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Abstract We study for the first time the propagation of the
packets of plane waves of the Maxwell free field in the de Sit-
ter expanding universe as detected by an observer staying at
rest in his proper frame with physical de Sitter–Painlevé coor-
dinates. This observes an accelerate propagation of the wave
packet along to a null geodesic, laying out a severe exponen-
tial decay and a moderate dispersion, increasing exponen-
tially in time during propagation. The example we give is
the usual anisotropic Gaussian packet for which we present
a short graphical analysis pointing out the accelerated prop-
agation, decay and dispersion. Moreover, we show that the
observer perceives his horizon as a mirror stopping the wave
packets prepared on it and reflecting those prepared beyond
it.

1 Introduction

The light emitted by different cosmic objects is an impor-
tant source of empirical data which encapsulate information
about the cosmic expansion and possible peculiar veloci-
ties of the observed objects. Many studies are devoted to
the black hole shadows of various black holes in different
flat or expanding universes [1–30]. In contrast, the theory of
redshift [31,32] remains at the level of Lemaire’s equation
[33,34] proposed a long time ago for explaining the Hubble
law [35]. When the source has a peculiar velocity, the kinetic
corrections due to the Doppler effect are considered as in
special relativity [31]. Recently we proposed an improve-
ment of this approach replacing special relativity by our de
Sitter relativity [36,37], obtaining a rdshift formula having a
new non-trivial term combining the cosmological and kinetic
effects [38]. Moreover, we related the black hole shadow and
redshift for the Schwarzschild [39] and Reissner–Nordstrom
[40] black holes moving with arbitrary peculiar velocities in
the de Sitter expanding universe.

a e-mail: icotaescu@yahoo.com (corresponding author)

In all these models the photons are considered as classical
massless particles moving along null geodesics since we do
not have yet a complete quantum theory of light propagating
in curved space-times, despite much progress in studying
the Maxwell equations in different manifolds including the
de Sitter one. On such space-times of various dimensions,
the Maxwell equations were studied either in local charts
(called here frames) with static coordinates [41–45] or in
comoving frames [46,47]. Other studies were devoted to the
Maxwell field involved in the cosmological particle creation
in Friedmann–Lemaître–Robertson–Walker (FLRW) space-
times [48–57].

A particular case of FLRW space-time is the expanding
portion of the (1 + 3)-dimensional de Sitter manifold known
as the de Sitter expanding universe. Based on previous results
concerning the de Sitter conserved quantities [59–61], the
quantization of the free Maxwell field [46] and the whole
QED [58] in the de Sitter expanding universe was performed
applying the method of the canonical quantization in radi-
ation, or Coulomb, gauge, well known from the flat case
[63]. Recently, one of us proposed the quantum theory of
redshift [62] focusing on the expectation values of the con-
served one-particle operators but ignoring the propagation.
For this reason we devote the present paper to the propagation
of the Maxwell wave packets in the de Sitter expanding uni-
verse, thus completing the theory of the Maxwell free field
canonically quantized in this background.

The starting point is the conformal covariance of the
Maxwell equations allowing us to construct an electrody-
namics in the de Sitter comoving frames with conformal
coordinates taking over all the well-known results of the rel-
ativistic electrodynamics in Minkowski space-time [46]. The
only problem here is that the Lorentz condition is no longer
conformally covariant in any gauge having this property only
in the radiation gauge. This means that we must use exclu-
sively this gauge when we transfer the results from the flat
case in the conformal frames of the de Sitter expanding uni-
verse. Moreover, as mentioned, in this gauge we have the
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opportunity of performing the quantization of the Maxwell
free field in canonical manner, as in special relativity [63].
Note that by using this method we do not affect the gen-
eral gauge covariance of the whole theory which helps one
to restore the mentioned gauge after isometries. The princi-
pal difference is that, instead of the Poincaré isometry group
of special relativity, we have now SO(1,4) isometries whose
generators become the one-particle operators of the quantum
theory [46] with specific physical meaning [58,61].

In the de Sitter expanding universe there are physical
frames with de Sitter–Painlevé coordinates [64,65], formed
by the proper, or cosmic, time and physical space coordi-
nates giving the physical distances measured by observers
staying in the origins of these frames. The physical coordi-
nates may be related to the conformal ones through trans-
formations depending on time which may change the time
evolution picture of the quantum theory [66–68]. For avoid-
ing this difficulty, we set the initial conditions at the time
t0 when the scale factor of the expanding portion satisfies
a(t0) = 1 since then the physical and conformal space coor-
dinates coincide [62]. In this approach we may use conformal
coordinates for describing the prepared packets but physical
ones in observer’s proper frames where the wave packets are
detected.

In what follows we focus on the propagation of the pack-
ets of plane waves of the Maxwell free field in the de Sit-
ter expanding universe paying attention to a pair of sensi-
tive technical problems which are crucial in this approach.
The first one is related to the momentum-dependent phase
of the plane wave solutions of the Maxwell equations which
must depend explicitly on the initial conditions in order to
ensure the correct flat limit of our approach [62]. The second
problem is related to the detector measuring the wave packet
which has to select only the radiation emitted by a remote
source. For doing so we assume that the detector filters the
momenta along a given direction determining the properties
of the detected one-dimensional wave packet [62].

The results we obtain in observer’s proper frames with
physical coordinates show that the packets of plane waves
propagate accelerated, their maximum intensities following
null geodesics. Moreover, these have an exponential decay
during propagation such that the ratio of the emitted and
detected maximum intensities depends on the redshift z as
(1 + z)4. A moderate dispersion of the wave packets can
also be derived analytically and pointed out by a graphical
analysis. In addition, the horizon of the observer detecting
the wave packet is perceived as a mirror stopping the wave
packets prepared on it and reflecting those prepared beyond
it.

We start in the second section with the canonical quan-
tization of the Maxwell field in the radiation gauge giving
the mode expansion in terms of plane wave solutions of
the momentum–helicity basis. Furthermore, we define the

Maxwell wave packets in conformal frames showing how
these can be detected filtering one-dimensional wave packets.
The next section is devoted to the measurement of these wave
packets in observer’s proper frames with physical coordinates
where we derive their field strength, stress energy tensor and
intensity. The example we give is of the genuine anisotropic
Gaussian packet in momentum representation for which we
perform a brief graphical analysis. Finally, we present some
concluding remarks.

Here we use the natural Planck units with c = h̄ = G = 1

and the notations of Refs. [46,62], denoting by ωH =
√

�
3 c

the de Sitter Hubble constant (frequency). The Hubble time
tH = 1

ωH
and the Hubble length lH = c

ωH
will have the same

form in these units.

2 Wave packets in conformal frames

The (1+3)-dimensional de Sitter manifold, M = M+∪M−,
is a hyperboloid embedded in a (1+4)-dimensional pseudo-
Euclidean manifold that can be covered by two local charts
interpreted as the expanding (M+) and, respectively, collaps-
ing (M−) spatially flat FLRW universes [69]. In what follows
we consider the comoving frames of the expanding portion,
M+, equipped with two sets of local coordinates, i.e. the con-
formal pseudo-Euclidean ones, {tc, xc}, and the physical de
Sitter–Painlevé coordinates, {t, x}. In the conformal frame
we have the conformal time tc < 0 and the conformal Carte-
sian spaces coordinates xic (i, j, k, . . . = 1, 2, 3), known as
the comoving space coordinates [69], giving the line element

ds2 = gμν(xc) dxμ
c dxν

c = 1

ω2
H tc

2

(
dtc

2 − dxc · dxc
)

. (1)

The de Sitter–Painlevé coordinates [64] on M+ can be intro-
duced directly by substituting

tc = − 1

ωH
e−ωH t , xc = xe−ωH t , (2)

where t ∈ (−∞,∞) is the proper, or cosmic, time, while the
xi are the physical Cartesian space coordinates of an observer
staying at rest in origin. In this frame the line element

ds2 = gμν(x) dxμdxν

= (1 − ω2
Hx

2) dt2 + 2ωHx · dx dt − dx · dx (3)

points out the observer’s horizon at ω−1
H such that the con-

dition |x| < ω−1
H is mandatory for the positions that can be

observed.
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In the frames with combined coordinates, {t, xc}, the met-
ric takes the FLRW form

ds2 = dt2 − a(t)2 dxc · dxc, a(t) = eωH t , (4)

where a(t) is the scale factor of the expanding portion M+
which can be rewritten in the conformal frame,

a(tc) ≡ a[t (tc)] = − 1

ωH tc
, (5)

as a function defined for tc < 0.

2.1 Maxwell wave packets

The cornerstone of our approach is the conformal covari-
ance of the Maxwell equations allowing us to take over all
the results of special relativity in the comoving frames with
conformal coordinates, {tc, xc}, of the de Sitter expanding
universe [46]. Moreover, for imposing the Lorentz condi-
tion, which is not conformally covariant, we must choose an
electromagnetic potential Ac

μ in the radiation gauge,

Ac
0 = 0, ∂xic

Ac
i = 0, (6)

in which the Maxwell equation takes the same form as in the
flat case,

(∂2
tc − �c)A

c
i = 0. (7)

Then the corresponding quantum field, Ac
i , can be expressed

in terms of plane wave solutions as [46]

Ac
i (xc) = Ac (+)

i (xc) + Ac (−)
i (xc)

=
∫

d3k
∑
λ

[ei (nk, λ) fk(xc)a(k, λ)

+[ei (nk, λ) fk(xc)]∗a†(k, λ)
]
, (8)

where a(k, λ) are the field operators in momentum represen-
tation, ei (nk, λ) are the polarization vectors while

fk(xc) = 1

(2π)3/2

1√
2k

eiδ(k)−iktc+ik·xc , (9)

are the fundamental solutions of the d’Alambert equation (7)
depending on the momenta k = knk (with k = |k|). The
phase

δ(k) = ktc0 − k · xc0, (10)

is given by the initial condition showing that the field was
prepared in xc0 at the time tc0. Thus we obtain the same solu-
tion as in the flat case but with a new momentum-dependent

phase which cannot be ignored as long as the energy operator
on M+ depends on its form [46,62].

The functions fk(xc), assumed to be of positive frequen-
cies, and those of negative frequencies, fk(x)∗, satisfy the
orthonormalization relations [46]

( fk, fk′) = − (
f ∗
k , f ∗

k′
) = δ3(k − k′), (11)(

fk, f ∗
k′

) = 0, (12)

with respect to the Hermitian form

( f, g) = i
∫

d3xc f ∗(tc, xc)
↔
∂tc g(tc, xc), (13)

where we denote f
↔
∂ g = f ∂g − g∂ f .

The polarization vectors e(nk, λ) in the gauge (6) must be
orthogonal to the momentum direction,

k · e(nk, λ) = 0, (14)

for any polarization λ = ±1. We remind the reader that the
polarization can be defined in different manners independent
of the form of the scalar solutions fk. In general, the polariza-
tion vectors have c-number components which must satisfy
[70]

e(nk, λ) · e(nk, λ′)∗ = δλλ′ , (15)
∑
λ

ei (nk, λ) e j (nk, λ)∗ = δi j − ki k j

k2 . (16)

Under such circumstances we can perform the canonical
quantization assuming that the field operators fulfil the stan-
dard commutation relations from which the non-vanishing
ones are [46,62]

[a(k, λ), a†(k ′, λ′)] = δλλ′δ3(k − k ′). (17)

Moreover, we consider a unique vacuum state, |0〉, of the
Fock space such that

a(k, λ) |0〉 = 0, 〈0| a†(k, λ) = 0. (18)

Then the sectors with a given number of particles may be con-
structed using the standard methods for obtaining the gener-
alized momentum–helicity basis of the Fock space. Thus we
can say that in the de Sitter expanding universe the canoni-
cal quantization of the free Maxwell field can be done in the
gauge (6) just as in Minkowski space-time [63] where this
simple method prevents one of using the Gupta–Bleuler for-
malism [71,72]. Moreover, as in the flat case, we can verify
that this method is compatible with the covariance under the
SO(1, 4) isometries since after each isometry we can per-
form a suitable gauge transformation for restoring the men-
tioned gauge.
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A simple model which save us from complicated calcula-
tions is that of the one-particle wave packets. In our Heisen-
berg picture these are given by the time-independent one-
particle states,

|α〉 =
∫

d3k
∑
λ

αλ(k) a†(k, λ)|0〉, (19)

defined by the square integrable functions in momentum rep-
resentation αλ(k) which must satisfy the normalization con-
dition

〈α|α〉 =
∫

d3k
∑
λ

|αλ(k)|2 = 1. (20)

The corresponding ’wave functions’

Ac
i (xc) = 〈0|Ac

i (xc)|α〉
=

∫
d3k

∑
λ

ei (nk, λ) fk(xc)αλ(k) (21)

define normalized wave packets having the norm

||Ac||2 = δi j

(
Ac
i , A

c
j

)
=

∫
d3k

∑
λ

|αλ(k)|2 = 1, (22)

resulting from Eqs. (11) and (12).
The expectation values of the one-particle operators in the

state |α〉 can be calculated simply as

〈α|X |α〉 = δi j

(
Ac
i , X̂ Ac

j

)
, (23)

avoiding the tedious algebra of field operators. For example
for the momentum operators P̂i = −i∂xic we may write,

δi j

(
Ac
i , (P̂

i )n Ac
j

)
=

∫
d3k(ki )n

∑
λ

αλ(k)2, (24)

and similarly for the Pauli–Lubanski operator [62]. The
energy operator has a more complicated form, depending
on the phase of the functions αλ(k) [46,62].

2.2 Preparing and detecting wave packets

Let us analyze how an observer O measures in his proper
frame {tc, xc}O a wave packet prepared by another observer
O ′ in his frame {tc, x′

c}O ′ . We simplify the geometry by
choosing the space axes of these two frames parallel with
the orthonormal frame {e1, e2, e3} such that the origin O ′ is
translated with respect to O , as

x′
c = xc + d, (25)

with the translation parameter d = e3 d which has the direc-
tion O ′O .

In this set-up we assume that the observer O ′ prepares the
state |α〉 in his proper comoving frame at the initial time

tc0 = − 1

ωH
→ t0 = 0, (26)

when a = 1 and, consequently, the conformal and physi-
cal space coordinates coincide. This choice guarantees that
the expectation values of the conserved operators calculated
at this time in the conformal frame keep their forms in the
physical frame.

As the packet is prepared in the origin of the frame
{t ′c, x′

c}O ′ at the time (26) the phase (10) takes the form

δ′(k) = − k

ωH
. (27)

Then the wave packet

Ac ′
i (xc) = 1

(2π)3/2

∫
d3k√

2k
e
−ik

(
tc+ 1

ωH

)
+ik·xc

×
∑
λ

ei (nk, λ)αλ(k) (28)

has a correct flat limit since limωM→0

(
tc + 1

ωH

)
= t . Note

that we meet similar properties in the case of the rest frame
vacua of the massive fields we proposed recently [73–76],
which fix suitable phases ensuring correct flat limits.

In applications it is convenient to introduce the polariza-
tion angle σ(k) substituting

αλ=1(k) = α(k) cos σ(nk), (29)

αλ=−1(k) = α(k) sin σ(nk), (30)

taking into account that the new real valued function α(k) is
normalized,

∫
d3k α(k)2 = 1. (31)

Thus we can say that any wave packet is determined by two
scalar functions α(k) and σ(nk).

Once the wave packet is prepared this evolves causally
until an ideal apparatus measures some of its parameters
[77]. The detector of O must select only the photons coming
from the source O ′ whose momenta are parallel with e3. This
means that the domain of momenta measured by O is [62]

� =
{
k

∣∣∣∣−
�k

2
≤ k1 ≤ �k

2
, − �k

2
≤ k2 ≤ �k

2
, k3 > 0

}

(32)
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where �k is a small quantity. Then we may evaluate the
integrals over � as.

∫

�

d3kF(k) =
∫ �k

2

− �k
2

dk1
∫ �k

2

− �k
2

dk2
∫ 0

−∞
dk3F(k1, k2, k3)

� (�k)2
∫ ∞

0
dkF(0, 0, k), (33)

according to the mean value theorem.
Under such circumstances, the observer O filters the one-

dimensional packet [62]

Ac
i (tc, x

3
c ) = 1√

κ

∫ ∞

0
dk

∑
λ

ei (λ) f̃k(tc, x
3
c )αλ(0, 0, k)

(34)

along the third axis. The constant

κ =
∫ ∞

0
dk

∑
λ

αλ(0, 0, k)2. (35)

ensures the normalization since the functions α(0, 0, k) are
no longer normalized. The new functions

f̃k(tc, x
3
c ) = 1√

2π

1√
2k

eiδ(k)−iktc+ikx3
c , (36)

are orthonormal with respect to the new Hermitian form

(
f̃ ; g̃

)
= i

∫
dxc f̃ ∗(tc, x3

c )
↔
∂tc g̃(tc, x

3
c ). (37)

As in our experiment we select only the momenta oriented
along e3, the polarizations vectors e (±1) = 1√

2
(e1 ± ie2)

are in the plane {e1, e2}. Moreover, since here the functions
αλ are those of Eq. (28) we may use the substitutions (29)
and (30), which now read

αλ=1(0, 0, k) = α(0, 0, k) cos σ, (38)

αλ=−1(0, 0, k) = α(0, 0, k) sin σ, (39)

where the functions α satisfy

∫ ∞

0
dk α(0, 0, k)2 = κ, (40)

as it results from Eq. (35). Now σ = σ(e3) denotes the con-
stant polarization angle of the direction e3 giving the polar-
ization unit vector

e(σ ) = e(1) cos σ + e(−1) sin σ. (41)

On the other hand, from the point of view of the observer
O the wave packet is prepared at the time (26) in xc0 = −d

such that the phase (10) becomes [62]

δ(k) = − k

ωH
+ k · d. (42)

Thus we arrive at the final form of the potential of the one-
dimensional packet

Ac
i (tc, x

3
c ) = ei (σ )A(Xc), (43)

having the fixed direction along the unit vector e(σ ) and
depending on the amplitude

A(Xc) = 1√
2πκ

∫ ∞

0

dk√
2k

e−ikXc α(0, 0, k) ∈ C, (44)

where

Xc = tc + 1

ωH
− x3

c − d. (45)

This amplitude represents the principal integral we have to
solve for defining the wave packet.

3 Wave packets in physical frames

Our principal goal is to study how the observer O measures
in the origin of his proper frame, {t, x}O , the propagation of
the one-dimensional wave packet selected from an arbitrary
wave packet prepared in the origin of the frame {t, x}O . These
frames have physical coordinates (2) such that the translation
(25) gives the time-dependent translation

x′ = x + d(t), d(t) = d eωH t , (46)

where d is now the translation parameter at the initial time
t0 = 0. Then we can find that the velocity of O ′ with respect
to O , v(t) = ḋ(t) = ωHd(t), complies with the velocity law,
which is confused sometimes with the Hubble one [31,32].
Now we understand why the choice of the initial time t0 = 0
when the wave packet is prepared simplifies the parametriza-
tion of our set-up.

3.1 Propagating wave packets

As the potentials cannot be measured directly we must look
for relevant quantities as the wave intensity or the density
of energy which must be derived now in the frame {t, x}O .
For simplicity we consider the plane polarization fixing the
polarization angle

σ(e3) = π

4
→ e(σ ) = e1, (47)
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such that we are left only with the component Ac
1 of the

potential (43). This generates the components in the frame
{t, x}O ,

A0(t, x) = ∂xic
∂t

Ac
i (tc, x

3
c ) = −ωH x

1e−ωH t A(X),

A1(t, x) = ∂xic
∂x1 A

c
i (tc, x

3
c ) = e−ωH t A(X),

A2(t, x) = A3(t, x) = 0, (48)

where A is the amplitude (44) depending on the new variable

X = 1 − e−ωH t

ωH
− x3e−ωH t − d, (49)

obtained from Eq. (45) after the substitution (2). These poten-
tials satisfy the Maxwell equation and the Lorentz condi-
tion in the frame {t, x}O where the field strength, Fμν =
gμαgνβ(∂αAβ − ∂β Aα), reads

F = e−2ωH t∂X A(X)

×

⎛
⎜⎜⎝

0 1 0 0
−1 0 −ωH x2 −(1 + ωH x3)

0 ωH x2 0 0
0 1 + ωH x3 0 0

⎞
⎟⎟⎠ . (50)

Furthermore, we derive the stress energy tensor components

Tμν = Fμ·α
∗Fαν − 1

4
gμνFβ·α

∗
Fα·β, (51)

which can be written as

T = e−4ωH t |∂X A(X)|2

×

⎛
⎜⎜⎝

1 ωH x1 ωH x2 p
ωH x1 ω2

H (x1)2 ω2
H x

1x2 ωH x1 p
ωH x2 ω2

H x
1x2 ω2

H (x2)2 ωH x2 p
p ωH x1 p ωH x2 p p2

⎞
⎟⎟⎠ , (52)

where p = 1 + ωH x3. It is not difficult to verify that this
satisfies the conservation rule ∇μTμν = 0.

Hence we obtained the complete theory of the Maxwell
free field in physical frames of M+ whose physical quantities
(50) and (52) remain invariant under the gauge transforma-
tions,

Aμ(x) → Aμ(x) + ∂μφ(x), (53)

in these frames. Thus the initial restriction imposed by the
gauge (6) does not work in physical frames where the poten-
tial has the components defined by Eq. (48) up to an arbitrary
gauge (53).

For studying the propagation of our wave packet we focus
on the intensity which coincides with the density of energy,

I (t, x) = δi j F
0i ∗F0 j ≡ T 00, (54)

introducing the factorization

I (t, x) = e−4ωH t I0(X), I0(X) = |∂X A(X)|2, (55)

and rewriting in a simpler form, x3 → x . Thus we separate
the exponential decay from the function I0(X) depending
only on the amplitude (44). In what follows we construct
this amplitude by using only positive definite test functions
α(k) which guarantee that |∂X A(X)| ≤ |∂X A(X)|X=0. Con-
sequently, the function I0(t, x) has an absolute (or global)
maximum Im(t) = e−ωH t I0(0) in the point

xm(t) = 1

ωH

[
(1 − ωHd)eωH t − 1

]
, (56)

where X = 0. Remarkably, this is just the equation of the null
geodesics passing through O ′ and O [78,79]. Once the wave
packet is prepared at t = 0 in the point x = xm(0) = −d, its
maximum propagates arriving in O at the time

t f = − 1

ωH
ln(1 − ωHd), (57)

when xm(t f ) = 0.
The exponential factor produces the decay of the maxi-

mum intensity from Im(0) = I0(0) up to

Im(t f ) = (1 − ωHd)4 I0(0), (58)

which decreases with the distance d. Thus we find that
the emitted and detected maximum intensities are related
through the binomial depending on the redshift z. Indeed,
according to the Lemaître equation of Hubble-s law we may
write

1 + z = a(t f )

a(0)
= 1

1 − ωHd
→ Im(t f ) = Im(0)

(1 + z)4 , (59)

showing the opportunity of estimating the emitted maximum
intensity, Im(0), in terms of the measured maximum intensity,
Im(t f ), and redshift. Similarly, we deduce the distance O ′O
at the moment t f when the wave packet is detected in O reads

d(t f ) = d

1 − ωHd
= (1 + z) d, (60)

as predicted by Lemaître’s equation and recovered explicitly
in Refs. [38,39].
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The space dispersion of the wave packet, δx(t), measures
the width of the function I (t, X) at a given time. This depends
on the width δX of the function I0(X), which is a constant
quantity depending on the profile of this function. Then,
according to Eq. (49), we deduce that the physical disper-
sion, δx(t) = δXeωH t , increases exponentially in time from
δx(0) = δX up to δx(t f ) = (1 + z)δX .

The velocity of the wave packet is that of its maximum
intensity,

vm(t) = ẋm(t) = (1−ωHd)eωH t

⎧
⎨
⎩

> 0 if d < ω−1
H

= 0 if d = ω−1
H

< 0 if d > ω−1
H

, (61)

resulting from Eq. (56). Hereby we understand that O
receives only the packets with vm(t) > 0, prepared inside
the horizon. Otherwise, O perceives the horizon as trapping
or reflecting the wave packets prepared on or beyond it. Inside
the horizon the propagation is accelerated having the accel-
eration am(t) = v̇m(t) = ωHvm(t), which complies with
a Hubble type rule. Consequently, the velocity is increasing
from the initial value vm(0) = 1 − ωHd up to the speed of
light vm(t f ) = 1 detected by O . Note that for the observer
O ′ the velocity of the prepared wave packet is also the speed
of light, since from his point of view d ′ = 0.

Thus we described completely the propagation of the
detected wave packets whose specific features have to be
studied in each particular case separately as in the next exam-
ple.

3.2 Anisotropic Gaussian wave packet

Let us consider now that O ′ prepares the anisotropic Gaus-
sian packet in momentum representation defined by the real
valued function

α(k) = α1(k1)α2(k2)α3(k3), (62)

where

αi (k
i ) =

(
a2
i

π

) 1
4

e− a2
i
2 (ki−k̄i )2

, ai , k̄
i > 0, i = 1, 2, 3,

(63)

which satisfies the normalization condition (31). Important
conserved quantities observed by O ′ are the expectation val-
ues of the momentum components

P ′ i =
∫ ∞

0
dk ki α(k)2 = k̄i , (64)

and the corresponding dispersions

dispP ′ i =
∫ ∞

0
dk (ki )2α(k)2 −

(
k̄i

)2 = 1

2a2
i

(65)

calculated according to the general rule (24).
The observer O filters the wave packet measuring only the

momenta in the domain (32) such that the new wave function
α(0, 0, k) will give the constant (40) that now reads

κ =
∫ ∞

0
dk α(0, 0, k)2

= a1a2

2π
e−a2

1 (k̄1)2−a2
2 (k̄2)2

[
1 + erf(a3k̄

3)
]
. (66)

With its help we derive the expectation value of the momen-
tum component

P3 = 1

κ

∫ ∞

0
dk kα(0, 0, k)2 = k̄3 + β

a3
= P ′ 3 + β

a3
, (67)

where the constant

β = e−(a3k̄3)2

√
π

[
1 + erf(a3k̄3)

] (68)

takes values in the domain 0 < β ≤ π− 1
2 as long as a3k̄3 >

0. The corresponding dispersion,

dispP3 = 1

κ

∫ ∞

0
dk k2α(0, 0, k)2 − (P3)2

= dispP ′ 3
(

1 − 2βa3k̄3 − 2β2
)

, (69)

spans the domain

(
1 − 2

π

)
dispP ′ 3 ≤ dispP3 ≤ dispP ′ 3. (70)

The expectation values of the energies of the emitted and
detected photon as observed by O are derived in Ref. [62]
where we show that these comply with the Lemaître rule of
Hubble’s law.

The space-time behavior of the Gaussian wave packet can
be studied since in this case the integral (44) is known. In our
notations this can be expressed in terms of modified Bessel
functions K as

A(X) =
√

β

2π

√
ξ e−ξ2

K 1
4

(
−ξ2

)
, (71)

where

ξ = 1

2

(
X

a3
+ i a3k̄

3
)

(72)

depends on our principal variable X , given by Eq. (49). This

amplitude is convergent since this behaves as |ξ |− 1
2 for large
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Fig. 1 Profiles of the intensity I (t, x) of the Gaussian wave packet
prepared in O ′ (with a3 = 0.005 and k̄3 = 100) as observed by O at
consecutive epochs. In the left panel d = 0.3 and �t = 0.0713, while
in the right panel d = 0.6 and �t = 0.1832

Fig. 2 Space dispersion of the profiles of I0(t, x) of the Gaussian wave
packet prepared in O ′ (with a3 = 0.005 and k̄3 = 100) as observed by
O at consecutive epochs. In the left panel d = 0.3 and �t = 0.0713,
while in the right panel d = 0.6 and �t = 0.1832

values of |ξ | while the singularity in ξ = 0 of the function
K 1

4

(−ξ2
)

is avoided as long as |ξ | ≥ 1
2a3k̄3 > 0 [80]. With

its help we construct the intensity (55) observing that this
behaves as |ξ |−3 when |ξ | → ∞. Now we may plot the
profiles of these functions at consecutive times for studying
how this wave packet evolves.

We perform our graphic analysis in the physical frame
{t, x}O by using Hubble units in order to avoid extremely
large or small numbers. For the physical distances we use
the Hubble length lH such that the horizon is at |x | = 1.
The time is measured in units of Hubble’s time tH while for
momenta we introduce the unit pH = ωH (i.e. h̄ωH

c in SI
units). Thus we obtain intuitive profiles of the wave packets,
pointing out their principal features, but far from the physical
reality. In Fig. 1 we show how this wave packet propagates
when this is prepared at two different distances, d = 0.3
and, respectively, d = 0.6. The decay and acceleration are
obvious but the dispersion is hidden by this decay. However,
we may pint out the dispersion by plotting the function I0(X)

as in Fig. 2 where we see that the dispersion is increasing with
the propagation time (57). The horizon effects are illustrated
in Fig. 3.

Fig. 3 Horizon effects of the Gaussian wave packet with a3 = 0.009
and k̄3 = 100 plotted at consecutive epochs with �t = 0.9197. In the
left panel the intensity of the wave packet prepared on horizon remains
static while the packet prepared beyond the horizon appears as being
reflected

Finally, we observe that the packet filtered by O depends
only on the parameters a3 and k̄3 of the degree of free-
dom along the third axis. This is because the factorization of
the function (62) guarantees the independence of the space
degrees of freedom.

4 Concluding remarks

Resorting to the canonical quantization in radiation gauge we
constructed in premier the quantum theory of the plane wave
packets of the Maxwell free field propagating in the de Sit-
ter expanding universe, studying how these are detected by
observers staying at rest in the origins of their proper frames
with physical coordinates. We have shown that the observer’s
detector filters a one-dimensional wave packet propagating
accelerated, dispersing exponentially and having a maximum
intensity affected by an exponential decay during propaga-
tion. This decay leads to the rule (59) allowing us to estimate
the maximum intensity of the prepared wave packet. We must
specify that our preliminary calculations indicate that, apply-
ing the same method, we find that this relation holds in any
spatially flat FLRW space-time.

It is remarkable that in this approach the horizon effects
may be pointed out analytically as the wave packets pre-
pared on observer’s horizon remain static while these pre-
pared beyond his horizon appear as being reflected (as in Fig.
3) such that these cannot be observed. This intuitive behavior
is one of the advantages of the physical coordinates we use
here. Note that these coordinates are suitable for studying the
local relative motion rather than general cosmologies where
the FLRW coordinates are preferred.

Concluding, we may say that the present paper completes
the quantum theory of the Maxwell field in de Sitter expand-
ing universe we proposed so far [46,62]. The next step may
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be the generalization of this approach to the spatially flat
FLRW space-times which have conformal frames where we
can take over the results of the relativistic electrodynamics
in Minkowski space-time. Moreover, in these manifolds we
can introduce physical coordinates regardless the difficulties
related to possible evolving observer’s horizons. The only
impediment seems to be the momentum-dependent phase of
the fundamental plane wave solutions, which must be fixed
in each particular case separately. Thus we may have the per-
spective of a complete quantum theory of the Maxwell field
propagating in various expanding universes of interest in the
actual cosmology.
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