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a b s t r a c t

High-order numerical methods for unstructured grids combine the superior accuracy of high-order spec-
tral or finite differencemethodswith the geometric flexibility of low-order finite volume or finite element
schemes. The Flux Reconstruction (FR) approach unifies various high-order schemes for unstructured
grids within a single framework. Additionally, the FR approach exhibits a significant degree of element lo-
cality, and is thus able to run efficiently on modern streaming architectures, such as Graphical Processing
Units (GPUs). The aforementioned properties of FRmean it offers a promising route to performing afford-
able, and hence industrially relevant, scale-resolving simulations of hitherto intractable unsteady flows
within the vicinity of real-world engineering geometries. In this paper we present PyFR, an open-source
Python based framework for solving advection–diffusion type problems on streaming architectures using
the FR approach. The framework is designed to solve a range of governing systems onmixed unstructured
grids containing various element types. It is also designed to target a range of hardware platforms via use
of an in-built domain specific language based on theMako templating engine. The current release of PyFR
is able to solve the compressible Euler and Navier–Stokes equations on grids of quadrilateral and triangu-
lar elements in two dimensions, and hexahedral elements in three dimensions, targeting clusters of CPUs,
and NVIDIA GPUs. Results are presented for various benchmark flow problems, single-node performance
is discussed, and scalability of the code is demonstrated on up to 104 NVIDIA M2090 GPUs. The software
is freely available under a 3-Clause New Style BSD license (see www.pyfr.org).

Program summary

Program title: PyFR v0.1.0

Catalogue identifier: AETY_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AETY_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: New style BSD license

No. of lines in distributed program, including test data, etc.: 12733

No. of bytes in distributed program, including test data, etc.: 214183

Distribution format: tar.gz

Programming language: Python, CUDA and C.

Computer: Variable, up to and including GPU clusters.

Operating system: Recent version of Linux/UNIX.

RAM: Variable, from hundreds of megabytes to gigabytes.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Classification: 6.5, 12.
External routines: Python 2.7, numpy, PyCUDA, mpi4py, SymPy, Mako
Nature of problem:
Compressible Euler and Navier–Stokes equations of fluid dynamics; potential for any advection–diffusion
type problem.
Solution method:
High-order flux reconstruction approach suitable for curved, mixed, unstructured grids.
Unusual features:
Code makes extensive use of symbolic manipulation and runtime code generation through a domain
specific language.
Running time:
Many small problems can be solved on a recent workstation in minutes to hours.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
Nomenclature
Throughout we adopt a convention in which dummy indices

on the right hand side of an expression are summed. For example
Cijk = AijlBilk ≡


l AijlBilk where the limits are implied from the

surrounding context. All indices are assumed to be zero-based.
Functions

δij Kronecker delta
det A Matrix determinant
dim A Matrix dimensions

Indices

e Element type
n Element number
α Field variable number
i, j, k Summation indices
ρ, σ , ν Summation indices

Domains

� Solution domain
�e All elements in � of type e
�̂e A standard element of type e
∂�̂e Boundary of �̂e
�en Element n of type e in �
|�e| Number of elements of type e

Expansions

℘ Polynomial order
ND Number of spatial dimensions
NV Number of field variables
ℓeρ Nodal basis polynomial ρ for element type e
x, y, z Physical coordinates
x̃, ỹ, z̃ Transformed coordinates
Men Transformed to physical mapping

Adornments and suffixes

�̃ A quantity in transformed space
�̂ A vector quantity of unit magnitude
�T Transpose
�(u) A quantity at a solution point
�(f ) A quantity at a flux point
�(f⊥) A normal quantity at a flux point

Operators

Cα Common solution at an interface
Fα Common normal flux at an interface
1. Introduction

There is an increasing desire amongst industrial practition-
ers of computational fluid dynamics (CFD) to undertake high-
fidelity scale-resolving simulations of transient compressible flows
within the vicinity of complex geometries. For example, to im-
prove the design of next generation unmanned aerial vehicles
(UAVs), there exists a need to perform simulations – at Reynolds
numbers 104–107 and Mach numbers M ∼ 0.1–1.0 – of highly
separated flow over deployed spoilers/air-brakes; separated flow
within serpentine intake ducts; acoustic loading in weapons bays;
and flow over entire UAV configurations at off-design condi-
tions. Unfortunately, current generation industry-standard CFD
software based on first- or second-order accurate Reynolds Aver-
aged Navier–Stokes (RANS) approaches is not well suited to per-
forming such simulations. Henceforth, there has been significant
interest in the potential of high-order accurate methods for un-
structured mixed grids, and whether they can offer an efficient
route to performing scale-resolving simulationswithin the vicinity
of complex geometries. Popular examples of high-order schemes
for unstructured mixed grids include the discontinuous Galerkin
(DG)method, first introduced by Reed and Hill [1], and the spectral
difference (SD) methods originally proposed under the moniker
‘staggered-grid Chebyshev multidomain methods’ by Kopriva and
Kolias in 1996 [2] and later popularised by Sun et al. [3]. In 2007
Huynh proposed the flux reconstruction (FR) approach [4]; a unify-
ing framework for high-order schemes for unstructured grids that
incorporates both the nodal DG schemes of [5] and, at least for a lin-
ear flux function, any SD scheme. In addition to offering high-order
accuracy on unstructured mixed grids, FR schemes are also com-
pact in space, and thus when combined with explicit time march-
ing offer a significant degree of element locality. As such, explicit
high-order FR schemes are characterised by a large degree of struc-
tured computation.

Over the past two decades improvements in the arithmetic ca-
pabilities of processors have significantly outpaced advances in
random access memory. Algorithms which have traditionally been
compute bound – such as dense matrix–vector products – are now
limited instead by the bandwidth to/from memory. This is epito-
mised in Fig. 1. Whereas the processors of two decades ago had
FLOPS-per-byte of∼0.2 more recent chips have ratios upwards of
∼4. This disparity is not limited to just conventional CPUs. Mas-
sively parallel accelerators and co-processors such as the NVIDIA
K20X and Intel Xeon Phi 5110P have ratios of 5.24 and 3.16, re-
spectively.

A concomitant of this disparity is that modern hardware ar-
chitectures are highly dependent on a combination of high speed
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Fig. 1. Trends in the peak floating point performance (double precision) and
memory bandwidth of server-class Intel processors from1994 to 2013. The quotient
of these two measures yields the FLOPS-per-byte of a processor.
Source: Data courtesy of Jan Treibig.

caches and/or shared memory to maintain throughput. However,
for an algorithm to utilise these efficiently its memory access pat-
tern must exhibit a degree of either spatial or temporal locality.
To a first-order approximation the spatial locality of a method is
inversely proportional to the amount of memory indirection. On
an unstructured grid indirection arises whenever there is coupling
between elements. This is potentially a problem for discretisations
whose stencil is not compact. Coupling also arises in the context
of implicit time stepping schemes. Implementations are therefore
very often bound by memory bandwidth. As a secondary trend
we note that the manner in which FLOPS are realised has also
changed. In the early 1990s commodity CPUs were predominantly
scalar with a single core of execution. However in 2013 proces-
sors with eight or more cores are not uncommon. Moreover, the
cores onmodern processors almost always contain vector process-
ing units. Vector lengths up to 256 bits, which permit up to four
double precision values to be operated on at once, are not uncom-
mon. It is therefore imperative that compute-bound algorithms
are amenable to both multithreading and vectorisation. A versa-
tile means of accomplishing this is by breaking the computation
down into multiple, necessarily independent, streams. By virtue
of their independence these streams can be readily divided up be-
tween cores and vector lanes. This leads directly to the concept of
stream processing. We will refer to architectures amenable to this
form of parallelisation as streaming architectures.

A corollary of the above discussion is that compute intensive
discretisations which can be formulated within the stream pro-
cessing paradigm are well suited to acceleration on current – and
likely future – hardware platforms. The FR approach combined
with explicit time stepping is an archetypical of this.

Our objective in this paper is to present PyFR, an open-source
Python based framework for solving advection–diffusion type
problems on streaming architectures using the FR approach. The
framework is designed to solve a range of governing systems on
mixed unstructured grids containing various element types. It is
also designed to target a range of hardware platforms via use of
an in-built domain specific language derived from the Mako tem-
plating engine. The current release of PyFR is able to solve the com-
pressible Euler and Navier–Stokes equations on unstructured grids
of quadrilateral and triangular elements in two-dimensions, and
unstructured grids of hexahedral elements in three-dimensions,
targeting clusters of CPUs, and NVIDIA GPUs. The paper is struc-
tured as follows. In Section 2 we provide an overview of the FR
approach for advection–diffusion type problems on mixed un-
structured grids. In Section 3 we proceed to describe our imple-
mentation strategy, and in Section 4 we present the Euler and
Navier–Stokes equations, which are solved by the current release
of PyFR. The framework is then validated in Section 5, single-node
performance is discussed in Section 6, and scalability of the code
is demonstrated on up to 104 NVIDIA M2090 GPUs in Section 7.
Finally, conclusions are drawn in Section 8.

2. Flux reconstruction

A brief overview of the FR approach for solving advection–
diffusion type problems is given below. Extended presentations
can be found elsewhere [4,6–14].

Consider the following advection–diffusion problem inside an
arbitrary domain � in ND dimensions

∂uα
∂t
+∇ · fα = 0, (1)

where 0 ≤ α < NV is the field variable index, uα = uα(x, t) is a
conserved quantity, fα = fα(u,∇u) is the flux of this conserved
quantity and x = xi ∈ RND . In defining the flux we have taken u in
its unscripted form to refer to all of the NV field variables and ∇u
to be an object of length ND×NV consisting of the gradient of each
field variable. We start by rewriting Eq. (1) as a first order system

∂uα
∂t
+∇ · fα(u, q) = 0, (2a)

qα −∇uα = 0, (2b)

where q is an auxiliary variable. Here, as with∇u, we have taken q
in its unsubscripted form to refer to the gradients of all of the field
variables.

Take E to be the set of available element types in RND . Examples
include quadrilaterals and triangles in two dimensions and hexa-
hedra, prisms, pyramids and tetrahedra in three dimensions. Con-
sider using these various elements types to construct a conformal
mesh of the domain such that

� =

e∈E

�e and �e =

|�e|−1
n=0

�en and

e∈E

|�e|−1
n=0

�en = ∅,

where�e refers to all of the elements of type e inside of the domain,
|�e| is the number of elements of this type in the decomposition,
and n is an index running over these elements with 0 ≤ n < |�e|.
Inside each element �en we require that

∂uenα

∂t
+∇ · fenα = 0, (3a)

qenα −∇uenα = 0. (3b)

It is convenient, for reasons of bothmathematical simplicity and
computational efficiency, to work in a transformed space. We ac-
complish this by introducing, for each element type, a standard ele-
ment �̂e which exists in a transformed space, x̃ = x̃i. Next, assume
the existence of a mapping function for each element such that

xi =Meni(x̃), x =Men(x̃),

x̃i =M−1eni (x), x̃ =M−1
en (x),

along with the relevant Jacobian matrices

Jen = Jenij =
∂Meni

∂ x̃j
, Jen = det Jen,

J−1en = J−1enij =
∂M−1eni

∂xj
, J−1en = det J−1en =

1
Jen
.

These definitions provide us with a means of transforming quan-
tities to and from standard element space. Taking the transformed
solution, flux, and gradients inside each element to be

ũenα = ũenα(x̃, t) = Jen(x̃)uenα(Men(x̃), t), (4a)

f̃enα = f̃enα(x̃, t) = Jen(x̃)J
−1
en (Men(x̃))fenα(Men(x̃), t), (4b)

q̃enα = q̃enα(x̃, t) = JT
en(x̃)qenα(Men(x̃), t), (4c)
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Fig. 2. Solution points (blue circles) and flux points (orange squares) for a triangle
and quadrangle in physical space. For the top edge of the quadrangle the normal
vectors have been plotted. Observe how the flux points at the interface between
the two elements are co-located.

and letting ∇̃ = ∂/∂ x̃i, it can be readily verified that

∂uenα

∂t
+ J−1en ∇̃ · f̃enα = 0, (5a)

q̃enα − ∇̃uenα = 0, (5b)

as required. We note here the decision to multiply the first equa-
tion through by a factor of J−1en . Doing so has the effect of taking
ũen → uen which allows us to work in terms of the physical solu-
tion. This is more convenient from a computational standpoint.

We next proceed to associate a set of solution points with each
standard element. For each type e ∈ E take {x̃(u)eρ } to be the cho-
sen set of points where 0 ≤ ρ < N (u)e (℘). These points can then
be used to construct a nodal basis set {ℓ(u)eρ (x̃)} with the property
that ℓ(u)eρ (x̃

(u)
eσ ) = δρσ . To obtain such a set we first take {ψeσ (x̃)}

to be any basis which spans a selected order ℘ polynomial space
defined inside �̂e. Next we compute the elements of the gener-
alised Vandermonde matrix Veρσ = ψeρ(x̃(u)eσ ). With these a nodal
basis set can be constructed as ℓ(u)eρ (x̃) = V−1eρσψeσ (x̃). Along with
the solution points inside of each element we also define a set of
flux points on ∂�̂e. We denote the flux points for a particular ele-
ment type as {x̃(f )eρ } where 0 ≤ ρ < N (f )e (℘). Let the set of corre-
spondingnormalised outward-pointing normal vectors be given by

{ ˆ̃n
(f )
eρ }. It is critical that each flux point pair along an interface share

the same coordinates in physical space. For a pair of flux points
eρn and e′ρ ′n′ at a non-periodic interface this can be formalised as
Men(x̃

(f )
eρ ) =Me′n′(x̃

(f )
e′ρ′). A pictorial illustration of this can be seen

in Fig. 2.
The first step in the FR approach is to go from the discontinuous

solution at the solution points to the discontinuous solution at the
flux points

u(f )eσnα = u(u)eρnαℓ
(u)
eρ (x̃

(f )
eσ ), (6)

where u(u)eρnα is an approximate solution of field variable α inside of
the nth element of type e at solution point x̃(u)eρ . This can then be
used to compute a common solution

Cαu
(f )
eρnα = Cαu

(f )eρnα = Cα(u
(f )
eρnα, u

(f )eρnα), (7)

where Cα(uL, uR) is a scalar function that given two values at a
point returns a common value. Here we have taken eρn to be the
element type, flux point number and element number of the ad-
joining point at the interface. Since grids in FR are permitted to
be unstructured the relationship between eρn and eρn is indirect.
This necessitates the use of a lookup table. As the common solution
function is permitted to performupwinding or downwinding of the
solution it is in general the case that Cα(u

(f )
eρnα, u

(f )eρnα) ≠ Cα(u
(f )eρnα,
u(f )eρnα). Hence, it is important that each flux point pair only be vis-
ited once with the same common solution value assigned to both
Cαu

(f )
eρnα and Cαu

(f )eρnα .
Further, associated with each flux point is a vector correction

function g(f )eρ (x̃) constrained such that

ˆ̃n
(f )
eσ · g

(f )
eρ (x̃

(f )
eσ ) = δρσ , (8)

with a divergence that sits in the same polynomial space as the so-
lution. Using these fields we can express the solution to Eq. (5b) as

q̃(u)eσnα =


ˆ̃n
(f )
eρ · ∇̃ · g

(f )
eρ (x̃)


Cαu

(f )
eρnα − u(f )eρnα


+ u(u)eνnα∇̃ℓ

(u)
eν (x̃)


x̃=x̃(u)eσ

, (9)

where the term inside the curly brackets is the ‘jump’ at the in-
terface and the final term is an order ℘ − 1 approximation of the
gradient obtained by differentiating the discontinuous solution
polynomial. Following the approaches of Kopriva [15] and Sun
et al. [3] we can now compute physical gradients as

q(u)eσnα = J−T (u)eσn q̃(u)eσnα, (10)

q(f )eσnα = ℓ
(u)
eρ (x̃

(f )
eσ )q

(u)
eρnα, (11)

where J−T (u)eσn = J−Ten (x̃
(u)
eσ ). Having solved the auxiliary equationwe

are now able to evaluate the transformed flux

f̃
(u)
eρnα = J (u)eρnJ−1 (u)eρn fα(u

(u)
eρn, q

(u)
eρn), (12)

where J (u)eρn = det Jen(x̃(u)eρ ). This can be seen to be a collocation pro-
jection of the flux. With this it is possible to compute the normal
transformed flux at each of the flux points

f̃ (f⊥)eσnα = ℓ
(u)
eρ (x̃

(f )
eσ )
ˆ̃n
(f )
eσ · f̃

(u)
eρnα. (13)

Considering the physical normals at the flux points we see that

n(f )eσn = n(f )eσnn̂
(f )
eσn = J−T (f )eσn

ˆ̃n
(f )
eσ , (14)

which is the outward facing normal vector in physical space where
n(f )eσn > 0 is defined as the magnitude. As the interfaces between
two elements conform we must have n̂(f )eσn = −n̂

(f )eσn. With these
definitions we are now in a position to specify an expression for
the common normal flux at a flux point pair as

Fα f
(f⊥)
eσnα = −Fα f

(f⊥)eσnα = Fα(u
(f )
eσn, u

(f )eσn, q(f )eσn, q
(f )eσn, n̂(f )eσn). (15)

The relationship Fα f
(f⊥)
eσnα = −Fα f

(f⊥)eσnα arises from the desire for the
resulting numerical scheme to be conservative; a net outward flux
from one element must be balanced by a corresponding inward
flux on the adjoining element. It follows that Fα(uL, uR, qL, qR, n̂L)
= −Fα(uR, uL, qR, qL,−n̂L). The common normal fluxes in Eq. (15)
can now be taken into transformed space via

Fα f̃
(f⊥)
eσnα = J (f )eσnn

(f )
eσnFα f

(f⊥)
eσnα, (16)

Fα f̃
(f⊥)eσnα = J (f )eσnn(f )eσnFα f (f⊥)eσnα, (17)

where J (f )eσn = det Jen(x̃(f )eσ ).
It is now possible to compute an approximation for the diver-

gence of the continuous flux. The procedure is directly analogous to
the one used to calculate the transformed gradient in Eq. (9)

(∇̃ · f̃)(u)eρnα =


∇̃ · g(f )eσ (x̃)


Fα f̃

(f⊥)
eσnα − f̃ (f⊥)eσnα


+ f̃

(u)
eνnα · ∇̃ℓ

(u)
eν (x̃)


x̃=x̃(u)eρ

, (18)

which can then be used to obtain a semi-discretised form of the
governing system

∂u(u)eρnα

∂t
= −J−1 (u)eρn (∇̃ · f̃)(u)eρnα, (19)

where J−1 (u)eρn = det J−1en (x̃
(u)
eρ ) = 1/J (u)eρn.
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This semi-discretised form is simply a system of ordinary dif-
ferential equations in t and can be solved using one of a number of
schemes, e.g. a classical fourth order Runge–Kutta (RK4) scheme.

3. Implementation

3.1. Overview

PyFR is a Python based implementation of the FR approach
described in Section 2. It is designed to be compact, efficient, and
platform portable. Key functionality is summarised in Table 1.

Themajority of operationswithin an FR step can be cast in terms
of matrix–matrix multiplications, as detailed in Appendix A. All
remaining operations (e.g. flux evaluations) are point-wise, con-
cerning themselves with either a single solution point inside of an
element or two collocating flux points at an interface. Hence, in
broad terms, there are five salient aspects of an FR implementa-
tion, specifically (i) definition of the constant operatormatrices de-
tailed in Appendix A, (ii) specification of the statematrices detailed
in Appendix A, (iii) implementation of matrix multiply kernels,
(iv) implementation of point-wise kernels, and finally (v) handling
of distributed memory parallelism and scheduling of kernel invo-
cations. Details regarding how each of the above were achieved in
PyFR are presented below.

3.2. Definition of constant operator matrices

Setup of the seven constant operator matrices detailed in Ap-
pendix A requires evaluation of various polynomial expressions,
and their derivatives, at solution/flux points within each type of
standard element. Although conceptually simple, such operations
can be cumbersome to code. To keep the codebase compact PyFR
makes extensive use of symbolic manipulation via SymPy [16],
which brings computer algebra facilities similar to those found in
Maple and Mathematica to Python. SymPy has built-in support for
most common polynomials and can readily evaluate such expres-
sions to arbitrary precision. Efficiency of the setup phase is not crit-
ical, since the operations are only performed once at start-up. Since
efficiency is not critical, platform portability is effectively achieved
by running such operations on the host CPU in all cases.

3.3. Specification of state matrices

In specifying the state matrices detailed in Appendix A there is
a degree of freedom regarding how the field variables of each el-
ement are packed along a row. The packing of field variables can
be characterised by considering the distance, ∆j (in columns) be-
tween two subsequent field variables for a given element. The case
of ∆j = 1 corresponds to the array of structures (AoS) packing
whereas the choice of ∆j = |�e| leads to the structure of arrays
(SoA) packing. A hybrid approach wherein ∆j = k with k being
constant results in the AoSoA(k) approach. An implementation is
free to chose between any of these counting patterns so long as it
is consistent. For simplicity PyFR uses the SoA packing order across
all platforms.

3.4. Matrix multiplication kernels

PyFR defers matrix multiplication to the GEMM family of sub-
routines provided a suitable Basic Linear Algebra Subprograms
(BLAS) library. BLAS is available for virtually all platforms and op-
timised versions are often maintained by the hardware vendors
themselves (e.g. cuBLAS for NVIDIA GPUs). This approach greatly
facilitates development of efficient and platform portable code.
We note, however, that the matrix sizes encountered in PyFR are
Table 1
Key functionality of PyFR.

Dimensions 2D, 3D
Elements Triangles, Quadrilaterals, Hexahedra
Spatial orders Arbitrary
Time steppers Euler, RK4, DOPRI5
Precisions Single, Double
Platforms CPUs via C/OpenMP, NVIDIA GPUs via CUDA
Communication MPI
Governing systems Euler, Compressible Navier–Stokes

Fig. 3. An example of an extrinsic kernel in PyFR. The template variable nvars is
taken to be the number of field variables, Nv . The kernel arguments tdivtconf and
rcpdjac correspond to ∇̃ · f̃ and J−1 respectively with the operation being performed
in-place.

not necessarily optimal from a GEMM perspective. Specifically,
GEMM is optimised for the multiplication of large square matri-
ces, whereas the constant operator matrices in PyFR are ‘small
and square’ with 10–100 rows/columns, and the state matrices
are ‘short and fat’ with 10–100 rows and 10000–100000 columns.
Moreover, we note that the constant operator matrices are known
a priori, and do not change in time. This a priori knowledge could,
in theory, be leveraged to design bespoke matrix multiply kernels
that are more efficient than GEMM. Development of such bespoke
kernels will be a topic of future research.

3.5. Point-wise kernels

Point-wise kernels are specified using a domain specific lan-
guage implemented in PyFR atop of the Mako templating engine
[17]. The templated kernels are then interpreted at runtime, con-
verted to low-level code, compiled, linked and loaded. Currently
the templating engine can generate C/OpenMP to target CPUs,
and CUDA (via the PyCUDA wrapper [18]) to target NVIDIA GPUs.
The use of a domain specific language avoids implementation of
each point-wise kernel for each target platform; keeping the code-
base compact and platformportable. Runtime code generation also
means it is possible to instruct the compiler to emit binaries which
are optimised for the current hardware architecture. Such optimi-
sations can result in anything up to a fourfold improvement in per-
formance when compared with architectural defaults.

As an example of a point-wise kernelwe consider the evaluation
of the right hand side of Eq. (19), which reads −J−1 (u)eρn (∇̃ · f̃)(u)eρnα .
The operation consists of a point-wise multiplication between the
negative reciprocal of the Jacobian and the transformed divergence
of the flux at each solution point. Fig. 3 shows how such a kernel
can be expressed in the domain specific language of PyFR. There are
several points of note. Firstly, the kernel is purely scalar in nature.
This is by design; in PyFR point-wise kernels need only prescribe
the point-wise operation to be applied. Important choices such as
how to vectorise a given operation or how to gather data from
memory are all delegated to templating engine. Secondly, we note
it is possible to utilise Python when generating the main body of
kernels. This capability is showcased on lines four, five and six
where it is used to unroll a for loop over each of the field variables.
Finally, we also highlight the use of an abstract data type fpdtype_t
for floating point variables which permits a single set of kernels to
be used for both single and double precision operation. Generated
CUDA source for this kernel can be seen in Fig. 4, and the equivalent
C kernel can be found in Fig. 5.
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3.6. Distributed memory parallelism and scheduling

PyFR is capable of operating on high performance comput-
ing clusters utilising distributed memory parallelism. This is ac-
complished through the Message Passing Interface (MPI). All MPI
functionality is implemented at the Python level through the
mpi4py [19] wrapper. To enhance the scalability of the code care
has been taken to ensure that all requests are persistent, point-to-
point and non-blocking. Further, the format of data that is shared
between ranks has been made backend independent. It is there-
fore possible to deploy PyFR on heterogeneous clusters consisting
of both conventional CPUs and accelerators.

The arrangement of kernel calls required to solve an advec-
tion–diffusion problem can be seen in Fig. 6. Our primary objective
when scheduling kernels was to maximise the potential for over-
lapping communicationwith computation. In order to help achieve
this the common interface solution,Cα , and common interface flux,
Fα , kernels have been broken apart into two separate kernels; suf-
fixed in the figure by int andmpi. PyFR is therefore able to perform
a significant degree of rank-local computation while the relevant
ghost states are being exchanged.

Our secondary objective when scheduling kernels was to min-
imise the amount of temporary storage required during the evalu-
ation of−∇ ·f. Such optimisations are critical within the context of
accelerators which often have an order of magnitude less memory
than a contemporary platform. In order to help achieve this U(u),
R̃(u), and R(u) are allowed to alias. By permitting the same storage
location to beused for both the inputted solution and the outputted
flux divergence it is possible to reduce the storage requirements of
the RK schemes. Another opportunity for memory reuse is in the
transformed flux function where the incoming gradients, Q(u), can
be overwritten with the transformed flux, F̃(u). A similar approach
can be used in the common interface flux function whereby U(f )

can updated in-placewith the entries of D̃(f )which holds the trans-
formed common normal flux. Moreover, C(f ) is also able to utilise
the same storage as the somewhat larger Q(f ) array. These optimi-
sations allow PyFR to process over 100000 curved, unstructured,
hexahedral elements at ℘ = 3 inside of a 5 GiB memory footprint.

4. Governing systems

4.1. Overview

PyFR is a framework for solving various advection–diffusion
type problems. In the current release of PyFR two specific gov-
erning systems can be solved, specifically the Euler equations for
inviscid compressible flow, and the compressible Navier–Stokes
equations for viscous compressible flow. Details regarding both are
given below.

4.2. Euler equations

Using the framework introduced in Section 2 the three dimen-
sional Euler equations can be expressed in conservative form as

u =


ρ
ρvx
ρvy
ρvz
E

 ,

f = f(inv) =


ρvx ρvy ρvz

ρv2x + p ρvyvx ρvzvx
ρvxvy ρv2y + p ρvzvy

ρvxvz ρvyvz ρv2z + p
vx(E + p) vy(E + p) vz(E + p)

 ,
(20)
Fig. 4. Generated CUDA source for the template in Fig. 3 for when NV = 4.

with u and f together satisfying Eq. (1). In the above ρ is the mass
density of the fluid, v = (vx, vy, vz)T is the fluid velocity vector, E is
the total energy per unit volume and p is the pressure. For a perfect
gas the pressure and total energy can be related by the ideal gas law

E =
p

γ − 1
+

1
2
ρ∥v∥2, (21)

where γ = cp/cv .
With the fluxes specified all that remains is to prescribe a

method for computing the commonnormal flux,Fα , at interfaces as
defined in Eq. (15). This can be accomplished using an approximate
Riemann solver for the Euler equations. There exist a variety of
such solvers as detailed in [20]. A description of those implemented
in PyFR can be found in Appendix B.

4.3. Compressible Navier–Stokes equations

The compressible Navier–Stokes equations can be viewed as an
extension of the Euler equations via the inclusion of viscous terms.
Within the framework outlined above the flux now takes the form
of f = f(inv) − f(vis) where

f(vis) =


0 0 0

Txx Tyx Tzx
Txy Tyy Tzy
Txz Tyz Tzz

viTix +∆∂xT viTiy +∆∂yT viTiz +∆∂zT

 . (22)

In the above we have defined∆ = µcp/Pr whereµ is the dynamic
viscosity and Pr is the Prandtl number. The components of the
stress–energy tensor are given by

Tij = µ(∂ivj + ∂jvi)−
2
3
µδij∇ · v. (23)

Using the ideal gas law the temperature can be expressed as

T =
1
cv

1
γ − 1

p
ρ
, (24)

with partial derivatives thereof being given according to the quo-
tient rule.
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Fig. 5. Generated OpenMP annotated C source code for the template in Fig. 3 for
when NV = 4. The somewhat unconventional structure is necessary to ensure that
the kernel is properly vectorised across a range of compilers.

Since the Navier–Stokes equations are an advection–diffusion
type system it is necessary to both compute a common solution
(Cα of Eq. (7)) at element boundaries and augment the inviscid Rie-
mann solver to handle the viscous part of the flux. A popular ap-
proach is the LDG method as presented in [5,13]. In this approach
the common solution is given ∀α according to

C(uL, uR) = (
1
2 − β)uL + (

1
2 + β)uR, (25)

where β controls the degree of upwinding/downwinding. The
common normal interface flux is then prescribed, once again ∀α,
according to

F(uL, uR, qL, qR, n̂L) = F(inv) − F(vis), (26)

where F(inv) is a suitable inviscid Riemann solver (see Appendix B)
and

F(vis) = n̂L ·


( 12 + β)f

(vis)
L + ( 12 − β)f

(vis)
R


+ τ(uL − uR), (27)

with τ being a penalty parameter, f(vis)L = f(vis)(uL, qL), and f(vis)R =

f(vis)(uR, qR). We observe here that if the common solution is up-
winded then the common normal flux will be downwinded. Gen-
erally, β = ±1/2 as this results in the numerical scheme having a
compact stencil and 0 ≤ τ ≤ 1.
Fig. 6. Flow diagram showing the stages required to compute−∇ · f. Symbols cor-
respond to those of Appendix A. For simplicity arguments referencing constant data
have been omitted. Memory indirection is indicated by red underlines. Synchroni-
sation points are signified by black horizontal lines. Dotted lines correspond to data
reuse.

4.3.1. Presentation in two dimensions
The above prescriptions of the Euler and Navier–Stokes equa-

tions are valid for the case of ND = 3. The two dimensional
formulation can be recovered by deleting the fourth rows in the
definitions of u, f(inv) and f(vis) along with the third columns of f(inv)
and f(vis). Vectors are now two dimensional with the velocity being
given by v = (vx, vy)T .

5. Validation

5.1. Euler equations: Euler vortex super accuracy

Various authors [4,10] have shownFR schemes exhibit so-called
‘super accuracy’ (an order of accuracy greater than the expected
℘ + 1). To confirm PyFR can achieve super accuracy for the Euler
equations a square domain � = [−20, 20]2 was decomposed into
four structured quad meshes with spacings of h = 1/3, h = 2/7,
h = 1/4, and h = 2/9. Initial conditions were taken to be those of
an isentropic Euler vortex in a free-stream

ρ(x, t = 0) =

1−

S2M2(γ − 1) exp 2f
8π2

 1
γ−1

, (28)

v(x, t = 0) =
Sy exp f
2πR

x̂+

1−

Sx exp f
2πR


ŷ, (29)

p(x, t = 0) =
ργ

γM2
, (30)

where f = (1 − x2 − y2)/2R2, S = 13.5 is the strength of the
vortex, M = 0.4 is the free-stream Mach number, and R = 1.5
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Fig. 7. Initial density profile for the vortex in �. The black box shows the region
where the error is calculated.

is the radius. All meshes were configured with periodic boundary
conditions along boundaries of constant x. Along boundaries of
constant y the dynamical variables were fixed according to

ρ(x = xx̂± 20ŷ, t) = 1,

v(x = xx̂± 20ŷ, t) = ŷ,

p(x = xx̂± 20ŷ, t) =
1
γM2

,

which are simply the limiting values of the initial conditions.
Strictly speaking these conditions, on account of the periodicity,
result in the modelling of an infinite array of coupled vortices.
The impact of this is mitigated by the observation that the expo-
nentially decaying vortex has a characteristic radius which is far
smaller than the extent of the domain. Neglecting these effects the
analytic solution of the system in a time t is simply a translation of
the initial conditions.

Using the analytical solution we can define an L2 error as

σ(t)2 =
 2

−2

 2

−2


ρδ(x+∆y(t)ŷ, t)− ρ(x, t = 0)

2
d2x, (31)

where ρδ(x, t) is the numerical mass density, ρ(x, t = 0) the ana-
lytic mass density, and ∆y(t) is the ordinate corresponding to the
centre of the vortex at a time t and accounts for the fact that the
vortex is translating in a free stream velocity of unity in the y direc-
tion. Restricting the region of consideration to a small box centred
around the origin serves to further mitigate against the effects of
vortices coupling together. The initial mass density along with the
[−2,−2] × [2, 2] region used to evaluate the error can be seen in
Fig. 7. At times, tc , when the vortex is centred on the box the error
can be readily computed by integrating over each element inside
the box and summing the residuals

σ(tc)2 =


�̂e


ρδi (x̃, tc)− ρ(Mi(x̃), 0)

2
Ji(x̃) d2x̃, (32)

where, ρδi (x̃, tc) is the approximate mass density inside of the ith
element, and Ji(x̃) the associated Jacobian. These integrals can be
approximated by applying Gaussian quadrature

σ(tc)2 ≈ Ji(x̃j)

ρδi (x̃j, tc)− ρ(Mi(x̃j), 0)

2
ωj

=
h2

4


ρδi (x̃j, tc)− ρ(Mi(x̃j), 0)

2
ωj, (33)

where {x̃j} are abscissa and {ωj} the weights of a rule determined
for integration inside of a standard quadrilateral. So long as the rule
used is of a suitable strength then this will be a very good approx-
imation of the true L2 error.

Following [10] the initial conditions were laid onto the mesh
using a collocation projection with ℘ = 3. The simulation was
Fig. 8. Spatial super accuracy observed for a ℘ = 3 simulation using DG, SD and
HU as defined in [10].

then run with three different flux reconstruction schemes: DG, SD,
and HU as defined in [10]. Solution points were placed at a tensor
product construction of Gauss–Legendre quadrature points. Com-
mon interface fluxes were computed using a Rusanov Riemann
solver. To advance the solutions in time a classical fourth order
Runge–Kutta method (RK4) was used. The time step was taken to
be ∆t = 0.00125 with t = 0..1800 with solutions written out
to disk every 32000 steps. The order of accuracy of the scheme at
a particular time can be determined by plotting log σ against log h
and performing a least-squares fit through the four data points. The
order is given by the gradient of the fit. A plot of order of accuracy
against time for the three schemes can be seen in Fig. 8. We note
that the order of accuracy changes as a function of time. This is due
to the fact that the error is actually of the form σ(t) = σp + σso(t)
where σp is a constant projection error and σso is a time-dependent
spatial operator error. The projection error arises as a consequence
of the fourth order collocation projection of the initial conditions
onto the mesh. Over time the spatial operator error grows in mag-
nitude and eventually dominates. Only when σso(t) ≫ σp can the
true order of the method be observed. The results here can be seen
to be in excellent agreement with those of [10].

5.2. Compressible Navier–Stokes equations: Couette flow

Consider the case in which two parallel plates of infinite ex-
tent are separated by a distance H in the y direction. We treat
both plates as isothermal walls at a temperature Tw and permit the
top plate to move at a velocity vw in the x direction with respect
to the bottom plate. For simplicity we shall take the ordinate of
the bottom plate as zero. In the case of a constant viscosity µ the
Navier–Stokes equations admit an analytical solution in which

ρ(φ) =
γ

γ − 1
2p

2cpTw + Prv2wφ(1− φ)
, (34)

v(φ) = vwφx̂, (35)

p = pc, (36)

where φ = y/H and pc is a constant pressure. The total energy is
given by the ideal gas lawof Eq. (21). On a finite domain the Couette
flow problem can be modelled through the imposition of periodic
boundary conditions. For a twodimensionalmeshperiodicity is en-
forced in x whereas for three dimensional meshes it is enforced in
both x and z. To validate the Navier–Stokes solver in PyFR we take
γ = 1.4, Pr = 0.72, µ = 0.417, cp = 1005 J K−1, H = 1 m, Tw =
300 K, pc = 1× 105 Pa, and vw = 69.445 m s−1. These values cor-
respond to a Mach number of 0.2 and a Reynolds number of 200.
The plates were modelled as no-slip isothermal walls as detailed
in Appendix C.4 of Appendix C. A plot of the resulting energy pro-
file can be seen in Fig. 9. Constant initial conditions are taken as
ρ =


ρ(φ)


, v = vwx̂, and p = pc . Using the analytical solution
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Fig. 9. Converged steady state energy profile for the two dimensional Couette flow
problem.

we again define an L2 error as

σ(t)2 =


�


Eδ(x, t)− E(x)

2
dNDx (37)

=


�ei


Eδei(x̃, t)− E(Mei(x̃))

2
Jei(x̃) dND x̃ (38)

≈

Eδei(x̃ej, t)− E(Mei(x̃ej))

2
Jei(x̃ej)ωej, (39)

where � is the computational domain, Eδ(x, t) is the numerical
total energy, and E(x) the analytic total energy. In the third step
we have approximated each integral by a quadrature rule with
abscissa {x̃ej} and weights {ωej} inside of an element type e. Cou-
ette flow is a steady state problem and so in the limit of t → ∞
the numerical total energy should converge to a solution. Starting
from a constant initial condition the L2 error was computed every
0.1 time units. The simulation was said to have converged when
σ(t)/σ (t + 0.1) ≤ 1.01 where σ is the L2 error. We will denote
the time at which this occurs by t∞.

Once the system has converged for a range of meshes it is pos-
sible to compute the order of accuracy of the scheme. For a given
℘ this is the slope (plus or minus a standard error) of a linear
least squares fit of log h ∼ log σ(t∞)where h is an approximation
of the characteristic grid spacing. The expected order of accuracy
is ℘ + 1. In all simulations inviscid fluxes were computed using
the Rusanov approach and the LDG parameters were taken to be
β = 1/2 and τ = 0.1. All simulations were performed with DG
correction functions and at double precision. Inside tensor product
elements Gauss–Legendre solution and flux pointswere employed.
Triangular elements utilised Williams–Shunn solution points and
Gauss–Legendre flux points.
Two dimensional unstructuredmixedmesh. For the two dimensional
test cases the computational domain was taken to be [−1, 1] ×
[0, 1]. This domain was then meshed with both triangles and
quadrilaterals at four different refinement levels as shown in
Fig. 10. The Couette flow problem described abovewas then solved
on each of these meshes. Experimental L2 errors and orders of ac-
curacy can be seen in Table 2.We note that in all cases the expected
order of accuracy was obtained.
Three dimensional extruded hexahedral mesh. For this three dimen-
sional case the computational domain was taken to be [−1, 1] ×
[0, 1] × [0, 1]. Meshes were constructed through first generating
a series of unstructured quadrilateral meshes in the x–y plane. A
three layer extrusion was then performed on this meshes to yield
a series of hexahedral meshes. Experimental L2 errors and orders
of accuracy for these meshes can be seen in Table 3.
Three dimensional unstructured hexahedral mesh. As a further test
a domain of dimension [0, 1]3 was considered. This domain was
meshed using completely unstructured hexahedra. Three levels of
refinement were used resulting in meshes with 96, 536 and 1004
elements. A cutaway of the most refined mesh can be seen in
Fig. 11. Experimental L2 errors and the resulting orders of accuracy
are presented in Table 4. Despite the fully unstructured nature of
Table 2
L2 energy error and orders of accuracy for the Couette flow problem on four mixed
meshes. The mesh spacing was approximated as h ∼ N−1/2E where NE is the total
number of elements in the mesh.

σ(t∞)/J m−3

Tris Quads ℘ = 1 ℘ = 2 ℘ = 3 ℘ = 4

2 8 1.26× 102 5.77× 10−1 5.54× 10−3 6.62× 10−5

6 22 3.56× 101 1.40× 10−1 6.72× 10−4 3.91× 10−6

10 37 2.08× 101 4.35× 10−2 2.54× 10−4 8.16× 10−7

16 56 1.46× 101 3.52× 10−2 1.09× 10−4 4.62× 10−7

Order 2.21±0.12 2.99±0.32 3.97±0.05 5.20±0.38

Table 3
L2 energy errors and orders of accuracy for the Couette flow problem on three
extruded hexahedral meshes. On account of the extrusion h ∼ N−1/2E where NE
is the total number of elements in the mesh.

σ(t∞) / J m−3

Hexes ℘ = 1 ℘ = 2 ℘ = 3

78 3.35× 101 5.91× 10−2 7.28× 10−4

195 1.23× 101 1.87× 10−2 1.15× 10−4

405 6.15× 100 5.49× 10−3 2.72× 10−5

Order 2.06±0.08 2.87±0.24 3.99±0.03

Table 4
L2 energy errors and orders of accuracy for the Couette flow problem on three
unstructured hexahedral meshes. Mesh spacing was taken as h ∼ N−1/3E where
NE is the total number of elements in the mesh.

σ(t∞) / J m−3

Hexes ℘ = 1 ℘ = 2 ℘ = 3

96 1.91× 101 4.32× 10−2 5.83× 10−4

536 8.20× 100 9.11× 10−3 6.89× 10−5

1004 3.82× 100 3.22× 10−3 2.04× 10−5
Order 1.93±0.46 3.19±0.48 4.16±0.44

the mesh the expected order of accuracy was again obtained in all
cases. We do, however, note the higher standard errors associated
with these results.

5.3. Compressible Navier–Stokes equations: flow over a cylinder

In order to demonstrate the ability of PyFR to solve the unsteady
Navier–Stokes equations flow over a cylinder at Reynolds number
3900 and Mach number M = 0.2 was simulated. A cylinder of
radius 1/2 was placed at (0, 0) inside of a domain of dimension
[−18, 30] × [−10, 10] × [0, 3.2]. This domain was then meshed
in the x–y plane with 4661 quadratically curved quadrilateral ele-
ments. Next, this grid was extruded along the z-axis to yield a total
of 46610 hexahedra. The grid, which can be seen in Fig. 12, was
partitioned into four pieces. Along surfaces of y = ±10 and x =
−18 the inflow boundary condition of Appendix C.2 in Appendix C
was imposed. Along the surface of x = 30 the outflow condition of
Appendix C.3 inAppendix Cwas used. Periodic conditionswere im-
posed in the z direction. On the surface of the cylinder the no-slip
isothermal wall condition of Appendix C.4 in Appendix C was im-
posed. The free-stream conditions were taken to be ρ = 1, v = x̂,
and p = 1/γM2. These were also used as the initial conditions for
the simulation. DG correction functions were used with the LDG
parameters being β = 1/2 and τ = 0.1. The ratio of specific heats
was taken as γ = 1.4 and the Prandtl number as Pr = 0.72.

The simulation was run with ℘ = 4 with four NVIDIA K20c
GPUs. It contained some 29× 106 degrees of freedom. Isosurfaces
of density captured after the turbulent wake had fully developed
can be seen in Fig. 13.
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Fig. 10. Unstructured mixed element meshes used for the two dimensional Couette flow problem.
Fig. 11. Cutaway of the unstructured hexahedral mesh with 1004 elements.

Fig. 12. Cross section in the x–y plane of the cylinder mesh. Colours indicate the
partition to which the elements belong.

6. Single node performance

The single node performance of PyFR has been evaluated on
an NVIDIA M2090 GPU. This accelerator has a theoretical peak
double precision floating point performance of 665 GFLOP/s, and
when ECC is disabled the theoretical peak memory bandwidth is
177 GB/s. As points of reference we observe that cuBLAS (CUDA
5.5) is able to obtain 407 GFLOP/s when multiplying a pair of
4096× 4096 matrices on this hardware, and the maximum device
bandwidth obtainable by the bandwidth test application included
with the CUDA SDK is 138.9GiB/s when ECC is disabled. We shall
refer to these values as reference peaks.

To conduct the evaluation a fully periodic cuboidal domain was
meshed with 50176 hexahedral elements. The double precision
Navier–Stokes solver of PyFR was then run on this mesh at orders
℘ = 2, 3, 4 with β = 1/2. In conducting the analysis kernels
were grouped into one of three categories: matrix multiplications
(DGEMM), point-wise kernels with direct memory access patterns
Table 5
Single GPU performance of PyFR for the Navier–Stokes equations when run on
an NVIDIA M2090 with ECC disabled. As the memory bandwidth requirements of
DGEMM are dependent on the accumulation strategy adopted by the implementa-
tion these values have been omitted.

Order
℘ = 2 ℘ = 3 ℘ = 4

Wall time/%
DGEMM 55.7 66.2 81.4

PD 24.9 21.5 12.8
PI 19.4 12.3 5.8

Bandwidth/GiB/s
PD 125.5 125.0 124.8
PI 124.8 124.3 124.2

Arithmetic/GFLOP/s
DGEMM 205.3 368.1 305.4

PD 0.7 0.7 0.7
PI 0.9 0.8 0.9

(PD) and point-wise kernels with some level of indirect memory
access (PI). Indirection arises in the computation of Cα in Eq. (7)
and Fα in Eq. (15) and occurs as a consequence of the unstruc-
tured nature of PyFR. The resulting breakdowns of wall-clock time,
memory bandwidth and floating point operations can be seen in
Table 5. It is clear that the majority of floating point operations are
concentrated inside the calls to DGEMMwith the point-wise oper-
ations being heavilymemory bandwidth bound. Of this bandwidth
some∼15%was ascribed to register spillage above andbeyond that
which can be absorbed by the L1 cache.

The high fraction of peak bandwidth obtained by the indirect
kernels can be attributed to three factors. Firstly, the constant data
required for calculations at interfaces, such as n̂(f )eσn and J (f )eσnn

(f )
eσn, is

ordered to ensure direct (coalesced) access. Secondly, at start-up
PyFR attempts to determine an iteration ordering over the various
flux-point pairs that will minimise the number of cache misses.

Many of the memory accesses are therefore near-coalesced.
Thirdly and finally we highlight the impressive latency-hiding ca-
pabilities of the CUDA programming model.

In line with expectations the proportion of time spent perform-
ing matrix–matrix multiplications increases as a function of order.
When going from ℘ = 2 to ℘ = 3 a significant portion of the ad-
ditional compute is offset by the improved performance of cuBLAS.
However, when ℘ = 4 the performance of these kernels in abso-
lute terms can be seen to regress slightly. This contributes to the
greatly increased fraction of wall-clock time spent inside of these
kernels. Nevertheless, the achieved rate of 305.4GFLOP/s is still
over 75% of the reference peak. Also in linewith expectations is the
invariance of the arithmetic performance of the point-wise kernels
with respect to order. As the order is varied all that changes is the
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Fig. 13. Isosurfaces of density around the cylinder.
Table 6
Weak scalability of PyFR for the Navier–Stokes equations with ℘ = 3. Runtime is
normalised with respect to a single NVIDIA M2090 GPU.

# M2090s 1 2 4 8 16 32 64 104
Runtime 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01

number of points to be processed with the operation itself remain-
ing identical.

7. Scalability

The scalability of PyFR has been evaluated on the Emerald GPU
cluster. It is housed at the STFC Rutherford Appleton Laboratory
and based around 60 HP SL390 nodes with three NVIDIA M2090
GPUs and 24 HP SL390 nodes with eight NVIDIA M2090 GPUs.
Nodes are connected by QDR InfiniBand.

For simplicity all runs herein were performed on the eight GPU
nodes. As a starting point a domain of dimension [−16, 16] ×
[−16, 16]×[0, 1.75]wasmeshed isotropically withNE = 114 688
structured hexahedral elements. The mesh was configured with
completely periodic boundary conditions. When run with the
Navier–Stokes solver in PyFR with ℘ = 3 the mesh gives a work-
ing set of∼4720MiB. This is sufficient to 90% load anM2090which
when ECC is enabled has∼5250MiBmemory available to the user.
When examining the scalability of a code there are two commonly
usedmetrics. The first of these is weak scalability in which the size
of the target problem is increased in proportion to the number of
ranks N with NE ∝ N . For a code with perfect weak scalability
the runtime should remain unchanged as more ranks are added.
The secondmetric is strong scalability wherein the problem size is
fixed and the speedup compared to a single rank is assessed. Per-
fect strong scalability implies that the runtime scales as 1/N .

For the domain outlined above weak scalability was evaluated
by increasing the dimensions of the domain according to [−16, 16]
×N[−16, 16]× [0, 1.75]. This extension permitted the domain to
be trivially decomposed along the y-axis. The resulting runtimes
for 1 ≤ N ≤ 104 can be seen in Table 6. We note that in the N =
104 case that the simulation consisted of some 3.8 × 109 degrees
of freedom with a working set of∼485GiB.

To study the strong scalability the initial domain was parti-
tioned along the x- and y-axes. Each partition contained exactly
NE/Ns. The resulting speedups for 1 ≤ N ≤ 32 can be seen in Ta-
ble 7. Up to eight GPUs scalability can be seen to be near perfect.
Beyond this the relationship begins to break down. When N = 32
an improvement of 26 can be observed. However, in this case each
GPU is loaded to less than 3% and so the result is to be expected.

8. Conclusions

In this paper we have described PyFR, an open source Python
based framework for solving advection–diffusion typeproblemson
Table 7
Strong scalability of PyFR for the Navier–Stokes equationswith℘ = 3. The speedup
is relative to a single NVIDIA M2090 GPU.

# M2090s 1 2 4 8 16 32
Speedup 1.00 2.03 3.96 7.48 14.07 26.18

streaming architectures. The structure and ethos of PyFR has been
explained including our methodology for targeting multiple hard-
ware platforms. We have shown that PyFR exhibits spatial super
accuracywhen solving the 2D Euler equations and the expected or-
der of accuracy when solving Couette flow problem on a range of
grids in 2D and 3D. Qualitative results for unsteady 3D viscous flow
problems on curved grids have also been presented. Performance
of PyFR has been validated on an NVIDIA M2090 GPU in three
dimensions. It has been shown that the compute bound kernels
are able to obtain between 50% and 90% of reference peak FLOP/s
whereas the bandwidth bound point-wise kernels are, across the
board, able to obtain in excess of 89% of reference peak bandwidth.
The scalability of PyFR has been demonstrated in the strong sense
up to 32 NVIDIA M2090s and in the weak sense up to 104 NVIDIA
M2090s when solving the 3D Navier–Stokes equations.
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Appendix A. Matrix representation

It is possible to cast the majority of operations in an FR step as
matrix–matrix multiplications of the form

C← c1AB+ c2C, (40)

where c1,2 ∈ R are constants, A is a constant operator matrix, and
B and C are state matrices. To accomplish this we start by intro-
ducing the following constant operator matrix
M0

e


σρ
= ℓ(u)eρ (x̃

(f )
eσ ), dim M0

e = N (f )e × N (u)e ,

and the following state matrices
U(u)e


ρ(nα) = u(u)eρnα, dim U(u)e = N (u)e × NV |�e|,

U(f )e


σ(nα) = u(f )eσnα, dim U(f )e = N (f )e × NV |�e|.

In specifying the state matrices there is a degree of freedom asso-
ciated with how the NV field variables for each element are packed
along a row of the matrix, with the possible packing choices be-
ing discussed in Section 3.3. Using these matrices we are able to
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reformulate Eq. (6) as

U(f )e = M0
eU(u)e . (41)

In order to apply a similar procedure to Eq. (9) we let
M4

e


ρσ
=


∇̃ℓ(u)eρ (x̃)


x̃=x̃(u)eσ

, dim M4
e , = NDN (u)e × N (u)e ,

M6
e


ρσ
=


ˆ̃n
(f )
eρ · ∇̃ · g

(f )
eρ (x̃)


x̃=x̃(f )eσ

, dim M6
e , = NDN (u)e × N f

e ,
C(f )e


ρ(nα) = Cαu(f )eρnα, dim C(f )e = N (f )e × NV |�e| ,

Q̃(u)e


σ(nα) = q̃(u)eσnα, dim Q̃(u)e = NDN (u)e × NV |�e| .

Here it is important to qualify assignments of the form Aij = x
where x is a ND component vector. As above there is a degree of
freedom associated with the packing. With the benefit of foresight
we take the stride between subsequent elements of x in a matrix
column to be either ∆i = N (u)e or ∆i = N (f )e depending on the
context. With these matrices Eq. (9) reduces to

Q̃(u)e = M6
e


C(f )e − U(f )e


+ M4

eU(u)e

= M6
e


C(f )e − M0

eU(u)e


+ M4

eU(u)e

= M6
eC(f )e +


M4

e − M6
eM0

e


U(u)e . (42)

Applying the procedure to Eq. (11) we take

M5
e = diag(M0

e , . . . ,M0
e ) dim M5

e = NDN (f )e × NDN (u)e ,
Q(u)e


σ(nα) = q(u)eσnα, dim Q(u)e = NDN (u)e × NV |�e| ,

Q(f )e


σ(nα) = q(f )eσnα, dim Q(f )e = NDN (f )e × NV |�e| ,

hence

Q(f )e = M5
eQ(u)e , (43)

where we note the block diagonal structure of M5
e . This is a direct

consequence of the above choices for∆i. Finally, to rewrite Eq. (18)
we write

M1
e


ρσ
=


∇̃ℓ(u)eρ (x̃)

T
x̃=x̃(u)eσ

, dim M1
e = N (u)e × NDN (u)e ,

M2
e


ρσ
=


ℓ(u)eρ (x̃

(f )
eσ )
ˆ̃n
(f )
eσ

T
, dim M2

e = N (f )e × NDN (u)e ,
M3

e


ρσ
=


∇̃ · g(f )eσ (x̃)


x̃=x̃(u)eρ

, dim M3
e = N (u)e × N (f )e ,

D̃(f )e


σ(nα) = Fα f̃

(f⊥)
eσnα, dim D̃(f )e = N (f )e × NV |�e| ,

F̃(u)e


ρ(nα) = f̃

(u)
eρnα, dim F̃(u)e = NDN (u)e × NV |�e| ,

R̃(u)e


ρ(nα) = (∇̃ · f̃)

(u)
eρnα, dim R̃(u)e = N (u)e × NV |�e| ,

and after substitution of Eq. (13) for f̃ (f⊥)eσnα obtain

R̃(u)e = M3
e


D̃(f )e − M2

e F̃(u)e


+ M1

e F̃(u)e

= M3
e D̃(f )e +


M1

e − M3
eM2

e


F̃(u)e . (44)

Appendix B. Approximate Riemann solvers

B.1. Overview

In the following section we take uL and uR to be the two dis-
continuous solution states at an interface and n̂L to be the nor-
mal vector associated with the first state. For convenience we take
f(inv)L = f(inv)(uL), and f(inv)R = f(inv)(uR) with inviscid fluxes being
prescribed by Eq. (20).

B.2. Rusanov

Also known as the local Lax–Friedrichs method a Rusanov
type Riemann solver imposes inviscid numerical interface fluxes
according to

F(inv) =
n̂L

2
·


f(inv)L + f(inv)R


+

s
2
(uL − uR), (45)

where s is an estimate of the maximum wave speed

s =


γ (pL + pR)
ρL + ρR

+
1
2

n̂L · (vL + vR)
. (46)

Appendix C. Boundary conditions

C.1. Overview

To incorporate boundary conditions into the FR approach we
introduce a set of boundary interface types b ∈ B. At a boundary
interface there is only a single flux point: that which belongs to the
element whose edge/face is on the boundary. Associatedwith each
boundary type are a pair of functions C(b)α (uL) and F(b)α (uL, qL, n̂L)
where uL, qL, and n̂L are the solution, solution gradient and unit
normals at the relevant flux point. These functions prescribe the
common solutions and normal fluxes, respectively.

Instead of directly imposing solutions and normal fluxes it is
oftentimes more convenient for a boundary to instead provide
ghost states. In its simplest formulation C(b)α = Cα(uL,B

(b)uL) and
F(b)α = Fα(uL,B

(b)uL, qL,B
(b)qL, n̂L) where B(b)uL is the ghost so-

lution state and B(b)qL is the ghost solution gradient. It is straight-
forward to extend this prescription to allow for the provisioning of
different ghost solution states for Cα and Fα and to permit B(b)qL
to be a function of uL in addition to qL.

C.2. Supersonic inflow

The supersonic inflow condition is parameterised by a free-
stream density ρf , velocity vf , and pressure pf .

B(inv)uL = B(ldg)uL =


ρf
ρf vf

pf /(γ − 1)+
ρf

2
∥vf ∥2

 , (47)

B(ldg)qL = 0. (48)

C.3. Subsonic outflow

Subsonic outflow boundaries are parameterised by a free-
stream pressure pf .

B(inv)uL = B(ldg)uL =


ρL
ρLvL

pf /(γ − 1)+
ρL

2
∥vL∥2

 , (49)

B(ldg)qL = 0. (50)

C.4. No-slip isothermal wall

The no-slip isothermal wall condition depends on thewall tem-
perature cpTw and the wall velocity vw . Usually vw = 0.

B(inv)uL = ρL


1

2vw − vL
cpTw/γ +

1
2
∥2vw − vL∥2

 , (51)

B(ldg)uL = ρL


1
vw

cpTw/γ +
1
2
∥vw∥2

 , (52)

B(ldg)qL = qL. (53)
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