1
r

)
q︸ ︷︷ ︸

Polynomial with lowest degree qr≥2

, (A.3.64)

which implies that, since
(
m
r

)
q
is a polynomial, it has to be one with the lowest orders in the

exponents starting as
(
m
r

)
q

= 1 + q + · · · , as the equation would otherwise not hold. □

• In a similar way, one can show

Coeff
((

m

r

)
q

; q2

)
= 2 , (A.3.65)

Coeff
((

m

r

)
q

; q(m−r)r−2

)
= 2 , (A.3.66)

for general r ≥ 2 and m >max(r, 3).

• The above two properties imply that we have a second Jordan cell only if M ≥ 3, and it has size
(L−M)(M −1)−3 while keeping the total momentum fixed, which is in agreement with the value
2L− 9 we found for the M = 3 case.

• One last curiosity that one can prove is

Coeff
((

m

r

)
q

; qs
)

= Coeff
((

m

r

)
q

; q(m−r)r−s

)
, (A.3.67)

meaning that the Gaussian polynomials are palindromic.

Proof. We first recall that
(
m
r

)
q
is indeed a polynomial in q, meaning we have

(
m

r

)
q

=
(m−r)r∑
s=0

C(m,r,s)q
s , (A.3.68)

for some coefficients C(m,r,s). In general, we have that a polynomial p(q) ∈ R[q] is palindromic iff
the two mirrored polynomials,

p(q) = a0 + a1q + · · · + anq
n (A.3.69)

and

qnp

(
1
q

)
= a0q

n + a1q
n−1 + · · · + an , (A.3.70)

coincide. With this convenient statement, we note that one can see that(
m

r

)
q

= 1
q(m−r)r

(1 − qm)(1 − qm−1) . . . (1 − qm−r+1)
(1 − q)(1 − q2) . . . (1 − qr)

= qm(q−m − 1)qm−1(q−(m−1) − 1) . . . qm−r+1(q−(m−r+1))
q(q−1 − 1)q2(q−2 − 1) . . . qr(q−r − 1)

= q
1
2 (1+2m−r)r

q
1
2 r(1+r)

(q−m − 1)(q−(m−1) − 1) . . . (q−(m−r+1))
(q−1 − 1)(q−2 − 1) . . . (q−r − 1)︸ ︷︷ ︸

=(m
r ) 1

q
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= q(m−r)r
(
m

r

)
1
q

, (A.3.71)

which in turn implies the equation (
m

r

)
1
q

= 1
q(m−r)r

(
m

r

)
q

, (A.3.72)

proving our claim, as

C(m,r,s) = C(m,r,(m−r)r−s) . (A.3.73)

□

This implies that the size of all Jordan cells can differ by even numbers only (including 0).
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Data Management

“不怕慢，只怕站。” [“Be not afraid of growing slowly; Be afraid only of standing still.’]
– Chinese proverb

No data beyond those presented and cited in this report are needed to validate this study.

170



171



Bibliography

[AA16] Michael C. Abbott and Inês Aniceto. Massless Lüscher terms and the limitations of the
AdS3 asymptotic Bethe ansatz. Phys. Rev. D, 93(10):106006, 2016.

[AAT05] Luis F. Alday, G. Arutyunov, and Arkady A. Tseytlin. On integrability of classical super-
strings in AdS5 × S5. JHEP, 07:002, 2005.

[ACS22] Changrim Ahn, Luke Corcoran, and Matthias Staudacher. Combinatorial solution of the
eclectic spin chain. JHEP, 03:028, 2022.

[AF09] Gleb Arutyunov and Sergey Frolov. Foundations of the AdS5 × S5 Superstring. Part I. J.
Phys. A, 42:254003, 2009.

[AFPZ07] Gleb Arutyunov, Sergey Frolov, Jan Plefka, and Marija Zamaklar. The Off-shell Symmetry
Algebra of the Light-cone AdS5 × S5 Superstring. J. Phys. A, 40:3583–3606, 2007.

[AFZ07] Gleb Arutyunov, Sergey Frolov, and Marija Zamaklar. The Zamolodchikov-Faddeev algebra
for AdS5 × S5 superstring. JHEP, 04:002, 2007.

[AGH97] Luis Alvarez-Gaumé and S. F. Hassan. Introduction to S-duality in N = 2 supersymmetric
gauge theories: A Pedagogical review of the work of Seiberg and Witten. Fortsch. Phys.,
45:159–236, 1997.

[ARU20] GLEB ARUTYUNOV. ELEMENTS OF CLASSICAL AND QUANTUM INTEGRABLE
SYSTEMS. SPRINGER, S.l., 2020. OCLC: 1191236120.

[AS21] Changrim Ahn and Matthias Staudacher. The Integrable (Hyper)eclectic Spin Chain.
JHEP, 02:019, 2021.

[BAA+11] Niklas Beisert, Changrim Ahn, Luis F. Alday, Zoltán Bajnok, James M. Drummond, Lisa
Freyhult, Nikolay Gromov, Romuald A. Janik, Vladimir Kazakov, Thomas Klose, and
et al. Review of AdS/CFT Integrability: An Overview. Letters in Mathematical Physics,
99(1-3):3–32, Oct 2011.

[BBL08] Till Bargheer, Niklas Beisert, and Florian Loebbert. Boosting Nearest-Neighbour to Long-
Range Integrable Spin Chains. J. Stat. Mech., 0811:L11001, 2008.

[BBT03] Olivier Babelon, Denis Bernard, and Michel Talon. Introduction to Classical Integrable
Systems. Cambridge monographs on mathematical physics. Cambridge University Press,
Cambridge ; New York, 2003.

[BD83] A. A. Belavin and V. G. Drinfeld. Solutions of the classical Yang-Baxter equation for
simple Lie algebras. Funct. Anal. Appl., 16:159–180, 1983.

172



[BD98] A. A. Belavin and V. G. Drinfeld. Triangle equations and simple Lie algebras. Classic
reviews in mathematics and mathematical physics ; v. 1. Harwood Academic, Amsterdam,
the Netherlands, 1998.

[BdLH16] Niklas Beisert, Marius de Leeuw, and Reimar Hecht. Maximally extended sl(2|2) as a
quantum double. J. Phys. A, 49(43):434005, 2016.

[BDS04] N. Beisert, V. Dippel, and M. Staudacher. A Novel long range spin chain and planar N=4
super Yang-Mills. JHEP, 07:075, 2004.

[Bei04] Niklas Beisert. The complete one loop dilatation operator of N=4 superYang-Mills theory.
Nucl. Phys. B, 676:3–42, 2004.

[Bei15] Niklas Beisert. Symmetries in Physics, September 2015.

[Bei16] Niklas Beisert. Introduction to Integrability, September 2016.

[Bet31] H. Bethe. Zur theorie der metalle. Zeitschrift für Physik, 71(3):205–226, 1931.

[BFGLR10] J.C. Barba, F. Finkel, A. González-López, and M.A. Rodríguez. Inozemtsev’s hyperbolic
spin model and its related spin chain. Nuclear Physics B, 839(3):499–525, 2010.

[BHH17] Niklas Beisert, Reimar Hecht, and Ben Hoare. Maximally extended sl(2|2) , q-deformed
d(2, 1; ϵ) and 3D kappa-Poincaré. J. Phys. A, 50(31):314003, 2017.

[BKS03] N. Beisert, C. Kristjansen, and M. Staudacher. The Dilatation operator of conformal N=4
superYang-Mills theory. Nucl. Phys. B, 664:131–184, 2003.

[BLE83] Lars Brink, Olof Lindgren, and Bengt E.W. Nilsson. The ultra-violet finiteness of the
N = 4 Yang-Mills theory. Physics Letters B, 123(5):323–328, 1983.

[Blo29] Felix Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für
Physik, 52(7):555–600, 1929.

[BMN02] David Eliecer Berenstein, Juan Martin Maldacena, and Horatiu Stefan Nastase. Strings in
flat space and pp waves from N=4 superYang-Mills. JHEP, 04:013, 2002.

[BMSS20] Marco Bocconcello, Isari Masuda, Fiona K. Seibold, and Alessandro Sfondrini. S matrix
for a three-parameter integrable deformation of AdS3 × S3 strings, 2020.

[BOSS+13a] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, Bogdan Stefański, and Alessan-
dro Torrielli. The all-loop integrable spin-chain for strings on AdS3 ×S3 ×T 4: the massive
sector. JHEP, 08:043, 2013.

[BOSS+13b] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, Bogdan Stefanski, Jr., and
Alessandro Torrielli. Dressing phases of AdS3/CFT2. Phys. Rev. D, 88:066004, 2013.

[BOSS+17] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, Bogdan Stefański, Alessandro
Torrielli, and Olof Ohlsson Sax. On the dressing factors, Bethe equations and Yangian
symmetry of strings on AdS3× S3× T4. J. Phys. A, 50(2):024004, 2017.

[BOSSS14a] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, and Bogdan Stefanski. The
complete AdS3× S3× T4 worldsheet S matrix. JHEP, 10:066, 2014.

173



[BOSSS14b] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, and Bogdan Stefanski. Towards
the All-Loop Worldsheet S Matrix for AdS3 × S3 × T 4. Phys. Rev. Lett., 113(13):131601,
2014.

[BPR04] Iosif Bena, Joseph Polchinski, and Radu Roiban. Hidden symmetries of theAdS5 × S5

superstring. Physical Review D, 69(4), Feb 2004.

[BS05] Niklas Beisert and Matthias Staudacher. Long-range psu(2,2|4) Bethe Ansatze for gauge
theory and strings. Nucl. Phys. B, 727:1–62, 2005.

[BST18] Riccardo Borsato, Joakim Strömwall, and Alessandro Torrielli. q-Poincaré invariance of
the AdS3/CFT2 R-matrix. Phys. Rev. D, 97(6):066001, 2018.

[BSZ10] A. Babichenko, B. Stefański, and K. Zarembo. Integrability and the AdS3/CFT2 corre-
spondence. Journal of High Energy Physics, 2010(3), Mar 2010.

[BT18] Riccardo Borsato and Alessandro Torrielli. q -Poincaré supersymmetry in AdS5 / CFT4.
Nucl. Phys. B, 928:321–355, 2018.

[CBPV19] Stefaan Caenepeel, Daniel Bulacu, Florin Panaite, and Freddy Van Oystaeyen. Quasi-Hopf
Algebras: A Categorical Approach. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2019.

[Cig81] Johann Cigler. Elementary -identities. (elementare -identitäten.). Séminaire Lotharingien
de Combinatoire [electronic only], 5:B05a, 29 p.–B05a, 29 p., 1981.

[CM67] Sidney Coleman and Jeffrey Mandula. All Possible Symmetries of the S Matrix. Phys.
Rev., 159:1251–1256, Jul 1967.

[CT98] P. M. Cowdall and P. K. Townsend. Gauged supergravity vacua from intersecting branes.
Phys. Lett. B, 429:281–288, 1998. [Erratum: Phys.Lett.B 434, 458–458 (1998)].

[CZ12] A. Cagnazzo and K. Zarembo. B-field in AdS(3)/CFT(2) Correspondence and Integrability.
JHEP, 11:133, 2012. [Erratum: JHEP 04, 003 (2013)].

[DF02] Eric D’Hoker and Daniel Z. Freedman. Supersymmetric Gauge Theories and the AdS/CFT
Correspondence, 2002.

[dG05] W. A. de Graaf. Classification of Solvable Lie Algebras. Experiment. Math., 14(1):15–25,
2005.

[DHK+19] F. Delduc, B. Hoare, T. Kameyama, S. Lacroix, and M. Magro. Three-parameter integrable
deformation of Z4 permutation supercosets. JHEP, 01:109, 2019.

[dL07] M. de Leeuw. Coordinate Bethe Ansatz for the String S-Matrix. J. Phys. A, 40:14413–
14432, 2007.

[dLPP+20] Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, and Paul Ryan.
Classifying Nearest-Neighbor Interactions and Deformations of AdS. Phys. Rev. Lett.,
125(3):031604, 2020.

[dLPP+21] Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore, and Paul Ryan. Yang-
Baxter and the Boost: splitting the difference. SciPost Phys., 11:069, 2021.

174



[DLPR19] Marius De Leeuw, Anton Pribytok, and Paul Ryan. Classifying two-dimensional integrable
spin chains. J. Phys. A, 52(50):505201, 2019.

[DLPRR20] Marius De Leeuw, Anton Pribytok, Ana L. Retore, and Paul Ryan. New integrable 1D
models of superconductivity. J. Phys. A, 53(38):385201, 2020.

[DMV13] Francois Delduc, Marc Magro, and Benoit Vicedo. On classical q-deformations of integrable
sigma-models. JHEP, 11:192, 2013.

[DMV14] Francois Delduc, Marc Magro, and Benoit Vicedo. An integrable deformation of the AdS5×
S5 superstring action. Phys. Rev. Lett., 112(5):051601, 2014.

[DO03] F. A. Dolan and H. Osborn. On short and semi-short representations for four-dimensional
superconformal symmetry. Annals Phys., 307:41–89, 2003.

[Dor96] P. Dorey. Exact S matrices. In Eotvos Summer School in Physics: Conformal Field Theories
and Integrable Models, pages 85–125, 8 1996.

[Dri98] V. G. Drinfeld. Quasi-Hopf algebras. Algebra i Analiz 1, 6(06), 1898.

[Dri86] V. G. Drinfeld. Quantum groups. Zap. Nauchn. Semin., 155:18–49, 1986.

[DV00] Paolo Di Vecchia. An Introduction to AdS/CFT Correspondence. Fortschritte der Physik,
48(1-3):87–92, Jan 2000.

[DZ19] Hector Dlamini and Konstantinos Zoubos. Marginal deformations and quasi-Hopf algebras.
J. Phys. A, 52(37):375402, 2019.

[Ebe18] Lorenz Eberhardt. Supersymmetric AdS3 supergravity backgrounds and holography. Jour-
nal of High Energy Physics, 2018(2), Feb 2018.

[Ebe21] Lorenz Eberhardt. Superconformal symmetry and representations. J. Phys. A,
54(6):063002, 2021.

[Fad96] L. D. Faddeev. How algebraic Bethe ansatz works for integrable model. In Les Houches
School of Physics: Astrophysical Sources of Gravitational Radiation, pages pp. 149–219, 5
1996.

[Fec11] Marián Fecko. Differential geometry and Lie-groups for physicists. Cambridge University
Press, Cambridge, 2011. OCLC: 804171481.

[FH04] William Fulton and Joe Harris. Representation Theory: A First Course. Springer New
York, NY, 2004. OCLC: 1165460719.

[Fis13] Gerd Fischer. Lineare Algebra. Grundkurs Mathematik. Springer Fachmedien, Wiesbaden,
Germany, 18 edition, December 2013.

[FS22a] Sergey Frolov and Alessandro Sfondrini. Massless S matrices for AdS3/CFT2. JHEP,
04:067, 2022.

[FS22b] Sergey Frolov and Alessandro Sfondrini. Mirror thermodynamic Bethe ansatz for
AdS3/CFT2. JHEP, 03:138, 2022.

175



[FS22c] Sergey Frolov and Alessandro Sfondrini. New dressing factors for AdS3/CFT2. JHEP,
04:162, 2022.

[FSS96] L. Frappat, P. Sorba, and A. Sciarrino. Dictionary on Lie superalgebras. arXiv e-prints, 7
1996.

[FSW14] Jan Fokken, Christoph Sieg, and Matthias Wilhelm. The complete one-loop dilatation
operator of planar real β-deformed N = 4 SYM theory. JHEP, 07:150, 2014.

[FZ00] Sergio Ferrara and Alberto Zaffaroni. Superconformal field theories, multiplet shortening,
and the AdS(5) / SCFT(4) correspondence. In Conference Moshe Flato, pages 177–188,
2000.

[GH07] César Gómez and Rafael Hernández. Quantum deformed magnon kinematics. Journal of
High Energy Physics, 2007(03):108–108, Mar 2007.

[GK16] Ömer Gürdoğan and Vladimir Kazakov. New Integrable 4D Quantum Field Theories from
Strongly Deformed Planar N = 4 Supersymmetric Yang-Mills Theory. Phys. Rev. Lett.,
117(20):201602, 2016. [Addendum: Phys.Rev.Lett. 117, 259903 (2016)].

[GKP02] S.S Gubser, I.R Klebanov, and A.M Polyakov. A semi-classical limit of the gauge/string
correspondence. Nuclear Physics B, 636(1-2):99–114, Aug 2002.

[GN16] Azat M. Gainutdinov and Rafael I. Nepomechie. Algebraic Bethe ansatz for the quantum
group invariant open XXZ chain at roots of unity. Nucl. Phys. B, 909:796–839, 2016.

[GRcvS80] Marc Grisaru, Martin Roček, and Warren Siegel. Zero value for the three-loop β function
in n = 4 supersymmetric yang-mills theory. Phys. Rev. Lett., 45:1063–1066, Sep 1980.

[GSW12a] M. Green, John H. Schwarz, and E. Witten. Superstring theory (Vol 1). Cambridge Univer-
sity Press, Cambridge ; New York, 25th anniversary ed edition, 2012. OCLC: ocn808801605.

[GSW12b] M. Green, John H. Schwarz, and E. Witten. Superstring theory (Vol 2). Cambridge Univer-
sity Press, Cambridge ; New York, 25th anniversary ed edition, 2012. OCLC: ocn808801605.

[GTW20] Juan Miguel Nieto García, Alessandro Torrielli, and Leander Wyss. Boosts superalgebras
based on centrally-extended su(1|1)2, 2020.

[GW73] David J. Gross and Frank Wilczek. Asymptotically free gauge theories. i. Phys. Rev. D,
8:3633–3652, Nov 1973.

[GW21] Juan Miguel Nieto García and Leander Wyss. Three-parameter deformation of R × S3 in
the Landau-Lifshitz limit. JHEP, 07:028, 2021.

[Hal02] Gilles Halbout, editor. Deformation quantization: proceedings of the meeting of theoretical
physicists and mathematicians, Strasbourg, May 31-June 2, 2001. Number 1 in IRMA
lectures in mathematics and theoretical physics. De Gruyter, Berlin ; New York, 2002.

[Hec18] Reimar Hecht. Maximally extended sl(2|2). PhD thesis, Zurich, ETH, 2018.

[Hoa15] Ben Hoare. Towards a two-parameter q-deformation of AdS3 ×S3 ×M4 superstrings. Nucl.
Phys. B, 891:259–295, 2015.

176



[Hoo74] G.’t Hooft. A planar diagram theory for strong interactions. Nuclear Physics B, 72(3):461–
473, 1974.

[HS19] Ben Hoare and Fiona K. Seibold. Supergravity backgrounds of the η-deformed AdS2 ×S2 ×
T 6 and AdS5 × S5 superstrings. JHEP, 01:125, 2019.

[Hum72] James E. Humphreys. Introduction to Lie algebras and representation theory. Number 9
in Graduate texts in mathematics. Springer-Verlag, New York, 1972.

[ISZ19] Asger C. Ipsen, Matthias Staudacher, and Leonard Zippelius. The one-loop spectral prob-
lem of strongly twisted N = 4 Super Yang-Mills theory. JHEP, 04:044, 2019.

[Jän03] Klaus Jänich. Lineare Algebra. Springer-Lehrbuch. Springer, Berlin, Germany, 10 edition,
September 2003.

[Jim85] Michio Jimbo. Aq-difference analogue of u(g) and the yang-baxter equation. Letters in
Mathematical Physics, 10:63–69, 1985.

[Kac77] V.G Kac. Lie superalgebras. Advances in Mathematics, 26(1):8 – 96, 1977.

[Kac78] V. Kac. Representations of classical lie superalgebras. In Konrad Bleuler, Axel Reetz, and
Herbert Rainer Petry, editors, Differential Geometrical Methods in Mathematical Physics
II, pages 597–626, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[Kas95] Christian Kassel. Quantum groups. Number 155 in Graduate texts in mathematics.
Springer-Science [u.a.], New York, NY, softcover reprint of the hardcover 1st ed. 1995
edition, 1995. OCLC: 246648976.

[KL22] Rob Klabbers and Jules Lamers. How Coordinate Bethe Ansatz Works for Inozemtsev
Model. Commun. Math. Phys., 390(2):827–905, 2022.

[Kli02] Ctirad Klimcik. Yang-Baxter sigma models and dS/AdS T duality. JHEP, 12:051, 2002.

[KMY14a] Io Kawaguchi, Takuya Matsumoto, and Kentaroh Yoshida. A Jordanian deformation of
AdS space in type IIB supergravity. JHEP, 06:146, 2014.

[KMY14b] Io Kawaguchi, Takuya Matsumoto, and Kentaroh Yoshida. Jordanian deformations of the
AdS5 × S5 superstring. JHEP, 04:153, 2014.

[Kro22] M. J. Kronenburg. The q-Binomial Coefficient for Negative Arguments and Some q-
Binomial Summation Identities. arXiv e-prints, page arXiv:2211.08256, November 2022.

[KRT04] M. Kruczenski, A. V. Ryzhov, and Arkady A. Tseytlin. Large spin limit of AdS(5) x
S5 string theory and low-energy expansion of ferromagnetic spin chains. Nucl. Phys. B,
692:3–49, 2004.

[KT94] Sergei Khoroshkin and Valeriy N. Tolstoy. Yangian Double and Rational R-matrix. arXiv
e-prints, pages hep–th/9406194, June 1994.

[Kup99] Boris A. Kupershmidt. What a Classical r-Matrix Really Is. Journal of Nonlinear Mathe-
matical Physics, 6(4):448–488, Jan 1999.

[KY11] Io Kawaguchi and Kentaroh Yoshida. Classical integrability of schrödinger sigma models
and q-deformed poincarésymmetry. Journal of High Energy Physics, 2011(11):94, 2011.

177



[KY14] Takashi Kameyama and Kentaroh Yoshida. Anisotropic Landau-Lifshitz sigma models
from q-deformed AdS5× S5 superstrings. JHEP, 08:110, 2014.

[KZ06] T. Klose and K. Zarembo. Bethe ansatz in stringy sigma models. J. Stat. Mech.,
0605:P05006, 2006.

[Lam15] Jules Lamers. Introduction to quantum integrability. Proceedings of 10th Modave Summer
School in Mathematical Physics —PoS(Modave2014), Feb 2015.

[LM16] Fedor Levkovich-Maslyuk. The Bethe ansatz. J. Phys. A, 49(32):323004, 2016.

[LOSSS15] Thomas Lloyd, Olof Ohlsson Sax, Alessandro Sfondrini, and Bogdan Stefański, Jr. The
complete worldsheet S matrix of superstrings on AdS3× S3× T4 with mixed three-form
flux. Nucl. Phys. B, 891:570–612, 2015.

[LRNT91] Jerzy Lukierski, Henri Ruegg, Anatol Nowicki, and Valerij N. Tolstoy. q-deformation of
poincaré algebra. Physics Letters B, 264(3):331–338, 1991.

[Maj03] Shahn Majid. A quantum groups primer. Cambridge University Press, Cambridge, 2003.
OCLC: 808346850.

[Mal98] Juan Martin Maldacena. The Large N limit of superconformal field theories and super-
gravity. Adv. Theor. Math. Phys., 2:231–252, 1998.

[Man83] Stanley Mandelstam. Light-cone superspace and the ultraviolet finiteness of the n=4 model.
Nuclear Physics B, 213(1):149–168, 1983.

[Min06] Joseph A Minahan. A brief introduction to the bethe ansatz in super-yang–mills. Journal
of Physics A: Mathematical and General, 39(41):12657, sep 2006.

[Min12] Joseph A. Minahan. Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N=4
Super Yang-Mills. Lett. Math. Phys., 99:33–58, 2012.

[MK08] Gerhard Michler and H.-J. Kowalsky. Lineare Algebra. De Gruyter, Berlin, New York,
2008.

[MM74] Lawrence Markus and Kenneth Ray Meyer. Generic Hamiltonian Dynamical Systems are
Neither Integrable nor Ergodic. American Mathematical, 1974.

[Mor69] L J Mordell. Diophantine Equations. Pure and Applied Mathematics (Amsterdam). Aca-
demic Press, San Diego, CA, July 1969.

[MPRW08] A. Melikyan, A. Pinzul, V. O. Rivelles, and G. Weber. On S-Matrix factorization of the
Landau-Lifshitz model. JHEP, 10:002, 2008.

[MS92] Gerhard Mack and Volker Schomerus. Quasi hopf quantum symmetry in quantum theory.
Nuclear Physics B, 370(1):185–230, 1992.

[MSW02] Gautam Mandal, Nemani V. Suryanarayana, and Spenta R. Wadia. Aspects of semiclassical
strings in AdS(5). Phys. Lett. B, 543:81–88, 2002.

[MT98] R.R. Metsaev and A.A. Tseytlin. Type IIB superstring action in AdS5 × S5 background.
Nuclear Physics B, 533(1-3):109–126, Nov 1998.

178



[MTT05] J. A. Minahan, A. Tirziu, and Arkady A. Tseytlin. 1/J**2 corrections to BMN energies
from the quantum long range Landau-Lifshitz model. JHEP, 11:031, 2005.

[MZ03] Joseph A Minahan and Konstantin Zarembo. The Bethe-ansatz for Script N = 4 super
Yang-Mills. Journal of High Energy Physics, 2003(03):013–013, Mar 2003.

[Nas07] Horatiu Nastase. Introduction to AdS/CFT, 2007.

[NG22] Juan Miguel Nieto García. Jordan blocks and the Bethe Ansatz II: The eclectic spin chain
beyond K = 1. JHEP, 12:106, 2022.

[NGTW20] Juan Miguel Nieto García, Alessandro Torrielli, and Leander Wyss. Boost generator in
AdS3 integrable superstrings for general braiding. JHEP, 07:223, 2020.

[NGW22] Juan Miguel Nieto García and Leander Wyss. Jordan blocks and the Bethe Ansatz I: The
eclectic spin chain as a limit. Nucl. Phys. B, 981:115860, 2022.

[OSST13] Olof Ohlsson Sax, Bogdan Stefanski, jr., and Alessandro Torrielli. On the massless modes
of the AdS3/CFT2 integrable systems. JHEP, 03:109, 2013.

[Pit16] Antonio Pittelli. Dualities and Integrability in Low Dimensional AdS/CFT. PhD thesis,
Surrey U., Math. Stat. Dept., 11 2016.

[Pol05a] Joseph Gerard Polchinski. String theory: an introduction to the bosonic string (Vol 1).
Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge;
New York, pbk. ed edition, 2005.

[Pol05b] Joseph Gerard Polchinski. String theory: an introduction to the bosonic string (Vol 2).
Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge;
New York, pbk. ed edition, 2005.

[PTV13] E. Pinto, M. A. S. Trinidade, and J. D. M. Vianna. Quasitriangular Hopf Algebras, Braid
Groups and Quantum Entanglement. International Journal of Quantum Information,
11(07):1350065, Oct 2013.

[Reg16] Vidas Regelskis. Yangian of AdS3/CFT2 and its deformation. Journal of Geometry and
Physics, 106:213–233, Aug 2016.

[Res83] N. Yu. Reshetikhin. A Method Of Functional Equations In The Theory Of Exactly Solvable
Quantum Systems. Lett. Math. Phys., 7:205–213, 1983.

[Res85] N. Yu. Reshetikhin. Integrable Models of Quantum One-dimensional Magnets With O(N)
and Sp(2k) Symmetry. Theor. Math. Phys., 63:555–569, 1985.

[RTT06] R. Roiban, A. Tirziu, and Arkady A. Tseytlin. Asymptotic Bethe ansatz S-matrix and
Landau-Lifshitz type effective 2-d actions. J. Phys. A, 39:13129–13169, 2006.

[Sch07] Franz Schwabl. Quantum Mechanics. Springer-Verlag, Berlin, Heidelberg, 2007. OCLC:
845181628.

[Sch14] Matthew Dean Schwartz. Quantum field theory and the standard model. Cambridge Uni-
versity Press, New York, 2014.

179



[Sei19] Fiona K. Seibold. Two-parameter integrable deformations of the AdS3×S3×T 4 superstring.
JHEP, 10:049, 2019.

[Ser17] Vera Serganova. Representations of Lie Superalgebras, pages 125–177. Springer Interna-
tional Publishing, Cham, 2017.

[Sfo15] Alessandro Sfondrini. Towards integrability for AdS3/CFT2. J. Phys. A, 48(2):023001,
2015.

[SJS06] Sriram B Shastry, Sudhanshu S Jha, and Virendra Singh, editors. Exactly solvable problems
in condensed matter and relativistic field theory. Lecture Notes in Physics. Springer, Berlin,
Germany, 1985 edition, January 2006.

[Sma98] Nigel P Smart. Integral points on elliptic curves. In The Algorithmic Resolution of Dio-
phantine Equations, pages 197–212. Cambridge University Press, Cambridge, November
1998.

[Spi07] Fabian Spill. Hopf Algebras in the AdS/CFT Correspondence (Diplomarbeit), February
2007.

[ST04] B. Stefanski, Jr. and Arkady A. Tseytlin. Large spin limits of AdS/CFT and generalized
Landau-Lifshitz equations. JHEP, 05:042, 2004.

[ST16] Joakim Stromwall and Alessandro Torrielli. AdS3/CFT2 and q-Poincaré superalgebras. J.
Phys. A, 49(43):435402, 2016.

[Sta05] Matthias Staudacher. The Factorized S-matrix of CFT/AdS. JHEP, 05:054, 2005.

[SU69] M.E. Sweedler and Cornell University. Hopf Algebras. Mathematics lecture note series. W.
A. Benjamin, 1969.

[SW83] Kiyoshi Sogo and Miki Wadati. Boost Operator and Its Application to Quantum Gelfand-
Levitan Equation for Heisenberg-Ising Chain with Spin One-Half. Progress of Theoretical
Physics, 69(2):431–450, 02 1983.

[SW12] Per Sundin and Linus Wulff. Classical integrability and quantum aspects of the AdS(3) x
S(3) x S(3) x S(1) superstring. JHEP, 10:109, 2012.

[Sz�13] László Székely. DISCRETE MATHEMATICS II - q-combinatorics, May 2013.

[Ton09] David Tong. Lectures on string theory, 2009.

[Tor11] Alessandro Torrielli. The hopf superalgebra of ads/cft. Journal of Geometry and Physics,
61(1):230–236, 2011.

[Tor16] Alessandro Torrielli. Lectures on classical integrability, 2016.

[Tur90] P. Turkowski. Solvable Lie algebras of dimension six. Journal of Mathematical Physics,
31:1344–1350, 1990.

[Val14] Saulius Valatka. Exact Results in Supersymmetric Gauge Theories. PhD thesis, King’s
College London, 11 2014.

[VE06] Charles Vanden Eynden. Elementary number theory. Waveland PressInc, 2006.

180



[vLW01] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press,
2 edition, 2001.

[Wit98] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291,
1998.

[Yan14] Yisong Yang. A concise text on advanced linear algebra. Cambridge University Press,
Cambridge, England, December 2014.

[You07] C. A. S. Young. q-deformed supersymmetry and dynamic magnon representations. J. Phys.
A, 40:9165–9176, 2007.

[YT04] Lam Lay (兰丽蓉) Yong and Ang (洪天赐) Tian. Fleeting footsteps: Tracing the conception
of arithmetic and algebra in ancient China (revised edition). World Scientific Publishing,
Singapore, Singapore, April 2004.

[Zaf00] A. Zaffaroni. Introduction to the AdS/CFT correspondence. Class. Quant. Grav., 17:3571–
3597, 2000.

[Zwi09] Barton Zwiebach. A first course in string theory. Cambridge University Press, Cambridge;
New York, 2nd ed edition, 2009.

“Physics isn’t the most important thing. Love is.”
– Richard Feynman

181



182



Curriculum Vitae

Name Leander Wyss

Date of birth 11.10.1994

Education

2017-2019 Master of Science in Physics ETH, ETH Zürich, Switzerland
Focus on Theoretical/Mathematical Physics, graduated with 5.54/6 GPA
(First Class Equivalent).

2017-2019 Bachelor of Science in Physics, University of Basel, Switzerland
Focus on Theoretical/Mathematical Physics, graduated with 5.7/6 GPA
(First Class Equivalent).

Academic Work
Experience

2017-2019 Teaching Assistant at the Department of Mathematics at ETH Zürich,
Switzerland
Assisting in the Lectures “Linear Algebra 1 and 2”.

2017 Teaching Assistant at the Department of Mathematics at the University of
Basel, Switzerland
Assisting in the Lecture “Analysis 2”.

Conferences
(selection)

2022 Invited Speaker at the “Cordas Club” Seminar Series Hosted by the IGFAE
in Santiago de Compostela, Spain
Talk Given on “Jordan Vectors and the Eclectic Spin Chain”.

2021 Invited Speaker at the “Integrability, Dualities and Deformations” Confer-
ence in Santiago de Compostela, Spain
Talk Given on “Boost superalgebras in undeformed and deformed
AdS3/CFT2”.

2021 Invited Speaker at the “South East Mathematical Physics Seminars” Hosted
by the University of Kent, UK
Talk Given on “Boost superalgebras in AdS3/CFT2”.

183



184


	1 String Theory and the AdS/CFT Correspondence
	1.1 Motivation and Historical Context
	1.2 String Theory and the Polyakov Action
	1.3 The AdS/CFT correspondences
	1.3.1 The AdS5 / CFT4 Case
	1.3.2 The AdS3 / CFT2 Case

	1.4 Outline of the Thesis

	2 Algebraic Footing
	2.1 Linear Algebra
	2.2 Lie Algebras
	2.3 Algebras, Coalgebras and Bialgebras
	2.4 Hopf Algebras

	3 Integrability
	3.1 Classical Integrability
	3.2 Quantum Integrability
	3.3 Spin Chains and Bethe Ansätze
	3.3.1 The Heisenberg Spin Chain
	3.3.2 The Coordinate Bethe Ansatz

	3.4 Why Integrability?
	3.4.1 Spin Chains and Conformal Field theories
	3.4.2 String Theory


	4 The q-Poincaré Algebra
	4.1 The Algebra and its Satellites
	4.1.1 The Algebra
	4.1.2 Outer Automorphism Symmetry

	4.2 The 2-Dimensional Short Representation
	4.2.1 The Representation
	4.2.2 Different Hopf Algebra Structures
	4.2.3 A Non-Coassociative Curiosity

	4.3 The Generalised Boost Superalgebra
	4.4 The Coproduct Map for the Boost Operator for the B1,d Algebras
	4.4.1 The Braided Energy Coproduct Case
	4.4.2 The Unbraided Energy Coproduct Case


	5 Deformed AdS3 in the Landau-Lifshitz Limit
	5.1 The Setting
	5.2 The three-deformed R S3 action in the Landau-Lifshitz Limit
	5.2.1 Leading Order in 
	5.2.2 Next-to-leading Order in 

	5.3 Canonical Quantisation of the Field Theory and S-matrix
	5.3.1 Canonical Quantisation and Dispersion Relation
	5.3.2 The 2-body S-matrix


	6 Jordan Blocks and the Eclectic Spin Chain
	6.1 The Eclectic Spin Chain
	6.2 Exceptional Points and Jordan Blocks
	6.2.1 A Twisted Warm Up: The L=3, M=2, K=1 Case
	6.2.2 Distinguishable Jordan Blocks
	6.2.3 Indistinguishable Jordan Blocks

	6.3 Coordinate Bethe Ansatz for Twisted Spin Chains
	6.3.1 Generalised Bethe System for M=2


	7 Conclusions and Outlook
	7.1 The q-Poincaré Algebra
	7.2 Deformed AdS3 in the Landau-Lifshitz Limit
	7.3 Jordan Blocks and the Hypereclectic Spin Chain

	A Appendix
	A.1 Further Details on the proof of Lemma 2.1.3 for non-singular geometric multiplicity
	A.2 The q-Poincaré Algebra
	A.2.1 The Coassociator Relations

	A.3 Spin Chains and Jordan Blocks
	A.3.1 The Distinguishable Case And A Caveat Regarding Limits
	A.3.2 The Indistinguishable Case
	A.3.3 Generalised Eigensystem for M=3
	A.3.4 Generalised Eigensystem for General M and an Interlude on Gauss Polynomials



