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Abstract

Gluonic van der Waals interaction between color singlet hadrons can
be described in QCD, and is equivalent to electromagnetic interaction
between two neutrally charged atoms. Due to this fact, this thesis
presents a detailed calculation of the energy resulting of electromag-
netic interaction between two hydrogen atoms. The calculations for
gluonic van der Waals interactions are mentioned qualitatively to give
a fundamental understanding, since they are expected to be important
in hadron or nuclei interactions with heavy quarkonium states which
are still not well understood. Without going into detail, we will discuss
some experimental data of photo- and hadroproduction of quarkonia at

low energies to motivate the analysis of gluonic interacting processes.

Zusammenfassung

Gluonische van der Waals Wechselwirkung zwischen farbneutralen Ha-
dronen kann in der QCD beschrieben werden und ist in gewisser Wei-
se dhnlich zu der elektromagnetischen Wechselwirkung von neutralen
Atomen. Aufgrund dessen wird in dieser Arbeit eine detaillierte Berech-
nung der aus der elektromagnetischen Wechselwirkung resultierenden
Energie in Abhingigkeit des Abstandes zweier Wasserstoff Atome im
Rahmen der Quantenmechanik fiir kleine Abstéinde, sowie der QED
fiir grole Abstédnde présentiert. Die Erweiterung auf QCD Prozesse ist
rein qualitativ erlduert und soll prinzipiell das Interesse an solchen Pro-
zessen begriinden, die auf gluonischen van der Waals Kréften basieren.
Ohne zu sehr ins Detail zu gehen, werden zudem einige experimen-
telle Ergebnisse diskutiert um die Motivation gluonische Prozesse zu

untersuchen zu fundieren.
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1 Introduction

The aim of this bachelor thesis is to give a description of forces between color
singlet hadrons, i.e. colorless hadrons. The interaction treated in this thesis

is the strong interaction, with its framework the Quantum Chromodynamics.

The study of neutral charged atoms is the equivalent QED process and
will help to understand the behaviour of two color singlet hadrons. The
first part of this thesis will be a description of the main principles of Quan-
tum Chromodynamics, which contains a short mathematical view on strong
interactions, as well as an introduction to two basic concepts of Quantum
Chromodynamics - Asymptotic Freedom and Confinement. The introduc-
tion also contains a perspective on experiments and why it is important and
interesting to study color singlet hadron interaction. The main focus has

been set on quarkonia-nuclei scattering.

In chapter 2 the energy due to induced dipole-dipole interaction between
two neutral charged hydrogen atoms separated by R is derived for two dif-
ferent distances [1]. We will see, that the R~%-dependence [2] changes to a
R~"-dependence [3, 4] if we go from small to big distances. The transition is
at a separation distance of approximately ¢r = ch/AEFE, for the atom specific

excitation energy AL.

The last part is a qualitative sketch of what is possible in gluonic van der
Waals interaction within a suitable framework the (p)NRQCD , and what
we can learn from QED calculations. The appendix contains all calculations
in details especially an accurate calculation of some essential tensor integrals
in dimensional regularization. At this point it is mentioned that throughout

this thesis natural units are used, i.e. c=h = 1.
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1.1 Quantum Chromodynamics: A Gauge Theory

Strong interaction is a fundamental interaction between quarks and glu-
ons, as well as an interaction between gluons itself. Quarks as spin—% parti-
cles obey the Dirac-equation.The starting point therefore is the Lagrangian

for Dirac-fields

L=U(iry"d, —m)¥ . (1)

Experiments have shown, that quarks carry a flavour quantum number and
a strong interaction specific quantum number, called color. For each flavour
three different colors exist. For simplicity the Lagrangian (1) contains only
one flavour, which is represented by the color triplet ¥. Quantum Chromo-
dynamics is a gauge theory, which means it has to be invariant under local
gauge transformations. From a particle physics point of view the force is
mediated by particles, called gauge bosons or, in the case of QCD, gluons.

Gluons are described in this theory by gauge fields [5].

To create an invariant Lagrangian under local gauge transformation let us

assume the following transformation

U UT (2)

with U € SU(3), which stands for the three dimensional special unitary
group, i.e. UT = U~! and det(U) = 1. Each of those matrices can be written

as

U = ¢©ala (3)

with parameters ©¢ € R and complex matrices T, called generators.

Going further to local transformations, the parameters © are now dependent

on the position in space O(z), so that
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U — U(z)¥(z) = 9@)7Ta (4)

which leads to the problem that 9, V'(x) # U(x)0,¥(x) therefore (1) is
not invariant under this transformation. The problem can be solved if one

replaces d,, by the covariant derivative which transforms as

D, V' (z) = U(x)D,¥(z) . (5)

The ansatz for this purpose is

. )\CL a
D, =0, — zg?G#(x) , (6)

introducing some additional gauge fields G}, and a parameter g which
will later be related to the coupling strength, as well as the Gell-Mann ma-
trices Ag, with T, = % 1. The additional part in this expression leads to a

quark-gluon interaction.

If we assume an infinitesimal transformation U = 1 4 1,0, the gauge

fields transform as

‘a a 1 a c
Gl =G+ gau@ + farcGLOC . (7)

To describe the dynamics of the newly introduced gauge fields, a new kinetic
term has to be added to the Lagrangian. The ansatz for this interaction term
is

Fuw = DuT,G% — D,T,G% = — [D,, D, = FL T, . (8)

‘
g

We can see by this definition that the trace of this expression is invariant

under a transformation F,, — UF,,U ~1 and is therefore a good candidate

! Appendix A.1
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for the Lagrangian of G-fields

]' 1% 1 a a,uuv
L = —5Tr(Fu ") = ~ S F F" 9)

Inserting Fjj, = 0,G} — 0,G}, + gfachsz, we would see, that this La-

grangian now gives a self-coupling of the gluon fields.

The final invariant Lagrangian then is

. 1 a a, vV
Locp =¥ (iv"Dy —m) ¥ — ZF’“’F e (10)
1.2 Running Coupling Constant

In the previous chapter 1.1 we mentioned the coupling constant g. This
constant can be analogously defined as it is in QED. The QED-coupling con-
stant in lowest order is agrp = %. If we included higher order loop terms,
we would notice a dependence on the internal momentum (). Summing up
all corrections with one loop accuracy, we end up with a geometric series
and see that the coupling constant of QED

0(Q?) = ——) (1)

a(Q3) Q2
1-— 47TO 60 log Qig

has changed with respect to its primary definition, with Sy = % > f Q% >
0 and some experimental value a(Q3). We see from the sign of the loga-
rithm that for increasing Q2 the coupling constant also increases. For small
@Q?, however, the denominator increases, so the coupling constant is getting
smaller.

Defining the coupling constant for strong interactions similarly to QED

g2
47

on Gluon-Quark interactions, but since in QCD gluon-gluon interactions

ay = we get an expression for the coupling constant, which is based

are possible as well, we have another non-abelian term



1 INTRODUCTION 7

2 O‘s(Q(Q))
as(@) = — @ 2 Q?

. ny:# flavours (12)

where we again included only loop corrections with one loop accuracy
[6, 7]. In contrary to the QED coupling constant the sign in front of the
logarithm is negative, which has serious consequences, as we will see consec-
utively. The fine structure constant, or coupling constant is the expansion

parameter in QFT.

Asymptotic Freedom. Examining this result, we notice some interest-
ing properties of the coupling constant. For Q? — oo, which is equivalent
to the distance becoming smaller, one finds that as(Q?) — 0. For small
distances between quarks, they can be treated as “free”, which is referred
to as Asymptotic Freedom, in other words the coupling between quarks is

getting weaker [8].

—127
(33—2ny)as(Q7)
that the coupling constant diverges and can be rewritten

Confinement. For some Q? = AéCD = Q3 exp( ) we see

2y _ 127 13
os(@) = S (13)

A2QCD

which clearly shows this divergent behaviour. Agcp often refers to the
QCD scale and has a value of Agep ~ (213 £ 8)MeV for 5 active quark
flavors and an experimental input of ag(M2) = 0.1184 £ 0.0007, with the
mass of the Z-boson My [9]. For ag < 1, or |Q? > AéCD, it tells us,
that perturbative QCD can be used [10, 11]. In the neighbourhood of this
value and below, QCD becomes non-perturbative so that other methods are
required to get a valid result for QCD processes. The strong interaction
realm is thus given for distances around 1/Agcp. A descriptive explanation
for Confinement can be given from a phenomenological point of view. In

a quarkonium state the potential between the interacting quarks can be
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described via the Cornell potential

Vir) = —% tbr (14)

where r is the effective radius of the quark-antiquark pair, and a and b
some parameters. The first part corresponds to a one-gluon exchange be-
tween the quark and anti-quark, whereas the second part is known as the
Confinement part. We see from that Confinement part, that energy enor-
mously increases with increasing r and makes a separation only possible,
if the energy is high enough to create another quark-antiquark pair, which
compensate the colors of the primary quarks. This idea states that every
single object which freely appears is colorless, in other words a quark can
never be separated and appear as an asymptotic state. The same form of
the potential in (14) can be calculated in effective field theories which give
the potential in form of Wilson loops as shown by W. Fischler [12]. Using
such theories one would obtain a linear term dominating for large distances

and a short distance determining term with—%aST@.

The principle of colorless objects is shown in the following figure [13]

red

antigreen antiblue

blue green

v
antired
Figure 1: Hadron-colors

The colors represented by vectors have to add to zero (the summated
arrows have to point to the origin). This means that for mesons the only
possibility is a combination of a color and its anti-color and for baryons a

combination of all colors, respectively anti-color.
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1.3 Role and Importance of Gluonic van der Waals Interac-
tion

Promising experiments to analyse gluonic van der Waals interaction are
quarkonia-nuclei scattering [14]. Plenty of studies investigate the scattering
of J/v¢ at nuclei. The advantage of J/1¢ over other quarkonia states is the
long mean lifetime and since it is the first discovered stable state of quark-
anti-quark interaction there is lots of experimental data available. This me-
son is a quarkonium state, consisting of a charm and an anti-charm quark,

therefore called a charmonium state with a mass of 3097 MeV.

The interest in analysing Ji-nucleon scattering is that it is expected to
interact via meson exchange and via gluonic van der Waals interaction and
therefore offers a good experimental setting to research the currently not
fully understood theory of strong interactions [15]. S. Brodsky [16] dis-
cussed the importance of gluonic van der Waals interaction of Ji scattering
at nuclei and arrived at the conclusion that the interaction via 7 meson
exchange and DD? intermediate state interaction can neglected compared
to gluon exchange. He also proposed a promising method to study J/t
scattering in the reaction 7td — J/vpp. In comparison to the common
production process of photoproduction yp — p, the introduced method
does not only have a non negligible total cross section compared to those of
photonproduction but offers the possibility to measure scattering processes

near threshold energies.

Another promising experiment at the FAIR facility at the GSI is the PANDA
experiment. FAIR is an accelerator which provides the experiment with an
antiproton beam. PANDA in particular has lots of different questions to
solve but in this context we shall only discuss hadronic interaction studies.

Other studies are non-perturbative QCD in general, an analysis of the

formfactors of nuclei as well as determination of in-medium properties®

2D-Meson: The lightest particle containing a charm quark
3Such as the origin of hadron masses in the context of spontaneous chiral symmetry
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which can be achieved via different nuclear targets which provides a broad
range of charm physics with nuclei. The hadronic interaction studies are
based on D-meson interaction and the .J/v¢ dissociation. If the antiprotons
have enough energy for higher mass charmonium states which decays into
open charm we will get some insights about D-meson interaction with nuclei

inside the target material.

The J/4 dissociation in hadron collisions is mainly based on gluonic pro-
cesses, hence new experimental data about gluon structure functions in nu-
clei can be gathered. The expected cross section for this experiment is
little model dependent for antiproton momenta of approximately 4 GeV. At
higher momenta such as 6.2 GeV which allow ¢/’ resonant production we can
observe the inelastic process /N — J/1N.

As discussed above the gluonic interaction of Ji is supposed to dominate
in elastic scattering processes. The PANDA experiment is therefore an up-
and-coming opportunity to analyse these gluonic interactions, i.e. the still

challenging description of strong interaction.

breaking in QCD
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2 Van der Waals Forces Between Neutral Atoms

The interesting point of having two neutrally charged atoms with electric
and magnetic polarizability ap, respectively (s separated by a distance
R (Figure (2.1)), is that an electromagnetic interaction exists nonetheless,
the van der Waals interaction. The polarizability describes the strength of
dipole moments of an atom, due to external electromagnetic fields. We will
see that this is the property responsible for van der Waals-interaction and
is defined as follows [17]

S -t iy -
n,n#0

where the product of 7, the spatial vector for the electron displacement

within the atom, and 7, the direction of the electromagnetic field, is evalu-

ated in the eigenstates of the atom, that is F,, are the energy eigenstates of

the atom and |n) the corresponding states [18]. The magnetic polarizability

can be defined analogously

|(n]5- B\O °
=2 1
5M Z EO — ’ ( 6)
n,n#0
now being 75 the direction of the magnetic field and § the spin of the

atom.

In this chapter we will discuss two different approaches to the problem by
focusing on large and small distances R which requires different methods.
The easiest system of that kind consists of two hydrogen atoms and is stud-

ied below.

First the system is analysed quantum mechanically [19], which gives a small
range behaviour for this system. On the contrary the long range behaviour

is obtained by methods of quantum field theory.
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2.1 London Force: Quantum Mechanical Calculation

Figure 2: The set up

The vectors r1 and 7y refer to the separation of the electron from the proton
of the first (A) and second (B) hydrogen atom. Electrons as well as nucleons
are Dirac-particles, hence spin 1/2-particles, therefore the atoms can have

spin as well, but for convenience it is neglected at this point.

The first part will be to calculate the energy of this system. The most
basic object of this calculation is the Hamiltonian. The entire Hamiltonian

then reads

2 62 62 62 62 62

(V4 V) -t o — - (17)

H =
ri 1o R 12 rip roa

“2m

where we can identify

1
Hy=—3- (Vi+v3) — = —— (18)

which only contains the sum of internal electron-proton interaction of

atom A and atom B, whereas

e? e? e? e?

=>4+ < < 19
R r2 mB 71oa (19)
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represents the mixed interactions, i.e. the electron-electron, proton-
proton and the opposite electron-proton interactions. 7, stands for the
absolute value of the vector from particle  to particle y, i.e. R = |rq —rg|,
ri2 = |r1 — ro|, rip = |r1 — | and roq = |ro — r4| in which rx goes from

the origin to the center of atom (X).

For the sake of an argument let us assume that R > ag = 4me,/me, with
ag being the Bohr-radius. Since we are dealing with hydrogen atoms for
which 71,79 ~ ag, the Hp-interaction dominates, whereas H' can be treated
as perturbation, as we will see later on when expanding the Hamiltonian in
terms of the dimensionless parameter r;/R. The following part will give a
derivation of the energy F(R) stored in this system in terms of the distance

between both atoms.

We see that Hy is composed of two independent hydrogen atom-Hamiltonians,
hence the wavefunction ug is given by the product of isolated hydrogen atoms

in the ground state 4

ug (T1,72) = u100 (T1) - w100 (T2) - (20)

Therefore the ground state energies of both isolated atoms add up to the

total energy of the system

62

Ey=—— . (21)

ao

To tread the perturbation H’ as easily as possible and still obtain a suitable

result, we expand (19) to get

_e
2aq

4Which each have a ground state energy of Eo =
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2
e
=~ ﬁ (mlxg + y1y2 — 22122) . (22)

Using this expansion of the first order in perturbation

AEWM = (0|H'|0) =0 (23)

vanishes. The ground state of this hydrogen system is only dependent
on |z|, which means that this integral has to vanish, due to a parity trans-

formation T — —Z.

At second order in perturbation theory the correction to the energy is [2]

-y 2

n,n#0
This is difficult to calculate analytically because the eigenstates |n) contain
Laguerre polynomials which cannot be generalized calculated in the matrix
element (0|H'|n) to eventually end up with an explicit form on an infinite
series in n. As an alternative I present some approaches, which give a lower
and an upper limit. At this point it is alluded that as F, > Ej the second
order energy correction is always negative, or in physical expressions always

attractive!

To estimate a lower limit of (24), we substitute £, by E* = —e?/(4aq), which

is the lowest energy of the combined hydrogen system not being equal to the
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ground state energy to construct a constant, n-independent denominator:

[(O1H'[n) [

) > . 25

s L) 2
n,n#0

This estimation is valid for a system for which the energy F,, in the state

|n) is higher than in the ground state because by this substitution above the

denominator gets smaller, thus the estimated value gives a lower bound. The

next step would be to simplify the numerator to get rid of the summation

over n:

6,4
age”

> [OIE )" = YOI )|~ [0l |0} = (0[H"0) = 6- =
n,n#0 n
(26)

where we used the completeness relation and (22) to evaluate the expectation

value of H'?, which is

oA
(0|H"|0) = G (0] (723 + yiy3 + 42125 + mixed terms) [0) . (27)

The mixed terms vanish again following the same parity argumentation as

above. The expectation values are the same for x—, y— and z-coordinates

4
Ge 2,2

(01H"|0) = 76 (Olz122/0) - (28)

If we use this result we will end up with

Rale?
2 0
AE® > ——

(29)

To get an upper limit it is necessary to use the variation method, since there
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are no easy estimations we could use as we did for the lower limit. A trial

function for this method is given by [20]

¥ = w100 (F1) - w100 (72) (1 + AH') (30)

with a parameter A which has to be deduced.

5

After some analytical calculations ®> we get

Eo + 2 (0|AH"|0)

AE® < 31
~ 1+ (0]A2H"|0) (31)
Using the Taylor-expansion in lowest order
oA
H? = — (x%ac% + yy2 4 22223 + mixed Terms) (32)

RS
and dropping the mixed terms, which vanish due to parity anyway.
After finding that (31) reaches a minimum at A = E; ' the final result is

6e2ad
AE®?) < — R60 (33)
In summary the second-order energy correction is bounded by
8ade? @ 6e2a]

2.1.1 Explanation

At the basis of this calculations are some assumptions we will discuss later

on in chapter (2.3). To get a feeling why this correction occurs we connect

a classical interpretation to the quantum mechanical perturbation theory.

The first order energy correction corresponds to the constant dipole-dipole

interaction of both atoms and is the zero energy of this system. The constant
dp

dipole of the first atom b develops an electromagnetic field ~ 7% proportional

5 Appendix A.2.1
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to its dipole moment dp which interacts with the constant dipole d, = —ezx,
of the second atom a, where z, is the charge separation. Calculating the
dipole moments (d) = (—ez) = 0% in the ground state of the atoms, we
can verify in a simple way that the energy due to a constant dipole-dipole

interaction is equal to zero

) =0 . (35)

The second order in perturbation corresponds to the self-interaction of both
atoms. The first atom develops an instantaneous dipole moment, which
induces a dipole in the second atom which is proportional to the electric
field d = 47ra%E7 and the arising field acts back on the first atom. Since
the electric field of the first dipole d; is proportional to ~ %, the induced
dipole moment of the second atom a will show the same dependence on
r. Transferring this considerations to the electric field of the second atom
b, it will show due to the induced dipole a proportionality ~ %. These

considerations finally result in an overall energy of

a b
2 ApQdp
AE® ~ ——E (36)

The induced dipole orients towards the instantaneous dipole in exactly the
opposite orientation, which explains the minus sign corresponding to an
attractive force. Nonetheless it is remarkable that two neutral charged atoms
separated by a distance R develop an attractive force, which is called van
der Waals force. For this separation distances, for which the interaction can
be assumed to be instantaneous, the van der Waals force is also referred
to as London force, named after F. London who calculated this force first
[21, 17].

SParity & — —x: (z) = — () in the ground state
"The polarizability is assumed to be isotropic. This linear relation is therefore an
approximation
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2.2 Casimir-Polder force: Quantum Field Theoretical Cal-
culation

In quantum field theory both atoms are represented by a scalar field @ . py
is the momentum of atom A and ps the momentum of atom B. The primed
quantities stand for the momenta after the photon absorption/emission.
Each photon carries a momentum g — k, respectively k. As before we neglect

the spin of interacting atoms.

- -

P1 Pl
qg—k k

-

P2 Pl

Figure 3: Feynman diagram for two photon exchange

Thinking about the energy in this system, it can be argued, that for any
constant, weak electric field E the relations £ = —V® for some potential ®,
as well as for the polarization P = 4rapE with ag being the polarizability

of an atom holds. The energy change due to a change in the electric field is

Sy = / d*p(x)® = — / dxp(z)i-E=—-P-E

o E?
:—47raE -E=—47TO4E7. (37)

This calculation can be done analogously for the energy change due to the

magnetic field 5E](31) = —4nf M% and therefore the overall energy change is

3]
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1 _ —
sEM — -3 (47raEE2 + 47T,8MBQ) . (38)

Equation (38) indirectly tells us the underlying Hamiltonian. Using E* =

—F% and B = —%60“‘” F),, the energy correction is equivalent to
4 , 4
SED = <_7T(O‘E2+ 5M)> FY Ry + <—7TfM> F? (39)

which can be generalized to

SEMD — glMygygFmF;? + g2y F*Y (40)

with v = v% = (1,0,0,0) being the velocities of atom A and atom B and
g1 = —47r%27;(/[0‘” and g = —4m¢ the coupling constants and M = m,my,
the product of the atom masses. During the further calculations we use a
heavy field approximation for ®;, which means p; ~ p,. The momentum is
given by p; = mu; with the four velocity introduced in eq. (40). Heavy field

approximation means that the particles are at rest compared to the photons.
This leads us to the Lagrangian

Lint = q10aP03PF*VFP + g2 0°F? (41)
since it is the only Lorentz-scalar, which is quadratic in F},, and ® and

reproduces the energy above.

Based on the given Feynman diagram, it is essential for further calcula-
tions to determine the corresponding amplitude, i.e. the vertex of photon

annihilation and creation, which is given by [22]

2m)* 64 (p — (g — k) — k — p})iMy = (k,q — k, p}|Te " @Hint|py - (42)
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This expression contains the physical behaviour of the involved particles
at those Feynman vertices and the pure interacting part is specified by
the initial and final states (hence the corresponding bra’s and ket’s of the
Fock space) and the interaction Hamiltonian. The delta-distribution on the
left hand side represents a fundamental principle in physic namely four-
momentum conservation, i.e. energy and momentum conservation at each

vertex.

In this notation the T operator stands for the time ordered product of what
it is acting on. Using the Taylor expansion of the exponential function
in lowest order of the coupling constants g; and go and applying Wick’s
theorem which states that the time-ordered product of some expression is
equivalent to the normal-ordered sum of the original expression and all its
contractions, we first have to think about the contractions of all appearing
operators.

Expressing the field in terms of creation and annihilation operators a}: and

a, the scalar field is 8

dp 1 » .
— ip-x T —ip-x
() /(2ﬂ)3 72Ep (ape + aje ) . (43)

These operators are used to create a particle with momentum p, respectively

destroying a particle with momentum p, i.e. aIT, |0) = /2E, |p) with |0) be-

ing the vacuum state.
With this we can determine the contraction of the scalar fields

®(z)[p) = ePT|0) , (p| B(z) = (0] ™", (44)

and its derivatives

8 All operators in this chapter are given in the interaction representation
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0u®(2) |p) = ipue™*10) , (p| 8@ (x) = (0] (~)pue™ """ . (45)

So far we have dealt with the action of field operators acting on elements of
a momentum Hilbert space. Since we are assuming photon exchange, it is

necessary to work out how photon operators

dp 1 . ,
At(x) = / aleleike 4 apete” T (46)
zk: (2m)3 | /2E, < k~k k )

and its derivatives act on the photon space. In this notation a; and a,t
are still annihilation and creation operators now operating on the photon

space and EZ being the polarization.

Then we find
Al(z) k) = e T |0)  and 9”AM k) = —iel*kYe FT|0) . (47)

The same argumentation could be done with the analogue bra’s while keep-
ing in mind that the sign will change in the exponent of the exponential

function and the polarization will change over to its Hermitian conjugate.

Looking back at the Hamiltonian in eq. (41) we are interested in F'*
FH k) = (HAY — 9" AM) k) = —i (€7 kF — e kY) e~ R 0) . (48)

Now that we know how to deal with those operators we are able to calcu-
late all required contractions and due to Wick’s theorem it is the only part
which contributes to this calculation, as one essential property of the normal

ordered product is that it vanishes in the expectation value.
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Applying all contractions the careful reader would have noticed, that both
the ® and F' contractions give a symmetry factor of 2! so overall a factor of
4. Substituting in the contractions the amplitude reads (Notice another %

of the exponential’s Taylor-expansion)

'3 (or — (k) — k= Ph)iMy =2 fifa( = gipramae]"(a b
— (g — B)) (eak? — ek ) il et )e
2 (e (g = R — (0= Ry ) (7 — k) SEFRT) L (a9)

and using the integral representation of the delta-distribution which can-

cels out on both sides we finally get

iMy = —2(91 (1 (= k)p1- k) (65 - €a) = (01 )01 R)((a = ) - a) -
— (1 €a)(pr- (= k) (e - k) + (P ) (p1 - ) ((a = k) - 1))+
g2 ((es - @)k - (g = k) = (k- €5)(es - (kb — )

- = D 6) + (@) (- 1)) (50)

Now reinserting the coupling constants g1 = —47‘(’%]‘51\4 and go = —47TBTM

and simplifying, i.e. combine the terms proportional to Sy and ap where
2

we have used the four-vector notation p? =m;]
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sy = =2 (45 { (- (1= 0"~ (el — 1))

)

< (1 B)eas = (pr- €y ) 4+ 4m5 o5 { (i) (1 - (4= R)) (1 - k) -

3k (g — k) + (k- ) (Rles - (a = k) = (o1 - ea)(pr - (g — k) )+
+ (o1 &) (1 ealk- (k=) = (o1 B)(ea- (a—R)) }) - (51)

If we used some algebra, we would see that the expression proportional to

ap is equal to ?

(71 5kyp1,6) (€apores” (4 = K)7p1) - (52)

The €*#79 is the Epsilon-Tensor, or Levi-Civita-Tensor, whereas the €’s with

two indices remain the polarization vectors.

Let us now recall the primary problem and its corresponding Feynman di-
agram. Since we are still interested in some physical expressions we need
to transfer the ideas of this section in some measurable quantities, or let’s
say some quantities which fully determine the physical behaviour of this
system. In other words we need to compute the matrix-element of the 2

photon-exchange process

M(q)

1 [ d*% —in®  —in®
/ al il 5 X Vertex a x Vertex b (53)

T2 ) ent k2 (k—q)

which contains a symmetry factor, as well as both photon-propagators.

Both vertices are given by eq. (51), where we have to take care of the

appearing momenta, by replacing p; with po as well as k with —k and k — ¢

9 Appendix A.2.2
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with ¢ — k if we are going from Vertex a to Vertex b. For convenience

in the calculation of eq. (53) we factor out the polarization vectors, since

T
€ €iu = € €, =1so that we find
14 ax B*

~ 3¢ (a“E{k p1((q — k) - p1)Nap — (¢ — k)ap1,pk - P1

a

~praksla—k) - pr+ k- (= K)prapis)

— B3 €k, prs) (exsor(a = k)T }) (54)

for Vertex a, and

14 * * « «
— 706, (Of%{(—k) pa((k =) - p2)n — (=k)*D5 (k- — q) - p2
"

~ 18 (k= @)’ (=k) - p2+ (k) - (k — q)pg‘pg}

= B { 0 (=k)sp.5) (Caporlk — @) T3 }) (55)

for vertex b. As we can see we get some covariant expressions for the
four momenta after factoring out the polarization.
Evaluating eq. (53) with this information we get a pretty longish integral
to deal with

47)? d*k
M(Q) = 21'7’(7%77)7% / (271')4 ’ kg(kl q)g ’ (abE{k ~p2((k - Q) 'p2)77a5

— kPp3(k —q) - p2 — 1y (k — )k -pa + k- (k — Q)p%pg}Jr

+ B (€% kypa 5) (5™ (K — q)wp2) + a“E{k -p1((k = q) - p1)7ap

— (k= q@)ap1,8k - p1 — pr.aks(k —q) - p1

k- (k= Qprapis | — B3 (dark D) (xaen(k = 0)°ph)) - (56)

After some calculations, i.e. expand eq. (56) and using the introduced
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loop integrals (Appendix C.3) where we write the products appearing in the
matrix element as p; - k = pl'k,, as well as k? = g""kyk,, the final result is
then

Mq) = =2 [23 (apaly + B8 ) — 7 (bl +alBty)] . 67

This result only contains the logarithmic dependency. There would be ad-
ditional constant terms, which are of no interest at this point. In order
to determine the potential, which we need to compare the result to the
quantum mechanical calculations of chapter 2.1, we Fourier-transform the

matrix-element via

V=~ [ M@ -

(2m)3
| (o AR T (g o)
4 R7 ’
where we used the Fourier-Integral
d*q 4 2\ ,—iq-R 60
1 —igR _ Y~ .
| G nla?)e — (59)

In order to calculate the energy variation to the interaction described by this

potential we use quantum mechanical perturbation theory in first order.

—23 (abaly + B4,B4) + 7 (ah By + opBiy)
AT R7

AE' = (0|V(R)|0) = (60)
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2.3 Explanation and Comparison to London Forces

We see that relativistic calculations lead to a different potential than the
non-relativistic. This effect is known as retardation and is due to the finite
speed of light. Using the Coulomb potential in non-relativistic quantum me-
chanical calculations of chapter (2.1), the interaction between both atoms
is assumed to be instantaneous. This approximation is legitimate for small
distances, i.e. the time photons need to travel between both atoms is very

small.

In the quantum field theoretical treatment however, the finite speed of light
plays a major role, since the atoms are separated too much to assume an
instantaneous interaction. The result is the long distance behaviour of van
der Waals forces between two neutral hydrogen atoms, first calculated by
H. B. G. Casimir and D. Polder [23], which is why it is also called Casimir-

Polder force.

To understand the reason behind this, we analyse the photon propagator
s
inie
tice two poles at p® = 4+/p? — i€ in the complex plane. The residue theorem

in more detail. If we integrated over the p® component, we would no-

states that the complex integral is completely determined by the enclosed
residues, assumed that in the limit R — oo, with R being the radius of the
semi-circle shaped integration path, the fraction of the imaginary part van-
ishes. Doing so we would obtain two results depending on which residue we
choose. The two propagators obtained are called the retarded and advanced
photon propagator. The retarded propagator describes a signal which trav-
els forward in time. The result of quantum field theory calculations which
therefore contains a time dependant effect due to the finite speed of the

signal.

Until last we have used the assumption of spinless interacting atoms. In

this context the question might arise what would happen to the result if
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non-zero spin particles interacted. The answer justifies the overall treat-
ment of spin zero atoms, since we would find that the potential still shows a
1/R" dependency. The coefficient of eq. (58) suggests that we would obtain

another spin based constant in the numerator which is indeed the case.

A result valid for all discussed distances both results have to be matched.
The important question is where the transition takes place. One finds that
retardation effects become noticeable at 7 = 1/AFE, with 7 being the retar-

dation time and AFE a fraction of the ionisation energy of one atom [24].
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3 Extension to QCD and Conclusion

The approach to electromagnetic interaction computations are based on a
two photon exchange leading us to a long range formula. A gluonic interac-
tion of two color singlet hadrons is based on a gluon exchange. Since both
hadrons are colorless and remain colorless the exchange of a single color
gluon is forbidden. The exchange of two gluons, however, which can be to-
gether in a color singlet state is not forbidden.

The arising question is how are the calculations done for electromagnetically
interacting atoms related to the case of strongly interacting hadrons and are

there finally gluonic van der Waals forces? [25]

To reveal some similar phenomenona of electromagnetic and strong interact-
ing processes we will have a look on the Yukawa potential which was primary
developed to describe an interaction due to the exchange of massive scalar
fields[26]

g2 e—Rm
4 R

with a constant g and the mass m of the mediated particle. His concept

‘/str (R)

(61)

was to construct a potential which describes the observed finite range of
strong interaction. He finally came up with a result, which is based on the

assumption of meson exchange - at this time the pion exchange.

In fact we notice a similarity to the electromagnetic Coulomb potential
which can be fully recovered in the photon mass limit m — 0. However,
as we have stated in chapter 1.3 the force conditioned by meson exchange is
much smaller than forces of gluon exchange which is consistent with Yukawas

model due to a exp(—R) dependency.

Most of the theoretical theories are based on a long range potential in the
form of [27]
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C
Vitr (R) ~ RN (62)
with a model and framework dependent exponent N and some constant
C [28]. Y. Fujii and K.Mima [29] derived a static potential for a gluon
exchange between two color singlet hadrons. They used an effective Hamil-

tonian H for baryon-baryon scattering

H ~ 4§ F,, " (63)

with baryon fields ¥ and gluon fields F*¥ as introduced in chapter (1.1).
Wit h this Hamiltonian they computed the amplitudes for two, three and
four gluon exchange between baryons via dimensional regularisation. Com-

bining all amplitudes their calculated potential is

V(R) ~—-R™" | (64)

and has the same distance dependence like the electromagnetic poten-
tial and is referred to as the gluonic van der Waals potential. The effective
Hamiltonian in (63) looks also similar to the Hamiltonian in QED calcu-
lations but due to non-commutativity of the gluon fields there are more
Feynman diagrams, i.e. the already mentioned two, three and four gluon

exchange.
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4 Outlook

Through effective field theories the theoretical understanding of heavy quark-
antiquark systems near threshold witnessed a significant progress [30]. Due
to a small velocity v < 1, this system develops a hierarchy of widely spread

scales, m the hard scale, mv the soft scale, mv? the ultrasoft scale, . ...

By integrating out the scales above the energies we want to describe we
obtain a suitable framework for theoretical work. The effective theory af-
ter integrating out the hard scale is referred to as non-relativistic QCD.
Integrating out the next scale, the soft scale, the theory obtained is called
potential NRQCD, or (p)NRQCD.

As we have seen perturbative methods are dependent on which scale the
system is treated. The matching of these theories must therefore be treated
very carefully. By definition of heavy quarks, with m > Agcp, the matching
from QCD to NRQCD can always be done perturbatively. The perturba-
tive matching from NRQCD to (p)NRQCD is only possible if mv > Agep
[31, 32]. These effective field theories therefore provide the appropriate
framework for specific energy settings, e.g. quarkonium-nuclei scattering

near threshold energies. [33]
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A Detailed Calculations and Descriptions

A.1 Gell-Mann Matrices and Structure Constants

The generators of SU(3) Lie group transformation matrices are the Gell-

Mann matrices A,, which are connected to the generators

Ty= =\ . (65)

The matrices A, are definied as follows

o O
Ao = (i) O) , a=1,2,3 and Pauli matrices o, (66)
0 0 1 0 0 —
M=l000] ., x=|oo0 o (67)
1 00 1 0 0

1

0 0 0 0 1
Ag = , AT = , d=—=1]0
o) o) el
These matrices are traceless, Hermitian and obey the normalization relation

tr()\i)\j) == 25@' . (69)

Linked to those matrices are the structure constants which are defined over

Lie-Algebra properties of Gell-Mann matrices

iy Aj] = 2 fiun (70)
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The structure constants have the values

458 _ 678 _ V3
2 )
1
FUT 165 _ 246 _ (257 _ 345 _ p376 _ S ()

712

A.2 London and Casimir forces

A.2.1 Upper Limit via Variation Method

The trial function is given by

P (11, 72) = wr00(F1)uro0(2) (1+ AH') (72)

for some parameter A. The variation method provides a possibility to

give some upper limit.

[[uo(1+ AH') (Ho + H)ug (1 + AH') d3rvdr

E' < 5
[[ud (14 AH')? d3rid3ry

, (73)

with a shorter notation ug = wu100(71)u100 representing the ground state
of the system. The nominator of this expression can be rewritten in this

way
// ug (14 2AH' + A’H") d*rid’ry = 1 + A% (0|H"|0) (74)
because (0|H’|0) = 0, as we have already determined.

Expanding the denominator and keeping all non-vanishing terms it looks
like
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// uo (1+ AH') (Ho + H') uo (1 + AH') d*r1dr = Eo + 2A (0|H"|0)

(75)
Combining these two results
Eo +2A(0|H"™|0
/ < 0+ < ’ | > ’ (76)
1+ A2 (0|H"?|0)
and since (0|H’|0) < 1 we can expand the denominator in a way
(1+A2(0H?10) ™" = 1— 42 (0[H™|0) + O (0|H?I0)*) ,  (77)
so we have than a fairly simplified term
E' < Ey+ (2A — EgA?) (0|H™|0) (78)
so that the unknown parameter A can be determined via
OF' | 1
= A=— . 79
o~ "TA=E (79)
The upper limit is then
6e2ad

A.2.2 Levi-Civita-Tensor Representation in Matrix-Element

The Levi-Civita Tensor is in n-dimensions defined over the permutation of

its indices, i.e.
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+1 if (ijkl...) even permuation of (1,2,3,4...)

kL= &1 if (ijkl. .. ) odd permuation of (1,2,3.4...)

€ijkl... = €

0 otherwise
(81)

Hence it is equal to +1 if the indices are an even permutation of (1,2,3,4...),

—1 if it is an odd permutation and zero otherwise.

The expression in eq. (52) contains the product of two epsilon tensors.

Using the definition above one finds that

(5im 51n 51’0 5ip
Ojm  Ojn  Ojo  Ojp

€iikl€mmop = det 82
I P 5km (5k:n 5k0 5kp ( )
5lm 5ln 5lo 5lp
Applied to our problem
(7€ 5k p1,6) (€aporey (4 — k) p3) (83)
the determinant looks like
03085 + 056308 + 650365 — 656505 — 636305 — 630860, (84)

using Laplace’s formula. Contracting this expression with the remaining

parts

(€a 1) ((a = k) - k)(ep - p1) + (€5 - (g — k) (k- &)pi+
&) (k-p1) (1~ (4= k) — (€5 - &) (k- (¢ — k) pi—
(g =k) (k-p1) (pr-ep) — (e -p1) (k-&) (pr- (= k) ,  (85)
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or simplified

(5 &) (k- p) (1 (=) — (k- (a— k) )i+
(5 k) (65 (a=R)P} = (&5 p1) (01 - (g — R)) )+

6o (G p) (e la—R) = (€ @@= k) (kop)) . (86)

Comparing this to eq. (51) it is exactly the result obtained during this
calculations. Since the epsilon-representation is much easier to handle and

work with, it is kept for further calculations.

B Rules for Feynman Diagrams

As customary these rules are used to create the corresponding matrix ele-
ment for some process in each of this theories. It is mentioned, apart from
the following rules, that each undetermined loop momentum gives an addi-
tional integral [ d*p/(2m)?, as well as fermion loops a factor of (—1) and a

process specific symmetry factor.

The underlying interaction Lagrangian for processes studied during quan-

tum field theoretical treatment of the primary problem is

Lint = q10aPIgPF*VFP + g2 ®°F? (87)

The following listing shows a summary of the rules which we used for the

Feynman diagram 2.2.
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_Zn;u'l/
q% + ie
il "
Vertex — Wez?aeb”g (ab {(—k) p((k —q) 'p)naﬁ -
b

— (k)P (k—q) - p—p*(k — 0 (=k) - p+
+(=k) - (k= @p°p” } = Bh{ (€ (<k)ypss)
(capor(k = @)70* 1) })

External scalar 1 .

Photon propagator

C Tensor-Integrals in Dimensional Regularization

C.1 General integrals

In further calculations there appear some essential integrals which are shortly
listed in this chapter. The following integral vanishes in dimensional regu-

larization, since it is scaleless.

dek
k2 =0 7 . 88

There also appear some integrals which vanish, because of symmetric argu-

mentation.

A% k- q L A% kg

C.2 Master-Integral

The most important integral to evaluate the integral 56 is
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d*k 1
I= / S (90)

To get an integral, which is only dependant on the magnitude of the mo-

mentum k, we introduce Feynman-parameters [22]

1 L S(z+y—1)
AB  Jo y(acA2 +yB?)?

Applied to our problem it reads
d*k 1 dzx+y—1)
—— [ dxd . 2
[ ot |, e g )

Due to the delta-distribution = and y sum up to 1, so the denominator can

be completed to a full square

ak® +y(k—q)* = (k—yq)* + (y —y*)q* , (93)

and finally because of the translation invariance of the integral, the mo-

mentum can be shifted (k — yq) — k, so the integral looks like

dk 1 S(z4+y—1)
/ (2m)* /0 dmy(k2 + @y —vHe?)? (54)

The integration over the momentum can be first calculated, so the interesting

part is

d*k 1
| T ey (95)

which is an integral with a solely dependence on the momentum magni-
tude.

This is the point where the method of dimensional regularization comes
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into play, since this integral obviously diverges in four dimensions. The
dimensional regularization act on the assumption that we deal with a d-

dimensional integral like

dk 1
| e 9

where A% = —(y — y?)¢%.

This integral hast to be computed in Minkowski space, but for further calcu-
lations we need a Euclidean representation. To put things right we transform
this integral via Wick rotation, which gives us an additional factor of i. In
general a d-dimensional integration can be split up into an angle-dependent

and a magnitude-dependent part

/ dk = / dQq / dkk4t (97)

Since the integral we deal with is only k-dependent the angle-integration
can be done separately. Using the definition of a d-dimensional Gaussian

integral

vt = /_Z dzy . .. /OO dzgexp (— i;ﬁ) (98)

- i=1

which can be rewritten in a way like

vt = / Ay /0 dzz?~le " (99)

since its only dependence is z2.

Doing some transformations one gets for the integration over x
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/ dez® e —/ dx(x2)%e_x2 —/ d($2)<1‘2)%_1€_:€2
0 0 0

_ /OOO dy(y)?~le ¥ = %F <;l> , (100)

where it is used that d(z?) = 2x - dz and the definition of the Gamma
function. For some properties of the Gamma-function first read the next
section of the appendix, where I summarized the most important properties

for the following calculations.

Comparing both sides of equation (97) one can determine the representation

of the angle-integration

d

2\/m
/de _ r\{;) (101)

2
Substituting this into the primary integral we get
d ; —d d—1
/ d°k i :21\/77' /dk k ' (102)
(2m)d (k2 —A2)2 T (%) (k2 — A2)2

The next task would be to calculate the simplified remaining integral which
after a transform into an integral over k2 and a substitution p = % looks
like

Lot o (A7 2 e -1 [ d/2—1_—d/2+1
2/ dpA <+A> :iA /dp(1+p) P
0 p 0 . . (103)
_ 1 ,d-ab (5)r(2-9)
2 T (2) !

where the definition of the Beta-function (eq. 147) is used.

The preliminary result is therefore
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ddk‘ 1 7 d 3
/ (2m)d (k2 — A2)2 ~ (47r)d/2r <2 - 2) AT (104)

Reinserting A? = —(y — 3?)¢? the remaining part to calculate is

_d 1
W/O dz (—(m —xz)q2))d/272 ) (105)

where we have inserted the afore calculated integral and substituted
y—y:=x—12°.
As we can see the integral has been transformed by dimensional regular-
ization to continuous function of the dimension d, with a pole at d = 4. To
avoid the divergence at d = 4 we set d = 4 — 2¢, which gives us a finite value
and let us identify the term responsible for the divergent behaviour. Since
we can now get rid of that term by renormalization methods, we are still
interested in converging terms. That is why we focus on terms which are

finite when taking the limit € — 0.

oI (e ! —€
el [ (=) d=am2e. (0

The integrand can be rewritten in exp (—e - In(—¢*(z — 2?))) and taylor ex-
panded exp(z) =~ 1 + = + O(z?) so that it should look like

/1 dz (1 — e In(—¢*(z — 2?))) + O(e?) . (107)
0

With the expansion of the Gamma-function inserted and using (47)¢ =
1+ eln(4m) + O(e?) we get (apart from a factor 1/(4m)?)
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1
li_rf(l) (1 + 7E> /0 dz (1 — e In(—¢*(z — 2?))) (1 + eln(4m)) + O(€?) .
(108)

As we can see here, the first part gives us the divergent part, which we could
eliminate and therefore drop at this point.

Since we are still interested in four dimensions, we take the limit ¢ — 0

Io = lim 1)

—1
e—0 (47’[’)2_6

In(—¢? t.=
n(—q~) + cons 3972

- 2L + const. (109)

with L = In(—¢?).
C.3 Loop Integrals

Referring to the previous chapter one can express the following integrals

with the master-integral

d?k 1
0= | orye i =g - o

The keyword is tensorial decomposition which assumes that the tensorinte-
grals are proportional to combinations of the metric tensor and the param-
eters which are not integrated over, i.e. the momentum ¢ which results in
identification of proportionalities. The general form of the decomposition
is then contracted with different momenta and metric tensors to get actual

calculable integrals and finally a solvable system of equations.

The calculations are based on dimensional regularization of the master in-

tegral and since the integral is given up to the order O(e?) the following are
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as well.10

dk ky 1
| Gy g~ 3 (1

Proof. Using the principle of tensorial decomposition the integral is split up
like

dk ok,
| i g~ )

where [17 is an integral proportional to Ij.

Contracting with ¢/ and using k- ¢ = 3(k? + ¢ — (k — ¢)?) as well as

each scaleless integral is equal to zero (compare appendix A.1)

/ddk k-q /ddk k2 + ¢ — (k — q)?
(2m)4 k2 (k — q)? (2m)d 2 Kk2(k — q)?
q2
=]
2 0

=q¢*- I . (113)

Comparing the last two expressions one can see that

1
I = 5[0 (114)

Plugging this into equation (112) we get the required result

&k Kk, i
/(%)%Q(k_q)z:32W2quL+... . (115)

10The dots in the framed equations refer to the constant terms of the master integral
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Ak kk d e
_ - —L T 116
| G = q et e 0)

Proof.

d'k kuk,
/ (27)d k?(]:_ 7)?2 = QuvI2 + N laz (117)

Contracting with ¢"¢” and n*¥

d'k (k- q)? 4 2 q'
_ T T = 7 11
dk k2 9
= I dlss = 0 . 119
[ e qp = o o
Solving this system of equation finally gives us
d q?
Iy = I I —I . 12
21 4(d—1)0 S 55) 4(d—1)0 (120)

O]

Substituting d = 4 — 2¢, expanding around € = 0 and reinserting Iy leads

to
i (1 1 11
Iy = limz{+6(ln(4w)++7) +

e—0 (471') 2

and
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. ag (1 1 2 1
I =1 q{+6(ln(47r)—|—+7>+

50 4(4m)2 | 3 3 373
+O0(?) pIn(—¢*) +... = ie" Ly (122)
€ q T g
finally gives
d*k kK" —i 2 1
= =L — =L ) +... . 123
/(27r)4 K2(k—q)?  32n2 (q“q g7 g >+ (123)
/ %k kukyka  2+d ;o
@m)d K2k =g~ 8(d—1)

2

q
C8(d—1) (Muwa + NpaGy + Mvady) Lo | (124)

Proof.

/ Ak kukyko
(2m) k2(k — q)

3 = qMQVQOcIfSl + (n,quOc + Nuaqu + nanM) I32 . (125)

After contracting with g*¢”q®, ¢"n”® and calculating the arising integrals

the following system has to be solved

d'k (k- q)? 6 A 1,
/(gw)d 2k—q? I3 +3q" I3 = 34 Iy (126)
Ak (k-q
/ (2m)d (;i _ qu = ¢'Inn+ (2" +d)g' Iz = 0 (127)

which gives us in the end
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2
q 24+d
Iyp=——"—+Iy , I31=——=1y . 128
32 Sd—1)° N o1y (128)
O
Explicit for four dimensions
I —limi l—i- 11n(4)—i—g—i-1 +
s\ 3T\ T3 Ty
2 2 i1
In(— e = —L+ ... 12
FO@) () o= g Lt (120
and
) 1 1 2 2 2
1—32—25%(4”)2{ —2—€<9ln(47f)+9+9’>’> +
2 2 —i 1
In(— = -L+... 1
£O) () b= 3L (130)
so the integral is then
/ dk kukyke i lL—i—
)i k2(k — )2 32n2 \ iy
1
(nuu(Ia + Npaqy + nuaqM) 12q2L> +.o0 (131)
A% kukykoks  d®+6d+8 ¢*(d+2)
= vqaqp 1 EV Y RN
/(ZW)d Rk—q?  16(@ — 1) Wedslo T 15 m 3y

X (anQaQB + Muaqvqs + Mupdv9o + Mvaquds + Mvaqudot
4
q
+ 77045Qu¢]u> Io + @ -1 (Muwap + Mualvg + Mvanus) lo|  (132)
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Proof.

/ Ak kykykoks
(2m)? k2 (k — q)?

= Q,uqy(IOzQBLll + (anQaQ,B + Mpaqrqs+

+ Nupv9a + Mvalduds + Mpqude + naaquqy) Iy

+ (mwnaa + Nualvs + nmmﬁ) Lyg . (133)

Contracting with ¢”¢”¢“¢®, ¢"¢"n*? and n"**n°? the system of equations

ik (k-q)* 8
/(gﬁ)d kz((k i])q)2 = ¢®Ln +6¢° Ly + 3¢ s = %3]0 , (134)

Ak (k- q)2k?
/ (2m)® k2 (k — q)?

= Iy +G+d)g s+ 2+ d) ¢l = 0, (135)

dk k* 4 9 9
/ (27T)d ]{:2(]{3 — q)2 = ¢ Iy + (2d—|—4)q )142 + (d + 2d)I43 =0 (136)

has the solution

4+ 6d + 8 ¢(d+2) q*

I Iy = I Iys=——7F"——1, .
16(d2—1) 0o > 42 0o > 43 16(d2—1) 0

(137)

Iy =

For d = 4 — 2¢ the expanded coefficients

—i 1 1 11
L =lim ——q* [ = +ed = In(dm) + —— + ——
18 = 2100 (am)2? (240+6{240 a( 7r)+225+240'Y>Jr
i o
+(’)(62)}ln(—q2)+... L (139)

= 3272120
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— 1 22 1
Lo = lim ——¢*{ — —In(4 22
2= 15 an2? {40 e <40 n(4m) + 75+ 1 >+

2

2 2 —i q
+O(e )}ln( “)+...= 3920 T (139)

_—iel(e) (1 1 29 1
Iy =lim ——=< = — In(4m —
11 = lim { +6(5 ( )+300+5’y>+
—i 1
-L+... (14
T 32125 * (140)

+ 0(62)} In(—¢?) +...

are reinserted in the primary equation to obtain

d*k kukykaokg —i 1
(27T)4 k2(k _ q)2 = 392 {Q/quqaqﬁgL - (anQaQﬁ + Npaqrqs+
9 1
+ Nupdvdo + Malduds + M pquda + 7704,8%1(]1/) EL
(141)
1
+ (nwjnaﬁ + Npap + 77Voﬂ7,uﬁ> 120L} +.o (142)
C.4 Gamma Function
The Gamma-function is formally defined via
o
[(z) = / dt t*te7t | (143)
0
for x € R which leads to the functional equation
MNe+1) =z -I'(x) . (144)

If x € Z the Gamma function interpolates the factorial
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MNz+1)==x! .

The asymptotic behaviour for x — 0 is

I(z) = % — 7+ 0(?) .

Using this definitions one can define the Beta function

. a
B(a,v) = /Ody y* 14 y)7 = W ‘

T(a)T(7) —/ e“ualdu/ e " Ty =
0 0

o o0
/ / e v WY N dudy .
o Jo

Substituting v = z -t and v = 2(t — 1)

/zj) /t_lo e ()M (2(1 = 1)) zdtdz =

00 1
/ e_ZzO"”_ldz/ L1 =) tdt .
0 0

This shows

L(a)l'(y) =T(a+7v)B(a,7) -

(145)

(146)

(147)

(148)

(149)

(150)
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