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Abstract. Fusion hindrance, where fusion probability in heavy systems is strongly hindered compared with that

in light and medium-mass systems, is analyzed by the microscopic time-dependent energy density functional

theory. From trajectories obtained for fusion reactions, we extract nucleus-nucleus potential and one-body

energy dissipation for the entrance channel of fusion reactions in heavy systems. We find that a barrier structure

disappears and an increase behavior is observed in the obtained potential, which are different from the cases of

light and medium-mass systems and of the frozen density approximation. We show that main contribution to

extra-push energy comes from the increase of potential energy because of dynamical effects.

1 Introduction

The interplay between nuclear structure and dynamical ef-

fects is crucial to properly describing heavy-ion fusion re-

actions at energies around the Coulomb barrier. Coupled-

channels calculations [1–4] have been widely used to

quantitatively describe the entrance channel of fusion re-

actions in light and medium-mass systems, whose charge

product (Z1Z2) is less than 1600. On the other hand, it has

been observed in heavy systems (typically Z1Z2 > 1600)

that the fusion probability is strongly hindered around the

Coulomb barrier compared with that in Z1Z2 < 1600 sys-

tems [5]. This phenomenon is called fusion hindrance

and an extra energy to be needed to make such systems

to fuse is called extra-push energy [6]. Quasi-fission pro-

cess, where a colliding system after a touching configura-

tion reseparates to projectile-like and target-like fragments

before forming a compound nucleus, is considered to be

mostly responsible for this hindrance. For a better de-

scription of the reaction mechanism in heavy systems, a

dynamical diffusion model using a macroscopic Langevin

equation has been developed [7, 8].

Time-dependent energy density functional model, in

nuclear physics often called time-dependent Hartree-Fock

(TDHF) model [9–11], has been developed and widely

used to describe a variety of low energy nuclear reactions

[12–15]. It is well known that TDHF based on energy den-

sity functionals provides a unique tool for describing nu-

clear structure and nuclear reactions, that is, static and dy-

namical properties of atomic nuclei over the whole nuclear

chart in a unified self-consistent framework. Along this

line, extra-push energies and quasi-fission process have

been analyzed in Refs. [16–18]. The density-constrained

TDHF model [19], which combines TDHF dynamics with
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energy minimization under constraints on the density ob-

tained with TDHF, has been applied to obtain nucleus-

nucleus potentials for heavy systems [20, 21].

Recently, we have proposed a method to directly ex-

tract nucleus-nucleus potential and one-body energy dissi-

pation from the relative motion of colliding nuclei to nu-

clear intrinsic excitations in fusion reactions from TDHF

evolutions [22, 23]. This method relies on the hypothesis

that complex microscopic mean-field evolution of head-

on collisions can be accurately reduced to a simple one-

dimensional macroscopic evolution which obeys a classi-

cal Newton equation including potential and dissipation

terms. In the present work, we apply this method to study

the properties of potential and energy dissipation in the en-

trance channel of fusion reactions for heavy systems and

to understand origins of fusion hindrance.

2 Method

In this section, we illustrate our method to extract nucleus-

nucleus potential and energy dissipation for fusion reac-

tions from TDHF trajectories. Our method consists of four

steps:

1. We solve TDHF equations for central collisions to

obtain the total density ρ(t) at each time until two

nuclei substantially overlap.

2. We compute the relative distance R(t) and associ-

ated momentum P(t) from the total density with a

suitable definition of the separation plane at which

the total system is divided into two subsystems.

3. We assume that obtained collective coordinates R
and P obey a classical equation of motion with a
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Figure 1. Nucleus-nucleus potential as a function of relative dis-

tance for the 40Ca+ 40Ca system extracted at different Ecm. Filled

circles denote the frozen density potential.

friction term,

dR
dt
=

P
μ
,

dP
dt
= −dV

dR
− d

dR

(
P2

2μ

)
− γdR

dt
, (1)

where μ, V and γ denote the reduced mass, nucleus-

nucleus potential and friction coefficient, respec-

tively. The friction term describes dissipation from

the relative motion to intrinsic degrees of freedom.

4. In this equation, there are two unknown quantities V
and γ. We prepare a set of two equations from two

trajectories of central collisions with two slightly

different energies and by inverting this set of equa-

tions we obtain γ and dV/dR.

We would like to note here that our extracted potential is

based on neither sudden nor adiabatic approximation. Our

extracted potential and friction automatically contain dy-

namical effects such as dynamical density evolution during

collision.

To compute TDHF evolutions, we used the three-

dimensional TDHF code developed by P. Bonche and co-

workers with SLy4d Skyrme parameter set [12] with the

mesh size in space and time being 0.8 fm and 0.45 fm/c,

respectively. Details of the computations can be found in

Refs. [22, 23]. In these references, we have investigated

systematically fusion reactions in light and medium-mass

systems. Here, we show one example in Fig. 1, where

nucleus–nucleus potentials extracted at different center-

of-mass energies Ecm are plotted as a function of R for

the 40Ca+ 40Ca system. As a reference, we plot by the

filled circles the frozen density potential [24] that is calcu-

lated from the same energy density functionals as in TDHF

with the densities of projectile and target nuclei frozen to

their ground-state one, meaning that no dynamical effect

is included during collision. We recall the main conclu-

sions from Fig. 1: (i) At higher energies (Ecm = 90 and

100 MeV), extracted potentials identify with the frozen

density potential. This indicates that the system does not
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Figure 2. Same as Fig. 1, but for the 96Zr+ 124Sn system. The

black arrow indicates the fusion threshold energy of this system,

228.4 MeV. The blue filled diamond indicates the relative dis-

tance where extraction of the potential stops (see text for detail).

have enough time to evolve and that a sudden approxima-

tion is valid. (ii) At energies near the Coulomb barrier

(Ecm = 55 and 57 MeV), extracted potentials show strong

energy dependence and induce a reduction of the barrier

height from the potential barrier extracted at higher ener-

gies and from the frozen density potential. This dynamical

reduction effect leads to a good agreement with the barrier

height obtained from experimental data.

In the next section, we apply this method and show the

results for the 96Zr+ 124,132Sn and 96Zr+ 136Xe systems.

3 Result

Figure 2 shows extracted nucleus–nucleus potentials as

a function of R for the entrance channel of fusion reac-

tions for the 96Zr+ 124Sn system (Z1Z2 = 2000) at three

Ecm and with the frozen density approximation. Here,

we define fusion in TDHF as a reaction where the collid-

ing system remains a compact shape for a long time, say

1200 fm/c. Then, we define fusion threshold energy as the

minimum energy for fusion. In this system, we found that

the fusion threshold energy is Ethres = 228.4 MeV, which

is indicated by the black arrow. Note that, for the case

with Ecm = 228.4 MeV, we stop extracting the potential at

R ∼ 11.4 fm, which is indicated by the blue filled diamond

in Fig. 2. The reason is that the relative velocity Ṙ be-

comes almost 0 at R ∼ 11.4 fm and our extraction method

through Eq. (1) does not properly work.

By comparing the obtained potentials in Fig. 2 with

those in Z1Z2 < 1600 systems displayed in Fig. 1, we find

two significant differences:

• For the 96Zr+ 124Sn system, while a barrier is observed

in the frozen density potential at R ∼ 12.8 fm, no poten-

tial barrier is observed in the potentials extracted with

TDHF at any Ecm and the potentials monotonically in-

crease as R decreases. For the 40Ca+ 40Ca system, a

barrier is observed in any cases.

• Energy dependence of potential is observed in the
40Ca+ 40Ca system and has also been discussed in
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Figure 3. Density profiles ρ(x, y, z = 0) for the 96Zr+ 124Sn sys-

tem at Ecm = 228.3 MeV (top) and 250 MeV (middle) obtained

with TDHF, and obtained from the frozen density approximation

(bottom) for different relative distances indicated in each panel.

Contour lines are plotted at each 0.025 fm−3.

Refs. [25, 26], while it is less pronounced in the
96Zr+ 124Sn system around the frozen density potential

barrier at R ∼ 12.8 fm.

We extracted potentials for other heavy systems and ob-

served similar results [27]. Therefore, those pointed above

can be typical features for heavy systems.

Figure 3 shows the density profiles at the entrance

channel of central collisions for the 96Zr+ 124Sn system.

Two energies Ecm = 228.3 MeV (top panels), just be-

low the fusion threshold energy, and 250 MeV (middle

panels), and as a reference the frozen density approxima-

tion (bottom panels) are employed. Two relative distances

R ∼ 12.8 fm (left panels) and 12.0 fm (right panels), which

are around the frozen density barrier, are chosen. For the

two energies, similar density profiles can be seen and are

different from the frozen density case. Even in the case of

Ecm = 250 MeV, which is well above the fusion thresh-

old energy, dynamical deformation and neck formation

of the density are observed, leading to dynamical change

in potential. This was not observed in the results of the
40Ca+ 40Ca system at energies well above the Coulomb

barrier energy [22]. Analysis along this line is underway.

Next we show energy dissipation in heavy systems.

TDHF includes one-body dissipation mechanism from the

microscopic point of view because of the treatment of the

self-consistent mean field. Dissipated energy from the rel-

ative motion to internal excitations is considered as one

of the origins of extra-push energy. In our method, this

energy can be calculated through the friction parameter by

Ediss[R(t)] =
∫ t

0

dt′γ[R(t′)]
(

dR
dt

)2

. (2)
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Figure 4. Dissipated energy calculated with Eq. (2) for the
96Zr+ 124Sn system.

Table 1. Fusion threshold energy Ethres, frozen density potential

barrier VFD, extra-push energy Eextra, increase of potential ΔV ,

and dissipated energy Ediss for the 96Zr+ 124,132Sn (Z1Z2 = 2000)

and 96Zr+ 136Xe (Z1Z2 = 2160) systems. All energies are in

units of MeV.

System Ethres VFD Eextra ΔV Ediss
96Zr+ 124Sn 228.4 214.4 14.0 9.2 4.0
96Zr+ 132Sn 226.2 213.6 12.6 7.2 4.7
96Zr+ 136Xe 246.8 231.0 15.8 9.3 5.4

Figure 4 shows the dissipated energies calculated from

Eq. (2) for the 96Zr+ 124Sn system with different Ecm.

In all the cases, the dissipated energy monotonically in-

creases as colliding nuclei approach to each other.

Furthermore, we analyze the origin of the fusion hin-

drance. Following Refs. [16, 17], we define the extra-push

energy Eextra from TDHF calculations as the difference be-

tween the fusion threshold energy Ethres and the frozen

density potential barrier VFD, that is, Eextra = Ethres − VFD.

For this purpose, we used the TDHF trajectory at the fu-

sion threshold energy. In this case, at the relative distance

where we stop extracting potential and energy dissipation

(hereafter we denote this relative distance as Rstop), be-

cause of small remaining kinetic energy, we can identify

the origin of the extra-push energy obtained with TDHF

as the dissipated energy Ediss and change in potential en-

ergy ΔV at Rstop from the frozen density potential barrier,

that is, ΔV = V(Rstop) − VFD. In Table 1, we summarize

the different energies obtained from the present analysis

for the 96Zr+ 124,132Sn and 96Zr+ 136Xe systems. In any

systems, these energies were obtained from the TDHF tra-

jectory at Ethres. As mentioned above, increase of potential

and dissipated energies are calculated at Rstop. Finite val-

ues (∼ 15 MeV) of the extra-push energies are obtained in

any systems. We confirm that the fusion hindrance exists

in these systems, which is consistent with earlier experi-

mental observations [5]. It is clearly seen in Table 1 that

the increase of potential ΔV is about two times larger than

the dissipated energy for all the systems. We conclude

from this analysis that the main contribution to the extra-
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push energy is the increase of extracted potential. Energy

dissipation plays an important role as expected, but is not

sufficient to explain the fusion hindrance of those systems.

4 Summary

We have studied the fusion hindrance in heavy systems

with a microscopic TDHF model. We have applied our

method of directly extracting nucleus–nucleus potential

and energy dissipation to fusion reactions in heavy sys-

tems. Our method is based on the assumption that complex

mean-field dynamics can be reduced to classical equa-

tion of motion with suitable choice of collective coor-

dinate. We show that no potential barrier is observed

and the obtained potential monotonically increases in the
96Zr+ 124Sn system. These behaviors are different from

that in light and medium-mass systems and from the

frozen density potential. Furthermore, we have analyzed

the 96Zr+ 132Sn and 96Zr+ 136Xe systems. We have cal-

culated the extra-push energies of those systems and con-

cluded that main contribution to the extra-push energy is

from the increase of potential energy inside the frozen po-

tential barrier.
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