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Chapter 1

Alice physics: an introduction
and survey

Nothing shocks me!
I'm a scientist.

Indiana Jones

In this first chapter we will present an overview of different aspects of Alice physics.
First we explain what Alice physics is and present some examples. Then we turn to
Alice electrodynamics. the theory we will explore thoroughly in this thesis. In section
2 we preview the main results that will subsequently be described extensively in the
following chapters.

1.1 Alice theories

The term “Alice physics™! refers to a certain type of topological interactions. which
may for example occur in spontaneously broken gauge theories where a larger non-
abelian gauge group G is broken to a smaller, the unbroken, gauge group H which
itself is still non-abelian. This occurs if one of the scalar fields in the theory gets a
vacuum expectation value which is not invariant under the whole gauge group G. but
only under the unbroken part of the gauge group H. This implies that the classi-
cal ground state is degenerate and the vacuum manifold is isomorphic to the coset
space G/H, the orbit of the order parameter under the group G. Broken symme-
tries manifest themselves by the appearance of massless scalar modes if the broken
symmetries are global, and massive gauge particles if they are local. The broken gen-
erators generate translations in the vacuum manifold. Another, equally important

1The subject has no relation to the physics studied with the ALICE detector at CERN. The name
Alice in Alice physics rather refers to the book “Alice in Wonderland”. This connection will become
clear later on.



Chapter 1. Alice physics: an introduction and survey

manifestation of broken symmetries is the possible appearance of topological defects
in the broken phase. Their nature is intimately linked to the topological properties of
the vacuum manifold. A topological defect is a spatially extended field configuration
where the order parameter satisfies nontrivial boundary conditions characterized by
some topological invariant. This boundary condition implies that the order parameter
field cannot stay within the vacunum manifold everywhere in the bulk. Well known
examples are monopoles. flux tubes and domain walls.

To point out what is characteristic of Alice theories it is illuminating to look at the
case of (magnetic) flux tubes. To every flux a specific element h of the unbroken
gauge group H can be associated. defined by the untraced closed Wilson loop around
the flux. given by:

h = Pef Anto)dz (1.1)

with P denoting path ordering along the loop v. and A,(z) the gauge field. The
element h can in principle be any element of the residual gauge group. but the flux is
topologically stable if it is an element of a disconnected part of the unbroken gauge
group Hy 2. If the element h is not part of the center of the unbroken group. i.e. does
not commute with all of H [1]. then it is called an Alice flux. Note that this is a priori
not a topological statement. but it is essential that the unbroken group is non-abelian.
The important thing is that. as h does not commute with the unbroken gauge group .
it is not possible to give a single valued definition for all the generators/charges of H
in the presence of such an Alice flux. Apparently in these models there is an intricate
interplay between possible topological sectors (i.e.. topological quantum numbers)
and the allowed gauge charges in those sectors. The consequences of having defects.
which form an obstruction to defining charges globally, can be quite drastic and lead
to a number of remarkable physical phenomena, which forms the main subject of this
thesis.

Topological Alice models

Alice phenomena may show up in many different guises. An obvious class of models
where Alice phenomena appear, are the models where the topological non-triviality
of a flux implies the Alice behavior of the flux. Examples of these types of models are
non-abelian discrete gauge theories [2. 3] where a continuous group is broken to some
discrete non-abelian subgroup and Alice electrodynamics [1, 4. 5] where a non-abelian
group is broken to a residual H = U(1) x Zy ~ O(2). Theories with non-abelian
discrete gauge groups have been extensively analyzed and have in particular been
linked with the notion of (spontaneously broken) Hopf symmetry [6. 7. 8. 9]. These
theories have gained some interest because they provide ideal models for topological
quantum computing. The Hopf symmetries in turn are connected to the general link
between Chern-Simons theories and quantum symmetries {10, 11, 12] as for example
in (241)-dimensional gravity [13. 14].

?Here we assume I3(G) = 111 (G) = [(G) = 0.

10




1.2. Alice phenomena in Alice electrodynamics

Dynamical Alice models

Another interesting class of models consists of models where the Alice behavior of
the topologically stable flux is present for dynamical reasons. In these models, where
typically the flux itself is topologically stable, not all topologically equivalent fluxes
are Alice fluxes. However an Alice flux in this topological non-trivial sector can be
the lowest energy solution. Examples from this class of models are the SO(6) —
S50(3) x SO(3) x Zz model [5] and the Spin(10) — SU(5) x Zz model [15, 16, 17].
In (18, 19] a topological definition of Alice models is given, which works if there are
also magnetic monopoles present in the theory. In that case the Alice behavior can
already be encoded in the topology of the theory as Alice fluxes influence magnetic
monopoles and electric charges in a similar way.

Wonderland in physics

Although we will concentrate on a specific model containing Alice physics, we would
like to remark that Alice features show up in various parts of physics. It has been
used as a baryogenesis mechanism in for example [20, 21]. Alice effects appear in
topologically non-trivial universes [22, 23], in two dimensional gravity [24, 25, 26, 13],
they pop up in the study of confinement [27, 28|, in string theory the Alice effect
connects parallel branes [29] and it provides a possible solution to the strong CP-
problem by gauging the CP-symmetry [30, 31]. Alice effects also appear in different
condensed matter systems, such as in the study of certain Bose-Einstein condensates in
optical lattices [32, 33, 34], rotating Helium III [35, 36], superconductors [37, 38, 39]
and in nematic liquid crystals, where the uniaxial version has the same symmetry
structure as Alice electrodynamics (see for example [40. 41. 42]).

1.2 Alice phenomena in Alice electrodynamics

In this section we introduce Alice ElectroDynamics (AED) and preview some of the
main results obtained in the coming chapters. We start with a description of the
topological structure of AED and introduce the notions of Alice flux and Cheshire
charge. Then we discuss some explicit continuum and lattice models and finally
we briefly report some remarkable physical consequences of the subtle interplay of
topological features leading to a variety of instabilities in the theory.

1.2.1 The structure of AED

Alice electrodynamics (AED) is a theory of electrodynamics in which charge conju-
gation is a local gauge symmetry. To be specific. AED is a gauge theory with gauge
group H = U(1) x Zy ~ O(2), so, in a certain sense it is the minimally non-abelian
extension of ordinary clectrodynamics. The nontrivial Z, transformation reverses the

11




Chapter 1. Alice physics: an introduction and survey

direction of the electric and magnetic fields and the sign of the charges.
XQX1t=-Q |, (1.2)

with X the nontrivial element of Zs and @ the generator of the U(1).

The generator of U(1) and the nontrivial element of the Zy do not commute with each
other. in fact they anti-commute. This means that the Zy part of the gauge group
acts as a charge conjugation on the U(1) part of the gauge group and that is what is
meant by the phrase “AED is electrodynamics in which charge conjugation symmetry
is gauged”.

Figure 1.1: A local charge conjugation transformation does not change the force on a charged
particle in an electric field in electrodynamics.

One might envisage a local discrete symmetry by defining arbitrary patches and having
nontrivial gauge transformations between them. The transition functions can become
topologically nontrivial as we will see. A topologically trivial patch is depicted in
figure 1.1, where inside the contour the direction of the electric and magnetic fields
and charges is reversed, so that indeed the resulting physics is not affected. Charged
particles move across the boundary without “noticing” it. So it appears that in a
typical situation of ordinary electrodynamics nothing dramatically changes if charge
conjugation symmetry is gauged. However there are profound differences between
ED and AED, which we will discuss in this chapter and the coming chapters. It
is important to realize that, as the non-abelian extension with respect to ordinary
electrodynamics is discrete, it only affects electrodynamics through certain global
(topological) features, involving nontrivial Zs bundles.

In figure 1.2 we schematically indicate the structure of the gauge group, U(1) x Zs, of
(compact) AED. It consists of two copies of U(1) connected by the nontrivial element
X of the Z, part of the gauge group.

From the structure of the (residual) gauge group in figure 1.2 it is clear what the

12




1.2. Alice phenomena in Alice electrodynamics

e

Figure 1.2: A schematic picture of the gauge group of AED. It shows the action of X, the connected
and the disconnected part of the gauge group and the sign difference between the two branches.

possible topological defects in AED are®. As IIo(U(1) X Zz) = Zso there will be a
topological Zo flux, denoted as Alice flux, and furthermore as IT; (U(1) x Zg) = Z
there are also magnetic monopoles in this theory (like in compact ED). The element
of the unbroken gauge group associated with the Alice flux contains the nontrivial
element of the Zs part of the gauge group, X. This means that if a charge is moved
around an Alice flux it gets charge conjugated. At first this might not be a very
interesting observation as charge conjugation is part of the local gauge symmetry of
the model. However there is the notion of a relative sign, which is path dependent
in the presence of Alice fluxes. This means that if one starts with two equal charges
(repulsion) and moves one of the charges around an Alice flux one ends up with two
charges of the opposite sign (attraction), due to the non-commutativity of X and Q.

In the presence of an Alice flux the generator of the U(1) is not single valued and
therefore there is a topological obstruction to a global definition of electric charge.
However if there are no Alice fluxes present it is possible to globally define the U(1).
But note that also in the trivial sector of the theory a pair of Alice fluxes or a closed
Alice loop can be created out of the vacuum. What happens in that case to the
definition of U (1) charge? As the creation of such a topologically trivial configuration
is a local process the overall charge should not be affected, changes in the definition of
the U(1) should occur only locally. A way to understand what happens is to cut out
a region of space which is such that the closed Alice ring lies on its boundary. Now
the U(1) can still be globally defined in the rest of the space. But physically one can
of course not just exclude this region and problems do indeed arise when a charged
particle moves through this region. The closed loop of Alice flux will bound a so
called Dirac or Zs-sheet and if a particle crosses this sheet it gets charge conjugated.

3Here one has to envisage that AED is realized by breaking a larger gauge symmetry with the
help of a Higgs mechanism and that this larger gauge group, G, has: I12(G) = I11(G) = IIp(G) = 0.

13



Chapter 1. Alice physics: an introduction and survey

It looks rather artificial. but in fact it is just a convenient singular gauge choice. In
this gauge a charge which moves around an Alice flux. gets charge conjugated at a
very specific point where its trajectory goes through the sheet which is bounded by
the Alice loop. Clearly the location of this Z;-sheet is gauge dependent while the
location of its boundary is the gauge independent Alice ring. In this sense there is an
analogy between the sheet and the Dirac-string of a magnetic monopole.

In a situation where it is possible to define a global U(1) charge the total charge
should be conserved. Then the question arises what will happen to this conservation
of charge if a particle gets charge conjugated when moved through an Alice ring as this
appears to violate the conservation of charge. To resolve this paradox it is illmninating
to perform some simple thought experiments. Let us start with a pair of oppositely
charged particles and then create an Alice ring out of the vacuum. Then we take
one of the charges through the Alice ring. We end up with two like charges next to
cach other. say both positive. As the total charge cannot change by local processes.
i.c.. the creation of an Alice ring and moving one of the charged particles. the total
charge should still be zero. This tells us that the missing charge must be hiding in
the excluded spatial volume. i.e.. it must be carried by the Alice ring configuration.
There are several ways to understand how the missing charge in AED is carried by
the Alice ring configuration. First we discuss a symmetric configuration in which it is
very casy to understand how the missing charge is carried. Then we will do a thought
experiment from which it should become clear that the configuration we found for
the symmetric configuration is essentially generic.

First consider a symmetric configuration, where we put the Alice ring in the horizon-
tal plane and assume there to be an up-down symmetry with respect to this plane
(the famons ~Alice mirror”™). We choose the Zo-sheet to also lie in this plane. The
nice thing of this symmetric configuration is that the electric field lines have to be
perpendicular to the Zs-sheet as the sign needs to change once they pass the Zs-sheet
and due to the up-down symmetry. This means that in this symmetric configuration
the boundary conditions for the electric field on the Zs-sheet are the same as those
for a charged conducting plate. Now we mancuvered ourselves into a position where
the answer to the question of the missing charge is very simple. From the perspective
of the space which is not excluded the Alice ring bounds a conducting plate?. Ohb-
viously the missing charge is carried (ignoring for the moment the boundary effects
the Alice ring may have) by this “would be” conducting plate and the resuiting field
line pattern is clear, see figure 1.3(d). Now it is important to note that although
the direction of the field lines depends on the location of the Zs-sheet the field line
pattern itself is gauge invariant. Although the field line pattern is gauge invariant the
conducting plate boundary condition of the field lines on the Zs-sheet is clearly not.
They only hold in the symmetric gauge we started with.

A most remarkable feature of these charged Alice ring configurations is that the source
of the charge cannot be localized. Suppose we have a small test charge which we want
to use to locate the source of the charge. The test charge will follow a specific field

4At least the excluded space has the same boundary conditions as a conducting plate.

14




1.2. Alice phenomena in Alice electrodynamics

line and expects to end up at a charge. However, there are no sources for the field
lines. As the test charge moves through the Alice ring - the sheet that is - its sign
changes exactly where the field lines change direction and the charge will just move
on. So, from far away a definite charge is carried by the Alice ring configuration, but
as one comes closer one finds there is no source of that charge. This elusive type of
charge is called a Cheshire charge after the grinning cat in Alice in Wonderland who
disappears but leaves his grin behind [43. 44].

A second way of understanding how a Cheshire charge appears in AED. does not
involve any symmetry arguments. We reexamine the thought experiment where we
move a charge through an Alice ring. To understand the appearance of Cheshire
charge in this setting we make use of the fact that due to charge conservation and/or
quantization electric field lines can not pass an Alice flux®. We start with a single
charge and create in its vicinity an Alice ring out of the vacuum. As the electric
field lines cannot pass through the Alice flux they are pushed away by the Alice ring,
see figure 1.3(b). Next we pull the charge through the Alice ring, see figure 1.3(c).
If we then move the charge to infinity it is clear what the resulting Cheshire charge
configuration looks like, see figure 1.3(d). This thought experiment demonstrates the
generic nature of the Cheshire phenomenon.

In the appendix of chapter 6 we will encounter the so called Cheshire current, see figure
6.11. This object typically only lives in two dimensions, while a Cheshire charge can
appear in two and three dimensions. A Cheshire current appears if one takes a charge
around two Alice fluxes. In that case the charge can be annihilated with the anti-
charge that stayed behind. Due to the fact that the electric field lines can not close
around a single Alice flux, the pair of fluxes will carry a Cheshire current. We refer
to the appendix of chapter 6 for more details on the Cheshire current configuration
and its relation with Cheshire charge.

As II; (U(1) x Z2) = Z there are also magnetic monopoles in compact AED (as in
compact ED). Already at this point there is a subtle interplay between the fluxes and
the monopoles in AED [45]. Exactly this point is used in [18] to define topological
Alice models. In the presence of an Alice flux the sign of a magnetic charge is no
longer uniquely defined, i.e., in AED the monopole and the anti-monopole belong to
the same topological sector. To understand this feature of AED we will investigate a
configuration where a monopole and an Alice flux are coexisting, see figure 1.4.

Often the so called base point in homotopy theory is not important. However if
IIo(H) # 0 the position of this base point can become relevant. This is the case
in AED and results in the topological equivalence of the monopole and the anti-
monopole. A monopole charge is determined with the help of a closed surface enclosing
the monopole, see figure 1.4(a). If there are no Alice loops or fluxes present the base
point of this surface, zp, is irrelevant. However if there is an Alice loop present the

5Indeed the fact that electric and also magnetic field lines cannot penetrate an Alice flux is rem-
iniscent of the Meissner effect, where magnetic fields are expelled from an electric superconductor.
In that case magnetic flux is quantized and can be trapped in a superconducting ring. The para-
doxical situation in our model is that the Alice lux appears to be both electrically and magnetically
superconducting yet strictly neutral: in other words the analogy appears to break down at this point.
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(c) (d)

Figure 1.3: This sequence of pictures makes clear that the Cheshire phenomena is a generic
phenomenon in AED and does not depend on the symmetry of the configuration. Using the fact
that due to charge conservation and/or quantization electric field lines cannot cross an Alice flux
one is lead to the notion of Cheshire charge.

base point of this surface does become relevant. As the fundamental homotopy group
of AED is Zs, there are two different ways by which one can enclose the monopole with
the closed surface starting from the base point. In one, see figure 1.4(b), the surface
does not go through the Alice loop, in the other, see figure 1.4(c), the surface does go
through the Alice loop. These two possibilities are equally well suited to define the
charge of the magnetic monopole, but differ in outcome. To understand the difference
in outcome we deform the latter surface, see figure 1.4(d). We see that the two surfaces
differ by a transformation around the Alice flux, 5. As the nontrivial element X of Z,
does not commute with the generator @ of U(1) in AED there is distinct difference
between the two definitions of the magnetic charge. This difference is caused by the
presence of the Alice flux and is called the influence of Ilo(H) on I1;(H). Obviously
there is a sign difference between the outcomes of the two definitions of the magnetic
charge. This means that there is no topological distinction between positive and
negative magnetic monopoles in the presence of an Alice flux. This may not be too
surprising for a theory where charge conjugation is part of the local gauge symmetry.
However, we note that there is still the notion of the relative sign between magnetic

16




1.2. Alice phenomena in Alice electrodynamics

charges, which is path dependent as we explained in the context of electrical charges.
We seem to be confronted with a puzzling arbitrariness in talking about charges in
this simple model.

Figure 1.4: These figures show that in the presence of a loop of Alice flux, L, the sign of the
(monopole) charge is not uniquely defined. The two surfaces ¥ and X’ are equally well suited to
measure the (monopole) charge, but differ by the path 3, which shows that they are charge conjugated
with respect to each other.

1.2.2 Some specific realizations of Alice electrodynamics

In this subsection we will introduce and briefly discuss some specific AED models.
First we will look at continuum models where AED is realized after spontaneous
symmetry breaking through some suitable Higgs mechanism. Subsequently we look
at a lattice model of AED. Both types of models will allow the formation of magnetic
monopoles and Alice fluxes. In the continuum models they appear as solitons due to
the symmetry breaking, but in the lattice model they appear because of the lattice
structure.

17




Chapter 1. Alice physics: an introduction and survey

The continuum models

The continuum models of AED are the main subject of chapter 2 and we refer to
this chapter for more details. Let us think of a spontaneously broken gauge theory
where the order parameter in the broken phase, the Alice phase, can be represented
by a director field. We may think of this order parameter as a line segment or a
bidirectional arrow. Thus it fixes an orientation but not a direction. Just like a
normal vector field, such an order parameter is invariant under rotations around
its axis, which represents the U(1) gauge degree of freedom. But the bidirectional
arrow has an additional symmetry, the reflection symmetry, i.e., the invariance under
rotations of an angle of = around an axis perpendicular to its own orientation. This
invariance represents the charge conjugation symmetry of AED. These two symmetry
operations do not commute with each other, they anti-commute. So we find that the
director fleld is an appropriate order parameter for AED.

The original model [4] of AED uses the five dimensional symmetric tensor represen-
tation of SU(2) (for this representation one can just as well use SO(3)). The action
of this model is given by:

S = /d% {EF‘Z"“’FSV#— %Tr (DFOD,d ) — V(d))} , (1.3)

where the Higgs field ® = ®9° is a real syminetric traceless 3 x 3 matrix.
The potential is given by:
1

vV = —§u2Tr (‘1)2) - %’YTY ((I)?’) + i’\ (Tr ((1)2))

: (1.4)

By a suitable choice of parameters the Higgs field will acquire a vacuum expectation
value, ®g. In the gauge where @ is diagonal it takes the form &g = diag(—f, — f, 2f).

As an aside we mention a field in physics where the same order parameter has shown
up: the theory of nematic liquid crystals. Here the symmetry is realized as a global
symmetry whereas in AED the U(1) x Z; symmetry is local. A typical model used
to describe these systems is the Landau-de Gennes free energy model [46, 47, 48, 49],
given by:

Fo= [t fav (1.5)
fa = %a'yQa/BanaB + %3BQ058WQQ’Y + %anaﬁaﬁQa'r (1.6)
fo = gn (@) - ng (@) + g (Tr (Q2))2 (1.7)

Although the two models are quite different they can be mapped onto each other for
a limited region of the parameter spaces. In the limit of vanishing gauge coupling of
the AED model and for static solutions of the equations of motion the original AED
model can be mapped onto the Landau-de Gennes model with Ly = L3 = 0. This

18




1.2. Alice phenomena in Alice electrodynamics

correspondence will be used in the analysis of the monopole core instability in chapter
5.

The vacuum manifold after symmetry breaking corresponds to the gauge orbit of the
order parameter and therefore becomes equal to the real projective space RP2, i.e., the
sphere, S?, with opposite points identified. The topologically non-trivial structure of
this manifold is quite well known and its first and second homotopy groups are given
by:

II,(RP?) = Z; and TI(RP?) =7 (1.8)

The nontrivial TIo(RP?) results in the appearance of magnetic monopoles in AED.
This does not make specific use of the head-tail symmetry of the order parameter and
is for example also present in a theory with a vector order parameter field, such as
the Georgi-Glasgow model [50]. The fact that II;(RP?) = Z, means that there are
also topologically non-trivial Z> (Alice) fluxes present in the theory. The appearance
of Alice fluxes is due to the head-tail symmetry of the order parameter. Indeed,
the fact that opposite points on the sphere are identified with each other, which
is a direct consequence of the head-tail symmetry of the order parameter, allows
these Alice fluxes, see figure 1.5(a). As we explained in the previous subsection the
subtle interplay between the monopole and the flux content of the theory gives that
monopoles of opposite charge belong to the same topological sector.

One of the key features of the Alice flux is the fact that the order parameter, the
Higgs field, only rotates over 7 around an Alice flux. That this is allowed is due to
the head-tail symmetry of the Higgs field. Now it is also clear that the charges with
respect to the unbroken U(1) change sign when they go around an Alice flux, as the
generator of the unbroken U(1), i.e., a pointed arrow, also only rotates over m when
transported around an Alice flux and thus picks up a minus sign, see figure 1.5{(b).

As we now have an explicit model we can try to find explicit solutions of the magnetic
monopole and the Alice flux. Appropriate ansétze were given in [4]. We will discuss
the monopole ansatz later on, but for the moment we mention that it is very similar to
the spherically symmetric 't Hooft-Polyakov magnetic monopole ansatz. The ansatz
for the Alice flux is more interesting. Locally one can always gauge the Higgs field
such that it is in a diagonal form. However it need not always have the one parameter
structure ® = diag(—a, —a, 2a) mentioned before. The spherically symmetric mag-
netic monopole does have this form, but for the Alice flux it can be shown that this
does not allow for a static solution to the equations of motion. So for the Alice flux
one needs the more general form ® = diag(—a, —b,a + b), implying that the ansatz
requires more than a single function for the scalar field.

In figure 2.1 we show a numerical Alice flux solution to the equations of motion, for
specific values of the parameters of the model, based on the following ansatz:

a(r)
Ay = T :
6 2er L1 (1.9)
o(r,0) = eFo(re T | (1.10)
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Figure 1.5: Figure (a) shows the possibility to have topologically non-trivial closed loops due to
the head-tail symmetry of the Higgs field. Figure (b) shows that the Higgs field is single valued if it
only rotates over an angle 7 after going around the Alice flux and that the generator of the unbroken
U(1) is actually double valued in the presence of an Alice flux.

where the tensor ®(r) is conveniently parameterized as,

1 0 0 0 0 O
d(r)y=m(r){ 0 —3 0 +qr)| 0 2 0 (1.11)
0 -3 o0 -2

and T; the generators of SO(3).
At spatial infinity the boundary conditions are: ¢ = m and o = 1 and at the core of
the defect the boundary conditions are: a = ¢ = 0.

An interesting feature of the solution is that the gauge symmetry is not restored at
the center of the defect, i.e., the Higgs field does not become zero. The symmetry at
the core of the defect is again that of AED only now with a U(1)-isospace direction
different from the unbroken symmetry at spatial infinity. The fact that the Higgs field
deviates from the form diag(—f, —f,2f) means that it can no longer be represented
by a single direction everywhere. This behavior is sometimes referred to as an escape
in the biaxial direction.

In equation 2.4 we see that the Higgs field can be represented as a sort of symmetric
product of two vector fields. The only information of the two vectors that survives in
the translation to the Higgs field is the product of the lengths, h, and half the relative
angle, ¥. Expressed in these variables the Higgs field is given by:

5 —(sin% ) + 1) 0 0
®=zh 0 sin ) — cos? ¥ 0 . (1.12)
0 0 cos? ) + 1

For the present discussion this parameterization is more convenient than the one we
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use to find a numerical solution, equation 1.11. As the Higgs field at » = 0 should
be single valued it has to commute with 77. This means that ¢» = 7/2 or h = 0 at
r = 0. Thus the Higgs field can do two things. Either it can vanish in size or it has
to “rotate” to 1) = w/2. Investigating the potential in terms of h and v shows that
rotating and not vanishing of A realizes a lower potential energy. Thus it is natural
that the Alice flux makes use of the possibility to escape in the biaxial direction.
Although the Higgs field in the center of the flux is again invariant under an AED
part of the gauge group, it is typically in the wrong broken vacuum®. Meaning that
the Higgs field has the wrong sign, i.e., it is not in (or close to) the global minimum
but in (or close to) another minimum of the potential, see figure 1.6.
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Figure 1.6: This figure shows the typical form of the potential as a function of the length h and
the angle ¢. Here we plotted it for u? = 1, v = —1 and A = 1. It makes clear that it is natural for
the Alice flux solution to escape into the biaxial direction.

Already at this point one might wonder whether for a magnetic monopole solution
there is also the possibility to escape in such a biaxial direction. We return to this
issue later on in this chapter when we investigate a core instability of the spherically
symmetric magnetic monopole, which is further explored in chapter 5.

We wish to mention two alternative continuum Alice models. These two Alice models
have a similar symmetry structure as the original model, but the Higgs sector consists
of a pair (X,Y) of adjoint representations. The head-tail symmetry alluded to before
in these models comes about by putting the Higgs field on an orbifold, i.e., imposing

6Typically there are two minima of the potential which have the same unbroken AED subgroup.
However only one of them is the true global vacuum, while the other is just a local minimum of the
potential.
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special boundary conditions on the Higgs fields. More specifically in one model the
Higgs field. X. is put on a Zs orbifold which identifies X with —X. In the other
model the two Higgs fields are put on a Sz orbifold which identifies the point (X.Y)
with (Y. X). The action for both models is given by:

1 1 1 3
S = /(14.1'{Tr<ZF’“’ po+ 5D"X DX + SDMY DY - é[x.y]z)

- g(Tr (X2 4 v?) —f2)2} . (1.13)

There is a gain by introducing this rather intricate Higgs sector. notably that these
two models have monopole solutions which can be mapped one to one to the 't Hooft-
Polyakov monopoles while the Alice flux solutions correspond precisely to Niclsen-
Olesen flux solutions with winding number one-half. Much is known about these
solutions and for particular parameter values even a Bogomolny limit exists.

The lattice model

Let us now introduce a lattice version of compact AED (LAED). In chapter 3 we will
study this model quite extensively. Here we limit ourselves to a preview of the main
results. We refrain from giving an introduction to lattice gauge theory. for this we
refer to the beginning of chapter 3 or for a more thorough introduction to [51. 52].
Our interest in a lattice formulation of the theory is evident for two reasons;(i) it
allows us to study the phase diagram and in particular what type of condensates may
form. and (ii) it may allow us to study certain nonperturbative quantum properties.

The gauge degrees of freedom in a lattice gauge theory are the link variables. These
are related to the gauge potentials and for the model at hand given by:

Uy(r)= e"'A"(x)mTf"(“ . (1.14)

with a,(r) € {0.1} and A, (z) € (—7. 7).

Here a, represent.s the Zy gauge variable and A, the compact U{(1) gauge variable of
the theory. If a,(xz) = 1 that implies that a Zs-sheet in D = 3, or a Zo-volume in
D = 4. crosses the link. These Zy-sheets can of course be moved around by local Z,
gauge transformations, but their boundaries. the Alice loops. can not. The action of
the lattice model of compact AED we will use is given by:

= 22{ (1— Py) cosF—i—mfPf} . (1.15)

where P is one if an Alice flux crosses a plaquette and zero if not, F is the F of U(1)
after the Z, fields have been gauge transformed away from the plaquette, which is
always possible if Py = 0. We will use a (hyper-)cubic lattice and the plaquettes are
the two dimensional sides of the (hyper-)cubes.

22




1.2. Alice phenomena in Alice electrodynamics

The first term in the action is the well known Wilson action [53] for compact U(1)
lattice gauge theory, if there are no Alice fluxes present. The second term introduces
an extra bare mass for the Alice fluxes. As we explained before the difference between
ED and AED only arises if there are Alice fluxes present. Even if we do allow local
charge conjugation symmetry transformations none of the physics will change. So
the tilde in the first term of the action is not important if there are no Alice fluxes
present.

In the limit of my — oo and g finite the Alice fluxes in the theory are excluded
and our LAED model becomes equal to the Wilson model. In the limit of g — oo,
but keeping my/g? finite our LAED model becomes equal to the also well known Z
lattice gauge theory. This is a very nice feature of the model as it allows one in some
regions of the parameter space to check the results with well known results from these
models and we will also use their results as input for the estimates we make.

This LAED model contains both Alice fluxes and monopoles as lattice artifacts. They
disappear in the naive continuum limit. However our introduction of the extra bare
Alice flux mass might prevent this if a suitable limit of this extra mass term is taken
simultaneously. We could just as well also have introduced an extra bare mass term
for the magnetic monopoles present in the model. However, this is computationally a
much more involved procedure and it turns out that it is not needed in the sense that
the four different phases of the model can be realized without it. The four phases are
represented by the different defects that are or are not condensed.

With the help of numerical simulations we determined the regions in parameter space
where the different phases in this model occur, for both the three and the four (space-
time) dimensional model. The results are shown in figure 1.7.
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Figure 1.7: In both figures we plotted some specific height lines of the monopole/instanton and
Alice flux density, which represent the location of the different phase transitions. Figure (a) contains
the result of the three dimensional model, where figure (b) contains the results of the four dimensional
model.

The lines in figure 1.7(a) and 1.7(b) are some typical height lines which represent
the location of the different phase transitions. As one may see, not all phases are

23




Chapter 1. Alice physics: an introduction and survey

separated by a phase transition. For example the transition between no condensed
instantons and condensed instantons in 3D is a crossover (as is very well known). We
see that the transition between condensed fluxes and condensed fluxes plus condensed
monopoles/instantons is also a crossover.

The location of the phase transition lines and the values of certain measurable quanti-
ties can be very well determined for this model. This is mainly because the parameter
space of the model can be divided up into several regions which almost fill out the
whole phase space and which can be relatively easily understood as the physics is
rather well approximated by some dominant aspects, see section 3.4.

The region where the Alice fluxes are not condensed can be approximated by having
no Alice fluxes around at all, i.e.. ignoring the effect which the few present Alice fluxes
have. As we argued before this is the same as the Wilson model of compact ED. When
the Alice fluxes do condense many plaquettes are pierced by a flux. In this region
the behavior of the U(1) degrees of freedom is also well understood. If a plaquette
gets pierced by a flux the values of the U(1) degrees of freedom of that link become
irrelevant, see equation 1.15. To lowest order, ignoring the Zs-sheets, this means that
pieces of space are cut out by the Alice rings. As the unpierced plaquettes become
more and more isolated their behavior can obviously be estimated by the behavior
of single plaquettes. Here we note that actually there is no need for the unpierced
plaquettes to become fully isolated. It is well known from lattice ED that already two
dimensional lattice ED is described by the behavior of a single plaquette. To lowest
order also the interaction between the pierced and the unpierced plaquettes is well
known, as they exclude each other. The interaction of the fluxes among themselves
is the same as it would be for Zs gauge theory. Using these estimates and using the
results from Z, and compact U(1) lattice gauge theory as known results, one can
estimate the different features of our LAED model. We estimate quite successfully
the location of the different phase transition lines, the average value of cos F' for the
unpierced plaquettes, the flux density and the monopole/instanton density. For more
results and more details on the LAED model we refer to chapter 3.

1.2.3 Instabilities and topological defects

In this subsection we will briefly discuss situations in which topological defects may
develop instabilities of various sorts. To wet the appetite we first look at a simple
example which is representative for a generic feature of a rather large class of field
theories. We show that a topologically stable kink can reduce the vacuum degeneracy
of a model with flat directions. Then we return to AED and study a core instability of
the spherically symmetric 't Hooft-Polyakov type magnetic monopole. In particular
we will find that the monopole can decay into a Cheshire charged Alice ring. In the
last part we will discuss a charge instability that occurs in AED in (2+1)-dimensions. |
We will find that a static charge is unstable to the creation of a pair of Alice fluxes. |
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1.2. Alice phenomena in Alice electrodynamics

Dynamical vacuum selection

In the following we will examine a specific field theory with a flat direction in the
potential. We want to clarify a general idea and only choose this model for its sim-
plicity, for more details on this subject we refer to chapter 4. The model we will use
is a (141)-dimensional model and allows for topologically stable kink configurations.
The action of the model is given by:

A
s:/d‘é’x{%(auqsl)ué(am)?—Z(aﬁ?—ab%—f?)?} : (1.16)

with ¢; and ¢ two real scalar fields. The field ¢2 is present to create a flat direction
in the potential.

One of the nice features of this particular model is that it it easy to show that only
the topologically non-trivial boundary conditions with ¢2 equal to zero at both plus
and minus infinity allow for a truly static kink solution. This is just the standard
kink solution for a theory with a single scalar field. Actually, if real space is finite
then all topologically nontrivial boundary conditions allow for a static kink solution.
In the limit where the boundary values of the the ¢ field do not deviate too much
from zero, the static kink solution can be very well described by a superposition of
two independent parts. One corresponds to the special kink solution with ¢2(xz} = 0
and outside the core of this kink there is another part where the Higgs fields only
vary within the vacuum manifold of the model, i.e., they satisfy ¢? — ¢3 = f2. This
second part. referred to as the “tail”. is easily described by a special combination of
the Higgs fields which lives on the vacuum manifold and is therefore called a moduli
field. This moduli field is obviously a massless field. The construction is thus as
follows: we take the special kink to take us from one part of the vacuum manifold to
the other, disconnected part of the vacuum manifold. Then, outside the core of the
kink, the moduli field takes over and ensures that the specific boundary conditions are
met. The fact that this works in the limit of a large space - large with respect to the
deviation of the boundary conditions of ¢y from zero - can be understood as follows.
In the limit of an infinite space the only static kink solution is the kink solution with
¢o(x) = 0. The energy in the tails scales as 1/R.. with R the radius of the space.
So in the limit of a large but finite space the energy comes close to the energy of the
special kink and it is therefore an obvious candidate for the static kink solution as
R, becomes large.

Now we can try to understand what happens in an infinite space if the boundary
conditions of the ¢, field are not zero and we are in the topologically non-trivial
sector. Because the configuration cannot be a static configuration we need to choose
some initial conditions. In figure 1.8 we see snapshots of configurations, which started
out at rest. In figure 1.8(b) we used a kink in a finite space as initial condition, where
in figure 1.8(a) we used a constant ¢z and for ¢; used a rescaled kink as initial
condition.

It is clear that the configurations again consist of two parts. There is the (possibly
excited) special kink with ¢ = 0 and there is the moduli field. The equations of
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Figure 1.8: These figures show snapshots of non-static configurations. The values of the fields for
negative values of = follow from the antisymmetry of the configuration and are not plotted.

motion for both parts are extremely simple. The special kink is just static and the
moduli field, being massless, moves (away) with the speed of light leaving the “special”
vacuum. with ¢o(z) = 0, behind, see figures 1.8(a) and (b). This is what we refer to as
dynamical vacuum selection (DVS). One could wonder if other initial conditions would
lead to a different picture. Including dissipation of energy through coupling to other
fields it is clear that the Higgs fields will inevitably relax to a configuration containing
a special kink together with some moduli field. The energy of such a configuration can
come arbitrary close to that of the special kink. In other words dynamical vacuum
selection just selects the lowest energy state in a given topologically non-trivial sector,
which only depends on the topological information of the boundary conditions and
not on the particular location in the flat direction.

It should be clear that the key ingredient in this process is the scaling of the energy of
the tails. It is only because these scale to zero as the region over which the moduli field
changes becomes larger that DVS works. This shows that DVS is a common feature
for all one dimensional field theories which have flat directions in their potential and
allow for topologically non-trivial boundary conditions. In fact it has been noted
before that such a mechanism is also operative in two dimensions [54, 55, 56], in
a situation with topologically stable fluxes with flat directions, where the energy of
the tail scales as 1/log R. In three or more dimensions, a similar energy argument
can be used to show that DVS will no longer occur. We conclude that in one and
two dimensions only the topology of the boundary conditions is important, while in
higher dimensions also the non-topological information of the boundary conditions is
important for the physics in the bulk of the system.

The process we described can be interpreted in two ways. One is the dynamical vac-
uum selection as we emphasized, on the other hand it can be viewed as an instability
of a certain class of topologically non-trivial kinks and fluxes. The latter interpre-
tation is more in line with the discussion of a monopole core instability we turn to
next.
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A monopole core instability

We have mentioned that AED features 't Hooft-Polyakov type monopoles. Now we
want to examine the core structure of such a magnetic monopole. We discussed that
in the Alice flux solution the Higgs field can not be represented by a director field
everywhere. Representing the symmetric tensor field by two independent isovectors,
see equation 2.4, these will no longer be (anti)parallel in the intermediate region of the
space, 0 < r < . The Higgs field escapes in the biaxial direction. For the monopole
this is not necessarily the case, but one may wonder if allowing for more general Higgs
configurations in the same topological sector, the energy of the monopole solution can
be lowered. Here we examine such a possibility. For more details on this investigation
we refer to chapter 5.

There is a second reason to expect a monopole core instability of the spherically
symmetric magnetic monopole. In section 1.2.1 we encountered an object called the
Cheshire charged Alice ring. There we mainly focussed on an electrically Cheshire
charged Alice ring, but similarly there is in principle also the possibility of the mag-
netically Cheshire charged Alice ring. The Alice flux is not an ordinary magnetic
flux, it is in some sense orthogonal to the electromagnetic U(1) direction in the gauge
group and does therefore not distinguish between magnetic and electric fields. Bear-
ing this in mind it is a natural question to ask whether such a magnetic Cheshire
configuration may have lower energy.

First we will show with the help of some topological deformation considerations that a
closed Alice ring really can carry a magnetic charge. Then we will qualitatively argue
that this configuration could indeed be stable and finally we show some numerical
results establishing a core instability of the spherically symmetric magnetic monopole
in part of the parameter space of the model.

The element of the gauge group associated with an Alice flux lies in the disconnected
part of the gauge group. H;. If one has an Alice ring there is no reason for this
element to be the same for all planes intersecting the Alice ring. Parameterizing the
Alice ring with an angle this element should be a periodic function of this angle,
see figure 1.9(b). This continuous set of elements of the gauge group therefore has
to sweep out a closed path in the disconnected part of the unbroken gauge group.
From figure 1.2 it is clear that also this path can have an non-trivial topology, i.e., a
winding number. Thus the Alice ring, besides carrying a topological charge related to
the Alice flux, can also carry another topological charge which is labeled by a winding
number.

The description we just gave is very closely related to the topological definition of
magnetic charge in the pioneering work of Lubkin [57). To classify magnetic charge
he used a continuous set of closed paths sweeping out the surface of a sphere, see
figure 1.9(a). Let us denote these paths as Cp. with ¢ running from zero to 27 and
Cp=0 = Cp=2-. This continuous set of paths defines through parallel transport a
closed path in the connected part of the gauge group, H,., and can be labeled by a
winding number. Lubkin then showed that this winding number is the topological
magnetic charge inside the sphere. Now let us label the continuum set of paths we
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used to describe the Alice ring by Cy. The main difference between the two sets of
paths is that one describes a closed path in H,. while the other does so in H,;. However
multiplying the elements of the C, with a specific element of Hy maps the elements
from H; to H. in an injective way. This one to one map from Hy into H. also maps
closed paths in Hy to closed paths in H.”. More pictorially one can easily see that the
closed paths C-’;:l%é@ are equivalent to the closed paths Cy used by Lubkin. Thus
we find that an Alice ring can also carry a magnetic charge which should, following
the same arguments as for the electric charge, be carried as a Cheshire charge.

(b)

Figure 1.9: Both figures show some specific paths of a continuum of paths which. Figure (a) shows
the paths used by Lubkin to classify magnetic charges, where figure (b) shows the paths used to
describe the Alice ring. There is a one to one map of the paths in figure (b) to paths equivalent to
the paths in figure (a) showing that a closed Alice ring can carry a magnetic charge.

We just showed that the punctured magnetic monopole becomes a magnetically
Cheshire charged Alice ring. That this is possible is due to the head-tail symme-
try of the Higgs field. To understand that such a configuration can indeed be stable
we make an estimate for the energy of such a charged Alice ring. We approximate
the energy of the circular Alice ring of radius R, by Ejoop = 27 RE f1yz, with e the
energy per unit length of the Alice ring, and approximate the energy of the Cheshire
charge, Ecpes, by a uniformly charged disc with radius R. The magnetic field of the
latter is given by:

. _Q . 1 pr2m ' dr'de’
B == —QV 3 5 5 (117)
TR o Jo Vr24 22492 =2 cosd’
= % a(r, z) (1.18)

“which preserves the winding number up to a possible sign change, but this is not important
because magnetic charges of opposite sign belong to the same topological sector.
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Where we have rescaled the coordinates by a factor of R and @ is the total charge.
The field energy is then given by:

Eches = /B’.E R:d®x (1.19)
2

= % /(i(r,z) Cd(r, z) d*x (1.20)

= % A (1.21)

Where A is a dimensionless constant determined by the disc geometry. The total
energy of the Alice ring of radius R, with a Cheshire charge @ is thus given by:

2
Etot = QﬂRgfluz + % A (122)
We see that there are two competing, R-dependent terms and we may determine the
radius of the loop which minimizes the energy, yielding:

A
R=1Q| e (1.23)

Consequently the minimal energy is given by:

E = /871 A Q| (1.24)

Obviously this estimate can only be trusted if the radius of the Alice ring is much
larger than the radius of the Alice flux and this should be checked. Nevertheless the
estimate does indicate that a Cheshire charged Alice ring can be a stable configuration,
where the string tension is balanced by the repulsion between the magnetic field
lines. Interestingly this estimate gives an energy proportional to the magnetic charge,
Ex|qQl.

To determine whether the spherically symmetric magnetic monopole is unstable we
return to the original Alice model [4]. We use a variational approach. The ansatz we
employ contains the ansatz of the spherically symmetric magnetic monopole solution.
We fix the ansatz by imposing cylindrical and up-down symmetry, as these are the
symmetries one would expect for a magnetically Cheshire charged Alice ring. The
natural boundary conditions at spatial infinity correspond to the usual boundary con-
ditions of the spherically symmetric magnetic monopole solution. The most important
thing at this moment is that our ansatz allows for Alice ring like configurations. see
figure 1.10(b), and at the same time contains the ansatz of the spherically symmetric
monopole solution, see figure 1.10(a). For a detailed description of the ansatz and the
parameters used to describe points in the parameter space we refer to chapter 5.

We studied the system using a numerical relaxation and hysteresis procedure and
determined the lowest energy configuration at specific points in the parameter space
and determined the stability region of the monopole solution, see figure 1.11. We
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(a) (b)

Figure 1.10: Both figures show a plot of 1 — Tre? fop y = 0. Figure (a) shows the typical core
g 65T g yp

structure of the spherically symmetric magnetic monopole and figure (b) that of the magnetically
Cheshire charged Alice ring, which lies in the z-y plane at z = 0.

indeed find that the spherically symmetric magnetic monopole solution is not always
the lowest energy solution in its topological sector. Even though the Alice ring con-
figurations we found are strictly speaking not necessarily solutions to the equations
of motion, they do nevertheless put an upper bound for the energy of such an exact
solution. Furthermore they have the properties one would expect of a magnetically
Cheshire charged Alice ring. We conclude that the spherically symmetric magnetic
monopole can be unstable with respect to a decay to a magnetically Cheshire charged
Alice ring.
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Figure 1.11: This figure shows the meta-stability line for the spherically symmetric magnetic
monopole. The shaded region gives the error on the location of the line. On the left of this line the
monopole and on the right the Alice ring is the lowest energy configuration within our ansatz.

We just showed that the ‘t Hooft-Polyakov type monopole is not always the lowest
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energy configuration in AED carrying a magnetic charge. There is a region in the
parameter space of the model where the magnetic charge is realized as a magnetically
Cheshire charged Alice ring. Next we will conclude this lightning preview by consider-
ing an even more radical type of charge instability which appears in (2+1)-dimensional
Alice electrodynamics.

Charge instability in (24+1)-dimensions

We will discuss the stability of an external charge (pair) under the creation of a pair of
Alice fluxes in (2+1)-dimensions. In section 1.2.1 in the introduction of the Cheshire
charge we found that in a specific symmetric configuration the Zj-sheet could be
interpreted as conducting plate. In two dimensions this also holds. but it will have a
more drastic consequence. For a detailed investigation we refer to chapter 6.

To understand what may happen let us consider the following thought experiment.
Assume that we have an external charge in the plane and create out of the vacuum
a pair of Alice fluxes, with a Zj-sheet (or rather Zo-line) connecting them. For
convenience we choose all objects, including the Zy-line say on the x-axis. Obviously
this configuration has an up-down symmetry in the plane allowing us to interpret
the Zy-line as a conducting “needle”, a line segment bounded by the fluxes. We see
that the pair of fluxes will acquire an induced Cheshire dipole. And, as a conductor
attracts a charge, the flux close to the charge will move towards the charge, while
the other flux will be pushed away. Here we ignore a possible (typically parameter
dependent) intrinsic flux-flux interaction which could of course also be attractive.
So what happens when the flux “absorbs” the charge is basically that the charge
gets converted into a Cheshire charge carried by the flux pair. This Cheshire charge
results in a repulsive force between the two Alice fluxes. so the separation between the
Alice fluxes will keep increasing and thereby diluting the charge indefinitely; charge
effectively disappears. The notion of a static localized charge is lost. This is a novel
mechanism by which charge can loose its manifest appearance, besides the well known
phenomena of screening and confinement.

In this thought experiment we ignored the structure of the Alice fluxes, a possible
intrinsic flux-flux interaction and the well known confining mechanism of monopoles
disguised as instantons proposed by Polyakov [58, 59]. Although including these
effects might change the details of the instability. the main conclusion remains un-
altered. The assumptions we made can also be justified by working with a lattice
model, see section 1.2.2; where there is a priori no flux-flux interaction or flux core
structure and the monopole mass can be taken to be infinite, suppressing the confine-
ment mechanism. In fact in this regime one can determine the field configurations
analytically with the help of the conformal invariance of two dimensional electrody-
namics. For example the potential and the field lines of two opposite charges with a
flux pair in the middle are given in figure 1.12(a) and 1.12(b) respectively.

The energy gain in the field energy due (o the presence of the Alice flux pair can also
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Figure 1.12: These figures show some of the equipotential lines, figure (a), and the corresponding
field lines, figure (b), of two oppositely charged charges in the presence of a pair of fluxes located at
the endpoints of the thick black line segment.

be determined exactly and is given by:

Q? 1 14 2122
Etpair = —log | = [ 1+ 1.25
rouir =2 log g\ T/ T P
with @ the charge of the external charges and x; the location of the charges with
respect to the middle of the flux pair and in units of twice the distance between the
fluxes.

With the help of these and other expressions we investigate several decay geometries of
some charge systems in AED in chapter 6. One of the most important consequences
of this instability is the fact that the potential between two charges will not grow
indefinitely in (2+1)-dimensional AED irrespective of the presence of monopoles, i.e.,
due to this instability the potential between two external charges will saturate, see
figure 6.10. So we find that (2+1)-dimensional AED is not necessarily a confining
theory but may instead exhibit this novel Cheshire screening. Finally a comment on
the situation in (3+1)-dimensional AED. Here one does not expect the same results, as
the classical potential itself already saturates and an Alice ring can not grow without
a linear cost in energy. However in the phase where the Alice fluxes condense one
does expect a screening effect as one has a condensate of possible (induced) dipoles.

This completes our introduction and preview of Alice phenomena, which shows that
having slightly more than electrodynamics might result in rather drastic dynamical
and physical effects. These phenomena appear to be quite generic if after symmetry
breaking the residual symmetry group has non-commuting discrete subgroups.
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Chapter 2

U(1) X Zo models

In this chapter we introduce three continuum models which feature an Alice elec-
trodynamics phase and present numerical solutions of Alice fluxes in these models.
One model is the original Alice model studied by Schwarz [4], two alternative mod-
els are proposed. An advantage of these new models is that in a well defined sense
the Alice flux solutions we obtain obey first order equations similar to those of the
Nielsen-Olesen flux tube [60] in the abelian Higgs model in the Bogomolny limit. The
contents of this chapter is mainly based on [61].

2.1 Alice electrodynamics

An Alice phase can be obtained by a spontaneous breaking of a larger, continuous,
non-abelian symmetry group. In the original Alice model studied by Schwarz [4] a
SU(2) gauge theory is spontaneously broken down to a U(1) x Zy by a Higgs field in
the 5—dimensional representation of the gauge group (see also [62, 5]). The Higgs field
is chosen in this representation, because it is the smallest irreducible representation
which admits U(1) x Zy as a residual symmetry group and allows for a single valued
vacuum configuration that supports Alice fluxes.

In this chapter we will discuss two alternative models, which support an Alice phase.
Before doing so, we briefly review the salient features of the model discussed in [4, 62].
The action is given by:

S = /d4a: {%FWF;,, + %”H(D“@DH@ ) —V(tI))} , (2.1)

where the Higgs field ® = ®2° is a real symmetric traceless 3 x 3 matrix.
The most general renormalizeable potential is given by [50]:

V= _é,ﬁTr (®?) - %m (%) + %/\ (Tr (®2))° . (2.2)
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By a suitable choice of parameters the Higgs field will acquire a vacuum expectation
value, ®¢. In a gauge where @ is diagonal it takes the form @y = diag(—a. —b.a+b).
For a certain range of potential parameters one furthermore has that f = a = b. so
that ®g is given by:

—f 0 0
do={ 0 —f 0 . (2.3)
0 0 2f

,72

Indeed, this ground state is invariant under rotations around the Ts-axis, the U(1)-
part of the Alice symmetry, and invariant under rotations by an angle 7 around any
axis perpendicular to the T-direction, the Zo-part of the Alice symmetry. These
two transformations do not commute with each other, they anti-commute, so the
resulting residual gauge group is indeed U(1) X Zo. This means that we have Alice
electrodynamics as the low energy effective theory in this model.

An alternative way to see the structure of the residual gauge group, is to think of the
Higgs field as the symmetric traceless product of two vectors, ¢; and ¢,

with f = % (1+ 1+ 24#2,\).

| 2 W~ -
¥ = 60} + 030} — S0 (1-62) (2.4)

If both isovectors, (/3;, are non zero, there is in general only a Zo gauge symmetry left,
By — d;; = ~q§;. However, in case that both isovectors are (anti-)parallel, the gauge
group is U(1) x Zy. If one of the isovectors is zero, the gauge group is not broken at
all and the symmetry remains SU(2). These are the residual gauge groups which one
may encounter in this model. 1t is easy to show that the case where the two isovectors
are (anti-)parallel, corresponds to the situation where ® = ®,.

2.1.1 The Alice flux solution

In this section we will present exact regular solutions, corresponding to an Alice flux
tube along the z-axis, which where constructed in [63].

To have a static finite energy solution, all terms in the energy density should go to zero
at spatial infinity. Thus the covariant derivatives need to vanish at spatial infinity.
Let’s look at the angular derivative, the condition Dg® = 0 tells us that the Higgs
field has the following form at spatial infinity.

d(0) = S(O)D(0)S7H(H) (2.5)

S(0) = exp (e /{9 rAng) . (2.6)
0

Since we are looking for solutions which correspond to an Alice flux, S(27) needs to
be an element of the disconnected part of the (residual) gauge group. A simple choice

with
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for Ag doing this is Ay = QIFTL
This leads to the ansatz:
a(r) T

A
o 2er !

6T 6T
O(r,0) e T O(r)e” 7
where the tensor ®(r) is conveniently parameterized as,

1 0 0 0
d(ry=m(r)| 0 - 0 +q(r)| O
0o 0 - 0

0

0 . (2.9)
_3
2

Onlw O

1
2
The part proportional to m(r) is the part of the Higgs field that is invariant under
rotations generated by T7. The boundary condition at spatial infinity is m(oc) =
q(o0), implying that ®(oco) is of the form (2.3), i.e., the residual symmetry is U(1) x Z
indeed, where the electrodynamic U(1) is generated by T3. At the origin, m and ¢
have to satisfy different boundary conditions: the field ¢(r) needs to go to zero. The
term proportional to m(r) is invariant under 7 rotations, therefore m(r) does not
need to go to zero. Again, this means that the Higgs field is of the form (2.3), ie..
the unbroken gauge group is U(1) x Z,. However, the unbroken U(1) is generated by
T:. Finally, the field a(r) needs to be zero at the origin and unity at spatial infinity.
Inserting this ansatz in the field equations gives, after suitable rescalings, the following
set of equations.

Da(r) — %Bra(r) 9% (r)(alr) — 1) (2.10)

(a(r) — 1)%q(r)

D24(r) + 20,q(r) AT (902 (r) + 3mP(r) — 2) q(r)
' +2x7n(r7‘)(1(r) | (2.11)
Gmlr) +~0m(r) = €(96%(r) + 3m*(r) — 2) m(r)

XB(r) - m2(r) (212)

We summarize the boundary values for the rescaled fields below:

field r—0 r— oC
0 1

0 g(oc)

constant  m(x)

_oxE AT

12€

flex) . (2.13)

VA

with £ = ;A; and y = rEa

The system (2.10)-(2.12) was solved numerically with the help of a relaxation method
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in [63]. The solution for the potential parameter values £ = 1 and x = —1 is given in
figure 2.1.

The situation at hand is reminiscent to the one considered by Witten [64] for a
U(1) x U(1) model, in the sense that we have an unbroken U(1) x Zy at the core
and a different U (1) x Zo at infinity. However, the crucial difference is, that our "two’
U (1) gauge groups do not commute with each other.

1

0.9
0.8
0.7
0.6
0.5

0.4

0.3
0.2

Figure 2.1: A regular solution for the fields with an Alice flux for £ = 1 and x = —1.

Interestingly, there is also another solution to the field equations, which we briefly
discuss. If x = 0 there is a solution with m(r) = 0. After a rescaling of ¢(r) one
finds exactly the same equations as were obtained in the Nielsen-Olesen (NO) model
by [65] for the minimal flux n = 1, provided we set the value of A\ = 2§. Numerical
solutions to these equations have been studied before. For a special value of A one
obtains the solutions by solving Bogomolny type, first order equations. The residual
symmetry of this solution in our model is Z3. One may wonder whether in our model
this is a stable solution. In the case of v = 0, i.e., x = 0, the potential (2.2) has the
form:

V=—u2X+2X2 . (2.14)

The minimum of this potential is obviously given by X = L with X = %Tr (@2).

2X°
Written in the components m and ¢ this gives:

eem*+ e =1 (2.15)
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with ¢y, e > 0.

A simple rescaling of m and ¢ vields: m? + ¢? = 1. As we require finite energy. this is
one of the boundary conditions for the fields m and ¢ at spatial infinity. We now see
that the boundary condition of the new solution, m = 0, may be continuously changed
to one where ¢ = 0. But then the Higgs field does no longer stabilize the flux. which
means that the flux will decay by spreading out and losing more and more energy.
Through this process we end up in a “rotated” Alice phase of the theory where the
U{(1) generator points in the internal direction of the flux we started off with. When
going from the m = 0 to the ¢ = 0 boundary condition we pass an Alice phase whose
U(1) generator is perpendicular to the internal direction of the flux we started with.
The upshot of these observations is that, if one wants to have a stable Alice flux in an
Alice phase, one needs to have v # 0. Otherwise the decay induces a reorientation of
the vacuum state in the degenerate space of all classical vacua. This concludes what
we have to say about conventional Alice electrodynamics, in the remaining sections
of the chapter we will focus on some alternative Alice models.

2.2 Alternative Alice models

In this section we introduce two alternative models, which exhibit an Alice electrody-
namic phase. In these alternative models we choose the Higgs field(s) in the adjoint
(3) representation of SO(3). This obviously means that the Higgs field is not single
valued in the presence of an Alice flux, but this can be “solved” in two more or less
similar ways. One way is to put the internal space of the Higgs field (X) on a Zo
orbifold, i.e., X and —X are identified with each other. The other way is to use (at
least) two Higgs fields and put the total internal space of these two Higgs fields (X
and Y) on a Sy orbifold, i.e., identify the points (X.Y) and (Y. X).

The action we use for both models is given by:

| .
S = /d% {Tr (ZFWF“” + %D“XDMX + %D“YD,J’ - %{X, Y]Q)
A 2 2 22
— 7 (T (X*+Y?) - f) : (2.16)

Both theories allow the presence of an Alice flux. In the S model it ineans that one
studies the twisted sector of the theory.

2.2.1 Alice flux solutions

We now turn to the construction of regular cylindrically symmetric (numerical) solu-
tions corresponding to an Alice flux. At spatial infinity one has Dy X = 0. implving
that the Higgs field should have the following form there.

X(8) =SH)X(0)S7Y) . (2.17)
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Chapter 2. U(1) X Z; models

with S(60) the same as in (2.6).

The flux associated with S(#) is topologically stable if the element of the gauge group
associated with S(27) is an element of the disconnected part of the residual gauge
group. A simple choice ! is: Ag = ﬁTl. This puts the Alice flux in the internal 73
direction. Writing the Higgs field as X = »*T,. it follows that X () has the following
form:

\ 1.1(0)
X)) =¢2 | 2%(0) . (2.18)
3(0)
and thus that X (27) is given by:
r1(0)
X(27) = —22(0) : (2.19)
~z3(0)

The same holds. of course. for the other Higgs field. Because the two models differ
slightly in constructing the ansatz. we will treat them separately for the moment.

The Z, model:

For the Z» model the boundary condition specified above implies that either z! = 0 or
7% = r3 = 0. Only in the first case. however. is S(27) an element of the disconnected
part of the gauge group. Thus we have to put #! = 0. Later we will see that this choice
is important in order to obtain first order equations. At this point it is convenient
to introduce a different basis for the generators of the gauge group. a basis naturally
linked to the orientation of the Higgs field. Its elements are given by:

Sa(8) = e ¥ The 2" | (2.20)
Now we write the Higgs field as X = z%S,, where also in this language one has to
put ! = 0 to secure the possibility of a topological stable solution.
In this model a single Higgs field would suffice, but for reasons of similarity we will
use two. Qur ansatz then reads:

a(r)

Ay = —=85; . (2.21)
2er

X = a(r)S; . (2.22)

Y = orS . {2.23)

The S; model:

The ’double valuedness’ is only allowed if one uses an orbifold interpretation. So we
impose a strict relation between X and Y.

r'(6) y'(0)
XO+2m)y=| —220) | =| v20) | =Y . (2.24)
~z(6) y*(6)
LAt this point we can not yet say that this is an element of the disconnected part of the residual

gauge group, but this will be done consistently below.
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2.2. Alternative Alice models

Leading to: z! = y!, 22 = —y? and 7° = —y>. Again we are going to work with the
twisted generators (2.20). A consistent ansatz is the following one:

Ay = %Sl (2.25)
X = a(r)Ss+ec(r)S; . (2.26)
Y = —a(r)Ss+c(r)S; . (2.27)

For both cases one may insert the appropriate ansatz in the field equations. This yields
after a suitable rescaling, the same set of differential equations for both models:

0%a(r) — %&a(r) = (a(r) = 1a*(r) ., (2.28)

2a(r) + %@a(r) = ——(Q(Tir; D) a(r) + Aa(r) (a®(r) + *(r) — 1)
+~yc3(r)a(r) (2.29)

d2e(r) + %Brc(r) = va’(r)e(r) + Ac(r) (a®(r) + 32(r) - 1) . (2.30)

The asymptotic values of the fields are are as follows:

field r—0 I— oC
a(r) 0 1
a(r) 0 1
c(r) constant 0

The boundary conditions are such that S(27) is an element of the disconnected part
of the residual gauge group.

We have constructed numerical solutions to these equations, for different values of A
(and 7), with the use of a “shooting” method, see figures 2.2 and 2.2. As a matter
of fact, we only found solutions for which ¢(r) = 0, although our starting values were
chosen quite general. This implies that there is no dependence of the solutions we
found, on 7.

In fact if ¢(r) = 0, the equations become the same as in the case of a Nielsen-Olesen
(NO)flux with the critical value of the Landau coupling parameter leading to first
order Bogomolny equations. However, there is an important difference with the NO
case. The “winding” number of the Alice flux is fractional and equals n = %, a value
which is not admissible in the NO model. This is clearly a consequence of the different
breaking schemes of the theories in question.

There is a special role in these theories for the parameter ~v. If we set v = 0 the
equations are very similar to the equations (2.10)-(2.12) with x = 0. Though ~
appears to play no role as long as ¢(r) = 0, this is not quite the case. We don't
want <y to vanish because then we run more or less into the same problem as in the
conventional model for Alice electrodynamics with y = 0. The solution with ¢(r) =0
would still be a solution of the field equations, but the flux would no longer be stable.
It would be allowed to decay into the vacuum. In fact in the alternative models it is
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Chapter 2. U(1) x Zy models

quite clear what happens at v = 0, the potential term proportional to v — assuming
it is nonzero — ensures that there is no continuous path in the vacuum manifold
connecting the ¢ = 0 to the a = 0 boundary condition?. If v = 0 such a path does
exist.

There is a simple relation between the Zs model with one Higgs field and the S,
model with two Higgs fields, in the presence of an Alice string. In the presence of an
Alice string the field component of the Higgs field parallel to the Alice flux is zero in
the Z> model, whereas in the S; model this is in general only true far away from the
core. So, in some sense the Zs model is a long wavelength approximation of the S
model, but remarkably enough, it does support solutions which are regular everywhere
nevertheless. The action of both models becomes the same, up to a rescaling, if the
components parallel to the Alice flux, of the Higgs fields in the S model, are set equal
to zero.

08

07l

0.6

0 1 2 3 4 5 6 7
i

(a)

Figure 2.2: The fields a(r) and a(r) , figure (a), and the energy density times r of the Alice flux,
figure (b), for A = 2.0...0.5....0.3

2.2.2 First order equations

As mentioned before, if one sets ¢(r) = 0, the set of equations, (2.28)-(2.30), reduces
to the same set that one would obtain in the NO model for a solution with winding
number n = % It thus appears that one can, in the sector that contains a topologically
stable Alice flux, project both theories on a sector of the NO model. This raises the
question whether it would be possible to find first order equations in both models. In
the Z model, with only a single Higgs field, this projection is the clearest. For the

rest of this section we will therefore concentrate on this case.

One of the features of the NO theory is that for a certain value of the coupling
constant A, the solutions can be obtained from first order equations. These first order
equations can be found a la Bogomolny, by rewriting the energy density as a sum of

2Remember, there is also the boundary condition a? + ¢? = 1.
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squares plus a topological term. In the case of static solutions. the energy density
and the Lagrangian differ only by a sign, implying that extrema of the energy are
also extrema of the Lagrangian. Consequently. solutions of minimal energy are stable
static solutions of the full set of second order field equations. The energy of the Z,
model is given by:

E::%/ffﬂﬂﬁ+BﬁumXF+waY)
+% ((z9)? + ()2 + (%)% - 1)} . (2.31)

In the static case with no electric fields, in the gauge A, = 0. one has E; = 0;4; =0
and DX = 0; X = 0. reducing the expression to,

E= %/dgl" {Tr (B + (D:iX)?) + % ((Y)? + (22)? + (23)2 - 1)} L (232)

Restricting ourselves to the plane, the energy written in components is given by:

o 2 fee{ e (5 (89 (10.0) + (0,07’
+ ((DVX)3)2 + % ((Il)Q + (;172)2 + (;133)2 _ l)} . (2.33)

where now the upper label refers to the internal directions (in the normal, non-
twisted basis) and the lower label to the spatial directions. From this expression we
are unable to obtain first order equations, however, if we restrict ourselves to the
subspace of solutions containing an Alice flux, there is something we can do. Let’s
call the internal direction in which the Alice flux 'points’ the '1’ direction. so if one
is looking for topological stable fluxes one needs to have r! = 0, as argued before. In
that case we may write the energy as,

E = %/dQ:c{(Bi)2+(Bf)2+(B§)2+([A1,X]1)2+([AQ.X]I)z
+ (312 + AL2®)? + (0h2® — ALa?)” + (9522 + ALe?)”
(@A) 5 (@) (0% 1)) (2.34)

For the case of A = % this can be brought into the form:

Bo= g [ {8 (B (007 Ale) 7 (00 - aha?))’

+ ([A1,X]1)2 + ([AQfXJI) + (B; N % <($2)2 N (1-3)2 . 1))
* ((02:82 + A}z:c?’) + (31.763 - A%x?)){z
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A A2 ((22) + () -1) ]
;/(12 (B, +[A1.4])" . (2.35)

Still. there appears to be a problem. because there are two terms in this expression of
the energy density, which are not squares and as we will show later. only one of them is
proportional to the winding number. The other term. [A;. Ag]1 <(.’L‘2)2 + (.’r3)2 — 1).
thercfore appears to be problematic. This problem can fortunately be cured rather
straightforwardly. Remember that we are already in a "gauge” A; = 0. In this situation
the residual gauge freedom of time independent gauge transformations may be used
to put the term [Aj. As]! equal to zero. In this gauge the energy density consists
only of squares and a term proportional to the winding number. The minimum of
the energy is now easily obtained by putting all squares in the energy density equal
to zero. This then yields a set of first order equations of which the solutions are also
solutions of the full field equations. The first order equations. including the gauge
conditions, are:

[A1. 4] = 0 (2.36

2 0 . (2.37

B = 0 . (2.38

[A;. X]' (2.39
(

Blx o () + ()
(O12* + Ajz®) 7 (022® — Ajr?) = . (2.42
(Bo2? + A32®) + (O — Al2?) = 0 . (2.43

0
0
0 (2.41
0

)
)
)
)
2.40)
)
)
)

The last three equations are identical to those that were obtained in the NO model.
The energy of solutions to this set of equations are fully determined by the term:
J d?*x(B. +[A;, As])!, which is proportional to the winding number, as we show next.

The general expression for X in the presence of an Alice flux in the first isospin
direction “along” T7, becomes:

X = z(r)e®™ XNy = a(r)cos (2mx (8)) Tz + x(r) sin (27x (8)) Ts
=als + b1 . (244)
with x(6 + 27) = x(8) + 3. For r — oc one has 2(r — o) = 1. and the winding

number can be extracted from the asymptotics by:

T

dlin{a +ixb) =n =

—1

= (2.45)

1
2
For r — o0 one also has the spatial covariant derivatives DX = 0 or:

X = [A.X] | (2.46)
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or in components:

A X' = 0 . (2.47)
da = —A'b . (2.48)
ob = Ala . (2.49)

From this one finds dIn(a + i x b) = i * A', which means that:

LT in(aind) = - ?{Hx At = 2 /d% (B! + (A A) . (250)
27 T 2n T o 2 T S
Thus the rescaled energy of the solutions is equal to 5. Note that the above ex-

pressions do not look gauge invariant because we are evaluating a gauge invariant
expression in a particular gauge.

One should, of course, check whether the first order equations actually do have any
solutions of the type we are interested in. By inserting the ansatz used before and
putting ¢(r) to zero, one arrives at the following set of coupled non-linear first order
equations.

rora(r) = %(l—a(r))a(r) , : (2.51)
%&a(r) = 1-ad°(r) . (2.52)

Now, these turn out to be a special case of the equations encountered before by De
Vega and Schaposnik [65] in their study of the NO model. They where obviously only
interested in the case of integer winding number, whereas we are interested in the
case of fractional winding number n = % The corresponding numerical solution is
given in figures 2.2 and 2.2.

We have attained our goal of this subsection, of obtaining a set of first order equations,
of which the solutions are also static minima of the energy (with no electric fields). As
is well-known, first order equations play a deep role in gauge theories. Bogomolny [66]
explained, for the NO model, that solutions which come from the first order equations
are also minima of the energy, which implied the neutral stability of such solutions.
Later it was shown [67] that the occurrence of so-called Bogomolny equations is tightly
connected to the existence of a super-symmetric extension of the theory. The explicit
super symmetry extension of the NO model was given by [68] and in agreement with
[67] showed that the first order equations indeed come together with an increase of
super-symmetry. In our models we found first order equations whose solutions are also
solutions to the full set of second order field equations. We showed that the solutions
are also minima of the energy. This obviously raises the question if these first order
solutions can also be explained by the existence of a super-symmetric extension of
our models. A superficial analysis suggests that this is not the case. basically because
we can only recover the Bogomolny argument within the context of a very restrictive
ansatz. In this respect the situation is similar to that encountered in the study of
regular Zy monopoles [69].
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2.3 Conclusions

In this chapter we proposed two new models which both possess an Alice electrody-
namics phase. For both models we constructed solutions corresponding to a topo-
logically stable Alice flux. We found a way to project the theories on the Nielsen
Olesen model and. in that way. obtained first order equations. Solutions to these first
order equations corresponding to minima of the energy (without electric fields) were
constructed numerically.

We close with a brief remark concerning the zero modes of our solution. Weinberg
[70] showed that in the NO model. for the critical value A = §. a flux with winding
number n has 2n zero modes. These modes are interpreted as being the positions of
the unit fluxes. At first sight this appears to give problems for the case of n = % but
carefully redoing section IV of the article mentioned, in particular using the fact that
our fields are allowed to be double valued. one may show that the answer for n = %
is that there are again two zero modes. as one would expect.
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Chapter 3

Lattice Alice electrodynamics

In the previous chapter we examined three continuum models of AED and determined
Alice flux solutions numerically. In this chapter we will introduce and investigate a
lattice model of AED. We present results of numerical simulations and some (ana-
lytical) approximations of a compact U(1) x Zy lattice gauge theory, including an
extra bare mass term for Alice fluxes. The subtle interplay between Alice fluxes and
(Cheshire) magnetic charges is analyzed. We determine the phase diagram and some
characteristics of the model in three and four dimensions. The results of the numeri-
cal simulations in various regimes of the parameter space of the model compare well
with some analytic approximations. This chapter is mainly based on [71].

The chapter is organized as follows. We start with a brief introduction of lattice
gauge theory. In section 3.2 we specify the lattice AED model in detail. In section
3.3 we give the numerical results we obtained for the phase diagrams of the model in
dimensions three and four and in section 3.4 we present some analytic approximations
related to the phase diagram and other measurable quantities. In the final section we
summarize the results and conclude.

3.1 A brief introduction to lattice gauge theory

In this section we will briefly introduce lattice gauge theory. for a more thorough
introduction we refer to [51, 52]. As is well known most quantum field theories need
regularization. The possibility we will focus on is a lattice regularization. There one
assumes that space-time can be represented by a lattice. An obvious drawback of
this regularization is the breaking of the Lorentz symmetry, but a major advantage
is that in this form some questions in the theory can be handled non-perturbatively.

A simple way to introduce lattice gauge theory is to focus on the parallel transporter.
In the continuum the parallel transporter. U(C,,). along a curve, C. from y to x is
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defined by the path-ordered product:

U(Cyy) = Pexp <—iL

dzuAp(z)) . (3.1)
Cxy

where A,(z) is the gauge field.

Let us look at the parallel transporter of a square path in the (. v)-plane with sides
of length a. C, .(x). We divide the path in four straight segments of length a and
assume the gauge field to be constant along each segment. To lowest order in a this
gives:

U(Cuv.alx)) =exp [z’ (aZFW + O(a3))] . (3.2)

where we have used the discretized partial derivative.
To lowest order in a the real part of the trace of such a closed path is equal to:

R(Tr {U(Cpya(x))}) = 1 — %Tr{(Fw,)z} o (3.3)

with no summation over p and v and the trace normalized such that Tr(l) = 1.
This is exactly the structure one can use to construct a gauge invariant action for
gauge fields on a lattice which in the naive continuum limit reduces to the continuum
action for the gauge fields, up to an irrelevant constant.

A cubic lattice can obviously be build up from these type of minimal square paths.
where a is the lattice distance. Summing over all these minimal square paths of the
cubic lattice represents the space-time integral and the summation over p and v in
the continuum limit. This is a simple and straightforward way to construct a gauge
invariant action for a gauge theory on a lattice with the desired naive continuum limit.
In lattice gauge theories it is typically much more convenient to work in terms of
the U-fields instead of the A-fields, which are of course related. The U-fields can be
thought of as directed variables living on the links of the lattice, the link variables.
The lattice action in terms of the link variables, the well known Wilson action [53],
is given by:

S = Q%Z%(Tr{(UIUQUJUj)p}) (3.4)
- g%;mTr{Up}) , (3.5)

where U, = U(Cp..q(x)) and the sum over p represents the sum over all minimal
square paths, the plaquettes, and we have put a = 1.

In the next section we will find that lattice Alice electrodynamics is very similar to
U(1) lattice gauge theory. To get some understanding of U(1) lattice gauge theory
we will go into some relevant details of this theory.
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As U(1) gauge theory is an abelian gauge theory there is no need for the trace in the

action. In fact for U(1) gauge theory the lattice action becomes':

—% ZCOS(FP) . (3.6)
p

As lattice calculations are typically done in a Euclidean space-time instead of on a
Minkovskian space-time the action obtains a minus sign through the Wick rotation.
One of the important and interesting features of this lattice regularization is that it
allows for magnetic monopoles. In the following we will try to make this clear.

It is important to note that the action density due to the field strength only depends
on the field strength modulo 27. We may write:

Fp = Fu(z) = F°4z) + 27Dy (z) . (3.7)
with Fj,, () mod 27 = Flj,’j"d(m) € (—m, ), Duy(:r) € Z and lju,,(x) = —E,,u(zr,). The
integer field D has no effect on the action density as the action density has a period
of 2. Thus we have:

S = —9—12 Zcos(Fp) = _g% Zcos (F;”Ud) . (3.8)
P P

Although there is a Bianchi identity for F,, (z) the splitting of the field strength into
a physical and a redundant’ term allows for a magnetic monopole current of the
physical field. For the physical field strength F ;’;"d(as) the possibly nonzero monopole
current is given by:

F‘Z"d(.r) = 27k, (z) . (3.9)
with
k,(z) = 0,Du.(x) (3.10)

where D, (¥) = $€,1p0 Dpo () and ﬁ’é’,ﬂ”d(m) = %ew,nglj:;"d( 3.
The integer field D, (x) is identified as the Dirac-sheet and it is this field which is
used in locating magnetic monopoles in a specific configuration. Obviously if out of
any volume more (or less) Dirac strings enter than leave there is a net magnetic charge
inside this volume. The magnetic charges live inside the unit-cells of the lattice or
more specifically they live on the dual lattice.
We end this short introduction to lattice gauge theory with a remark on the possible
charges of the magnetic monopoles. A direct consequence of the fact that F :,j‘)d(x) €
(—m,m) is that the magnetic charge/current within a unit-cell can only have some
quantized values.

ko(z) =0.£1.42 . (3.11)

We do note that this is not the only way to put compact U(1) gauge theory on a lattice and
that it is also possible to have a non-compact U{1) lattice gauge theory.
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3.2 Lattice Alice electrodynamics

In this section we introduce the specific Lattice Alice ElectroDynamics (LAED) model
we will study. First we explain the different terms that appear in the action and then
we discuss how magnetic monopoles and instantons are realized and can be measured
in this model. Finally we say a few things about the computational implementation
of the model.

3.2.1 The action

Alice phases can be generated by spontancously breaking SU(2) to U(1) x Zz. In this
case it is clear that Alice loops. monopoles and Cheshire charges may arise as regular
classical finite energy solutions. In the study presented in this chapter we restrict
ourselves to compact U(1) x Zg gauge theory with an extra bare mass term for the
Alice fluxes. Our lattice formulation of the theory allows for the formation of Alice
fluxes and magnetic monopoles?. The action we will use is given by:

22{ R(Te {20030, }) + mi(Ppy} (3.12)

The first part represents the normal Wilson [53] plaquette action for the gauge theory.
which we introduced in the previous section. The second term is the extra bare mass
term for the Z, fluxes in the model. P¢ is a functional of the Z, degrees of freedom
which. when evaluated on a plaquette. equals one if the plaquette is pierced by a
Z> flux, and equals zero if not. The parameter my is the extra bare mass (in three
dimensions) or tension (in four dimensions) for the Alice flux.

In principle one can also add an extra bare monopole mass term to the action. We
have refrained from doing so because it is computationally much more involved and
because we can realize all four phases in the model without this term (see table 3.1).
To define suitable link variables for LAED we use the fact that compact U(1) x Zs
can be conveniently embedded in SU(2) as follows:

U, (x)= eiA"(I)“Tf”(I) . (3.13)

with a,(x) € {0,1} and A, (z) € (—7.7).

Thus a, represents the Zo gauge varlable and A, the compact U(1) gauge variable of
the theory. We say that, if a,(z) =1 a Zs-sheet in 3D, or a Zs-volume in 4D, crosses
the link, implying that the Zg-sheets live on the dual lattice. These Zg-sheets can, of
course, be moved around by local Z, gauge transformations. A gauge transformation
of the links is given by:

Uy (z) = Qz)U, (2)Qz + ), (3.14)

?It also allows for the formation of Cheshire charges, but their non-locality makes them hard to
detect, see section 3.2.2
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with Q(z) = 612(1)737,10(1)? where o(z) € {0.1} and X(x) € {—7. 7).

The boundaries of the Zy-sheets. however. cannot be moved around by local Z, gauge
transformations, this in analogy with the endpoints of Dirac strings (being magnetic
monopoles) in the compact U(1) gauge theory. This is exactly what one should expect,
since the boundaries of the Zo-sheets are closed Alice flux? loops, which are physical
objects carrying energy. Bearing this in mind it is easy to locate the Alice fluxes,
namely by just counting the number of Zs-sheets crossing the links of a plaquette.
If an even number of Z,-sheets crosses the links of the plaquette, then no Alice flux
pierces the plaquette, but if an odd number does, then that means that an Alice flux
does pierce the plaquette. This observation allows one to define the Py operator,
which applied to a plaquette measures the presence of an Alice flux,

1 4
— - — {— 21= ai
Pr=s (1 (—1) i ) . (3.15)
where the four a; summed over belong to links Uy, Us, Us and Uy, bounding a single
plaquette. Equations (3.12), (3.13) and (3.15) define our LAED model.

3.2.2 The problem of locating monopoles (or instantons)

In this model of LAED in four dimensions, there are magnetic monopoles, in three
dimensions these appear as instantons. There are a few intricacies in detecting them
compared to the usual compact U(1) lattice gauge theory. In this section we will
explain under what circumstances and how we can detect a monopole/instanton in
LAED. As our model of LAED has a lot of similarities with compact U(1) lattice
gauge theory, we try to use these similarities in determining the monopole content of
a configuration.

Let us first consider the case that there are no Alice fluxes present. Clearly, this
corresponds to the limit of an infinitely large mass, my, for the flux. In this case
there may still be closed Zy surfaces, but these surfaces are not physical and can
be moved around by making suitable local Zs transformations. Suppose we want to
determine the monopole content of a specific cube in such a configuration. We would
like to see if a Dirac string ends in the cube, just as one does for compact U (1) lattice
gauge theory. We distinguish two cases, the first where no Zg-sheet crosses the cube
of interest and the second where one or more Z,-sheets do cross the cube.

In the first case we determine the monopole content of the cube just as in compact U(1)
lattice gauge theory. In the second case we should construct a new or more general
definition due to the presence of the Zj-sheets. Bearing in mind that a monopole
is a physical object which cannot be moved around by gauge transformations, one
may use local Z, gauge transformations to gauge the Z,-sheets away from the cube
of interest. After this procedure we can again determine the monopole content by the
methods of compact U(1) lattice gauge theory.

3To avoid confusion we note that in the Z, literature one typically calls these objects vortices
instead of fluxes.
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Zo-sheets can be gauged out of the cube of interest in several different ways. One
would expect this not to make any difference to the outcome of the measurement of
the monopole charge of the cube of interest. but it does! As we mentioned in the
chapter 1. monopoles of opposite sign belong to the same topological class. For the
measurement of the monopole charge of a single cube this means that one cannot
distinguish between positive and negative charges. To see that this is the case, let
us consider a cube which is not intersected by a Zs-sheet. If one performs a 'global’
Zs gauge transformation to all the links of this cube, this has the same effect as
pulling a Zs-sheet through the cube; all the U(1) degrees of freedom change sign.
since 7171 = 747 see equation (3.14). Obviously this means that the outcome
of the measurement of the magnetic charge of the cube changes sign. Hence only the
absolute value of the magnetic charge is a locally gauge invariant quantity. i.e.. an
observable.

Next we consider the situation where fluxes are present. Now we have two different
type of cubes, cubes which are pierced by a flux and cubes which are not. The latter
are obviously equivalent to the cubes we just discussed. Thus at this point we may
restrict our considerations to cubes which are pierced by fluxes. The statement is.
that for a cube which is pierced by a flux, the notion of a gauge invariant magnetic
charge breaks down completely. Let us explain why this is the case.

Figure 3.1: A cube that is pierced by a flux which is the boundary of a Za-sheet.

If an Alice flux pierces through a cube, it is obviously not possible to gauge the
Zo-sheet out of the cube. In figure 3.1 we depicted a cube pierced by a flux and
the Zso-sheet connected to the flux. If one tries to define Dirac strings through the
plaquettes bounding the cube of interest one gets into all sorts of trouble. For the
plaquettes where no flux pierces through one can up to a sign determine the (real
magnetic flux through the) Dirac string. This sign problem seems to be a minor one,
as it appears to be for the monopole charge itself, but that is not true, because there
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is a separate sign ambiguity for the Dirac strings through each of the plaquettes and
not just a single overall sign, as was the case for a cube not pierced by a flux. This
means that in such a cube, even the absolute value of the net magnetic charge is not
an invariant quantity.

Yet another problem arises if one wants to define the Dirac string through a plaquette
which is pierced by a flux, because an odd number of Zs-sheets cross the links bound-
ing the plaquette. The problem basically follows directly from Alice electrodynamics
itself, where if one sweeps a Zg-sheet through a U(1) link field, this will change sign.
So even the sign of the individual U(1) link variables is not defined uniquely on a
plaquette which is intersected by an odd number of sheets, even if one looks only
at that particular plaquette. This obstruction to defining the magnetic flux through
such a plaquette, is just a manifestation of what is generally called the obstruction to
globally define a U(1) charge in the presence of an Alice flux in Alice electrodynamics.

However not all is lost. The previous discussion only shows that it is impossible to
determine the magnetic charge of a cube, or more general of a volume, whose bounding
surface is pierced by a flux. There is however no problem in determining the magnetic
charge of a volume which contains a loop of flux not crossing the boundary.

A

Figure 3.2: This figure shows an Alice loop with its Za-sheet. The Zs-sheet is pierced by a Dirac
string, which changes sign/direction once it passes the Zs-sheet. In this configuration the Alice loop
carries a magnetic Cheshire charge.

To see this consider the configuration given in figure 3.2. A configuration is shown
of an Alice loop and a Dirac string piercing the Zs-sheet bounded by the Alice loop.
This figure demonstrates, that an Alice loop configuration is capable of carrying a
magnetic charge. We note that there is no Dirac string coming from the flux itself (this
is actually possible and even necessary for the unit charged Alice loop). Remember
that we are, for plaquettes not pierced by a flux, able to determine the Dirac string up
to a sign. We also note that any attempt to measure the location of the monopole will
fail. It looks like that the cube where the the Dirac string pierces the Zs-sheet does
contain a magnetic charge, but as the position of the sheet is gauge dependent this is
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just a gauge illusion. Yet, drawing a closed 2-surface around the loop there is a gauge
invariant quantity of magnetic flux emanating from that surface. i.e.. there is magnetic
charge inside. This magnetic charge is present. not as a localized or even localizeable
quantity. but rather as a global property carried by a closed Alice loop as a whole,
in which case one speaks of a magnetic “Cheshire” charge. And indeed, although one
can determine the magnetic charge carried by the Alice loop as a whole. one can not
assign this magnetic charge to any of the cubes inside the volume containing the loop.
These nonlocalizeable charges may in the continuum even be energetically favored.
We will show in chapter 5 that 't Hooft-Polyakov type monopoles may decay into
their Cheshire versions.

To see that a Cheshire charge configuration is physically relevant in our LAED model
we briefly study a configuration of a magnetic monopole and an Alice loop. We fix
the position of both objects by hand and only allow changes in the gauge variables
which do not change the position of these objects. We want to show that also in
LAED an Alice loop can carry a magnetic Cheshire charge. As the lattice we use has
periodic boundary conditions the total magnetic monopole charge is zero, i.e.. there
is also an anti-monopole present. In the limit of g — 0, the naive classical limit, and
M f1ue — ¢ one does not expect there to be any other defects present. In this limit
there appear to be two possibilities: either the anti-monopole is located next to the
monopole or it is absorbed by the Alice loop in the form of a Cheshire charge. The
latter configuration is the one which we are interested in. In general it is a question of
energetics which configuration is preferred?, and the energy of the field configuration
obviously depends on the size of the Alice loop and its relative location with respect
to the monopole. Now we will consider a configuration where the anti-monopole is
absorbed by the Alice loop.

In this configuration the monopole and the Alice loop lie in one plane, the xy plane.
The Alice loop is a square and the middle of one side is in front of the monopole. In
figure 3.3 we plotted the z component of the magnetic field just above and below the
plane in the dual lattice in which the configuration of the monopole and the Alice
loop lies. The monopole and the Alice loop have not been plotted, but it should be
clear where they are, they live on the dual zyz lattice. The plot is in the special Zq
gauge, where the only Zy sheet is the minimal surface bounded by the Alice loop.

From figure 3.3 it should be clear that the Alice loop carries the magnetic charge of
the anti-monopole as the z component of the magnetic field has a different sign just
above/below the Alice loop than just above/below the monopole. We also checked
that there were no other monopoles in the system and determined the magnetic charge
of the Alice loop, the Cheshire charge. We see that also in LAED the Alice loop can
carry a magnetic Cheshire charge and it makes clear that one can not define the
position of a magnetic charge on an Alice string.

We conclude, that once we enter a phase where there are very many Alice fluxes
around, detecting and localizing magnetic charge becomes a hairy business. The only
useful thing one may still do, is to measure the fraction of monopole carrying cubes of

41f we had an extra bare mass term for the monopole we could simply send it to infinity to force
the anti-monopole to be absorbed by the Alice loop
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Bz just above the monopole ——
Bz Bz just below the monopole

Figure 3.3: This plot shows the z component of the magnetic field just above and just below
the plane in which the monopole and Alice loop lie. It clearly shows that the Alice loop carries a
magnetic Cheshire charge.

the number of cubes not pierced by an Alice flux. In view of these observations, when
in the following we talk about the monopole density, we mean the average absolute
charge per unpierced cube and when we talk about flux density we mean the fraction
of plaquettes pierced by an Alice flux, i.e., (Py), unless stated otherwise.

3.2.3 Implementation of the model

Although formula (3.13) suggests that we should implement LAED using (Pauli)
matrices we have not done so. Instead, we exploited the fact that the structure of our
U(1) x Zo gauge theory is very close to that of the compact U(1). The only effect of
the Zso degrees of freedom is the appearance of Alice fluxes and Zs-sheets. If there
are an odd number of a variables equal to one in a plaquette, then the plaquette is
pierced by a Zs flux and the first term in the action is always zero irrespective of
the values of the A fields. This can be understood as a consequence of the fact that
the U(1) symmetry is globally frustrated in the presence of an Alice flux. If, in the
contrary, there are an even or zero number of a variables equal to one in a plaquette,
the a variables can be gauged away, changing only the sign of some of the A fields
and the action is just the action of compact U(1). In view of these observations, we
have for our simulations used the following simple action, which is equivalent to the
action of formula (3.12), but does not require any matrix calculations.

1 ~ :
S = 7 Zp:{—(l - Pf)cosF+7anf}p \ (3.16)

where F is the F of U(1) after the Zj fields have been gauge transformed out of the
plaquette, which is always possible if Py = 0.
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We have investigated this model. using a combination of a Monte Carlo method for
the A, (x) variables. and a heat bath method for the a, (z) variables. We examined the
model on a periodic hyper cubic lattice of size 10¢. where d is the dimension. Although
we will not go into detail on the order of the phase transitions we mention that it
has been suggested [72]. that the order. oddly enough. would depend on the imposed
boundary conditions. Three dimensional ED has attracted a lot of attention. the

last few years. due to its potential applicability to models of high T, superconductors
[73. 74. 75)].

Our LAED model contains a pure compact U(1) and a Z, gauge theory in different
limits of the model. In the limit of m; — = the model is equal to pure compact
U(1) gauge theory. In the limit of ¢> — ¢ while keeping my/g? finite the model is
equal to Zy gauge theory. Before we proceed we like to mention a few things about
the Zy gauge theory to avoid confusion later on. In Zo gauge theory there is only
one parameter. in the Zy limit of our model this parameter is ms/g?. Normally. the
Z, gauge theory is only studied for positive values of its parameter. However. in
our situation we are also interested in the region where m/g? becomes negative. In
the pure Z; gauge theory the region of positive and negative values of the parameter
forin a mirror image of each other. Note that this mirror map is different from the
usual duality that is also present in Z,, type gauge theories. This mirror symmetry
holds. at least. for a hyper cubic lattice. where one may map the negative coupling
side on the positive side if one replaces "fluxes” by "no-fluxes” in every sense. So
"no-fluxes™ are the places where “no flux™ pierces through a plaquette. i.e., they are
the holes in the flux condensate. The model can equally well be described by either
of the two objects. This mirror symmetry follows from the fact that for a hyper cubic
lattice both objects. fluxes and no-fluxes. form closed loops in three dimensions and
closed surfaces in four dimensions. This shows that the regions of positive values and
negative values of my/g? can be naively mapped onto each other. As we will show. in
LAED the Alice mirror symmetry is broken by the interactions with the U(1) gauge
fields for finite values of g2.

3.3 The phase diagram in three and four dimensions

In this section we present various numerical results for the LAED model. Because we
have two types of topological objects in the theory, which may or may not condense,
one may in principle expect four phases. It is quite easy to anticipate where in the
parameter space the four phases could occur, as we have indicated in table 3.1.

In figure 3.4(a) we have plotted the flux density and the monopole density in four
dimensions. It is clear that various interesting transitions do occur. Using a hysteresis
type of analysis we could determine the order of these transitions. and we found that
all but one. are of first order. Only the transition from the phase with only Alice
fluxes condensed, to the phase where both Alice fluxes and monopoles are condensed,
is different. In fact, it does appear not to be a phase transition at all, but rather a
crossover phenomenon. see also section 3.4.4 and the discussion in section 3.4.5.
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my small my large

g2 small Fluxes No Condensate

g? large || Fluxes and Monopoles/ Monopoles/
Instantons Instantons

Table 3.1: The four phases of LAED.

In figure 3.4(b) we have plotted some contours for the Alice flux and monopole densi-
ties. The curves indicate where the first order phase transitions [76, 77] take place, but
also show the change of the first order monopole transition if no fluxes are condensed,
to the crossover monopole transition if fluxes are condensed.

Flux density
Monopole density —

0.8 F Monopoles 1.2
0.6
0.4

J04
Jo2

0.2

(a)

Figure 3.4:

(a): The 4-dimensional flux and the monopole densities are plotted as a function of my and g2. The
four different phases of table 3.1 can be clearly distinguished.

(b): A plot of some specific monopole and the Alice flux density contours in four dimensions. We
identify the four phases of the model. The lines denoted B mark the transition involving the Alice
fluxes, where to the left of B the fluxes are condensed. The lines A correspond to a second phase
transition involving the fluxes. The lines C' denote the monopole transition, notice the splitting of
the height lines once the Alice fluxes are condensed.

Note that in figures 3.4(a) and 3.4(b) we have only plotted the monopole density up
to the 'second’ flux density transition, line A in figure 3.4(b), where the flux density
jumps to about one and only very few cubes (if any) are left where no flux pierces
through, making the fluctuations for the monopole measurement very large.

Though in our limited model we find all of the anticipated four phases, each charac-
terized by some condensate, we do not find all possible transitions from one phase to
another. There is apparently no transition from the phase with condensed monopoles

55



Chapter 3. Lattice Alice electrodynamics

and no fluxes to the phase with condensed fluxes and no monopoles.

In appropriate limits of the model we recover the results for the lattice gauge theories
of compact U(1) and Z, separately. consistent with equation (3.16). The pure U(1)
gauge theory arises in the limit of my — oo, where the Alice fluxes are suppressed
and the only feature reminiscent of the Zy part of the gauge theory are pure Z, gauge
transformations, which of course do not affect any of the physics. In this limit we
therefore expect only the transition corresponding to monopole condensation. The
pure Zy gauge theory arises in the limit of g> — oc, while keeping my/g* finite, which
is usually only studied with ms/g? > 0. We verified that the limiting behaviors of
the results of our simulations are in agreement with the known results of the Z» and
U(1) gauge theories [78, 79, 80, 81], see also [82] and references therein.

Instanton density ——

Instantons 4 0.8 @
: 406
404
No Condensate 40.2
-l 1 1 0
0 1 2
my
(b)

Figure 3.5:

(a): The 3-dimensional flux and instanton densities are plotted as a function of my and g%. The
four different phases of table 3.1 are clearly distinguishable.

(b): In this figure we plotted some specific height lines of the instanton and the Alice flux density
in three dimensions. We identify the four phases of the model. The lines B correspond to the
condensation line of the Alice fluxes, to the left of it the fluxes are condensed.The lines A correspond
to a second phase transition involving the fluxes Line A. In comparison with figure 3.4(b) there is
no line C. In three dimensions the instanton condensation is always a crossover.

In figure 3.5(a) we plotted the results for the instanton and Alice flux density in three
dimensions. Also in this case we encounter all four phases of the theory, but the
transitions are of different order. The instanton condensation is always a crossover
and the flux condensation appears to be of second order, which it certainly should
be in the Z; gauge theory limit [79]. We did not determine the order of the flux
condensation for small g2.

In figure 3.5(a) the transition for small values of g? appears to become a first order
phase transition, but this is mainly due to the fact that we use ms and g? to parame-
terize the model, whereas the, in some sense more natural, choice of (ms + 1)/g? and
1/g? could give a different picture, which is also true for the four dimensional case.
We will come back to this point in section 3.4.5.

In figure 3.5(b) we, just as in figure 3.4(b), plotted specific height lines of the instanton
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and Alice flux density. These lines show the location of the Alice flux phase transitions
and divide the parameter space up in the four different regions linked to the phases.
Again in the U(1)} and Zo limit we recover the results of these pure gauge theories
separately.

In three dimensions the flux density becomes very high before the second phase tran-
sition of the fluxes. line A in figure 3.5(b), occurs and consequently the fluctuations
of the instanton density measurements become very large in a larger region.

3.4 Analytic and other approximations

LAED contains both pure compact U(1) and Z< gauge theory. As both of these theo-
ries have been studied thoroughly over the years, our aim is not to make estimates for
these models, but rather to treat their (numerical) results as known and focus on the
interaction of these two models in LAED. To this end we give (analytical) approxi-
mations of some characteristic quantities of the model. We subsequently discuss the
average action of unpierced plaquettes®, the flux condensation lines, the contours of
constant flux density in the region between the two flux condensation lines A and B
and the monopole/instanton density. We conclude this section with a brief discussion
of the approximations we made.

3.4.1 The average action of unpierced plaquettes

To approximate the average action per unpierced plaquette, —(cos F ), we split the
parameter space of the model into two regions, a region where the Z, fluxes do not
condense and the region where they do.

In the region where the Zo fluxes do not condense we approximate the theory by a
pure U(1) gauge theory (in the present context considered to be given) and —(cos F)
is approximated accordingly, i.e., we ignore the effect which the few Alice fluxes have,
that may be present. In the region where the fluxes do condense and the flux density is
large, we approximate the average action of unpierced plaquettes by the average action
of a single plaquette. The U(1) link variables are irrelevant to plaquettes pierced by a
flux, as follows from formula (3.16). In the limit of a high flux density the plaquettes
which are not pierced by a flux become isolated in the sense that the value of the
U(1) degrees of freedom have almost no effect on the surrounding plaquettes. Thus
we can approximate —(cos F') in the condensed phase by:

2r qF =~ C—‘DQE I (l)
(cosﬁ)mfo o coste 7 TA\F

on ap HE ] (2
o axe e o\

(3.17)

where the functions Iy and I; are modified Bessel functions.

5The total average action per plaquette is easily determined by this result and the flux density.
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The difference between these two limits, the single plaquette and the U(1) limit,
vanishes for large ¢g?. In four dimensions, for small g2, the fraction of pierced fluxes
typically is very large in the flux condensed phase. Thus we may expect that the two
limits describe the model for any value of g2. In three dimensions there is no such
jump in the flux density and we expect an intermediate region, for small g2, to be
present.
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Figure 3.6:

(a): The average plaquette action —(cos F) in four dimensions. All the data points, i.e., including
those corresponding to different values of my and g2, lie either on the pure U(1) line or (almost) on
the approximation for condensed fluxes phase. The division is so clear due to the strong first order
Z3 transition, i.e., in the flux condensed phase the flux density is fairly high for small g°.

(b): The average plaquette action —(cos F) in three dimensions. Here the transition from the one
region to the other is much more smooth, because the Zs transition in three dimensions is only of
second order, also the pure U(1) result deviates much less from the flux condensed limit. The points
outside the region between the two limits are points where the flux density is very high, implying
that the fluctuations become very large.

In figure 3.6(a) we plotted —(cos F) as a function of g2 in four dimensions. We see
that the data splits up into two lines. Part of the data points lie on the pure U(1) line
while the other part lies (almost) on the single plaquette line. This strict separation
of the data points in these two sets is due to the strong first order behavior of the
Zs flux condensation for small g2. We see that each point is very well described by
either the first or the second approximation indeed.

In figure 3.6(b) we plotted —(cos F) as a function of ¢g* in three dimensions. The
two approximations now generate the boundaries between which the data points lie.
The fact that there is no clear division of the data in two sets in three dimensions, is
due the Z, phase transition being of second order. The flux density grows gradually
across the transition region. That points appear also outside the region bounded by
the two approximations is due to very large fluctuations when the flux density is high,
i.e., when there is a small number of unpierced plaquettes.
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3.4. Analytic and other approximations

3.4.2 The condensation lines of the Alice fluxes

To approximate the location of the Alice flux condensation lines in the parameter
space of the model we make use of an action, S. versus entropy. Ent. argument. The
weight factor of a configuration is determined by ef™*=5. The important quantity is
the relative weight factor, e2Ent=45 between configurations. Assuming that Ent—.S
of the object that condenses is additive with respect to the so called background. we
find that AEnt — AS = Entopject — Sovject. Now typically the location of the critical
point can be approximated by Entopject = Sobject-

As we saw in figures 3.4(b) and 3.5(b) there are two flux condensation lines in LAED.
In the Z; gauge theory these are just each others mirror image. For finite ¢? this
symmetry between the two condensation lines is broken due to the interactions with
the U(1) fields. We may still compare them, in the sense that at the first transition
line, B, the fluxes condense, while at the other, A, the “no-fluxes” condense. The
coupling between the Z; and the U(1) fields manifests itself as follows: if a flux is
created then a piece of the U(1) fields is “eaten” away in the sense that the U(1)
fields become irrelevant because they are projected out and do not affect the action
of the plaquettes involved. This is an effect that we have to take into account, and as
we shall see, this can be done very accurately for the no-flux condensation line, but
only partially for the flux condensation line.

The four dimensional case:

First we determine the transition line of the no-flux condensate with the help of the
action versus entropy argument. When a no-loop (i.e., a loop of no-flux) is created,
the plaquettes through which it pierces carry a U(1) action. We determine the no-flux
density and will assume that the contributions of the U(1) field of a plaquette are
independent of each other. We then approximate the location of the condensation
line by assuming that the average over the U(1l) degrees of freedom in the relative
weight factor for a plaquette is equal to one. This gives us:

2m [ .
dF m cos B
In (/ —ec”'+?}+ o7 ) =0 . (3.18)
0 27
where ¢, denotes the given value of the condensation point of the no-loops in the
pure Z; gauge theory limit and we used AS = —%ﬁ - C—(;Sgﬁ per plaquette. We note

that the value of ¢, equals to minus the value for the loops, ¢, as follows from the
mirror symmetry of the Zy gauge theory, as we discussed at the end of section 3.2.3.
From now on we will adopt the notation ¢,y = —cap(= —¢).

Formula (3.18) leads to the following equation for the transition curve in the (my. g?)
plane:

1
mys=—g*cap —¢°Inly | — . 3.19
f g2

As can be seen in figure 3.7(a) the approximation of the no-loop condensation line is
very good.
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Chapter 3. Lattice Alice electrodynamics

We can trv to do the same for the Alice loop condensation line. We use again
Entopject = Sobject. but are now not able to include all contributions. The entropy
and action contribution of the loop are clear. one thing that changes in equation
(3.19) is the sign in front of the first term on the r.h.s.. The problem is a reliable
estimate of the U(1) contribution. Obviously we may no longer assume that the U(1)
contribution of each plaquette is independent. On the other hand it is known that
the correlation length decreases exponentially in the confining phase. which implies
that we should expect this approximation to still work if g° > ¢ ~ 1.

We can also approximate the Alice loop condensation line in a slightly different way.
where we use the contribution to the action of the U(1) fields as given by the pure
U{(1) theory and ignore the change in the entropy due to the U(1) fields. For the

action we then take:
my  {cos F)
Sobject = (—g2 L ) . (3.20)

with (cos F) the average of cos F for given g2 and is equal to {cos F) of pure U(1)
gauge theory as follows from the previous section (which is evaluated numerically and
in the present context considered as given). This leads to the following approximation
for the position of the condensation line for the loops:

my = g*cap — (cos F) . (3.21)

We note that in the pure Zg limit. the second term on the r.h.s. of equations (3.19)
and (3.21) becomes zero and that ¢4p and its three dimensional analogue c3p follow
from pure Z, gauge theory results as mentioned before. In fact. they are even known
analytically [78]. In the limit of g2 — O the only state that is allowed. is the global
minimum. which means that the condensation lines need to go tomy = —1 for g% — 0.
This is true for both approximations.

In figure 3.7(a) we have plotted the approximations for the condensation lines in four
dimensions and some specific height lines. which characterize the position of the phase
transitions. We see that the approximation of the condensation of the no-loops is very
good. For g2 > 1 the same method works also very well for the loop condensation
line. The other approximation for the loop condensation line does not work as well,
but we qualitatively understand why.

The three dimensional case:

In three dimensions we follow the same strategy. We repeat the arguments given for
the four dimensional case. leading to exactly the same equations (3.19) and (3.21).
where we only have to replace the four dimensional quantities by their three dimen-
sional counterparts. In particular ¢4p is replaced by c3p and (cos 13‘) 4p 1s replaced by
(cos F)ap.

In figure 3.7(b) we plotted the resulting condensation lines for the three dimensional
theory. The plot shows some specific height lines which characterize the phase tran-
sitions as well as the approximations for the lines where the phase transitions should
occur. Again we find that the approximation for the no-flux condensation line is very
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Figure 3.7:

(a): A plot of the phase transition lines, A and B, in four dimensions and of the approximations we
made. The approximation for the no-loop condensation line, la, is very good. For g% > 1 the same
approximation works also very well for the loop condensation line, 1b, while the other approximation,
2, deviates in a qualitatively expected way from the loop condensation line.

(b): A plot of the phase transition lines, A and B, in three dimensions and of the approximations we
made. The approximation for the no-flux condensation line, 1la, is very good. For g2 > 0.6 the same
approximation works also very well for the flux condensation line, 1b, while the other approximation,
2, deviates in an expected way from the flux condensation line.

good. The approximation of the analogue of equation (3.19) is very good for larger
values of g2, whereas the deviation of the other approximation to the flux condensation
line is qualitatively understood.

3.4.3 Contours of constant flux density

In this subsection we will approximate the flux density in the region between the two
flux condensation lines, by assuming that in this region the correlation lengths of both
fields are zero, so that it suffices to look at the single plaquette.

This means that we get the same answer for the three and four dimensional case. The
fraction of plaquettes being pierced by an Alice flux, ps, can be approximated by:

eentffsf
pf R - 3.22
f eenty—Sy + eentns f0271' % e—55 ( )
Using enty = entpy and Sy = %ﬁ this gives:
2 1—ps 2 AE g
mf=g¢°In{ ——= ] —¢g°ln / — e °F , (3.23)
Pf 0o 27

which leads to:

Tr)‘£:2n(1_pf —QH(n(i\ .
14 gl,\ ) gl \I\ >/ . (3.24)
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Note that in the limit g> — 0 we find that all the height lines meet at my = —1, just

as one should expect, whereas in the Zs limit one obtains that %ﬁ =1In (l:%f),

In four dimensions, within the region of the two condensation lines, which is the
region we are probing, our approximation works very well, see figure 3.8(a). In three
dimensions the approximation does not work in the whole region, but works very well
between the height lines 0.7 and 0.3, see figure 3.8(b).

Figure 3.8:

(a): Contour lines of the flux density in four dimensions and their approximations. We plotted
from, left to right, the height lines: 0.9,0.8,---,0.2,0.1. The approximations for the height lines
0.6,---,0.4 are perfect up to the point where they reach the condensation line.

(b): Contour lines of the flux density in three dimensions and their approximations. We plotted
from, left to right, the height lines: 0.9,0.8,---,0.2,0.1. The approximations for the height lines
0.7,---,0.3 are very good up to the point where they reach the condensation line.

The approximation of the flux density, equation (3.24), can be split into two parts.
The first term on the right hand side is due to the Z, degrees of freedom. In the Z,
limit this term can be compared with pure Zs gauge theory, which we did not use as
input in this estimate. The second term on the right hand side is due to the U(1)
degrees of freedom. Moving away from the 0.5 height line makes the approximation of
Zso term less good while moving from the 0.9 height line to the 0.1 height line makes
the U(1) term less good. The validity of the U(1) term can be seen by fitting the
Zy part of the approximation with results from pure Zs gauge theory. This gives a
perfect fit for all values g? for a high flux density, but as one expects, fails in the
region of low flux density and small ¢°.

3.4.4 The monopole/instanton density

In this subsection we will approximate the monopole/instanton density. In the phase
where the Alice fluxes do not condense the monopole condensation line and height
lines are easily understood. In this phase there are almost no fluxes, and ignoring
these the model becomes a pure U(1) theory and one expects the monopole density
to behave accordingly, allowing us to use the known numerical results.
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Figure 3.9:

(a): A plot of the monopole density. Just as in figure 3.6(a) all the data points, i.e., including those
for different values of my and g2, perfectly match the two different approximations. The monopole
density is or equal to the pure U(1) monopole density or is (almost) equal to the approximation for
the condensed fluxes phase.

(b): A plot of the instanton density. The instanton density lies between the two different approxi-
mations. That the data does not jump from one line to the other line is due to the fact that the Zo
transition is much softer in three dimensions. The points outside the region between the two limits
are points where the flux density is very high, implying that the statistics is bad.

In the phase where the Alice fluxes do condense we may approximate the monopole
density by the monopole density of a single cube. That this can be done follows
basically from the results of sections 3.4.1 and 3.4.3. The cubes not pierced by any Z,
flux are in the condensed phase isolated in the sense that the U(1) degrees of freedom
of the links have hardly any effect on the surrounding plaquettes. This makes it safe
to use the single cube approximation in the phase where the fluxes have condensed.

We determined the single cube density by using random link values, with which we
determined the energy of the cube, the charge inside the cube and the entropy of the
configuration. With this information we calculated the monopole density for different
values of g2 and compared it with the data points we found. This approximation is
the same for the three and four dimensional model, though in three dimensions these
are of course instantons.

Just as in section 3.4.1 one expects the two approximations to describe the model very
well in four dimensions, but in three dimensions one expects an intermediate region.
This is exactly what we find, see figures 3.9(a) and 3.9(b). Again we note that the
points outside the region bounded by the two approximations are points where the
flux density is very high, i.e., the fluctuations become very large.

3.4.5 Discussion

The approximations we made in the last few sections describe the model fairly well. In
four dimensions the approximations work extremely well. The phase with condensed
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fluxes can apparently be understood as a phase where the correlation lengths of the
fields are vanishingly small. In three dimensions the division of the phase space is
not as clear, but our approximation of the height lines of the flux density does imply
a region where the correlation length of both fields is also vanishingly small. If the
Alice fluxes do not condense the theory is very well described by a pure compact U(1)
gauge theory.
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Figure 3.10: The phase diagrams of four, (a), and three, (b), dimensional LAED in the new
parameters. The details and implications are explained in the text.

As mentioned before, the fact that all the contour lines of the flux density come
together at my = —1 for g% — 0, does not mean that the phase transition becomes
or stays first order. It is mainly due to the choice of parameters that all the contour
lines of the flux density come together. If one uses the in some sense more natural
parameters (m; + 1)/g? and 1/¢?, it is not at all clear that this will happen. This is
illustrated in in figure 3.10, where we have plotted the phase diagram of the model in
terms of the conventional parameters. The crossover transitions are not marked, they
are associated to regions with different condensates not separated by a phase transition
line. Although there is a second flux transition line, the “no-flux” condensation, there
is no monopole/instanton transition at this point. We deduce this from the results
of section 3.4.4. That we are not able to determine the monopole/instanton density
there is due to the fact that the fluctuations are very large in that region of parameter
space. However one would expect the single cube approximation of section 3.4.4 also
to be valid in that region of parameter space.

The position of the monopole transition line, see figure 3.10(a) is also following from
the results of section 3.4.4. We pointed out that the monopole data splits up into two
regions, the regions where the fluxes have or have not condensed. This means that
the U(1) monopole transition line splits up and follows the (first) flux transition line.
We have drawn it all the way along this flux condensation line, but it is not yet clear
whether there is always a monopole transition. For g> — 0 and g® — oo the difference
in the monopole density between the two regions becomes smaller and smaller.

To some extend the same is true for the instanton density, see figure 3.10(b). Although
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in that case there is an intermediate region, see section 3.4.4. In this region the
instanton density grows with increasing flux density, and since in this region the
flux density has a transition one would expect also the instanton density to show a
transition. The data also appears to imply this, but is not shown here. Again it is not
clear what happens to this transition in the limits of g? — 0 and g2 — oc. In these
limits the difference of the instanton density between the regions where the fluxes
have or have not condensed goes to zero.

3.5 Conclusions and outlook

In this chapter we have studied Alice electrodynamics on a lattice, with a model that
allows the formation of magnetic monopoles and Alice fluxes. It includes the usual
Wilson lattice action for the U(1) gauge theory and has an extra bare mass term for
Alice fluxes. This term suffices to reach all four phases of Alice electrodynamics given
in table 3.1.

We have determined the regions in phase space corresponding to the four different
phases of LAED and presented results on some measurable quantities; the monopole
density, the flux density and (cos F }. We then approximated the locations of the flux
and the so called no-flux condensation line in the phase diagram of the model, both in
three and four dimensions. These approximations worked very well except for the flux
condensation line for small values of the gauge coupling. The other approximations
we made also all work quite well, with the remark that in three dimensions there is
an intermediate region which we have not yet investigated. We successfully compared
our numerical results with approximations of the flux density between the flux and the
no-flux condensation line, the monopole/instanton density, (cos ') and the position of
the monopole condensation line. The monopole condensation becomes a crossover in
the region where the Alice fluxes are condensed. In section 3.4.5 we gave the resulting
phase diagrams.

It would be interesting to examine the fate of the phase transitions in the monopole
and instanton density induced by condensing Alice fluxes for small and large values
of g2. For small values of g2 it is also not clear if the two flux transitions merge or
not in the parameter space with the coordinates (my + 1)/¢% and 1/¢%.
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Chapter 4

Dynamical vacuum selection

In the last two chapters we introduced several models containing an AED phase. In
the coming chapters we will study some effects which are related to the Alice effect
in AED. However in this chapter we will investigate a generic feature of field theories
with flat directions in their potential and a non-trivial topology. The common factor
of the coming three chapters is the mixture of topological defects and a notion of
instability.

In this chapter, which is based on [83], we show that in field theories with topologi-
cally stable kinks and flat directions in their potential, a so-called dynamical vacuum
selection (DVS) takes place in the non-trivial, soliton sector of the theory. We explore
this DVS mechanism using a specific model. For this model we show that there is only
a static kink solution when very specific boundary conditions are met, section 4.2.2,
very similar to the case of vortices in two dimensions. In the case of other boundary
conditions a scalar cloud is expelled to infinity. leaving a static kink behind. section
4.2.4. Other circumstances under which DVS may or may not take place are discussed
as well.

4.1 Introduction

In this chapter we examine topological defects in theories with flat directions in their
potential. Flat directions in the scalar potential are quite natural in the context of
supersymmetric models. As was noticed in [54]. in spite of the fact that a model
does allow topologically stable vortices, not all admissible boundary conditions in a
given model with flat directions are compatible with the existence of a static vortex
solution. In [55] such vortices in theories with flat directions were studied. and it
was shown that in the presence of a topologically stable vortex, a specific vacuum
is dynamically selected. In this chapter we focus on the one dimensional case and
show that also for theories in one dimension with flat directions not all boundary
conditions allow the existence of a static kink. We will show that a specific vacuum is
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dvnamically selected in the presence of such a kink or domain wall. Although we will
use a specific model. it will become clear that dynamical vacuum selection (DVS) is
a general feature for theories with flat directions in one dimension.

To be a bit more specific we will discuss a class of models which have two copies of a
scalar Higgs field and a potential of the following form.

>

Vier.ea) =5 (6 — a3 — f3)° . (4.1)

in analogy with the model studied in [55].

In section 4.2 we focus on the one dimensional model. in section 4.3 we comment on
the two dimensional model which was discussed in [55]. and in section 4.4. we show
with the help of a Bogomolny [66] tvpe argumment that there is no DVS in the three
dimensional case, as was already anticipated in [55]. We end the chapter with some
conclusions and a brief discussion.

4.2 DVS in 1 dimension

In this section we investigate DVS in a specific one dimensional model. First we in-
troduce the model, subsequently we prove that there is only a static kink solution for
a very specific non trivial boundary condition out of a continuum of allowed bound-
ary conditions. Finally we investigate the kink dynamics if this specific boundary
condition is not met and we find that indeed the DVS mechanism becomes operative.

4.2.1 The model

We consider a model with two real scalar fields and a potential which allows for the
formation of topologically stable kinks and which furthermore features a flat direction.
The model is given by:

= [wlioetsg@et-T@-g-7) . e

with ¢ and &, two real scalar fields.

It is quite clear that this model contains topologically stable kinks, which have to
satisfy the spatial boundary conditions ¢y (Foc) = 1/ f2 + ¢2(Lo0)? and ¢ (Foo) =

f2 + ¢2(Foc)2. Note that the boundary values of ¢2 do not influence the topo-
logical charge of the kink. Thus there is a two parameter class of topologically stable
kinks present in this model, labeled by (¢2(—oc); ¢2(+0oc)). In the next section we
investigate the class of static kink solutions in this model when real space is taken
infinite. This class as we will show is in fact very small.
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4.2.2 Static kinks

Naively one might expect to be able to find a static kink solution (assuming real space
to be infinite) for any set of the boundary values of ¢» in the topologically nontrivial
sector. However this turns out not to be true. What we will show is that there is only
one very specific set of boundary values of ¢, for which a static kink solution exists.

To obtain a static configuration, we set the time derivatives equal to zero and extrem-
ize the resulting Hamiltonian. The Hamiltonian of this model can be interpreted as
the action of a point particle in a two dimensional potential, and we may analyze the
system through this mechanical analogue. More explicitly, after making the following
identifications: x — t, ¢1 — = and ¢2 — y, we get the following action:

1 1 A 2
8= /dt {5 (8th')2 + 5 (8ty)2 o Z (1}2 — y2 — f2) } . (43)
This system corresponds to a point particle moving in the inverse potential: V' (z,y) =
2
3 -0t )
The problem of finding a static kink solution is now translated to finding a solution

to the equations of motion of the point particle, which moves from one point on one
line of maxima of the potential, x = ++/f2 + y2, at t — —o0 to an other point on

the other line of maxima, x = F+/f2 + 32, at t — oo (see figure 4.1).

Figure 4.1: The two dimensional potential for the point particle. The only path satisfying the
desired boundary conditions is the path with y(¢f) = 0. This path represents the only static kink
solution in an infinite space, for which ¢2(z) = 0.

At ¢ — —oo the particle should be at rest in one of the maxima of the potential.
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At t — x the particle needs to be at rest in one of the other set of maxima of the
potential. Obviously there is only one path which satisfies these boundary conditions
and that is the path with y = 0. Any path starting with y(f - —~>) # 0 in one
of the maxima of the potential will never again reach a maximum of the potential.
In such a case it is easy to prove that the kinetic energy of the particle associated
with component of the motion in the y-direction will increase monotonically in time
and therefore the particle can never climb out of the potential well again. i.e.. will
not be able to satisfy the boundary condition at ¢ — ~. Translating this back to
the kink solutions. this means that one can only have a static kink solution if the
boundary conditions of ¢, are ¢o(£>c) = 0 and moreover for the static solution we
get o2(x) = 0. Thus the only static kink solution for this model in an infinite space
is equal to the usual kink solution.

A crucial step in deriving this result was the infinite size of real space. If space is finite
the argument changes dramatically. In the mechanical analogue this would mean that
the particle can have an initial velocity (and direction of this velocity). so that the
entire class of boundary configurations is allowed.

A natural question to ask is. what happens if the boundary conditions of ¢, are not of
the specific form ¢2(xoc) = 0. As we just demonstrated. there can not be a static kink
solution with these boundary conditions and we are led to ask how the configuration
will develop in time. Later on we will study the dyvnamics of such a configuration and
find that DVS will take place. Before we turn to this question we take a closer look
at the structure of the static kink solutions in a finite space and at how the boundary
conditions effect the core structure of the kink.

4.2.3 Kinks in finite space

In this section we study static kink solutions in a finite space with fixed boundary
conditions. These kinks correspond to the so called restricted instantons in quantum
mechanics [84]. We first want to introduce the massless modulus field. z. which is
of paramount interest to us in the rest of the chapter. In the broken phase of the
theory this field corresponds to the degree of freedom in the flat direction of the
potential. On the vacuum manifold we have ¢? — ¢3 = f2. We can parameterize the
degree of freedom in the flat direction of the potential by writing: ¢ = fcoshu and
@2 = fsinhu. To get the canonical kinetic term we change from u to the modulus
field z. which is given by:

u
2= f/ du'Vcosh2u' . (4.4)
0

This field 2 obeys the free massless equations of motion. From the construction for
this specific case it is evident that there is always a massless mode if there is a flat
direction in the potential. The dynamics and statics (energy) of this massless mode
are the crucial ingredients in DVS. They allow one to show directly, that there can
be DVS in one and two dimensions but not in three or higher dimensions.
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Let us return to the restricted kinks. It is not hard to anticipate what the solution
of a kink will look like if the size of the space, 2R, is much larger than the core
size of the kink, 2R.. Consider the configuration of a kink of size 2R., where outside
the core of the kink the vacuum manifold is reached exponentially fast. To this kink
we add a tail at each side in which the scalar fields stay in the vacuum manifold but
move to the prescribed boundary value at © = £R.,. In the limit of Ry, — 00 we
should recover the unique static solution we found before. Thus the kink solution we
should use to describe the core of the kink is this special case where ¢, = 0.

So we approximate the restricted kink solution by a configuration which is a super-
position of two linear tails and a kink with ¢o = 0. Clearly the tails and the kink
independently satisfy the field equations, so it is only due to the overlap that the field
equations are not quite satisfied. The violation to the equations of motion due to the
overlap is proportional to z4 /R in the action, and this justifies the approximation
we made in the limit of small z4/R.. With the help of a relaxation program we
numerically determined the static kink solution for various values of the parameters,
see figure 4.2. In all our figures and numerical simulations we take A = f = 1, any
other values of A and f follow by rescaling the fields and the space coordinate.
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Figure 4.2: The fields for the restricted kinks for different values of Roc. The values of R are
Ro = 10, R = 50 and R = 250. The boundary conditions on ¢2 are ¢2(+Ro) = +0.8. The
fields for negative values of z just follow from symmetry of the configuration and are not plotted.
This figure clearly shows the separation of the solution in the kink and a tail in the limit of small
2+ /Reo.

Using these approximate restricted kink solutions we can also determine the position
of the kink with respect to the boundaries of the space. We can get an estimate by
minimizing the energy in the tails. Both tails want to spread as much as they can to
lower the energy, so if there is an asymmetry in the boundary conditions of ¢o, this
will certainly have an effect on the position of the kink. We approximate the position
of the kink by minimizing the sum of the energy of the two tails, which is given by:

5 2
By = — o —= (4.5
tail R+ + R_ \ )
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with Ry + R_ = 2R and z4 the values of the modulus field at the boundaries of
space.

Minimizing this energy under the restriction Ry + R_ = 2R gives:

2 )
He 5 R_==

R = — _—
I ]E 1+ [25]
24 _

Bs (4.6)

with Ry and R_ the distance between the core of the kink and the +R.. and —R
boundary of space respectively. Note that the position of the kink in this estimate
does not depend on the relative sign between the boundary conditions on ¢o at +R
and —R~. We tested this simple estimate numerically and found it to work quite
well, see figure 4.3. It should be clear that for Ry < R, the estimates of R, and R_
break down.

In figures 4.3(a) and 4.3(b) we plotted the numerical data for the position of the kink
and the estimated position of the kink. We show the results of numerical simulations
for R, = 50, where we defined the position of the kink by the zero of the ¢, field. The
boundary conditions we put on ¢y are ¢o(Roo) = 2+ 9 and ¢o(—Roo) = £2F 0, with §
running from zero to two. In figure 4.3(a) we plotted R_ as a function of z /z_, where
in 4.3(b) we plotted R_ as a function of §. The plots show a good agreement between
the estimate and the numerical data. They also show the independence of the position
of the kink on the sign of z_/z4, which is equal to the sign of ¢o(—Rso)/P2(+Ro)-

The €stimate e The estimate e

45 e Negative X 45 Negative X

0 5 10 15 20 25 0 0.5 1 15
22, delta

(a) (b)
Figure 4.3:

The estimate for R_ and the numerically obtained values of R_ as a function of z4/z_, figure
(a), and of 4, figure (b), with Res = 50. The boundary values of ¢2 are ¢2(Rs) = 2 + 6 and
¢2(—Roo) = £2 F 4. The figures show that the estimate of the position of the kink works very well
and that the position of the kink is independent of the sign of ¢2(—Roc)/@2(+Roc) as prescribed by
our estimate.

In the limit of small z4 / Ro, we have a good understanding of the static kink solution.
In the next section we will study the dynamics of the non static kink solutions, which
occur if the boundary values of the ¢, field are not zero.
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4.3. DVS in 2 dimensions

4.2.4 Non static kink configurations

In section 4.2.2 we proved that in an infinite space there is only a static kink solution
to the field equations for a specific set of boundary values of ¢2. notably ¢o(doc) = 0.
In any other case there is no static kink solution to the equations of motion. In this
section we will investigate the behavior of these non static kinks and find the DVS.
The modulus field z obeys the free massless equation of motion, which in one dimen-
sion is given by:

—0%2(2.t) + 2(x.t) =0 . (4.7)

Thus the modulus field is given by z(z,t) = z,.(t — x) + 2;(¢t + ). This shows that the
modulus field propagates with the speed of light. Next we will look at some specific
dynamical simulations. In the light of the previous discussion of constrained kinks
it is clear what should happen in an infinite space. The kink will ‘eject’ a so called
scalar cloud, the tail, to infinity; the cloud will move with the speed of light, and will
dynamically select the vacuum with ¢2 = 0.

We look at two types of initial configurations. One corresponds with the solution
of a restricted kink, which we numerically determined in the previous section. The
other initial configuration is a configuration with constant ¢, and for ¢, the static
kink solution with f2 replaced by f? + ¢2, see equation (4.8). Both types of initial
configurations we assume to be at rest at ¢t = 0.

Lets us first examine the latter case. Again in our numerical simulations we take
A= f =1, and start with:

p2(xz) =02 ; éi(x) =4/1+ ¢3tanh (%\/5 1+ ¢3 x), (4.8)

taking 0,¢1(t)|t=0 = Oid2(t)|t=0 = 0. As expected, we find that the scalar cloud
moves away with the speed of light and the special vacuum with ¢2 = 0 is dynamically
selected, see figure 4.4(a).

The initial condition with the restricted kink as the initial configuration yields a
similar result. We determined the solution of the restricted kink, with R, = 50 and
¢2(+xRs) = 0.8, with the help of a relaxation program and used it as the initial
configuration of the dynamical process. Again we take 9;¢2(t)|i=0 = B11(t)|1=0 = 0.
Also here the special vacuum with ¢, = 0 is dynamically selected, see figure 4.4(b).

After the vacuum has been selected the kink can still be excited, which is clear in the
first case, equation (4.8). In the case where the restricted kink has been chosen as
initial configuration, the kink is only slightly excited locally, due to the overlap of the
kink and the modulus field. We conclude that this part of the dynamics depends on
the initial condition, but does not effect the vacuum selection part of the dynamics.

4.3 DVS in 2 dimensions

In this section we briefly recall known results of DVS in two dimensions, as discussed
in [65]. Witten in [54] already observed, that in several models not all boundary
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Figure 4.4:

(a):The dynamics of the kink with ¢2(z) = ¢2 = 0.8 and ¢1(z) given by equation (4.8) at t = 0. The
figure shows snapshots of the fields ¢1(z) and ¢2(z) at ¢ = 100, ¢t = 200 and t = 300. This shows
the DVS and the speed of the scalar cloud.

(b):The dynamics of the restricted kink with ¢2(+R~) = 0.8 and R~ = 50 at t = 0. The figure
shows snapshots of the fields ¢1(z) and ¢(z) at t = 100, ¢t = 200 and ¢t = 300. This shows the DVS
and the speed of the scalar cloud.

The values of the fields for negative values of z follow from symmetry of the configuration and are
not plotted.

conditions allow for static vortex solutions. In the model, studied in [55] there is
also a potential of the form 2(|¢1[*> — [¢2]> — f2)%. The Higgs fields they use are
now complex scalar fields, oppositely charged under a local U(1). Also in this model
the vacuum ¢ = 0 is dynamically selected in a topologically nontrivial sector of the
theory. In [56] it was pointed out that this specific vacuum was selected to minimize
the mass of the massive gauge boson.

Again the main idea behind the DVS is the fact that one can make a tail with the
modulus field, which brings fields from one point of the vacuum manifold to an other
point in the same connected component of the vacuum manifold. In two dimensions
the energy cost of such a tail is inversely proportional to In % and can be made
arbitrarily small in an infinite space. Although the dynamics of the modulus field is
a bit different in two dimensions from the dynamics in one dimension, the conclusion
is the same: DVS takes place. For more details on DVS in two dimensions we refer
o [54], [55] and [56].

4.4 No DVS in 3 dimensions

To conclude we look at a specific model in three dimensions to argue that DVS
does not work in three dimensions (as was already mentioned in [55]). The crucial
observation here is that a tail in which the modulus field connects one point of the
vacuum manifold to another point in the same connected component, will cost a
finite amount of energy. In three dimensions the energy of such a modulus field is
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4.4. No DVS in 3 dimensions

proportional to RR R which does not go to zero in the limit of Roc — o0, suggesting

that there is no DVS in three dimensions.

To make this more explicit we discuss a model which has a local SU(2) symmetry
and two scalar Higgs fields in the vector representation of the local gauge group.
The potential will again have the form % (Tr (¢2) — Tr (¢2) — f2)2. In this model
the SU(2) gauge symmetry is spontaneously broken to U(1) and topologically stable
magnetic monopoles can form. The action of the model is given by:

S = /d4x{4F5,,F““"+ Tr((Dy¢1)2)+%TF((D#@2)2)
_2(Tr(¢)f)—Tr(gb§)—f2)2} . (4.9)

We will try to find static monopole solutions in the BPS limit, i.e., we keep the
boundary terms fixed but put A to zero. We note that the fields ¢; and ¢ need to be
parallel to each other in the internal space at spatial infinity in order to have a finite
energy solution, and to have an unbroken U(1) in the first place. We will focus on
static configurations where Tr (¢2(T‘ — 00)2) does not depend on the spatial angles.

To find static solutions we have to extremize the energy:

E= /d3 { B Tr(( i00)°) + 5 Tr((Diqbg)Q)} . (4.10)

To be able to get the BPS equations we first make the following rescalings:
¢1 — coshu ¢y, — sinhu ¢, x; — \/ﬁ r; and A; — Vcosh2u A;, where

Tr (¢2(>c)?) = f2sinh” u. Note the similarity with the usual BPS dyon. Now we can
write the energy in the following form:

_ 1 3 2 (1l 1 N2
E_——CoshZU/d a:{cosh u (23 +5Tr ((Dlaﬁl) ))
12 (Lo 1 Ry
+sinh?u (23 +5Tr ((qupg) ))} . (4.11)

From this we get the usual BPS equations for the monopole twice, one for ¢; and
one for ¢». They reduce to one set of BPS equations under the assumption ¢; = ¢,!,
whose solution is well known. The energy of the monopole is simply given by:

Emon = Vcosh2u Emon: u=0 (412)

where Foon. w=0 18 the energy of the monopole in absence of ¢;.

This shows that the core structure of the monopole is affected by the boundary
conditions of the ¢, field and that there is no DVS. This in contrast to the results
found in one and two dimensions.

IThis is possible since the rescaled fields ¢1 and ¢2 have the same boundary conditions.
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4.5 Conclusions and outlook

In this chapter we showed the possibility of dynamical vacuum selection (DVS) in one
dimensional field theories with flat directions. We examined this DVS with the help
of a specific model. For this model we proved that there is only one specific boundary
condition which allows a static kink solution in an infinite space. In a finite space
any boundary condition allows the formation of a static kink. With the help of a
relaxation program we numerically determined these restricted kinks. They can be
very well described by one specific kink with a scalar cloud on each side of the kink.
This description of the restricted kink also correctly predicts the position of the kink
with respect to the boundaries of the space as a function of the boundary conditions.
Using a numerical simulation we examined the dynamical propertices of configurations
with boundary conditions which do not allow a static solution in an infinite space.
These simulations confirm the DVS. which was expected to occur. from the result of
the restricted kinks and the field equation for the modulus field.

It should be clear that DVS in one dimension is not specific for the one dimensional
model we considered. It is a general feature of one dimensional models with flat
directions. The argument relies crucially on the scaling of the energy of the tails.
the scalar clouds. of the restricted kinks. In these scalar clouds only the modulus
ficld changes. More generally this shows that DVS is only possible in one and, as
was shown before [55]. in two dimensions, but not in three or higher dimensions. For
completeness we briefly mentioned the two dimensional case and included an explicit
example of a three dimensional model where DVS does not work.

It remains of course possible that a model has more than one possible static config-
uration in an infinite space [85], but the DVS will just pick out one of the possible
static solitons and including tunneling it will eventually always select the vacuum
corresponding to the static soliton with the lowest energy. Although this DVS selects
a lowest energy static soliton solution there can still be a vacuum and core degeneracy
left if the ground state of the topologically non trivial sector is degenerate. as was for
example found in [56].

It would be interesting to study DVS. due to the presence of a soliton. in a theory
where the selected vacuum is lifted from the classical vacuum manifold by quantum
mechanical (or thermal) corrections. Obviously this cannot happen if a supersym-
metric BPS soliton is selected by the DVS. since the energy of such a BPS soliton
is protected against quantum mechanical corrections. On the length scale where the
quantum mechanical corrections to the vacuum manifold would become important
the DVS alters and most likely a type of restricted soliton will become the new se-
lected vacuum. The tail(s) of these restricted solitons will have a length of the order
determined by the quantum mechanical corrections to the classical vacuum manifold.

The processes we described in this chapter can be iuterpreted in two ways. One is
the dynamical vacuum selection interpretation which we anticipated throughout the
chapter. In the other interpretation, which is much closer to the coming chapters, the
process can be seen as a possible instability of a kink or vortex solution in a theory
with flat directions in its potential.




Chapter 5

A monopole core instability

In the previous chapter we investigated a possible instability of topological defects
in theories with flat directions in their potential. We saw that such a instability is
not possible for magnetic monopoles. In this chapter we investigate a different type
of instability which is possible for the magnetic monopole. We present results on a
core instability of the 't Hooft Polyakov type monopoles. This instability, where the
spherical core decays in a toroidal one, typically occurs in models in which charge
conjugation is gauged. However, we will argue that a core instability of 't Hooft
Polyakov type monopoles is quite a generic feature of models with charged Higgs
particles. We also discuss a third conceivable configuration denoted as “split core”,
which brings us to some details of the numerical methods we employed. This chapter
is mainly based on [86, 87].

5.1 Introduction

Since the pioneering work of 't Hooft and Polyakov [88, 89] magnetic monopoles
have been studied in detail in many different models. In this chapter we address the
question of stability of the core of the fundamental, spherically symmetric, monopole
configuration, a stability which appears to be so obvious that it was never seriously
questioned. We will show that in the original AED model [4] the spherically sym-
metric unit charge magnetic monopole is not the global minimal energy solution for
all parameter values in the model. We determine the regions in parameter space
where this instability occurs and present some details of the numerical simulations we
performed. The fact that the core topology is not fixed by the boundary conditions
at infinity and different core topologies can be deformed into each other was already
established earlier [90].

As we will indicate, Alice theories have a special topological feature which makes it
plausible that such a core deformation really can be favored energetically. We will
also argue that a core deformation is typically energetically favored in models where
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the charged Higgs particles are light compared to the neutral Higgs particles. Our
interest in this problem was rekindled by some observations made in theories with
global symmetries [91. 92. 93. 94].

This chapter is organized as follows. We start with a brief motivation for studving
the monopole core meta-/instability in AED. Next we introduce the specific model
and discuss in some detail the numerical simulations we performed and present our
the main results. We end this chapter with conclusions and an outlook.

5.2 The core instability

Alice electrodvnamics (AED) is a gauge theory with gauge group H = U(1) x Zy ~
0(2). As we saw in chapter 1 this theory allows for Alice fluxes and Cheshire charges
[4.5]. In this chapter the Cheshire phenomenon in AED is of great importance to us as
it supports the possible core meta-/instability of the spherically symmetric magnetic
monopole solution.

It was pointed out long ago that there are interesting issues concerning the core
stability of magnetic monopoles. Fixing the asymptotics of the Higgs field. the core
(i.e., the zeros of the Higgs field) may have different topologies. notably that of a
“ring” rather than the conventional "point™!. These core topologies are cobordant,
i.e.. they can be smoothly deformed into each other and it is a question of energetics
what will be the lowest energy monopole state [90]. In AED such a core deformation
would be accompanied by the rather unusual delocalized version of (magnetic) charge,
the so called magnetic Cheshire charge. Cheshire charge is a key feature of AED and
is a general phenomenon in field theories with (topologically) stable fluxes which are
not clements of the center of the unbroken gauge group.

In the specific AED model we consider the Higgs field is a symmetric tensor. whose
vacuum expectation value may be depicted as a bidirectional arrow. In AED we can
“punch a hole”™ in the spherically symmetric monopole and deform it into an Alice
ring. this configuration is consistent with the continuity requirement on the order
parameter because of its head-tail symmetry. In figure 5.1 we plotted the two different
core regions one expects to find for a magnetic monopole in AED. In this chapter we
determine in what part of the parameter space of the model the monopole is meta-
/unstable and where we expect the spherically symmetric monopole to compete with
a magnetically, Cheshire charged Alice ring. Figure 5.1(a) represents the spherically
symmetric magnetic monopole and figure 5.1(b) represents the magnetically Cheshire
charged Alice ring. The fact that the core of the defect can really deform into a torus
is due to the head-tail symmetry of the Higgs field in the broken phase. We note
that the Higgs field only rotates over an angle # when going around a single flux, see
figure 5.1(d). This is the hallmark for an Alice flux, so the core deformed spherical

LIn fact in AED the Higgs field can typically only be represented by a director field if it is in the
vacuum manifold. Thus the Higgs field need not go to zero inside the core of a defect. However for
the spherically symmetric magnetic monopole solution the Higgs field does go to zero, but for the
Alice loop solution it does not.
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monopole is in fact an Alice ring carrying a magnetic Cheshire charge.

(c) (d)

Figure 5.1: These figures show the two different core structures of a magnetic defect which are
naturally present in AED. Figure (a) represents the spherically symmetric magnetic monopole, the
't Hooft Polyakov type monopole, and figure (b) represents the magnetically, Cheshire charged Alice
ring. Figures (c) and (d) represent a slice of the different core topologies including the higgs field.

5.3 The Alice model

To answer stability questions related to the spherically symmetric monopole config-
uration (or the Cheshire charged Alice ring) we consider an explicit model. We use
the original tensor Alice model [62], but we will argue that the results obtained are
quite general and model independent. For completeness and notational convenience
we briefly summarize the model. The action is given by:

S= /d4qj {iF"““’F[}V ¥ iTr(D“(IJDu@) - V((b)} . (5.1)

where the Higgs field ® = ®2 is a real, symmetric, traceless 3 x 3 matrix, i.e., ®
is in the five dimensional representation of SO(3) and D,® = 9, ® — ie[A4,, P], with
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A, = AjT,. where T, are the generators of SO(3). The most general renormalizeable
potential is given by [50]:

V = T (82) - 2T (%) 4 1A (T (87))

with the parameter v > 0. since (¢,+) = (—®.—v). For a suitable range of the
parameters in the potential, the gauge symmetry of the model will be broken to the
symmetry of AED. In the “unitary” gauge. where the Higgs field is diagonal, the
ground state is (up to permutations) given by the following matrix:

—f 0 0
o= 0 —f 0

0o 0 2f
withfzéx(l-i—\/l*rﬁfzi)-

The full action has four parameters, e. u2,v. A, this number can be reduced to two
dimensionless parameters by appropriate rescalings of the variables. A physical choice
for these dimensionless parameters is to take the ratio’s of the masses that one finds
from perturbing around the homogeneous minimum. To determine these, we write the
action in the unitary gauge where the massless components of ® have been absorbed
by the gauge fields. The physical components of the Higgs field may be expanded as:

D) = g+ ﬁ@l(;r”)El + \/5(1)2@“) Rg(a(:r“))EgRg(a(ac“))T , {(5.4)
with:

1 -1 0

E,=— 0 -1
Vil o o

0
0
2

1

Es = —
T V2

0 0 1
00 0 (5.5)
1 0 0

and R; are the usual rotation matrices. To second order, the potential V(®) takes
the following form?:

V(®) = const. + (2u* + vf)o? + 3vfldal® + -+ . (5.6)

yielding the two distinct masses of the Higgs modes. Next we Jook at the ’kinetic’
term, %Tr(D“(I)D#(I)), of the Higgs field. Inserting the previous expressions for the
Higgs field. we find:

1 1
TTH(DHRD,®) = 58,60 + 5 [Dhgal” + 5er (A1) + (42)T) + - L (5

21t is most convenient to use ¢ for the combination ¢2e®, since these two Higgs modes, ¢2 and
a, combine to form one complex charged field, from now on called ¢2.
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with: Di =0, - iQeAi. The second term shows that the ¢ component of the Higgs
field carries a charge 2e with respect to the unbroken U(1) component Ag of the gauge
field. The first term describes the usual charge neutral Higgs particle and the third
term yields the mass of the charged gauge fields. So the relevant lowest order action
is given by:

1 a v 1 1 2 l
S = /d4x {ZFWF““‘ + 5(a#d)l)2 +3 |D2as|” — §mf¢%

_%mg|¢2l2_%m§1((AL)2+(A3)2)+ } _, (5.8)

with m? = 4u? + 2vf, m% = 6yf and m? = 9e?f2.

Two degrees of freedom of the five dimensional Higgs field are ‘eaten’ by the broken
gauge fields, one degree of freedom forms the real neutral scalar field and two degrees
of freedom form the complex (doubly charged) scalar field. To specify a point in the
classical parameter space we may, up to irrelevant rescalings, use the dimensionless
mass ratio’s % and %;1 We note that the value of % needs to be larger or equal

to %, because for smaller values of % the groundstate corresponds to the symmetric
unbroken vacuum. Note that we found three mass scales in this problem. For the
simulations, which we will describe in the next section, this means that we will we

have to deal with three different length scales.

5.4 Numerical simulations

In this section we will describe in some detail the numerical simulations we performed
to determine the instability and the meta-stability regions for the spherically sym-
metric monopole, in the parameter space of the model. First though, we introduce
the ansatz. We end the section with the discussion of a typical set of numerical
experiments.

5.4.1 The variational ansatz

As mentioned before we will use a variational approach. In such an approach the
configurations one finds are typically not exact solutions to the equations of mo-
tion. However as the ansatz we will use contains the ansatz for the exact spherically
symmetric solution we may still study the instability and the meta-stability of this
solution. This means that the instability and the meta-stability regions we will find
for the monopole, are lower bounds, in the sense that those instability regions can
only become larger as the ansatz becomes less restrictive.

As we expect the competing configuration of the spherically symmetric magnetic
monopole to be the magnetically Cheshire charged Alice ring, we base our ansatz
on cylindrical symmetry. The ansatz we will use also has a reflection symmetry
with respect to the z=0-plane. We impose this reflection symmetry to eliminate the
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(almost) zero mode in the energy due to the position of the defect along the z-axis.
The ansatz for the Higgs field is:

@(2.p.0 =0) = 01(2. p) E1 + 02(2. p) E2 + 03(2. p) E3 (5.9)

and
®(z.p.0) = Ry(0)®(z.p.0 = 0O)R3(6)T . {5.10)
The ansatz for the gauge fields is simply given by eAd! = —eijk%kA(z.p). very

similar to the one for the spherically symmetric monopole [88]. except that we al-
low A(z.p) to depend on p and z and not only on r = y/p? +22. The bound-
ary conditions for r — o¢ are the boundary conditions of the spherically sym-
metric monopole [62]. i.e.. A(z.p) goes to one and the Higgs field to ®(z.p.0) =
R3(0)R; (arccos (f)) PoR> (arccos (f))T R3(8)T. The boundary conditions at p = 0
and z = 0 follow by imposing the cylindrical and reflection symmetry and are given
in the table below:

p=0 z2=10
3} dp01 =0 0.6, =0
02 || Oppa =2 =0 0,02 =0
¢3 ¢33 =10 ¢3 =0
A 0,A=0 9,A=0

It is easy to see that these boundary conditions are also met by the spherically sym-
metric monopole. so it is indeed contained in our more general ansatz. With the help
of this model and ansatz we study the stability of the spherically symmetric mag-
netic monopole. Before we present the results we describe the numerical methods we
employ, and a typical set of experiments.

5.4.2 Some numerical details

We mentioned in section 5.3 that the AED model has three mass scales, i.e., three
relevant length scales. However we examine a region of parameter space in which
only two of those are relevant. That is the core geometry of the defect and the region
where the Higgs field is not in the vacuum manifold on the one hand, and the inverse
mass of the gauge fields - which is typically much larger - on the other. To be able
to adequately capture both scales we use a space and configuration dependent lattice
spacing. In fact we will use two types of lattices. In figure 5.2 we schematically
give the step sizes as a function of the point number (in one dimension). The two
dimensional lattices we will use have the same type of lattice in both directions.

The only difference between the two lattices is that in the second, figure 5.2(b), there
are extra lattice points near r = 0 and z = 0 and thus it has more lattice points.
However the same part of space is covered by both lattices. Although the difference
between the two lattices is quite small we will encounter a specific lattice dependence,
which turns out it be an artifact, but nevertheless will be of use later on.

To obtain the minima of the energy within the ansatz for the different values of
the parameters of the model, we used a Monte Carlo based cooling method. In this
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Step size ——p
Step size ——p

Point number ——» Point number ——&

(a) (b)

Figure 5.2: The two different types of lattices. The first part covers the core structure of the defects
where the second part captures the region where the gauge fields - which have a much smaller mass
- show nontrivial behavior. The only difference of a lattice of type (b) with respect to lattice of type
(a) is a few extra lattice points near r = 0 and z = 0.

method one introduces a temperature and gives a configuration with energy E a weight
factor equal to e~T. In the limit of T — 0 only the configuration with the lowest
energy survives. Assuming there are no flat directions this procedure selects a unique
configuration. With the help of a Monte Carlo mechanism different configurations
are sampled. We keep sampling at a specific temperature as long as the energy of the
system averaged over a preset number of sweeps® (typically 10) decreases and do this a
minimal number of times (typically 3). When this average energy no longer decreases
we lower the temperature (typically by 10%) and repeat the process until the total
energy drop at a specific temperature becomes lower then a predetermined relative
energy change (typically ~ 107%). During this process we keep the acceptance rate
of the Monte Carlo steps locally fixed for all fields. This means that we introduced
a maximum step size for each field at each position and automatically adjust it to
get the preferred acceptance rate. Since the change due to temperature change is
easily captured we determined the desired maximum step sizes in the beginning of
the cooling mechanism and further only correct for the trivial temperature changes,
i.e., as T changes in aT’, 0fje1q changes in \/adfieq. This assumes that the energy
change depends quadratically on the field change which is what one naively expects
near a stable configuration, and indeed, that criterion worked nicely.

The procedure we just described is used to determine stable configurations within our
ansatz for the different values of the parameters of the model. To be able to determine
the meta-stability and instability regions of the monopole in the parameter space of
the model we perform hysteresis type experiments. This means that we determine
the lowest energy configuration for a specific point in the parameter space and use
this configuration as the starting point for the determination of a stable configuration
at a point nearby in the parameter space. As the change in the parameter space is
only small one would expect the new configuration also to be close to the previous

3In one sweep all variables undergo one Monte Carlo step, i.e., are allowed to change once.
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one. We determine the new configuration again with the help of the cooling method®.
We repeat this process and move along a trajectory in the parameter space and back
again. We choose these paths such that the lowest energy configurations on each
end of the trajectory are different type of configurations: a spherical monopole and
a Cheshire charged Alice ring. To keep things numerically simple we keep the mass
of the gauge fields constant during a hysteresis experiment. This restriction selects
specific trajectories in the two dimensional parameter space, which are given by:

2 (7”‘4)
ma mz2 /)1
—_— s (5.11)
mo 2
34/3 + (m—1>

me

with ("’—‘) the value of 4 at the minimal value of 24 = 1.

ma )1 mo mo 3
This restriction allows us to keep the total space covered by the same lattice through-
out the hysteresis. In a single hysteresis experiment the size of the core does not

change much, so we keep the lattice fixed throughout a single hysteresis experiment.
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Figure 5.3: The two typical results of the hysteresis experiments for the different lattice types
projected on the %—axis. Figure (a) corresponds to a lattice of type (a) and figure (b) corresponds

to a lattice of type (b).

Figures 5.3(a) and (b) show the typical hysteresis results. The figures show the values
of the field variable \}%1 at r = z = 0. This variable is a normalized order parameter

in the sense that its value equals zero for the spherical monopole, and one for the Alice
ring. A negative value of the order parameter is also possible and corresponds to a

4The temperature at which the secondary cooling process starts is smaller than the starting tem-
perature of the initial cooling process. This starting temperature of the secondary cooling processes
determines the energy barriers which can be overcome. Only in the limit where this temperature goes
to zero can one really claim that a configuration becomes unstable. However for finite temperature
one can still show the instability under small, but finite, perturbations. This is what we mean if we
claim to find an instability of a specific type of configuration.
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5.4. Numerical simulations

new type of configuration, the so called split core, see figure 5.4(c) and also [92, 93].
Figure 5.3(b) shows what one would expect for a hysteresis type of experiment for a
lattice of type (b) while figure 5.3(a) shows a different behavior and corresponds to a
lattice of type (a).

In figure 5.3(a) the split core configuration appears and although this configuration
typically has more energy then a Cheshire charged Alice ring configuration, it does
appear to be meta-stable. In [92, 93] this object was discussed for the global analog
of AED, a nematic liquid crystal theory, and it was argued that this configuration is
due to the cylindrical symmetry restriction of the ansatz used to explore the solution-
space. Here we found that it might as well be just a lattice artifact as it depends on the
lattice type used in the hysteresis experiments. Although this split-core configuration
may be viewed as an undesirable feature caused by lattice and/or symmetry artifacts,
we will see that it can be turned into a useful tool.

Figure 5.4: These figures show the three typical core structures we encountered in the numerical
simulations. All three figures show a slice of the core structure at y = 0 an in the figures the value

2
of 1 — %r]%— is plotted. In figure (a) we plotted the core structure of the spherically symmetric

magnetic monopole at 2—; = 0.57 and % = 0.0095. In figure (b) we plotted the core structure of
the magnetically Cheshire charged Alice ring at % = 0.88 and %—‘; = 0.0073 and in figure (c) we

plotted the core structure of the split core configuration at % = 1.12 and %—’2‘— = 0.0425.
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5.4.3 A typical set of experiments

As mentioned before we do hysteresis type experiments along specific trajectories in
the parameter space of the model. Next we look at a typical set of such experiments.
We did the hysteresis experiment for three different numbers of lattice points. where
we only changed the number of lattice points describing the core of the configuration.
One could of course also change the number of points outside the core but we found
that that did not make any difference in the observables we examined and did not
affect the stability of the configurations. We performed numerical simulations with
25x25 (27x27), 50x50 (54 x54) and 100x 100 (108 x 108) lattice points describing the
core structure for each line in the parameter space we considered. The figures 5.5(a-
d) are the typical results of such an investigation. The figures show two different
observables: the relative energy difference of the two branches of the hysteresis. and
the quantity o_:}_:’)fﬂ The figures 5.5(a} and 5.5(b) belong to lattices of tvpe (a) and
the figures 5.5(c) and 5.5(d) belong to lattices of type (b). All figures show the results
obtained with the three different number of lattices points, with the lines A, B an
C corresponding to 25x25 (27x27). 50x50 (54x54) and 100x100 (108 x108) points
describing the core structure respectively.

Let us first compare the figures 5.5(a) and 5.5(c). These figures show the values of
1(0.0)

VEf
very much, but quantitatively they do. The steep part of the lines corresponds to

the local instability of the Cheshire charged Alice ring and the spherical monopole.
In both figures 5.5(a) and 5.5(c) we see that the Alice ring becomes locally unstable
with respect to the monopole for low enough values of % In figure 5.5(c) we sce
that for large enough values of :LT; the monopole becomes unstable with respect to the
Alice ring. whereas in figure 5.5(a) we see that the monopole slowly transforms into a
split core configuration, see figure 5.4(c), and does not become locally unstable with
respect to the Alice ring. In figure 5.5(b) we do see that this split-core configuration is
globally unstable with respect to the Alice ring configuration as it costs more energy.

. In both figures we see that qualitatively the lines A, B and C do not differ

Now let us examine and compare the figures 5.5(b) and 5.5(d). First we note that the
relative energy differences are very small, being of the order of pro-mils. This is one of
the reasons why the minimal relative energy difference step in the cooling mechanism
is chosen so small, of the order of 107> pro-mil. In the regions where both branches
of the hysteresis give the same configuration, see figures 5.5(a) and 5.5(c). the relative
energy difference is equal to zero on the scale of the figures 5.5(b) and 5.5(d). The
other segment of the curves is the interesting part. in figure 5.5(b) and 5.5(d). The
point where this segment of the curves goes to zero is the point where the spherically
magnetic monopole solution is no longer the lowest energy configuration within our
ansatz, i.e.. it is the point where the monopole becomes globally unstable. As we use
more lattice points to probe this meta-stability this point moves only very slightly.
Typically one should extrapolate the results to infinitely many points, but here we
can use a different approach. We will exploit the results of the two different types
of lattice. In the limit of infinitely many lattice points both lattice types will move
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Figure 5.5: These figures show the results of a typical set of experiments of a specific line in the

parameter space, with the results projected on the z—;—axis. Figures (a) and (b) correspond to a
lattice of type (a), while figures (c) and (d) correspond to a lattice of type (b). In the figures (a)
and (c) the value of %{?}0) is plotted, while in the figures (b) and (d) the relative energy differences

of the two branches of the hysteresis plotted in pro-mils. The lines A, B and C correspond to
25x25 (27x27), 50x50 (54x54) and 100x100 (108x108) lattice points respectively describing the
core structure.

to the same point. However in the figure 5.5(b) we see that this point in approached
from the right while in figure 5.5(d) it is approached from the left® when increasing
the number of lattice points. Obviously this helps us to determine the position of
the point where the monopole becomes globally unstable, as well as the error in the
position of the point. So we may turn the lattice dependence into a useful tool to
determine the global stability of the spherically symmetric monopole solution.

For most trajectories through the parameter space the same feature can be used to
determine the point where the Alice ring configuration becomes locally unstable with
respect to the monopole. However this point is not as interesting, since the Alice
ring configuration is not necessarily an exact solution to the equations of motion.

5We observed this feature for all the trajectories through parameter space we considered.
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Chapter 5. A monopole core instability

Both lattice types also show a local instability of the spherically symmetric monopole
solution. In figure 5.5(c) this happens at a clear point. but from figure 5.5(a) where
the monopole changes into a split-core configuration. it is a bit harder to fix the point
where this happens as it appears to be a continuous process. Although the position
of this point is unclear, from figure 5.5(a). it is at least clear that this point moves in
the same direction for both types of lattices as follows from figures 5.5(a) and 5.5(c).

With the help of the results of both tvpes of lattice we determine the global instability
point of the spherically symmetric monopole solution and local instability point of
Alice ring configuration. To determine the monopole instability point we only use the
results from the lattices of type (b) as they clearly show the point where the monopole
solution becomes locally unstable.

5.5 The results

Let us now turn to results of our investigations. First we describe how we extracted
the results from the hysteresis type of experiments. There are two important results.
In the first place. there is the line bounding the region in parameter space where
the spherically symmetric magnetic monopole solution is no longer the lowest energy
configuration. Crossing that line the solution only becomes meta-stable. Although
our variational method does not prove that the configuration which has the lowest
energy is a Cheshire charged Alice ring solution, in that case it actually does imply it,
as we find that a Cheshire charged Alice ring configuration minimizes the energy for
those parameter values within our ansatz. In the second place there is the other line
bounding the region where the spherically symmetric magnetic monopole solution is
no longer a locally stable solution. Finally we also determined the line at which the
Alice ring configuration becomes locally unstable. but as explained before. this line
is of least interest as the Alice ring configuration (with our ansatz) is typically not a
solution to the equations of motion of the model.

In figure 5.6(a-c) we give the results for the meta-stability and instability lines. Figure
5.6(c) shows the meta-stability line for the spherically symmetric magnetic monopole
solution. We showed in section 5.4.3 that we use the results of both lattice types to
determine the monopole meta-stability line. As the meta-stability lines determined
with the help of the two lattice types move oppositely and towards each other for an
increasing number of lattice points, we use both results to determine the meta-stability
line. The plot shows the lines on which we did the hysteresis type of experiments,
the two monopole meta-stability lines determined by the different lattice types and a
shaded region which is to represent the error in the position of the monopole meta-
stability line. Thus we did not extrapolate the results from both types of lattices to
an infinite number of lattice points we just used the results from the lattices with the
most lattice points to corner the meta-stability line, see figure 5.6(c). This line shows
that the spherically symmetric magnetic monopole is not always the lowest energy
solution and cuts the parameter space into two regions.

To determine the position of the instability line of the spherically magnetic monopole
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solution, see figure 5.6(b), we just use the results from the type (b) lattices as these
show a clear point where the monopole becomes unstable. This does mean we have
to extrapolate our results to a lattice with an infinite number of points. For all lines
in the parameter space we investigated we observed that the change of the position,
projected on the ™L-axis, of this point from the 27x27 to the 54x 54 lattice is about
twice as big as the change in the position from the 54x54 to the 108108 lattice. We
estimate the position of the monopole instability point by extrapolating this behavior
to a lattice of an infinite number of lattice points. This means that the estimated
position of the instability point lies at the same distance from the 108x108-point as
the 54 x54-point only on the other side. The error we estimate as twice this distance.
In figure 5.6(b) we plotted these results. We plotted the lines on which we did the
hysteresis experiments. The shaded region is to represent the error in the position
of the monopole instability line and we plotted the instability line obtained from the
data of the 108x 108 lattices. The estimate of the instability line itself is not plotted
but is right in the middle of the shaded region.
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Figure 5.6: These figures show the stability results from the hysteresis type of experiments we did
on the specific lines in the parameter space of the model. The shaded regions give the errors of the

lines. Figure (a) shows the local instability line of the Alice ring configuration. Figure (b) shows the
monopole instability line and figure (c) shows the monopole meta-stability line.

In figure 5.6(a) we plotted the instability line of the Alice ring configuration. For
most of the lines through the parameter space we used the same technique as for the
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Chapter 5. A monopole core instability

monopole meta-stability line. for the rest we used the same principle as we used for
the monopole instability line.

Again we note that due to the fact that we used a variational approach the monopole
meta-stability and instability lines are upper bounds in the sense that if less restric-
tions are forced upon the configurations these lines can only move to the left. i.e.. in
favor of the Cheshire charged Alice ring.

It is quite easy to understand why the Alice ring is the lowest energy configuration
in the limit of large values of ﬂt and the monopole is the lowest energy solution
in the limit of small ’Zl. The two masses m; and ms correspond to energy costs
in deviations of the ngg% field from the vacuum manifold. Deviations pure in the
length™ of the Higgs field correspond to m;. While deviations in the non-uniaxial
direction correspond to ma. In the limit of ™t — 0% the non-uniaxial deviations
are suppressed and the spherically svmmetric (211n1dx1al) magnetic monopole is the
lowest energy solution. In the limit of 2 — oo one would expect an ‘escape’ in the
non-uniaxial direction. This signals the meta-stability of the monopole and implies
that the Cheshire charged Alice ring is the lowest energy solution. In this case the
length of the Higgs field never becomes zero’ as can bee seen in figure 5.4(b). i.e.. the

quantity (1 — ?}1’2 ) never becomes equal to one.

We pointed out that one of the main factors determining the monopole core meta-
stability is the mass ratio % of the charged and neutral Higgs particles. As the mass
of the charged excitation becomes much smaller than the mass of the neutral exci-
tation the 't Hooft Polyakov magnetic monopole is expected to become meta-stable.
Clearly this argument holds generically and one expects a core meta-/instability to
be a general feature of the 't Hooft Polyakov magnetic monopole in models with
charged Higgs excitations. The nice thing of Alice type models is that they naturally
suggest an alternative configuration to the 't Hooft Polyakov type monopoles: the
magnetically Cheshire charged Alice loop.

5.6 Conclusions and outlook

In this chapter we investigated the core structure of the unit charge magnetic monopole
and discussed the numerical methods we employed in some detail. We showed that
the core structure of the magnetic monopole is not necessarily spherically symmetric.
The model has three mass scales, two of them refer to the Higgs field, one to its
length and the other to deviation from the uniaxial direction. The third mass scale
is set by the mass of the broken gauge fields. The topologically non-trivial boundary
conditions can be met by an “escape’ in a non-uniaxial direction. This possibility
allows for the length of the Higgs field to stay finite in the core and not go to zero as

SNote that this limit can in fact not be taken as the minimum value of mg at which the broken

vacuum is still the true vacuum is equal to =. For smaller values of —l the unbroken vacuum is the
true vacuum. We come back to this point in the conclusions and outlook section.

7Not shown here, but we also find that the minimum length of the Higgs field in the case of the
Alice loop increases for increasing % as this argument indicates.
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would be necessary otherwise. As the ratio of the masses, %, increases it becomes
harder energetically to decrease the length of the Higgs field and one would expect
an escape in the non-uniaxial direction.

At the end of section 5.5 we argued that a core instability of the ‘t Hooft Polyakov
magnetic monopole is a general feature of models with charged excitations of the Higgs
field. The instability occurs in the region of the parameter space where the charged
excitations are much lighter than the neutral excitations. In Alice electrodynamics
there is also an other, somewhat independent motivation to question the core stability
of the spherically symmetric magnetic monopole, provided by the possibility of an
Alice ring which can carry a magnetic Cheshire charge.

Within our ansatz we determined the meta- and instability regions of the spherically
symmetric magnetic monopole. We also found that, as expected, the competing
configuration is the magnetically Cheshire charged Alice ring. We did also stumble
upon the somewhat unwanted split-core configurations but fortunately they never
became the lowest energy solutions. As we used a variational approach we cannot
claim that the Alice ring configurations we found are exact solutions to the equations
of motion. However they do have every feature which one would expect from an
exact Alice ring solution. Also, because we used a variational approach the regions
of meta-stability and global-stability of the spherically magnetic monopole are with
respect to energetic upper bounds so that with respect to the exact solutions, these
regions can only become smaller.

As a final comment we want to come back to the fact that the minimum value of
% = % for which the broken vacuum is the true vacuum. In section 5.5 we gave
a simple explanation of why the spherically magnetic monopole becomes globally
unstable in the limit of large values of % In the opposite limit one would expect the
monopole to be the spherically magnetic monopole to be the global stable solution.
However as the minimum value of 7% = 1 there is no guarantee that this ever happens.
It could just be that in this or 51m11ar models the ‘t Hooft Polyakov type magnetic
monopole is never globally stable.
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Chapter 6

Charge instabilities in
(241)-dimensions

In the previous two chapters we investigated possible instabilities of topological de-
fects. In this chapter we will investigate another instability due to the presence
of topological defects. We describe a charge instability in Alice electrodynamics in
(24-1)-dimensions due to the possible creation of a pair of Alice fluxes out of the vac-
uum following [95]. In a sense it is the two dimensional dual analog of the monopole
core instability we investigated in the previous chapter. The final state is one in which
the electric charge is completely delocalized, i.e., it is carried as Cheshire charge by
the flux pair, which gets infinitely separated. We determine the decay rate in terms
of the parameters of the model. The relation of this phenomenon with other salient
features of 2-dimensional compact QED, such as linear confinement due to instan-
tons/monopoles, and the introduction of a so called Cheshire current is discussed in
the appendix.

6.1 Introduction

As we saw before AED contains magnetic monopoles, just as compact U(1) gauge
theory. As is well known the monopoles become instantons in two dimensional elec-
trodynamics and lead to confinement of charge, see [58] and [59]. The potential be-
tween two static charges becomes linear and the string tension due to the instantons
was determined by Polyakov in [59] and is given by:

T x g*exp (—%) . (6.1)

with S;,s¢ the action of the instanton in (2+1)-dimensions, or the mass of a monopole
in (3+1)-dimensions. and g the (dimension-full) coupling constant. In compact Alice
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electrodynamics there are instantons as well. One therefore in principle expects the
same confining potential between charges. However. as we will see. whether this
confinement will be realized physically depends on the parameters in the model.
With respect to the monopoles/instantons in AED we have. see chapter 5. made
another observation. namely that the core structure of a magnetic monopole may be
unstable and deform into a ring of Alice flux carrving a Cheshire magnetic charge.
This feature. however is not expected to bear on the confinement mechanism as such.
because the core structure does not affect the long range behavior of the fields. We
return to this point towards the end of the chapter.

We saw before that the topological structure of AED is richer than the topology of
ordinary clectrodyvnamics. as it supports topologically stable Alice fluxes. In this
chapter we will show that these fluxes may have a dramatic influence on the infrared
behavior of the potential between two static charges. In the infrared region the
potential will not grow linearly as in ordinary compact electrodynamics. but the
potential will saturate and become constant at a scale set by the mass of the Alice
flux. This follows from the fact that a static charge will be unstable under the creation
of two Alice fluxes and the possibility of (induced) Cheshire charges carried by such
a pair. We calculate the decay rate of a charge due to this instability. into a state
where the charge is completely delocalized. i.e.. virtually disappeared.

Before turning to a detailed treatment of this remarkable charge instability, it is useful
to briefly discuss some generic features of the parameter space we are considering. To
be as flexible as possible in separating the various dynamical aspects of the theory.
we like to think of a lattice version of the theory (as discussed in chapter 3). because
in that setting one can introduce different mass scales for the fluxes (my). for the
monopoles (M, ). and possibly also for dynamical. charged degrees of freedom ()
by hand. Of course in continuum versions of the model, see chapter 2, one often
finds that these physical scales may be linked and one is forced to restrict oneself to
a smaller region of the parameter space than the one we explore in the remainder of
this chapter.

The chapter is organized as follows. In section 6.2 we examine the classical config-
uration of a pair of Alice fluxes in the presence of a charge. We determine the field
line pattern of such a configuration and the energy gain due to the introduction of
flux pair. In section 6.3 we analyze the resulting charge instability in a semi-classical
approximation and determine the action of the bounce solution for some specific de-
cay channels. In the concluding section we discuss the relevance of our results in the
broader context where one also takes the instantons into account. In the appendix
we introduce the notion of a so called magnetic Cheshire current and point out its
relation with electric Cheshire charge.

6.2 Alice fluxes in the presence of a charge

In this section we examine the classical field configuration of a pair of Alice fluxes in
the presence of a charge. We first analyze this situation qualitatively which leads to
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the conclusion that the pair of Alice fluxes will carry an induced (Cheshire) dipole
charge. Here we will also examine some specific configurations in LAED in (3+41)-
dimensions, see chapter 3, on the dipole behavior of an Alice loop and the effect this
has on the dynamical response of the vacuum to the presence of an external charge.
Then to see what the dipole behavior looks like, in (2+1)-dimensions, we determine
the configuration of electric field lines generated by a conducting needle between two
oppositely charged point charges. The conducting needle represents a pair of Alice
fluxes (one at either end) with their core structure ignored. Finally, we will determine
the energy gain due to the introduction of the needle/flux pair.

6.2.1 The induced Cheshire dipole

Let us now study the field configuration of a charge in the presence of an Alice loop
(i.e., a pair in two dimensions). Due to conservation and quantization of charge, field
lines cannot cross an Alice flux, a situation reminiscent to that of the Meissner effect
in a super conductor. In fact, at first sight one would be tempted to interpret the
whole collection of Cheshire phenomena as a manifestation of some exotic form of
electric and/or magnetic super conductivity in the core of an Alice loop. However,
this is not possible because the flux tube itself cannot carry electric/magnetic charge
or current, see chapter 1. Let us now consider what happens if we create an Alice
loop in the neighborhood of a charge.

K =
K=

(c)

Figure 6.1:

A sequence of figures that leads to the correct field line configuration for two Alice fAuxes in the
presence of a charge. Figure (a) shows a single charge in figure (b) a pair of fluxes is created in the
vicinity of the charge but with the wrong field line pattern as follows from deforming Zo-gauge sheet,
figure (c). The correct field line pattern is given in figure (d).
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A first guess of how a radial field would be affected due to the creation of the Alice
loop might be the same as for the case of a super conducting loop. i.e.. the field
lines would be pushed away by the loop. However the analysis performed in figure
6.1 yields a very different picture!. Some of the field lines close around the first
flux while an equal number emanates from the sheet to close around the second flux
and go off to infinity. see figure 6.1. Thus the total charge carried by the Alice flux
configuration stays zero. as it should. but the flux configuration acquires an induced
electric (Cheshire) dipole moment. For convenience we only examine cases where the
flux pair lies on the line connecting the charges. The electric field lines have to be
perpendicular to the line segment between the two fluxes. because (i) the electric
field lines need to change sign when going around a single flux and (ii) the reflection
syminetry through the horizontal axis of the configuration.

In certain symmetric configurations the Zs-sheet may be considered to act like a
conducting plate from which follows that the charge is pulled towards the Alice loop.
However. one should be careful with this analogy because the conducting plate bound-
ary condition of the Zs-sheet only holds in the particular gauge that satisfies the
obvious symmetry condition. In a general gauge the Z,-sheet has an arbitrary shape
and cannot be interpreted as a conducting plate. On the other hand, the field line
pattern closing partially around the first and the second flux is gauge invariant. We
conclude that the charge induces a dipolar Cheshire charge on the Alice loop (or in
2 dimensions, on the pair of fluxes). This is a natural generalization of the result ob-
tained in [5], but. straightforward as the generalization may be, there is an important
aspect to it. As we mentioned before, a system of two fluxes or an Alice loop can
be in the topologically trivial sector of the theory and thus may play a role in the
dynamical response of the vacuum to an external charge.

As an inter-mezzo that provides extra support to these findings we will briefly inves-
tigate two specific configurations in LAED in (34 1)-dimensions, see chapter 3. First
we will show that an Alice loop can carry a (magnetic) dipole Cheshire charge in
LAED. Then we will look at the dynamical response of the vacuum to an external
magnetic monopole pair.

To investigate the possibility of a dipole Cheshire charge in LAED we will examine a
configuration with a fixed monopole. anti-monopole and Alice loop. All objects are in
one plane and the Alice loop lies in the middle of the two monopoles?. We will examine
this configuration in the limit of g — 0, the naive classical limit, and m;,; — 0. In
this limit no extra Alice fluxes appear and we will work in the Zy gauge where the only
Zo sheet is the minimal surface spanned by the Alice loop. In this limit there appear
to be two possibilities: either there are no extra monopoles and the Alice loop will
presumably behave as a (magnetic) dipole configuration or there is a compensating
monopole stuck to each fixed monopole®. Which of the two configurations has the

IThus first one assumes the naively expected configuration to be formed in analogy with a pair of
superconducting wires. However, if one deforms the Z2-sheet (which is just a gauge artifact) bounded
by the fluxes one sees that that must be wrong, suggesting the correct and consistent configuration.

20n a periodic lattice 'in the middle’ is of course not possible, but we mean that the distance the
other way around is larger.

3If we had an extra bare mass term for the monopole we could simply send it to infinity to force
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lowest energy depends on the different length scales in the configuration. Now we will
consider a configuration where there are no extra monopoles present.

In this configuration the monopole, the anti-monopole and the Alice loop lie in the
zy plane. In figure 6.2 we plotted the z component of the magnetic field just above
and below the plane in the dual lattice in which the configuration of the monopole,
the anti-monopole and the Alice loop lies. The monopole, the anti-monopole and
the Alice loop have not been plotted, but it should be clear where they are. In this
figure we see that the z component of the magnetic field just above the plane in which
the objects lie is, going from the left to the right, positive above the first monopole,
becomes negative above the Alice loop then it becomes positive on the other end
of the Alice loop and finally is negative above the last monopole. This shows that
the Alice loop gets an induced (magnetic) dipole moment, as if the Alice loop is a
conducting plate, in the presence of charges, just as we expected.

Bz Bz just above the monopole ——
Bz just below the monopole e

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.89

Figure 6.2: This plot shows the z component of the magnetic field just above and just below the
plane in which the monopoles and the Alice loop lye. It shows the induced dipole behavior of the
Alice loop in the presence of a charge.

So an Alice loop can act as an induced dipole in the presence of charges. This implies
that dynamical Alice loops can screen a charge as they can help to polarize the
vacuum. Now we will look at a configuration of a fixed monopole and anti-monopole
in the background of dynamical Alice fluxes, i.e., we are not in the limit of Mflyg — OO.
So dynamical Alice loops can form and can possibly screen the monopoles. We take a
small value of g to make sure that no other monopoles form and we take m fluz such
that the background flux density is around 0.03. Thus there are some fluxes around,
but they are not condensed in the bulk.

In figure 6.3 we plotted some specific height lines of the flux density in the a-t, y-

the extra monopole pair to disappear and only the desired configuration is left.
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Chapter 6. Charge instabilities in (2+1)-dimensions

t and z-t directions and the positions of the monopoles. The monopole is fixed at
(53.24.41) and the anti-monopole at (53.63.41). The flux density peaks around
the two monopoles, i.e., screening the two monopoles. From this and the fact that
an Alice loop in the presence of a charge gets a dipole moment we conclude that in

LAED Alice loops do screen charges.

The height lines ——  The monopoles &

L] L L | | |

o

O = N W s> ooo N ©®Oo =
<

—
o

Figure 6.3: This plot shows some specific height lines for the flux density in the a-t, y-t and z-t
directions and the positions of the monopoles.

After this brief digression into the screening effects of Alice loops in (341)-dimensions
we now return to the discussion in (2+1)-dimensions. The dipolar behavior of an Alice
flux pair in the presence of a charge can have important consequences. Just like a
particle anti-particle pair, these pairs may contribute to the screening of a bare charge,
but an even more drastic consequence is possible. The scenario runs as follows. One
of the fluxes can absorb the point charge, after which the charge would be carried
as a Cheshire charge by the flux pair. This Cheshire charge acts like a fictitious
charge distribution along the line connecting the fluxes, generating a repulsive force
between the two fluxes® causing the fluxes to move away from each other. This
would mean that the Cheshire charge would increasingly spread and weaken, put
more bluntly, it effectively just disappears. The fluxes would cause an extreme case
of charge delocalization. So, in two dimensions it therefore appears that in these type
of theories, charge leaks away, implying the absence of any (static) charge.

4We assume for simplicity that a priory there is no flux-flux interaction. This is not true in
general, in the case of Nielsen-Olesen fluxes it depends on the value of the Landau parameter, but if
the static forces are zero or repulsive, then the result obviously holds.

98




6.2. Alice fluxes in the presence of a charge

6.2.2 The field configuration

We now turn to the determination of the field configuration of a flux pair located
between two oppositely charged point particles. We use the boundary conditions
imposed by the fluxes but neglect the core structure of the fluxes. This boils down
to calculating the electric field configuration of a conducting needle located between
two oppositely charged point particles, where the needle lies on the line connecting
the charges.

Two-dimensional electrostatics (i.e., potential theory) has the convenient property
that it is conformally invariant. Exploiting this conformal invariance one can construct
explicit solutions satisfying the boundary conditions imposed by the geometry we are
interested in. We start with determining the solution of a charge in the presence of
a conducting disc with the help of the method of images. Then we use a conformal
transformation which maps this conducting disc into a conducting needle/flux pair,
see figure 6.4. Since a conformal transformation is angle preserving, a conductor gets
mapped to a conductor.

W=b2(Z+1/Z)

e

A .

Figure 6.4: The conformal transformation, w = % (z + %), which maps the conducting disc of
radius one into a conducting needle of length 2b.

To construct the configuration of two charges with a flux pair in between, we first
determine the single charge case and then superpose two of these configurations. We
determine the potential of a charge in the presence of a conducting disc with the help
of the method of images. It is similar to the textbook example of the charge in the
presence of a conducting ball in three dimensions, but for the case at hand the charge
of the image charges does not depend on the distance of the charge to the conducting
disc. Making use of the identity, |17 + ana| = |ani + n3| with 1] = |3 = 1, one
easily finds the potential ®(z), z = x + iy. The potential is given by:

R2
z— —=20

b(z) = % {log|z — zo| — log ol
0

+ log [z|} , (6.2)

with R the radius of the conducting disc, whose center is located in the origin and zg
denotes the location of the charge. The field lines correspond with the height lines of
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the function:

¥(2) = 2 {args = s0) ~ang - R_) rag)f . (63)

2T | 202

The results are plotted in figures 6.5a and 6.5b for the equipotential lines and the
electric field lines respectively.

|

Figure 6.5: These figures show some of the equipotential lines, figure (a), and field lines, figure
(b), of a charge in the presence of a conducting disc. The thick dark circle is the boundary of the
conducting disc. The configuration inside this circle represents the 'image’ charges.

We can use this solution to find the solution of a charge in the presence of a flux
pair with the help of the conformal transformation given in figure 6.4. To be more
general we first determine the configuration of two charges in the presence of a disc.
This is straightforward since electrodynamics is linear in the sense that potentials just
add. Thus for the situation of two (oppositely charged) charges we get the following
potential:

R2
(D(Z) o %{10g|2’—21|—10g Z—WZI *loglz—zz|
2
+10g 2~ WZQ } . (64)

The field lines are now given by the height lines of the function:
R2
U(z) = Q {arg(z —21) —arg (z — —zl) —arg(z — 22)

2T ‘Zl|2

+arg (z - %zﬁ} . (6.5)
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6.2. Alice fluxes in the presence of a charge

Let us now use the conformal transformation to map this solution to the solution of
two charges in the presence of a flux pair located on the line connecting the charges.
To be able to use the conformal map, of figure 6.4, R needs to be unity. We can get
the desired configuration if the two charges and the disc also lie on one line and the
disc is between the two charges. We rotate the system such that z; and zo are real.
After this we can use the conformal map to map this solution to the solution of the
flux pair between two oppositely charged point charges. This is done by replacing z
by the corresponding function of w, which is given by: 2 = x + V22 — 1 where we
w

have defined x = 3 and will use corresponding definitions for z; and x>. This gives
the following potential:

B(z) = %{log

:L'+\/1'2—1—:c1—\/:c%—1‘
,;2_1

_10g$+ mz_l_Lllg
s
x4+ \/1:2—1—$2—\/z§—1’

— log

++ -1
+logle+ Va2 -1- —‘TL” (6.6)
T v

and the field lines follow from:

() = %{arg(az+\/ﬁ—x1—\/ﬁ>

2 _
O [P s S
'CL‘1+\/.1'%—1’

—arg(z-{-\/ﬁ—l—xg—\/z%—l)

vas—1
+arg :17—}—\/1'2—1—M—2 . (6.7)
’x2+ \/1%"1’

The conformal transformation only correctly generates the solution in the upper half
plane. Re(x) > 0. The solution in the lower half plane follows by the obvious symme-
try of the problem. In figure 6.6(a) and 6.6(b) we plotted the resulting equipotential
and field lines for the configuration.
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Chapter 6. Charge instabilities in (2+1)-dimensions

Figure 6.6: These figures show some of the equipotential lines, figure (a), and field lines, figure (b),
of two oppositely charged charges in the presence of the Cheshire dipole carried by a pair of fluxes
located at the endpoints of the black line segment.

6.2.3 The energy gain

In the previous subsection we determined the potential and the field configuration
of a flux pair between two point charges. In this subsection we calculate the energy
difference of this configuration with the (coulomb type) field configuration without
the flux pair. To be able to determine the energy difference we have to regularize the
expression, i.e., we introduce a UV cut off which will be removed later. With this
cutoff the total energy difference is equal to the integrated energy density difference.
Written in this form, the cutoff can be removed leaving the energy difference finite,
and this is how we calculate the energy gain due to the presence of the flux pair.
To simplify life the calculation is performed in z space, not in w space. So we use
the conformal transformation, which is also just a convenient change of variables, to
transform the solution back into z space and as an intermediate step, determine the
energy gain due to the presence of a conducting disc and the energy cost due to the
presence of a magnetic super conducting disc. The energy gain due to the presence of
a flux pair is determined from these two results. The relation between these energy
differences is given by:

/{Edipole - Efpair}dw = /{Em,scdisc - Edisc}dz

= /{Edipole - Edisc}dz - /{Edipole - Emscdisc}dz 3 (68)
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6.2. Alice fluxes in the presence of a charge

where E,scdisc is the energy density of two opposite charges with a disc in the middle,
which we identify as a magnetic super conductor (msc) as the electric field lines are
parallel to it. This configuration is the configuration that one obtains after applying
the inverse conformal transformation, thus from w-space to z-space, to the dipole
configuration in w-space. First we will determine the energy gain due to the presence
of a conducting disc. This yields the expression:

AEgis. = 2/07r /: {(&@2(7‘, 0))? + (%agcpg(r,e)f

— (8,®1(r,0))% — (%89@1&, 9)) }r drdf

+ 2[ /OR {(a,cpg(r, 8))% + (%69‘1’2(7‘, 9))2} rdrdd . (6.9)

with ®1(r,8) given by formula 6.4 and ®3(r, ) is given by formula 6.4 with R = 0.

This gives:
Q* (21 - R*)(23 — R?)
AFEgise = ——1 . .
d 2m 08 (2122 + R2)2 (6 10)

The energy gain due to the presence of a magnetically super conducting (msc) disc is
determined by:

T oo 2
AEmscdise = 2/ / {(BT(I)Q(T', 9))2 + (l&;@g(r, 9))
0 R r

2
— (0,®3(r,0))? — (%agcpg(r,e)) }r drde

+ 2[ /OR {(ar%(r, 8)? + (%agqaz(r,o))z} rdrdd |

(6.11)
with ®;(r.6) given by formula 6.4 and ®3(r, ) by:
1 1 1 1
1= (1)~ (o ) () o+ 1))
2m z 21 z 22
(6.12)
One obtains: 0? (22 2)(2 Rz)
i — Re)(25 —
AEjrrmc isc — —1 L 2 .
dis o OB ( (2129 + R?)? ) (6.13)
For the case of R = 1 we have Efpqir = AFEgisc — AEmscdisc. Thus we get:
Q? (2f = 1)(z5 - 1)
air — ——1 — 5 . 14
Efp T og (2122+1)2 (6 ]‘1)
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Chapter 6. Charge instabilities in (24 1)-dimensions

This result is still in z language. i.e.. 21 and z3 need to be written in terms of w; and
wy. This is done with the help of the conformal transformation. z = = + V22 — 1.
and leads to the following expression for the energy gain:

Q2 1 14+ 129
Efpair=—log|-| 1+ (6.15
fpair . - 2 \/;?_—1@ )
We see that the energy gain due to creating a flux pair between two charges is basically
unbounded. Moving the flux pair closer to one or both of the charges increases the

energy gain. One expects that due to the renormalization of the charge this would
not go on for ever, effectively one expects a UV cutoff.

Let us now investigate the single charge configuration. i.e.. we send one of the charges
to infinity. In this case the energy gain is given by:

Q* vd
Efpair = - log m

where d is the ratio of the distance of the two fluxes to the charge.

We find that the energy gain due to the presence of the flux pair only depends on the
ratio of the distance of the two edges to the charge. Thus no matter what the size is
of the UV cutoff, the flux radius or in fact any other length scale, the energy gain can
always be as large as one wants in a region where all length scales are insignificant
with respect to the distances of the fluxes to the charge and between the fluxes. This
shows that in two dimensions a single charge is always unstable (or meta-stable) with
respect to a decay into a flux pair with a Cheshire charge no matter what the length
scales are. However, the length scales of course drastically change the decay time of
a charge.

(6.16)

6.3 The charge instability

In this section we analyze a novel type of instability in the electric field of a charge.
We pointed out before, that a pair of Alice fluxes in the presence of a charge acquires
an induced dipole. subsequently we determined the energy gain due to the creation of
such pair. This raises the question to what extend the electric field configuration of a
pair of static localized charges remains stable with respect to flux pair creation. We
study this question in a lattice version of AED (LAED). The reason is, as mentioned
in the introduction, that LAED allows us to introduce independent parameters, a
mass my for the Alice flux and a mass/action m,, for the monopole/instanton. First
we analyze the charge instability, then we will determine what the decay time is and
compare it with the instability under the creation of a pair of charged point particles
(with mass mg), assuming that these are present in the theory. To what extend these
results can be carried over to a continuum version of the theory will be discussed in
the concluding section.
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6.3. The charge instability

Before turning to the the detailed calculations, let us make some general observations
concerning the role of the various mass scales in the model. If both m,, and my are
very large, a charge in two dimensions generates the well known logarithmic potential
in the classical (small g?) limit.:

2
V) = Clog (i> : (6.17)
m 7o

with ro some UV cutoff. Needless to say that the presence of dynamical charges in
the model would (a) give rise to the standard (short distance) renormalization of the
charge and (b) provide a cutoff to the potential at an energy of the order of mass of
the charged particles m,. If the monopole mass m,, comes down and m remains very
large we get that the monopoles cause confinement, i.e., a linearly rising potential and
the role of dynamical charges would be very much the same as for the logarithmic
case. For the moment however, we will assume that no charged dynamical particles
are present in the model (i.e., we assume them to be very massive). If now the
flux mass comes down as well, then of course we get the possibility to dynamically
create flux pairs out of the vacuum and these will cause the decay of the electric
fields generated by the external charges. One expects a situation to arise where the
potential (irrespective of its character) basically saturates and turns into a constant
at a distance (r/rg) where field energy becomes comparable to the value 2m i

6.3.1 The life time of charge

Let us now compute the decay time of a system of two charges by performing an
instanton calculation in the spirit of the “false vacuum™ as described by Coleman and
Callan [96], [97]. To lowest order in 4 one only needs to determine the bounce solution
with lowest action. The bounce is a classical solution of the Euclidean system, i.e.,
with the original potential inverted. In the mechanical analogue a classical particle
moves from the meta stable point to the corresponding point at the other side of
the barrier and back again. The instability, i.e., the tunneling through the barrier
corresponds to half the Euclidean bounce solution, after which a real Minkovski time
evolution takes over. At this point the system is not yet in its final state, but one
expects that the new lowest energy state will be reached by emitting/dissipating
energy through conventional (in this model presumably primarily electromagnetic)
radiation processes. In the mechanical system with the inverted potential one should
then find the particle trajectory with minimal action Sy. In the semi-classical domain
the decay time is given by:

rxe® . (6.18)

In our system we find two extremal paths. We expect one of these two to have the
lowest action, independent of the distance 2w between the two external charges. In
the following we analyze the situation for two cases, firstly we will determine the
action for the instability due to the creation of a flux pair, then we do the same for
the creation of a pair of point charges and finally we compare both mechanisms.
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Chapter 6. Charge instabilities in (2+1)-dimensions

We first consider the case where the pair of fluxes or of charges are created in the
most symmetric way. This means that they start out exactly between the external
charges. The other decay channel we investigate corresponds to the most asymmetric
configuration, where the fluxes or charges are created in the vicinity of one of the
external charges and only one flux or charge will move. The other flux or charge
remains with the charge at a fixed minimal distance Ry, which represents the UV
cutoff of the bare charge. We will also determine the action of the bounce - the pair
creation rate - in a constant electric field.

So the calculations we are about to make for the various cases are very similar, so let
us, before providing the specific details for each case, give the general structure of the
results.

In the previous sections we have calculated the energy gain F in the electric field due
to the pair creation. From that we can determine the potential V4, for the creation
of a pair as a function of their separation 2b and of course also dependent on the other
fixed parameters that characterize the configuration, such as the external charges @,
their separation w, the masses my (or m,) and sometimes a core size Ry.

V1)
2m, }

() (b)

Figure 6.7: In figure (a) we plotted two typical potentials for the bounce of two Alice fluxes in the
symmetric and asymmetric channel respectively. In figure (b) we plotted two typical potentials for
the bounce of two dynamical charges in the symmetric and asymmetric channel respectively and the
potential for the bounce of two dynamical charges in a constant field.

We have indicated the generic shape of the potentials in figures 6.7(a) and 6.7(b) for
the pair creation of fluxes and dynamical charges respectively. For the fluxes we have
assumed there to be no flux-flux interactions so that only the mass 2m ¢ comes in. For
the charged pair, however one expects the potential to grow with separation which
means that the maximum of the potential is shifted towards larger separation. As is
well known in one dimensional physics, the action of the extremal path generically is

given by:
b=b.

RN 19 V/4mVpair db . (6.19)

b=0
We can bring this expression in a more or less canonical form. One first introduces
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6.3. The charge instability

a dimensionless separation variable y obtained by conveniently scaling b with some
relevant length scale, for example the critical separation b, labeling the turning point,
this brings out a factor of the relevant length scale out in front. Next one scales the
potential by its maximal value: V = mef/. Vimazr may conveniently be written as
Vinaz = 2m~? where 7 is a dimensionless quantity satisfying 7 > 1 and the equal sign
applies to the flux pair creation (see figures). Putting the scaling factors in front of
the integral the expression for the action takes the general form,

SPUT = const. X be m v Flw,m,Q, Rg) . (6.20)

where the dimensionless function F' may depend on all the parameters but because
of the rescalings takes on only values between zero and one.

y=1
F :/ Voair dy . (6.21)
y=0

We see that the action is typically of the order (mass of pair)x(critical separation),
as one would expect naively. Yet, we will study the various cases separately in more
detail, because it turns out that there are interesting differences in the functional
dependence of SP%" on for example the distance w of the external charges, which are
important physically.

6.3.2 Charge decay due to creation of an Alice flux pair

We compute the action for a bounce corresponding with the creation of a flux pair in
the presence of two external charges. First we consider the symmetric channel, then
the asymmetric channel and finally the case of a constant electric field.

The symmetric channel:

In the symmetric channel we may use formula 6.15 with x; = 2 = z, which gives the
energy gain:
Q* 1

Efpair = —7 IOg 1-—- F . (622)
During the bounce the external charges remain fixed while the distance between the
fluxes increases. The suitably scaled variable for this situation is y = % = % So
far we only determined the energy gain due to the boundary conditions created by
the Alice fluxes, but the potential in which the fluxes move is not only given by the
energy gain, we also should include the energy cost which equals the mass of the flux
pair. 2my. The potential for the pair is therefore given by:

1
Vipair = 2my (9 (lyh + B log (1~ y2)) : (6.23)

where ©(0) = 0 and equals one otherwise. The constant p is defined as p = 2%’}1
We should note that keeping y; = yo» = y for all times is in fact a solution to the
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equations of motion for the svstem with the inverted potential. The action of this
solution is simply given by:

Sty = W2 b myFl (1) (6.24)
where the turning points are given by the zeros of the potential, i.e.,
be=w V1—eH (6.29)

and where Ff (1) is given by:

sym

sym / \/ —log(l —y2(1—e71)) dy . (6.26)

Note that the function Fsym depends in this case only on one particular combination
of parameters p. The integrand varies from one at y = 0, to zero at y = 1. Although
the integral cannot be done analytically. a little analysis shows that the function
always lies between the functions f(y) = /1 —%? and f(y) = 1. The integrals
of these functions are easily determined to be 7 ~ 0.8 and one. So we have that
T =08 <F Sfym( ) < 1 which is indeed correct as one can sce from the numerical

evalu(mon of Fsym(u) plotted in figure 6.8.

As mentioned before we need to introduce a UV cutoff for the bare charges. allowing
the fluxes to approach a charge only up to a minimal distance Ry. One way to put
this is that for the symmetrical process to be able to take place. or for that matter
any decay mode using fluxes, w needs to exceed a minimal value depending on R
and p. This constraint on w is easily determined with the help of formula 6.23 by
putting b = w — Ry in other words y = 1 — rp with ry = Ry/w. Determining the zero
of the potential than gives the minimal value of w. yielding:

1 )
= Ri > 9e/? (P"/Q e = 1) _ (6.27)
()

To

The asymmetric channel:

The asymmetric channel is the channel where one of the fluxes stays close to one
of the charges and the other flux moves away. An interesting fact about this decay
channel is, that in the limit of widely separated charges, w — oc, this channel will
still give a finite decay time, whereas the symmetric channel would not. The energy
gain due to the presence of a flux pair in this system again follows from formula 6.15.
We fix one of the fluxes at the minimal cut-off distance Ry from one of the charges.
The other flux is pushed away from this charge. In this case it is natural to scale the
variables by the core size Ry as this is the only length scale in the limit of w — oc.

so we define w = Rln and § = =. The energy gain of this configuration is given by:
2 1 20(l+g) — 1 -2y
Efpair = —mi IOg |1+ = w( +~y) = Y = . (628)
Iz 2 V(2o - 1)(20 - 25 - 1)(25 + 1)
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6.3. The charge instability

The potential is obtained by adding the mass term for the creation of the two Alice
fluxes out of the vacuum. The action of the bounce is determined in the same manner
as we did in formula 6.19. not only do we have a different potential, we also need to
change a factor 4 into 2, because only one flux is moving in this decay channel. For
the action we obtain the following expression:

Sr{sym =4 my be Fdfsym (p,w) (6.29)
where the critical separation b, is given by:
2w —1)R
bc - - (w(cosh(l)i)—({)—ii sinh(li)) (630)
2—-2w+ f/éu-] 2
The function F({Sym(u, w) is defined by:
Fafsym(,u", u~}) =
1 T ~7 .~ ~p
1 1 2 1 ! c) 12y c ~f
/ 1——log| -1+ = al +~yy)~~ yy_~ di
0 ro\2 V2o - 1)(20 - 255 — D255 + 1)
(6.31)

and depends also on the separation of the external charges 2w. Although we do get
a similar expression as in the symmetric case the integral in the asymmetric case is
not that easily estimated, see figure 6.9 for a plot of Fa{;ym(u. w) and figure 6.8 for
the value this integral takes in the limit of @ — oc.

The remarkable fact is that this action remains finite in the limit of @ — oc. Thus
the decay time of a single charge (i.e., of charge itself) is finite in two dimensional
Alice electrodynamics.

The constant field:

Next we investigate the decay width per volume of a constant electric field. The
energy gain due to the presence of a flux pair in line with the electric field strength
can be found from formula 6.22. We move the charges to infinity and increase @ such
that the ratio Q/w is kept fixed and we define the electric field as £ = ;% The
resulting energy gain due to the presence of a flux pair then equals:

Efpair = 71'52()2 . (632)
The action is easily determined to be:

S.cfonst = \/§7rmfbc s (633)

_ 2my
b. = \/ fir (6.34)

The result is of course independent of position as it determines the decay rate per
unit volume of a constant electric field.

where the critical separation is.
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6.3.3 Charge decay time due to creation of point charges

Let us now investigate the field instability of a pair of external charges under the
creation of two dynamical charges. Since point charges have a singularity in the field
energy at the core we introduce again a cutoff Ry to regulate some of the infinities in
our calculations. First we will determine the energy gain due to the presence of two
point charges. We denote the two initial charges as Cy and C,. the created charges
as D; and D,. We put the four charges on one line and obviously assume the charges
to be alternating. Svmbolically the energy gain can be written as:

Eq

gain

(Cl + 02)2 — (01 +Co+ Dy + D2)2
= —(D}+D2+2DDy)—2(Cy +Co)(Dy+ Dz) . (6.35)

The first part. D? + D32. has an infinite contribution at the cores of the charges and
only these infinities will be removed. i.e.. only in this term we cut away a disc with
radius Ry around the charges. Taking the origin halfway between the two created
charges and denoting the distances of the charges with respect to this origin w;. we
and b. the cnergy difference EZ is given by:

aimn

:*Q;log(%rl —1)(1-24)) _ (6.36)

EQ
(.’1‘1 + 1)(1‘2 + 1)’?0

gain

with o = % and ry = %.

This is the change in energy due to the electrical field configuration. We still need to
take the mass of the point charges into account. We assume that the point charges
are created a distance 2Ry away from each other and the energy cost of this process

we call 2m,. Thus the total energy gain is given by:

(.Tl - 1)(.’1’2 — 1)(.1,’1 + f’())(.’l'Q + Fo) )>
(1 — 7o) (xa — 7o) (xy + V(a2 + 1)y

1
Vquai‘r = 27nq (1 + ; IOg ( (637)

. 2rm,
with v = =—=5¢

Next we wicfl use this energy gain to determine the action of the bounce in different
channels of the decay process.

The symmetric channel:

In the symmetric channel the potential is given by:

1 (y— 1)*(ro +1)%y
i = ) _1 -
Vapai 2my (1 + » og ((ro T132(y + 1)2rg

where we still use y = % = uﬁ and rg = %‘}.

To determine the action of the bounce we need to determine:

y=ye
Sapair = 211;/ VamgVopeir dy . (6.39)
v

=Tn

(6.38)
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This is a quite non-trivial integral. We will estimate this integral by slightly changing
the boundary conditions. As the lower boundary condition we will not take ry, but
the point between ry and zero where Vypair = 0. Later we will estimate the part we
add to the action by this change in the boundary conditions.

So first we will determine the integral:

Y=Y«
SSym = 2w / VAmeVopair dy (6.40)
Yy

=y_

with y. and y_ the two values of y where Vi, is equal to zero and with 0 < y_ <
Ye < 1. This integral is still quite difficult. We can determine it up to a part that we
evaluate numerically and understand quite well. The action can be written as:

Sgillm = 4\/2_771(1(1)0 - b—)’ygymquym(A) s (641)

with 'ngm = mﬂ, A= v+ log (%) Amin = log (% (11+5\/5)) and

v T

Fa . (\) given by:

sym

dy . (6.42)

_ _ ’ 2
1|14+ A1log (E}+§§gj_;’j§z¢;’j§§z ((ye =y )y + y—))
Py = [

Apyin
1 — Ao

with y, = b./w and y_ = b_/w.

In figure 6.8 we have plotted a numerical evaluation of the function (y. —y_)F. Sym (A)-
We still need to estimate the part introduced by taking different boundary values.
This may be estimated by the maximum of the integrand in the region between y_

and ro times ro. If (=2 + V5) > 1o Vypair.max = 2my else Vapairomaz = 2mgy/ ’\;"\f—“—
Thus we estimate this part of the action to be S7.2

sym:
q,1 ; .
than 57, as follows:

which is typically much smaller

S92 < 4v2mgRy if (—2+\/5)>r0 (6.43)

sym
and else

A )\min

S&2 < 4V2myRo (6.44)

The asymmetric channel:

In the asymmetric channel the potential is given by:

1 25(i0 — § — 1)
air — 1 - P e ——
Vap 2my ( + > log <(y w2

The action of the bounce is given by:

sS4

—_ q q )
asym — 4n1’qb07(13ym Fasym (V‘ 1”)
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with 74, = \/1 +1 > log (2(1 vy > and

1
b = Ry (Z(iAV(Q + 2e¥(w — 3) —w+

VB (i - 2) 7 (—2 - 2e7(@ — 1) + 0)?) (6.47)

and F9 . (v.wd) is given by:

asym

1 1+ Llog (2(9’11_,-{r1)(11;_~g«gc_2))
It v (@' g+2)(w—2) R )
aqsym(l/ ll‘) :/0 d ro (()48)

2(1-v@)*
1+ log (T)

In the limit @ — oc we can determine the integral exactly, yielding:

Ae¥ vm Erfi[y/v+log(2))
v —
\/u+log(2)
de¥ — 2

Fe. (v.x) =

asym

(6.49)

Plots of F4,_  (v.w) and FZ, . (v.x) are given in figures 6.9 and 6.8.

asym asym
We recall that in the asymmetric channel for the creation of Alice fluxes the result
remains finite in the limit of widely separated external charges, obviously this is not
the case for the action of the bounce corresponding to the creation of a pair of point
charges.

The constant field:

Finally we will consider the case of a constant electric field and examine the action
of the bounce if two point charges are created. To determine the energy gain in the
field configuration we can use formula (6.37). However we cannot take the charge
of the initial charges equal to the charge of the created point charges. To get the
configuration in a finite electric field we take the distance between the initial charges
to infinity while keeping the charge over the distance ratio fixed. Again we take the
electric field £ = 9%;“4 The potential for the creation of two point charges in a
constant electric field is given by:

Vapasr = 21g (14 2 log() —uti - 1)) (650

with u = &0,
The action of the bounce is given by:

g=gc
const = 2R0/ 4mq gpair dy . (6.51)
y=

Just as in the symmetric channel we take slightly different boundary conditions and
estimate the difference later on. We will use the two values of § where Vpeir = 0 and
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y=Yc
Sgolnst - 2R0/ V 4nlq‘/qpai7' d@ . (652)
g=y-

This leads us to:

S 47nq(bC - b—)’}'gonsthqonst( ) : (653)

const
with 7.0 = /52, & = v—log(u) +u, begs = (g =) k+log(k+log(k+log(k+--)})
and b_ 4 = (7. =) exp(—f-c+eXp( k+exp(—K+---)}), where §. and §_ are the two

real solutions of k + log(y’) — ¥ = 0. F1, (k) is a function which varies only from

%atn—»lto%atn——»ocandlsglvenby.

/\/Zﬂog B R B (/A 8 e B W

k—1

see figure 6.8 for a plot of FL (k).
We still need to estimate the part we introduced by taking different boundary values.
We approximate that part by the maximum of the integrand in the region between
g— and 1 times Ro. If v < 1 then Vipairmaz = 2my and otherwise Vapair,maz =
2my ( > ) Thus the upperbound for this part of the action, 542

st 18 typically much

smaller than S%! . to be explicit:

onst’
SLie < 4VZmgRy if u<1 (6.55)

else

1
§2 < 4\/§qu0,/'{” . (6.56)

6.3.4 Comparing the decay channels

We just determined the actions of bounce solutions corresponding to some decay
channels of two static point charges. As expected the action depends strongly on the
parameters of the model. LAED allows for the different parameters to be indepen-
dent of each other, so there are many possibilities for the preferred decay channel.
Although the LAED model we described before does not require dynamical charges
we did determine the action of some decay channels for the creation of pairs of such
charges. Both dynamical charges and Alice fluxes can render the static point charge
configuration unstable. However, the decay time will typically depend exponentially
on the distance between the two static charges except for one possible mode: the
asymmetric decay channel of the two static charges under the creation of two Alice
fluxes. The action of this channel saturates. This means that even the decay width
of a single point charge is finite in AED. in contrast to ordinary ED. This instability
is the process mentioned at the end of section 6.2.1, which may be considered as the
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Figure 6.8:
This figure shows the five functions F fs = stym(u), Ffa= Fafsym(l/u). Fqs = (ye —y— ) Fdym(A —
Amin), Fqa = Fleym(v) and Fgc = F2 . (k — 1) numerically, with Ain = log (% (11 —}-5\/5)),

F(?sym(l’) = ngym(”v OO) and Fc{sym(l/ﬂ) = Fr{sym(l//l'a OO)

Fga(v.w) ——

N
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Figure 6.9:

Figure (a) shows a plot of thsym(u.lb). The figure shows that the limit of the integral at W — oo
is reached only very slowly. The minimum value of the integral only moves slowly to large u as @
grows exponentially. Figure (b) shows a plot of Fisym, (v, w). The figure shows that the limit of of
the integral at w — oo is reached very fast. In the limit of @ — oo we know the integral exactly.

two dimensional dual analog of the monopole core instability described in chapter 5.
This implies basically the nonexistence of static charges in the theory, and that is the
main observation we make in this chapter.

We already mentioned that a pair of Alice fluxes can be represented by a conducting
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needle in our configurations. On a conductor charges are free to move and one can
for example have an induced dipole moment. In this picture the creation of two
point charges is just a highly singular charge distribution on this line segment and it
is obvious that the action of the bounce for Alice fluxes can always be made lower
because the charge distribution can still be varied. A simple and extreme example is
the asymmetric channel in the limit of w — oc. Here the action of the bounce for the
point charges is infinite while the action of the bounce for the Alice fluxes remains
finite.

6.4 Conclusions and outlook

In this chapter we have extensively analyzed the behavior of Alice fluxes in the pres-
ence of electric charges in (241)-dimensions. We showed that a pair of Alice fluxes in
the presence of an electric charge develops an induced electric dipole moment. This
dipole moment is of the Cheshire type which means that it is carried by the flux pair.
and that the would-be charges making up the dipole are strictly nonlocalizeable and
thus remain elusive. Exploiting conformal invariance we determined the resulting field
configurations exactly which in turn allowed us to calculate the energy gain due to
the introduction of a pair of Alice fluxes between two external charges. Subsequently
we considered the stability using semi-classical methods, using a Euclidean bounce
solution.

We used a lattice model of AED, see chapter 3. to investigate the effects of Alice fluxes
on a configuration of static point charges. because it allowed us to investigate the
effects of the different topological defects separately. In the case of heavy monopoles
we found an instability in the charge configuration due to the creation of a pair of
Alice fluxes. Although this instability looks quite similar to the instability due to the
creation of two dynamical point charges there is a crucial difference. In the limit of
increasing separation between the static charges the decay time due to the creation
of dynamical point charges diverges, while for the creation of two Alice fluxes it
saturates and remains finite. To reach this conclusion we did not have to calculate
the fluctuation determinant in detail, assuming that it is finite. Consequently in
(L)AED a single bare charge is unstable under the creation of two Alice fluxes, which
can be seen as the (2+1)-dimensional dual analog of the monopole core instability.
see chapter 5. If the monopole mass moves down, i.e., the confinement scale comes
into play, the instabilities due to a flux pair and a charge anti-charge pair become
very similar. In figure 6.10 we have sketched the potential for a typical situation.

Let us now give some comments on the continuum theory. We expect the situation to
be not so much different. The topological defects arise as a consequence of spontaneous
symmetry breaking. which means that the mass scales for the fluxes and monopoles
might be much more constrained. In chapter 5 we showed that if the flux mass gets
much less then the monopole mass, one may well get that the monopole decays in a
flux ring carrying a Cheshire magnetic charge. This suggests that the confinement
scale and the instability scale (due to flux creation) cannot be too much different. As
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Figure 6.10: The effective potential for a pair of external charges. The figure represents the case
where the mass of the Alice flux pair is larger than the confinement scale, but smaller than the mass
of dynamical charges. It is possible to lower m; below the confinement scale.

we explained, if the monopole and Alice flux mass are comparable the potential still
saturates due to the instability under the creation of two Alice fluxes.

In this chapter we showed that the possibility of Cheshire charge in a theory has serious
consequences for the stability of charge in the theory in two dimensions. It is usually
a question of energetics what the stable configuration is, but for theories which allow
for Cheshire charges, a Cheshire charge configuration is the natural second candidate
to carry the charge. This suggests that any theory which breaks to a subgroup which
contains a discrete and continuous component that do not mutually commute the
gauge charges may well become unstable due to the Cheshire phenomenon. An other
interesting class of theories which typically contain Cheshire charged configurations
are the theories with non-abelian discrete gauge symmetries, which are best described
with the help of a spontaneously broken Hopf symmetry [8, 9].

In the appendix of this chapter we introduce an object called the (magnetic) Cheshire
current and we discuss its relation with (electric) Cheshire charges. We will also dis-
cuss its relation with the closed electric field lines that occur if one interprets the
occurrence of an instanton as an event in the (241)-dimensional (Alice) electrody-
namic setting. From this picture the confinement mechanism can be understood quite
easily.

Acknowledgment: We thank Jan Smit for very useful discussions on the topics dis-
cussed in this chapter.
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Appendix

6.5 Cheshire current and confinement

In this appendix we will discuss the notion of a (magnetic) Cheshire current in AED
and the confinement of charges in (2+1)-dimensional (Alice) electrodynamics [59].
We'll introduce a configuration in AED named (magnetic) Cheshire current and ex-
plain its relation with (electrical) Cheshire charges and confinement in two dimensions.
We'll introduce a picture of two dimensional confinement from which qualitatively the
confinement of the electrical flux into a flux tube comes apparent.

6.5.1 The Cheshire current

Neither electric nor magnetic field lines are allowed to cross an Alice flux, suggesting
some exotic type of super conductivity through the core of the flux tube. In this part of
the appendix we return to this analogy and find an interesting gauge complementarity
between electric Cheshire charges and a magnetic Cheshire currents. Let us introduce
the latter first.

Let us counsider the following “gedanken” experiment. We create two charged particles
from the vacuum and take one of the two particles around two spatially separated
fluxes and then annihilate the two particles again. If the flux tubes are magnetic
super-conductors this would have resulted in two magnetic current carrying fluxes,
each with closed electric field lines around them. In the case of two Alice fluxes a
different picture emerges. Since the field lines cannot close around a single Alice flux,
one needs to take an even number of fluxes to be able to annihilate the particles
again. This means that if one pulls the two fluxes apart one cannot be left with
two fluxes which each carry a current. The field lines need to stay around both
fluxes. A situation very different from the super conductors indeed. The system as a
whole carries the current and just as in the case of a Cheshire charge the current is
non-localizeable; we should call this object a Cheshire current.

The resulting field line configuration, depicted in figure 6.11, implies an attractive
interaction between the two fluxes, on top of the normal flux interactions. It has the
opposite effect of a Cheshire charge, which leads to a repulsive force between the two
fluxes.

Upon closer inspection we will see that there is a certain gauge complementarity,
reconciling the two different pictures, describing non-localizeable Alice effects. At
first sight electric Cheshire charge and a magnetic Cheshire current appear to be very
different entities. Let us now point out that there is actually a close relation between
them. Imagine we repeat the gedanken experiment we just performed, but now we
move in two more Alice fluxes from infinity in such a way that all four of them are
on one single line. As we know, on each flux one Z; line should end. For convenience
we put these half lines on top of the line on which we put the fluxes. For every flux
we then still have the freedom to let the line go to the left or to the right. The result
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Figure 6.11: Closed electric field lines of a (magnetic) Cheshire current configuration.

just yields two different, but gauge equivalent, configurations, as is illustrated by the
top and bottom pictures in figure 6.12.

As we argued before, one can deform the Zs lines in any way one wants by gauge
transformations. From figure 6.12 it is clear that we can gauge transform the first
configuration into the last one. This means that they both describe the same physics.
although their interpretation appears to be quite different. In one case, see the bottom
picture of figure 6.12, one would argue that two Cheshire charges are the source of
the field lines, but in the other situation, see the top picture of figure 6.12, one would
argue that three Cheshire currents are the source of the field lines. Apparently there
are two different ways of looking at this configuration. As was explained before [4]
one needs to cut away some region(s) of space-time if one wants to consider field
strengths which are not single valued in the presence of an Alice flux. However, there
is of course not a unique choice to do this. This freedom of choice corresponds exactly
to the gauge complementarity of Cheshire charge and Cheshire current.

We do note that although they are related by a gauge transformations it does not mean
that all configurations can be thought of as consisting only of Cheshire charges or only
of Cheshire currents. A simple example is a pair of Alice fluxes carrying a Cheshire
charge and a Cheshire current. This object may in fact be a stable configuration in two
dimensions, since the electric Cheshire charge results in a repulsive force between the
two fluxes whereas the magnetic Cheshire current results in a attractive force between
the two fluxes. These could be made to cancel leading to a stationary configuration.

6.5.2 Confinement in a two dimensional picture

In this subsection we will consider the confinement of (2+1)-dimensional electrody-
namics. This problem was already solved in [59]. For any non-zero value of the gauge
coupling constant (2+1)-dimensional electrodynamics is confining (in the quenched
approximation). It is well known that the instanton density increases and polarizes
around the minimal sheet bounded by a closed Wilson loop. In a three dimensional
Euclidean space the instanton configuration is in fact just a magnetic monopole. After
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Figure 6.12: The 'duality’ transformation from three magnetic Cheshire currents into two electric
Cheshire charges.

translating the instanton configuration to Minkovski space it is easy to understand
that the polarization of the instanton density results in the confinement of the elec-
trical flux into a flux tube.

By going to Minkovski space the interpretation of the fields change. The z-component
of the magnetic field becomes the pseudo scalar magnetic field in the (241) dimen-
sional Minkovski space, while the 6 and p components of the magnetic field get trans-
lated into the p and 6 components of the electric field respectively. For the moment
we will ignore the factors of i as they will have no influence on the picture we use,
although they do play an important role in the dynamics and the polarization of the
instanton density.
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Changing from Euclidean to Minkovski space allows us to interpreted the instanton
density as a magnetic current density in Minkovski space. The nice thing of this two
dimensional interpretation is that the confinement of the electrical flux into a flux
tube easily follows from the superposition of the field lines of the pair of charges and
the magnetic currents. In figure 6.13 we see that superimposing a magnetic current
to the electric dipole configuration moves the field lines inwards. Indicating that a
(polarized) magnetic current density would confine the electric flux into a flux tube.

(a)

Figure 6.13: In figure (a) we plotted the field configuration of two opposite charges in the absence
of instantons. In figure (b) we see that the introduction of magnetic currents, representing the
instantons in Minkovski space, pushes the field lines inwards explaining the fact that the electric flux
gets confined in a flux tube in the presence of a (polarized) instanton density.

In the previous section of this appendix we introduced an object in AED which can
also be identified as a magnetic (Cheshire) current. However the dynamics, due to
the factors of 7, is very different.
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In this thesis we investigated physical effects that occur if simple gauge theories
get broken to models with a non-abelian residual symmetry group. As a specific
example we have investigated Alice Electrodynamics with gauge group U(1) x Zo
in quite some detail. This is a theory in which charge conjugation symmetry is
gauged, which leads to a number of remarkable physical properties. We started by the
construction and comparison of different types of (L)AED models, for example models
which allowed for first order Bogomolny type equations. Exact numerical solutions
for the Alice fluxes in the continuum models were obtained. The phase structure of
(L)AED in three and four dimensions was determined using a lattice formulation of
the theory. We measured quantities rather precisely, such as the Alice flux density
and the monopole/instanton density in different parts of the parameter space. After
having investigated these lattice models we turned to stability questions related to
topological defects. We first noted that in a theory with a topological degeneracy
dynamics may well select a particular lowest energy state or asymptotic vacuum. This
mechanism was shown to hold for the situation of kinks and fluxes in a certain class
of models as a consequence of the fact that not all topologically non-trivial boundary
conditions allowed for static solutions. These features are in particular relevant for
(1+1)- and (2+1)-dimensional models with flat directions in their potential. In a
following chapter we turned to the question whether a spherically symmetric magnetic
monopole could decay into a magnetically Cheshire charged Alice loop. With the help
of a variational method we demonstrated that this is indeed the case in some part
of the parameter space of the model. Although these magnetic Cheshire rings were
not necessarily exact solutions to the equations of motion, they did provide an upper
bound for the energy of the configuration from which instability could be concluded.
Finally we looked at the fate of electric charge in (2+1)-dimensional AED. There
we basically established that a pair of static external charges is unstable under the
creation of a pair of Alice fluxes if they are separated far enough. This is in fact
a novel kind of screening in which binding of an electric charge to one of the fluxes
implies that its charge gets converted in a totally delocalized Cheshire charge. So
in (241)-dimensional AED the potential between two charges saturates around twice
the mass of an Alice flux. It would be interesting to determine the effective potential
between two external charges by a quantum Monte Carlo computation. However as is
well known from QCD such a saturation of the potential is notoriously hard to detect
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[98, 99]. and we considered this problem beyond the scope of this thesis.

The main ingredient in the monopole instability and the charge instability in (2+1)-
dimensions is the possibility of an Alice loop or a pair of Alice fluxes to carry a
Cheshire charge. This possibility is a general feature of Alice models. In all Alice
models there is a natural second candidate to carry the magnetic and/or electric
charge. So one would expect such instabilities to appear in other Alice models as
well.

Although AED might not be the phenomenologically most favored model for electro-
dynamics, its physical properties are striking if one realizes how modest the change
in the theory in fact is. As we mentioned in the first chapter of this thesis there are
several places in high energy physics and condensed matter physics where Alice effects
may turn out to be relevant.
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Samenvatting

Ezxperience is a comb which nature
gives to men when they are bald.

(A Chinese Proverb)

Het is de taak van de natuurkundigen om te proberen de wetten van de natuur te
achterhalen en om te voorspellen wat daaruit volgt. In analogie zouden natuurkundi-
gen proberen te achterhalen wat de Nederlandse wetten zijn en te voorspellen wat de
uitkomsten van rechtszaken zijn. Het belangrijkste gereedschap voor het achterhalen
van de natuurwetten is het doen van experimenten. In vergelijking kijken natuurkun-
digen naar wat mensen voor en na een rechtszaak doen om aan de hand daarvan de
Nederlandse wetten te achterhalen. Dat lijkt een haast onmogelijke taak, maar hier
komt het uiteindelijk wel op neer.

Er zijn verschillende soorten natuurkundigen. Zo zijn er bijvoorbeeld de experimen-
teel natuurkundigen. Door het doen van experimenten proberen ze eigenschappen van
de natuurwetten bloot te leggen. De theoretisch natuurkundigen proberen deze eigen-
schappen op hun beurt te verklaren. Onder theoretici heb je ook weer verschillende
soorten. Er zijn mensen die de gevonden eigenschappen met behulp van bestaande
en bekende natuurwetten proberen te verklaren. In analogie proberen deze theoretici
de uitkomst van complexe rechtszaken te voorspellen aan de hand van bestaande en
bekende wetten, ze zitten als het ware op de stoel van de rechter. Dit kan misschien
triviaal lijken, maar menig advocaat kan beamen dat de uitkomst van een complexe
rechtszaak lang niet altijd zo voorspelbaar is. Er is ook nog een ander soort theoretisch
natuurkundigen, waartoe ik behoor. Deze theoretici proberen onbekende natuurwet-
ten te achterhalen. Ze nemen als het ware de plaats in van de politiek. Simpel gezegd
verzinnen ze een aantal wetten en proberen aan de hand van (verzonnen) simpele
rechtszaken te achterhalen of deze wetten mogelijk de Nederlandse wetten zijn. Be-
langrijke richtlijnen in dit werk zijn de bekende natuurwetten. Aangezien deze tot op
zekere hoogte bevestigd zijn door de experimenteel natuurkundigen.

Een belangrijk ingrediént van de natuurwetten is symmetrie. Hiermee wordt niet de
symmetrie van een voorwerp bedoeld, maar de symmetrie van de natuurwetten (de
theorieén die de voorwerpen beschrijven) zelf. Een voordeel van een symmetrie is dat
het aangeeft wat niet belangrijk is. In de natuurkunde is translatiesymmetrie een
belangrijk voorbeeld van zo'n soort symmetrie. Zo denken we in de natuurkunde dat
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de natuurwetten translatie-invariant zijn. Dit betekent dat de natuurwetten op elke
plek in het heelal hetzelfde zijn. Dit lijkt redelijk normaal, maar is tegelijkertijd ook
erg tegen intuitief. Zijn bijvoorbeeld de natuurwetten op de Maan niet heel anders
dan die op de Aarde? Het is bijvoorbeeld waar dat de aantrekkingskracht op de Maan
veel kleiner is dan op de Aarde. Dit betekent echter niet dat de natuurwetten ook
anders zijn op de Maan. Wat wel anders is. is de situatie en die zorgt ervoor dat de
effectieve natuurwetten op de Maan anders zijn dan op de Aarde. In analogie met de
Nederlandse rechtspraak zijn alle Nederlanders in beginsel gelijk voor de wet. Dat is
ook wel zo fijn. anders zou er voor elke Nederlander een nieuwe set wetten moeten
worden gemaakt. Dit betekent echter niet dat ook elke rechtszaak gelijk is. Situaties
kunnen namelijk verschillen. Dus. ook al hebben de natuurwetten een hoge mate
van svmmetrie. dan betekent dat nog niet dat die symmetrie manifest is voor elke
situatie. Dit zorgt ervoor dat het heel moeilijk kan zijn om de symmetrieén waar de
natuurwetten aan voldoen te vinden. Probeer bijvoorbeeld maar eens het principe
dat alle Nederlanders in beginsel gelijk zijn voor de Nederlandse wet te achterhalen.
door alleen te kijken naar de situatie waarin iemand zich bevindt voordat de rechts-
zaal wordt betreden en wat de situatie is als deze persoon er weer uitkomt. Een
ander mooi voorbeeld dat aangeeft dat de symmetrie van een theorie niet manifest
hoeft te zijn, is een diner aan een ronde tafel. Op de tafel staan borden en tussen de
borden staan glazen. Alles ziet er heel mooi en symmetrisch uit, totdat de mensen
wat gaan drinken. Links en rechts van elk bord staat een glas. ledereen heeft nu nog
de keuze om het linker of het rechter glas te pakken. Duidelijk is dat de keuze van
één iemand de keuze van één van zijn buren beperkt. Om boze gezichten aan tafel
te voorkomen, is het van belang dat iedereen dezelfde keuze maakt: of iedereen pakt
het rechter glas of iedereen pakt het linker glas. Als niet iedereen het rechter (of het
linker) glas pakt, ontstaan er problemen. Er zullen mensen aan de ronde tafel zitten
zonder glas en er zullen elders op de tafel glazen over zijn. Als er eenmaal gegeten
en gedronken wordt, is het erg moeilijk om de links/rechts symmetrie weer terug te
vinden. Dit is een voorbeeld van een spontane symmetriebreking. Dit betekent dat
de natuurwetten wel een bepaalde symmetrie hebben, maar dat deze niet manifest is
voor de zogenaamde grondtoestand. Eén van de mogelijke gevolgen van een symme-
triebreking is het ontstaan van topologische defecten. Het diner aan de ronde tafel
is ook nu een mooi voorbeeld. Zoals we al eerder opmerkten, ontstaan er problemen
als niet iedereen het rechter (of linker) glas pakt. In zo'n situatie zijn er mensen die
geen glas hebben en zijn er glazen die los op de tafel staan. Deze ‘frustraties’ noe-
men we topologische defecten. In 1-dimensionale natuurkunde kunnen ze ontstaan
op plekken waar verschillende vacua met elkaar botsen. In de situatie van het diner
aan de ronde tafel zijn er twee vacua, namelijk links en rechts. Een persoon zonder
glas heeft links van hem/haar iemand zitten die zijn/haar rechter glas heeft gepakt en
heeft rechts van hem/haar iemand zitten die zijn/haar linker glas heeft gepakt. Deze
botsing van de verschillende vacua zorgt voor de vorming van een topologisch defect,
een persoon zonder glas. Bij een vrij glas is er ook een botsing van vacua, maar dan
net andersom. De begrippen symmetrie, symmetriebreking en topologische defecten
komen in dit proefschrift veelvuldig aan de orde.
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In dit proefschrift hebben we grotendeels één bepaalde theorie onderzocht: Alice elek-
trodynamica (AED). AED is een simpel voorbeeld uit een hele klasse van theorieén. Al
deze theorieén hebben een bepaalde symmetriestructuur. De symmetriestructuur van
het model dat we bekeken hebben, lijkt heel erg op die van elektromagnetisme. Heel
veel eigenschappen van de natuurkunde van AED zijn gelijk aan de eigenschappen
van de natuurkunde van elektromagnetisme. Het interessante gedeelte is het verschil
tussen beide modellen. Het zijn juist deze verschillen waar we voornamelijk naar ge-
zocht hebben en die we onderzocht hebben met behulp van verschillende methoden.
De verschillen komen alleen voor in bepaalde situaties waar de zogenaamde topologi-
sche defecten in voorkomen. Bijna alle verschillen zijn gebaseerd op het zogenaamde
Alice-effect van een Alice-flux (een topologisch defect). In AED zorgt het Alice-effect
ervoor dat een elektrische lading van teken verandert als het om een Alice-flux heen
beweegt. Het punt waarop dit gebeurt is fysisch niet belangrijk. maar dat het gebeurt
heeft wel een fysische betekenis. Dit soort interacties worden topologische interacties
genoemd. De interactie hangt namelijk alleen af van de topologie, hoe vaak het deeltje
om de flux heen draait, en niet van de afstand tussen de flux en de lading.

In het begin van hoofdstuk één van dit proefschrift geven we een inleiding van Alice
elektrodynamica. We leggen uit wat de symmetriestructuur is en welke topologische
defecten er kunnen voorkomen in AED. Verder proberen we een beeld van AED te
geven aan de hand van gewone elektrodynamica. In het tweede deel van het eerste
hoofdstuk verklappen we alvast de belangrijkste resultaten van de andere hoofdstuk-
ken zonder al te veel op de details in te gaan.

In hoofdstuk twee wordt een oplossing voor de Alice-flux, een topologisch defect, in
het originele model voor AED gepresenteerd. Verder worden er ook twee alternatieve
modellen voor AED gepresenteerd, die als voordeel hebben dat ze in bepaalde situaties
af te beelden zijn op bekende modellen. Deze bekende modellen hebben eigenschap-
pen die ervoor zorgen dat de oplossingen van de topologische defecten makkelijk te
vinden zijn.

In hoofdstuk drie construeren we een roostermodel (lattice model) van AED (LAED).
Het voordeel van een roostermodel is dat je het goed met behulp van een computer
kunt onderzoeken. Ook LAED heeft topologische defecten. Alleen zijn ze bij dit
model niet aanwezig als gevolg van een symmetriebreking, maar omdat het model op
een rooster leeft. De gaatjes in het rooster kunnen zich namelijk gaan gedragen alsof
ze een topologische defect bevatten. Met behulp van de computer hebben we het
LAED-model in drie en vier dimensies kunnen bestuderen. We hebben bijvoorbeeld
de waarden van een aantal meetbare grootheden als functie van de modelparameters
analytisch voorspeld. Deze uitkomsten hebben we met behulp van computerresulta-
ten gecontroleerd.

In hoofdstuk vier bestuderen we een specifiek dynamisch gedrag dat generiek is voor
een bepaalde klasse van veldentheorieén. We laten zien dat een zogenaamde vlakke
richting in de potentiaal van een veldentheorie ervoor zorgt dat sommige topologische
defecten niet statisch kunnen zijn. De manier waarop deze topologische defecten ver-
anderen is heel goed voorspelbaar. We laten zien dat een systeem met zo’n topologisch
defect een voorkeur heeft voor een speciaal vacuiim en dat dit systeem dit vacuiim in
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de loop der tijd selecteert. Dit proces noemen we dynamische vacuiimselectie.

In hoofdstuk vijf bestuderen we een instabiliteit van de sferisch symmetrische magne-
tische monopooloplossing in AED. We laten eerst zien dat een ring van Alice-flux ook
een magnetische lading kan dragen. Daarna laten we met behulp van het zogenaamde
variationele principe en de computer zien dat de sferisch symmetrische magnetische
monopooloplossing niet altijd de laagste hoeveclheid energie heeft voor een configu-
ratie met een magnetische lading. In de delen van de parameterruimte van het model
waar dit het geval is. vinden we een configuratie met minder energie. die heel erg
veel lijkt op wat je zou verwachten voor een magnetisch geladen Alice-ringoplossing.
We laten dus zien dat een sferisch symmetrische magnetische monopooloplossing kan
vervallen in een magnetisch geladen Alice-ring.

In het laatste hoofdstuk van dit proefschrift. hoofdstuk zes. bestuderen we een ladings-
instabiliteit in AED in (2+1)-dimensies. De belangrijkste twee ingrediénten hiervoor
zijn: (1) het feit dat twee Alice-fluxen uit het vacuiim gecreéerd kunnen worden. wat
niet mogelijk is voor een enkele Alice-flux, en (2) dat klassiek gezien de potentiéle
cnergie tussen twee elektrische ladingen oneindig doorgroeit bij toenemende afstand
tussen de ladingen. Als de afstand tussen de twee ladingen groot genoeg is. is het
energetisch voordeliger om een paar Alice-fluxen te creéren en elk aan één van de la-
dingen te koppelen. Deze instabiliteit zorgt ervoor dat een enkele statisch elektrische
lading in (241)-dimensies niet mogelijk is en dat de potentiaal tussen twee ladingen
een maximum bereikt. Dit is het punt waarop de Alice-fluxen worden gecregerd.

Alhoewel het grootste deel van het onderzoek zich op AED heeft gericht, verwachten
we dat de resultaten ook voor andere Alice-modellen gelden aangezien deze grotendeels
gebaseerd zijn op het Alice-effect van de Alice-fluxen.
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