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Abstract

We investigate certain Z3-graded associative algebras with cubic Z3 invariant
constitutive relations, introduced by one of us some time ago. The invariant forms
on finite algebras of this type are given in the cases with two and three genera-
tors. We show how the Lorentz symmetry represented by the SL(2, C) group can
be introduced without any notion of metric, just as the symmetry of Z3-graded
cubic algebra with two generators, and its constitutive relations. Its representa-
tion is found in terms of the Pauli matrices. The relationship of such algebraic
constructions with quark states is also considered.

1 Introduction

The great divide between the discrete and the continuum phenomena is one of the
most profound dichotomies present since time immemorial not only in mathematics and
physics, but also in our global perception of reality. The controversy between Newton
and Hyugens concerning the nature of light, or that between the partisans of atomistic
theory and those who defended the notion of continuous fluids, between classical thermo-
dynamics and statistical mechanics are the most memorable examples of this everlasting
discussions. And of course, the discovery of quanta and quantum physics created new
logical traps and difficulties in physics, especially when we try to deduce the laws of
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quantum physics from its classical limit. Apparently, the opposite point of view, suppos-
ing that classical physics of continua is in fact an illusion created by our senses, seems to
be more adequate,

The Lorentz and Poincaré groups were established as symmetries of the observable
macroscopic world. More precisely, they were conceived in order to take into account
the relations between electric and magnetic fields as seen by different Galilean observers.
Only later on Einstein extended the Lorentz transformations to space and time coordi-
nates, giving them a universal meaning. As a result, the Lorentz symmetry became per-
ceived as group of invariance of Minkowskian space-time metric. Extending the Lorentz
transformations to space and time coordinates modified also Newtonian mechanics so
that it could become invariant under the Lorentz instead of the Galilei group.

In the textbooks introducing the Lorentz and Poincaré groups the accent is put on
the transformation properties of space and time coordinates, and the invariance of the
Minkowskian metric tensor gµν = diag(+,−,−,−).

But neither the components of gµν , nor the space-time coordinates of an observed
event can be given an intrinsic physical meaning; they are not related to any conserved
or directly observable quantities. The attempts in order to define a position operator in
quantum mechanics have never led to a consistent and unequivocal result ([2], [1]) Under
a closer scrutiny, it turns out that only TIME - the proper time of the observer - can be
measured directly. The macroscopic notion of space variables results from the convenient
description of experiments and observations concerning the propagation of photons, and
the existence of the universal constant c.

Consequently, with high enough precision one can infer that the Doppler effect is rela-
tivistic, i.e. the frequency ω and the wave vector k form an entity that is seen differently
by different inertial observers, and passing from ω

c
,k to ω′

c
,k′ is the Lorentz transforma-

tion. Another measurable effect leading to the group rules of Lorentz transformations is
the aberration of light from stars, (noticed first by Bradley in 1729)

Both effects, proving the relativistic formulae

ω′ =
ω − V k√
1− V 2

c2

, k′ =
k − V

c2
ω√

1− V 2

c2

,

have been checked experimentally by Ives and Stilwell in 1937, although to a limited
precision.

Reliable experimental confirmations of the validity of Lorentz transformations concern
measurable quantities such as charges, currents, energies (frequencies) and momenta
(wave vectors much more than the less intrinsic quantities which are the differentials
of the space-time variables. In principle, the Lorentz transformations could have been
established by very precise observations of the Doppler effect alone. It should be stressed
that had we only the light at our disposal, i.e. massless photons propagating with the
same velocity c, we would infer that the general symmetry of physical phenomena is the
Conformal Group, and not the Lorentz-Poincaré group.
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To the observations of light must be added the the principle of inertia, i.e. the
existence of massive bodies moving with velocities lower than c, and supposed constant
if not sollicited by external influence.

But to observe a photon, we must capture it with an appropriate device, which may
be the retina of our own eye, or any photosensitive device. Upon a closer scrutiny, the
observation of a photon is possible only when it interacts with an electron (or another
lepton or a quark). Moreover, all photons we observe were emitted by electrons (or leptons
or quarks), or bounced from them via Compton scattering. Therefore, it is reasonable
to admit that if photons transform according to the vector representation of the Lorentz
group, this symmetry property is generated by the symmetry underlying photon-fermion
interaction, thus the fundamental symmetry of fermionic states.

At this point it becomes natural to rewrite the combined transformation that acts on
fermionic states via an SL(2,C) matrix and on the electric current four-vector via the
corresponding 4× 4 Lorentz matrix

| ψ >→ S | ψ >=| ψ′ >, jµ =< ψ | γµ | ψ >→ jµ
′
= Λµ′

ν (S) j
ν . (1)

Our aim is to derive the symmetries of the space-time, i.e. the Lorentz transforma-
tions, from the discrete symmetries of the interactions between the most fundamental
constituents of matter, in particular quarks and leptons,

We show how the discrete symmetries Z2 and Z3 combined with the superposition
principle result in the SL(2,C)-symmetry. The role of Pauli’s exclusion principle in the
derivation of the SL(2,C) symmetry is put forward as the source of the macroscopically
observed Lorentz symmetry.

2 The quantum origin of the SL(2,C) symmetry

The Pauli exclusion principle ([3]), according to which two electrons cannot be in the
same state characterized by identical quantum numbers, is one of the most important
cornerstones of quantum physics. This principle not only explains the structure of atoms
and therefore the entire content of the periodic table of elements, but it also guarantees
the stability of matter preventing its collapse, as suggested by Ehrenfest ([4]), and proved
later by Dyson ([5], [6]). The relationship between the exclusion principle and particle’s
spin, known under the name of the “spin-and-statistic theorem”, represents one of the
deepest results in quantum field theory.

In purely algebraical terms Pauli’s exclusion principle amounts to the anti-symmetry
of wave functions describing two coexisting particle states. The easiest way to see how
the principle works is to apply Dirac’s formalism in which wave functions of particles in
given state are obtained as products between the “bra” and “ket” vectors.

Consider the probability amplitude to find a particle in the state | 1 >,

Φ(1) =< ψ | 1 > . (2)
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The wave function of a two-particle state of which one is in the state | 1 > and
another in the state | 2 > (all other observables supposed to be the same for both states)
is represented by a superposition

| ψ >= Φ(1, 2) (| 1 > ⊗ | 2 >). (3)

It is clear that if the wave function Φ(1, 2) is anti-symmetric, i.e. if it satisfies

Φ(1, 2) = −Φ(2, 1), (4)

then Φ(1, 1) = 0 and such states have vanishing both their wave function and probability.
It is easy to prove using the superposition principle, that this condition is not only
sufficient, but also necessary.

Let us suppose that Φ(i, k) (i, k = 1, 2) does vanish when i = k. This remains valid
in any basis provided the new basis | 1′ >, | 2′ > was obtained from the former one via
a unitary transformation. Let us form an arbitrary state being a linear combination of
| 1 > and | 2 >,

| z >= α | 1 > +β | 2 >, α, β ∈ C,

and let us form the wave function of a tensor product of such a state with itself:

Φ(z, z) =< ψ | (α | 1 > +β | 2 >)⊗ (α | 1 > +β | 2 >), (5)

which develops as follows:

α2 < ψ | (1, 1) > +αβ < ψ | (1, 2) > +βα < ψ | (2, 1) > +β2 < ψ | (2, 2) >=

= Φ(z, z) = α2 Φ(1, 1) + αβ Φ(1, 2) + βαΦ(2, 1) + β2 Φ(2, 2). (6)

Now, as Φ(1, 1) = 0 and Φ(2, 2) = 0, the sum of remaining two terms will vanish if and
only if (4) is satisfied, i.e. if Φ(1, 2) is anti-symmetric in its two arguments.

After second quantization, when the states are obtained with creation and annihilation
operators acting on the vacuum, the anti-symmetry is encoded in the anti-commutation
relations

a†(1)a†(2) + a†(2)a†(1) = 0, a(1)a(2) + a(2)a(1) = 0 (7)

The bottom line is that the Hilbert space of fermionic states is always divided in two
sectors corresponding to the anti-commutation of creation of dichotomic spin state, ad-
mitting only two values which are labeled +1

2
and +1

2
. The anti-commuting charac-

ter of their operator algebra of observables is represented by the antisymmetric tensor
ϵαβ = −ϵβα, α, β = 1, 2. The exclusion principle being universal, it is natural to require
that it should be independent of the choice of a basis in the Hilbert space of states.
Therefore, if the states undergo a linear transformation

| ψα >→| ψβ′ >= Sα
β′ | ψα >, (8)
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the anti-symmetric form which encodes the exsclusion principle, should remain the same
as before, thus

ϵα′β′ = Sα
α′S

β
β′ϵαβ (9)

with
ϵ1′2′ = −ϵ2′1′ = 1, ϵ1′1′ = 0, ϵ2′2(′ = 0. (10)

This invariance condition, akin to the invariance of the metric tensor ηµν of the Minkowskian
spacetime, defines the invariance group. It is easy to see that in this case the combined
effect of (9) and (10) lead to the definition of the SL(2,C) group. It is enough to check
one of the four equations (9), e.g. choosing α′ = 1, β′ = 2. We get then

ϵ1′2′ = 1 = Sα
1′S

β
2′ ϵαβ = S1

1′S
2
2′ − S2

1′S
12′ = detS = 1. (11)

The other three choices of index values in (9) are either redundant, or trivial, i.e. leading
to the identity 0 = 0.). The conjugate matrices span an inequivalent representation of
the SL(2,C) group, labeled by dotted indeces; the invariant antisymmetric 2-form leads
to the same result when its invariance is required:

ϵ1̇2̇ = −ϵ2̇1̇ = 1, ϵ1̇1̇ = 0, ϵ2̇2̇ = 0; ϵ1̇′2̇′ = S̄α̇
α̇′S̄

β̇

2̇′
ϵα̇β̇ (12)

3 A Z3-graded ternary generalization of fermions

Consider an associative algebra A over C1 spanned by N generators θA, A,B, ... =
1, 2, ..., N . The generators θA are given the grade 1; their N2 linearly independent binary
poducts that

A θB are of grade 2, whereas their cubic products of grade 3 = 0mod 3 are
subject to the following cubic commutation relations:

θAθBθC = j θBθCθA = j2 θCθAθB, with j = e
2πi
3 , (13)

Obviously, due to the associativity property, all higher-order monomials starting from
order 4 do vanish automatically; the proof is by direct calculus.

A conjugate algebra of the same dimension, Ā is introduced, with N conjugate gener-
ators θ̄Ȧ of grade 2, their quadratic products of grade 1 being spanned by the expressions
θ̄Ȧθ̄Ḃ, while their cubic products satisfy conjugate ternary commutation rules,

θ̄Ȧ θ̄Ḃ θ̄Ċ = j2 θ̄Ȧ θ̄Ḃ θ̄Ċ

The two algebras can be united into one common structure if we define new relations
between the θA and θ̄Ḃ generators. We propose the following choice:

θAθ̄Ḃ = −jθ̄ḂθA, θ̄ḂθA = −j2θAθ̄Ḃ, (14)

because they lead to the anti-commutation between the ternary products:

(θAθBθC)(θ̄Ḋθ̄Ė θ̄Ḟ ) = −(θ̄Ḋθ̄Ė θ̄Ḟ )(θAθBθC) (15)
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The invariant 3-forms are defined as follows:

ραABCθ
AθBθC = ραBCAθ

BθCθA = ραCABθ
CθAθB; (16)

But this means that we must have

ραABC = j ραBCA = j2 ραCAB. (17)

The upper index α runs from 1 to (N3 − N)/3 when the algebra A is spanned by N
generators.

The conjugate 3-forms ρ̄α̇
ȦḂĊ

satisfy a similar symmetry conditions,

ρ̄α̇
ȦḂĊ

= j2 ρ̄α̇
ḂĊȦ

= j ρ̄α̇
ĊȦḂ

. (18)

Let us concentrate our investigation on the two-dimensional case. From now on, we shall
admit that only two values are taken by the indeces A,B, ... as well as by the dotted
ones, Ċ, Ḋ. In this case, the indeces α, β, ... and γ̇, ˙delta, ... also run from 1 to 2. The
ραABC-matrices can be then normalized in the following way:

ρ1121 = 1, ρ1211 = j2, ρ1112 = j, other components = 0,

ρ2212 = 1, ρ2122 = j2, ρ2221 = j, other components = 0, (19)

The conjugate 3-forms are defined in an obvious way:

ρ̄1̇
1̇2̇1̇

= 1, ρ̄1̇
2̇1̇1̇

= j, ρ̄1̇
1̇1̇2̇

= j2, other components = 0,

ρ̄2̇
2̇1̇2̇

= 1, ρ̄2̇
1̇2̇2̇

= j, ρ̄2̇
2̇2̇1̇

= j2, other components = 0 (20)

Similarly, invariant two-forms can be introduced, satisfying the following relation:

πµ

AḂ
θAθ̄Ḃ = π̄µ

ḂA
θ̄ḂθA. (21)

The index µ, ν... takes on four different values, which we can label symbolically 0, 1, 2, 3,
correspondiong to four different independent combinations of dotted and un-dotted in-
deces Ḃ and A: 11̇, 12̇, 21̇ and 22̇ It is easy to check that this means that the matrices
πµ

AḂ
should satisfy the relation

πµ

AḂ
= −j2π̄µ

ḂA
, (22)

Four 2 × 2 matrices satisfying (21) are easily found to be given by the Pauli matrices
with an appropriate factors:

πµ

AḂ
= i j σµ

AḂ
, π̄µ

ḂA
= −i j2 σ̄µ

ḂA
, (23)

because the matrices σ̄µ

AḂ
are hermitian, so that

σµ

AḂ
= σ̄µ

ḂA
.

It is worthwhile to note that by introducing also the minus sign, in other woirds, by
multiplying by −j we in fact enlarged the symmetry from Z3 to Z2×Z3 = Z6. The latter
can be generated by one of the non-trivial sixth-order roots of unity, e.g. by −j.
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4 Further investigation of Z3-graded ternary algebra

Let us first fix the convention for raising and lowering various indeces. We wish to intro-
duce the covariant basis θA, θ̄Ḃ,, satisfying similar cubic relations. With two generators
only the choice of a covariant 2-tensor TAB that would serve to lower the contravariant
indeces of the generators θA is quite limited. As a matter of fact, it can be always reduced
by an appropriate linear transformation of the basis, to either the symmetric one, the
Kronecker delta δAB, or to the anti-symmetric two-form ϵAB.

We suppose that the upper indeces α, β and γ̇, δ̇ belong to the usual bi-spinors which
taken together span the space of spinorial representation of the Lorentz group, acting via
its double covering by SL(2,C) as follows:

ϕα′
= Sα′

β ϕβ, χα̇′
= S̄α̇′

β̇
χβ̇. (24)

This hypothesis is justified by the fact that composite particles (proton, neutron, etc.)
containing three quarks behave like Lorentz spinors; we believe that they can be con-
structed as cubic combinations of quarks. In the realm of first quantization this would
mean that their wave functions can be produced by cubic products of wave functions
of quarks; in the realm of second quantization we should aim at constructing the ap-
propriate fermionic creation and annihilation operators as cubic products of creation or
annihilation operators of single quark states.

If we want to keep the transformation property independent of the choice of basis, then
the invariant tensor with respect to the action of SL(2,C) group is the anti-symmetric
two-form and its contravariant inverse:

ϵ12 = 1, ϵ21 = −1, ϵ11 = 0, ϵ22 = 0;

ϵ12 = 1, ϵ21 = −1, ϵ11 = 0, ϵ22 = 0. (25)

Then, if we want to make the contravariant counterparts of our cubic matrices ρABC
α

satisfy the same definition as the original forms ραABC , we must raise the quark indeces
A,B... by means of the same anti-symmetric tensor ϵAB. Then one easily checks that the
contravariant tensors ρABC

α defined as follows:

ρABC
α = ϵαβ ρ

β
DEF ϵ

AD ϵBE ϵCF (26)

have the same components as the covariant ones,

ρ1211 = 1, ρ2111 = j2, ρ1121 = j, ρ2122 = 1, ρ1222 = j2, ρ2212 = j.

Similar properties are displayed by the conjugate entities with dotted indeces, raised and
lowered by the dotted anti-symmetric tensors ϵα̇β̇, ϵα̇β̇ and ϵȦḂ, ϵȦḂ It tuns out that
certain representation of SL(2,C) leaves these three-forms invariant: as a matter of fact,
one has

Sα′

β ρβABC = ρα
′

A′B′C′ UA′

A UB′

B UC′

C (27)
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where Sα′

β are the usual complex 2×2 matrices of the basic representation of the SL(2,C)

group, whereas the 2× 2 complex matrices UA
′

A are defined as follows:

U1′

1 = S1′

1 det(U), U1′

2 = −S1′

2 det(U), U2′

1 = −S2′

1 det(U), U2′

2 = S2′

2 det(U). (28)

so that one has
det(S) = [det(U)]3 . (29)

The same is true for the conugate matrices Ū Ȧ
Ḃ
: one has also det(S) =

[
det(Ū)

]3
.

As det(S) = 1, the determinant of U can be equal to 1, or j, or j2. Let us choose
detU = j and det(Ū) = j2.

Using the invariant 2-forms ϵAB and ϵĊḊ for raising and contracting indeces, we can
construct a symmetric tensor gµν , µ, ν, .. = 0, 1, 2, 3 as follows:

gµν = πµ

AḂ
π̄ν
ḊC

ϵABϵĊḊ. (30)

whose components define the Minkowskian space-time metric:

g00 = 1, g11 = g22 = g33 = −1, gmuν = 0 if µ ̸= ν. (31)

The covariant tensor gλρ with exactly the same components is uniquely defined by the
condition

gµν g
νλ = δµλ .

The group of invariance of thus defined Minkowskian metric is the Lorentz group trans-
forming the metric tensor so that the components in the new basis,

gµ
′ν′ = Λµ′

µ Λ
ν′

ν gµν , (32)

are given by gµ
′ν′ = diag(+1,−1,−1,−1), i.e. exactly the same components as gµν in

the original basis.
Now, despite the fact that the matrices πµ

AḂ
and π̄ν

ḂA
are endowed with slamm Greek

indeces µ, they do not transform covariantly under the Lorentz group represented by the
set of matrices Λµ′

µ ; in fact, as it is quite easy to check,

Λµ′

µ π
µ

AḂ
̸= πµ′

A′Ḃ′ U
A′

A U Ḃ′

Ḃ
,

one of the reasons being the fact that with the above transformation we create linear
combinations of traceless matrices πk

AḂ
with the unit 2× 2 matrix π0

AḂ
whose trace does

not vanish (it is equal to 2).
To implement the Lorentz transformations on the matrices πµ

AḂ
and π̄ν

ḂA
, we have to

organize them in 4× 4 matrices by analogy with the usual Dirac matrices as follows:

Π0 =

(
π0 0
0 −π̄0

)
, Π1 =

(
0 π1

−π̄1 0

)
, Π2 =

(
0 π2

−π̄2 0

)
, Π3 =

(
0 π3

−π̄0 0

)
(33)

Then, as in the case of Dirac’s gamma-matrices, we shall have the following covariance
property:

U−1 Πµ U = Λµ
ν Π

ν , with U =

(
U 0
0 Ū

)
. (34)
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5 Invariance group of ternary Clifford algebra

Let us introduce the following three 3× 3 matrices:

Q1 =

 0 1 0
0 0 j
j2 0 0

 , Q2 =

 0 j 0
0 0 1
j2 0 0

 , Q3 =

0 1 0
0 0 1
1 0 0

 , (35)

and their hermitian conjugates

Q†
1 =

0 0 j
1 0 0
0 j2 0

 , Q†
2 =

 0 0 j
j2 0 0
0 1 0

 , Q†
3 =

0 0 1
1 0 0
0 1 0

 . (36)

These matrices can be allowed natural Z3 grading,

grade(Qk) = 1, grade(Q†
k) = 2, (37)

The above matrices span a very interesting ternary algebra. Out of three independent
Z3-graded ternary combinations, only one leads to a non-vanishing result. One can check
without much effort that both j and j2 skew ternary commutators do vanish:

{Q1, Q2, Q3}j = Q1Q2Q3 + jQ2Q3Q1 + j2Q3Q1Q2 = 0,

{Q1, Q2, Q3}j2 = Q1Q2Q3 + j2Q2Q3Q1 + jQ3Q1Q2 = 0,

and similarly for the odd permutation, Q2Q1Q3. On the contrary, the totally symmetric
combination does not vanish; it is proportional to the 3× 3 identity matrix 1:

QaQbQc +QbQcQa +QcQaQb = ηabc 1, a, b, ... = 1, 2, 3. (38)

with ηabc given by the following non-zero components:

η111 = η222 = η333 = 1, η123 = η231 = η312 = 1, η213 = η321 = η132 = j2. (39)

all other components vanishing. The relation 38) may serve as the definition of ternary
Clifford algebra.

Another set of three matrices is formed by the hermitian conjugates of Qa, which we
shall endow with dotted indeces ȧ, ḃ, ... = 1, 2, 3:

Qȧ = Q†
a (40)

satisfying conjugate identities

QȧQḃQċ +QḃQċQȧ +QċQȧQḃ = ηȧḃċ 1, ȧ, ḃ, ... = 1, 2, 3. (41)

with ηȧḃċ = η̄abc.
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It is obvious that any similarity transformation of the generators Qa will keep the
ternary anti-commutator (39) invariant. As a matter of fact, if we define Q̃b = P−1QbP ,
with P a non-singular 3×3 matrix, the new set of generators will satisfy the same ternary
relations, because

Q̃aQ̃bQ̃c = P−1QaPP
−1QbPP

−1QcP = P−1(QaQbQc)P,

and on the right-hand side we have the unit matrix which commutes with all other
matrices, so that P−1 1 P = 1.

However, the change of the basis in our algebra is less trivial, and one may ask the
question whether linear transformations of the type

Qb′ =Ma
b′ Qa, so that ηd′f ′g′ =Ma

d′M
b
f ′M c

g′ ηabc (42)

can keep the three-form η invariant, i.e. having exactly the same components as defined
by (39) ?

To find out the structure of the group of matrices M leaving the form η invariant, it
is enough to investigate its Lie algebra by considering only matrices infinitesimally close
to the unit matrix. Therefore, let

Ma
b′ = δab′ + ε La

b′ . (43)

Inserting the above matrix into the formula (42),we get the following condition:

ηa′b′c′ = (δaa′ + ϵLa
a′)

(
δbb′ + ϵLb

b′

)
(δcc′ + ϵLc

c′) ηabc. (44)

Developing the product (44) and keeping only the termls linear in ϵ one gets the following
eqation:

ηa′bc′L
b
b′ + ηa′b′cL

c
c′ + ηab′c′L

a
a′ = 0. (45)

The equations (45) impose a number of conditions on admissible matrices La
a′ , which

should be solved one by one, choosing all possible sets of lower case indeces (a′b′c′). The
choice of (a′b′c′) = (111) yields η111L

1
1 = 0, whence L1

1 = 0; similarly, the remaining two
diagonal terms vanish, too: L2

2 = 0, L3
3 = 0, which means that matrices keeping the form

η invariant are not only traceless, but have only zeros on their diagonal.
Among the remaining choices of three indeces, the components of ηabc with all indeces

different, i.e. essentially only two independent ones, (123) and (213) do not impose any
new conditions, becaquse they contain only the diagonal entries of La

a′ which are already
set to 0, e.g.:

η123L
1
1 + η123L

2
2 + η123M

3
3 = 0,

and the same for the odd permutation, η213.
What remains now are the six independent choices of three indeces with two identical

and one different:
(112), (113), (221), (223), (331), (332).
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The combinations (112), (223) and (331) lead to the following identities:

L1
2′ = jL3

1′ , jL1
2′ = L2

3′ , L3
1′ = jL2

3′ . (46)

while the three remaining choices, (221), (332) and (113) yield another set of conditions,

jL3
2′ = L2

1′ , L3
2′ = jL1

3′ , jL2
1′ =M1

3′ . (47)

This means that all such matrices depend on two real parameters. We can choose L1
2′ = 1,

then we shall have L2
3′ = j and L3

1′ = j2. The second independent choice is, say, L3
2′ = 1,

then we shall have L1
3′ = j and L2

1′ = j2. The most general form of matrix conserving
the 3-form ηabc is thus the following matrix function of two parameters r and s:

L(r, s) = r L(1) + sL(2) = r

 0 1 0
0 0 j
j2 0 0

+ s

 0 0 j
j2 0 0
0 1 0

 (48)

The matrices L(1) and L(2) satisfy the following j-graded commutation relations:

L(1)L(2) = j2 L(2)L(1), L(2)L(1) = j L(1)L(2). (49)

Finite transformations keeping the form ηabc invariant can be now obtained by exponen-
tiation:

er L(1) =

1 0 0
0 1 0
0 0 1

+ r

 0 1 0
0 0 j
j2 0 0

+
r2

2!

0 0 j
1 0 0
0 j2 0

+ ...

esL(2) =

1 0 0
0 1 0
0 0 1

+ s

 0 0 j
j2 0 0
0 1 0

+
s2

2!

 0 j 0
0 0 1
j2 0 0

+ ...

The consecutive powers of generators L(1) and L(2) repeat themselves, so that there are
only three different matrices present after the exponentiation. The result can be thus
written as

erL(1) =
∞∑
n=0

r3n

(3n)!

1 0 0
0 1 0
0 0 1

+
∞∑
n=0

r3n+1

(3n+ 1)!

 0 1 0
0 0 j
j2 0 0

+
∞∑
n=0

r3n+2

(3n+ 2)!

0 0 j
1 0 0
0 j2 0


for the first generator, and

esL(2) =
∞∑
n=0

s3n

(3n)!

1 0 0
0 1 0
0 0 1

+
∞∑
n=0

s3n+1

(3n+ 1)!

 0 0 j
j2 0 0
0 1 0

+
∞∑
n=0

s3n+2

(3n+ 2)!

 0 j 0
0 0 1
j2 0 0


for the second one. In principle, one could find a general transformation by developing
into an infinite series the expression

erL(1)+sL(2)
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using the j-commutation relation (49), which would amount to some generalizaton of the
Baker-Campbell-Hausdorff formula for exponentiation of a sum of two non-commuting
operators.

In the spirit of search of general covariance of algebras we could pose the problem dif-
ferently: without demanding the invariance of ternary multiplication table implemented
by the 3-form ηabc, we could ask a similar question concerning the matrices Qa them-
selves. The analogy with the Clifford algebra spanned by the Dirac matrices is quite
obvious: we should be looking for matrices S and M such that

SA
A′ (Qa′)

A′

B′

−1

SB′

B =Ma
a′(Qa)

A
B. (50)

As in the previous case, it is enough to investigate the infinitesimal transformations,
assuming that our matrices are close to the identity matrix:

SA
A′ ≃ δAA′ + ϵWA

A′ ,
−1

SB′

B ≃ δB
′

B + ϵWB′

B , Ma
a′ ≃ δaa′ + ϵΛa

a′ (51)

then the condition (50) implies, up to the terms linear in small parameter ϵ, the following
identity:

[W,Qa] = WQa −QaW = Λa
bQ

b (52)

Under matrix multiplication, the Z3 grades add up modulo three; therefore if we want the
commutators in (52) to yield a combination of matrices Qa of Z3 grade 1, therefore the
matrix W must be of Z3 grade 0, i.e. diagonal in the chosen representation. The basis of
3×3 diagonal matrices contains the unit matrix, which commutes with all other matrices
and would not contribute to the commutators in (52), and two traceless matrices

B1 =

1 0 0
0 j 0
0 0 j2

 , B2 = B†
1 =

1 0 0
0 j2 0
0 0 j

 , (53)

Inserting these two matrices in the equation (52), we get the two following matrices Λa
b :

[B1, Q
a] = Λ1

a
bQ

b, [B2, Q
a] = Λ2

a
bQ

b, (54)

with Λ1 = (j − j2)

 0 j 0
0 0 1
j2 0 0

 , Λ2 = Λ†
1.

By exponentiating, we get again a two-parameter transformation group as before.
Similar transformations concern the harmitian conjugates Q†

a = Qȧ, with matrices B1

and B2 interchanged. The eight traceless 3× 3 matrices

Q1, Q2, Q3, Q
†
1̇
, Q†

2̇
, Q†

3̇
, B1, B2

12



span a Lie algebra with respect to an ordinary commutators, and a Z3 graded ternary
algebra with respect to Z3-graded cubic commutators

{A,B,C} := ABC + jαβγBCA+ j2αβγCAB,

with α = grad(A), β = grad(B), γ = grad(C).. The generators B1, B2 form a Cartan
subalgebra of the Lie algebra spanned by the eight generators, which can be expressed
as linear combinations of the Gell-Mann matrices spanning the Lie algebra of the SU(3)
group.

The full group of invariance can be recovered if we let all the eight generators act by
commutating on themselves, leading to unrestricted linear combnations oa eight genera-
tors again. This will define the 8× 8 representation of the SU(3) algebra.

Full 8× 8 multiplication table of “nonions” can be found e.g. in ([18]).

6 A Z3-graded generalization of the Dirac equation

The Z2 symmetry constitutes the essential ingredient in the formulation of Lorentz-
invariant equations of relativistic quantum physics. It has a fundamental role in the
definition of time reversal and particle-antiparticle symmetry ([17])

Let us first underline the Z2 symmetry of Maxwell and Dirac equations, which implies
their hyperbolic character, which makes the propagation possible. Maxwell’s equations
in vacuo can be written as follows:

1

c

∂E

∂t
= ∇∧B, −1

c

∂B

∂t
= ∇∧ E. (55)

These equations can be decoupled by applying the time derivation twice, which in vac-
uum, where divE = 0 and divB = 0 leads to the d’Alembert equation for both compo-
nents separately:

1

c2
∂2E

∂t2
−∇2E = 0,

1

c2
∂2B

∂t2
−∇2B = 0.

Nevertheless, neither of the components of the Maxwell tensor, be it E or B, can prop-
agate separately alone. It is also remarkable that although each of the fields E and B
satisfies a second-order propagation equation, due to the coupled system (55) there exists
a quadratic combination satisfying the forst-order equation, the Poynting four-vector:

P µ =
[
P 0,P

]
, P 0 =

1

2

(
E2 +B2

)
, (56)

with P = E ∧B, with ∂µP
µ = 0. (57)

The Dirac equation for the electron displays a similar Z2 symmetry, with two coupled
equations which can be put in the following form:

iℏ
∂

∂t
ψ+ −mc2ψ+ = iℏσ · ∇ψ−, −iℏ ∂

∂t
ψ− −mc2ψ− = −iℏσ · ∇ψ+, (58)
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where ψ+ and ψ− are the positive and negative energy components of the Dirac equation;
this is visible even better in the momentum representation:[

E −mc2
]
ψ+ = cσ · pψ−,

[
−E −mc2

]
ψ− = −cσ · pψ+. (59)

The same effect (negative energy states can be obtained by changing the direction of
time, and putting the minus sign in front of the time derivative, as suggested by Feynman.

Each of the components satisfies the Klein-Gordon equation, obtained by successive
application of the two operators and diagonalization:[

1

c2
∂2

∂t2
−∇2 −m2

]
ψ± = 0

As in the electromagnetic case, neither of the components of this complex entity can
propagate by itself; only all the components can.

Apparently, the two types of quarks, u and d, cannot propagate freely, but can form
a freely propagating particle perceived as a fermion, only under an extra condition: they
must belong to three different species called colors; short of this they will not form a
propagating entity.

Therefore, quarks should be described by three fields satisfying a set of coupled linear
equations, with the Z3-symmetry playing a similar role of the Z2-symmetry in the case of
Maxwell’s and Dirac’s equations. Instead of the “-” sign multiplying the time derivative,
we should use the cubic root of unity j and its complex conjugate j2 according to the
following scheme:

∂ | ψ >
∂t

= Ĥ12 | ϕ >, j
∂ | ϕ >
∂t

= Ĥ23 | χ >, j2
∂ | χ >
∂t

= Ĥ31 | ψ >, (60)

We do not specify yet the number of components in each state vector, nor the character
of the hamiltonian operators on the right-hand side; the three fields | ψ >, | ϕ > and
| χ > should represent the three colors, none of which can propagate by itself.

The quarks being endowed with mass, we can suppose that one of the main terms in
the hamiltonians is the mass operator m̂; and let us suppose that the remaining parts
are the same in all three hamiltonians. This will lead to the following three equations:

∂ | ψ >
∂t

− m̂ | ψ >= Ĥ | ϕ >, j
∂ | ϕ >
∂t

− m̂ | ϕ >= Ĥ | χ >,

j2
∂ | χ >
∂t

− m̂ | χ >= Ĥ | ψ >, (61)

Supposing that the mass operator commutes with time derivation, by applying three
times the left-hand side operators, each of the components satisfies the same common
third order equation: [

∂3

∂t3
− m̂3

]
| ψ >= Ĥ3 | ψ > . (62)
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The anti-quarks should satisfy a similar equation with the negative sign for the Hamil-
tonian operator. The fact that there exist two types of quarks in each nucleon suggests
that the state vectors | ψ >, | ϕ > and | χ > should have two components each. When
combined together, the two postulates lead to the conclusion that we must have three
two-component functions and their three conjugates:(

ψ1

ψ2

)
,

(
ψ̄1̇

ψ̄2̇

)
,

(
φ1

φ2

)
,

(
φ̄1̇

φ̄2̇

)
,

(
χ1

χ2

)
,

(
χ̄1̇

χ̄2̇

)
,

which may represent three colors, two quark states (e.g. “up” and “down”), and two
anti-quark states (with anti-colors, respectively).

Finally, in order to be able to implement the action of the SL(2,C) group via its
2 × 2 matrix representation defined in the previous section, we choose the Hamiltonian
Ĥ equal to the operator σ ·∇, the same as in the usual Dirac equation. The action of the
Z3 symmetry is represented by factors j and j2, while the Z2 symmetry between particles
and anti-particles is represented by the “-” sign in front of the time derivative.

The differential system that satisfies all these assumptions is as follows:

−iℏ ∂
∂t
ψ = mc2ψ − iℏcσ · ∇φ̄,

iℏ
∂

∂t
φ̄ = jmc2φ̄− iℏcσ · ∇χ,

−iℏ ∂
∂t
χ = j2mc2χ− iℏcσ · ∇ψ̄,

iℏ
∂

∂t
ψ̄ = mc2ψ̄ = −iℏcσ · ∇φ,

−iℏ ∂
∂t
φ = j2mc2φ− iℏcσ · ∇χ̄,

iℏ
∂

∂t
χ̄ = jmc2χ̄− iℏcσ · ∇ψ, (63)

Here we made a simplifying assumption that the mass operator is just proportional
to the identity matrix, and therefore commutes with the operator σ · ∇. The functions
ψ, φ and χ are related to their conjugates via the following third-order equations:

−i ∂
3

∂t3
ψ =

[
m3c6

ℏ3
− i(σ · ∇)3

]
ψ̄ =

[
m3c6

ℏ3
− iσ · ∇

]
(∆ψ̄),

i
∂3

∂t3
ψ̄ =

[
m3c6

ℏ3
− i(σ · ∇)3

]
ψ =

[
m3c6

ℏ3
− iσ · ∇

]
(∆ψ), (64)

and the same, of course, for the remaining wave functions φ and χ.
The overall Z2 × Z3 symmetry can be grasped much better if we use the matrix

notation, encoding the system of linear equations (63) as an operator acting on a single
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vector composed of all the components. Then the system (63) can be written with the
help of the following 6× 6 matrices composed of blocks of 3× 3 matrices as follows:

Γ0 =

(
I 0
0 −I

)
, B =

(
B1 0
0 B2

)
, P =

(
0 Q
QT 0

)
, (65)

with I the 3× 3 identity matrix, and the 3× 3 matrices B1, B2 and Q = Q3 defined in
(53) and (??). follows:

The matrices B1 and Q3 generate the algebra of traceless 3× 3 matrices with deter-
minant 1, introduced by Sylvester and Cayley under the name of nonionalgebra. With
this notation, our set of equations (63) can be written in a very compact way:

−iℏΓ0 ∂

∂t
Ψ = [Bm− iℏQσ · ∇] Ψ, (66)

Here Ψ is a column vector containing the six fields, [ψ, φ, χ, ψ̄, φ̄, χ̄], in this order.
But the same set of equations can be obtained if we dispose the six fields in a 6 × 6

matrix, on which the operators in (66) act in a natural way:

Ψ =

(
0 X1

X2 0

)
, with X1 =

0 ψ 0
0 0 ϕ
χ 0 0

 , X2 =

0 0 χ̄
ψ̄ 0 0
0 φ̄ 0

 (67)

By consecutive application of these operators we can separate the variables and find the
common equation of sixth order that is satisfied by each of the components:

−ℏ6
∂6

∂t6
ψ −m6c12ψ = −ℏ6∆3ψ. (68)

Identifying quantum operators of energy and the momentum, −iℏ ∂
∂t

→ E, −iℏ∇ → p,
we can write (68) simply as follows:

E6 −m6c12 =| p |6 c6. (69)

This equation can be factorized showing how it was obtained by subsequent action of the
operators of the system (63):

E6 −m6c12 = (E3 −m3c6)(E3 +m3c6) =

(E −mc2)(jE −mc2)(j2E −mc2)(E +mc2)(jE +mc2)(j2E +mc2) =| p |6 c6.

The equation (68) can be solved by separation of variables; the time-dependent and
the space-dependent factors have the same structure:

A1 e
ω t + A2 e

j ω t + A3e
j2 ω t, B1 e

k.r +B2 e
j k.r +B3 e

j2 k.r
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with ω and k satisfying the following dispersion relation:

ω6

c6
=
m6c6

ℏ6
+ | k |6, (70)

where we have identified E = ℏω and p = ℏk.
The relation 70) is invariant under the action of Z2 × Z3 symmetry, because to any

solution with given real ω and k one can add solutions with ω replaced by jω or j2ω,
jk or j2k, as well as −ω; there is no need to introduce also −k instead of k because the
vector k can take on all possible directions covering the unit sphere.

The nine complex solutions can be displayed in two 3× 3 matrices as follows:

 eω t−k·r eω t−jk·r eω t−j2k·r

ejω t−k·r ejω t−jk·r ejω t−j2k·r

ej
2ω t−k·r ej

2ω t−k·r ej
2ω t−j2k·r

 ,

 e−ω t−k·r e−ω t−jk·r e−ω t−j2k·r

e−jω t−k·r e−jω t−jk·r e−jω t−j2k·r

e−j2ω t−k·r e−j2ω t−k·r e−j2ω t−j2k·r


and their nine independent products can be represented in a basis of real functions as A11 e

ω t−k·r A12 e
ω t+k·r

2 cos(k · ξ) A13 e
ω t+k·r

2 sin(k · ξ)
A21 e

−ω t
2
−k·r cosωτ A22 e

−ω t
2
+k·r

2 cos(ωτ − k · ξ) A23 e
−ω t

2
+k·r

2 cos(ωτ + k · ξ)
A31 e

−ω t
2
−k·r sinωτ A32 e

−ω t
2
+k·r

2 sin(ωτ + k · ξ) A33 e
−ω t

2
+k·r

2 sin(ωτ − k · ξ)


where τ =

√
3
2
t and ξ =

√
3
2
kr; the same can be done with the conjugate solutions (with

−ω instead of ω).
The functions displayed in the matrix do not represent a wave; however, one can

produce a propagating solution by forming certain cubic combinations, e.g.

eω t−k·r e−
ω t
2
+k·r

2 cos(ωτ − k · ξ) e−
ω t
2
+k·r

2 sin(ωτ − k · ξ) = 1

2
sin(2ωτ − 2k · ξ).

What we need now is a multiplication scheme that would define triple products of non-
propagating solutions yielding propagating ones, like in the example given above, but
under the condition that the factors belong to three distinct subsets b(which can be later
on identified as “colors”). This can be achieved with the 3 × 3 matrices of three types,
containing the solutions displayed in the matrix, distributed in a particular way, each of
the three matrices containing the elements of one particular line of the matrix:

[A] =

 0 A12 e
ω t−k·r 0

0 0 A23 e
ω t+k·r

2 cosk · ξ
A31e

ω t+k·r
2 sink · ξ 0 0

 (71)

[B] =

 0 B12 e
−ω

2
t+k·r

2 cos(τ + k · ξ) 0

0 0 B23 e
−ω

2
t−k·r sin τ

B31e
ω t−k·r cos τ 0 0

 (72)
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[C] = 0 C12 e
−ω

2
t+k·r

2 cos(τ + k · ξ) 0

0 0 C23 e
−ω

2
t+k·r

2 sin(τ − k · ξ)
C31e

−ω
2
t+k·r

2 cos(τ + k · ξ) 0 0

 (73)

Now it is easy to check that in the product of the above three matrices, ABC all real
exponentials cancel, leaving the periodic functions of the argument τ + k · r. The trace
of this triple product is equal to Tr(ABC) =

[sin τ cos(k · r) + cos τ sin(k · r)] cos(τ + k · r) + cos(τ + k · r) sin(τ + k · r),

representing a plane wave propagating towards −k. Similar solution can be obtained
with the opposite direction. From four such solutions one can produce a propagating
Dirac spinor.

This model makes free propagation of a single quark impossible, (except for a very
short distances due to the damping factor), while three quarks can form a freely propa-
gating state.
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