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Abstract

Gluonic van der Waals interaction between color singlet hadrons can

be described in QCD, and is equivalent to electromagnetic interaction

between two neutrally charged atoms. Due to this fact, this thesis

presents a detailed calculation of the energy resulting of electromag-

netic interaction between two hydrogen atoms. The calculations for

gluonic van der Waals interactions are mentioned qualitatively to give

a fundamental understanding, since they are expected to be important

in hadron or nuclei interactions with heavy quarkonium states which

are still not well understood. Without going into detail, we will discuss

some experimental data of photo- and hadroproduction of quarkonia at

low energies to motivate the analysis of gluonic interacting processes.

Zusammenfassung

Gluonische van der Waals Wechselwirkung zwischen farbneutralen Ha-

dronen kann in der QCD beschrieben werden und ist in gewisser Wei-

se ähnlich zu der elektromagnetischen Wechselwirkung von neutralen

Atomen. Aufgrund dessen wird in dieser Arbeit eine detaillierte Berech-

nung der aus der elektromagnetischen Wechselwirkung resultierenden

Energie in Abhängigkeit des Abstandes zweier Wasserstoff Atome im

Rahmen der Quantenmechanik für kleine Abstände, sowie der QED

für große Abstände präsentiert. Die Erweiterung auf QCD Prozesse ist

rein qualitativ erläuert und soll prinzipiell das Interesse an solchen Pro-

zessen begründen, die auf gluonischen van der Waals Kräften basieren.

Ohne zu sehr ins Detail zu gehen, werden zudem einige experimen-

telle Ergebnisse diskutiert um die Motivation gluonische Prozesse zu

untersuchen zu fundieren.
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1 Introduction

The aim of this bachelor thesis is to give a description of forces between color

singlet hadrons, i.e. colorless hadrons. The interaction treated in this thesis

is the strong interaction, with its framework the Quantum Chromodynamics.

The study of neutral charged atoms is the equivalent QED process and

will help to understand the behaviour of two color singlet hadrons. The

first part of this thesis will be a description of the main principles of Quan-

tum Chromodynamics, which contains a short mathematical view on strong

interactions, as well as an introduction to two basic concepts of Quantum

Chromodynamics - Asymptotic Freedom and Confinement. The introduc-

tion also contains a perspective on experiments and why it is important and

interesting to study color singlet hadron interaction. The main focus has

been set on quarkonia-nuclei scattering.

In chapter 2 the energy due to induced dipole-dipole interaction between

two neutral charged hydrogen atoms separated by R is derived for two dif-

ferent distances [1]. We will see, that the R−6-dependence [2] changes to a

R−7-dependence [3, 4] if we go from small to big distances. The transition is

at a separation distance of approximately cτ = c~/∆E, for the atom specific

excitation energy ∆E.

The last part is a qualitative sketch of what is possible in gluonic van der

Waals interaction within a suitable framework the (p)NRQCD , and what

we can learn from QED calculations. The appendix contains all calculations

in details especially an accurate calculation of some essential tensor integrals

in dimensional regularization. At this point it is mentioned that throughout

this thesis natural units are used, i.e. c = ~ = 1.
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1.1 Quantum Chromodynamics: A Gauge Theory

Strong interaction is a fundamental interaction between quarks and glu-

ons, as well as an interaction between gluons itself. Quarks as spin-1
2 parti-

cles obey the Dirac-equation.The starting point therefore is the Lagrangian

for Dirac-fields

L = Ψ̄(iγµ∂µ −m)Ψ . (1)

Experiments have shown, that quarks carry a flavour quantum number and

a strong interaction specific quantum number, called color. For each flavour

three different colors exist. For simplicity the Lagrangian (1) contains only

one flavour, which is represented by the color triplet Ψ. Quantum Chromo-

dynamics is a gauge theory, which means it has to be invariant under local

gauge transformations. From a particle physics point of view the force is

mediated by particles, called gauge bosons or, in the case of QCD, gluons.

Gluons are described in this theory by gauge fields [5].

To create an invariant Lagrangian under local gauge transformation let us

assume the following transformation

Ψ→ UΨ , (2)

with U ∈ SU(3), which stands for the three dimensional special unitary

group, i.e. U † = U−1 and det(U) = 1. Each of those matrices can be written

as

U = eiΘaTa , (3)

with parameters Θa ∈ R and complex matrices Ta called generators.

Going further to local transformations, the parameters Θ are now dependent

on the position in space Θ(x), so that
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Ψ→ U(x)Ψ(x) = eiΘa(x)Ta (4)

which leads to the problem that ∂µΨ′(x) 6= U(x)∂µΨ(x) therefore (1) is

not invariant under this transformation. The problem can be solved if one

replaces ∂µ by the covariant derivative which transforms as

D′µΨ′(x) = U(x)DµΨ(x) . (5)

The ansatz for this purpose is

Dµ = ∂µ − ig
λa
2
Gaµ(x) , (6)

introducing some additional gauge fields Gaµ and a parameter g which

will later be related to the coupling strength, as well as the Gell-Mann ma-

trices λa, with Ta = λa
2

1. The additional part in this expression leads to a

quark-gluon interaction.

If we assume an infinitesimal transformation U = 1 + iTaΘa the gauge

fields transform as

G
′a
µ = Gaµ +

1

g
∂µΘa + fabcG

b
µΘc . (7)

To describe the dynamics of the newly introduced gauge fields, a new kinetic

term has to be added to the Lagrangian. The ansatz for this interaction term

is

Fµν = DµTaGaν −DνTaGaµ =
i

g
[Dµ,Dν ] ≡ F aµνTa . (8)

We can see by this definition that the trace of this expression is invariant

under a transformation Fµν → UFµνU−1 and is therefore a good candidate

1Appendix A.1
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for the Lagrangian of G-fields

LW = −1

2
Tr(FµνFµν) = −1

4
F aµνF

a,µν . (9)

Inserting F aµν = ∂µG
a
ν − ∂νG

a
µ + gfabcG

b
µG

c
ν we would see, that this La-

grangian now gives a self-coupling of the gluon fields.

The final invariant Lagrangian then is

LQCD = Ψ̄ (iγµDµ −m) Ψ− 1

4
F aµνF

a,µν . (10)

1.2 Running Coupling Constant

In the previous chapter 1.1 we mentioned the coupling constant g. This

constant can be analogously defined as it is in QED. The QED-coupling con-

stant in lowest order is αQED = e2

4π . If we included higher order loop terms,

we would notice a dependence on the internal momentum Q. Summing up

all corrections with one loop accuracy, we end up with a geometric series

and see that the coupling constant of QED

α(Q2) ≡ α(Q2
0)

1− α(Q2
0)

4π β0 log Q2

Q2
0

(11)

has changed with respect to its primary definition, with β0 = 4
3

∑
f Q

2
f >

0 and some experimental value α(Q2
0). We see from the sign of the loga-

rithm that for increasing Q2 the coupling constant also increases. For small

Q2, however, the denominator increases, so the coupling constant is getting

smaller.

Defining the coupling constant for strong interactions similarly to QED

αs = g2s
4π we get an expression for the coupling constant, which is based

on Gluon-Quark interactions, but since in QCD gluon-gluon interactions

are possible as well, we have another non-abelian term
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αS(Q2) =
αs(Q

2
0)

1 +
αs(Q2

0)
4π (11− 2

3nf ) log Q2

Q2
0

, nf : # flavours , (12)

where we again included only loop corrections with one loop accuracy

[6, 7]. In contrary to the QED coupling constant the sign in front of the

logarithm is negative, which has serious consequences, as we will see consec-

utively. The fine structure constant, or coupling constant is the expansion

parameter in QFT.

Asymptotic Freedom. Examining this result, we notice some interest-

ing properties of the coupling constant. For Q2 → ∞, which is equivalent

to the distance becoming smaller, one finds that αs(Q
2) → 0. For small

distances between quarks, they can be treated as “free”, which is referred

to as Asymptotic Freedom, in other words the coupling between quarks is

getting weaker [8].

Confinement. For some Q2 = Λ2
QCD = Q2

0 exp
(

−12π
(33−2nf )αs(Q2

0)

)
we see

that the coupling constant diverges and can be rewritten

αS(Q2) =
12π

(33− 2nf ) log Q2

Λ2
QCD

(13)

which clearly shows this divergent behaviour. ΛQCD often refers to the

QCD scale and has a value of ΛQCD ' (213 ± 8)MeV for 5 active quark

flavors and an experimental input of αS(M2
Z) = 0.1184 ± 0.0007, with the

mass of the Z-boson MZ [9]. For αS � 1, or |Q2| � Λ2
QCD, it tells us,

that perturbative QCD can be used [10, 11]. In the neighbourhood of this

value and below, QCD becomes non-perturbative so that other methods are

required to get a valid result for QCD processes. The strong interaction

realm is thus given for distances around 1/ΛQCD. A descriptive explanation

for Confinement can be given from a phenomenological point of view. In

a quarkonium state the potential between the interacting quarks can be



1 INTRODUCTION 8

described via the Cornell potential

V (r) = −a
r

+ br , (14)

where r is the effective radius of the quark-antiquark pair, and a and b

some parameters. The first part corresponds to a one-gluon exchange be-

tween the quark and anti-quark, whereas the second part is known as the

Confinement part. We see from that Confinement part, that energy enor-

mously increases with increasing r and makes a separation only possible,

if the energy is high enough to create another quark-antiquark pair, which

compensate the colors of the primary quarks. This idea states that every

single object which freely appears is colorless, in other words a quark can

never be separated and appear as an asymptotic state. The same form of

the potential in (14) can be calculated in effective field theories which give

the potential in form of Wilson loops as shown by W. Fischler [12]. Using

such theories one would obtain a linear term dominating for large distances

and a short distance determining term with−4
3
αS(R)
R .

The principle of colorless objects is shown in the following figure [13]

blue

antiblue

green

antigreen
red

antired

Figure 1: Hadron-colors

The colors represented by vectors have to add to zero (the summated

arrows have to point to the origin). This means that for mesons the only

possibility is a combination of a color and its anti-color and for baryons a

combination of all colors, respectively anti-color.



1 INTRODUCTION 9

1.3 Role and Importance of Gluonic van der Waals Interac-

tion

Promising experiments to analyse gluonic van der Waals interaction are

quarkonia-nuclei scattering [14]. Plenty of studies investigate the scattering

of J/ψ at nuclei. The advantage of J/ψ over other quarkonia states is the

long mean lifetime and since it is the first discovered stable state of quark-

anti-quark interaction there is lots of experimental data available. This me-

son is a quarkonium state, consisting of a charm and an anti-charm quark,

therefore called a charmonium state with a mass of 3097 MeV.

The interest in analysing Jψ-nucleon scattering is that it is expected to

interact via meson exchange and via gluonic van der Waals interaction and

therefore offers a good experimental setting to research the currently not

fully understood theory of strong interactions [15]. S. Brodsky [16] dis-

cussed the importance of gluonic van der Waals interaction of Jψ scattering

at nuclei and arrived at the conclusion that the interaction via π meson

exchange and DD̄2 intermediate state interaction can neglected compared

to gluon exchange. He also proposed a promising method to study J/ψ

scattering in the reaction π+d → J/ψpp. In comparison to the common

production process of photoproduction γp → ψp, the introduced method

does not only have a non negligible total cross section compared to those of

photonproduction but offers the possibility to measure scattering processes

near threshold energies.

Another promising experiment at the FAIR facility at the GSI is the PANDA

experiment. FAIR is an accelerator which provides the experiment with an

antiproton beam. PANDA in particular has lots of different questions to

solve but in this context we shall only discuss hadronic interaction studies.

Other studies are non-perturbative QCD in general, an analysis of the

formfactors of nuclei as well as determination of in-medium properties3

2D-Meson: The lightest particle containing a charm quark
3Such as the origin of hadron masses in the context of spontaneous chiral symmetry
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which can be achieved via different nuclear targets which provides a broad

range of charm physics with nuclei. The hadronic interaction studies are

based on D-meson interaction and the J/ψ dissociation. If the antiprotons

have enough energy for higher mass charmonium states which decays into

open charm we will get some insights about D-meson interaction with nuclei

inside the target material.

The J/ψ dissociation in hadron collisions is mainly based on gluonic pro-

cesses, hence new experimental data about gluon structure functions in nu-

clei can be gathered. The expected cross section for this experiment is

little model dependent for antiproton momenta of approximately 4 GeV. At

higher momenta such as 6.2 GeV which allow ψ′ resonant production we can

observe the inelastic process ψ′N → J/ψN .

As discussed above the gluonic interaction of Jψ is supposed to dominate

in elastic scattering processes. The PANDA experiment is therefore an up-

and-coming opportunity to analyse these gluonic interactions, i.e. the still

challenging description of strong interaction.

breaking in QCD
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2 Van der Waals Forces Between Neutral Atoms

The interesting point of having two neutrally charged atoms with electric

and magnetic polarizability αE , respectively βM separated by a distance

R (Figure (2.1)), is that an electromagnetic interaction exists nonetheless,

the van der Waals interaction. The polarizability describes the strength of

dipole moments of an atom, due to external electromagnetic fields. We will

see that this is the property responsible for van der Waals-interaction and

is defined as follows [17]

αE = 2
∑
n,n 6=0

|〈n|e~r · r̂′E |0〉|
2

E0 − En
, (15)

where the product of ~r, the spatial vector for the electron displacement

within the atom, and r̂′E , the direction of the electromagnetic field, is evalu-

ated in the eigenstates of the atom, that is En are the energy eigenstates of

the atom and |n〉 the corresponding states [18]. The magnetic polarizability

can be defined analogously

βM = 2
∑
n,n6=0

|〈n|~s · r̂′B|0〉|
2

E0 − En
, (16)

now being r̂′B the direction of the magnetic field and ~s the spin of the

atom.

In this chapter we will discuss two different approaches to the problem by

focusing on large and small distances R which requires different methods.

The easiest system of that kind consists of two hydrogen atoms and is stud-

ied below.

First the system is analysed quantum mechanically [19], which gives a small

range behaviour for this system. On the contrary the long range behaviour

is obtained by methods of quantum field theory.
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2.1 London Force: Quantum Mechanical Calculation

A B

r
r

1

2

R

Figure 2: The set up

The vectors r1 and r2 refer to the separation of the electron from the proton

of the first (A) and second (B) hydrogen atom. Electrons as well as nucleons

are Dirac-particles, hence spin 1/2-particles, therefore the atoms can have

spin as well, but for convenience it is neglected at this point.

The first part will be to calculate the energy of this system. The most

basic object of this calculation is the Hamiltonian. The entire Hamiltonian

then reads

H = − 1

2m

(
52

1 +52
2

)
− e2

r1
− e2

r2
+
e2

R
+
e2

r12
− e2

r1B
− e2

r2A
, (17)

where we can identify

H0 = − 1

2m

(
52

1 +52
2

)
− e2

r1
− e2

r2
(18)

which only contains the sum of internal electron-proton interaction of

atom A and atom B, whereas

H ′ =
e2

R
+
e2

r12
− e2

r1B
− e2

r2A
(19)
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represents the mixed interactions, i.e. the electron-electron, proton-

proton and the opposite electron-proton interactions. rxy stands for the

absolute value of the vector from particle x to particle y, i.e. R = |rA− rB|,
r12 = |r1 − r2|, r1B = |r1 − rb| and r2A = |r2 − rA| in which rX goes from

the origin to the center of atom (X).

For the sake of an argument let us assume that R � a0 = 4πεo/me, with

a0 being the Bohr-radius. Since we are dealing with hydrogen atoms for

which r1, r2 ∼ a0, the H0-interaction dominates, whereas H ′ can be treated

as perturbation, as we will see later on when expanding the Hamiltonian in

terms of the dimensionless parameter ri/R. The following part will give a

derivation of the energy E(R) stored in this system in terms of the distance

between both atoms.

We see thatH0 is composed of two independent hydrogen atom-Hamiltonians,

hence the wavefunction u0 is given by the product of isolated hydrogen atoms

in the ground state 4

u0 (r̄1, r̄2) = u100 (r̄1) · u100 (r̄2) . (20)

Therefore the ground state energies of both isolated atoms add up to the

total energy of the system

E0 = − e
2

a0
. (21)

To tread the perturbation H ′ as easily as possible and still obtain a suitable

result, we expand (19) to get

4Which each have a ground state energy of E0 = − e2

2a0
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H ′ = e2

(
1

R
+

1

r12
− 1

r1B
− 1

r2A

)
=

=
e2

R

{
1−

(
1− 2z1

R
+
r2

1

R2

)1/2

−
(

1 +
2z2

R
+
r2

2

R2

)1/2

+

(
1 +

2(z1 − z2)

R
+

(x1 − x2)2 + (y2 − y1)2 + (z2 − z1)2

R2

)−1/2
}

≈ e2

R3
(x1x2 + y1y2 − 2z1z2) . (22)

Using this expansion of the first order in perturbation

∆E(1) = 〈0|H ′|0〉 = 0 (23)

vanishes. The ground state of this hydrogen system is only dependent

on |x|, which means that this integral has to vanish, due to a parity trans-

formation x̄→ −x̄.

At second order in perturbation theory the correction to the energy is [2]

∆E(2) =
∑
n,n6=0

|〈0|H ′|n〉|2

E0 − En
(24)

This is difficult to calculate analytically because the eigenstates |n〉 contain

Laguerre polynomials which cannot be generalized calculated in the matrix

element 〈0|H ′|n〉 to eventually end up with an explicit form on an infinite

series in n. As an alternative I present some approaches, which give a lower

and an upper limit. At this point it is alluded that as En > E0 the second

order energy correction is always negative, or in physical expressions always

attractive!

To estimate a lower limit of (24), we substitute En by E∗ = −e2/(4a0), which

is the lowest energy of the combined hydrogen system not being equal to the
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ground state energy to construct a constant, n-independent denominator:

∆E(2) ≥
∑
n,n 6=0

|〈0|H ′|n〉|2

E0 − E∗
. (25)

This estimation is valid for a system for which the energy En in the state

|n〉 is higher than in the ground state because by this substitution above the

denominator gets smaller, thus the estimated value gives a lower bound. The

next step would be to simplify the numerator to get rid of the summation

over n:

∑
n,n 6=0

∣∣〈0|H ′|n〉∣∣2 =
∑
n

∣∣〈0|H ′|n〉∣∣2 − ∣∣〈0|H ′|0〉∣∣2 = 〈0|H ′2|0〉 = 6 · a
6
0e

4

R6
,

(26)

where we used the completeness relation and (22) to evaluate the expectation

value of H ′2, which is

〈0|H ′2|0〉 =
e4

R6
〈0|
(
x2

1x
2
2 + y2

1y
2
2 + 4z2

1z
2
2 + mixed terms

)
|0〉 . (27)

The mixed terms vanish again following the same parity argumentation as

above. The expectation values are the same for x−, y− and z-coordinates

〈0|H ′2|0〉 =
6e4

R6
〈0|x2

1x
2
2|0〉 . (28)

If we use this result we will end up with

∆E(2) ≥ −8a5
0e

2

R6
. (29)

To get an upper limit it is necessary to use the variation method, since there
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are no easy estimations we could use as we did for the lower limit. A trial

function for this method is given by [20]

ψ = u100 (r̄1) · u100 (r̄2)
(
1 +AH ′

)
, (30)

with a parameter A which has to be deduced.

After some analytical calculations 5 we get

∆E(2) ≤ E0 + 2 〈0|AH ′2|0〉
1 + 〈0|A2H ′2|0〉

. (31)

Using the Taylor-expansion in lowest order

H ′2 =
e4

R6

(
x2

1x
2
2 + y2

1y
2
2 + 2z2

1z
2
2 + mixed Terms

)
, (32)

and dropping the mixed terms, which vanish due to parity anyway.

After finding that (31) reaches a minimum at A = E−1
0 the final result is

∆E(2) ≤ −6e2a5
0

R6
. (33)

In summary the second-order energy correction is bounded by

−8a5
0e

2

R6
≤ ∆E(2) ≤ −6e2a5

0

R6
. (34)

2.1.1 Explanation

At the basis of this calculations are some assumptions we will discuss later

on in chapter (2.3). To get a feeling why this correction occurs we connect

a classical interpretation to the quantum mechanical perturbation theory.

The first order energy correction corresponds to the constant dipole-dipole

interaction of both atoms and is the zero energy of this system. The constant

dipole of the first atom b develops an electromagnetic field ∼ db
r3

proportional

5Appendix A.2.1
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to its dipole moment db which interacts with the constant dipole da = −exa
of the second atom a, where xa is the charge separation. Calculating the

dipole moments 〈d〉 = 〈−ex〉 = 06 in the ground state of the atoms, we

can verify in a simple way that the energy due to a constant dipole-dipole

interaction is equal to zero

∆E(1) ∼ 〈dadb
r3
〉 = 0 . (35)

The second order in perturbation corresponds to the self-interaction of both

atoms. The first atom develops an instantaneous dipole moment, which

induces a dipole in the second atom which is proportional to the electric

field ~d = 4παbE
~E7 and the arising field acts back on the first atom. Since

the electric field of the first dipole db is proportional to ∼ db
r3

, the induced

dipole moment of the second atom a will show the same dependence on

r. Transferring this considerations to the electric field of the second atom

b, it will show due to the induced dipole a proportionality ∼ dbda
r6

. These

considerations finally result in an overall energy of

∆E(2) ∼ −
αaEα

b
E

r6
. (36)

The induced dipole orients towards the instantaneous dipole in exactly the

opposite orientation, which explains the minus sign corresponding to an

attractive force. Nonetheless it is remarkable that two neutral charged atoms

separated by a distance R develop an attractive force, which is called van

der Waals force. For this separation distances, for which the interaction can

be assumed to be instantaneous, the van der Waals force is also referred

to as London force, named after F. London who calculated this force first

[21, 17].

6Parity x→ −x: 〈x〉 = −〈x〉 in the ground state
7The polarizability is assumed to be isotropic. This linear relation is therefore an

approximation
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2.2 Casimir-Polder force: Quantum Field Theoretical Cal-

culation

In quantum field theory both atoms are represented by a scalar field Φ . p1

is the momentum of atom A and p2 the momentum of atom B. The primed

quantities stand for the momenta after the photon absorption/emission.

Each photon carries a momentum q−k, respectively k. As before we neglect

the spin of interacting atoms.

Figure 3: Feynman diagram for two photon exchange

Thinking about the energy in this system, it can be argued, that for any

constant, weak electric field Ē the relations Ē = −∇̄Φ for some potential Φ,

as well as for the polarization P̄ = 4παEĒ with αE being the polarizability

of an atom holds. The energy change due to a change in the electric field is

δE
(1)
E =

∫
dxρ(x)Φ = −

∫
d3xρ(x)x̄ · Ē = −P̄ · Ē

= −4παEĒ · Ē = −4παE
E2

2
. (37)

This calculation can be done analogously for the energy change due to the

magnetic field δE
(1)
B = −4πβM

B̄2

2 and therefore the overall energy change is

[3]
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δE(1) = −1

2

(
4παEĒ

2 + 4πβM B̄
2
)
. (38)

Equation (38) indirectly tells us the underlying Hamiltonian. Using Ei =

−F 0i and Bi = −1
2ε

0iµνFµν the energy correction is equivalent to

δE(1) =

(
−4π(αE + βM )

2

)
F 0iF0i +

(
−4πβM

4

)
F 2 (39)

which can be generalized to

δE(1) = g1Mvaαv
b
βF

αγF βγ + g2FµνF
µν , (40)

with vaα = vbβ = (1, 0, 0, 0) being the velocities of atom A and atom B and

g1 = −4παa+αb
2M and g2 = −4παb4 the coupling constants and M = mamb

the product of the atom masses. During the further calculations we use a

heavy field approximation for Φi, which means pi ≈ p′i. The momentum is

given by pi = mvi with the four velocity introduced in eq. (40). Heavy field

approximation means that the particles are at rest compared to the photons.

This leads us to the Lagrangian

Lint = g1∂αΦ∂βΦFαγF βγ + g2Φ2F 2 , (41)

since it is the only Lorentz-scalar, which is quadratic in Fµν and Φ and

reproduces the energy above.

Based on the given Feynman diagram, it is essential for further calcula-

tions to determine the corresponding amplitude, i.e. the vertex of photon

annihilation and creation, which is given by [22]

(2π)4δ4(p1 − (q − k)− k − p′1)iMV = 〈k, q − k, p′1|Te−i
∫
dtHint |p1〉 . (42)
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This expression contains the physical behaviour of the involved particles

at those Feynman vertices and the pure interacting part is specified by

the initial and final states (hence the corresponding bra’s and ket’s of the

Fock space) and the interaction Hamiltonian. The delta-distribution on the

left hand side represents a fundamental principle in physic namely four-

momentum conservation, i.e. energy and momentum conservation at each

vertex.

In this notation the T operator stands for the time ordered product of what

it is acting on. Using the Taylor expansion of the exponential function

in lowest order of the coupling constants g1 and g2 and applying Wick’s

theorem which states that the time-ordered product of some expression is

equivalent to the normal-ordered sum of the original expression and all its

contractions, we first have to think about the contractions of all appearing

operators.

Expressing the field in terms of creation and annihilation operators a†p and

ap the scalar field is 8

Φ(x) =

∫
d3p

(2π)3

1√
2Ep

(
ape

ip·x + a†pe
−ip·x

)
. (43)

These operators are used to create a particle with momentum p, respectively

destroying a particle with momentum p, i.e. a†p |0〉 =
√

2Ep |p〉 with |0〉 be-

ing the vacuum state.

With this we can determine the contraction of the scalar fields

Φ(x) |p〉 = eip·x |0〉 , 〈p|Φ(x) = 〈0| e−ip·x , (44)

and its derivatives

8All operators in this chapter are given in the interaction representation
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∂µΦ(x) |p〉 = ipµe
ip·x |0〉 , 〈p| ∂µΦ(x) = 〈0| (−)pµe

−ip·x . (45)

So far we have dealt with the action of field operators acting on elements of

a momentum Hilbert space. Since we are assuming photon exchange, it is

necessary to work out how photon operators

Aµ(x) =
∑
k

∫
d3p

(2π)3

1√
2Ep

(
a†kε

µ
ke
ik·x + akε

µ∗
k e
−ik·x

)
, (46)

and its derivatives act on the photon space. In this notation ak and a†k
are still annihilation and creation operators now operating on the photon

space and εµk being the polarization.

Then we find

Aµ(x) |k〉 = εµ∗k e
−ik·x |0〉 and ∂νAµ |k〉 = −iεµ∗k k

νe−ik·x |0〉 . (47)

The same argumentation could be done with the analogue bra’s while keep-

ing in mind that the sign will change in the exponent of the exponential

function and the polarization will change over to its Hermitian conjugate.

Looking back at the Hamiltonian in eq. (41) we are interested in Fµν

Fµν |k〉 = (∂µAν − ∂νAµ) |k〉 = −i (εν∗kµ − εµ∗kν) e−ik·x |0〉 . (48)

Now that we know how to deal with those operators we are able to calcu-

late all required contractions and due to Wick’s theorem it is the only part

which contributes to this calculation, as one essential property of the normal

ordered product is that it vanishes in the expectation value.



2 VAN DER WAALS FORCES BETWEEN NEUTRAL ATOMS 22

Applying all contractions the careful reader would have noticed, that both

the Φ and F contractions give a symmetry factor of 2! so overall a factor of

4. Substituting in the contractions the amplitude reads (Notice another 1
2!

of the exponential’s Taylor-expansion)

(2π)4δ4(p1 − (q − k)− k − p′1)iMV = 2

∫
d4x
(
− g1p1αp1βε

γ∗
b (q − k)α−

− εα∗b (q − k)γ)
(
εaαk

β − εaβkα
)
ei(p1β−p1α+(k−q)+k))x−

− g2

(
εb∗ν (q − k)µ − εb∗µ (q − k)ν

)
(εν∗a k

µ − εµ∗a kν) ei(k+q−k)x
)
, (49)

and using the integral representation of the delta-distribution which can-

cels out on both sides we finally get

iMV = −2

(
g1

(
p1 · (q − k)(p1 · k)(ε∗b · εa)− (p1 · ε∗b)(p1 · k)((q − k) · εa)−

− (p1 · εa)(p1 · (q − k))(ε∗b · k) + (p1 · ε∗b)(p1 · εa)((q − k) · k)
)

+

+ g2

(
(ε∗a · ε∗b)(k · (q − k))− (k · ε∗b)(ε∗a · (k − q))−

− (ε∗a · (q − k))(k · ε∗b) + (ε∗a · ε∗b)(k · (q − k))
))

. (50)

Now reinserting the coupling constants g1 = −4παE+βM
2M and g2 = −4π βM4

and simplifying, i.e. combine the terms proportional to βM and αE where

we have used the four-vector notation p2
i = m2

i
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iMV = −2

(
4π

αE
2m2

i

{(
p1 · (q − k)εγ∗b − (p1ε̇

∗
b)(q − k)γ

)
×

×
(

(p1 · k)εa,γ − (p1 · εa)kγ
)}

+ 4π
αB
2m2

i

{
(ε∗a · ε∗b)

(
(p1 · (q − k))(p1 · k)−

− p2
1(k · (q − k))

)
+ (k · ε∗b)

(
p2

1(ε∗a · (q − k))− (p1 · εa)(p1 · (q − k))
)

+

+ (p1 · ε∗b)
(

(p1 · εa(k · (k − q))− (p1 · k)(εa · (q − k))
})

. (51)

If we used some algebra, we would see that the expression proportional to

αB is equal to 9

(εαβγδε∗αβkγp1,δ)(εαρσλε
ρ∗
b (q − k)σpλ1) . (52)

The εαβγδ is the Epsilon-Tensor, or Levi-Civita-Tensor, whereas the ε’s with

two indices remain the polarization vectors.

Let us now recall the primary problem and its corresponding Feynman di-

agram. Since we are still interested in some physical expressions we need

to transfer the ideas of this section in some measurable quantities, or let’s

say some quantities which fully determine the physical behaviour of this

system. In other words we need to compute the matrix-element of the 2

photon-exchange process

M(q) =
1

2!

∫
d4k

(2π)4

−iηαγ

k2
· −iη

βδ

(k − q)2
×Vertex a×Vertex b (53)

which contains a symmetry factor, as well as both photon-propagators.

Both vertices are given by eq. (51), where we have to take care of the

appearing momenta, by replacing p1 with p2 as well as k with −k and k− q
9Appendix A.2.2
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with q − k if we are going from Vertex a to Vertex b. For convenience

in the calculation of eq. (53) we factor out the polarization vectors, since

εµi εi,µ = εµ∗i ε
∗
i,µ = 1 so that we find

− i4π
m2
a

εα∗a ε
β∗
b

(
αaE

{
k · p1((q − k) · p1)ηαβ − (q − k)αp1,βk · p1

− p1,αkβ(q − k) · p1 + k · (q − k)p1,αp1,β

}
− βaM

{
ελγδα kγp1,δ)(ελβστ (q − k)σpτ1

})
(54)

for Vertex a, and

− i4π
m2
b

ε∗a,αε
∗
b,β

(
αbE

{
(−k) · p2((k − q) · p2)ηαβ − (−k)αpβ2 (k − q) · p2

− pα2 (k − q)β(−k) · p2 + (−k) · (k − q)pα2 p
β
2

}
− βbM

{
εαβγδ(−k)γp2,δ)(εαρσλ(k − q)σpλ2ηρα

})
(55)

for vertex b. As we can see we get some covariant expressions for the

four momenta after factoring out the polarization.

Evaluating eq. (53) with this information we get a pretty longish integral

to deal with

M(q) =
1

2!

(4π)2

m2
am

2
b

∫
d4k

(2π)4
· 1

k2(k − q)2
·
(
αbE

{
k · p2((k − q) · p2)ηαβ

− kβpα2 (k − q) · p2 − pβ2 (k − q)αk · p2 + k · (k − q)pα2 p
β
2

}
+

+ βbM (ελαγδkγp2,δ)(ε
βκµ
λ (k − q)κp2,µ) + αaE

{
k · p1((k − q) · p1)ηαβ

− (k − q)αp1,βk · p1 − p1,αkβ(k − q) · p1

+ k · (k − q)p1,αp1,β

}
− βaM (ελαστk

σpτ1)(ελβκµ(k − q)κpµ1 )
)
. (56)

After some calculations, i.e. expand eq. (56) and using the introduced
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loop integrals (Appendix C.3) where we write the products appearing in the

matrix element as pi · k = pµi kµ, as well as k2 = gµνkνkµ the final result is

then

M(q) = −Lq
4

240

[
23
(
αaEα

b
E + βaMβ

b
M

)
− 7

(
αaEβ

b
M + αbEβ

a
M

)]
. (57)

This result only contains the logarithmic dependency. There would be ad-

ditional constant terms, which are of no interest at this point. In order

to determine the potential, which we need to compare the result to the

quantum mechanical calculations of chapter 2.1, we Fourier-transform the

matrix-element via

V (R) = −
∫

d3q

(2π)3
M(q)e−iq̄·R̄ =

=
−23

(
αaEα

b
E + βaMβ

b
M

)
+ 7

(
αaEβ

b
M + αbEβ

a
M

)
4πR7

, (58)

where we used the Fourier-Integral∫
d3q

(2π)3
q4 ln(q2)e−iq̄·R̄ = − 60

πR7
. (59)

In order to calculate the energy variation to the interaction described by this

potential we use quantum mechanical perturbation theory in first order.

∆E1 = 〈0|V (R)|0〉 =
−23

(
αaEα

b
E + βaMβ

b
M

)
+ 7

(
αaEβ

b
M + αbEβ

a
M

)
4πR7

. (60)
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2.3 Explanation and Comparison to London Forces

We see that relativistic calculations lead to a different potential than the

non-relativistic. This effect is known as retardation and is due to the finite

speed of light. Using the Coulomb potential in non-relativistic quantum me-

chanical calculations of chapter (2.1), the interaction between both atoms

is assumed to be instantaneous. This approximation is legitimate for small

distances, i.e. the time photons need to travel between both atoms is very

small.

In the quantum field theoretical treatment however, the finite speed of light

plays a major role, since the atoms are separated too much to assume an

instantaneous interaction. The result is the long distance behaviour of van

der Waals forces between two neutral hydrogen atoms, first calculated by

H. B. G. Casimir and D. Polder [23], which is why it is also called Casimir-

Polder force.

To understand the reason behind this, we analyse the photon propagator
iηµν
p2+iε

in more detail. If we integrated over the p0 component, we would no-

tice two poles at p0 = ±
√
~p2 − iε in the complex plane. The residue theorem

states that the complex integral is completely determined by the enclosed

residues, assumed that in the limit R→∞, with R being the radius of the

semi-circle shaped integration path, the fraction of the imaginary part van-

ishes. Doing so we would obtain two results depending on which residue we

choose. The two propagators obtained are called the retarded and advanced

photon propagator. The retarded propagator describes a signal which trav-

els forward in time. The result of quantum field theory calculations which

therefore contains a time dependant effect due to the finite speed of the

signal.

Until last we have used the assumption of spinless interacting atoms. In

this context the question might arise what would happen to the result if
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non-zero spin particles interacted. The answer justifies the overall treat-

ment of spin zero atoms, since we would find that the potential still shows a

1/R7 dependency. The coefficient of eq. (58) suggests that we would obtain

another spin based constant in the numerator which is indeed the case.

A result valid for all discussed distances both results have to be matched.

The important question is where the transition takes place. One finds that

retardation effects become noticeable at τ = 1/∆E, with τ being the retar-

dation time and ∆E a fraction of the ionisation energy of one atom [24].
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3 Extension to QCD and Conclusion

The approach to electromagnetic interaction computations are based on a

two photon exchange leading us to a long range formula. A gluonic interac-

tion of two color singlet hadrons is based on a gluon exchange. Since both

hadrons are colorless and remain colorless the exchange of a single color

gluon is forbidden. The exchange of two gluons, however, which can be to-

gether in a color singlet state is not forbidden.

The arising question is how are the calculations done for electromagnetically

interacting atoms related to the case of strongly interacting hadrons and are

there finally gluonic van der Waals forces? [25]

To reveal some similar phenomenona of electromagnetic and strong interact-

ing processes we will have a look on the Yukawa potential which was primary

developed to describe an interaction due to the exchange of massive scalar

fields[26]

Vstr(R) ∼ g2

4π

e−Rm

R
, (61)

with a constant g and the mass m of the mediated particle. His concept

was to construct a potential which describes the observed finite range of

strong interaction. He finally came up with a result, which is based on the

assumption of meson exchange - at this time the pion exchange.

In fact we notice a similarity to the electromagnetic Coulomb potential

which can be fully recovered in the photon mass limit m → 0. However,

as we have stated in chapter 1.3 the force conditioned by meson exchange is

much smaller than forces of gluon exchange which is consistent with Yukawas

model due to a exp(−R) dependency.

Most of the theoretical theories are based on a long range potential in the

form of [27]
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Vstr(R) ∼ − C

RN
, (62)

with a model and framework dependent exponent N and some constant

C [28]. Y. Fujii and K.Mima [29] derived a static potential for a gluon

exchange between two color singlet hadrons. They used an effective Hamil-

tonian H for baryon-baryon scattering

H ∼ ψ̄ψF aµνF a,µν , (63)

with baryon fields ψ and gluon fields Fµν as introduced in chapter (1.1).

Wit h this Hamiltonian they computed the amplitudes for two, three and

four gluon exchange between baryons via dimensional regularisation. Com-

bining all amplitudes their calculated potential is

V (R) ∼ −R−7 , (64)

and has the same distance dependence like the electromagnetic poten-

tial and is referred to as the gluonic van der Waals potential. The effective

Hamiltonian in (63) looks also similar to the Hamiltonian in QED calcu-

lations but due to non-commutativity of the gluon fields there are more

Feynman diagrams, i.e. the already mentioned two, three and four gluon

exchange.
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4 Outlook

Through effective field theories the theoretical understanding of heavy quark-

antiquark systems near threshold witnessed a significant progress [30]. Due

to a small velocity v � 1, this system develops a hierarchy of widely spread

scales, m the hard scale, mv the soft scale, mv2 the ultrasoft scale, . . . .

By integrating out the scales above the energies we want to describe we

obtain a suitable framework for theoretical work. The effective theory af-

ter integrating out the hard scale is referred to as non-relativistic QCD.

Integrating out the next scale, the soft scale, the theory obtained is called

potential NRQCD, or (p)NRQCD.

As we have seen perturbative methods are dependent on which scale the

system is treated. The matching of these theories must therefore be treated

very carefully. By definition of heavy quarks, with m� ΛQCD, the matching

from QCD to NRQCD can always be done perturbatively. The perturba-

tive matching from NRQCD to (p)NRQCD is only possible if mv � ΛQCD

[31, 32]. These effective field theories therefore provide the appropriate

framework for specific energy settings, e.g. quarkonium-nuclei scattering

near threshold energies. [33]
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A Detailed Calculations and Descriptions

A.1 Gell-Mann Matrices and Structure Constants

The generators of SU(3) Lie group transformation matrices are the Gell-

Mann matrices λa, which are connected to the generators

Ta =
1

2
λa . (65)

The matrices λa are definied as follows

λa =

(
σa 0

0 0

)
, a = 1, 2, 3 and Pauli matrices σa (66)

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 (67)

λ6 =

(
0 0

0 σ1

)
, λ7 =

(
0 0

0 σ2

)
, λ8 =

1√
3

1 0 0

0 1 0

0 0 −2

 . (68)

These matrices are traceless, Hermitian and obey the normalization relation

tr(λiλj) = 2δij . (69)

Linked to those matrices are the structure constants which are defined over

Lie-Algebra properties of Gell-Mann matrices

[λi, λj ] = i2fijkλk . (70)
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The structure constants have the values

f123 = 1 , 458 = f678 =

√
3

2
,

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
. (71)

A.2 London and Casimir forces

A.2.1 Upper Limit via Variation Method

The trial function is given by

ψ(r̄1, r̄2) = u100(r̄1)u100(r̄2)
(
1 +AH ′

)
, (72)

for some parameter A. The variation method provides a possibility to

give some upper limit.

E′ ≤
∫∫

u0 (1 +AH ′) (H0 +H ′)u0 (1 +AH ′) d3r1dr
3
2∫∫

u2
0 (1 +AH ′)2 d3r1d3r2

, (73)

with a shorter notation u0 = u100(r̄1)u100 representing the ground state

of the system. The nominator of this expression can be rewritten in this

way ∫∫
u2

0

(
1 + 2AH ′ +A2H ′2

)
d3r1d

3r2 = 1 +A2 〈0|H ′2|0〉 (74)

because 〈0|H ′|0〉 = 0, as we have already determined.

Expanding the denominator and keeping all non-vanishing terms it looks

like
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∫∫
u0

(
1 +AH ′

) (
H0 +H ′

)
u0

(
1 +AH ′

)
d3r1dr

3
2 = E0 + 2A 〈0|H ′2|0〉 .

(75)

Combining these two results

E′ ≤ E0 + 2A 〈0|H ′2|0〉
1 +A2 〈0|H ′2|0〉

, (76)

and since 〈0|H ′|0〉 � 1 we can expand the denominator in a way

(
1 +A2 〈0|H ′2|0〉

)−1
= 1−A2 〈0|H ′2|0〉+O

(
〈0|H ′2|0〉2

)
, (77)

so we have than a fairly simplified term

E′ ≤ E0 + (2A− E0A
2) 〈0|H ′2|0〉 , (78)

so that the unknown parameter A can be determined via

∂E′

∂A

!
= 0⇒ A =

1

E0
. (79)

The upper limit is then

E′ ≤ −6e2a5
0

R6
. (80)

A.2.2 Levi-Civita-Tensor Representation in Matrix-Element

The Levi-Civita Tensor is in n-dimensions defined over the permutation of

its indices, i.e.
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εijkl... = εijkl... =


+1 if (ijkl. . . ) even permuation of (1,2,3,4. . . )

−1 if (ijkl. . . ) odd permuation of (1,2,3,4. . . )

0 otherwise

.

(81)

Hence it is equal to +1 if the indices are an even permutation of (1, 2, 3, 4 . . .),

−1 if it is an odd permutation and zero otherwise.

The expression in eq. (52) contains the product of two epsilon tensors.

Using the definition above one finds that

εijklεmnop = det


δim δin δio δip

δjm δjn δjo δjp

δkm δkn δko δkp

δlm δln δlo δlp

 . (82)

Applied to our problem

(εαβγδε∗αβkγp1,δ)(εαρσλε
ρ∗
b (q − k)σpλ1) (83)

the determinant looks like

δλβδ
σ
γ δ

ρ
δ + δλδ δ

σ
βδ

ρ
γ + δλγ δ

σ
δ δ

ρ
β − δ

λ
δ δ

σ
γ δ

ρ
β − δ

λ
γ δ

σ
βδ

ρ
δ − δ

λ
βδ

σ
δ δ

ρ
γ , (84)

using Laplace’s formula. Contracting this expression with the remaining

parts

(ε∗a · p1)((q − k) · k)(ε∗b · p1) + (ε∗a · (q − k))(k · ε∗b)p2
1+

+ (ε∗a · ε∗b) (k · p1) (p1 · (q − k))− (ε∗a · ε∗b) (k · (q − k)) p2
1−

− (ε∗a · (q − k)) (k · p1) (p1 · ε∗b)− (ε∗a · p1) (k · ε∗b) (p1 · (q − k)) , (85)
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or simplified

(ε∗a · ε∗b)
(

(k · p1) (p1 · (q − k))− (k · (q − k))
)
p2

1+

+ (ε∗b · k)
(

(ε∗a · (q − k)) p2
1 − (ε∗a · p1) (p1 · (q − k))

)
+

+ (ε∗b · p1)
(

(ε∗a · p1) (k · (q − k))− (ε∗a · (q − k)) (k · p1)
)
. (86)

Comparing this to eq. (51) it is exactly the result obtained during this

calculations. Since the epsilon-representation is much easier to handle and

work with, it is kept for further calculations.

B Rules for Feynman Diagrams

As customary these rules are used to create the corresponding matrix ele-

ment for some process in each of this theories. It is mentioned, apart from

the following rules, that each undetermined loop momentum gives an addi-

tional integral
∫
d4p/(2π)4, as well as fermion loops a factor of (−1) and a

process specific symmetry factor.

The underlying interaction Lagrangian for processes studied during quan-

tum field theoretical treatment of the primary problem is

Lint = g1∂αΦ∂βΦFαγF βγ + g2Φ2F 2 . (87)

The following listing shows a summary of the rules which we used for the

Feynman diagram 2.2.
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Photon propagator
−iηµν

q2 + iε

Vertex − i4π

m2
b

ε∗a,αε
∗
b,β

(
αbE

{
(−k) · p((k − q) · p)ηαβ −

− (−k)αpβ(k − q) · p− pα(k − q)β(−k) · p+

+ (−k) · (k − q)pαpβ
}
− βbM

{
(εαβγδ(−k)γp2,δ)

(εαρσλ(k − q)σpληρα)
})

External scalar 1 .

C Tensor-Integrals in Dimensional Regularization

C.1 General integrals

In further calculations there appear some essential integrals which are shortly

listed in this chapter. The following integral vanishes in dimensional regu-

larization, since it is scaleless.∫
ddk

(2π)d
k2α = 0 , α ∈ Z . (88)

There also appear some integrals which vanish, because of symmetric argu-

mentation.∫
ddk

(2π)d
k · q
k2

= −(−1)d
∫

ddk

(2π)d
k · q
k2

= 0 , for d = 4 . (89)

C.2 Master-Integral

The most important integral to evaluate the integral 56 is
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I0 ≡
∫

d4k

(2π)4

1

k2(k − q)2
. (90)

To get an integral, which is only dependant on the magnitude of the mo-

mentum k, we introduce Feynman-parameters [22]

1

AB
=

∫ 1

0
dxdy

δ(x+ y − 1)

(xA2 + yB2)2
. (91)

Applied to our problem it reads∫
d4k

(2π)4

∫ 1

0
dxdy

δ(x+ y − 1)

(xk2 + y(k − q)2)2
. (92)

Due to the delta-distribution x and y sum up to 1, so the denominator can

be completed to a full square

xk2 + y(k − q)2 = (k − yq)2 + (y − y2)q2 , (93)

and finally because of the translation invariance of the integral, the mo-

mentum can be shifted (k − yq)→ k, so the integral looks like∫
d4k

(2π)4

∫ 1

0
dxdy

δ(x+ y − 1)

(k2 + (y − y2)q2)2
. (94)

The integration over the momentum can be first calculated, so the interesting

part is ∫
d4k

(2π)4

1

(k2 + (y − y2)q2)2
(95)

which is an integral with a solely dependence on the momentum magni-

tude.

This is the point where the method of dimensional regularization comes



C TENSOR-INTEGRALS IN DIMENSIONAL REGULARIZATION 38

into play, since this integral obviously diverges in four dimensions. The

dimensional regularization act on the assumption that we deal with a d-

dimensional integral like ∫
ddk

(2π)d
1

(k2 −∆2)2
, (96)

where ∆2 = −(y − y2)q2.

This integral hast to be computed in Minkowski space, but for further calcu-

lations we need a Euclidean representation. To put things right we transform

this integral via Wick rotation, which gives us an additional factor of i. In

general a d-dimensional integration can be split up into an angle-dependent

and a magnitude-dependent part∫
ddk =

∫
dΩd

∫
dkkd−1 . (97)

Since the integral we deal with is only k-dependent the angle-integration

can be done separately. Using the definition of a d-dimensional Gaussian

integral

√
π
d

=

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxdexp

(
−

d∑
i=1

x2
i

)
(98)

which can be rewritten in a way like

√
π
d

=

∫
dΩd

∫ ∞
0

dxxd−1e−x
2

(99)

since its only dependence is x2.

Doing some transformations one gets for the integration over x
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∫ ∞
0

dxxd−1e−x
2

=

∫ ∞
0

dx(x2)
d−1
2 e−x

2
=

∫ ∞
0

d(x2)(x2)
d
2
−1e−x

2

=

∫ ∞
0

dy(y)
d
2
−1e−y =

1

2
Γ

(
d

2

)
, (100)

where it is used that d(x2) = 2x · dx and the definition of the Gamma

function. For some properties of the Gamma-function first read the next

section of the appendix, where I summarized the most important properties

for the following calculations.

Comparing both sides of equation (97) one can determine the representation

of the angle-integration

∫
dΩd =

2
√
π
d

Γ
(
d
2

) . (101)

Substituting this into the primary integral we get

∫
ddk

(2π)d
i

(k2 −∆2)2
=

2i
√
π
d

Γ
(
d
2

) ∫ dk
kd−1

(k2 −∆2)2
. (102)

The next task would be to calculate the simplified remaining integral which

after a transform into an integral over k2 and a substitution p = ∆2

k2−∆2 looks

like

1

2

∫ 1

0
dp∆−2

(
∆2

p
+ ∆2

)d/2−1

=
1

2
∆d−4

∫ 1

0
dp (1 + p)d/2−1 p−d/2+1

=
1

2
∆d−4 Γ

(
d
2

)
Γ
(
2− d

2

)
Γ (2)

,

(103)

where the definition of the Beta-function (eq. 147) is used.

The preliminary result is therefore
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∫
ddk

(2π)d
1

(k2 −∆2)2
=

i

(4π)d/2
Γ

(
2− d

2

)
∆d−4 . (104)

Reinserting ∆2 = −(y − y2)q2 the remaining part to calculate is

Γ
(
2− d

2

)
(4π)d/2

∫ 1

0
dx
(
−(x− x2)q2)

)d/2−2
, (105)

where we have inserted the afore calculated integral and substituted

y − y2 = x− x2 .

As we can see the integral has been transformed by dimensional regular-

ization to continuous function of the dimension d, with a pole at d = 4. To

avoid the divergence at d = 4 we set d = 4−2ε, which gives us a finite value

and let us identify the term responsible for the divergent behaviour. Since

we can now get rid of that term by renormalization methods, we are still

interested in converging terms. That is why we focus on terms which are

finite when taking the limit ε→ 0.

iΓ (ε)

(4π)2−ε

∫ 1

0
dx
(
−(x− x2)q2)

)−ε
, for d = 4− 2ε . (106)

The integrand can be rewritten in exp
(
−ε · ln(−q2(x− x2))

)
and taylor ex-

panded exp(x) ≈ 1 + x+O(x2) so that it should look like∫ 1

0
dx
(
1− ε · ln(−q2(x− x2))

)
+O(ε2) . (107)

With the expansion of the Gamma-function inserted and using (4π)ε =

1 + ε ln(4π) +O(ε2) we get (apart from a factor 1/(4π)2)
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lim
ε→0

(
1

ε
+ γE

)∫ 1

0
dx
(
1− ε · ln(−q2(x− x2))

)
(1 + ε ln(4π)) +O(ε2) .

(108)

As we can see here, the first part gives us the divergent part, which we could

eliminate and therefore drop at this point.

Since we are still interested in four dimensions, we take the limit ε→ 0

I0 = lim
ε→0

−iεΓ (ε)

(4π)2−ε ln(−q2) + const. =
−i

32π2
· 2L+ const. (109)

with L = ln(−q2).

C.3 Loop Integrals

Referring to the previous chapter one can express the following integrals

with the master-integral

I0 ≡
∫

ddk

(2π)d
1

k2(k − q)2
. (110)

The keyword is tensorial decomposition which assumes that the tensorinte-

grals are proportional to combinations of the metric tensor and the param-

eters which are not integrated over, i.e. the momentum q which results in

identification of proportionalities. The general form of the decomposition

is then contracted with different momenta and metric tensors to get actual

calculable integrals and finally a solvable system of equations.

The calculations are based on dimensional regularization of the master in-

tegral and since the integral is given up to the order O(ε2) the following are
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as well.10

∫
ddk

(2π)d
kµ

k2(k − q)2
=

1

2
qµI0 (111)

Proof. Using the principle of tensorial decomposition the integral is split up

like ∫
ddk

(2π)d
kµ

k2(k − q)2
= qµ · I11 , (112)

where I11 is an integral proportional to I0.

Contracting with qµ and using k · q = 1
2(k2 + q2 − (k − q)2) as well as

each scaleless integral is equal to zero (compare appendix A.1)

∫
ddk

(2π)d
k · q

k2(k − q)2
=

∫
ddk

(2π)d
k2 + q2 − (k − q)2

2 · k2(k − q)2

=
q2

2
I0

= q2 · I11 . (113)

Comparing the last two expressions one can see that

I11 =
1

2
I0 (114)

Plugging this into equation (112) we get the required result∫
d4k

(2π)4

kµ
k2(k − q)2

=
i

32π2
qµL + . . . . (115)

10The dots in the framed equations refer to the constant terms of the master integral
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∫
ddk

(2π)d
kµk

ν

k2(k − q)2
=

d

4(d− 1)
qµqνI0 −

q2

4(d− 1)
ηµνI0 (116)

Proof. ∫
ddk

(2π)d
kµkν

k2(k − q)2
= qµqνI21 + ηµνI22 . (117)

Contracting with qµqν and ηµν

∫
ddk

(2π)d
(k · q)2

k2(k − q)2
= q4I21 + q2I22 =

q4

4
I0 , (118)∫

ddk

(2π)d
k2

k2(k − q)2
= q2I21 + dI22 = 0 . (119)

Solving this system of equation finally gives us

I21 =
d

4(d− 1)
I0 , I22 = − q2

4(d− 1)
I0 . (120)

Substituting d = 4−2ε, expanding around ε = 0 and reinserting I0 leads

to

I21 = lim
ε→0

−i
(4π)2

{
1

3
+ ε

(
1

3
ln(4π) +

1

2
+

1

3
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

−i
32π2

2

3
L+ . . . , (121)

and
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I22 = lim
ε→0

iq2

4(4π)2

{
1

3
+ ε

(
1

3
ln(4π) +

2

3
+

1

3
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

iq2

32π2

1

6
L+ . . . (122)

finally gives

∫
d4k

(2π)4

kµk
ν

k2(k − q)2
=
−i

32π2

(
qµqν

2

3
L− q2ηµν

1

6
L

)
+ . . . . (123)

∫
ddk

(2π)d
kµkνkα

k2(k − q)2
=

2 + d

8(d− 1)
qµqνqαI0−

− q2

8(d− 1)
(ηµνqα + ηµαqν + ηναqµ) I0 (124)

Proof.∫
ddk

(2π)d
kµkνkα

k2(k − q)2
= qµqνqαI31 + (ηµνqα + ηµαqν + ηναqµ) I32 . (125)

After contracting with qµqνqα, qµηνα and calculating the arising integrals

the following system has to be solved

∫
ddk

(2π)d
(k · q)3

k2(k − q)2
= q6I31 + 3q4I32 =

1

8
q6I0 , (126)∫

ddk

(2π)d
(k · q)

(k − q)2
= q4I31 + (2q2 + d)q4I32 = 0 (127)

which gives us in the end
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I32 = − q2

8(d− 1)
I0 , I31 =

2 + d

8(d− 1)
I0 . (128)

Explicit for four dimensions

I31 = lim
ε→0

iq2

8(4π)2

{
1

3
+ ε

(
1

3
ln(4π) +

2

3
+

1

3
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

i

32π2

1

12
L+ . . . , (129)

and

I32 = lim
ε→0

i

(4π)2

{
− 1

2
− ε
(

2

9
ln(4π) +

2

9
+

2

9
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

−i
32π2

1

2
L+ . . . , (130)

so the integral is then

∫
d4k

(2π)4

kµkνkα
k2(k − q)2

=
i

32π2

(
−qµqνqα

1

2
L+

(ηµνqα + ηµαqν + ηναqµ)
1

12
q2L

)
+ . . . . (131)

∫
ddk

(2π)d
kµkνkαkβ
k2(k − q)2

=
d2 + 6d+ 8

16(d2 − 1)
qµqνqαqβI0 +

q2(d+ 2)

16(d2 − 1)
×

×
(
ηµνqαqβ + ηµαqνqβ + ηµβqνqα + ηναqµqβ + ηνβqµqα+

+ ηαβqµqν

)
I0 +

q4

16(d2 − 1)
(ηµνηαβ + ηµαηνβ + ηναηµβ) I0 (132)
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Proof.∫
ddk

(2π)d
kµkνkαkβ
k2(k − q)2

= qµqνqαqβI41 +
(
ηµνqαqβ + ηµαqνqβ+

+ ηµβqνqα + ηναqµqβ + ηνβqµqα + ηαβqµqν

)
I42

+
(
ηµνηαβ + ηµαηνβ + ηναηµβ

)
I43 . (133)

Contracting with qµqνqαqβ, qµqνηαβ and ηµνηαβ the system of equations

∫
ddk

(2π)d
(k · q)4

k2(k − q)2
= q8I41 + 6q6I42 + 3q4I43 =

q8

16
I0 , (134)∫

ddk

(2π)d
(k · q)2k2

k2(k − q)2
= q6I41 + (5 + d)q4I42 + (2 + d)q2I43 = 0 , (135)∫

ddk

(2π)d
k4

k2(k − q)2
= q4I41 + (2d+ 4)q2)I42 + (d2 + 2d)I43 = 0 (136)

has the solution

I41 =
d2 + 6d+ 8

16(d2 − 1)
I0 , I42 =

q2(d+ 2)

16(d2 − 1)
I0 , I43 =

q4

16(d2 − 1)
I0 .

(137)

For d = 4− 2ε the expanded coefficients

I43 = lim
ε→0

−i
(4π)2

q4

(
1

240
+ ε

{
1

240
ln(4π) +

1

225
+

1

240
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

−i
32π2

q4

120
L+ . . . , (138)
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I42 = lim
ε→0

−i
(4π)2

q2

{
1

40
+ ε

(
1

40
ln(4π) +

22

75
+

1

40
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

−i
32π2

q2

40
+ . . . , (139)

I41 = lim
ε→0

−iεΓ(ε)

(4π)4−ε

{
1

5
+ ε

(
1

5
ln(4π) +

29

300
+

1

5
γ

)
+

+O(ε2)

}
ln(−q2) + . . . =

−i
32π2

1

5
L+ . . . (140)

are reinserted in the primary equation to obtain

∫
d4k

(2π)4

kµkνkαkβ
k2(k − q)2

=
−i

32π2

{
qµqνqαqβ

1

5
L− (ηµνqαqβ + ηµαqνqβ+

+ ηµβqνqα + ηναqµqβ + ηνβqµqα + ηαβqµqν

)
q2 1

40
L

(141)

+
(
ηµνηαβ + ηµαηνβ + ηναηµβ

)
q4 1

120
L
}

+ . . . . (142)

C.4 Gamma Function

The Gamma-function is formally defined via

Γ(x) =

∫ ∞
0
dt tx−1e−t , (143)

for x ∈ R which leads to the functional equation

Γ(x+ 1) = x · Γ(x) . (144)

If x ∈ Z the Gamma function interpolates the factorial
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Γ(x+ 1) = x! . (145)

The asymptotic behaviour for x→ 0 is

Γ(x) =
1

x
− γ +O(x2) . (146)

Using this definitions one can define the Beta function

B(α, γ) ≡
∫ 1

0
dy yα−1(1 + y)−α−γ =

Γ(α)Γ(γ)

Γ(α+ γ)
. (147)

Proof.

Γ(α)Γ(γ) =

∫ ∞
0

e−uuα−1du

∫ ∞
0

e−vvγ−1dv =∫ ∞
0

∫ ∞
0

e−u−vuα−1vγ−1dudv . (148)

Substituting u = z · t and v = z(t− 1)

∫ ∞
z=0

∫ 1

t=0
e−z(zt)α−1(z(1− t))γ−1zdtdz =∫ ∞

0
e−zzα+γ−1dz

∫ 1

0
tα−1(1− t)γ−1dt . (149)

This shows

Γ(α)Γ(γ) = Γ(α+ γ)B(α, γ) . (150)



REFERENCES 49

References

[1] G. Feinberg, J. Sucher. General Theory of the van der Waals In-

teraction: A Model-Independent Approach. Phys. Rev., 2:2395, 1970.

[2] J. J. Sakurai, Jim Napolitano. Modern Quantum Mechanics. Pren-

tice Hall, 2007.

[3] Barry R. Holstein. Long Range Electromagnetic Effects involving

Neutral Systems and Effective Field Theory. arXiv:0802.2266, 2008.

[4] Timothy H. Boyer. Recalculations of Long-Range van der Waals

Potentials. Phys. Rev., 180:19, 1969.

[5] Wolfgang Hollik, Lothar Oberauer. Kern- und Teilchenphysik

Teil 2. http://www.e15.ph.tum.de/fileadmin

/downloads/teaching/kerne teilchen/13ss/KTA2.pdf, 2008.

[6] Massimiliano Procura. Quark Mass Dependence of Nucleon Ob-

servables and Lattice QCD. 2005.

[7] Mikhail Shifman. Understanding Confinement in QCD: Elements of

a Big Picture. arXiv:1007.0531 [hep-th], 2010.

[8] H. David Politzer. Asymptotic Freedom: An Approach to Strong

Interactions. Physics Report, 14:129–180, 1947.

[9] J. Beringer et al. (Particle Data Group). Review of Particle

Physics. Phys. Rev., 86, 2012.

[10] S. Mandelstam. General Introduction to Confinement. Physics Re-

ports, 67:109–121, 1980.

[11] Kenneth G. Wilson. Confinement of Quarks. Phys. Rev., 10:2445,

1974.



REFERENCES 50

[12] W. Fischler. Quark-Antiquark Potential in QCD. Nucl. Phys. B,

128:157, 1977.

[13] Bogdan Povh. Teilchen und Kerne: Eine Einführung in physikalische
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