EPJ Web of Conferences 86,00062 (2015)
DOI: 10.1051/epjconf/ 20158600062
© Owned by the authors, published by EDP Sciences, 2015

Fusion and quasi-fission in heavy systems with the microscopic time-
dependent energy density functional theory
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Abstract. Fusion hindrance, where fusion probability in heavy systems is strongly hindered compared with that
in light and medium-mass systems, is analyzed by the microscopic time-dependent energy density functional
theory. From trajectories obtained for fusion reactions, we extract nucleus-nucleus potential and one-body
energy dissipation for the entrance channel of fusion reactions in heavy systems. We find that a barrier structure
disappears and an increase behavior is observed in the obtained potential, which are different from the cases of
light and medium-mass systems and of the frozen density approximation. We show that main contribution to
extra-push energy comes from the increase of potential energy because of dynamical effects.

1 Introduction

The interplay between nuclear structure and dynamical ef-
fects is crucial to properly describing heavy-ion fusion re-
actions at energies around the Coulomb barrier. Coupled-
channels calculations [1-4] have been widely used to
quantitatively describe the entrance channel of fusion re-
actions in light and medium-mass systems, whose charge
product (Z,7,) is less than 1600. On the other hand, it has
been observed in heavy systems (typically Z;Z, > 1600)
that the fusion probability is strongly hindered around the
Coulomb barrier compared with that in Z;Z, < 1600 sys-
tems [5]. This phenomenon is called fusion hindrance
and an extra energy to be needed to make such systems
to fuse is called extra-push energy [6]. Quasi-fission pro-
cess, where a colliding system after a touching configura-
tion reseparates to projectile-like and target-like fragments
before forming a compound nucleus, is considered to be
mostly responsible for this hindrance. For a better de-
scription of the reaction mechanism in heavy systems, a
dynamical diffusion model using a macroscopic Langevin
equation has been developed [7, 8].

Time-dependent energy density functional model, in
nuclear physics often called time-dependent Hartree-Fock
(TDHF) model [9-11], has been developed and widely
used to describe a variety of low energy nuclear reactions
[12—-15]. It is well known that TDHF based on energy den-
sity functionals provides a unique tool for describing nu-
clear structure and nuclear reactions, that is, static and dy-
namical properties of atomic nuclei over the whole nuclear
chart in a unified self-consistent framework. Along this
line, extra-push energies and quasi-fission process have
been analyzed in Refs. [16—18]. The density-constrained
TDHF model [19], which combines TDHF dynamics with
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energy minimization under constraints on the density ob-
tained with TDHF, has been applied to obtain nucleus-
nucleus potentials for heavy systems [20, 21].

Recently, we have proposed a method to directly ex-
tract nucleus-nucleus potential and one-body energy dissi-
pation from the relative motion of colliding nuclei to nu-
clear intrinsic excitations in fusion reactions from TDHF
evolutions [22, 23]. This method relies on the hypothesis
that complex microscopic mean-field evolution of head-
on collisions can be accurately reduced to a simple one-
dimensional macroscopic evolution which obeys a classi-
cal Newton equation including potential and dissipation
terms. In the present work, we apply this method to study
the properties of potential and energy dissipation in the en-
trance channel of fusion reactions for heavy systems and
to understand origins of fusion hindrance.

2 Method

In this section, we illustrate our method to extract nucleus-
nucleus potential and energy dissipation for fusion reac-
tions from TDHF trajectories. Our method consists of four
steps:

1. We solve TDHF equations for central collisions to
obtain the total density p(#) at each time until two
nuclei substantially overlap.

2. We compute the relative distance R(f) and associ-
ated momentum P(¢) from the total density with a
suitable definition of the separation plane at which
the total system is divided into two subsystems.

3. We assume that obtained collective coordinates R
and P obey a classical equation of motion with a
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Figure 1. Nucleus-nucleus potential as a function of relative dis-
tance for the *°Ca + *°Ca system extracted at different E.,. Filled
circles denote the frozen density potential.

friction term,

dR P

e u’

dpP v d (P? dR
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where u, V and y denote the reduced mass, nucleus-
nucleus potential and friction coefficient, respec-
tively. The friction term describes dissipation from
the relative motion to intrinsic degrees of freedom.

4. In this equation, there are two unknown quantities V
and y. We prepare a set of two equations from two
trajectories of central collisions with two slightly
different energies and by inverting this set of equa-
tions we obtain y and dV/dR.

We would like to note here that our extracted potential is
based on neither sudden nor adiabatic approximation. Our
extracted potential and friction automatically contain dy-
namical effects such as dynamical density evolution during
collision.

To compute TDHF evolutions, we used the three-
dimensional TDHF code developed by P. Bonche and co-
workers with SLy4d Skyrme parameter set [12] with the
mesh size in space and time being 0.8 fm and 0.45 fm/c,
respectively. Details of the computations can be found in
Refs. [22, 23]. In these references, we have investigated
systematically fusion reactions in light and medium-mass
systems. Here, we show one example in Fig. 1, where
nucleus—nucleus potentials extracted at different center-
of-mass energies E., are plotted as a function of R for
the “°Ca+“°Ca system. As a reference, we plot by the
filled circles the frozen density potential [24] that is calcu-
lated from the same energy density functionals as in TDHF
with the densities of projectile and target nuclei frozen to
their ground-state one, meaning that no dynamical effect
is included during collision. We recall the main conclu-
sions from Fig. 1: (i) At higher energies (E., = 90 and
100 MeV), extracted potentials identify with the frozen
density potential. This indicates that the system does not
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Figure 2. Same as Fig. 1, but for the *°Zr + '**Sn system. The
black arrow indicates the fusion threshold energy of this system,
228.4 MeV. The blue filled diamond indicates the relative dis-
tance where extraction of the potential stops (see text for detail).

have enough time to evolve and that a sudden approxima-
tion is valid. (ii) At energies near the Coulomb barrier
(E.m = 55 and 57 MeV), extracted potentials show strong
energy dependence and induce a reduction of the barrier
height from the potential barrier extracted at higher ener-
gies and from the frozen density potential. This dynamical
reduction effect leads to a good agreement with the barrier
height obtained from experimental data.

In the next section, we apply this method and show the
results for the *Zr + 1>#1328n and *Zr + '3Xe systems.

3 Result

Figure 2 shows extracted nucleus—nucleus potentials as
a function of R for the entrance channel of fusion reac-
tions for the °Zr + '2*Sn system (Z,Z, = 2000) at three
E.n and with the frozen density approximation. Here,
we define fusion in TDHF as a reaction where the collid-
ing system remains a compact shape for a long time, say
1200 fm/c. Then, we define fusion threshold energy as the
minimum energy for fusion. In this system, we found that
the fusion threshold energy is Eues = 228.4 MeV, which
is indicated by the black arrow. Note that, for the case
with E., = 228.4 MeV, we stop extracting the potential at
R ~ 11.4fm, which is indicated by the blue filled diamond
in Fig. 2. The reason is that the relative velocity R be-
comes almost 0 at R ~ 11.4 fm and our extraction method
through Eq. (1) does not properly work.

By comparing the obtained potentials in Fig. 2 with
those in Z;Z, < 1600 systems displayed in Fig. 1, we find
two significant differences:

e For the %°Zr + 12*Sn system, while a barrier is observed
in the frozen density potential at R ~ 12.8 fm, no poten-
tial barrier is observed in the potentials extracted with
TDHF at any E.;, and the potentials monotonically in-
crease as R decreases. For the “°Ca+“’Ca system, a
barrier is observed in any cases.

e Energy dependence of potential is observed in the
40Ca+4Ca system and has also been discussed in
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Figure 3. Density profiles p(x, y,z = 0) for the *Zr + >*Sn sys-
tem at E.,, = 228.3 MeV (top) and 250 MeV (middle) obtained
with TDHF, and obtained from the frozen density approximation
(bottom) for different relative distances indicated in each panel.
Contour lines are plotted at each 0.025 fm=3.

Refs. [25, 26], while it is less pronounced in the
%7Zr +124Sn system around the frozen density potential
barrier at R ~ 12.8 fm.

We extracted potentials for other heavy systems and ob-
served similar results [27]. Therefore, those pointed above
can be typical features for heavy systems.

Figure 3 shows the density profiles at the entrance
channel of central collisions for the °Zr + '?*Sn system.
Two energies E., = 228.3MeV (top panels), just be-
low the fusion threshold energy, and 250 MeV (middle
panels), and as a reference the frozen density approxima-
tion (bottom panels) are employed. Two relative distances
R ~ 12.8 fm (left panels) and 12.0 fm (right panels), which
are around the frozen density barrier, are chosen. For the
two energies, similar density profiles can be seen and are
different from the frozen density case. Even in the case of
E.n = 250MeV, which is well above the fusion thresh-
old energy, dynamical deformation and neck formation
of the density are observed, leading to dynamical change
in potential. This was not observed in the results of the
40Ca +49Ca system at energies well above the Coulomb
barrier energy [22]. Analysis along this line is underway.

Next we show energy dissipation in heavy systems.
TDHEF includes one-body dissipation mechanism from the
microscopic point of view because of the treatment of the
self-consistent mean field. Dissipated energy from the rel-
ative motion to internal excitations is considered as one
of the origins of extra-push energy. In our method, this
energy can be calculated through the friction parameter by
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Figure 4. Dissipated energy calculated with Eq. (2) for the
%Zr +124Sn system.

Table 1. Fusion threshold energy Ely.s, frozen density potential
barrier Vpp, extra-push energy Eey., increase of potential AV,
and dissipated energy Eg; for the *°Zr + >41328n (Z,Z, = 2000)
and %Zr + 13Xe (Z,Z, = 2160) systems. All energies are in

units of MeV.

SyStem Ethres VFD Eextra AV Ediss
%7r+122Sn 2284 2144 140 92 40
%7r+1328n 2262 213.6 126 72 4.7
%7r+136Xe 2468 231.0 158 93 54

Figure 4 shows the dissipated energies calculated from
Eq. (2) for the *°Zr+'?*Sn system with different E.,.
In all the cases, the dissipated energy monotonically in-
creases as colliding nuclei approach to each other.

Furthermore, we analyze the origin of the fusion hin-
drance. Following Refs. [16, 17], we define the extra-push
energy Eexya from TDHF calculations as the difference be-
tween the fusion threshold energy Egs and the frozen
density potential barrier Vgp, that iS, Eextra = Ethres — VED-
For this purpose, we used the TDHF trajectory at the fu-
sion threshold energy. In this case, at the relative distance
where we stop extracting potential and energy dissipation
(hereafter we denote this relative distance as Ryqp), be-
cause of small remaining kinetic energy, we can identify
the origin of the extra-push energy obtained with TDHF
as the dissipated energy Egiss and change in potential en-
ergy AV at Ry, from the frozen density potential barrier,
that is, AV = V(Rop) — Vrp. In Table 1, we summarize
the different energies obtained from the present analysis
for the %Zr + 1241328n and %Zr + 136Xe systems. In any
systems, these energies were obtained from the TDHF tra-
jectory at Eyes. As mentioned above, increase of potential
and dissipated energies are calculated at Ryp. Finite val-
ues (~ 15MeV) of the extra-push energies are obtained in
any systems. We confirm that the fusion hindrance exists
in these systems, which is consistent with earlier experi-
mental observations [5]. It is clearly seen in Table 1 that
the increase of potential AV is about two times larger than
the dissipated energy for all the systems. We conclude
from this analysis that the main contribution to the extra-
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push energy is the increase of extracted potential. Energy
dissipation plays an important role as expected, but is not
sufficient to explain the fusion hindrance of those systems.

4 Summary

We have studied the fusion hindrance in heavy systems
with a microscopic TDHF model. We have applied our
method of directly extracting nucleus—nucleus potential
and energy dissipation to fusion reactions in heavy sys-
tems. Our method is based on the assumption that complex
mean-field dynamics can be reduced to classical equa-
tion of motion with suitable choice of collective coor-
dinate. We show that no potential barrier is observed
and the obtained potential monotonically increases in the
%7r+124Sn system. These behaviors are different from
that in light and medium-mass systems and from the
frozen density potential. Furthermore, we have analyzed
the %Zr + 32Sn and %°Zr + 13°Xe systems. We have cal-
culated the extra-push energies of those systems and con-
cluded that main contribution to the extra-push energy is
from the increase of potential energy inside the frozen po-
tential barrier.
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