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Chapterr 1 

Alic ee physics: an introduction 
andd survey 

NothingNothing shocks me! 
I'mI'm a scientist. 

Indianaa Jones 

InIn this first chapter we wil l present an overview of different aspects of Alice physics. 
Firstt we explain what Alice physics is and present some examples. Then we turn to 
Alicee electrodynamics, the theory we will explore thoroughly in this thesis. In section 
22 we preview the main results that will subsequently be described extensively in the 
followingg chapters. 

1.11 Alice theories 

Thee term "Alice physics1'1 refers to a certain type of topological interactions, which 
mayy for example occur in spontaneously broken gauge theories where a larger non-
abeliann gauge group G is broken to a smaller, the unbroken, gauge group H which 
itselff  is still non-abelian. This occurs if one of the scalar fields in the theory gets a 
vacuumm expectation value which is not invariant under the whole gauge group G. but 
onlyy under the unbroken part of the gauge group H. This implies that the classi-
call  ground state is degenerate and the vacuum manifold is isomorphic to the coset 
spacee G/H. the orbit of the order parameter under the group G. Broken symme-
triess manifest themselves by the appearance of massless scalar modes if the broken 
symmetriess are global, and massive gauge particles if they are local. The broken gen-
eratorss generate translations in the vacuum manifold. Another, equally important 

l rThee subject has no relation to the physics studied with the ALIC E detector at CERN. The name 
Alicee in Alice physics rather refers to the book "Alic e in Wonderland". This connection wil l become 
clearr later on. 
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manifestationn of broken symmetries is the possible appearance of topological defects 
inn the broken phase. Their nature is intimately linked to the topological properties of 
thee vacuum manifold. A topological defect is a spatially extended field configuration 
wheree the order parameter satisfies nontrivial boundary conditions characterized by 
somee topological invariant. This boundary condition implies that the order parameter 
fieldfield cannot stay within the vacuum manifold everywhere in the bulk. Well known 
exampless are monopoles. flux tubes and domain walls. 

Too point out what is characteristic of Alice theories it is illuminating to look at the 
casee of (magnetic) flux tubes. To every flux a specific element h of the unbroken 
gaugee group H can be associated, defined by the untraced closed Wilson loop around 
thee flux, given by: 

hh = Pe$ A»{x)dx"  . (1.1) 

withh P denoting path ordering along the loop 7. and A^(x) the gauge field. The 
elementt h can in principle be any element of the residual gauge group, but the flux is 
topologicallyy stable if it is an element of a disconnected part of the unbroken gauge 
groupp Hd 2. If the element h is not part of the center of the unbroken group, i.e. does 
nott commute with all of H [1]. then it is called an Alice flux. Note that this is a priori 
nott a topological statement, but it is essential that the unbroken group is non-abelian. 
Thee important thing is that, as h does not commute with the unbroken gauge group H. 
itt is not possible to give a single valued definition for all the generators/charges of H 
inn the presence of such an Alice flux. Apparently in these models there is an intricate 
interplayy between possible topological sectors (i.e.. topological quantum numbers) 
andd the allowed gauge charges in those sectors. The consequences of having defects, 
wdiichh form an obstruction to defining charges globally, can be quite drastic and lead 
too a number of remarkable physical phenomena, which forms the main subject of this 
thesis. . 

Topologicall  Alic e models 

Alicee phenomena may show up in many different guises. An obvious class of models 
wheree Alice phenomena appear, are the models where the topological non-triviality 
off  a flux implies the Alice behavior of the flux. Examples of these types of models are 
non-abeliann discrete gauge theories [2. 3] where a continuous group is broken to some 
discretee non-abelian subgroup and Alice electrodynamics [1. 4. 5] where a non-abelian 
groupp is broken to a residual H = U(l) K Z2 ~ 0(2). Theories with non-abelian 
discretee gauge groups have been extensively analyzed and have in particular been 
linkedd with the notion of (spontaneously broken) Hopf symmetry [6. 7. 8. 9]. These 
theoriess have gained some interest because they provide ideal models for topological 
quantumm computing. The Hopf symmetries in turn are connected to the general link 
betweenn Chern-Simons theories and quantum symmetries [10, 11. 12] as for example 
inn {2-f l)-dimensional gravity [13. 14]. 

2Heree we assume n2(G) = I I i (G ) = n0(G) = 0. 

10 0 



1.2.. Alice phenomena in Alice electrodynamics 

Dynamicall  Alic e models 

Anotherr interesting class of models consists of models where the Alice behavior of 
thee topologically stable flux is present for dynamical reasons. In these models, where 
typicallyy the flux itself is topologically stable, not all topologically equivalent fluxes 
aree Alice fluxes. However an Alice flux in this topological non-trivial sector can be 
thee lowest energy solution. Examples from this class of models are the SO(6) —
50(3)) x 50(3) x Z2 model [5] and the Spin(lO) -> SU{5) x Z2 model [15, 16. 17]. 
InIn [18, 19] a topological definition of Alice models is given, which works if there are 
alsoo magnetic monopoles present in the theory. In that case the Alice behavior can 
alreadyy be encoded in the topology of the theory as Alice fluxes influence magnetic 
monopoless and electric charges in a similar way. 

Wonderlandd in physics 

Althoughh we will concentrate on a specific model containing Alice physics, we would 
likee to remark that Alice features show up in various parts of physics. It has been 
usedd as a baryogenesis mechanism in for example [20, 21]. Alice effects appear in 
topologicallyy non-trivial universes [22, 23], in two dimensional gravity [24, 25, 26, 13], 
theyy pop up in the study of confinement [27, 28], in string theory the Alice effect 
connectss parallel branes [29] and it provides a possible solution to the strong CP-
problemm by gauging the CP-symmetry [30, 31]. Alice effects also appear in different 
condensedd matter systems, such as in the study of certain Bose-Einstein condensates in 
opticall  lattices [32, 33, 34], rotating Helium II I  [35, 36], superconductors [37, 38, 39] 
andd in nematic liquid crystals, where the uniaxial version has the same symmetry 
structuree as Alice electrodynamics (see for example [40, 41, 42]). 

1.22 Alice phenomena in Alice electrodynamics 

Inn this section we introduce Alice ElectroDynamics (AED) and preview some of the 
mainn results obtained in the coming chapters. We start with a description of the 
topologicall  structure of AED and introduce the notions of Alice flux and Cheshire 
charge.. Then we discuss some explicit continuum and lattice models and finally 
wee briefly report some remarkable physical consequences of the subtle interplay of 
topologicall  features leading to a variety of instabilities in the theory. 

1.2.11 The structur e of AED 

Alicee electrodynamics (AED) is a theory of electrodynamics in which charge conju-
gationn is a local gauge symmetry. To be specific, AED is a gauge theory with gauge 
groupp H = C/(l) x Z2 ~ 0(2), so, in a certain sense it is the minimally non-abelian 
extensionn of ordinary electrodynamics. The nontrivial Z2 transformation reverses the 

11 1 
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directionn of the electric and magnetic fields and the sign of the charges. 

XQX~XQX~11 = -Q . (1.2) 

withh X the nontrivial element of Z2 and Q the generator of the £7(1). 
Thee generator of £7(1) and the nontrivial element of the Z2 do not commute with each 
other,, in fact they anti-commute. This means that the Z2 part of the gauge group 
actss as a charge conjugation on the £7(1) part of the gauge group and that is what is 
meantt by the phrase "AED is electrodynamics in which charge conjugation symmetry 
iss gauged". 
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F i g u ree 1.1: A local charge conjugation transformation does not change the force on a charged 
particlee in an electric field in electrodynamics. 

Onee might envisage a local discrete symmetry by defining arbitrary patches and having 
nontriviall  gauge transformations between them. The transition functions can become 
topologicallyy nontrivial as we will see. A topologically trivial patch is depicted in 
figurefigure 1.1, where inside the contour the direction of the electric and magnetic fields 
andd charges is reversed, so that indeed the resulting physics is not affected. Charged 
particless move across the boundary without "noticing" it. So it appears that in a 
typicall  situation of ordinary electrodynamics nothing dramatically changes if charge 
conjugationn symmetry is gauged. However there are profound differences between 
EDD and AED, which we will discuss in this chapter and the coming chapters. It 
iss important to realize that, as the non-abelian extension with respect to ordinary 
electrodynamicss is discrete, it only affects electrodynamics through certain global 
(topological)) features, involving nontrivial Z2 bundles. 

Inn figure 1.2 we schematically indicate the structure of the gauge group, 17(1) x Z2, of 
(compact)) AED. It consists of two copies of U(l) connected by the nontrivial element 
XX of the Z2 part of the gauge group. 
Fromm the structure of the (residual) gauge group in figure 1.2 it is clear what the 

12 2 



1.2.. Alice phenomena in Alice electrodynamics 

X X 
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H, , 

F i g u ree 1.2: A schematic picture of the gauge group of AED. It shows the action of X, the connected 
andd the disconnected part of the gauge group and the sign difference between the two branches. 

possiblee topological defects in AED are3. As Ho(U(l) K Z2) = Z2 there will  be a 
topologicall  Z2 flux, denoted as Alice flux, and furthermore as Ili(U(l)  K Z2) = Z 
theree are also magnetic monopoles in this theory (like in compact ED). The element 
off  the unbroken gauge group associated with the Alice flux contains the nontrivial 
elementt of the Z2 part of the gauge group. X. This means that if a charge is moved 
aroundd an Alice flux it gets charge conjugated. At first this might not be a very-
interestingg observation as charge conjugation is part of the local gauge symmetry of 
thee model. However there is the notion of a relative sign, which is path dependent 
inn the presence of Alice fluxes. This means that if one starts with two equal charges 
(repulsion)) and moves one of the charges around an Alice flux one ends up with two 
chargess of the opposite sign (attraction), due to the non-commutativity of X and Q. 

Inn the presence of an Alice flux the generator of the (7(1) is not single valued and 
thereforee there is a topological obstruction to a global definition of electric charge. 
Howeverr if there are no Alice fluxes present it is possible to globally define the U(l). 
Butt note that also in the trivial sector of the theory a pair of Alice fluxes or a closed 
Alicee loop can be created out of the vacuum. What happens in that case to the 
definitionn of C/(l) charge? As the creation of such a topologically trivial configuration 
iss a local process the overall charge should not be affected, changes in the definition of 
thee (7(1) should occur only locally. A way to understand what happens is to cut out 
aa region of space which is such that the closed Alice ring lies on its boundary. Now 
thee U(l) can still be globally defined in the rest of the space. But physically one can 
off  course not just exclude this region and problems do indeed arise when a charged 
particlee moves through this region. The closed loop of Alice flux will bound a so 
calledd Dirac or Z2-sheet and if a particle crosses this sheet it gets charge conjugated. 

3Heree one has to envisage that AED is realized by breaking a larger gauge symmetry with the 
helpp of a Higgs mechanism and that this larger gauge group, G, has: 112(G) = n"i(G) = iio(G) = 0. 
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Chapterr 1. Alice physics: an introduction and survey 

Itt looks rather artificial, but in fact it is just a convenient singular gauge choice. In 
thiss gauge a charge which moves around an Alice flux, gets charge conjugated at a 
veryy specific point where its trajectory goes through the sheet which is bounded by 
thee Alice loop. Clearly the location of this Z2-sheet is gauge dependent while the 
locationn of its boundary is the gauge independent Alice ring. In this sense there is an 
analogyy between the sheet and the Dirac-string of a magnetic monopole. 

Inn a situation where it is possible to define a global U(l) charge the total charge 
shouldd be conserved. Then the question arises what will happen to this conservation 
off  charge if a particle gets charge conjugated when moved through an Alice ring as this 
appearss to violate the conservation of charge. To resolve this paradox it is illuminating 
too perform some simple thought experiments. Let us start with a pair of oppositely 
chargedd particles and then create an Alice ring out of the vacuum. Then we take 
onee of the charges through the Alice ring. We end up with two like charges next to 
eachh other, say both positive. As the total charge cannot change by local processes, 
i.e... the creation of an Alice ring and moving one of the charged particles, the total 
chargee should still be zero. This tells us that the missing charge must be hiding in 
thee excluded spatial volume, i.e.. it must be carried by the Alice ring configuration. 
Theree art1 several ways to understand how the missing charge in AED is carried by 
thee Alice ring configuration. First we discuss a symmetric configuration in which it is 
veryy easy to understand how the missing charge is carried. Then we will do a thought 
experimentt from which it should become clear that the configuration we found for 
thee symmetric configuration is essentially generic. 

Firstt consider a symmetric configuration, where we put the Alice ring in the horizon-
tall  plane and assume there to be an up-down symmetry with respect to this plane 
(thee famous "Alice mirror"). We choose the Z2-sheet to also lie in this plane. The 
nicee thing of this symmetric configuration is that the electric field lines have to be 
perpendicularr to the Z2-sheet as the sign needs to change once they pass the Z2-sheet 
andd due to the up-down symmetry. This means that in this symmetric configuration 
thee boundary conditions for the electric field on the Z2-sheet are the same as those 
forr a charged conducting plate. Now we maneuvered ourselves into a position where 
thee answer to the question of the missing charge is very simple. From the perspective 
off  the; space which is not excluded the Alice ring bounds a conducting plate4. Ob-
viouslyy the missing charge is carried (ignoring for the moment the boundary effects 
thee Alice ring may have) by this "would be" conducting plate and the resulting field 
linee pattern is clear, see figure 1.3(d). Now it is important to note that although 
thee direction of the field lines depends on the location of the Z2-sheet the field line 
patternn itself is gauge invariant. Although the field line pattern is gauge invariant the 
conductingg plate boundary condition of the field lines on the Z2-sheet is clearly not. 
Theyy only hold in the symmetric gauge we started with. 

AA most remarkable feature of these charged Alice ring configurations is that the source 
off  the charge cannot be localized. Suppose we have a small test charge which we want 
too use to locate the source of the charge. The test charge will follow a specific field 

44 At least the excluded space has the same boundary conditions as a conducting plate. 
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1.2.. Alice phenomena in Alice electrodynamics 

linee and expects to end up at a charge. However, there are no sources for the field 
lines.. As the test charge moves through the Alice ring - the sheet that is - its sign 
changess exactly where the field lines change direction and the charge will just move 
on.. So, from far away a definite charge is carried by the Alice ring configuration, but 
ass one comes closer one finds there is no source of that charge. This elusive type of 
chargee is called a Cheshire charge after the grinning cat in Alice in Wonderland who 
disappearss but leaves his grin behind [43. 44]. 

AA second way of understanding how a Cheshire charge appears in AED. does not 
involvee any symmetry arguments. We reexamine the thought experiment where we 
movee a charge through an Alice ring. To understand the appearance of Cheshire 
chargee in this setting we make use of the fact that due to charge conservation and/or 
quantizationn electric field lines can not pass an Alice flux5. We start with a single 
chargee and create in its vicinity an Alice ring out of the vacuum. As the electric 
fieldd lines cannot pass through the Alice flux they are pushed away by the Alice ring, 
seee figure 1.3(b). Next we pull the charge through the Alice ring, see figure 1.3(c). 
Iff  we then move the charge to infinity it is clear what the resulting Cheshire charge 
configurationn looks like, see figure 1.3(d). This thought experiment demonstrates the 
genericc nature of the Cheshire phenomenon. 

Inn the appendix of chapter 6 we will encounter the so called Cheshire current, see figure 
6.11.. This object typically only lives in two dimensions, while a Cheshire charge can 
appearr in two and three dimensions. A Cheshire current appears if one takes a charge 
aroundd two Alice fluxes. In that case the charge can be annihilated with the anti-
chargee that stayed behind. Due to the fact that the electric field lines can not close 
aroundd a single Alice flux, the pair of fluxes wil l carry a Cheshire current. We refer 
too the appendix of chapter 6 for more details on the Cheshire current configuration 
andd its relation with Cheshire charge. 

Ass IIi(t7(l ) tx Z2) = Z there are also magnetic monopoles in compact AED (as in 
compactt ED). Already at this point there is a subtle interplay between the fluxes and 
thee monopoles in AED [45]. Exactly this point is used in [18] to define topological 
Alicee models. In the presence of an Alice flux the sign of a magnetic charge is no 
longerr uniquely defined, i.e., in AED the monopole and the anti-monopole belong to 
thee same topological sector. To understand this feature of AED we will investigate a 
configurationn where a monopole and an Alice flux are coexisting, see figure 1.4. 

Oftenn the so called base point in homotopy theory is not important. However if 
Ho(H)Ho(H)  ̂ 0 the position of this base point can become relevant. This is the case 
inn AED and results in the topological equivalence of the monopole and the anti-
monopole.. A monopole charge is determined with the help of a closed surface enclosing 
thee monopole, see figure 1.4(a). If there are no Alice loops or fluxes present the base 
pointt of this surface, XQ, is irrelevant. However if there is an Alice loop present the 

5Indeedd the fact that electric and also magnetic field lines cannot penetrate an Alice flux is rem-
iniscentt of the Meissner effect, where magnetic fields are expelled from an electric superconductor. 
Inn that case magnetic flux is quantized and can be trapped in a superconducting ring. The para-
doxicall  situation in our model is that the Alice flux appears to be both electrically and magnetically 
superconductingg yet strictly neutral: in other words the analogy appears to break down at this point. 
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(d) ) 

F i g u ree 1.3: This sequence of pictures makes clear that the Cheshire phenomena is a generic 
phenomenonn in AED and does not depend on the symmetry of the configuration. Using the fact 
thatt due to charge conservation and/or quantization electric field lines cannot cross an Alice flux 
onee is lead to the notion of Cheshire charge. 

basee point of this surface does become relevant. As the fundamental homotopy group 
off  AED is Z2, there are two different ways byy which one can enclose the monopole with 
thee closed surface starting from the base point. In one, see figure 1.4(b), the surface 
doess not go through the Alice loop, in the other, see figure 1.4(c), the surface does go 
throughh the Alice loop. These two possibilities are equally well suited to define the 
chargee of the magnetic monopole, but differ in outcome. To understand the difference 
inn outcome we deform the latter surface, see figure 1.4(d). We see that the two surfaces 
differr by a transformation around the Alice flux, 0. As the nontrivial element X of Z2 
doess not commute with the generator Q of U{\) in AED there is distinct difference 
betweenn the two definitions of the magnetic charge. This difference is caused by the 
presencee of the Alice flux and is called the influence ofHo(H) on U\(H). Obviously 
theree is a sign difference between the outcomes of the two definitions of the magnetic 
charge.. This means that there is no topological distinction between positive and 
negativee magnetic monopoles in the presence of an Alice flux. This may not be too 
surprisingg for a theory where charge conjugation is part of the local gauge symmetry. 
However,, we note that there is still the notion of the relative sign between magnetic 

16 6 



1.2.. Alice phenomena in Alice electrodynamics 

charges,, which is path dependent as we explained in the context of electrical charges. 
Wee seem to be confronted with a puzzling arbitrariness in talking about charges in 
thiss simple model. 

(a)) (b) 

F i g u ree 1.4: These figures show that in the presence of a loop of Alice flux, L, the sign of the 
(monopole)) charge is not uniquely defined. The two surfaces E and E' are equally well suited to 
measuree the (monopole) charge, but differ by the path /3, which shows that they are charge conjugated 
withh respect to each other. 

1.2.22 Some specific realizations of Alice electrodynamics 

Inn this subsection we will introduce and briefly discuss some specific AED models. 
Firstt we will look at continuum models where AED is realized after spontaneous 
symmetryy breaking through some suitable Higgs mechanism. Subsequently we look 
att a lattice model of AED. Both types of models will  allow the formation of magnetic 
monopoless and Alice fluxes. In the continuum models they appear as solitons due to 
thee symmetry breaking, but in the lattice model they appear because of the lattice 
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Th ee continuum models 

Thee continuum models of AED are the main subject of chapter 2 and we refer to 
thiss chapter for more details. Let us think of a spontaneously broken gauge theory 
wheree the order parameter in the broken phase, the Alice phase, can be represented 
byy a director field. We may think of this order parameter as a line segment or a 
bidirectionall  arrow. Thus it fixes an orientation but not a direction. Just like a 
normall  vector field, such an order parameter is invariant under rotations around 
itss axis, which represents the U(l) gauge degree of freedom. But the bidirectional 
arroww has an additional symmetry, the reflection symmetry, i.e., the invariance under 
rotationss of an angle of IT around an axis perpendicular to its own orientation. This 
invariancee represents the charge conjugation symmetry of AED. These two symmetry 
operationss do not commute with each other, they anti-commute. So we find that the 
directorr field is an appropriate order parameter for AED. 

Thee original model [4] of AED uses the five dimensional symmetric tensor represen-
tationn of 5*7(2) (for this representation one can just as well use SO(3)). The action 
off  this model is given by: 

5== léx l^Fa^F;u+-ATY(D^D^)-V(^)\ , (1.3) 

wheree the Higgs field <£> = <& ab is a real symmetric traceless 3 x 3 matrix. 
Thee potential is given by: 

^^ = - ^ 2 T r ( $ 2 ) - l 7 T r ( $ 3 ) + i A ( T r ( $ 2 ) ) 2 . (1.4) 

Byy a suitable choice of parameters the Higgs field will acquire a vacuum expectation 
value,, 3>0. In the gauge where <É>0 is diagonal it takes the form $0 = diag(—f, - ƒ, 2/). 
Ass an aside we mention a field in physics where the same order parameter has shown 
up:: the theory of nematic liquid crystals. Here the symmetry is realized as a global 
symmetryy whereas in AED the 27(1) x Z2 symmetry is local. A typical model used 
too describe these systems is the Landau-de Gennes free energy model [46, 47, 48, 49], 
givenn by: 

TT = J(fei+fv)dV (1.5) 

feifei = -^d1Qaf3d1Qa{3^—dfiQaf3d1Qai + ~-d1Qot(3d0Qai (1.6) 

ƒ.. = a^(Q2)-^(Q3) + l(^(Q2)f (i.7) 

Althoughh the two models are quite different they can be mapped onto each other for 
aa limited region of the parameter spaces. In the limi t of vanishing gauge coupling of 
thee AED model and for static solutions of the equations of motion the original AED 
modell  can be mapped onto the Landau-de Gennes model with L2 = £3 = 0. This 

18 8 



1.2.. Alice phenomena in Alice electrodynamics 

correspondencee will be used in the analysis of the monopole core instability in chapter 
5. . 

Thee vacuum manifold after symmetry breaking corresponds to the gauge orbit of the 
orderr parameter and therefore becomes equal to the real projective space MP2, i.e., the 
sphere,, S2, with opposite points identified. The topologically non-trivial structure of 
thiss manifold is quite well known and its first and second homotopy groups are given 
by: : 

n^MP2)) = Z2 and n2(EP2) = Z (1.8) 

Thee nontrivial ^ ( K P2 ) results in the appearance of magnetic monopoles in AED. 
Thiss does not make specific use of the head-tail symmetry of the order parameter and 
iss for example also present in a theory with a vector order parameter field, such as 
thee Georgi-Glasgow model [50]. The fact that Ili(]RP2) = Z2 means that there are 
alsoo topologically non-trivial Z2 (Alice) fluxes present in the theory. The appearance 
off  Alice fluxes is due to the head-tail symmetry of the order parameter. Indeed, 
thee fact that opposite points on the sphere are identified with each other, which 
iss a direct consequence of the head-tail symmetry of the order parameter, allows 
thesee Alice fluxes, see figure 1.5(a). As we explained in the previous subsection the 
subtlee interplay between the monopole and the flux content of the theory gives that 
monopoless of opposite charge belong to the same topological sector. 

Onee of the key features of the Alice flux is the fact that the order parameter, the 
Higgss field, only rotates over IT around an Alice flux. That this is allowed is due to 
thee head-tail symmetry of the Higgs field. Now it is also clear that the charges with 
respectt to the unbroken U{\) change sign when they go around an Alice flux, as the 
generatorr of the unbroken £7(1), i.e., a pointed arrow, also only rotates over n when 
transportedd around an Alice flux and thus picks up a minus sign, see figure 1.5(b). 
Ass we now have an explicit model we can try to find explicit solutions of the magnetic 
monopolee and the Alice flux. Appropriate ansatze were given in [4]. We will discuss 
thee monopole ansatz later on, but for the moment we mention that it is very similar to 
thee spherically symmetric 't Hooft-Polyakov magnetic monopole ansatz. The ansatz 
forr the Alice flux is more interesting. Locally one can always gauge the Higgs field 
suchh that it is in a diagonal form. However it need not always have the one parameter 
structuree <E> = diag(—a, — a, 2a) mentioned before. The spherically symmetric mag-
neticc monopole does have this form, but for the Alice flux it can be shown that this 
doess not allow for a static solution to the equations of motion. So for the Alice flux 
onee needs the more general form <I> = diag(—a,—b,a+ b), implying that the ansatz 
requiress more than a single function for the scalar field. 

Inn figure 2.1 we show a numerical Alice flux solution to the equations of motion, for 
specificc values of the parameters of the model, based on the following ansatz: 

$(r,0)) = e£?L * ( r ) e - ^ 1 , (1.10) 
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(a)) (b) 

F i g u ree 1.5: Figure (a) shows the possibility to have topologically non-trivial closed loops due to 
thee head-tail symmetry of the Higgs field. Figure (b) shows that the Higgs field is single valued if it 
onlyy rotates over an angle 7r after going around the Alice flux and that the generator of the unbroken 
[ƒ(! )) is actually double valued in the presence of an Alice flux. 

wheree the tensor <&(r) is conveniently parameterized as, 

// 1 0 0 \ / 0 0 0 \ 
$(r)) = m{r) 0 - \ 0 + q(r) \ 0 § 0 . (1.11) 

\0\0 0 -\) \o o - f J 
andd Ti the generators of 5*0(3). 
Att spatial infinity the boundary conditions are: q = m and a = 1 and at the core of 
thee defect the boundary conditions are: a = q = 0. 

Ann interesting feature of the solution is that the gauge symmetry is not restored at 
thee center of the defect, i.e., the Higgs field does not become zero. The symmetry at 
thee core of the defect is again that of AED only now with a [/(l)-isospace direction 
differentt from the unbroken symmetry at spatial infinity. The fact that the Higgs field 
deviatess from the form diag(—f, —f,2f) means that it can no longer be represented 
byy a single direction everywhere. This behavior is sometimes referred to as an escape 
inn the biaxial direction. 

Inn equation 2.4 we see that the Higgs field can be represented as a sort of symmetric 
productt of two vector fields. The only information of the two vectors that survives in 
thee translation to the Higgs field is the product of the lengths, h, and half the relative 
angle,, ip. Expressed in these variables the Higgs field is given by: 

22 / - (s in2V + l) 0 0 \ 
$$ = -hi 0 sin2 tp - cos2 ip 0 . (1.12) 

\\ 0 0 cos2^ + l / 

Forr the present discussion this parameterization is more convenient than the one we 
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usee to find a numerical solution, equation 1.11. As the Higgs field at r = 0 should 
bee single valued it has to commute with T\. This means that ip = ir/2 or ft = 0 at 
rr = 0. Thus the Higgs field can do two things. Either it can vanish in size or it has 
too "rotate" to ip = n/2. Investigating the potential in terms of h and ip shows that 
rotatingg and not vanishing of h realizes a lower potential energy. Thus it is natural 
thatt the Alice flux makes use of the possibility to escape in the biaxial direction. 
Althoughh the Higgs field in the center of the flux is again invariant under an AED 
partt of the gauge group, it is typically in the wrong broken vacuum6. Meaning that 
thee Higgs field has the wrong sign, i.e., it is not in (or close to) the global minimum 
butt in (or close to) another minimum of the potential, see figure 1.6. 

F i g u ree 1.6: This figure shows the typical form of the potential as a function of the length h and 
thee angle ip. Here we plotted it for fj,2 = 1, 7 = —1 and A = 1. It makes clear that it is natural for 
thee Alice flux solution to escape into the biaxial direction. 

Alreadyy at this point one might wonder whether for a magnetic monopole solution 
theree is also the possibility to escape in such a biaxial direction. We return to this 
issuee later on in this chapter when we investigate a core instability of the spherically 
symmetricc magnetic monopole, which is further explored in chapter 5. 

Wee wish to mention two alternative continuum Alice models. These two Alice models 
havee a similar symmetry structure as the original model, but the Higgs sector consists 
off  a pair (X, Y) of adjoint representations. The head-tail symmetry alluded to before 
inn these models comes about by putting the Higgs field on an orbifold. i.e., imposing 

6Typicallyy there are two minima of the potential which have the same unbroken AED subgroup. 
Howeverr only one of them is the true global vacuum, while the other is just a local minimum of the 
potential. . 
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speciall  boundary conditions on the Higgs fields. More specifically in one model the 
Higgss field. X. is put on a Z2 orbifold which identifies X with —X. In the other 
modell  the two Higgs fields are put on a S2 orbifold which identifies the point (X.Y) 
withh (Y. X). The action for both models is given by: 

SS = Jd\v j l r (\^Ffi, + l&'XD.X + ^YD(lY - ^[X.Y] 

A A 
- ( T r ( X 22 + r 2 ) - / 2 ) \ . (1.13) 

Theree is a gain by introducing this rather intricate Higgs sector, notably that these 
twoo models have monopole solutions which can be mapped one to one to the 't Hooft-
Polyakovv monopoles while the Alice flux solutions correspond precisely to Nielsen-
Olesenn flux solutions with winding number one-half. Much is known about these 
solutionss and for particular parameter values even a Bogomolny limit exists. 

T hee latt ice model 

Lett us now introduce a lattice version of compact AED (LAED). In chapter 3 we will 
studyy this model quite extensively. Here we limit ourselves to a preview of the main 
results.. We refrain from giving an introduction to lattice gauge theory, for this we 
referr to the beginning of chapter 3 or for a more thorough introduction to [51. 52]. 
Ourr interest in a lattice formulation of the theory is evident for two reasons;(i) it 
allowss us to study the phase diagram and in particular what type of condensates may 
form,, and (ii) it may allow us to study certain nonperturbative quantum properties. 

Thee gauge degrees of freedom in a lattice gauge theory are the link variables. These 
aree related to the gauge potentials and for the model at hand given by: 

UUuu{x){x) = elAAx^T^{x) . (1.14) 

withh au(x) € {0.1}  and AlJ{x) € (-7r.7r). 
Heree av represents the Z2 gauge variable and Av the compact U(l) gauge variable of 
thee theory. If au{x) = 1 that implies that a Z2-sheet in D = 3, or a Z2-volume in 
DD — 4. crosses the link. These Z2-sheets can of course be moved around by local Z2 
gaugee transformations, but their boundaries, the Alice loops, can not. The action of 
thee lattice model of compact AED we wil l use is given by: 

SS = -=• y2\-{l-Pf) cos F+ mfPf) . (1.15) 
99 p  ̂ >P 

wheree Pf is one if an Alice flux crosses a plaquette and zero if not. F is the F of U(l) 
afterr the Z2 fields have been gauge transformed away from the plaquette, which is 
alwayss possible if Pf = 0. We will use a (hyper-)cubic lattice and the plaquettes are 
thee two dimensional sides of the (hyper-)cubes. 
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Thee first term in the action is the well known Wilson action [53] for compact C/(l) 
latticee gauge theory, if there are no Alice fluxes present. The second term introduces 
ann extra bare mass for the Alice fluxes. As we explained before the difference between 
EDD and AED only arises if there are Alice fluxes present. Even if we do allow local 
chargee conjugation symmetry transformations none of the physics will change. So 
thee tilde in the first term of the action is not important if there are no Alice fluxes 
present. . 

Inn the limi t of m/ —> oo and g finite the Alice fluxes in the theory are excluded 
andd our LAED model becomes equal to the Wilson model. In the limi t of g —> oo, 
butt keeping rrif/g2 finite our LAED model becomes equal to the also well known Z2 
latticee gauge theory. This is a very nice feature of the model as it allows one in some 
regionss of the parameter space to check the results with well known results from these 
modelss and we will also use their results as input for the estimates we make. 

Thiss LAED model contains both Alice fluxes and monopoles as lattice artifacts. They 
disappearr in the naive continuum limit . However our introduction of the extra bare 
Alicee flux mass might prevent this if a suitable limi t of this extra mass term is taken 
simultaneously.. We could just as well also have introduced an extra bare mass term 
forr the magnetic monopoles present in the model. However, this is computationally a 
muchh more involved procedure and it turns out that it is not needed in the sense that 
thee four different phases of the model can be realized without it. The four phases are 
representedd by the different defects that are or are not condensed. 

Withh the help of numerical simulations we determined the regions in parameter space 
wheree the different phases in this model occur, for both the three and the four (space-
time)) dimensional model. The results are shown in figure 1.7. 

(a)) (b) 

F i g u ree 1.7: In both figures we plotted some specific height lines of the monopole/instanton and 
Alicee flux density, which represent the location of the different phase transitions. Figure (a) contains 
thee result of the three dimensional model, where figure (b) contains the results of the four dimensional 
model. . 

Thee lines in figure 1.7(a) and 1.7(b) are some typical height lines which represent 
thee location of the different phase transitions. As one may see, not all phases are 
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separatedd by a phase transition. For example the transition between no condensed 
instantonss and condensed instantons in 3D is a crossover (as is very well known). We 
seee that the transition between condensed fluxes and condensed fluxes plus condensed 
monopoles/instantonss is also a crossover. 

Thee location of the phase transition lines and the values of certain measurable quanti-
tiess can be very well determined for this model. This is mainly because the parameter 
spacee of the model can be divided up into several regions which almost fill  out the 
wholee phase space and which can be relatively easily understood as the physics is 
ratherr well approximated by some dominant aspects, see section 3.4. 

Thee region where the Alice fluxes are not condensed can be approximated by having 
noo Alice fluxes around at all, i.e.. ignoring the effect which the few present Alice fluxes 
have.. As we argued before this is the same as the Wilson model of compact ED. When 
thee Alice fluxes do condense many plaquettes are pierced by a flux. In this region 
thee behavior of the U(l) degrees of freedom is also well understood. If a plaquette 
getss pierced by a flux the values of the U(l) degrees of freedom of that link become 
irrelevant,, see equation 1.15. To lowest order, ignoring the Z2-sheets, this means that 
piecess of space are cut out by the Alice rings. As the unpierced plaquettes become 
moree and more isolated their behavior can obviously be estimated by the behavior 
off  single plaquettes. Here we note that actually there is no need for the unpierced 
plaquettess to become fully isolated. It is well known from lattice ED that already two 
dimensionall  lattice ED is described by the behavior of a single plaquette. To lowest 
orderr also the interaction between the pierced and the unpierced plaquettes is well 
known,, as they exclude each other. The interaction of the fluxes among themselves 
iss the same as it would be for Z2 gauge theory. Using these estimates and using the 
resultss from Z2 and compact U(l) lattice gauge theory as known results, one can 
estimatee the different features of our LAED model. We estimate quite successfully 
thee location of the different phase transition lines, the average value of cos F for the 
unpiercedd plaquettes, the flux density and the monopole/instanton density. For more 
resultss and more details on the LAED model we refer to chapter 3. 

1.2.33 Instabilitie s and topological defects 

Inn this subsection we wil l briefly discuss situations in which topological defects may 
developp instabilities of various sorts. To wet the appetite we first look at a simple 
examplee which is representative for a generic feature of a rather large class of field 
theories.. We show that a topologically stable kink can reduce the vacuum degeneracy 
off  a model with flat directions. Then we return to AED and study a core instability of 
thee spherically symmetric 't Hooft-Polyakov type magnetic monopole. In particular 
wee wil l find that the monopole can decay into a Cheshire charged Alice ring. In the 
lastt part we wil l discuss a charge instability that occurs in AED in (2+l)-dimensions. 
Wee wil l find that a static charge is unstable to the creation of a pair of Alice fluxes. 
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Dynamicall  vacuum selection 

Inn the following we will examine a specific field theory with a flat direction in the 
potential.. We want to clarify a general idea and only choose this model for its sim-
plicity,, for more details on this subject we refer to chapter 4. The model we will use 
iss a (1+1)-dimensional model and allows for topologically stable kink configurations. 
Thee action of the model is given by: 

55 = y ^ x { i ( ^ 1 ) 2 + i ( ^ 2 ) 2 - ^ W - ^ - / 2 ) 2 }  • (1-16) 

withh 0i and 02 two real scalar fields. The field 02 is present to create a flat direction 
inn the potential. 

Onee of the nice features of this particular model is that it it easy to show that only 
thee topologically non-trivial boundary conditions with 02 equal to zero at both plus 
andd minus infinity allow for a truly static kink solution. This is just the standard 
kinkk solution for a theory with a single scalar field. Actually, if real space is finite 
thenn all topologically nontrivial boundary conditions allow for a static kink solution. 
InIn the limit where the boundary values of the the 02 field do not deviate too much 
fromm zero, the static kink solution can be very well described by a superposition of 
twoo independent parts. One corresponds to the special kink solution with 02 (z:) — 0 
andd outside the core of this kink there is another part where the Higgs fields only 
varyy within the vacuum manifold of the model, i.e., they satisfy 0f — 4>2 — P- This 
secondd part, referred to as the "tail", is easily described by a special combination of 
thee Higgs fields which lives on the vacuum manifold and is therefore called a moduli 
field.. This moduli field is obviously a massless field. The construction is thus as 
follows:: we take the special kink to take us from one part of the vacuum manifold to 
thee other, disconnected part of the vacuum manifold. Then, outside the core of the 
kink,, the moduli field takes over and ensures that the specific boundary conditions are 
met.. The fact that this works in the limit of a large space - large with respect to the 
deviationn of the boundary conditions of 02 from zero - can be understood as follows. 
Inn the limit of an infinite space the only static kink solution is the kink solution with 
(f>(f> 22(x)(x) — 0. The energy in the tails scales as l/Rx. with R  ̂ the radius of the space. 
Soo in the limit of a large but finite space the energy comes close to the energy of the 
speciall kink and it is therefore an obvious candidate for the static kink solution as 
RRxx becomes large. 

Noww we can try to understand what happens in an infinite space if the boundary 
conditionss of the 02 field are not zero and we are in the topologically non-trivial 
sector.. Because the configuration cannot be a static configuration we need to choose 
somee initial conditions. In figure 1.8 we see snapshots of configurations, which started 
outt at rest. In figure 1.8(b) we used a kink in a finite space as initial condition, where 
inn figure 1.8(a) we used a constant 02 and for 0i used a rescaled kink as initial 
condition. . 

Itt is clear that the configurations again consist of two parts. There is the (possibly 
excited)) special kink with 02 = 0 and there is the moduli field. The equations of 
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(a) ) (b) ) 

F i g u ree 1.8: These figures show snapshots of non-static configurations. The values of the fields for 
negativee values of x follow from the antisymmetry of the configuration and are not plotted. 

motionn for both parts are extremely simple. The special kink is just static and the 
modulii  field, being massless, moves (away) with the speed of light leaving the "special" 
vacuum,, with foix) = 0, behind, see figures 1.8(a) and (b). This is what we refer to as 
dynamicall  vacuum selection (DVS). One could wonder if other initial conditions would 
leadd to a different picture. Including dissipation of energy through coupling to other 
fieldsfields it is clear that the Higgs fields will inevitably relax to a configuration containing 
aa special kink together with some moduli field. The energy of such a configuration can 
comee arbitrary close to that of the special kink. In other words dynamical vacuum 
selectionn just selects the lowest energy state in a given topologically non-trivial sector, 
whichh only depends on the topological information of the boundary conditions and 
nott on the particular location in the flat direction. 

I tt should be clear that the key ingredient in this process is the scaling of the energy of 
thee tails. It is only because these scale to zero as the region over which the moduli field 
changess becomes larger that DVS works. This shows that DVS is a common feature 
forr all one dimensional field theories which have flat directions in their potential and 
alloww for topologically non-trivial boundary conditions. In fact it has been noted 
beforee that such a mechanism is also operative in two dimensions [54, 55, 56], in 
aa situation with topologically stable fluxes with flat directions, where the energy of 
thee tail scales as l/logi?oo. In three or more dimensions, a similar energy argument 
cann be used to show that DVS will no longer occur. We conclude that in one and 
twoo dimensions only the topology of the boundary conditions is important, while in 
higherr dimensions also the non-topological information of the boundary conditions is 
importantt for the physics in the bulk of the system. 

Thee process we described can be interpreted in two ways. One is the dynamical vac-
uumm selection as we emphasized, on the other hand it can be viewed as an instability 
off  a certain class of topologically non-trivial kinks and fluxes. The latter interpre-
tationn is more in line with the discussion of a monopole core instability we turn to 
next. . 
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AA monopole core instabilit y 

Wee have mentioned that AED features 't Hooft-Polyakov type monopoles. Now we 
wantt to examine the core structure of such a magnetic monopole. We discussed that 
inn the Alice flux solution the Higgs field can not be represented by a director field 
everywhere.. Representing the symmetric tensor field by two independent isovectors, 
seee equation 2.4, these will no longer be (anti)parallel in the intermediate region of the 
space,, 0 < r < oc. The Higgs field escapes in the biaxial direction. For the monopole 
thiss is not necessarily the case, but one may wonder if allowing for more general Higgs 
configurationss in the same topological sector, the energy of the monopole solution can 
bee lowered. Here we examine such a possibility. For more details on this investigation 
wee refer to chapter 5. 

Theree is a second reason to expect a monopole core instability of the spherically 
symmetricc magnetic monopole. In section 1.2.1 we encountered an object called the 
Cheshiree charged Alice ring. There we mainly focussed on an electrically Cheshire 
chargedd Alice ring, but similarly there is in principle also the possibility of the mag-
neticallyy Cheshire charged Alice ring. The Alice flux is not an ordinary magnetic 
flux,flux, it is in some sense orthogonal to the electromagnetic U{\) direction in the gauge 
groupp and does therefore not distinguish between magnetic and electric fields. Bear-
ingg this in mind it is a natural question to ask whether such a magnetic Cheshire 
configurationn may have lower energy. 

Firstt we will show with the help of some topological deformation considerations that a 
closedd Alice ring really can carry a magnetic charge. Then we will qualitatively argue 
thatt this configuration could indeed be stable and finally we show some numerical 
resultss establishing a core instability of the spherically symmetric magnetic monopole 
inn part of the parameter space of the model. 

Thee element of the gauge group associated with an Alice flux lies in the disconnected 
partt of the gauge group, Hd- If one has an Alice ring there is no reason for this 
elementt to be the same for all planes intersecting the Alice ring. Parameterizing the 
Alicee ring with an angle this element should be a periodic function of this angle, 
seee figure 1.9(b). This continuous set of elements of the gauge group therefore has 
too sweep out a closed path in the disconnected part of the unbroken gauge group. 
Fromm figure 1.2 it is clear that also this path can have an non-trivial topology, i.e., a 
windingg number. Thus the Alice ring, besides carrying a topological charge related to 
thee Alice flux, can also carry another topological charge which is labeled by a winding 
number. . 

Thee description we just gave is very closely related to the topological definition of 
magneticc charge in the pioneering work of Lubkin [57]. To classify magnetic charge 
hee used a continuous set of closed paths sweeping out the surface of a sphere, see 
figurefigure 1.9(a). Let us denote these paths as C .̂ with 0 running from zero to 2n and 
t?4,=oo = C(p=2n- This continuous set of paths defines through parallel transport a 
closedd path in the connected part of the gauge group, Hc, and can be labeled by a 
windingg number. Lubkin then showed that this winding number is the topological 
magneticc charge inside the sphere. Now let us label the continuum set of paths we 
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usedd to describe the Alice ring by Q,. The main difference between the two sets of 
pathss is that one describes a closed path in Hc while the other does so in Hd- However 
multiplyingg the elements of the C  ̂ with a specific element of Hd maps the elements 
fromm Hd to Hc in an injective way. This one to one map from Hd into Hc also maps 
closedd paths in Hd to closed paths in Hc

7. More pictorially one can easily see that the 
closedd paths CT^.Cj, are equivalent to the closed paths C  ̂ used by Lubkin. Thus 
wee find that an Alice ring can also carry a magnetic charge which should, following 
thee same arguments as for the electric charge, be carried as a Cheshire charge. 

(b) ) 
(a) ) 

F i g u ree 1.9: Both figures show some specific paths of a continuum of paths which. Figure (a) shows 
thee paths used by Lubkin to classify magnetic charges, where figure (b) shows the paths used to 
describee the Alice ring. There is a one to one map of the paths in figure (b) to paths equivalent to 
thee paths in figure (a) showing that a closed Alice ring can carry a magnetic charge. 

Wee just showed that the punctured magnetic monopole becomes a magnetically 
Cheshiree charged Alice ring. That this is possible is due to the head-tail symme-
tryy of the Higgs field. To understand that such a configuration can indeed be stable 
wee make an estimate for the energy of such a charged Alice ring. We approximate 
thee energy of the circular Alice ring of radius R, by Eioop = 2irRSfiux, with £fiux the 
energyy per unit length of the Alice ring, and approximate the energy of the Cheshire 
charge,, Eches, by a uniformly charged disc with radius R. The magnetic field of the 
latterr is given by: 

B B 
ixRixR2 2 

R R 
JL JL 

QQv v r'r'  dr'dO' 

Vr22 + z2 + r'' 2rr'2rr'  cos 6' 

22 a{r,z) 

(1.17) ) 

(1.18) ) 
7whichh preserves the winding number up to a possible sign change, but this is not important 

becausee magnetic charges of opposite sign belong to the same topological sector. 
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Wheree we have rescaled the coordinates by a factor of R and Q is the total charge. 
Thee field energy is then given by: 

JJches ches fë-BlPSxfë-BlPSx (1.19) 

== ^ - f' a(r,z)-a{r,z) d3x (1.20) 

OO2 2 

==  R A ( L 2 1 ) 

Wheree A is a dimensionless constant determined by the disc geometry. The total 
energyy of the Alice ring of radius R, with a Cheshire charge Q is thus given by: 

OO2 2 

EEtottot = 2irR£flux + ^ A (1.22) 

Wee see that there are two competing, R-dependent terms and we may determine the 
radiuss of the loop which minimizes the energy, yielding: 

yy zirtflux 

Consequentlyy the minimal energy is given by: 

EE = ^/87r£fluxA \Q\ (1.24) 

Obviouslyy this estimate can only be trusted if the radius of the Alice ring is much 
largerr than the radius of the Alice flux and this should be checked. Nevertheless the 
estimatee does indicate that a Cheshire charged Alice ring can be a stable configuration, 
wheree the string tension is balanced by the repulsion between the magnetic field 
lines.. Interestingly this estimate gives an energy proportional to the magnetic charge, 
Eoc\Q\. Eoc\Q\. 

Too determine whether the spherically symmetric magnetic monopole is unstable we 
returnn to the original Alice model [4]. We use a variational approach. The ansatz we 
employy contains the ansatz of the spherically symmetric magnetic monopole solution. 
Wee fix the ansatz by imposing cylindrical and up-down symmetry, as these are the 
symmetriess one would expect for a magnetically Cheshire charged Alice ring. The 
naturall  boundary conditions at spatial infinity correspond to the usual boundary con-
ditionss of the spherically symmetric magnetic monopole solution. The most important 
thingg at this moment is that our ansatz allows for Alice ring like configurations, see 
figuree 1.10(b), and at the same time contains the ansatz of the spherically symmetric 
monopolee solution, see figure 1.10(a). For a detailed description of the ansatz and the 
parameterss used to describe points in the parameter space we refer to chapter 5. 

Wee studied the system using a numerical relaxation and hysteresis procedure and 
determinedd the lowest energy configuration at specific points in the parameter space 
andd determined the stability region of the monopole solution, see figure 1.11. We 

29 9 



Chapterr 1. Alice physics: an introduction and survey 

(a) ) (b) ) 

F i g u ree 1.10: Both figures show a plot of 1 6f22 for y = 0. Figure (a) shows the typical core 
structuree of the spherically symmetric magnetic monopole and figure (b) that of the magnetically 
Cheshiree charged Alice ring, which lies in the x-y plane at z = 0. 

indeedd find that the spherically symmetric magnetic monopole solution is not always 
thee lowest energy solution in its topological sector. Even though the Alice ring con-
figurationsfigurations we found are strictly speaking not necessarily solutions to the equations 
off  motion, they do nevertheless put an upper bound for the energy of such an exact 
solution.. Furthermore they have the properties one would expect of a magnetically 
Cheshiree charged Alice ring. We conclude that the spherically symmetric magnetic 
monopolee can be unstable with respect to a decay to a magnetically Cheshire charged 
Alicee ring. 

mA/m2 2 

F i g u ree 1.11: This figure shows the meta-stability line for the spherically symmetric magnetic 
monopole.. The shaded region gives the error on the location of the line. On the left of this line the 
monopolee and on the right the Alice ring is the lowest energy configuration within our ansatz. 

Wee just showed that the 't Hooft-Polyakov type monopole is not always the lowest 

30 0 



1.2.. Alice phenomena in Alice electrodynamics 

energyy configuration in AED carrying a magnetic charge. There is a region in the 
parameterr space of the model where the magnetic charge is realized as a magnetically 
Cheshiree charged Alice ring. Next we will conclude this lightning preview by consider-
ingg an even more radical type of charge instability which appears in (2+l)-dimensional 
Alicee electrodynamics. 

Chargee instabilit y in (2+l) -d imensions 

Wee will discuss the stability of an external charge (pair) under the creation of a pair of 
Alicee fluxes in (2+1)-dimensions. In section 1.2.1 in the introduction of the Cheshire 
chargee we found that in a specific symmetric configuration the Z2-sheet could be 
interpretedd as conducting plate. In two dimensions this also holds, but it will have a 
moree drastic consequence. For a detailed investigation we refer to chapter 6. 

Too understand what may happen let us consider the following thought experiment. 
Assumee that we have an external charge in the plane and create out of the vacuum 
aa pair of Alice fluxes, with a Z2-sheet (or rather Z2-line) connecting them. For 
conveniencee we choose all objects, including the Z2-line say on the x-axis. Obviously 
thiss configuration has an up-down symmetry in the plane allowing us to interpret 
thee Z2-line as a conducting "needle'', a line segment bounded by the fluxes. We see 
thatt the pair of fluxes will acquire an induced Cheshire dipole. And, as a conductor 
attractss a charge, the flux close to the charge will move towards the charge, while 
thee other flux will be pushed away. Here we ignore a possible (typically parameter 
dependent)) intrinsic flux-flux interaction which could of course also be attractive. 
Soo what happens when the flux "absorbs" the charge is basically that the charge 
getss converted into a Cheshire charge carried by the flux pair. This Cheshire charge 
resultss in a repulsive force between the two Alice fluxes, so the separation between the 
Alicee fluxes will keep increasing and thereby diluting the charge indefinitely; charge 
effectivelyy disappears. The notion of a static localized charge is lost. This is a novel 
mechanismm by which charge can loose its manifest appearance, besides the well known 
phenomenaa of screening and confinement. 

Inn this thought experiment we ignored the structure of the Alice fluxes, a possible 
intrinsicc flux-flux interaction and the well known confining mechanism of monopoles 
disguisedd as instantons proposed by Polyakov [58. 59]. Although including these 
effectss might change the details of the instability, the main conclusion remains un-
altered.. The assumptions we made can also be justified by working with a lattice 
model,, see section 1.2.2, where there is a priori no flux-flux interaction or flux core 
structuree and the monopole mass can be taken to be infinite, suppressing the confine-
mentt mechanism. In fact in this regime one can determine the field configurations 
analyticallyy with the help of the conformal invariance of two dimensional electrody-
namics.. For example the potential and the field lines of two opposite charges with a 
fluxx pair in the middle are given in figure 1.12(a) and 1.12(b) respectively. 
Thee energy gain in the field energy due to the presence of the Alice flux pair can also 
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(a)) (b) 

F i g u ree 1.12: These figures show some of the equipotential lines, figure (a), and the corresponding 
fieldd lines, figure (b), of two oppositely charged charges in the presence of a pair of fluxes located at 
thee endpoints of the thick black line segment. 

bee determined exactly and is given by: 

withh Q the charge of the external charges and Xi the location of the charges with 
respectt to the middle of the flux pair and in units of twice the distance between the 
fluxes. fluxes. 

Withh the help of these and other expressions we investigate several decay geometries of 
somee charge systems in AED in chapter 6. One of the most important consequences 
off  this instability is the fact that the potential between two charges will not grow 
indefinitelyy in (2+l)-dimensional AED irrespective of the presence of monopoles, i.e., 
duee to this instability the potential between two external charges will saturate, see 
figurefigure 6.10. So we find that (2+l)-dimensional AED is not necessarily a confining 
theoryy but may instead exhibit this novel Cheshire screening. Finally a comment on 
thee situation in (3+l)-dimensional AED. Here one does not expect the same results, as 
thee classical potential itself already saturates and an Alice ring can not grow without 
aa linear cost in energy. However in the phase where the Alice fluxes condense one 
doess expect a screening effect as one has a condensate of possible (induced) dipoles. 

Thiss completes our introduction and preview of Alice phenomena, which shows that 
havingg slightly more than electrodynamics might result in rather drastic dynamical 
andd physical effects. These phenomena appear to be quite generic if after symmetry 
breakingg the residual symmetry group has non-commuting discrete subgroups. 
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Chapterr 2 

U{ï)U{ï)  K Z2 models 

Inn this chapter we introduce three continuum models which feature an Alice elec-
trodynamicss phase and present numerical solutions of Alice fluxes in these models. 
Onee model is the original Alice model studied by Schwarz [4], two alternative mod-
elss are proposed. An advantage of these new models is that in a well defined sense 
thee Alice flux solutions we obtain obey first order equations similar to those of the 
Nielsen-Olesenn flux tube [60] in the abelian Higgs model in the Bogomolny limit . The 
contentss of this chapter is mainly based on [61]. 

2.11 Alice electrodynamics 

Ann Alice phase can be obtained by a spontaneous breaking of a larger, continuous, 
non-abeliann symmetry group. In the original Alice model studied by Schwarz [4] a 
SU{2)SU{2) gauge theory is spontaneously broken down to a £7(1) x Z2 by a Higgs field in 
thee 5—dimensional representation of the gauge group (see also [62, 5]). The Higgs field 
iss chosen in this representation, because it is the smallest irreducible representation 
whichh admits £7(1) tx Z2 as a residual symmetry group and allows for a single valued 
vacuumm configuration that supports Alice fluxes. 

Inn this chapter we will discuss two alternative models, which support an Alice phase. 
Beforee doing so, we briefly review the salient features of the model discussed in [4, 62]. 
Thee action is given by: 

SS = J éx a* vF  ̂ + i$Dfl$)-V(*)} , (2.1) 

wheree the Higgs field $ = &ab is a real symmetric traceless 3 x 3 matrix. 
Thee most general renormalizeable potential is given by [50]: 

KK = - ^ 2 T r ( $ 2 ) - i 7 T r ( $ 3 ) + i A ( T r ( ^ ) ) 2 . (2.2) 
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Byy a suitable choice of parameters the Higgs field will acquire a vacuum expectation 
value.. <t>o- In a gauge where <£>0 is diagonal it takes the form <I>o = diag(—a. —b. a + b). 
Forr a certain range of potential parameters one furthermore has that ƒ = a — b. so 
thatt $o is given by: 

- ƒ 00 0 
$oo = | 0 - ƒ 0 | . (2.3) 

00 0 2/ 

withh ƒ = l i l ( l + V /l + ^ ) -
Indeed,, this ground state is invariant under rotations around the T^-axis. the U(l)-
partt of the Alice symmetry, and invariant under rotations by an angle n around any 
axiss perpendicular to the T3-direction, the Z2-part of the Alice symmetry. These 
twoo transformations do not commute with each other, they anti-commute. so the 
resultingg residual gauge group is indeed U(l) ix Z2. This means that we have Alice 
electrodynamicss as the low energy effective theory in this model. 
Ann alternative way to see the structure of the residual gauge group, is to think of the 
Higgss field as the symmetric traceless product of two vectors, é\ and 02, 

2 2 
<5><5> abab = ^ + $ <# - -Sab (<£ • <fc) . (2 A) 

Iff both isovectors, 4>i, are non zero, there is in general only a Z2 gauge symmetry left, 
(pi(pi —> 4)ti — ~4>t. However, in case that both isovectors are (anti-)paralleL the gauge 
groupp is £7(1) ix Z2 . If one of the isovectors is zero, the gauge group is not broken at 
alll and the symmetry remains SU(2). These are the residual gauge groups which one 
mayy encounter in this model. It is easy to show that the case where the two isovectors 
aree (anti-)parallel, corresponds to the situation where $ = <3>o-

2.1.11 The Alic e flux solution 

Inn this section we will present exact regular solutions, corresponding to an Alice flux 
tubee along the z-axis, which where constructed in [63]. 
Too have a static finite energy solution, all terms in the energy density should go to zero 
att spatial infinity. Thus the covariant derivatives need to vanish at spatial infinity. 
Let'ss look at the angular derivative, the condition £)#<& = 0 tells us that the Higgs 
fieldfield has the following form at spatial infinity. 

^>{0)^S(0)^(0)S-^>{0)^S(0)^(0)S-11{e){e) , (2.5) 

with h 

S{0)S{0) = exp I e / rAed0 ] . (2.6) 

Sincee we are looking for solutions which correspond to an Alice flux, 5(27r) needs to 
bee an element of the disconnected part of the (residual) gauge group. A simple choice 

34 4 



2.1.. Alice electrodynamics 

forr Ao doing this is ,4E» = ^fc^i-
Thiss leads to the ansatz: 

A.A. - f T. . (2.7, 
$(r,0)) = e ^ f c f r j e- ^ 1 , (2.8) 

wheree the tensor <&{r) is conveniently parameterized as, 

00 \ / 0 0 
3 3 
2 2 
0 0 

$ ( r ) = m ( r )|| 0 - ^ 0 + g(r) 0 | 0 ) . (2.9) 

Thee part proportional to m(r) is the part of the Higgs field that is invariant under 
rotationss generated by T\. The boundary condition at spatial infinity is m(oc) = 
<?(oo),, implying that <£>(oc) is of the form (2.3), i.e., the residual symmetry is £7(1) KZ2 
indeed,, where the electrodynamic £7(1) is generated by T3. At the origin, m and q 
havee to satisfy different boundary conditions: the field q(r) needs to go to zero. The 
termm proportional to 777,(7") is invariant under T\ rotations, therefore m{r) does not 
needd to go to zero. Again, this means that the Higgs field is of the form (2.3), i.e.. 
thee unbroken gauge group is £7(1) ix Z2. However, the unbroken £7(1) is generated by 
T\.T\. Finally, the field a(r) needs to be zero at the origin and unity at spatial infinity. 
Insertingg this ansatz in the field equations gives, after suitable rescalings, the following 
sett of equations. 

dd22a(r)a(r) - -dra(r) = 9q2(r){a{r)  - 1) . (2.10) 

dd22q(r)q(r) + -rdrq{r) =  W r ) " J ^  ̂ + Z (9q2(r) + 37r*2(r) - 2) q(r) 

+2xm(r)q{r)+2xm(r)q{r) , (2.11) 
I I 

dd22m(r)m(r) + -drm{r) = £ (9q2{r)  + 3m2(r) - 2) m(r) 

+X(3q+X(3q22(r)-m(r)-m22(r))(r))  . (2.12) 

Wee summarize the boundary values for the rescaled fields below: 

fieldd r -+ 0 oc c 
a(r)a(r) 0 1 
q{r)q{r)  0 q{oc) 
m(r)m(r) constant m(oc) 

where e 

m(oc)) = q(oc) = ^— = ƒ (£, X)  (2.13) 

withh C = £ a n d x= ^ ? -
Thee system (2.10)-(2.12) was solved numerically with the help of a relaxation method 
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inn [63]. The solution for the potential parameter values £ = 1 and \ — ~ 1 is given in 
figurefigure 2.1. 

Thee situation at hand is reminiscent to the one considered by Witten [64] for a 
L7(l)) x 17(1) model, in the sense that we have an unbroken U(l) tx Z2 at the core 
andd a different U{\) tx Z2 at infinity. However, the crucial difference is. that our 'two' 
f/(l )) gauge groups do not commute with each other. 

F i g u ree 2 . 1: A regular solution for the fields with an Alice flux for £ = 1 and \ = — 1. 

Interestingly,, there is also another solution to the field equations, which we briefly 
discuss.. If x = 0 there is a solution with m(r) = 0. After a rescaling of q(r) one 
findsfinds exactly the same equations as were obtained in the Nielsen-Olesen (NO) model 
byy [65] for the minimal flux n = 1. provided we set the value of A = 2£. Numerical 
solutionss to these equations have been studied before. For a special value of A one 
obtainss the solutions by solving Bogomolny type, first order equations. The residual 
symmetryy of this solution in our model is 2,2. One may wonder whether in our model 
thiss is a stable solution. In the case of 7 = 0, i.e., \ = 0, the potential (2.2) has the 
form: : 

VV = -i?X + XX2 . (2.14) 

Thee minimum of this potential is obviously given by X 
Writtenn in the components m and q this gives: 

2A-- withh X iT r r 22
d>2 2 

c.\mc.\m22 + c-iq2 1 1 (2.15) ) 
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wit hh ei, C2 > 0. 
AA simple rescaling of m and q yields: m2 + q2 = 1. As we require finite energy, this is 
onee of the boundary conditions for the fields m and q at spatial infinity. We now see 
thatt the boundary condition of the new solution, in — 0, may be continuously changed 
too one where q = 0. But then the Higgs field does no longer stabilize the flux, which 
meanss that the flux wil l decay by spreading out and losing more and more energy. 
Throughh this process we end up in a "rotated" Alice phase of the theory where the 
U(l)U(l)  generator points in the internal direction of the flux we started off with. When 
goingg from the m = 0 to the q = 0 boundary condition we pass an Alice phase whose 
U(l)U(l)  generator is perpendicular to the internal direction of the flux we started with. 
Thee upshot of these observations is that, if one wants to have a stable Alice flux in an 
Alicee phase, one needs to have 7 ^ 0. Otherwise the decay induces a reorientation of 
thee vacuum state in the degenerate space of all classical vacua. This concludes what 
wee have to say about conventional Alice electrodynamics, in the remaining sections 
off  the chapter we will focus on some alternative Alice models. 

2.22 Alternative Alice models 

Inn this section we introduce two alternative models, which exhibit an Alice electrody-
namicc phase. In these alternative models we choose the Higgs field(s) in the adjoint 
(3)) representation of SO(3). This obviously means that the Higgs field is not single 
valuedd in the presence of an Alice flux, but this can be "solved" in two more or less 
similarr ways. One way is to put the internal space of the Higgs field (X) on a Z2 
orbifold.. i.e., X and —X are identified with each other. The other way is to use (at 
least)) two Higgs fields and put the total internal space of these two Higgs fields (X 
andd Y) on a 52 orbifold, i.e., identify the points (X, Y) and (Y.X). 
Thee action we use for both models is given by: 

SS = J d4x JTr QF" "F „ „  +  + l-D"YD^Y -1[X,YA 

- j (Tr (X 22 + Y 2)- /2)2J • (2.16) 

Bothh theories allow the presence of an Alice flux. In the 52 model it means that one 
studiess the twisted sector of the theory. 

2.2.11 Alice flux solutions 

Wee now turn to the construction of regular cylindrically symmetric (numerical) solu­
tionss corresponding to an Alice flux. At spatial infinity one has DQX — 0. implying 
thatt the Higgs field should have the following form there. 

X{0)X{0) = S(9)X{0)S-1(6) . (2.17) 
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withh S(9) the same as in (2.6). 
Thee flux associated with S(9) is topologically stable if the element of the gauge group 
associatedd with S{2ix) is an element of the disconnected part of the residual gauge 
group.. A simple choice l is: AQ = ^T\. This puts the Alice flux in the internal T\ 
direction.. Writing the Higgs field as X — xaT(1. it follows that X{9) has the following 
form: : 

^(0)) \ 
X{0)X{0) =d^~ I x2(0) . (2.18) 

, .3 3 (0) ) 
andd thus that X(27r) is given by: 

^ ( 0)) \ 
X(2TT)== I -x2(0) . (2.19) 

-x3(0)) / 

Thee same holds, of course, for the other Higgs field. Because the two models differ 
slightlyy in constructing the ansatz, we will treat them separately for the moment. 

Th ee Z-2 model: 

Forr the Z2 model the boundary condition specified above implies that either x1 — 0 or 
xx22 = .r'3 — Ü. Only in the first case, however, is 5(271") an element of the disconnected 
partt of the gauge group. Thus we have to put x1 — 0. Later we will see that this choice 
iss important in order to obtain first order equations. At this point it is convenient 
too introduce a different basis for the generators of the gauge group, a basis naturally 
linkedd to the orientation of the Higgs field. Its elements are given by: 

Sa{0)Sa{0) = eI£Tae
=JPL . (2.20) 

Noww we write the Higgs field as X = xaSa: where also in this language one has to 
putt x1 = 0 to secure the possibility of a topological stable solution. 
Inn this model a single Higgs field would suffice, but for reasons of similarity we will 
usee two. Our ansatz then reads: 

AAee = T T ^ SI • (2-21) 
lev lev 

XX = o(r)S3 • (2.22) 
YY = c(r)S1 . (2.23) 

Th ee S2 model: 

Thee 'double valuedness' is only allowed if one uses an orbifold interpretation. So we 
imposee a strict relation between X and Y. 

xxll{9) {9) 
X(9X(9 + 27r)=\ -X2(9) | = | y2(9) ]=Y(6) . (2.24) 

-x*{9) -x*{9) 
11 At this point we can not yet say that this is an element of the disconnected part of the residual 

gaugee group, but this will be done consistently below. 
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Leadingg to: x1 = y1. x2 — —y2 and x3 — —y3. Again we are going to work with the 
twistedd generators (2.20). A consistent ansatz is the following one: 

AABB = - ^ S i , (2.25) 
2er 2er 

XX = a{r)S3 + c{r)Si . (2.26) 
YY = -a{r)S3 + c{r)Sl . (2.27) 

Forr both cases one may insert the appropriate ansatz in the field equations. This yields 
afterr a suitable rescaling, the same set of differential equations for both models: 

dd22
rra{r)a{r)  - -dra{r) = (a{r) - l)a2(r) , (2.28) 

dd22a{r)a{r)  + \dra{r) = ( <* ^ ~ ^ a{r) + Xa{r) (a2{r)  + c2(r) - l ) 

+7C2(r)a(r)) , (2.29) 

dd22c{r)c{r)  + -drc{r) =  ia
2{r)c{r)  + Ac(r) (a2(r) + c2(r) - l ) . (2.30) 

Thee asymptot ic values of the fields are are as follows: 

fieldd r —• 0 r—• oc 
a(r)a(r) Ö Ï 
a{r)a{r)  0 1 
c(r)c(r) constant 0 

Thee boundary conditions are such that 5(27r) is an element of the disconnected part 
off the residual gauge group. 
Wee have constructed numerical solutions to these equations, for different values of A 
{andd 7), with the use of a "shooting" method, see figures 2.2 and 2.2. As a matter 
off fact, we only found solutions for which c(r) = 0, although our starting values were 
chosenn quite general. This implies that there is no dependence of the solutions we 
found,, on 7. 

Inn fact if c(r) = 0, the equations become the same as in the case of a Nielsen-Olesen 
(NO)fluxx with the critical value of the Landau coupling parameter leading to first 
orderr Bogomolny equations. However, there is an important difference with the NO 
case.. The "winding" number of the Alice flux is fractional and equals n — ^, a value 
whichh is not admissible in the NO model. This is clearly a consequence of the different 
breakingg schemes of the theories in question. 

Theree is a special role in these theories for the parameter 7. If we set 7 = 0 the 
equationss are very similar to the equations (2.10)-(2.12) with \ = 0- Though 7 
appearss to play no role as long as c(r) = 0, this is not quite the case. We don't 
wantt 7 to vanish because then we run more or less into the same problem as in the 
conventionall model for Alice electrodynamics with \ = 0- The solution with c{r) = 0 
wouldd still be a solution of the field equations, but the flux would no longer be stable. 
Itt would be allowed to decay into the vacuum. In fact in the alternative models it is 
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quitee clear what happens at 7 = 0, the potential term proportional to 7 - assuming 
itt is nonzero - ensures that there is no continuous path in the vacuum manifold 
connectingg the c = 0 to the a = 0 boundary condition2. If 7 = 0 such a path does 
exist. . 

Theree is a simple relation between the Z2 model with one Higgs field and the S2 

modell  with two Higgs fields, in the presence of an Alice string. In the presence of an 
Alicee string the field component of the Higgs field parallel to the Alice flux is zero in 
thee Z2 model, whereas in the S2 model this is in general only true far away from the 
core.. So, in some sense the Z2 model is a long wavelength approximation of the S2 

model,, but remarkably enough, it does support solutions which are regular everywhere 
nevertheless.. The action of both models becomes the same, up to a rescaling, if the 
componentss parallel to the Alice flux, of the Higgs fields in the S2 model, are set equal 
too zero. 

F i g u ree 2.2: The fields a(r) and a(r) , figure (a), and the energy density times r of the Alice flux, 
figurefigure (b), for A = 2.0...0.5....0.3 

2.2.22 First order  equations 

Ass mentioned before, if one sets c(r) — 0, the set of equations, (2.28)-(2.30), reduces 
too the same set that one would obtain in the NO model for a solution with winding 
numberr n = \. It thus appears that one can, in the sector that contains a topologically 
stablee Alice flux, project both theories on a sector of the NO model. This raises the 
questionn whether it would be possible to find first order equations in both models. In 
thee Z2 model, with only a single Higgs field, this projection is the clearest. For the 
restt of this section we will  therefore concentrate on this case. 

Onee of the features of the NO theory is that for a certain value of the coupling 
constantt A, the solutions can be obtained from first order equations. These first order 
equationss can be found a la Bogomolny, by rewriting the energy density as a sum of 
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squaress plus a topological term. In the case of static solutions, the energy density 
andd the Lagrangian differ only by a sign, implying that extrema of the energy are 
alsoo extrema of the Lagrangian. Consequently, solutions of minimal energy are stable 
staticc solutions of the full set of second order field equations. The energy of the Z2 
modell  is given by: 

EE =  l-j A { T r ( £ , 2 + B,2 + (AA:) 2 + (AA:) 2) 

++ ^ ( ( * 1 ) 2 + (* 2)2 + ( * 3 ) 2 - ! ) }  • (2.31) 

Inn the static case with no electric fields, in the gauge At = 0. one has Ei — dtAi = 0 
andd DtX = dtX = 0. reducing the expression to, 

E=\jdE=\jd33xx j l r (B2 + (D.X)2) +  ((x1)2 + (x2)2 + (x3)2 - l)\ . (2.32) 

Restrictingg ourselves to the plane, the energy written in components is given by: 

EE = i | r f 2 x { ( B > ) 2 + ( B 2 ) 2 + (i?2
3)2 + ( ( D l , X ) I ) 2 + ( ( ö ^ ) 2 ) 2 

++ ( (D„X) 3 ) 2 + ^ ( ( ^ ) 2 + ( ^ ) 2 + ( x 3 ) 2 - l ) } . (2.33) 

wheree now the upper label refers to the internal directions (in the normal, non-
twistedd basis) and the lower label to the spatial directions. From this expression we 
aree unable to obtain first order equations, however, if we restrict ourselves to the 
subspacee of solutions containing an Alice flux, there is something we can do. Let"s 
calll the internal direction in which the Alice flux 'points' the ' 1 ' direction, so if one 
iss looking for topological stable fluxes one needs to have .r1 = 0, as argued before. In 
thatt case we may write the energy as, 

EE = \Jd2xS[(Bl)2
+(B

2)2
+(B

3)2
+([AuX}1)\([A2,X}iy 

++ (d,x2 + A\x3)2 + (dlX
3 - A\x2)2 + (d2x

2 + A\x3)2 

++ (ö2.x
3 + ^ 2 ) 2 + ^ ( ( x 2 ) 2 + ( x 3 ) 2 - l ) } . (2.34) 

Forr the case of A = | this can be brought into the form: 

EE = \Jd2x{{Bl)2
+(Blf + ((d,x2

+A\x3)T(d2x
3-A\x2))2 

++ ([AuX]1)2 + ([A2. X]1)2 + [B\  \ ( V ) 2 + (x3)2 - I ) ) ' 

++ ((d2x
2 + A\x3)  (d,x3 - A\x2)f 
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11.A.A22]]
ll((x*)((x*) 22 + (**) 2-l)} 

 d2x{Bz + \Al.A2\)
i . (2.35) 

Still,, there appears to be a problem, because there are two terms in this expression of 
thee energy density, which are not squares and as we will show later, only one of them is 

proportionall  to the winding number. The other term. [A\. A2}1 ((x2) + (,r3) - 1 ] . 
thereforee appears to be problematic. This problem can fortunately be cured rather 
straightforwardly.. Remember that we are already in a "gauge' At — 0. In this situation 
thee residual gauge freedom of time independent gauge transformations may be used 
too put the term [vl i . /^] 1 equal to zero. In this gauge the energy density consists 
onlyy of squares and a term proportional to the winding number. The minimum of 
thee energy is now easily obtained by putting all squares in the energy density equal 
too zero. This then yields a set of first order equations of which the solutions are also 
solutionss of the full field equations. The first order equations, including the gauge 
conditions,, are: 

[ALA2Y[ALA2Y = 0 . (2.36) 

BB22 = 0 . (2.37) 

D'iD'i  = 0 . (2.38) 

[A^X][A^X] 11 = 0 . (2.39) 

[A2.X][A2.X]11 = 0 . (2.40) 

2 ) 22 + ( x 3 ) 2 - l ) = 0 . (2.41) 

(d(dlXlX
22 + A]x3) T (d2x

3 - A\x2) = 0 . (2.42) 

(d(d22xx22 + A\x3)  (<9i.r3 - A\x2) = 0 . (2.43) 

Thee last three equations are identical to those that were obtained in the NO model. 
Thee energy of solutions to this set of equations are fully determined by the term: 
ƒƒ d2x(Bz + [A\, A2])1, which is proportional to the winding number, as we show next. 

Thee general expression for X in the presence of an Alice flux in the first isospin 
directionn "along71 Xi , becomes: 

XX = x{r)e2nt^0)T' T2 = x{r) cos (2TTX (0)) T2 + x{r) sin (2TTX (0)) T3 

~~ aT2 + bT3 . (2.44) 

withh x{& + 27T) = x(d) + |. For r —> oc one has x(r —> oc) = 1. and the winding 
numberr can be extracted from the asymptotics by: 

-i-i  r^00 1 
—— <b d\n(a +i*b)  = n = - . (2.45) 
2n2n J 2 

Forr r —> 00 one also has the spatial covariant derivatives DX = 0 or: 

dX=[A,X)dX=[A,X) , (2.46) 
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orr in components: 

[ A I ] 11 = 0 . 

dada = ~Alb 

ObOb = Ala 

Fromm this one finds d\n(a + i * b) = i * A1, which means that: 

/

r—>occ i pr—»3c -I  r 

d\n{a+i*b)d\n{a+i*b)  = — j>  (illA1 = — d2x [Bl + \AuA2]1) . (2.50) 
Thuss the rescaled energy of the solutions is equal to ^. Note that the above ex-
pressionss do not look gauge invariant because we are evaluating a gauge invariant 
expressionn in a particular gauge. 
Onee should, of course, check whether the first order equations actually do have any 
solutionss of the type we are interested in. By inserting the ansatz used before and 
puttingg c(r) to zero, one arrives at the following set of coupled non-linear first order 
equations. . 

rdrdrra(r)a(r) = i ( l - a(r))a(r) , (2.51) 

-d-drra(r)a(r) = l-a2(r) . (2.52) 
r r 

Now,, these turn out to be a special case of the equations encountered before by De 
Vegaa and Schaposnik [65] in their study of the NO model. They where obviously only 
interestedd in the case of integer winding number, whereas we are interested in the 
casee of fractional winding number n = |. The corresponding numerical solution is 
givenn in figures 2.2 and 2.2. 

Wee have attained our goal of this subsection, of obtaining a set of first order equations, 
off  which the solutions are also static minima of the energy (with no electric fields). As 
iss well-known, first order equations play a deep role in gauge theories. Bogomolny [66] 
explained,, for the NO model, that solutions which come from the first order equations 
aree also minima of the energy, which implied the neutral stability of such solutions. 
Laterr it was shown [67] that the occurrence of so-called Bogomolny equations is tightly 
connectedd to the existence of a super-symmetric extension of the theory. The explicit 
superr symmetry extension of the NO model was given by [68] and in agreement with 
[67]]  showed that the first order equations indeed come together with an increase of 
super-symmetry.. In our models we found first order equations whose solutions are also 
solutionss to the full set of second order field equations. We showed that the solutions 
aree also minima of the energy. This obviously raises the question if these first order 
solutionss can also be explained by the existence of a super-symmetric extension of 
ourr models. A superficial analysis suggests that this is not the case, basically because 
wee can only recover the Bogomolny argument within the context of a very restrictive 
ansatz.. In this respect the situation is similar to that encountered in the study of 
regularr Z/v monopoles [69]. 

(2.47) ) 

(2.48) ) 

(2.49) ) 
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2.33 Conclusions 

Inn this chapter we proposed two new models which both possess an Alice electrody-
namicss phase. For both models we constructed solutions corresponding to a topo-
logical '̂' stable Alice flux. We found a way to project the theories on the Nielsen 
Olesenn model and. in that wray. obtained first order equations. Solutions to these first 
orderr equations corresponding to minima of the energy (without electric fields) were 
constructedd numerically. 
Wee close with a brief remark concerning the zero modes of our solution. Weinberg 
[70]]  showed that in the NO model, for the critical value A = ^. a flux with winding 
numberr n has 2n zero modes. These modes are interpreted as being the positions of 
thee unit fluxes. At first sight this appears to give problems for the case of // = ^. but 
carefullyy redoing section IV of the article mentioned, in particular using the fact that 
ourr fields are allowed to be double valued, one may show that the answer for n = I 
iss that there are again two zero modes, as one would expect. 
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Chapterr 3 

Latticee Alice electrodynamics 

Inn the previous chapter we examined three continuum models of AED and determined 
Alicee flux solutions numerically. In this chapter we will introduce and investigate a 
latticee model of AED. We present results of numerical simulations and some (ana-
lytical)) approximations of a compact U{\) x Z2 lattice gauge theory, including an 
extraa bare mass term for Alice fluxes. The subtle interplay between Alice fluxes and 
(Cheshire)) magnetic charges is analyzed. We determine the phase diagram and some 
characteristicss of the model in three and four dimensions. The results of the numeri-
call  simulations in various regimes of the parameter space of the model compare well 
withh some analytic approximations. This chapter is mainly based on [71]. 

Thee chapter is organized as follows. W'e start with a brief introduction of lattice 
gaugee theory. In section 3.2 we specify the lattice AED model in detail. In section 
3.33 we give the numerical results we obtained for the phase diagrams of the model in 
dimensionss three and four and in section 3.4 we present some analytic approximations 
relatedd to the phase diagram and other measurable quantities. In the final section we 
summarizee the results and conclude. 

3.11 A brief introduction to lattice gauge theory 

InIn this section we will briefly introduce lattice gauge theory, for a more thorough 
introductionn we refer to [51, 52]. As is well known most quantum field theories need 
regularization.. The possibility we will focus on is a lattice regularization. There one 
assumess that space-time can be represented by a lattice. An obvious drawback of 
thiss regularization is the breaking of the Lorentz symmetry, but a major advantage 
iss that in this form some questions in the theory can be handled non-perturbatively. 

AA simple way to introduce lattice gauge theory is to focus on the parallel transporter. 
InIn the continuum the parallel transporter. U{Cxy). along a curve. Cxy, from y to x is 
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definedd by the path-ordered product: 

U(CU(Cxyxy)) = PexVl-if  dz^A^zU . (3.1) 

wheree Al_l(z) is the gauge field. 

Lett us look at the parallel transporter of a square path in the (//. i/)-plane with sides 
off  length a. C v̂,a{x). We divide the path in four straight segments of length a and 
assumee the gauge field to be constant along each segment. To lowest order in a this 
gives: : 

U(C^U(C âa(x))(x)) = exp [i  (a2Filu + 0(a3))]  . (3.2) 

wheree we have used the discretized partial derivative. 
Too lowest order in a the real part of the trace of such a closed path is equal to: 

^(Tr{U(C^(Tr{U(Cllvllv,,aa(x))})=l-^-Tr{(F(x))})=l-^-Tr{(F tlvtlv))
22}}  + ••• . (3.3) 

withh no summation over JJL and v and the trace normalized such that Tr(I) = 1. 
Thiss is exactly the structure one can use to construct a gauge invariant action for 
gaugee fields on a lattice which in the naive continuum limit reduces to the continuum 
actionn for the gauge fields, up to an irrelevant constant. 

AA cubic lattice can obviously be build up from these type of minimal square paths, 
wheree a is the lattice distance. Summing over all these minimal square paths of the 
cubicc lattice represents the space-time integral and the summation over [i  and v in 
thee continuum limit. This is a simple and straightforward way to construct a gauge 
invariantt action for a gauge theory on a lattice with the desired naive continuum limit. 
Inn lattice gauge theories it is typically much more convenient to work in terms of 
thee [/-fields instead of the A-fields, which are of course related. The [/-fields can be 
thoughtt of as directed variables living on the links of the lattice, the link variables. 
Thee lattice action in terms of the link variables, the well known Wilson action [53]. 
iss given by: 

SS = ^E^( Tr {(^^])J ) (3.4) 

yy p 

wheree Up = U(C^,a(x)) and the sum over p represents the sum over all minimal 
squaree paths, the plaquettes, and we have put a = 1. 

Inn the next section we will find that lattice Alice electrodynamics is very similar to 
L/ (1 )) lattice gauge theory. To get some understanding of U(l) lattice gauge theory 
wee will go into some relevant details of this theory. 
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Ass £7(1) gauge theory is an abelian gauge theory there is no need for the trace in the 
action.. In fact for U(l) gauge theory the lattice action becomes1: 

S = - ^ £ c o s ( Fp )) . (3.6) 

Ass lattice calculations are typically clone in a Euclidean space-time instead of on a 
Minkovskiann space-time the action obtains a minus sign through the Wick rotation. 
Onee of the important and interesting features of this lattice regularization is that it 
allowss for magnetic monopoles. In the following we will try to make this clear. 

Itt is important to note that the action density due to the field strength only depends 
onn the field strength modulo 2TT. We may write: 

FFpp = F^(x) = F™od(x) + 2nDfll/(x) • (3.7) 

withh F^{x) mod 2TT = F™od{x) e <-7r,7r), D^(X) E Z and D^{x) = -DVfl(x). The 
integerr field D has no effect on the action density as the action density has a period 
off 27T. Thus we have: 

yy p y
 P 

Althoughh there is a Bianchi identity for F l̂l/(x) the splitting of the field strength into 
aa physical and a 'redundant' term allows for a magnetic monopole current of the 
physicall field. For the physical field strength F™fd(x) the possibly nonzero monopole 
currentt is given by: 

^F™^F™odod(x)(x) = 2nkv(x) , (3.9) 

with h 

kkvv{x){x) = d^D^ix) , (3.10) 

wheree D^(x) = \e p̂(TDpa{x) and F™°d{x) = paF;™d(x). 
Thee integer field DfJil/(x) is identified as the Dirac-sheet and it is this field which is 
usedd in locating magnetic monopoles in a specific configuration. Obviously if out of 
anyy volume more (or less) Dirac strings enter than leave there is a net magnetic charge 
insidee this volume. The magnetic charges live inside the unit-cells of the lattice or 
moree specifically they live on the dual lattice. 
Wee end this short introduction to lattice gauge theory with a remark on the possible 
chargess of the magnetic monopoles. A direct consequence of the fact that F"l°d{x) G 
(—7T,, TV) is that the magnetic charge/current within a unit-cell can only have some 
quantizedd values. 

; 22 . (3.11) 

1Wee do note that this is not the only way to put compact U(l) gauge theory on a lattice and 
thatt it is also possible to have a non-compact O'(V) lattice gauge theory. 
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3.22 Lattice Alice electrodynamics 

Inn this section we introduce the specific Lattice Alice ElectroDynamics (LAED) model 
wee wil l study. First we explain the different terms that appear in the action and then 
wee discuss how magnetic monopoles and instantons are realized and can be measured 
inn this model. Finally we say a few things about the computational implementation 
off  the model. 

3.2.11 The action 

Alicee phases can be generated by spontaneously breaking SU(2) to U(l) tx Z2. In this 
casee it is clear that Alice loops, monopoles and Cheshire charges may arise as regular 
classicall  finite energy solutions. In the study presented in this chapter we restrict 
ourselvess to compact U{\) x Z2 gauge theory with an extra bare mass term for the 
Alicee fluxes. Our lattice formulation of the theory allows for the formation of Alice 
fluxesfluxes and magnetic monopoles2. The action we will use is given by: 

SS =  ̂  Z {" M (Tr {(UiU2u£ut)p}) + mf(Pf)p} . (3.12) 

Thee first part represents the normal Wilson [53] plaquette action for the gauge theory, 
whichh we introduced in the previous section. The second term is the extra bare mass 
termm for the Z2 fluxes in the model. Pj is a functional of the Z2 degrees of freedom 
which,, when evaluated on a plaquette, equals one if the plaquette is pierced by a 
Z22 flux, and equals zero if not. The parameter rrif  is the extra bare mass (in three 
dimensions)) or tension (in four dimensions) for the Alice flux. 

Inn principle one can also add an extra bare monopole mass term to the action. We 
havee refrained from doing so because it is computationally much more involved and 
becausee we can realize all four phases in the model without this term (see table 3.1). 
Too define suitable link variables for LAED we use the fact that compact U{\) tx Z2 

cann be conveniently embedded in SU(2) as follows: 

UUl/l/(x)(x) = eiA"WT*T?" ix) . (3.13) 

withh av{x) E {0,1}  and Av{x) € {-7r,7r). 
Thuss av represents the Z2 gauge variable and Av the compact U(l) gauge variable of 
thee theory. We say that, if au(x) = 1 a Z2-sheet in 3D, or a Z2-volume in 4D, crosses 
thee link, implying that the Z2-sheets live on the dual lattice. These Z2-sheets can, of 
course,, be moved around by local Z2 gauge transformations. A gauge transformation 
off  the links is given by: 

UUvv{x)^ü{x)U{x)^ü{x)Ul/l/{x)Ü{x{x)Ü{x + u)i , (3.14) 

2I tt also allows for the formation of Cheshire charges, but their non-locality makes them hard to 
detect,, see section 3.2.2 
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withh ü(x) = e
l^x^T^x). where a(x) € {0.1}  and E(x) e (-TT.TT). 

Thee boundaries of the Z2-sheets. however, cannot be moved around by local Z2 gauge 
transformations,, this in analogy with the endpoints of Dirac strings (being magnetic 
monopoles)) in the compact U{\) gauge theory. This is exactly what one should expect, 
sincee the boundaries of the Z2-sheets are closed Alice flux3 loops, which are physical 
objectss carrying energy. Bearing this in mind it is easy to locate the Alice fluxes, 
namelyy by just counting the number of ^-sheets crossing the links of a plaquette. 
Iff  an even number of Z2-sheets crosses the links of the plaquette, then no Alice flux 
piercess the plaquette, but if an odd number does, then that means that an Alice flux 
doess pierce the plaquette. This observation allows one to define the Pf operator, 
whichh applied to a plaquette measures the presence of an Alice flux, 

PfPf = l(l-(-VZUa>)  • (3-15) 

wheree the four ai summed over belong to links U\, U2, U3 and U4, bounding a single 
plaquette.. Equations (3.12), (3.13) and (3.15) define our LAED model. 

3.2.22 The problem of locating monopoles (or  instantons) 

InIn this model of LAED in four dimensions, there are magnetic monopoles, in three 
dimensionss these appear as instantons. There are a few intricacies in detecting them 
comparedd to the usual compact U(l) lattice gauge theory. In this section we will 
explainn under what circumstances and how we can detect a monopole/instanton in 
LAED.. As our model of LAED has a lot of similarities with compact U(l) lattice 
gaugee theory, we try to use these similarities in determining the monopole content of 
aa configuration. 

Lett us first consider the case that there are no Alice fluxes present. Clearly, this 
correspondss to the limit of an infinitely large mass, m/ , for the flux. In this case 
theree may still be closed Z2 surfaces, but these surfaces are not physical and can 
bee moved around by making suitable local Z2 transformations. Suppose we want to 
determinee the monopole content of a specific cube in such a configuration. We would 
likee to see if a Dirac string ends in the cube, just as one does for compact U{\) lattice 
gaugee theory. We distinguish two cases, the first where no Z2-sheet crosses the cube 
off interest and the second where one or more Z2-sheets do cross the cube. 

Inn the first case we determine the monopole content of the cube just as in compact U{\) 
latticee gauge theory. In the second case we should construct a new or more general 
definitionn due to the presence of the Z2-sheets. Bearing in mind that a monopole 
iss a physical object which cannot be moved around by gauge transformations, one 
mayy use local Z2 gauge transformations to gauge the Z2-sheets away from the cube 
off interest. After this procedure we can again determine the monopole content by the 
methodss of compact U(l) lattice gauge theory. 

3Too avoid confusion we note that in the Z n literature one typically calls these objects vortices 
insteadd of fluxes. 
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Z2-sheetss can be gauged out of the cube of interest in several different ways. One 
wouldd expect this not to make any difference to the outcome of the measurement of 
thee monopole charge of the cube of interest, but it does! As we mentioned in the 
chapterr 1. monopoles of opposite sign belong to the same topological class. For the 
measurementt of the monopole charge of a single cube this means that one cannot 
distinguishh between positive and negative charges. To see that this is the case, let 
uss consider a cube which is not intersected by a Z2-sheet. If one performs a 'global' 
Z22 gauge transformation to all the links of this cube, this has the same effect as 
pullingg a Z2-sheet through the cube; all the U(l) degrees of freedom change sign, 
sincee TieMr3Ti = e~lAT3, see equation (3.14). Obviously this means that the outcome 
off  the measurement of the magnetic charge of the cube changes sign. Hence only the 
absolutee value of the magnetic charge is a locally gauge invariant quantity, i.e.. an 
observable. . 

Nextt we consider the situation where fluxes are present. Now we have two different 
typee of cubes, cubes which are pierced by a flux and cubes which are not. The latter 
aree obviously equivalent to the cubes we just discussed. Thus at this point we may 
restrictt our considerations to cubes which are pierced by fluxes. The statement is. 
thatt for a cube which is pierced by a flux, the notion of a gauge invariant magnetic 
chargee breaks down completely. Let us explain why this is the case. 

i — ' — r r 
•• 1 
11 1 

J-J-  - 1 
11 > 
11 / 

** 1 y* 

F i g u r ee 3 . 1 : A cube that is pierced by a flux which is the boundary of a Z2-sheet. 

Iff an Alice flux pierces through a cube, it is obviously not possible to gauge the 
Z2-sheett out of the cube. In figure 3.1 we depicted a cube pierced by a flux and 
thee Z2-sheet connected to the flux. If one tries to define Dirac strings through the 
plaquettess bounding the cube of interest one gets into all sorts of trouble. For the 
plaquettess where no flux pierces through one can up to a sign determine the (real 
magneticc flux through the) Dirac string. This sign problem seems to be a minor one, 
ass it appears to be for the monopole charge itself, but that is not true, because there 
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iss a separate sign ambiguity for the Dirac strings through each of the plaquettes and 
nott just a single overall sign, as was the case for a cube not pierced by a flux. This 
meanss that in such a cube, even the absolute value of the net magnetic charge is not 
ann invariant quantity. 

Yett another problem arises if one wants to define the Dirac string through a plaquette 
whichh is pierced by a flux, because an odd number of Z2-sheets cross the links bound-
ingg the plaquette. The problem basically follows directly from Alice electrodynamics 
itself,, where if one sweeps a Z2-sheet through a U(l) link field, this will  change sign. 
Soo even the sign of the individual U(l) link variables is not defined uniquely on a 
plaquettee which is intersected by an odd number of sheets, even if one looks only 
atat that particular plaquette. This obstruction to defining the magnetic flux through 
suchh a plaquette, is just a manifestation of what is generally called the obstruction to 
globallyy define a U{\) charge in the presence of an Alice flux in Alice electrodynamics. 

Howeverr not all is lost. The previous discussion only shows that it is impossible to 
determinee the magnetic charge of a cube, or more general of a volume, whose bounding 
surfacee is pierced by a flux. There is however no problem in determining the magnetic 
chargee of a volume which contains a loop of flux not crossing the boundary. 

i i 
i i 
i i 

A A 

F i g u ree 3.2: This figure shows an Alice loop with its Z2-sheet. The Z2-sheet is pierced by a Dirac 
string,, which changes sign/direction once it passes the Z2-sheet. In this configuration the Alice loop 
carriess a magnetic Cheshire charge. 

Too see this consider the configuration given in figure 3.2. A configuration is shown 
off  an Alice loop and a Dirac string piercing the Z2-sheet bounded by the Alice loop. 
Thiss figure demonstrates, that an Alice loop configuration is capable of carrying a 
magneticc charge. We note that there is no Dirac string coming from the flux itself (this 
iss actually possible and even necessary for the unit charged Alice loop). Remember 
thatt we are, for plaquettes not pierced by a flux, able to determine the Dirac string up 
too a sign. We also note that any attempt to measure the location of the monopole will 
fail.. It looks like that the cube where the the Dirac string pierces the Z2-sheet does 
containn a magnetic charge, but as the position of the sheet is gauge dependent this is 
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justt a gauge illusion. Yet. drawing a closed 2-surface around the loop there is a gauge 
invariantt quantity of magnetic flux emanating from that surface, i.e.. there is magnetic 
chargee inside. This magnetic charge is present, not as a localized or even localizeable 
quantity,, but rather as a global property carried by a closed Alice loop as a whole, 
inn which case one speaks of a magnetic "Cheshire" charge. And indeed, although one 
cann determine the magnetic charge carried by the Alice loop as a whole, one can not 
assignn this magnetic charge to any of the cubes inside the volume containing the loop. 
Thesee nonlocalizeable charges may in the continuum even be energetically favored. 
Wee wil l show in chapter 5 that 't Hooft-Polyakov type monopoles may decay into 
theirr Cheshire versions. 

Too see that a Cheshire charge configuration is physically relevant in our LAED model 
wee briefly study a configuration of a magnetic monopole and an Alice loop. We fix 
thee position of both objects by hand and only allow changes in the gauge variables 
whichh do not change the position of these objects. We want to show that also in 
LAEDD an Alice loop can carry a magnetic Cheshire charge. As the lattice we use has 
periodicc boundary conditions the total magnetic monopole charge is zero, i.e.. there 
iss also an anti-monopole present. In the limit of g —> 0, the naive classical limit , and 
influxinflux ~  ̂ 3C one does not expect there to be any other defects present. In this limit 
theree appear to be two possibilities: either the anti-monopole is located next to the 
monopolee or it is absorbed by the Alice loop in the form of a Cheshire charge. The 
latterr configuration is the one which we are interested in. In general it is a question of 
energeticss which configuration is preferred4, and the energy of the field configuration 
obviouslyy depends on the size of the Alice loop and its relative location with respect 
too the monopole. Now we will consider a configuration where the anti-monopole is 
absorbedd by the Alice loop. 

Inn this configuration the monopole and the Alice loop lie in one plane, the xy plane. 
Thee Alice loop is a square and the middle of one side is in front of the monopole. In 
figuree 3.3 we plotted the z component of the magnetic field just above and below the 
planee in the dual lattice in which the configuration of the monopole and the Alice 
loopp lies. The monopole and the Alice loop have not been plotted, but it should be 
clearr where they are, they live on the dual xyz lattice. The plot is in the special Z2 
gauge,, where the only Z2 sheet is the minimal surface bounded by the Alice loop. 

Fromm figure 3.3 it should be clear that the Alice loop carries the magnetic charge of 
thee anti-monopole as the z component of the magnetic field has a different sign just 
above/beloww the Alice loop than just above/below the monopole. We also checked 
thatt there were no other monopoles in the system and determined the magnetic charge 
off  the Alice loop, the Cheshire charge. We see that also in LAED the Alice loop can 
carryy a magnetic Cheshire charge and it makes clear that one can not define the 
positionn of a magnetic charge on an Alice string. 

Wee conclude, that once we enter a phase where there are very many Alice fluxes 
around,, detecting and localizing magnetic charge becomes a hairy business. The only 
usefull  thing one may still do, is to measure the fraction of monopole carrying cubes of 

44 If we had an extra bare mass term for the monopole we could simply send it to infinity to force 
thee anti-monopole to be absorbed by the Alice loop 
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Bzz just above the monopole 

F i g u ree 3.3: This plot shows the z component of the magnetic field just above and just below 
thee plane in which the monopole and Alice loop lie. It clearly shows that the Alice loop carries a 
magneticc Cheshire charge. 

thee number of cubes not pierced by an Alice flux. In view of these observations, when 
inn the following we talk about the monopole density, we mean the average absolute 
chargee per unpierced cube and when we talk about flux density we mean the fraction 
off  plaquettes pierced by an Alice flux, i.e., (P/), unless stated otherwise. 

3.2.33 Implementation of the model 

Althoughh formula (3.13) suggests that we should implement LAED using (Pauli) 
matricess we have not done so. Instead, we exploited the fact that the structure of our 
U(l)U(l)  K Z2 gauge theory is very close to that of the compact U{1). The only effect of 
thee Z2 degrees of freedom is the appearance of Alice fluxes and Z2-sheets. If there 
aree an odd number of a variables equal to one in a plaquette, then the plaquette is 
piercedd by a Z2 flux and the first term in the action is always zero irrespective of 
thee values of the A fields. This can be understood as a consequence of the fact that 
thee U(l) symmetry is globally frustrated in the presence of an Alice flux. If, in the 
contrary,, there are an even or zero number of a variables equal to one in a plaquette, 
thee a variables can be gauged away, changing only the sign of some of the A fields 
andd the action is just the action of compact U(l). In view of these observations, we 
havee for our simulations used the following simple action, which is equivalent to the 
actionn of formula (3.12), but does not require any matrix calculations. 

gg p p 

wheree F is the F of f/(l ) after the Z2 fields have been gauge transformed out of the 
plaquette,, which is always possible if Pj = 0. 
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Wee have investigated this model, using a combination of a Monte Carlo method for 
thee At/(x) variables, and a heat bath method for the av(x) variables. We examined the 
modell  on a periodic hyper cubic lattice of size 10d. where d is the dimension. Although 
wee wil l not go into detail on the order of the phase transitions we mention that it 
hass been suggested [72]. that the order, oddly enough, would depend on the imposed 
boundaryy conditions. Three dimensional ED has attracted a lot of attention, the 
lastt few years, due to its potential applicability to models of high Tc superconductors 
[73.. 74. 75]. 

Ourr LAED model contains a pure compact £7(1) and a Z2 gauge theory in different 
limit ss of the model. In the limi t of nij —> oc the model is equal to pure compact 
£7(1)) gauge theory. In the limit off/2 —> cc while keeping rnj/g2 finite the model is 
equall  to Z2 gauge theory. Before we proceed we like to mention a few things about 
thee Z2 gauge theory to avoid confusion later on. In Z2 gauge theory there is only 
onee parameter, in the Z2 limi t of our model this parameter is rrif/g2. Normally, the 
Z22 gauge theory is only studied for positive values of its parameter. However, in 
ourr situation wTe are also interested in the region where m j (g2 becomes negative. In 
thee pure Z2 gauge theory the region of positive and negative values of the parameter 
formm a mirror image of each other. Note that this mirror map is different from the 
usuall  duality that is also present in Zn type gauge theories. This mirror symmetry 
holds,, at least, for a hyper cubic lattice, where one may map the negative coupling 
sidee on the positive side if one replaces "fluxes'" by "no-fluxes" in every sense. So 
"no-fluxes""  are the places where "no flux" pierces through a plaquette, i.e.. they are 
thee holes in the flux condensate. The model can equally well be described by either 
off  the two objects. This mirror symmetry follows from the fact that for a hyper cubic 
latticee both objects, fluxes and no-fluxes, form closed loops in three dimensions and 
closedd surfaces in four dimensions. This shows that the regions of positive values and 
negativee values of rrif/g2 can be naively mapped onto each other. As we will show, in 
LAEDD the Alice mirror symmetry is broken by the interactions with the £7(1) gauge 
fieldss for finite values of g2. 

3.33 The phase diagram in three and four dimensions 

Inn this section we present various numerical results for the LAED model. Because we 
havee two types of topological objects in the theory, which may or may not condense, 
onee may in principle expect four phases. It is quite easy to anticipate where in the 
parameterr space the four phases could occur, as we have indicated in table 3.1. 

Inn figure 3.4(a) we have plotted the flux density and the monopole density in four 
dimensions.. It is clear that various interesting transitions do occur. Using a hysteresis 
typee of analysis we could determine the order of these transitions, and we found that 
alll  but one. are of first order. Only the transition from the phase with only Alice 
fluxess condensed, to the phase where both Alice fluxes and monopoles are condensed, 
iss different. In fact, it does appear not to be a phase transition at all, but rather a 
crossoverr phenomenon, see also section 3.4.4 and the discussion in section 3.4.5. 
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gg22 small 

gg22 large 

rrifrrif  small 

Fluxes s 

Fluxess and Monopoles/ 
Instantons s 

rrifrrif  large 

Noo Condensate 

Monopoles/ / 
Instantons s 

Tablee 3.1: The four phases of LAED. 

Inn figure 3.4(b) we have plotted some contours for the Alice flux and monopole densi-
ties.. The curves indicate where the first order phase transitions [76, 77] take place, but 
alsoo show the change of the first order monopole transition if no fluxes are condensed, 
too the crossover monopole transition if fluxes are condensed. 

(a)) (b) 

Figuree 3.4: 
(a):: The 4-dimensional flux and the monopole densities are plotted as a function of rrif  and g2. The 
fourr different phases of table 3.1 can be clearly distinguished. 
(b):: A plot of some specific monopole and the Alice flux density contours in four dimensions. We 
identifyy the four phases of the model. The lines denoted B mark the transition involving the Alice 
fluxes,fluxes, where to the left of B the fluxes are condensed. The lines A correspond to a second phase 
transitionn involving the fluxes. The lines C denote the monopole transition, notice the splitting of 
thee height lines once the Alice fluxes are condensed. 

Notee that in figures 3.4(a) and 3.4(b) we have only plotted the monopole density up 
too the 'second' flux density transition, line A in figure 3.4(b), where the flux density 
jumpss to about one and only very few cubes (if any) are left where no flux pierces 
through,, making the fluctuations for the monopole measurement very large. 

Thoughh in our limited model we find all of the anticipated four phases, each charac-
terizedd by some condensate, we do not find all possible transitions from one phase to 
another.. There is apparently no transition from the phase with condensed monopoles 
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andd no fluxes to the phase with condensed fluxes and no monopoles. 

Inn appropriate limits of the model we recover the results for the lattice gauge theories 
off  compact 1/(1) and Z2 separately, consistent with equation (3.16). The pure U(l) 
gaugee theory arises in the limi t of mf —> oc. where the Alice fluxes are suppressed 
andd the only feature reminiscent of the Z2 part of the gauge theory are pure Z2 gauge 
transformations,, which of course do not affect any of the physics. In this limi t we 
thereforee expect only the transition corresponding to monopole condensation. The 
puree Z2 gauge theory arises in the limit of g2 —» oo, while keeping rrif/g2 finite, which 
iss usually only studied with riif/g2 > 0. We verified that the limiting behaviors of 
thee results of our simulations are in agreement with the known results of the Z2 and 
[/(l )) gauge theories [78, 79, 80. 81], see also [82] and references therein. 

(a)) (b) 

Figuree 3.5: 
(a):: The 3-dimensional flux and instanton densities are plotted as a function of mj and g2. The 
fourr different phases of table 3.1 are clearly distinguishable. 
(b):: In this figure we plotted some specific height lines of the instanton and the Alice flux density 
inn three dimensions. We identify the four phases of the model. The lines B correspond to the 
condensationn line of the Alice fluxes, to the left of it the fluxes are condensed.The lines A correspond 
too a second phase transition involving the fluxes Line A. In comparison with figure 3.4(b) there is 
noo line C. In three dimensions the instanton condensation is always a crossover. 

Inn figure 3.5(a) we plotted the results for the instanton and Alice flux density in three 
dimensions.. Also in this case we encounter all four phases of the theory, but the 
transitionss are of different order. The instanton condensation is always a crossover 
andd the flux condensation appears to be of second order, which it certainly should 
bee in the Z2 gauge theory limi t [79]. We did not determine the order of the flux 
condensationn for small g2. 

Inn figure 3.5(a) the transition for small values of g2 appears to become a first order 
phasee transition, but this is mainly due to the fact that we use rrif  and g2 to parame-
terizee the model, whereas the, in some sense more natural, choice of (m/ + l)/g2 and 
1/g1/g22 could give a different picture, which is also true for the four dimensional case. 
Wee wil l come back to this point in section 3.4.5. 

Inn figure 3.5(b) we, just as in figure 3.4(b), plotted specific height lines of the instanton 
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andd Alice flux density. These lines show the location of the Alice flux phase transitions 
andd divide the parameter space up in the four different regions linked to the phases. 
Againn in the U(l) and Z2 limit we recover the results of these pure gauge theories 
separately. . 

Inn three dimensions the flux density becomes very high before the second phase tran-
sitionn of the fluxes, line A in figure 3.5(b). occurs and consequently the fluctuations 
off  the instanton density measurements become very large in a larger region. 

3.44 Analytic and other approximations 

LAEDD contains both pure compact U{\) and Z2 gauge theory. As both of these theo-
riess have been studied thoroughly over the years, our aim is not to make estimates for 
thesee models, but rather to treat their (numerical) results as known and focus on the 
interactionn of these two models in LAED. To this end we give (analytical) approxi-
mationss of some characteristic quantities of the model. We subsequently discuss the 
averagee action of unpierced plaquettes5, the flux condensation lines, the contours of 
constantt flux density in the region between the two flux condensation lines A and B 
andd the monopole/instanton density. We conclude this section with a brief discussion 
off  the approximations we made. 

3.4.11 The average action of unpierced plaquettes 

Too approximate the average action per unpierced plaquette, —(cosF), we split the 
parameterr space of the model into two regions, a region where the Z2 fluxes do not 
condensee and the region where they do. 

Inn the region where the Z2 fluxes do not condense we approximate the theory by a 
puree U(l ) gauge theory (in the present context considered to be given) and — (cosF) 
iss approximated accordingly, i.e., we ignore the effect which the few Alice fluxes have, 
thatt may be present. In the region where the fluxes do condense and the flux density is 
large,, we approximate the average action of unpierced plaquettes by the average action 
off  a single plaquette. The U{\) link variables are irrelevant to plaquettes pierced by a 
flux,flux, as follows from formula (3.16). In the limi t of a high flux density the plaquettes 
whichh are not pierced by a flux become isolated in the sense that the value of the 
U{\)U{\)  degrees of freedom have almost no effect on the surrounding plaquettes. Thus 
wee can approximate — (cos F) in the condensed phase by: 

(cosF)*(cosF)* J° I*  , c<w, =-fAr • (3.17) 

wheree the functions IQ and I\ are modified Bessel functions. 

5 Thee total average action per plaquette is easily determined by this result and the flux density. 

57 7 



Chapterr 3. Lattice Alice electrodynamics 

Thee difference between these two limits, the single plaquette and the U(l) limit , 
vanishess for large g2. In four dimensions, for small g2, the fraction of pierced fluxes 
typicallyy is very large in the flux condensed phase. Thus we may expect that the two 
limit ss describe the model for any value of g2. In three dimensions there is no such 
jumpp in the flux density and we expect an intermediate region, for small g2. to be 
present. . 

Condensedd fluxes limit 

(a)) (b) 

Figuree 3.6: 
(a):: The average plaquette action — (cosF) in four dimensions. Al l the data points, i.e., including 
thosee corresponding to different values of rnr and g2, lie either on the pure U(l) line or (almost) on 
thee approximation for condensed fluxes phase. The division is so clear due to the strong first order 
Z22 transition, i.e., in the flux condensed phase the flux density is fairly high for small g2. 
(b):: The average plaquette action — (cos F) in three dimensions. Here the transition from the one 
regionn to the other is much more smooth, because the Z2 transition in three dimensions is only of 
secondd order, also the pure U(l) result deviates much less from the flux condensed limit . The points 
outsidee the region between the two limit s are points where the flux density is very high, implying 
thatt the fluctuations become very large. 

Inn figure 3.6(a) we plotted —(cosF) as a function of g2 in four dimensions. We see 
thatt the data splits up into two lines. Part of the data points lie on the pure U(l) line 
whilee the other part lies (almost) on the single plaquette line. This strict separation 
off  the data points in these two sets is due to the strong first order behavior of the 
Z22 flux condensation for small g2. We see that each point is very well described by 
eitherr the first or the second approximation indeed. 

Inn figure 3.6(b) we plotted — (cos F) as a function of g2 in three dimensions. The 
twoo approximations now generate the boundaries between which the data points lie. 
Thee fact that there is no clear division of the data in two sets in three dimensions, is 
duee the Z2 phase transition being of second order. The flux density grows gradually 
acrosss the transition region. That points appear also outside the region bounded by 
thee two approximations is due to very large fluctuations when the flux density is high, 
i.e.,, when there is a small number of unpierced plaquettes. 
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3.4.22 The condensation lines of the Alic e fluxes 

Too approximate the location of the Alice flux condensation lines in the parameter 
spacee of the model we make use of an action. S. versus entropy. Ent. argument. The 
weightt factor of a configuration is determined by eEnt~s. The important quantity is 
thee relative weight factor, e

AEnt~^s
; between configurations. Assuming that Ent — S 

off  the object that condenses is additive with respect to the so called background, we 
findfind that AEnt — AS — Ent0^ject — S0bject- Now typically the location of the critical 
pointt can be approximated by Ent0t,ject — S0bject. 

Ass we saw in figures 3.4(b) and 3.5(b) there are two flux condensation lines in LAED. 
Inn the Z2 gauge theory these are just each others mirror image. For finite g2 this 
symmetryy between the two condensation lines is broken due to the interactions with 
thee U{\) fields. We may still compare them, in the sense that at the first transition 
line.. B, the fluxes condense, while at the other, A, the "no-fluxes" condense. The 
couplingg between the Z2 and the U{\) fields manifests itself as follows: if a flux is 
createdd then a piece of the U(l) fields is "eaten" away in the sense that the U(l) 
fieldsfields become irrelevant because they are projected out and do not affect the action 
off  the plaquettes involved. This is an effect that we have to take into account, and as 
wee shall see, this can be done very accurately for the no-flux condensation line, but 
onlyy partially for the flux condensation line. 

Thee four  dimensional case: 

Firstt we determine the transition line of the no-flux condensate with the help of the 
actionn versus entropy argument. When a no-loop (i.e., a loop of no-flux) is created, 
thee plaquettes through which it pierces carry a 17(1) action. We determine the no-flux 
densityy and will assume that the contributions of the U(l) field of a plaquette are 
independentt of each other. We then approximate the location of the condensation 
linee by assuming that the average over the U(l) degrees of freedom in the relative 
weightt factor for a plaquette is equal to one. This gives us: 

wheree cn\ denotes the given value of the condensation point of the no-loops in the 
puree Z2 gauge theory limit and we used AS = — ^f — £2r^" per plaquette. We note 
thatt the value of cn/ equals to minus the value for the loops, Q, as follows from the 
mirrorr symmetry of the Z2 gauge theory, as we discussed at the end of section 3.2.3. 
Fromm now on we will adopt the notation cn[  = —C^D{= —Q). 

Formulaa (3.18) leads to the following equation for the transition curve in the (rrif.g2) 
plane: : 

mmff = -g2c4D-g2lnIo(~J . (3.19) 

Ass can be seen in figure 3.7(a) the approximation of the no-loop condensation line is 
veryy good. 
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Wee can try to do the same for the Alice loop condensation line. We use again 
EntobjectEntobject = S0bject. but are now not able to include all contributions. The entropy 
andd action contribution of the loop are clear, one thing that changes in equation 
(3.19)) is the sign in front of the first term on the r.h.s.. The problem is a reliable 
estimatee of the U(l) contribution. Obviously we may no longer assume that the U(l) 
contributionn of each plaquette is independent. On the other hand it is known that 
thee correlation length decreases exponentially in the confining phase, which implies 
thatt we should expect this approximation to still work if g2 > gf. ~ 1. 

Wee can also approximate the Alice loop condensation line in a slightly different way. 
wheree we use the contribution to the action of the U(l) fields as given by the pure 
U(\)U(\) theory and ignore the change in the entropy due to the U(\) fields. For the 
actionn we then take: 

S«^^  = ( F + T ) '  (3'20) 
withh (cosF) the average of cos F for given g2 and is equal to (cosF) of pure U{\) 
gaugee theory as follows from the previous section (which is evaluated numerically and 
inn the present context considered as given). This leads to the following approximation 
forr the position of the condensation line for the loops: 

nifnif =g2c4D-(cosF) . (3.21) 

Wee note that in the pure Z2 limit , the second term on the r.h.s. of equations (3.19) 
andd (3.21) becomes zero and that C^D an(È its three dimensional analogue C-^D follow 
fromm pure Z2 gauge theory results as mentioned before. In fact, they are even known 
analyticallyy [78]. In the limit of g2 —> 0 the only state that is allowed, is the global 
minimum,, which means that the condensation lines need to go to m ƒ = — 1 for g2 —> 0. 
Thiss is true for both approximations. 

Inn figure 3.7(a) we have plotted the approximations for the condensation lines in four 
dimensionss and some specific height lines, which characterize the position of the phase 
transitions.. WTe see that the approximation of the condensation of the no-loops is very 
good.. For g2 > 1 the same method works also very well for the loop condensation 
line.. The other approximation for the loop condensation line does not work as wTell. 
butt we qualitatively understand why. 

Th ee three dimensional case: 

Inn three dimensions we follow the same strategy. We repeat the arguments given for 
thee four dimensional case, leading to exactly the same equations (3.19) and (3.21), 
wheree we only have to replace the four dimensional quantities by their three dimen-
sionall  counterparts. In particular  is replaced by C^D and (cosF)4£> is replaced by 
(cosF)(cosF)3D3D. . 

Inn figure 3.7(b) we plotted the resulting condensation lines for the three dimensional 
theory.. The plot shows some specific height lines which characterize the phase tran-
sitionss as well as the approximations for the lines where the phase transitions should 
occur.. Again we find that the approximation for the no-flux condensation line is very 
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(a) ) (b) ) 

Figuree 3.7: 
(a):: A plot of the phase transition lines, A and B, in four dimensions and of the approximations we 
made.. The approximation for the no-loop condensation line, la, is very good. For g2 > 1 the same 
approximationn works also very well for the loop condensation line, lb, while the other approximation, 
2,, deviates in a qualitatively expected way from the loop condensation line. 
(b):: A plot of the phase transition lines, A and B, in three dimensions and of the approximations we 
made.. The approximation for the no-flux condensation line, la, is very good. For g > 0.6 the same 
approximationn works also very well for the flux condensation line, lb, while the other approximation, 
2,, deviates in an expected way from the flux condensation line. 

good.. The approximation of the analogue of equation (3.19) is very good for larger 
valuess of g2, whereas the deviation of the other approximation to the flux condensation 
linee is qualitatively understood. 

3.4.33 Contours of constant flux density 

Inn this subsection we will approximate the flux density in the region between the two 
fluxflux condensation lines, by assuming that in this region the correlation lengths of both 
fieldss are zero, so that it suffices to look at the single plaquette. 

Thiss means that we get the same answer for the three and four dimensional case. The 
fractionn of plaquettes being pierced by an Alice flux, pf, can be approximated by: 

Pf Pf 
aaentfentf — Sf 

-a'' + *enU! C € e~a' aaentfentf — S 
(3.22) ) 

Usingg ent f = entnf and Sf thiss gives: 

rrtfrrtf  = g2 In Pf Pf 
Pf Pf 

gg22ln ln 
dF_ dF_ 

2TT~ ~ 
(3.23) ) 

whichh leads to: 

^(i^£L\-^(^(i^£L\-^(lRlR(iy\ (iy\ 
VV Pf ) VV  WJJ 

(3.24) ) 
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Notee that in the limi t g2 —> 0 we find that all the height lines meet at rrif  = — 1, just 

ass one should expect, whereas in the Z2 limi t one obtains that ^f = In ( —^- ). 

Inn four dimensions, within the region of the two condensation lines, which is the 
regionn we are probing, our approximation works very well, see figure 3.8(a). In three 
dimensionss the approximation does not work in the whole region, but works very well 
betweenn the height lines 0.7 and 0.3, see figure 3.8(b). 

m,, mf 

(a)) (b) 

Figuree 3.8: 
(a):: Contour lines of the flux density in four dimensions and their approximations. We plotted 
from,, left to right, the height lines: 0.9,0.8, ••• , 0.2,0.1. The approximations for the height lines 
0.6,, • • • , 0.4 are perfect up to the point where they reach the condensation line. 
(b):: Contour lines of the flux density in three dimensions and their approximations. We plotted 
from,, left to right, the height lines: 0.9,0.8, ••• ,0 .2,0.1. The approximations for the height lines 
0.7,, • • • , 0.3 are very good up to the point where they reach the condensation line. 

Thee approximation of the flux density, equation (3.24), can be split into two parts. 
Thee first term on the right hand side is due to the Z2 degrees of freedom. In the Z2 

limitt this term can be compared with pure Z2 gauge theory, which we did not use as 
inputt in this estimate. The second term on the right hand side is due to the U(l) 
degreess of freedom. Moving away from the 0.5 height line makes the approximation of 
Z22 term less good while moving from the 0.9 height line to the 0.1 height line makes 
thee U(l) term less good. The validity of the (7(1) term can be seen by fitting the 
Z22 part of the approximation with results from pure Z2 gauge theory. This gives a 
perfectt fit for all values g2 for a high flux density, but as one expects, fails in the 
regionn of low flux density and small g2. 

3.4.44 The monopole/instanton density 

Inn this subsection we will approximate the monopole/instanton density. In the phase 
wheree the Alice fluxes do not condense the monopole condensation line and height 
liness are easily understood. In this phase there are almost no fluxes, and ignoring 
thesee the model becomes a pure U(l) theory and one expects the monopole density 
too behave accordingly, allowing us to use the known numerical results. 
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Figuree 3.9: 
(a):: A plot of the monopole density. Just as in figure 3.6(a) all the data points, i.e., including those 
forr different values of m.f and g2, perfectly match the two different approximations. The monopole 
densityy is or equal to the pure (7(1) monopole density or is (almost) equal to the approximation for 
thee condensed fluxes phase. 
(b):: A plot of the instanton density. The instanton density lies between the two different approxi-
mations.. That the data does not jump from one line to the other line is due to the fact that the Z2 
transitionn is much softer in three dimensions. The points outside the region between the two limit s 
aree points where the flux density is very high, implying that the statistics is bad. 

Inn the phase where the Alice fluxes do condense we may approximate the monopole 
densityy by the monopole density of a single cube. That this can be done follows 
basicallyy from the results of sections 3.4.1 and 3.4.3. The cubes not pierced by any Z2 

fluxflux are in the condensed phase isolated in the sense that the (7(1) degrees of freedom 
off  the links have hardly any effect on the surrounding plaquettes. This makes it safe 
too use the single cube approximation in the phase where the fluxes have condensed. 
Wee determined the single cube density by using random link values, with which we 
determinedd the energy of the cube, the charge inside the cube and the entropy of the 
configuration.. With this information we calculated the monopole density for different 
valuess of g2 and compared it with the data points we found. This approximation is 
thee same for the three and four dimensional model, though in three dimensions these 
aree of course instantons. 

Justt as in section 3.4.1 one expects the two approximations to describe the model very 
welll  in four dimensions, but in three dimensions one expects an intermediate region. 
Thiss is exactly what we find, see figures 3.9(a) and 3.9(b). Again we note that the 
pointss outside the region bounded by the two approximations are points where the 
fluxflux density is very high, i.e., the fluctuations become very large. 

3.4.55 Discussion 

Thee approximations we made in the last few sections describe the model fairly well. In 
fourr dimensions the approximations work extremely well. The phase with condensed 
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fluxesfluxes can apparently be understood as a phase where the correlation lengths of the 
fieldsfields are vanishingly small. In three dimensions the division of the phase space is 
nott as clear, but our approximation of the height lines of the flux density does imply 
aa region where the correlation length of both fields is also vanishingly small. If the 
Alicee fluxes do not condense the theory is very well described by a pure compact U(l) 
gaugee theory. 

(m,+1)/g22 <m,+ 1Kg2 

(a)) (b) 

F i g u ree 3.10: The phase diagrams of four, (a), and three, (b), dimensional LAED in the new 
parameters.. The details and implications are explained in the text. 

Ass mentioned before, the fact that all the contour lines of the flux density come 
togetherr at m; = — 1 for g2 —» 0, does not mean that the phase transition becomes 
orr stays first order. It is mainly due to the choice of parameters that all the contour 
liness of the flux density come together. If one uses the in some sense more natural 
parameterss (rrif  + l)/g2 and l/g2. it is not at all clear that this will  happen. This is 
illustratedd in in figure 3.10, where we have plotted the phase diagram of the model in 
termss of the conventional parameters. The crossover transitions are not marked, they 
aree associated to regions with different condensates not separated by a phase transition 
line.. Although there is a second flux transition line, the "no-flux" condensation, there 
iss no monopole/instanton transition at this point. We deduce this from the results 
off  section 3.4.4. That we are not able to determine the monopole/instanton density 
theree is due to the fact that the fluctuations are very large in that region of parameter 
space.. However one would expect the single cube approximation of section 3.4.4 also 
too be valid in that region of parameter space. 

Thee position of the monopole transition line, see figure 3.10(a) is also following from 
thee results of section 3.4.4. We pointed out that the monopole data splits up into two 
regions,, the regions where the fluxes have or have not condensed. This means that 
thee (7(1) monopole transition line splits up and follows the (first) flux transition line. 
Wee have drawn it all the way along this flux condensation line, but it is not yet clear 
whetherr there is always a monopole transition. For g2 —• 0 and g2 —> oc the difference 
inn the monopole density between the two regions becomes smaller and smaller. 
Too some extend the same is true for the instanton density, see figure 3.10(b). Although 
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inn that case there is an intermediate region, see section 3.4.4. In this region the 
instantonn density grows with increasing flux density, and since in this region the 
fluxflux density has a transition one would expect also the instanton density to show a 
transition.. The data also appears to imply this, but is not shown here. Again it is not 
clearr what happens to this transition in the limits of g2 —+ 0 and g2 —> oc. In these 
limit ss the difference of the instanton density between the regions where the fluxes 
havee or have not condensed goes to zero. 

3.55 Conclusions and outlook 

Inn this chapter we have studied Alice electrodynamics on a lattice, with a model that 
allowss the formation of magnetic monopoles and Alice fluxes. It includes the usual 
Wilsonn lattice action for the U(l) gauge theory and has an extra bare mass term for 
Alicee fluxes. This term suffices to reach all four phases of Alice electrodynamics given 
inn table 3.1. 

Wee have determined the regions in phase space corresponding to the four different 
phasess of LAED and presented results on some measurable quantities; the monopole 
density,, the flux density and (cosF). We then approximated the locations of the flux 
andd the so called no-flux condensation line in the phase diagram of the model, both in 
threee and four dimensions. These approximations worked very well except for the flux 
condensationn line for small values of the gauge coupling. The other approximations 
wee made also all work quite well, with the remark that in three dimensions there is 
ann intermediate region which we have not yet investigated. We successfully compared 
ourr numerical results with approximations of the flux density between the flux and the 
no-fluxx condensation line, the monopole/instanton density, (cos F) and the position of 
thee monopole condensation line. The monopole condensation becomes a crossover in 
thee region where the Alice fluxes are condensed. In section 3.4.5 we gave the resulting 
phasee diagrams. 

Itt would be interesting to examine the fate of the phase transitions in the monopole 
andd instanton density induced by condensing Alice fluxes for small and large values 
off  g2. For small values of g2 it is also not clear if the two flux transitions merge or 
nott in the parameter space with the coordinates (m/ + l)/<?2 and 1/g2. 
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Chapterr 4 

Dynamicall  vacuum selection 

Inn the last two chapters we introduced several models containing an AED phase. In 
thee coming chapters we will study some effects which are related to the Alice effect 
inn AED. However in this chapter we will investigate a generic feature of field theories 
withh flat directions in their potential and a non-trivial topology. The common factor 
off  the coming three chapters is the mixture of topological defects and a notion of 
instability. . 

Inn this chapter, which is based on [83], we show that in field theories with topologi-
callyy stable kinks and flat directions in their potential, a so-called dynamical vacuum 
selectionn (DVS) takes place in the non-trivial, soliton sector of the theory. We explore 
thiss DVS mechanism using a specific model. For this model we show that there is only 
aa static kink solution when very specific boundary conditions are met, section 4.2.2, 
veryy similar to the case of vortices in two dimensions. In the case of other boundary 
conditionss a scalar cloud is expelled to infinity, leaving a static kink behind, section 
4.2.4.. Other circumstances under which DVS may or may not take place are discussed 
ass well. 

4.11 Introduction 

Inn this chapter we examine topological defects in theories with flat directions in their 
potential.. Flat directions in the scalar potential are quite natural in the context of 
supersymmetricc models. As was noticed in [54], in spite of the fact that a model 
doess allow topologically stable vortices, not all admissible boundary conditions in a 
givenn model with flat directions are compatible with the existence of a static vortex 
solution.. In [55] such vortices in theories with flat directions were studied, and it 
wass shown that in the presence of a topologically stable vortex, a specific vacuum 
iss dynamically selected. In this chapter we focus on the one dimensional case and 
showw that also for theories in one dimension with flat directions not all boundary 
conditionss allow the existence of a static kink. We will show that a specific vacuum is 
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dynamicallyy selected in the presence of such a kink or domain wall. Although we will 
usee a specific model, it will become clear that dynamical vacuum selection (DVS) is 
aa general feature for theories with flat directions in one dimension. 

Too be a bit more specific we wil l discuss a class of models which have two copies of a 
scalarr Higgs field and a potential of the following form. 

V(ÓI.4>2)V(ÓI.4>2) = ^{4-4-f2)2  (4-1) 

inn analogy with the model studied in [55]. 

Inn section 4.2 we focus on the one dimensional model, in section 4.3 we comment on 
thee two dimensional model which was discussed in [55]. and in section 4.4. we show 
withh the help of a Bogomolny [66] type argument that there is no DVS in the three 
dimensionall  case, as was already anticipated in [55]. We end the chapter with some 
conclusionss and a brief discussion. 

4.22 DVS in 1 dimension 

Inn this section we investigate DVS in a specific one dimensional model. First we in-
troducee the model, subsequently we prove that there is only a static kink solution for 
aa very specific non trivial boundary condition out of a continuum of allowed bound-
aryy conditions. Finally we investigate the kink dynamics if this specific boundary 
conditionn is not met and we find that indeed the DVS mechanism becomes operative. 

4.2.11 Th e model 

Wee consider a model with two real scalar fields and a potential which allows for the 
formationn of topologically stable kinks and which furthermore features a flat direction. 
Thee model is given by: 

CC = ƒ dx | i (9M0!)2 + \ (d^2f -\(4>\-4- J2) ' } , (4-2) 

withh 4>i and 62 two real scalar fields. 

Itt is quite clear that this model contains topologically stable kinks, which have to 
satisfyy the spatial boundary conditions ) = y/f2 + 2 and 0i(=Foo) = 
—— \ / / 2 + foi^oc)2. Note that the boundary values of 4>2 do not influence the topo-
logicall  charge of the kink. Thus there is a two parameter class of topologically stable 
kinkss present in this model, labeled by (<fo(—oo);<fo(+oc>))- In the next section we 
investigatee the class of static kink solutions in this model when real space is taken 
infinite.. This class as we will show is in fact very small. 
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4.2.22 Static kinks 

Naivelyy one might expect to be able to find a static kink solution (assuming real space 
too be infinite) for any set of the boundary values of 02 in the topologically nontrivial 
sector.. However this turns out not to be true. What we will show is that there is only 
onee very specific set of boundary values of <f>2  for which a static kink solution exists. 
Too obtain a static configuration, we set the time derivatives equal to zero and extrem-
izee the resulting Hamiltonian. The Hamiltonian of this model can be interpreted as 
thee action of a point particle in a two dimensional potential, and we may analyze the 
systemm through this mechanical analogue. More explicitly, after making the following 
identifications:: x —> t, 4>i —• x and 02 —> y, we get the following action: 

SS = jdt^-idtx)2 + \{dtyf + \{x*-y*-f) 2} . (4.3) 

Thiss system corresponds to a point particle moving in the inverse potential: V(x, y) = 

Thee problem of finding a static kink solution is now translated to finding a solution 
too the equations of motion of the point particle, which moves from one point on one 
linee of maxima of the potential, x =  f2 + y2, at t —> —oo to an other point on 
thee other line of maxima, x = T\/f2 + y2, at t —> oo (see figure 4.1). 

F i g u r ee 4 . 1 : The two dimensional potential for the point particle. The only path satisfying the 
desiredd boundary conditions is the path with y(t) = 0. This path represents the only static kink 
solutionn in an infinite space, for which <f>2(x) = 0. 

Att t —> — oo the particle should be at rest in one of the maxima of the potential. 
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Att t -H> DC the particle needs to be at rest in one of the other set of maxima of the 
potential.. Obviously there is only one path which satisfies these boundary conditions 
andd that is the path with y = 0. Any path starting with y(t —• — oc)  ̂ 0 in one 
off the maxima of the potential will never again reach a maximum of the potential. 
Inn such a case it is easy to prove that the kinetic energy of the particle associated 
withh component of the motion in the y-direction will increase monotonically in time 
andd therefore the particle can never climb out of the potential well again, i.e.. will 
nott be able to satisfy the boundary condition at t —> oc. Translating this back to 
thee kink solutions, this means that one can only have a static kink solution if the 
boundaryy conditions of 02 are 02(i^c) — 0 and moreover for the static solution we 
gett <i>2{x)  = 0. Thus the only static kink solution for this model in an infinite space 
iss equal to the usual kink solution. 

AA crucial step in deriving this result was the infinite size of real space. If space is finite 
thee argument changes dramatically. In the mechanical analogue this would mean that 
thee particle can have an initial velocity (and direction of this velocity), so that the 
entiree class of boundary configurations is allowed. 

AA natural question to ask is. what happens if the boundary conditions of 02 are not of 
thee specific form ^ ( i ^ c ) = 0. As we just demonstrated, there can not be a static kink 
solutionn with these boundary conditions and we are led to ask how the configuration 
willl develop in time. Later on we will study the dynamics of such a configuration and 
findfind that DVS will take place. Before we turn to this question we take a closer look 
att the structure of the static kink solutions in a finite space and at how the boundary 
conditionss effect the core structure of the kink. 

4.2.33 Kink s in finit e space 

Inn this section we study static kink solutions in a finite space with fixed boundary 
conditions.. These kinks correspond to the so called restricted instantons in quantum 
mechanicss [84]. We first want to introduce the massless modulus field, z. which is 
off paramount interest to us in the rest of the chapter. In the broken phase of the 
theoryy this field corresponds to the degree of freedom in the flat direction of the 
potential.. On the vacuum manifold we have 4>\ — 0% = f2. We can parameterize the 
degreee of freedom in the flat direction of the potential by writing: 0\ — ƒ cosh u and 
0202 — /s inhw. To get the canonical kinetic term we change from u to the modulus 
fieldfield z. which is given by: 

rr n n 

zz = f du'Vcosh2u' . (4.4) 
Jo Jo 

Thiss field z obeys the free massless equations of motion. From the construction for 
thiss specific case it is evident that there is always a massless mode if there is a flat 
directionn in the potential. The dynamics and statics (energy) of this massless mode 
aree the crucial ingredients in DVS. They allow one to show directly, that there can 
bee DVS in one and two dimensions but not in three or higher dimensions. 
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Lett us return to the restricted kinks. It is not hard to anticipate what the solution 
off  a kink will look like if the size of the space, ZRoc, is much larger than the core 
sizee of the kink, 2RC. Consider the configuration of a kink of size 2RC, where outside 
thee core of the kink the vacuum manifold is reached exponentially fast. To this kink 
wee add a tail at each side in which the scalar fields stay in the vacuum manifold but 
movee to the prescribed boundary value at x = X. In the limi t of R  ̂ —> oo we 
shouldd recover the unique static solution we found before. Thus the kink solution we 
shouldd use to describe the core of the kink is this special case where 02 = 0. 
Soo we approximate the restricted kink solution by a configuration which is a super-
positionn of two linear tails and a kink with 02 = 0. Clearly the tails and the kink 
independentlyy satisfy the field equations, so it is only due to the overlap that the field 
equationss are not quite satisfied. The violation to the equations of motion due to the 
overlapp is proportional to co in the action, and this justifies the approximation 
wee made in the limi t of small 00. With the help of a relaxation program we 
numericallyy determined the static kink solution for various values of the parameters, 
seesee figure 4.2. In all our figures and numerical simulations we take A = ƒ = 1, any 
otherr values of A and ƒ follow by rescaling the fields and the space coordinate. 

00 10 20 30 40 50 60 
x x 

F i g u ree 4.2: The fields for the restricted kinks for different values of ROQ. The values of Roo are 
Rooo = 10, Roo = 50 and Roo = 250. The boundary conditions on <j>2  are  = . The 
fieldsfields for negative values of x just follow from symmetry of the configuration and are not plotted. 
Thiss figure clearly shows the separation of the solution in the kink and a tail in the limi t of small 

Usingg these approximate restricted kink solutions we can also determine the position 
off  the kink with respect to the boundaries of the space. We can get an estimate by 
minimizingg the energy in the tails. Both tails want to spread as much as they can to 
lowerr the energy, so if there is an asymmetry in the boundary conditions of 02, this 
wil ll  certainly have an effect on the position of the kink. We approximate the position 
off  the kink by minimizing the sum of the energy of the two tails, which is given by: 

zz22 z2 

E ^  ̂ = j  ̂+ ^ : > (4-5) 
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withh R+ + R- = 2RX and  the values of the modulus field at the boundaries of 
space. . 

Minimizingg this energy under the restriction R+ + i?_ = 2i?oc gives: 

i L L 
11 + 

II  Z- I  J-L0C iL L R-R-
11 + 

;R? ;R? (4.6) ) 

withh R+ and R- the distance between the core of the kink and the +Roc and — Rx 

boundaryy of space respectively. Note that the position of the kink in this estimate 
doess not depend on the relative sign between the boundary conditions on 02 at +RX 

andd —Rcc- We tested this simple estimate numerically and found it to work quite 
well,, see figure 4.3. It should be clear that for  < Rc the estimates of R+ and R-
breakk down. 

Inn figures 4.3(a) and 4.3(b) we plotted the numerical data for the position of the kink 
andd the estimated position of the kink. We show the results of numerical simulations 
forr Rx = 50, where we defined the position of the kink by the zero of the <p\ field. The 
boundaryy conditions we put on 02 are (f>2(Roo) = 2 + 6 and 02(—-Roc) = 2 =F5, with 5 
runningg from zero to two. In figure 4.3(a) we plotted R- as a function of z+/z-, where 
inn 4.3(b) we plotted i?_ as a function of 6. The plots show a good agreement between 
thee estimate and the numerical data. They also show the independence of the position 
off  the kink on the sign of Z-/z+, which is equal to the sign of 02(—-Roo)/02(+-Roo)-
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Figuree 4.3: 
Thee estimate for R- and the numerically obtained values of R_ as a function of z+/z-, figure 
(a),, and of S, figure (b), with Rao = 50. The boundary values of cf>2 are 4>2(R<x>) = 2 + 5 and 
fai—Roo)fai—Roo) = 2 =p 5. The figures show that the estimate of the position of the kink works very well 
andd that the position of the kink is independent of the sign of <f>2( — R<x)/4'2(+R<x) as prescribed by 
ourr estimate. 

Inn the limi t of small  we have a good understanding of the static kink solution. 
Inn the next section we will  study the dynamics of the non static kink solutions, which 
occurr if the boundary values of the <j>2  field are not zero. 
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4.2.44 Non static kink configurations 

Inn section 4.2.2 we proved that in an infinite space there is only a static kink solution 
too the field equations for a specific set of boundary values of 02, notably 02 ) — 0. 
Inn any other case there is no static kink solution to the equations of motion. In this 
sectionn we will investigate the behavior of these non static kinks and find the DVS. 
Thee modulus field z obeys the free massless equation of motion, which in one dimen-
sionn is given by: 

-dfz(x.t)+dlz{x,t)-dfz(x.t)+dlz{x,t) = Q . (4.7) 

Thuss the modulus field is given by z(x, t) — zr(t — x) + zi(t + x). This shows that the 
moduluss field propagates with the speed of light. Next we will look at some specific 
dynamicall  simulations. In the light of the previous discussion of constrained kinks 
itt is clear what should happen in an infinite space. The kink will 'eject' a so called 
scalarr cloud, the tail, to infinity; the cloud will move with the speed of light, and will 
dynamicallyy select the vacuum with 02 = 0. 

Wee look at two types of initial configurations. One corresponds with the solution 
off  a restricted kink, which we numerically determined in the previous section. The 
otherr initial configuration is a configuration with constant 02 and for 0i the static 
kinkk solution with f2 replaced by f2 + (p2,, see equation (4.8). Both types of initial 
configurationss we assume to be at rest at t — 0. 

Letss us first examine the latter case. Again in our numerical simulations we take 
AA = ƒ = 1, and start with: 

022 0c) =02 ; 01 (x) = y/l + 0| tanh (^V^y/l + 0| x J , (4.8) 

takingg dt<t>i(t)\ t=o = <9t02(£)|t=o = 0. As expected, we find that the scalar cloud 
movess away with the speed of light and the special vacuum with 02 = 0 is dynamically 
selected,, see figure 4.4(a). 

Thee initial condition with the restricted kink as the initial configuration yields a 
similarr result. We determined the solution of the restricted kink, with R  ̂ — 50 and 

)) — 0.8, with the help of a relaxation program and used it as the initial 
configurationn of the dynamical process. Again we take dt(f>2(t)\t=o = dt<pi{t)\t=o  ~ 0. 
Alsoo here the special vacuum with 02 = 0 is dynamically selected, see figure 4.4(b). 
Afterr the vacuum has been selected the kink can still be excited, which is clear in the 
firstfirst case, equation (4.8). In the case where the restricted kink has been chosen as 
initiall  configuration, the kink is only slightly excited locally, due to the overlap of the 
kinkk and the modulus field. We conclude that this part of the dynamics depends on 
thee initial condition, but does not effect the vacuum selection part of the dynamics. 

4.33 DVS in 2 dimensions 

Inn this section we briefly recall known results of DVS in two dimensions, as discussed 
inn [55]. Witten in [54] already observed, that in several models not all boundary 
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(a) ) (bi i 

Figuree 4.4: 
(a):Thee dynamics of the kink with 4>2(x) = <t>2 = 0.8 and <f>i(x)  given by equation (4.8) at t = 0. The 
figurefigure shows snapshots of the fields 4>i{x) and <p2(x) at t = 100, t = 200 and t = 300. This shows 
thee DVS and the speed of the scalar cloud. 
(b):Thee dynamics of the restricted kink with  = 0.8 and Rx = 50 at t = 0. The figure 
showss snapshots of the fields <pi(x) and <k(x) at t = 100, t = 200 and t = 300. This shows the DVS 
andd the speed of the scalar cloud. 
Thee values of the fields for negative values of x follow from symmetry of the configuration and are 
nott plotted. 

conditionss allow for static vortex solutions. In the model, studied in [55] there is 
alsoo a potential of the form j ( | ^ i |2 — |02|2 — f 2 ) 2  The Higgs fields they use are 
noww complex scalar fields, oppositely charged under a local U(l). Also in this model 
thee vacuum 02 = 0 is dynamically selected in a topologically nontrivial sector of the 
theory.. In [56] it was pointed out that this specific vacuum was selected to minimize 
thee mass of the massive gauge boson. 

Againn the main idea behind the DVS is the fact that one can make a tail with the 
moduluss field, which brings fields from one point of the vacuum manifold to an other 
pointt in the same connected component of the vacuum manifold. In two dimensions 
thee energy cost of such a tail is inversely proportional to In ^p- and can be made 
arbitrarilyy small in an infinite space. Although the dynamics of the modulus field is 
aa bit different in two dimensions from the dynamics in one dimension, the conclusion 
iss the same: DVS takes place. For more details on DVS in two dimensions we refer 
too [54]. [55] and [56]. 

4.44 No DVS in 3 dimensions 

Too conclude we look at a specific model in three dimensions to argue that DVS 
doess not work in three dimensions (as was already mentioned in [55]). The crucial 
observationn here is that a tail in which the modulus field connects one point of the 
vacuumm manifold to another point in the same connected component, will cost a 
finitee amount of energy. In three dimensions the energy of such a modulus field is 
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RRrrR~ R~ proportionall  to 7̂  _ j | , which does not go to zero in the limit of R  ̂ —> oc, suggesting 
thatt there is no DVS in three dimensions. 
Too make this more explicit we discuss a model which has a local SU(2) symmetry 
andd two scalar Higgs fields in the vector representation of the local gauge group. 
Thee potential will again have the form ^ (Tr (02) — Tr (0?,) — f2) . In this model 
thee SU(2) gauge symmetry is spontaneously broken to U{\) and topologically stable 
magneticc monopoles can form. The action of the model is given by: 

SS = I éx | \F*„F°<»>  + iTr ((D^,)2) + ^Tr ((Dvé2f) 

- ^ ( T r W ) - T r ( ^ ) - / 2 ) 2 }}  . (4.9) 

Wee will try to find static monopole solutions in the BPS limit , i.e., we keep the 
boundaryy terms fixed but put A to zero. We note that the fields 0i and 02 need to be 
parallell  to each other in the internal space at spatial infinity in order to have a finite 
energyy solution, and to have an unbroken U{\) in the first place. We will focus on 
staticc configurations where Tr (fair -• oc)2) does not depend on the spatial angles. 
Too find static solutions we have to extremize the energy: 

EE = Jd3x i^-B2 + ^Tr ((A0i)2) + ^Tr ((A02)
2) } . (4.10) 

Too be able to get the BPS equations we first make the following rescalings: 
011 —»• cosh« 01.02 -* sinhu 02, xz —• , \ n x% and A\ —> \/cosh 2u Ai, where 

vcoshh 2u 

Trr (02(oc)2) = f2 sinh2 u. Note the similarity with the usual BPS dyon. Now we can 
writee the energy in the following form: 

++ sinh2u ( i f ^ + i T r ^ D i t e ) 2 ) ) ! ' ( 4 ' U ) 

Fromm this we get the usual BPS equations for the monopole twice, one for 0i and 
onee for 02. They reduce to one set of BPS equations under the assumption 0i — Ó21, 
whosee solution is well known. The energy of the monopole is simply given by: 

EEmonmon = Vcosh 2u Emon. u=o , (4.12) 

wheree Emom u=o is the energy of the monopole in absence of 02 . 

Thiss shows that the core structure of the monopole is affected by the boundary 
conditionss of the 02 field and that there is no DVS. This in contrast to the results 
foundd in one and two dimensions. 

^ h i ss is possible since the rescaled fields <p\ and <t>2  have the same boundary conditions. 
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4.55 Conclusions and outlook 

Inn this chapter we showed the possibility of dynamical vacuum selection (DVS) in one 
dimensionall  field theories with flat directions. We examined this DVS with the help 
off  a specific model. For this model we proved that there is only one specific boundary 
conditionn which allows a static kink solution in an infinite space. In a finite space 
anyy boundary condition allows the formation of a static kink. With the help of a 
relaxationn program we numerically determined these restricted kinks. They can be 
veryy well described by one specific kink with a scalar cloud on each side of the kink. 
Thiss description of the restricted kink also correctly predicts the position of the kink 
withh respect to the boundaries of the space as a function of the boundary conditions. 
Usingg a numerical simulation we examined the dynamical properties of configurations 
writhh boundary conditions which do not allow- a static solution in an infinite space. 
Thesee simulations confirm the DVS. which was expected to occur, from the result of 
thee restricted kinks and the field equation for the modulus field. 

Itt should be clear that DVS in one dimension is not specific for the one dimensional 
modell  we considered. It is a general feature of one dimensional models with flat 
directions.. The argument relies crucially on the scaling of the energy of the tails, 
thee scalar clouds, of the restricted kinks. In these scalar clouds only the modulus 
fieldfield changes. More generally this shows that DVS is only possible in one and, as 
wass shown before [55]. in two dimensions, but not in three or higher dimensions. For 
completenesss we briefly mentioned the two dimensional case and included an explicit 
examplee of a three dimensional model where DVS does not work. 

Itt remains of course possible that a model has more than one possible static config-
urationn in an infinite space [85], but the DVS will just pick out one of the possible 
staticc solitons and including tunneling it will eventually always select the vacuum 
correspondingg to the static soliton with the lowest energy. Although this DVS selects 
aa lowest energy static soliton solution there can still be a vacuum and core degeneracy 
leftt if the ground state of the topologically non trivial sector is degenerate, as was for 
examplee found in [56]. 

I tt would be interesting to study DVS. due to the presence of a soliton. in a theory 
wheree the selected vacuum is lifted from the classical vacuum manifold by quantum 
mechanicall  (or thermal) corrections. Obviously this cannot happen if a supersym-
metricc BPS soliton is selected by the DVS. since the energy of such a BPS soliton 
iss protected against quantum mechanical corrections. On the length scale where the 
quantumm mechanical corrections to the vacuum manifold would become important 
thee DVS alters and most likely a type of restricted soliton will become the new se-
lectedd vacuum. The tail(s) of these restricted solitons will have a length of the order 
determinedd by the quantum mechanical corrections to the classical vacuum manifold. 

Thee processes we described in this chapter can be interpreted in two ways. One is 
thee dynamical vacuum selection interpretation which we anticipated throughout the 
chapter.. In the other interpretation, which is much closer to the coming chapters, the 
processs can be seen as a possible instability of a kink or vortex solution in a theory 
withh flat directions in its potential. 
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AA monopole core instabil ity 

Inn the previous chapter we investigated a possible instability of topological defects 
inn theories with flat directions in their potential. We saw that such a instability is 
nott possible for magnetic monopoles. In this chapter we investigate a different type 
off  instability which is possible for the magnetic monopole. We present results on a 
coree instability of the 't Hooft Polyakov type monopoles. This instability, where the 
sphericall  core decays in a toroidal one, typically occurs in models in which charge 
conjugationn is gauged. However, we will argue that a core instability of  ;t Hooft 
Polyakovv type monopoles is quite a generic feature of models with charged Higgs 
particles.. We also discuss a third conceivable configuration denoted as "split core", 
whichh brings us to some details of the numerical methods we employed. This chapter 
iss mainly based on [86, 87]. 

5.11 Introduction 

Sincee the pioneering work of 't Hooft and Polyakov [88. 89] magnetic monopoles 
havee been studied in detail in many different models. In this chapter we address the 
questionn of stability of the core of the fundamental, spherically symmetric, monopole 
configuration,, a stability which appears to be so obvious that it was never seriously 
questioned.. We will show that in the original AED model [4] the spherically sym-
metricc unit charge magnetic monopole is not the global minimal energy solution for 
alll  parameter values in the model. We determine the regions in parameter space 
wheree this instability occurs and present some details of the numerical simulations we 
performed.. The fact that the core topology is not fixed by the boundary conditions 
att infinity and different core topologies can be deformed into each other was already 
establishedd earlier [90]. 
Ass we will indicate, Alice theories have a special topological feature which makes it 
plausiblee that such a core deformation really can be favored energetically. We wil l 
alsoo argue that a core deformation is typically energetically favored in models where 
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thee charged Higgs particles are light compared to the neutral Higgs particles. Our 
interestt in this problem was rekindled by some observations made in theories with 
globall  symmetries [91. 92. 93. 94]. 

Thiss chapter is organized as follows. We start with a brief motivation for studying 
thee monopole core meta-/instability in AED. Next we introduce the specific model 
andd discuss in some detail the numerical simulations we performed and present our 
thee main results. We end this chapter with conclusions and an outlook. 

5.22 The core instability 

Alicee electrodynamics (AED) is a gauge theory with gauge group H = U{1) ix IL-i  ~ 
0(2).0(2). As we saw in chapter 1 this theory allows for Alice fluxes and Cheshire charges 
[4.. 5]. In this chapter the Cheshire phenomenon in AED is of great importance to us as 
itt supports the possible core meta-/iiistability of the spherically symmetric magnetic 
monopolee solution. 

Itt was pointed out long ago that there are interesting issues concerning the core 
stabilityy of magnetic monopoles. Fixing the asymptotics of the Higgs field, the core 
(i.e.,, the zeros of the Higgs field) may have different topologies, notably that of a 
"ring""  rather than the conventional "point"1. These core topologies are cobordant. 
i.e... they can be smoothly deformed into each other and it is a question of energetics 
whatt wil l be the lowest energy monopole state [90]. In AED such a core deformation 
wouldd be accompanied by the rather unusual delocalized version of (magnetic) charge, 
thee so called magnetic Cheshire charge. Cheshire charge is a key feature of AED and 
iss a general phenomenon in field theories with (topologically) stable fluxes which are 
nott elements of the center of the unbroken gauge group. 

Inn the specific AED model we consider the Higgs field is a symmetric tensor, whose 
vacuumm expectation value may be depicted as a bidirectional arrow. In AED we can 
"punchh a hole" in the spherically symmetric monopole and deform it into an Alice 
ring,, this configuration is consistent with the continuity requirement on the order 
parameterr because of its head-tail symmetry. In figure 5.1 we plotted the two different 
coree regions one expects to find for a magnetic monopole in AED. In this chapter we 
determinee in what part of the parameter space of the model the monopole is meta-
/unstablee and where we expect the spherically symmetric monopole to compete with 
aa magnetically, Cheshire charged Alice ring. Figure 5.1(a) represents the spherically 
symmetricc magnetic monopole and figure 5.1(b) represents the magnetically Cheshire 
chargedd Alice ring. The fact that the core of the defect can really deform into a torus 
iss due to the head-tail symmetry of the Higgs field in the broken phase. We note 
thatt the Higgs field only rotates over an angle 7r when going around a single flux, see 
figuree 5.1(d). This is the hallmark for an Alice flux, so the core deformed spherical 

L Inn fact in AED the Higgs field can typically only be represented by a director field if it is in the 
vacuumm manifold. Thus the Higgs field need not go to zero inside the core of a defect. However for 
thee spherically symmetric magnetic monopole solution the Higgs field does go to zero, but for the 
Alic ee loop solution it does not. 
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monopolee is in fact an Alice ring carrying a magnetic Cheshire charge. 

(a) ) (b) ) 

\ \ / / \\ I  / 

/ / \ \ 
/ / 

(c) ) (d) ) 

\ \ 

F i g u ree 5 .1: These figures show the two different core structures of a magnetic defect which are 
naturallyy present in AED. Figure (a) represents the spherically symmetric magnetic monopole, the 
'tt Hooft Polyakov type monopole, and figure (b) represents the magnetically, Cheshire charged Alice 
ring.. Figures (c) and (d) represent a slice of the different core topologies including the higgs field. 

5.33 The Alice model 

Too answer stability questions related to the spherically symmetric monopole config-
urationn (or the Cheshire charged Alice ring) we consider an explicit model. We use 
thee original tensor Alice model [62], but we will argue that the results obtained are 
quitee general and model independent. For completeness and notational convenience 
wee briefly summarize the model. The action is given by: 

S S /' fcc { pa^upa^pa^upa^ + bn^QD^fy _ y($) (5.1) ) 

wheree the Higgs field $ = <É>°6 is a real, symmetric, traceless 3 x 3 matrix, i.e., $ 
iss in the five dimensional representation of 50(3) and D„ $ 0^ 0^ ;[A M ,$],, with 
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ApAp — Af*Ta. where Ta are the generators of 50(3). The most general renormalizeable 
potentiall  is given by [50]: 

VV = -1-^Tv(^)-l1Tr(^) + \x(Tr(^))2 . (5.2) 

withh the parameter 7 > 0. since ($.7) = (-$,—7). For a suitable range of the 
parameterss in the potential, the gauge symmetry of the model will be broken to the 
symmetryy of AED. In the "unitary" gauge, where the Higgs field is diagonal, the 
groundd state is (up to permutations) given by the following matrix: 

/ - ƒƒ 0 0 \ 
$ o = 00 - ƒ 0 . (5.3) 

\\ 0 0 2/ / 

withh ƒ = Tix(l + V1 + ^ ) " 
Thee full action has four parameters. e,/i2.7.A. this number can be reduced to two 
dimensionlesss parameters by appropriate rescalings of the variables. A physical choice 
forr these dimensionless parameters is to take the ratio's of the masses that one finds 
fromm perturbing around the homogeneous minimum. To determine these, we write the 
actionn in the unitary gauge where the massless components of <& have been absorbed 
byy the gauge fields. The physical components of the Higgs field may be expanded as: 

$(x$(xfifi)) = $0 + \/2Mxtl)Ei+V2<l>2{x ti) Rz(a{xV))E2Rz{a{x»))T , (5.4) 

with: : 

EE = -1- ( "o' -1 0 )  E2 = J- ( I -1 0 ) 
^^ \ 0 0 2/ 2 ^ \ 0 0 0 / 

/ 00 0 1\ 
EE33 = -=\ 0 0 0 (5.5) 

v 22 \ 1 0 0 / 

andd Ri are the usual rotation matrices. To second order, the potential V($>) takes 
thee following form2: 

V{$)V{$) = const. + (2n2 + 1f)(j>\  + 37/102|2 + • • • • (5.6) 

yieldingg the two distinct masses of the Higgs modes. Next we look at the 'kinetic" 
term,, ^ T r f - D ^ D ^ ) , of the Higgs field. Inserting the previous expressions for the 
Higgss field, we find: 

i lKP^D»»)) = l(a„&)» + \ \D>M2 + f «»ƒ» ( K ) 2 + (4) 2) + - . , (5.7) 
2 I tt is most convenient to use <f>2  for the combination §iexa, since these two Higgs modes, 4>2 and 

o,, combine to form one complex charged field, from now on called <fo-
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with:: D  ̂ — d  ̂ — i2eA^. The second term shows that the <fo component of the Higgs 
fieldfield carries a charge 2e with respect to the unbroken U(l) component A* of the gauge 
field.. The first term describes the usual charge neutral Higgs particle and the third 
termm yields the mass of the charged gauge fields. So the relevant lowest order action 
iss given by: 

55 = Jéx^-F^F'"- + lo^i)2 + \ | D > |2 - |m?<tf 

-\™lM-\™lM22 - \m\ ( ( ^ ) 2 + ( ^ ) 2 ) + • • •} , (5.8) 

withh mf = 4//2 4- 2-yf, TO2, = 67 / and m2
A — 9e 2 / 2 . 

Twoo degrees of freedom of the five dimensional Higgs field are 'eaten' by the broken 
gaugee fields, one degree of freedom forms the real neutral scalar field and two degrees 
off freedom form the complex (doubly charged) scalar field. To specify a point in the 
classicall parameter space we may, up to irrelevant rescalings, use the dimensionless 
masss ratio's ^ and ^ . We note that the value of ZZLL needs to be larger or equal 

7Ti27Ti2 rri2 TTI2 ° ^ 

too 7j, because for smaller values of | the groundstate corresponds to the symmetric 
unbrokenn vacuum. Note that we found three mass scales in this problem. For the 
simulations,, which we will describe in the next section, this means that we will we 
havee to deal with three different length scales. 

5.44 Numerical simulations 

Inn this section we will describe in some detail the numerical simulations we performed 
too determine the instability and the meta-stability regions for the spherically sym­
metricc monopole, in the parameter space of the model. First though, we introduce 
thee ansatz. We end the section with the discussion of a typical set of numerical 
experiments. . 

5.4.11 The variational ansatz 

Ass mentioned before we will use a variational approach. In such an approach the 
configurationss one finds are typically not exact solutions to the equations of mo­
tion.. However as the ansatz we will use contains the ansatz for the exact spherically 
symmetricc solution we may still study the instability and the meta-stability of this 
solution.. This means that the instability and the meta-stability regions we will find 
forr the monopole, are lower bounds, in the sense that those instability regions can 
onlyy become larger as the ansatz becomes less restrictive. 

Ass we expect the competing configuration of the spherically symmetric magnetic 
monopolee to be the magnetically Cheshire charged Alice ring, we base our ansatz 
onn cylindrical symmetry. The ansatz we will use also has a reflection symmetry 
withh respect to the 2=0~plane. We impose this reflection symmetry to eliminate the 
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(almost)) zero mode in the energy due to the position of the defect along the z-axis. 
Thee ansatz for the Higgs field is: 

<S>{z.p,0<S>{z.p,0 = 0) = <t>i{z.p)E1 + 02{z.p)E2 + 03{z.p)E3 (5.9) 

and d 
$(2.. p, 0) = Rj,{9)<${z,p, 9 = 0)Rz(6)T . (5.10) 

Thee ansatz for the gauge fields is simply given by eA\ = —tl]k^A(z,p). very 
similarr to the one for the spherically symmetric monopole [88]. except that we al-
loww A(z,p) to depend on p and z and not only on r = \Jp2 + z2. The bound-
aryy conditions for r —>  oc are the boundary conditions of the spherically sym-
metricc monopole [62]. i.e.. A(z.p) goes to one and the Higgs field to Q{z.p. 9) = 

Rz(9)R2Rz(9)R2 (arccos (^)) $oR-2 (arccos (f)) i?3(^)T. The boundary conditions at p = 0 
andd z = 0 follow by imposing the cylindrical and reflection symmetry and are given 
inn the table below: 

0i i 
02 2 
03 3 
A A 

pp = o 
ddpp(f>i(f>i  = 0 

ddpp0022 = 02 = 0 
0 3 =0 0 

ddppA=0 A=0 

22 = 0 
<920!!  = 0 
ddzz<t>2<t>2  = 0 
0 3 =0 0 

ddzzAA = 0 

Itt is easy to see that these boundary conditions are also met by the spherically sym-
metricc monopole. so it is indeed contained in our more general ansatz. With the help 
off  this model and ansatz we study the stability of the spherically symmetric mag-
neticc monopole. Before we present the results we describe the numerical methods we 
employ,, and a typical set of experiments. 

5.4.22 Some numerical details 

Wee mentioned in section 5.3 that the AED model has three mass scales, i.e., three 
relevantt length scales. However we examine a region of parameter space in which 
onlyy two of those are relevant. That is the core geometry of the defect and the region 
wheree the Higgs field is not in the vacuum manifold on the one hand, and the inverse 
masss of the gauge fields - which is typically much larger - on the other. To be able 
too adequately capture both scales we use a space and configuration dependent lattice 
spacing.. In fact we will use two types of lattices. In figure 5.2 we schematically 
givee the step sizes as a function of the point number (in one dimension). The two 
dimensionall  lattices we wil l use have the same type of lattice in both directions. 

Thee only difference between the two lattices is that in the second, figure 5.2(b), there 
aree extra lattice points near r = 0 and z = 0 and thus it has more lattice points. 
Howeverr the same part of space is covered by both lattices. Although the difference 
betweenn the two lattices is quite small we will encounter a specific lattice dependence, 
whichh turns out it be an artifact, but nevertheless will be of use later on. 
Too obtain the minima of the energy within the ansatz for the different values of 
thee parameters of the model, we used a Monte Carlo based cooling method. In this 
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Pointt  number  Point number

(a)) (b) 

F i g u ree 5.2: The two different types of lattices. The first part covers the core structure of the defects 
wheree the second part captures the region where the gauge fields - which have a much smaller mass 
-- show nontrivial behavior. The only difference of a lattice of type (b) with respect to lattice of type 
(a)) is a few extra lattice points near r = 0 and z = 0. 

methodd one introduces a temperature and gives a configuration with energy E a weight 
factorr equal to e~r. In the limit o f T ^ O only the configuration with the lowest 
energyy survives. Assuming there are no flat directions this procedure selects a unique 
configuration.. With the help of a Monte Carlo mechanism different configurations 
aree sampled. We keep sampling at a specific temperature as long as the energy of the 
systemm averaged over a preset number of sweeps3 (typically 10) decreases and do this a 
minimall  number of times (typically 3). When this average energy no longer decreases 
wee lower the temperature (typically by 10%) and repeat the process until the total 
energyy drop at a specific temperature becomes lower then a predetermined relative 
energyy change (typically ~ 10~6%). During this process we keep the acceptance rate 
off  the Monte Carlo steps locally fixed for all fields. This means that we introduced 
aa maximum step size for each field at each position and automatically adjust it to 
gett the preferred acceptance rate. Since the change due to temperature change is 
easilyy captured we determined the desired maximum step sizes in the beginning of 
thee cooling mechanism and further only correct for the trivial temperature changes, 
i.e.,, as T changes in aT, Sfieid changes in ,/aöfield- This assumes that the energy 
changee depends quadratically on the field change which is what one naively expects 
nearr a stable configuration, and indeed, that criterion worked nicely. 

Thee procedure we just described is used to determine stable configurations within our 
ansatzz for the different values of the parameters of the model. To be able to determine 
thee meta-stability and instability regions of the monopole in the parameter space of 
thee model we perform hysteresis type experiments. This means that we determine 
thee lowest energy configuration for a specific point in the parameter space and use 
thiss configuration as the starting point for the determination of a stable configuration 
att a point nearby in the parameter space. As the change in the parameter space is 
onlyy small one would expect the new configuration also to be close to the previous 

3I nn one sweep all variables undergo one Monte Carlo step, i.e., are allowed to change once. 
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one.. We determine the new configuration again with the help of the cooling method4. 
Wee repeat this process and move along a trajectory in the parameter space and back 
again.. We choose these paths such that the lowest energy configurations on each 
endd of the trajectory are different type of configurations: a spherical monopole and 
aa Cheshire charged Alice ring. To keep things numerically simple we keep the mass 
off  the gauge fields constant during a hysteresis experiment. This restriction selects 
specificc trajectories in the two dimensional parameter space, which are given by: 

rriA rriA 

rri2 rri2 

mm A 
,, J712 

1+ + te)te) 2 2 
(5.11) ) 

nth h m2 2 
thee value of  !!lA- at the minimal value of 

Thiss restriction allows us to keep the total space covered by the same lattice through-
outt the hysteresis. In a single hysteresis experiment the size of the core does not 
changee much, so we keep the lattice fixed throughout a single hysteresis experiment. 

09 9 

0.8 8 

07 7 

0.6 6 

0.5 5 

0.4 4 

0.3 3 

02 2 

00 1 

(a) ) (b) ) 

F i g u ree 5.3: The two typical results of the hysteresis experiments for the different lattice types 
projectedd on the I r l i --axis. Figure (a) corresponds to a lattice of type (a) and figure (b) corresponds 
too a lattice of type (b). 

Figuress 5.3(a) and (b) show the typical hysteresis results. The figures show the values 
off  the field variable -4h at r = z - 0. This variable is a normalized order parameter 
inn the sense that its value equals zero for the spherical monopole, and one for the Alice 
ring.. A negative value of the order parameter is also possible and corresponds to a 

44 The temperature at which the secondary cooling process starts is smaller than the starting tem-
peraturee of the initial cooling process. This starting temperature of the secondary cooling processes 
determiness the energy barriers which can be overcome. Only in the limi t where this temperature goes 
too zero can one really claim that a configuration becomes unstable. However for finite temperature 
onee can still show the instability under small, but finite, perturbations. This is what we mean if we 
claimm to find an instability of a specific type of configuration. 
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neww type of configuration, the so called split core, see figure 5.4(c) and also [92. 93]. 
Figuree 5.3(b) shows what one would expect for a hysteresis type of experiment for a 
latticee of type (b) while figure 5.3(a) shows a different behavior and corresponds to a 
latticee of type (a). 

Inn figure 5.3(a) the split core configuration appears and although this configuration 
typicallyy has more energy then a Cheshire charged Alice ring configuration, it does 
appearr to be meta-stable. In [92, 93] this object was discussed for the global analog 
off  AED, a nematic liquid crystal theory, and it was argued that this configuration is 
duee to the cylindrical symmetry restriction of the ansatz used to explore the solution-
space.. Here we found that it might as well be just a lattice artifact as it depends on the 
latticee type used in the hysteresis experiments. Although this split-core configuration 
mayy be viewed as an undesirable feature caused by lattice and/or symmetry artifacts, 
wee will see that it can be turned into a useful tool. 

(a)) (b) 

(c) ) 

F i g u ree 5.4: These figures show the three typical core structures we encountered in the numerical 

simulations.. Al l three figures show a slice of the core structure at y = 0 an in the figures the value 

off  1 — ,T% is plotted. In figure (a) we plotted the core structure of the spherically symmetric 

magneticc monopole at ^hl  = 0.57 and —^ = 0.0095. In figure (b) we plotted the core structure of 

thee magnetically Cheshire charged Alice ring at 2Ü- = 0.88 and ^ ^ = 0.0073 and in figure (c) we 

plottedd the core structure of the split core configuration at ^ i - =1 .12 and r^A- = 0.0425. 
^^  ^ ° mo mo 
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5.4.33 A typical set of experiments 

Ass mentioned before we do hysteresis type experiments along specific trajectories in 
thee parameter space of the model. Next we look at a typical set of such experiments. 
Wee did the hysteresis experiment for three different numbers of lattice points, where 
wee only changed the number of lattice points describing the core of the configuration. 
Onee could of course also change the number of points outside the core but we found 
thatt that did not make any difference in the observables we examined and did not 
affectt the stability of the configurations. We performed numerical simulations with 
25x255 (27x27). 50x50 (54x54) and 100x100 (108x108) lattice points describing the 
coree structure for each line in the parameter space we considered. The figures 5.5(a-
d)) are the typical results of such an investigation. The figures show two different 
observables:: the relative energy difference of the two branches of the hysteresis, and 
thee quantity 0-^' . The figures 5.5(a) and 5.5(b) belong to lattices of type (a) and 

thee figures 5.5(c) and 5.5(d) belong to lattices of type (b). All figures show the results 
obtainedd with the three different number of lattices points, with the lines A. B an 
CC corresponding to 25x25 (27x27). 50x50 (54x54) and 100x100 (108x108) points 
describingg the core structure respectively. 

Lett us first compare the figures 5.5(a) and 5.5(c). These figures show the values of 
r-r-  '. In both figures we see that qualitatively the lines A, B and C do not differ 

veryy much, but quantitatively they do. The steep part of the lines corresponds to 
thee local instability of the Cheshire charged Alice ring and the spherical monopole. 
Inn both figures 5.5(a) and 5.5(c) we see that the Alice ring becomes locally unstable 
withh respect to the monopole for low enough values of —. In figure 5.5(c) we see 
thatt for large enough values of ^ - the monopole becomes unstable with respect to the 
Alicee ring, whereas in figure 5.5(a) we see that the monopole slowly transforms into a 
splitt core configuration, see figure 5.4(c). and does not become locally unstable with 
respectt to the Alice ring. In figure 5.5(b) we do see that this split-core configuration is 
globallyy unstable with respect to the Alice ring configuration as it costs more energy. 

Noww let us examine and compare the figures 5.5(b) and 5.5(d). First we note that the 
relativee energy differences are very small, being of the order of pro-mils. This is one of 
thee reasons why the minimal relative energy difference step in the cooling mechanism 
iss chosen so small, of the order of 10~5 pro-mil. In the regions where both branches 
off  the hysteresis give the same configuration, see figures 5.5(a) and 5.5(c). the relative 
energyy difference is equal to zero on the scale of the figures 5.5(b) and 5.5(d). The 
otherr segment of the curves is the interesting part, in figure 5.5(b) and 5.5(d). The 
pointt where this segment of the curves goes to zero is the point where the spherically 
magneticc monopole solution is no longer the lowest energy configuration within our 
ansatz.. i.e.. it is the point where the monopole becomes globally unstable. As we use 
moree lattice points to probe this meta-stability this point moves only very slightly. 
Typicallyy one should extrapolate the results to infinitely many points, but here we 
cann use a different approach. We will exploit the results of the two different types 
off  lattice. In the limit of infinitely many lattice points both lattice types will move 
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F i g u ree 5.5: These figures show the results of a typical set of experiments of a specific line in the 
parameterr space, with the results projected on the ^ - a x i s. Figures (a) and (b) correspond to a 
latticee of type (a), while figures (c) and (d) correspond to a lattice of type (b). In the figures (a) 
andd (c) the value of '?1 \~' is plotted, while in the figures (b) and (d) the relative energy differences 
off  the two branches of the hysteresis plotted in pro-mils. The lines A, B and C correspond to 
25x255 (27x27), 50x50 (54x54) and 100x100 (108x108) lattice points respectively describing the 
coree structure. 

too the same point. However in the figure 5.5(b) we see that this point in approached 
fromm the right while in figure 5.5(d) it is approached from the left5 when increasing 
thee number of lattice points. Obviously this helps us to determine the position of 
thee point where the monopole becomes globally unstable, as well as the error in the 
positionn of the point. So we may turn the lattice dependence into a useful tool to 
determinee the global stability of the spherically symmetric monopole solution. 

Forr most trajectories through the parameter space the same feature can be used to 
determinee the point where the Alice ring configuration becomes locally unstable with 
respectt to the monopole. However this point is not as interesting, since the Alice 
ringg configuration is not necessarily an exact solution to the equations of motion. 

DWee observed this feature for all the trajectories through parameter space we considered. 

87 7 



Chapterr 5. A monopole core instability 

Bothh lattice types also show a local instability of the spherically symmetric monopole 
solution.. In figure 5.5(c) this happens at a clear point, but from figure 5.5(a) where 
thee monopole changes into a split-core configuration, it is a bit harder to fix the point 
wheree this happens as it appears to be a continuous process. Although the position 
off  this point is unclear, from figure 5.5(a). it is at least clear that this point moves in 
thee same direction for both types of lattices as follows from figures 5.5(a) and 5.5(c). 

Withh the help of the results of both types of lattice we determine the global instability 
pointt of the spherically symmetric monopole solution and local instability point of 
Alicee ring configuration. To determine the monopole instability point we only use the 
resultss from the lattices of type (b) as they clearly show the point where the monopole 
solutionn becomes locally unstable. 

5.55 The results 

Lett us now turn to results of our investigations. First we describe how we extracted 
thee results from the hysteresis type of experiments. There are two important results. 
Inn the first place, there is the line bounding the region in parameter space where 
thee spherically symmetric magnetic monopole solution is no longer the lowest energy 
configuration.. Crossing that line the solution only becomes meta-stable. Although 
ourr variational method does not prove that the configuration which has the lowest 
energyy is a Cheshire charged Alice ring solution, in that case it actually does imply it, 
ass we find that a Cheshire charged Alice ring configuration minimizes the energy for 
thosee parameter values within our ansatz. In the second place there is the other line 
boundingg the region where the spherically symmetric magnetic monopole solution is 
noo longer a locally stable solution. Finally we also determined the line at which the 
Alicee ring configuration becomes locally unstable, but as explained before, this line 
iss of least interest as the Alice ring configuration (with our ansatz) is typically not a 
solutionn to the equations of motion of the model. 

Inn figure 5.6(a-c) we give the results for the meta-stability and instability lines. Figure 
5.6(c)) shows the meta-stability line for the spherically symmetric magnetic monopole 
solution.. We showed in section 5.4.3 that we use the results of both lattice types to 
determinee the monopole meta-stability line. As the meta-stability lines determined 
withh the help of the two lattice types move oppositely and towards each other for an 
increasingg number of lattice points, we use both results to determine the meta-stability 
line.. The plot shows the lines on which we did the hysteresis type of experiments, 
thee two monopole meta-stability lines determined by the different lattice types and a 
shadedd region which is to represent the error in the position of the monopole meta-
stabilityy line. Thus we did not extrapolate the results from both types of lattices to 
ann infinite number of lattice points we just used the results from the lattices with the 
mostt lattice points to corner the meta-stability line, see figure 5.6(c). This line shows 
thatt the spherically symmetric magnetic monopole is not always the lowest energy 
solutionn and cuts the parameter space into two regions. 

Too determine the position of the instability line of the spherically magnetic monopole 
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solution,, see figure 5.6(b), we just use the results from the type (b) lattices as these 
showw a clear point where the monopole becomes unstable. This does mean we have 
too extrapolate our results to a lattice with an infinite number of points. For all lines 
inn the parameter space we investigated we observed that the change of the position, 
projectedd on the ^ -ax i s, of this point from the 27x27 to the 54x54 lattice is about 
twicee as big as the change in the position from the 54x54 to the 108x108 lattice. We 
estimatee the position of the monopole instability point by extrapolating this behavior 
too a lattice of an infinite number of lattice points. This means that the estimated 
positionn of the instability point lies at the same distance from the 108xl08-point as 
thee 54x54-point only on the other side. The error we estimate as twice this distance. 
Inn figure 5.6(b) we plotted these results. We plotted the lines on which we did the 
hysteresiss experiments. The shaded region is to represent the error in the position 
off  the monopole instability line and we plotted the instability line obtained from the 
dataa of the 108x108 lattices. The estimate of the instability line itself is not plotted 
butt is right in the middle of the shaded region. 

0.33 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1 
mi/m? ? 

mA/rri2 2 

(a) ) 

0.33 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 

(b) ) 

mA /m? ? 

0.33 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
m 1/m 2 2 

(c ) ) 

F i g u ree 5.6: These figures show the stability results from the hysteresis type of experiments we did 
onn the specific lines in the parameter space of the model. The shaded regions give the errors of the 
lines.. Figure (a) shows the local instability line of the Alice ring configuration. Figure (b) shows the 
monopolee instability line and figure (c) shows the monopole meta-stability line. 

Inn figure 5.6(a) we plotted the instability line of the Alice ring configuration. For 
mostt of the lines through the parameter space we used the same technique as for the 
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monopolee meta-stability line, for the rest we used the same principle as we used for 
thee monopole instability line. 

Againn we note that due to the fact that we used a variational approach the monopole 
meta-stabilityy and instability lines are upper bounds in the sense that if less restric-
tionss are forced upon the configurations these lines can only move to the left. i.e.. in 
favorr of the Cheshire charged Alice ring. 

Itt is cmite easy to understand why the Alice ring is the lowest energy configuration 
inn the limit of large values of ^ and the monopole is the lowest energy solution 
inn the limit of small ~ . The two masses mi and rri2  correspond to energy costs 
inn deviations of the Higgs field from the vacuum manifold. Deviations pure in the 
'length'' of the Higgs field correspond to mi. While deviations in the non-uniaxial 
directionn correspond to m.2. In the limi t of ^ —• 06 the non-uniaxial deviations 
arc11 suppressed and the spherically symmetric (uniaxial) magnetic monopole is the 
lowestt energy solution. In the limit of — —• oc one would expect, an 'escape" in the 
non-uniaxiall direction. This signals the meta-stability of the monopole and implies 
thatt the Cheshire charged Alice ring is the lowest energy solution. In this case the 
lengthh of the Higgs field never becomes zero7 as can bee seen in figure 5.4(b). i.e.. the 

quantityy f 1 — ^0r ) never becomes equal to one. 

Wee pointed out that one of the main factors determining the monopole core meta-
stabilityy is the mass ratio ^ of the charged and neutral Higgs particles. As the mass 
off the charged excitation becomes much smaller than the mass of the neutral exci­
tationn the 't Hooft Polyakov magnetic monopole is expected to become meta-stable. 
Clearlyy this argument holds generically and one expects a core met a-/instability to 
bee a general feature of the 't Hooft Polyakov magnetic monopole in models with 
chargedd Higgs excitations. The nice thing of Alice type models is that they naturally 
suggestt an alternative configuration to the 't Hooft Polyakov type monopoles: the 
magneticallyy Cheshire charged Alice loop. 

5.66 Conclusions and outlook 

Inn this chapter we investigated the core structure of the unit charge magnetic monopole 
andd discussed the numerical methods we employed in some detail. We showed that 
thee core structure of the magnetic monopole is not necessarily spherically symmetric. 
Thee model has three mass scales, two of them refer to the Higgs field, one to its 
lengthh and the other to deviation from the uniaxial direction. The third mass scale 
iss set by the mass of the broken gauge fields. The topologically non-trivial boundary 
conditionss can be met by an "escape"' in a non-uniaxial direction. This possibility 
allowss for the length of the Higgs field to stay finite in the core and not go to zero as 

6 Notee that this limit can in fact not be taken as the minimum value of ^ ^ at which the broken 

vacuumm is still the true vacuum is equal to \. For smaller values of 1^-L the unbroken vacuum is the 

truee vacuum. We come back to this point in the conclusions and outlook section. 
7Nott shown here, but we also find that the minimum length of the Higgs field in the case of the 

Alicee loop increases for increasing ^ - as this argument indicates. 
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wouldd be necessary otherwise. As the ratio of the masses, ^ , increases it becomes 
harderr energetically to decrease the length of the Higgs field and one would expect 
ann escape in the non-uniaxial direction. 

Att the end of section 5.5 we argued that a core instability of the 't Hooft Polyakov 
magneticc monopole is a general feature of models with charged excitations of the Higgs 
field.. The instability occurs in the region of the parameter space where the charged 
excitationss are much lighter than the neutral excitations. In Alice electrodynamics 
theree is also an other, somewhat independent motivation to question the core stability 
off  the spherically symmetric magnetic monopole, provided by the possibility of an 
Alicee ring which can carry a magnetic Cheshire charge. 

Withinn our ansatz we determined the meta- and instability regions of the spherically 
symmetricc magnetic monopole. We also found that, as expected, the competing 
configurationn is the magnetically Cheshire charged Alice ring. We did also stumble 
uponn the somewhat unwanted split-core configurations but fortunately they never 
becamee the lowest energy solutions. As we used a variational approach we cannot 
claimm that the Alice ring configurations we found are exact solutions to the equations 
off  motion. However they do have every feature which one would expect from an 
exactt Alice ring solution. Also, because we used a variational approach the regions 
off  meta-stability and global-stability of the spherically magnetic monopole are with 
respectt to energetic upper bounds so that with respect to the exact solutions, these 
regionss can only become smaller. 

Ass a final comment we want to come back to the fact that the minimum value of 
^^ = | for which the broken vacuum is the true vacuum. In section 5.5 we gave 
aa simple explanation of why the spherically magnetic monopole becomes globally 
unstablee in the limi t of large values of ^ - . In the opposite limi t one would expect the 
monopolee to be the spherically magnetic monopole to be the global stable solution. 
Howeverr as the minimum value of ^ - = | there is no guarantee that this ever happens. 
Itt could just be that in this or similar models the 't Hooft Polyakov type magnetic 
monopolee is never globally stable. 
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Chapterr 6 

Chargee instabilities in 
(2+l)-dimensions s 

Inn the previous two chapters we investigated possible instabilities of topological de-
fects.. In this chapter we will investigate another instability due to the presence 
off  topological defects. We describe a charge instability in Alice electrodynamics in 
(2+l)-dimensionss due to the possible creation of a pair of Alice fluxes out of the vac-
uumm following [95]. In a sense it is the two dimensional dual analog of the monopole 
coree instability we investigated in the previous chapter. The final state is one in which 
thee electric charge is completely delocalized, i.e., it is carried as Cheshire charge by 
thee flux pair, which gets infinitely separated. We determine the decay rate in terms 
off  the parameters of the model. The relation of this phenomenon with other salient 
featuress of 2-dimensional compact QED, such as linear confinement due to instan-
tons/monopoles,, and the introduction of a so called Cheshire current is discussed in 
thee appendix. 

6.11 Introduction 

Ass we saw before AED contains magnetic monopoles, just as compact U(l) gauge 
theory.. As is well known the monopoles become instantons in two dimensional elec-
trodynamicss and lead to confinement of charge, see [58] and [59]. The potential be-
tweenn two static charges becomes linear and the string tension due to the instantons 
wass determined by Polyakov in [59] and is given by: 

r * 9
2e x p ( - ! p i )) . (6.1) 

withh Sinst the action of the instanton in (2+l)-dimensions, or the mass of a monopole 
inn (3+l)-dimensions. and g the (dimension-full) coupling constant. In compact Alice 
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electrodynamicss there are instantons as well. One therefore in principle expects the 
samee confining potential between charges. However, as we wil l see. whether this 
confinementt wil l be realized physically depends on the parameters in the model. 

W i t hh respect to the monopoles/ instantons in AED we have, see chapter 5. made 
anotherr observation, namely that the core structure of a magnetic monopole may be 
unstab lee and deform into a ring of Alice flux carrying a Cheshire magnetic charge. 
Thiss feature, however is not expected to bear on the confinement mechanism as such, 
becausee the core structure does not affect the long range behavior of the fields. We 
re turnn to this point towards the end of the chapter. 

Wee saw before that the topological structure of AED is richer than the topology of 
ord inaryy electrodynamics, as it supports topologically stable Alice fluxes. In this 
chapterr we wil l show that these fluxes may have a dramatic influence on the infrared 
behaviorr of the potential between two static charges. In the infrared region the 
potent iall  wil l not grow linearly as in ordinary compact electrodynamics, but the 
potent iall  wil l saturate and become constant at a scale set by the mass of the Alice 
flux.. This follows from the fact that a static charge wil l be unstable under the creation 
off  two Alice fluxes and the possibility of (induced) Cheshire charges carried by such 
aa pair. We calculate the decay rate of a charge due to this instability, into a state 
wheree the charge is completely delocalized. i.e.. virtually disappeared. 

Beforee turning to a detailed treatment of this remarkable charge instability, it is useful 
too briefly discuss some generic features of the parameter space we art; considering. To 
bee as flexible as possible in separating the various dynamical aspects of the theory, 
wee like to think of a latt ice version of the theory (as discussed in chapter 3). because 
inn that sett ing one can introduce different mass scales for the fluxes ( m / ). for the 
monopoless ( mm ) . and possibly also for dynamical, charged degrees of freedom (m(}) 
byy hand. Of course in cont inuum versions of the model, see chapter 2, one often 
findsfinds that these physical scales may be linked and one is forced to restrict oneself to 
aa smaller region of the parameter space than the one we explore in the remainder of 
thiss chapter. 

Thee chapter is organized as follows. In section 6.2 we examine the classical config-
urat ionn of a pair of Alice fluxes in the presence of a charge. We determine the field 
linee pat tern of such a configuration and the energy gain due to the introduction of 
fluxx pair. In section 6.3 we analyze the result ing charge instability in a semi-classical 
approximat ionn and determine the action of the bounce solution for some specific de-
cayy channels. In the concluding section we discuss the relevance of our results in the 
broaderr context where one also takes the instantons into account. In the appendix 
wee introduce the notion of a so called magnetic Cheshire current and point out its 
relat ionn with electric Cheshire charge. 

6.22 Alice fluxes in the presence of a charge 

I nn this section we examine the classical field configuration of a pair of Alice fluxes in 
thee presence of a charge. We first analyze this situation qualitatively which leads to 
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thee conclusion that the pair of Alice fluxes will carry an induced (Cheshire) dipole 
charge.. Here we will also examine some specific configurations in LAED in (3+1)-
dimensions,, see chapter 3. on the dipole behavior of an Alice loop and the effect this 
hass on the dynamical response of the vacuum to the presence of an external charge. 
Thenn to see what the dipole behavior looks like, in (2+l)-dimensions, we determine 
thee configuration of electric field lines generated by a conducting needle between two 
oppositelyy charged point charges. The conducting needle represents a pair of Alice 
fluxesfluxes (one at either end) with their core structure ignored. Finally, we will determine 
thee energy gain due to the introduction of the needle/flux pair. 

6.2.11 The induced Cheshire dipole 

Lett us now study the field configuration of a charge in the presence of an Alice loop 
(i.e... a pair in two dimensions). Due to conservation and quantization of charge, field 
liness cannot cross an Alice flux, a situation reminiscent to that of the Meissner effect 
inn a super conductor. In fact, at first sight one would be tempted to interpret the 
wholee collection of Cheshire phenomena as a manifestation of some exotic form of 
electricc and/or magnetic super conductivity in the core of an Alice loop. However, 
thiss is not possible because the flux tube itself cannot carry electric/magnetic charge 
orr current, see chapter 1. Let us now consider what happens if we create an Alice 
loopp in the neighborhood of a charge. 

(a)) (b) 

(c)) (d) 

Figuree 6.1: 
AA sequence of figures that leads to the correct field line configuration for two Alice fluxes in the 
presencee of a charge. Figure (a) shows a single charge in figure (b) a pair of fluxes is created in the 
vicinityy of the charge but with the wrong field line pattern as follows from deforming Z2-gauge sheet, 
figurefigure (c). The correct field line pattern is given in figure (d). 
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AA first guess of how a radial field would be affected due to the creation of the Alice 
loopp might be the same as for the case of a super conducting loop. i.e.. the field 
liness would be pushed away by the loop. However the analysis performed in figure 
6.11 yields a very different picture1. Some of the field lines close around the first 
fluxx while an equal number emanates from the sheet to close around the second flux 
andd go off to infinity, see figure 6.1. Thus the total charge carried by the Alice flux 
configurationn stays zero, as it should, but the flux configuration acquires an induced 
electricc (Cheshire) dipole moment. For convenience we only examine cases where the 
fluxx pair lies on the line connecting the charges. The electric field lines have to be 
perpendicularr to the line segment between the two fluxes, because (i) the electric 
fieldd lines need to change sign when going around a single flux and (ii) the reflection 
symmetryy through the horizontal axis of the configuration. 

Inn certain symmetric configurations the Z-2-sheet may be considered to act like a 
conductingg plate from which follows that the charge is pulled towards the Alice loop. 
However,, one should be careful with this analogy because the conducting plate bound-
aryy condition of the Z2-sheet only holds in the particular gauge that satisfies the 
obviouss symmetry condition. In a general gauge the Z2-sheet has an arbitrary shape 
andd cannot be interpreted as a conducting plate. On the other hand, the field line 
patternn closing partially around the first and the second flux is gauge invariant. We 
concludee that the charge induces a dipolar Cheshire charge on the Alice loop (or in 
22 dimensions, on the pair of fluxes). This is a natural generalization of the result ob-
tainedd in [5], but. straightforward as the generalization may be, there is an important 
aspectt to it. As we mentioned before, a system of two fluxes or an Alice loop can 
bee in the topologically trivial sector of the theory and thus may play a role in the 
dynamicall  response of the vacuum to an external charge. 

Ass an inter-mezzo that provides extra support to these findings we will briefly inves-
tigatee two specific configurations in LAED in (3+l)-dimensions, see chapter 3. First 
wee wil l show that an Alice loop can carry a (magnetic) dipole Cheshire charge in 
LAED.. Then we will look at the dynamical response of the vacuum to an external 
magneticc monopole pair. 

Too investigate the possibility of a dipole Cheshire charge in LAED we wil l examine a 
configurationn with a fixed monopole. anti-monopole and Alice loop. All objects are in 
onee plane and the Alice loop lies in the middle of the two monopoles2. We wil l examine 
thiss configuration in the limi t of g —> 0, the naive classical limit , and rnjiux —• oo. In 
thiss limit no extra Alice fluxes appear and we will work in the Z2 gauge where the only 
Z22 sheet is the minimal surface spanned by the Alice loop. In this limit there appear 
too be two possibilities: either there are no extra monopoles and the Alice loop will 
presumablyy behave as a (magnetic) dipole configuration or there is a compensating 
monopolee stuck to each fixed monopole3. Which of the two configurations has the 

x Thuss first one assumes the naively expected configuration to be formed in analogy with a pair of 
superconductingg wires. However, if one deforms the Z2-sheet (which is just a gauge artifact) bounded 
byy the fluxes one sees that that must be wrong, suggesting the correct and consistent configuration. 

2 Onn a periodic lattice 'in the middle' is of course not possible, but we mean that the distance the 
otherr way around is larger. 

33 If we had an extra bare mass term for the monopole we could simply send it to infinity to force 
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lowestt energy depends on the different length scales in the configuration. Now we will 
considerr a configuration where there are no extra monopoles present. 

Inn this configuration the monopole, the anti-monopole and the Alice loop lie in the 
xyxy plane. In figure 6.2 we plotted the z component of the magnetic field just above 
andd below the plane in the dual lattice in which the configuration of the monopole, 
thee anti-monopole and the Alice loop lies. The monopole, the anti-monopole and 
thee Alice loop have not been plotted, but it should be clear where they are. In this 
figurefigure we see that the z component of the magnetic field just above the plane in which 
thee objects lie is, going from the left to the right, positive above the first monopole, 
becomess negative above the Alice loop then it becomes positive on the other end 
off  the Alice loop and finally is negative above the last monopole. This shows that 
thee Alice loop gets an induced (magnetic) dipole moment, as if the Alice loop is a 
conductingg plate, in the presence of charges, just as we expected. 

F i g u ree 6.2: This plot shows the z component of the magnetic field just above and just below the 
planee in which the monopoles and the Alice loop lye. It shows the induced dipole behavior of the 
Alic ee loop in the presence of a charge. 

Soo an Alice loop can act as an induced dipole in the presence of charges. This implies 
thatt dynamical Alice loops can screen a charge as they can help to polarize the 
vacuum.. Now we will look at a configuration of a fixed monopole and anti-monopole 
inn the background of dynamical Alice fluxes, i.e., we are not in the limi t oim,fiux —> oo. 
Soo dynamical Alice loops can form and can possibly screen the monopoles. We take a 
smalll  value of g to make sure that no other monopoles form and we take m,fiux such 
thatt the background flux density is around 0.03. Thus there are some fluxes around, 
butt they are not condensed in the bulk. 

Inn figure 6.3 we plotted some specific height lines of the flux density in the x-t, y-

thee extra monopole pair to disappear and only the desired configuration is left. 
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tt and z-t directions and the positions of the monopoles. The monopole is fixed at 
( 5 | , 2 i , 4 |)) and the anti-monopole at (5 | ,65,45). The flux density peaks around 
thee two monopoles. i.e.. screening the two monopoles. From this and the fact that 
ann Alice loop in the presence of a charge gets a dipole moment we conclude that in 
LAEDD Alice loops do screen charges. 

Thee height lines —— The monopoles
10 0 

9 9 

8 8 

7 7 

6 6 

55 y 

4 4 

3 3 

2 2 

1 1 
0 0 

0 11 2 3 4 5 6 7 8 9 10 

x x 

F i g u ree 6.3: This plot shows some specific height lines for the flux density in the x-t, y-t and z-t 
directionss and the positions of the monopoles. 

Afterr this brief digression into the screening effects of Alice loops in (3+l)-dimensions 
wee now return to the discussion in (2+l)-dimensions. The dipolar behavior of an Alice 
fluxflux pair in the presence of a charge can have important consequences. Just like a 
particlee anti-particle pair, these pairs may contribute to the screening of a bare charge, 
butt an even more drastic consequence is possible. The scenario runs as follows. One 
off  the fluxes can absorb the point charge, after which the charge would be carried 
ass a Cheshire charge by the flux pair. This Cheshire charge acts like a fictitious 
chargee distribution along the line connecting the fluxes, generating a repulsive force 
betweenn the two fluxes4 causing the fluxes to move away from each other. This 
wouldd mean that the Cheshire charge would increasingly spread and weaken, put 
moree bluntly, it effectively just disappears. The fluxes would cause an extreme case 
off  charge derealization. So, in two dimensions it therefore appears that in these type 
off  theories, charge leaks away, implying the absence of any (static) charge. 

4Wee assume for simplicity that a priory there is no flux-flux interaction. This is not true in 
general,, in the case of Nielsen-Olesen fluxes it depends on the value of the Landau parameter, but if 
thee static forces are zero or repulsive, then the result obviously holds. 
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6.2.22 The field configuration 

Wee now turn to the determination of the field configuration of a flux pair located 
betweenn two oppositely charged point particles. We use the boundary conditions 
imposedd by the fluxes but neglect the core structure of the fluxes. This boils down 
too calculating the electric field configuration of a conducting needle located between 
twoo oppositely charged point particles, where the needle lies on the line connecting 
thee charges. 

Two-dimensionall  electrostatics (i.e., potential theory) has the convenient property 
thatt it is conformally invariant. Exploiting this conformal invariance one can construct 
explicitt solutions satisfying the boundary conditions imposed by the geometry we are 
interestedd in. We start with determining the solution of a charge in the presence of 
aa conducting disc with the help of the method of images. Then we use a conformal 
transformationn which maps this conducting disc into a conducting needle/flux pair, 
seesee figure 6.4. Since a conformal transformation is angle preserving, a conductor gets 
mappedd to a conductor. 

ZZ W 

WW = b/2 (Z + 1/Z) 

> > 

F i g u ree 6.4: The conformal transformation, w = | (z + i ) , which maps the conducting disc of 
radiuss one into a conducting needle of length 2b. 

Too construct the configuration of two charges with a flux pair in between, we first 
determinee the single charge case and then superpose two of these configurations. We 
determinee the potential of a charge in the presence of a conducting disc with the help 
off  the method of images. It is similar to the textbook example of the charge in the 
presencee of a conducting ball in three dimensions, but for the case at hand the charge 
off  the image charges does not depend on the distance of the charge to the conducting 
disc.. Making use of the identity, |rï}  + an2\ = \an\ + n2\ with \rï[\  = \n2\ = 1, one 
easilyy finds the potential &(z), z = x + iy. The potential is given by: 

l o g | z - z0 || - l og 
RR2 2 

\\zz0\ 0\ 
logg \z\\ , (6.2) 

withh R the radius of the conducting disc, whose center is located in the origin and ZQ 
denotess the location of the charge. The field lines correspond with the height lines of 
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thee function: 

,, , Q f , s ( R2 

$(z)$(z) = — i arg(z - z0) - arg [z - -—-^z0 
2n2n { V \zo\ 

arg(z) ) (6.3) ) 

Thee results are plotted in figures 6.5a and 6.5b for the equipotential lines and the 
electricc field lines respectively. 

(a) ) (b) ) 

F i g u ree 6.5: These figures show some of the equipotential lines, figure (a), and field lines, figure 
(b),, of a charge in the presence of a conducting disc. The thick dark circle is the boundary of the 
conductingg disc. The configuration inside this circle represents the 'image' charges. 

Wee can use this solution to find the solution of a charge in the presence of a flux 
pairr with the help of the conformal transformation given in figure 6.4. To be more 
generall  we first determine the configuration of two charges in the presence of a disc. 
Thiss is straightforward since electrodynamics is linear in the sense that potentials just 
add.. Thus for the situation of two (oppositely charged) charges we get the following 
potential: : 

<Sf[z) <Sf[z) 
Q_ Q_ 

++ log 

logg |2-211 - l og 
N N ,-zi i l o g | z-- z2\ 

1*22 I 
,"22 2 (6.4) ) 

Thee field lines are now given by the height lines of the function: 

*(z )) = — ^aig(z-zi) - a rg 
Z7T T N N 

2ii  - arg(2 - z2) 

++  arg z 
V2V2 | 

,-Z2 2 (6.5) ) 
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Lett us now use the conformal transformation to map this solution to the solution of 
twoo charges in the presence of a flux pair located on the line connecting the charges. 
Too be able to use the conformal map, of figure 6.4, R needs to be unity. We can get 
thee desired configuration if the two charges and the disc also lie on one line and the 
discc is between the two charges. We rotate the system such that z\ and  are real. 
Afterr this we can use the conformal map to map this solution to the solution of the 
fluxflux pair between two oppositely charged point charges. This is done by replacing z 
byy the corresponding function of w. which is given by: z = x + \/x2 — 1 where we 
havee defined x — ^ and will use corresponding definitions for X\ and X2- This gives 
thee following potential: 

®(®(xx)) = 7T \ loS x + \AP2 - 1 - x\ - Jx2 - 1 

- l og g 

- l og g 

++ log 

++ \fx2 - 1 ?ii  + v^' i - l 

++  y/x2-l X2 X2 

11 + y/x\ - 1 

-J -J xl-\ xl-\ 

X2X2 + \/x\ - 1 
(6.6) ) 

andd the field lines follow from: 

* ( x ) ) 2~~ \ a rS f x + yjx2 - 1 - xi - yjx\ - 1 

\xi\xi + \jx\ - 1 
arg g xx + 

V V 
arg g II  x + yx2 — 1 — X2 — \jx\ — 1 ) 

++ arg xx + v x2 — 1 — 
i \ \ 

X2 X2 ++  v
/xJ^l J 

(6.7) ) 

Thee conformal transformation only correctly generates the solution in the upper half 
plane.. Re(x) > 0. The solution in the lower half plane follows by the obvious symme-
tryy of the problem. In figure 6.6(a) and 6.6(b) we plotted the resulting equipotential 
andd field lines for the configuration. 
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(a)) (b) 

F i g u ree 6.6: These figures show some of the equipotential lines, figure (a), and field lines, figure (b), 
off  two oppositely charged charges in the presence of the Cheshire dipole carried by a pair of fluxes 
locatedd at the endpoints of the black line segment. 

6.2.33 The energy gain 

Inn the previous subsection we determined the potential and the field configuration 
off  a flux pair between two point charges. In this subsection we calculate the energy 
differencee of this configuration with the (coulomb type) field configuration without 
thee flux pair. To be able to determine the energy difference we have to regularize the 
expression,, i.e., we introduce a UV cut off which will be removed later. With this 
cutofff  the total energy difference is equal to the integrated energy density difference. 
Writtenn in this form, the cutoff can be removed leaving the energy difference finite, 
andd this is how we calculate the energy gain due to the presence of the flux pair. 
Too simplify life the calculation is performed in z space, not in w space. So we use 
thee conformal transformation, which is also just a convenient change of variables, to 
transformm the solution back into z space and as an intermediate step, determine the 
energyy gain due to the presence of a conducting disc and the energy cost due to the 
presencee of a magnetic super conducting disc. The energy gain due to the presence of 
aa flux pair is determined from these two results. The relation between these energy 
differencess is given by: 

// {Edipole — Efpair}dw = I {Emscdisc ~~ Edisc}dz 

==  j{Edipole - Edisc}dz - j{Edipole - Emscdisc}dz , (6.8) 
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wheree EmscdiSC is the energy density of two opposite charges with a disc in the middle, 
whichh we identify as a magnetic super conductor (msc) as the electric field lines are 
parallell  to it. This configuration is the configuration that one obtains after applying 
thee inverse conformal transformation, thus from w-space to z-space, to the dipole 
configurationn in u>-space. First we will determine the energy gain due to the presence 
off  a conducting disc. This yields the expression: 

AE, AE, disc disc JJ
/>7TT />0O [ 

1LL v* ^2(r,S)r+{-de^^2(r,S)r+{-de2̂2(r,e) (r,e) 

(<9r$i(r,6>))-- ( -df l $i(r ,0) ) } r drdO 

nn rR 

++ 2 II II 
JoJo  Jo 

(d(drr<S>2{r,0)r+[-d<S>2{r,0)r+[-d && $$22{r,9)){r,9)) } r drdO , (6.9) 

withh <&i(r,#) given by formula 6.4 and <3>2(r, #) is given by formula 6.4 with R — 0. 
Thiss gives: 

Q22 , __ / ( *? -# )<*? -# )• 
AEAEdiscdisc = - — log 

Z7T T (z^(z^ + R2)2 (6.10) ) 

Thee energy gain due to the presence of a magnetically super conducting (msc) disc is 
determinedd by: 

A E E mscdisc mscdisc 
2211 ƒ Ï ̂ <MM)) 2 + QdAM ) 

(0 r$3(r ,, 0))2 - -<%$3(r, 9) ) }r  drdO 

>7rr rR 

+ + 22 ƒ f <{d r*2(r,9))2 + (ld9Q2(r,e)\ 1 r drdO , 

withh <£>i(r, 0) given by formula 6.4 and ^ ( r , 9) by: 

* 3 ( * )) = ;T<1OÉ 
Z7T T 

22 + zizi + — log g 2 + i ) - ( ^ + i i 
Onee obtains: 

AFAF Q2.(tf-R2)(4-R2) 
t-^^mscdisct-^^mscdisc — 0

 l u g I , D 2 \ 2 
27TT \ (21-22 + ^ ) 

Forr the case of R = 1 we have Efpair = AE d i s c - AEmscdisc- Thus we get: 

(6.n; ; 

(6.12) ) 

(6.13) ) 

£ / ^ - - V l 0 HH (^2 + l)2 (6.14) ) 
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Thiss result is still in z language, i.e.. z\ and 22 need to be written in terms of w\ and 
w'2-- This is done with the help of the conformal transformation, z = x + \/x2 — 1. 
andd leads to the following expression for the energy gain: 

'/pair'/pair = ^T log - 1 + ^ — - JL-  ̂ • (6.15) 

Wee see that the energy gain due to creating a flux pair between two charges is basically 
unbounded.. Moving the flux pair closer to one or both of the charges increases the 
energyy gain. One expects that due to the renormalization of the charge this would 
nott go on for ever, effectively one expects a UV cutoff. 

Lett us now investigate the single charge configuration, i.e.. we send one of the charges 
too infinity. In this case the energy gain is given by: 

'' ƒpair — log 
7T T 

U11 + V 5) ) 
(6.16) ) 

wheree d is the ratio of the distance of the two fluxes to the charge. 
Wee find that the energy gain due to the presence of the flux pair only depends on the 
ratioo of the distance of the two edges to the charge. Thus no matter what the size is 
off the UV cutoff, the flux radius or in fact any other length scale, the energy gain can 
alwayss be as large as one wants in a region where all length scales are insignificant, 
withh respect to the distances of the fluxes to the charge and between the fluxes. This 
showss that in two dimensions a single charge is always unstable (or meta-stable) with 
respectt to a decay into a flux pair with a Cheshire charge no matter what the length 
scaless are. However, the length scales of course drastically change the decay time of 
aa charge. 

6.33 The charge instability 

Inn this section we analyze a novel type of instability in the electric field of a charge. 
Wee pointed out before, that a pair of Alice fluxes in the presence of a charge acquires 
ann induced dipole. subsequently we determined the energy gain due to the creation of 
suchh pair. This raises the question to what extend the electric field configuration of a 
pairr of static localized charges remains stable with respect to flux pair creation. We 
studyy this question in a lattice version of AED (LAED). The reason is, as mentioned 
inn the introduction, that LAED allows us to introduce independent parameters, a 
masss rrif  for the Alice flux and a mass/action ram for the monopole/instanton. First 
wee analyze the charge instability, then we will determine what the decay time is and 
comparee it with the instability under the creation of a pair of charged point particles 
(withh mass mq). assuming that these are present in the theory. To what extend these 
resultss can be carried over to a continuum version of the theory will be discussed in 
thee concluding section. 
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Beforee turning to the the detailed calculations, let us make some general observations 
concerningg the role of the various mass scales in the model. If both mm and m ƒ are 
veryy large, a charge in two dimensions generates the well known logarithmic potential 
inn the classical (small g2) limit.: 

V(r)V(r) = ^\og(-) , (6.17) 

withh ro some UV cutoff. Needless to say that the presence of dynamical charges in 
thee model would (a) give rise to the standard (short distance) renormalization of the 
chargee and (b) provide a cutoff to the potential at an energy of the order of mass of 
thee charged particles mq. If the monopole mass mm comes down and rrif  remains very 
largee we get that the monopoles cause confinement, i.e., a linearly rising potential and 
thee role of dynamical charges would be very much the same as for the logarithmic 
case.. For the moment however, we will assume that no charged dynamical particles 
aree present in the model (i.e., we assume them to be very massive). If now the 
fluxflux mass comes down as well, then of course we get the possibility to dynamically 
createe flux pairs out of the vacuum and these will cause the decay of the electric 
fieldsfields generated by the external charges. One expects a situation to arise where the 
potentiall  (irrespective of its character) basically saturates and turns into a constant 
att a distance (r/ro) where field energy becomes comparable to the value 2mj. 

6.3.11 The lif e tim e of charge 

Lett us now compute the decay time of a system of two charges by performing an 
instantonn calculation in the spirit of the "false vacuum" as described by Coleman and 
Callann [96], [97]. To lowest order in h one only needs to determine the bounce solution 
withh lowest action. The bounce is a classical solution of the Euclidean system, i.e., 
withh the original potential inverted. In the mechanical analogue a classical particle 
movess from the meta stable point to the corresponding point at the other side of 
thee barrier and back again. The instability, i.e., the tunneling through the barrier 
correspondss to half the Euclidean bounce solution, after which a real Minkovski time 
evolutionn takes over. At this point the system is not yet in its final state, but one 
expectss that the new lowest energy state will be reached by emitting/dissipating 
energyy through conventional (in this model presumably primarily electromagnetic) 
radiationn processes. In the mechanical system with the inverted potential one should 
thenn find the particle trajectory with minimal action St,. In the semi-classical domain 
thee decay time is given by: 

roce "̂ ^ . (6.18) 

Inn our system we find two extremal paths. We expect one of these two to have the 
lowestt action, independent of the distance 2u> between the two external charges. In 
thee following we analyze the situation for two cases, firstly we will determine the 
actionn for the instability due to the creation of a flux pair, then we do the same for 
thee creation of a pair of point charges and finally we compare both mechanisms. 
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Wee first consider the case where the pair of fluxes or of charges are created in the 
mostt symmetric way. This means that they start out exactly between the external 
charges.. The other decay channel we investigate corresponds to the most asymmetric 
configuration,, where the fluxes or charges are created in the vicinity of one of the 
externall  charges and only one flux or charge will move. The other flux or charge 
remainss with the charge at a fixed minimal distance RQ, which represents the UV 
cutofff  of the bare charge. We will also determine the action of the bounce - the pair 
creationn rate - in a constant electric field. 

Soo the calculations we are about to make for the various cases are very similar, so let 
us,, before providing the specific details for each case, give the general structure of the 
results. . 

Inn the previous sections we have calculated the energy gain E in the electric field due 
too the pair creation. From that we can determine the potential Vpair  for the creation 
off  a pair as a function of their separation 2b and of course also dependent on the other 
fixedfixed parameters that characterize the configuration, such as the external charges Q, 
theirr separation w, the masses rrif  (or mq) and sometimes a core size .Ro-

ta)) (b) 

F i g u ree 6.7: In figure (a) we plotted two typical potentials for the bounce of two Alice fluxes in the 
symmetricc and asymmetric channel respectively. In figure (b) we plotted two typical potentials for 
thee bounce of two dynamical charges in the symmetric and asymmetric channel respectively and the 
potentiall  for the bounce of two dynamical charges in a constant field. 

Wee have indicated the generic shape of the potentials in figures 6.7(a) and 6.7(b) for 
thee pair creation of fluxes and dynamical charges respectively. For the fluxes we have 
assumedd there to be no flux-flux interactions so that only the mass 2m ƒ comes in. For 
thee charged pair, however one expects the potential to grow with separation which 
meanss that the maximum of the potential is shifted towards larger separation. As is 
welll  known in one dimensional physics, the action of the extremal path generically is 
givenn by: 

SSpairpair _ 2 f ^/4mVpair db . (6.19) 

Wee can bring this expression in a more or less canonical form. One first introduces 
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aa dimensionless separation variable y obtained by conveniently scaling b with some 
relevantt length scale, for example the critical separation bc labeling the turning point, 
thiss brings out a factor of the relevant length scale out in front. Next one scales the 
potentiall  by its maximal value: V — VmaxV. Vmax may conveniently be written as 
VmaxVmax = 2m^2 where 7 is a dimensionless quantity satisfying 7 > 1 and the equal sign 
appliess to the flux pair creation (see figures). Putting the scaling factors in front of 
thee integral the expression for the action takes the general form. 

gpairgpair = const x h c m i F^w^m^Q:RQ) ? (6.20) 

wheree the dimensionless function F may depend on all the parameters but because 
off  the rescalings takes on only values between zero and one. 

y=l y=l 

VpairVpair dy . (6.2i; // F— 
—— / y ''pair 

Jv=0 Jv=0 

Wee see that the action is typically of the order (mass of pair)x(critical separation), 
ass one would expect naively. Yet, we will study the various cases separately in more 
detail,, because it turns out that there are interesting differences in the functional 
dependencee of Spair on for example the distance w of the external charges, which are 
importantt physically. 

6.3.22 Charge decay due to creation of an Alice flux pair 

Wee compute the action for a bounce corresponding with the creation of a flux pair in 
thee presence of two external charges. First we consider the symmetric channel, then 
thee asymmetric channel and finally the case of a constant electric field. 
Thee symmetric channel: 

InIn the symmetric channel we may use formula 6.15 with x\ = x2 = x, which gives the 
energyy gain: 

EfEfPPmrmr = -Q- log (l - ^ J . (6.22) 

Duringg the bounce the external charges remain fixed while the distance between the 
fluxesfluxes increases. The suitably scaled variable for this situation is y = - — —. So 
farr we only determined the energy gain due to the boundary conditions created by 
thee Alice fluxes, but the potential in which the fluxes move is not only given by the 
energyy gain, we also should include the energy cost which equals the mass of the flux 
pair.. 2mf. The potential for the pair is therefore given by: 

Vf^Vf  ̂ = 2mf ( e (|2,|) + 1 log (1 - y2)\ . (6.23) 

wheree 0(0) = 0 and equals one otherwise. The constant /i is defined as \i =  2nJ£f. 
Wee should note that keeping y\ = y2 — y for all times is in fact a solution to the 
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equationss of motion for the system with the inverted potential. The action of this 
solutionn is simply given by: 

StStymym=^b=^bccmmlFlFffym{jl)ym{jl) . (6.24) 

wheree the turning points are given by the zeros of the potential, i.e., 

bbcc =w y/l- e-f (6.25) 

andd where F/ m(/i ) is given by: 

FFaa
ff

ymym(fi)=J(fi)=J  y i + - l o g { l - j / ' 2 ( l - e - " ) ) ' V • (6-26) 

Notee that the function i7 / depends in this case only on one particular combination 
off parameters //. The integrand varies from one at y = 0, to zero at y = 1. Although 
thee integral cannot be done analytically, a little analysis shows that the function 
alwayss lies between the functions j(y) = \ A — y2 and f(y) = 1. The integrals 
off these functions are easily determined to be ^ ~ 0.8 and one. So we have that 
jj ~ 0.8 < Fl {p) < 1 which is indeed correct as one can see from the numerical 
evaluationn of F/ym(//) plotted in figure 6.8. 

Ass mentioned before we need to introduce a UV cutoff for the bare charges, allowing 
thee fluxes to approach a charge only up to a minimal distance RQ. One way to put 
thiss is that for the symmetrical process to be able to take place, or for that matter 
anyy decay mode using fluxes, w needs to exceed a minimal value depending on i?0 

andd //. This constraint on w is easily determined wTith the help of formula 6.23 by 
puttingg b = w — R0 in other words y = 1 — ro with ro — RQ/W. Determining the zero 
off the potential than gives the minimal value of w. yielding: 

-- = — > 2e^2 (e^2 + V^^l]  (6.27) 

Th ee asymmetric channel: 

Thee asymmetric channel is the channel where one of the fluxes stays close to one 
off the charges and the other flux moves away. An interesting fact about this decay 
channell is, that in the limit of widely separated charges, w —• oc, this channel will 
stilll give a finite decay time, whereas the symmetric channel would not. The energy 
gainn due to the presence of a flux pair in this system again follows from formula 6.15. 
Wee fix one of the fluxes at the minimal cut-off distance RQ from one of the charges. 
Thee other flux is pushed away from this charge. In this case it is natural to scale the 
variabless by the core size R0 as this is the only length scale in the limit of w —• oc. 
soo we define w = ^ - and y — -£-. The energy gain of this configuration is given by: 

EfpairEfpair = ^ l o J l ( l + *D(l + y ) - l - 2 y \ \ 
fPfP V V2 V V(2«)- l ) (2i i ) -2y-l ) (2j /+l)> /> / 
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Thee potential is obtained by adding the mass term for the creation of the two Alice 
fluxesfluxes out of the vacuum. The action of the bounce is determined in the same manner 
ass we did in formula 6.19. not only do we have a different potential, we also need to 
changee a factor 4 into 2, because only one flux is moving in this decay channel. For 
thee action we obtain the following expression: 

SLymSLym = ^mfbc Fisym(fi, w) , (6.29) 

wheree the critical separation bc is given by: 

h ==  o 2 l J; • ^ ( c o s h ( f ) +3 s i nh ( t ) ) " ( 6 " 3 0 ) 

v/e'44 —1 

Thee function Fj[  m(fi,w) is defined by: 

/ / 

2w(l2w(l + y'yc)-l-2y'yc \ \ 
dy dy oo \| H V2 V V( 2 ^ " 1)(2* - WVc - l)(2j/'yc + 1) 

(6.31) ) 

andd depends also on the separation of the external charges 2w. Although we do get 
aa similar expression as in the symmetric case the integral in the asymmetric case is 
nott that easily estimated, see figure 6.9 for a plot of F? m(fi,w) and figure 6.8 for 
thee value this integral takes in the limit of w —• oo. 

Thee remarkable fact is that this action remains finite in the limit of w —> oc. Thus 
thee decay time of a single charge (i.e.. of charge itself) is finite in two dimensional 
Alicee electrodynamics. 

Th ee constant field: 

Nextt we investigate the decay width per volume of a constant electric field. The 
energyy gain due to the presence of a flux pair in line with the electric field strength 
cann be found from formula 6.22. We move the charges to infinity and increase Q such 
thatt the ratio Q/w is kept fixed and we define the electric field as 8 = -^-. The 
resultingg energy gain due to the presence of a flux pair then equals: 

EfpairEfpair = 7TS2b2 . (6.32) 

Thee action is easily determined to be: 

S[S[onsonstt = \/27rm/6c , (6.33) 

wheree the critical separation is. 

,2mm f 
» c = ^  ̂ • (6.34) 

Thee result is of course independent of position as it determines the decay rate per 
unitt volume of a constant electric field. 
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6.3.33 Charge decay tim e due to creation of point charges 

Lett us now investigate the field instability of a pair of external charges under the 
creat ionn of two dynamical charges. Since point charges have a singularity in the field 
energyy at the core we introduce again a cutoff RQ to regulate some of the infinities in 
ourr calculations. First we wil l determine the energy gain due to the presence of two 
pointt charges. We denote the two initial charges as C\ and C2. the created charges 
ass D\ and D2. We put the four charges on one line and obviously assume the charges 
too be alternating. Symbolically the energy gain can be wri t ten as: 

tfaintfain = ( C l + C 2 ) 2 - ( C 1 + C 2 + D 1 + D 2 ) 2 

== -(D2
1+D2

2+2DlD2)-2(C1+C2)(Di + D2) . (0.35) 

Thee first part. D2 + D2, has an infinite contribution at the cores of the charges and 
onlyy these infinities wil l be removed, i.e.. only in this term we cut away a disc with 
radiuss 7?o around the charges. Taking the origin halfway between the two created 
chargess and denoting the distances of the charges with respect to this origin w\. w2 

andd b. the energy difference E âin is given by: 

„ ,, Q\ { 2(*i - D(X2 - 1) \ , r , n 

£J.,„„  = - v H c x . + Dte + DfJ ' M 6 ) 

wit hh x = f and ru = ^ . 
Thiss is the change in energy due to the electrical field configuration. We still need to 
takee the mass of the point charges into account. We assume that the point charges 
aree created a distance 2RQ away from each other and the energy cost of this process 
wee call 2mq. Thus the total energy gain is given by: 

11 / (xi - l ) ( . r 2 - l ) ( . r 1 + r0)Or2 + ro 
—— log I 
VV V('T1 - n>)( 2̂ - fo)(Xl + l)(.'ï-2 + l)f 0 

iw=2m<,(.. + -iog(^' : T :Z. :,i). :,Z I I  ww 

Wltl ll  V 

Nextt we wil l use this energy gain to determine the action of the bounce in different 
channelss of the decay process. 

T h ee s y m m e t r i c channe l: 

I nn the symmetr ic channel the potential is given by: 

v w = 2 m ,, (i + - log ()»_ V „ ; . U . \Y ,_ \) . (6.38) i ,, ((y-i)2(ro + i)2y 

vv °ë\(rQ-iny + l)2ro 

wheree we still use y =  ̂ = ^ and TQ — - ^ . 
Too determine the action of the bounce we need to determine: 

ry-ya ry-ya 
SSqqpairpair = 2w ƒ \/4mqVqpair dy . (6.39) 

110 0 



6.3.. The charge instability 

Thiss is a quite non-trivial integral. We will estimate this integral by slightly changing 
thee boundary conditions. As the lower boundary condition we will not take r0, but 
thee point between r0 and zero where Vqpair = 0. Later we will estimate the part we 
addd to the action by this change in the boundary conditions. 
Soo first we will determine the integral: 

rv=Vr rv=Vr 
Sl'ymSl'ym =2W V4m<l Vqpair dy , (6.40) 

Jy=y-Jy=y-

withh yc and y_ the two values of y where Vqpair is equal to zero and with 0 < y  ̂ < 
yycc < 1. This integral is still quite difficult. We can determine it up to a part that we 
evaluatee numerically and understand quite well. The action can be written as: 

S%\S%\nn = 4y/2mq{bc - b.^^F^X) , (6.41) 

withh 7|y r o = y ^ f ^ S A = ^ + log((^
i r t

L )
1j ' o) ; A mm = log ( 1 ( 1 1 + 5 ^ )) and 

FFssymymii
XX)) g i v e n by: 

JO JO N N 
11 + A log [ (l+iiy ^y )̂y,+y })2 {{yc - y-)y + ;</_)) 

11 Ami„
 dV . ( 6 - 4 2) 

withh yc = bc/w and y_ = b_/w. 
Inn figure 6.8 we have plotted a numerical evaluation of the function (yc - y-)F$ m(A) . 
Wee still need to estimate the part introduced by taking different boundary values. 
Thiss may be estimated by the maximum of the integrand in the region between y_ 

andd r0 times r0. If ( -2 + y/E) > r0 Vqpair.max = 2mq else Vqpair,max = 2 m ^ ^ ^ - " . 

Thuss we estimate this part of the action to be Sfy
2
rn, which is typically much smaller 

thann Sfym. as follows: 

SfymSfym < 4v/2m?JR0 if ( - 2 + v^) > r0 (6.43) 7.2 2 
>yri i 

andd else 

SlylSlyl < AV2mqR0]l^^ . (6.44) 

Thee asymmetric channel: 

InIn the asymmetric channel the potential is given by: 

^ , .. = 2m , ( l  + i | o g ( | ^ | ^ i I ) ) . (0.45) 

Thee action of the bounce is given by: 

SSasym=asym=44™.™.qqbbcĉ l̂symlsymF2F2symsym(v,f(v,fVV)) . (6.46) 
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withh 7*aym = , / l + I log (2(\.^) ) and 

bbcc = R0[je- l/(2 + 2eu{w-3)-w+ 

y/-%ey/-%evv{w{w - 2) + ( -2 - 2e"{w - 1) + w)A (6.47) 

andd F% m{v. w) is given by: 

11 4_ I W (2{y'yr+l)(ü,-y'y,-2)\ 

Inn the limit xr ~* oc we can determine the integral exactly, yielding: 

__ V  ̂ Erfi[v/ly+iog(2)] 

*?.»•>•«)) = e ~ JT?^  <"9> 
Plotss of F%sym(v. w) and F£sym{v. oc) are given in figures 6.9 and 6.8. 

Wee recall that in the asymmetric channel for the creation of Alice fluxes the result 
remainss finite in the limit of widely separated external charges, obviously this is not 
thee case for the action of the bounce corresponding to the creation of a pair of point 
charges. . 

Th ee constant field: 
Finallyy we will consider the case of a constant electric field and examine the action 
off the bounce if two point charges are created. To determine the energy gain in the 
fieldd configuration we can use formula (6.37). However we cannot take the charge 
off the initial charges equal to the charge of the created point charges. To get the 
configurationn in a finite electric field we take the distance between the initial charges 
too infinity while keeping the charge over the distance ratio fixed. Again we take the 
electricc field £ =  <^i^ial • The potential for the creation of two point charges in a 
constantt electric field is given by: 

VVqpairqpair = 2mq (l+j-  (log(jf) - u(y - 1)) J . (6.50) 

withh u = ^ f ^ . 
Thee action of the bounce is given by: 

ry=yry=yc c 

SSqq
constconst = 2R0 / y/tmqVqpair dy  (6.5i; 

• ' 0=1 1 

Justt as in the symmetric channel we take slightly different boundary conditions and 
estimatee the difference later on. We will use the two values of y where Vqpair  = 0 and 
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wee get: 

Thiss leads us to: 

ry=yry=y r r 

SSqq
coco\\lstlst = 2R0 ƒ y/4mqVqpair dy . (6.52) 

Jy=y-Jy=y-

SconstSconst = ^mq(bc ~ b-hq
constF^onst(K) . (6.53) 

with~fwith~fqq
constconst = y ^ K = i/-log{u) + u, 6C ^ = (& =)/c + log(K + log(/c + log(K + - ••))) 

« 0 0 

a n d 6 _ ^ - == (y'_ =) exp( —K + exp(—« + exp(—KH ))), where t̂ , and y^ are the two 
reall solutions of K + log(y') — y' — 0. Fq

onst(n) is a function which varies only from 
-jj at K —> 1 to I at K —• oc and is given by: 

77conaM=jconaM=j V -F?onst(K)=F?onst(K)= \ " ; dy . (6.54) 

seee figure 6.8 for a plot of Fq
onst(K). 

Wee still need to estimate the part we introduced by taking different boundary values. 
Wee approximate that part by the maximum of the integrand in the region between 
y-y- and 1 times R0. If u < 1 then Vqpair̂ max — 2mq and otherwise Vqpair,max = 
2m2mqq (~^)- Thus the upperbound for this part of the action. Sq

onst. is typically much 
smallerr than Sq

onst, to be explicit: 

SSqq
coco

22
nstnst < 4V2mqR0 if u < 1 (6.55) 

else e 

SïolstSïolst < ^V2mqRo^J  ̂ . (6.56) 

6.3.44 Comparing the decay channels 

Wee just determined the actions of bounce solutions corresponding to some decay 
channelss of two static point charges. As expected the action depends strongly on the 
parameterss of the model. LAED allows for the different parameters to be indepen­
dentt of each other, so there are many possibilities for the preferred decay channel. 
Althoughh the LAED model we described before does not require dynamical charges 
wee did determine the action of some decay channels for the creation of pairs of such 
charges.. Both dynamical charges and Alice fluxes can render the static point charge 
configurationn unstable. However, the decay time will typically depend exponentially 
onn the distance between the two static charges except for one possible mode: the 
asymmetricc decay channel of the two static charges under the creation of two Alice 
fluxes.. The action of this channel saturates. This means that even the decay width 
off a single point charge is finite in AED. in contrast to ordinary ED. This instability 
iss the process mentioned at the end of section 6.2.1. which may be considered as the 
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Figuree 6.8: 
Thiss figure shows the five functions Ffs = Fiym(fï), F f a = Flsym(\//i), Fqs = (yc — y_)F^y m(A — 

A mj „ ) ,, F<ja = F2Syrn(u) and Fgc = F ônst(n - 1) numerically, with A mi„  = log f | f 11 + 5 ^ ] J, 

rr  asym\y ) FaFaSSym(v,ym(v, oo) and F[sym{l/n) FlsymFlsym(1/V>°°) (1/V>°°) 

Fqa(v.w)) -

(a) ) (b) ) 

Figuree 6.9: 
Figuree (a) shows a plot of Flsyrn(fi,w). The figure shows that the limi t of the integral at ü) —> oc 
iss reached only very slowly. The minimum value of the integral only moves slowly to large ( i a s ii 
growss exponentially. Figure (b) shows a plot of Faayrn(v, w). The figure shows that the limi t of of 
thee integral at w —> oo is reached very fast. In the limi t of w —> oo we know the integral exactly. 

twoo dimensional dual analog of the monopole core instability described in chapter 5. 
Thiss implies basically the nonexistence of static charges in the theory, and that is the 
mainn observation we make in this chapter. 

Wee already mentioned that a pair of Alice fluxes can be represented by a conducting 
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needlee in our configurations. On a conductor charges are free to move and one can 
forr example have an induced dipole moment. In this picture the creation of two 
pointt charges is just a highly singular charge distribution on this line segment and it 
iss obvious that the action of the bounce for Alice fluxes can always be made lower 
becausee the charge distribution can still be varied. A simple and extreme example is 
thee asymmetric channel in the limit of w —*• oc. Here the action of the bounce for the 
pointt charges is infinite while the action of the bounce for the Alice fluxes remains 
finite. . 

6.44 Conclusions and outlook 

Inn this chapter we have extensively analyzed the behavior of Alice fluxes in the pres­
encee of electric charges in (2+l)-dimensions. We showed that a pair of Alice fluxes in 
thee presence of an electric charge develops an induced electric dipole moment. This 
dipolee moment is of the Cheshire type which means that it is carried by the flux pair, 
andd that the would-be charges making up the dipole are strictly nonlocalizeable and 
thuss remain elusive. Exploiting conformal invariance we determined the resulting field 
configurationss exactly which in turn allowed us to calculate the energy gain due to 
thee introduction of a pair of Alice fluxes between two external charges. Subsequently 
wee considered the stability using semi-classical methods, using a Euclidean bounce 
solution. . 

Wee used a lattice model of AED, see chapter 3. to investigate the effects of Alice fluxes 
onn a configuration of static point charges, because it allowed us to investigate the 
effectss of the different topological defects separately. In the case of heavy monopoles 
wee found an instability in the charge configuration due to the creation of a pair of 
Alicee fluxes. Although this instability looks quite similar to the instability due to the 
creationn of two dynamical point charges there is a crucial difference. In the limit of 
increasingg separation between the static charges the decay time due to the creation 
off dynamical point charges diverges, while for the creation of two Alice fluxes it 
saturatess and remains finite. To reach this conclusion we did not have to calculate 
thee fluctuation determinant in detail, assuming that it is finite. Consequently in 
(L)AEDD a single bare charge is unstable under the creation of two Alice fluxes, which 
cann be seen as the (2+l)-dimensional dual analog of the monopole core instability, 
seee chapter 5. If the monopole mass moves down, i.e.. the confinement scale comes 
intoo play, the instabilities due to a flux pair and a charge anti-charge pair become 
veryy similar. In figure 6.10 we have sketched the potential for a typical situation. 

Lett us now give some comments on the continuum theory. We expect the situation to 
bee not so much different. The topological defects arise as a consequence of spontaneous 
symmetryy breaking, which means that the mass scales for the fluxes and monopoles 
mightt be much more constrained. In chapter 5 we showed that if the flux mass gets 
muchh less then the monopole mass, one may well get that the monopole decays in a 
fluxflux ring carrying a Cheshire magnetic charge. This suggests that the confinement 
scalee and the instability scale (due to flux creation) cannot be too much different. As 
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F i g u ree 6.10: The effective potential for a pair of external charges. The figure represents the case 
wheree the mass of the Alice flux pair is larger than the confinement scale, but smaller than the mass 
off  dynamical charges. It is possible to lower mj below the confinement scale. 

wee explained, if the monopole and Alice flux mass are comparable the potential still 
saturatess due to the instability under the creation of two Alice fluxes. 

Inn this chapter we showed that the possibility of Cheshire charge in a theory has serious 
consequencess for the stability of charge in the theory in two dimensions. It is usually 
aa question of energetics what the stable configuration is, but for theories which allow 
forr Cheshire charges, a Cheshire charge configuration is the natural second candidate 
too carry the charge. This suggests that any theory which breaks to a subgroup which 
containss a discrete and continuous component that do not mutually commute the 
gaugee charges may well become unstable due to the Cheshire phenomenon. An other 
interestingg class of theories which typically contain Cheshire charged configurations 
aree the theories with non-abelian discrete gauge symmetries, which are best described 
withh the help of a spontaneously broken Hopf symmetry [8, 9]. 

Inn the appendix of this chapter we introduce an object called the (magnetic) Cheshire 
currentt and we discuss its relation with (electric) Cheshire charges. We will also dis-
cusss its relation with the closed electric field lines that occur if one interprets the 
occurrencee of an instanton as an event in the (2+l)-dimensional (Alice) electrody-
namicc setting. From this picture the confinement mechanism can be understood quite 
easily. . 

Acknowledgment:: We thank Jan Smit for very useful discussions on the topics dis-
cussedd in this chapter. 
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Appendix x 

6.55 Cheshire current and confinement 

Inn this appendix we will discuss the notion of a (magnetic) Cheshire current in AED 
andd the confinement of charges in (2+l)-dimensional (Alice) electrodynamics [59]. 
We'lll  introduce a configuration in AED named (magnetic) Cheshire current and ex-
plainn its relation with (electrical) Cheshire charges and confinement in two dimensions. 
We'lll  introduce a picture of two dimensional confinement from which qualitatively the 
confinementt of the electrical flux into a flux tube comes apparent. 

6.5.11 The Cheshire current 

Neitherr electric nor magnetic field lines are allowed to cross an Alice flux, suggesting 
somee exotic type of super conductivity through the core of the flux tube. In this part of 
thee appendix we return to this analogy and find an interesting gauge complementarity 
betweenn electric Cheshire charges and a magnetic Cheshire currents. Let us introduce 
thee latter first. 
Lett us consider the following "gedanken" experiment. We create two charged particles 
fromm the vacuum and take one of the two particles around two spatially separated 
fluxesfluxes and then annihilate the two particles again. If the flux tubes are magnetic 
super-conductorss this would have resulted in two magnetic current carrying fluxes, 
eachh with closed electric field lines around them. In the case of two Alice fluxes a 
differentt picture emerges. Since the field lines cannot close around a single Alice flux, 
onee needs to take an even number of fluxes to be able to annihilate the particles 
again.. This means that if one pulls the two fluxes apart one cannot be left with 
twoo fluxes which each carry a current. The field lines need to stay around both 
fluxes.fluxes. A situation very different from the super conductors indeed. The system as a 
wholee carries the current and just as in the case of a Cheshire charge the current is 
non-localizeable;; we should call this object a Cheshire current. 

Thee resulting field line configuration, depicted in figure 6.11, implies an attractive 
interactionn between the two fluxes, on top of the normal flux interactions. It has the 
oppositee effect of a Cheshire charge, which leads to a repulsive force between the two 
fluxes. fluxes. 

Uponn closer inspection we will see that there is a certain gauge complementarity, 
reconcilingg the two different pictures, describing non-localizeable Alice effects. At 
firstfirst sight electric Cheshire charge and a magnetic Cheshire current appear to be very 
differentt entities. Let us now point out that there is actually a close relation between 
them.. Imagine we repeat the gedanken experiment we just performed, but now we 
movee in two more Alice fluxes from infinity in such a way that all four of them are 
onn one single line. As we know, on each flux one Z2 line should end. For convenience 
wee put these half lines on top of the line on which we put the fluxes. For every flux 
wee then still have the freedom to let the line go to the left or to the right. The result 
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F i g u ree 6 .11: Closed electric field lines of a (magnetic) Cheshire current configuration. 

justt yields two different, but gauge equivalent, configurations, as is illustrated by the 
topp and bottom pictures in figure 6.12. 

Ass we argued before, one can deform the Z2 lines in any way one wants by gauge 
transformations.. From figure 6.12 it is clear that we can gauge transform the first 
configurationn into the last one. This means that they both describe the same physics, 
althoughh their interpretation appears to be quite different. In one case, see the bottom 
picturee of figure 6.12, one would argue that two Cheshire charges are the source of 
thee field lines, but in the other situation, see the top picture of figure 6.12, one would 
arguee that three Cheshire currents are the source of the field lines. Apparently there 
aree two different ways of looking at this configuration. As was explained before [4] 
onee needs to cut away some region(s) of space-time if one wants to consider field 
strengthss which are not single valued in the presence of an Alice flux. However, there 
iss of course not a unique choice to do this. This freedom of choice corresponds exactly 
too the gauge complementarity of Cheshire charge and Cheshire current. 

Wee do note that although they are related by a gauge transformations it does not mean 
thatt all configurations can be thought of as consisting only of Cheshire charges or only 
off  Cheshire currents. A simple example is a pair of Alice fluxes carrying a Cheshire 
chargee and a Cheshire current. This object may in fact be a stable configuration in two 
dimensions,, since the electric Cheshire charge results in a repulsive force between the 
twoo fluxes whereas the magnetic Cheshire current results in a attractive force between 
thee two fluxes. These could be made to cancel leading to a stationary configuration. 

6.5.22 Confinement in a two dimensional pictur e 

Inn this subsection we will consider the confinement of (2+l)-dimensional electrody-
namics.. This problem was already solved in [59]. For any non-zero value of the gauge 
couplingg constant (2+l)-dimensional electrodynamics is confining (in the quenched 
approximation).. It is well known that the instanton density increases and polarizes 
aroundd the minimal sheet bounded by a closed Wilson loop. In a three dimensional 
Euclideann space the instanton configuration is in fact just a magnetic monopole. After 

118 8 



6.5.. Cheshire current and confinement 

F i g u ree 6.12: The 'duality' transformation from three magnetic Cheshire currents into two electric 
Cheshiree charges. 

translatingg the instanton configuration to Minkovski space it is easy to understand 
thatt the polarization of the instanton density results in the confinement of the elec-
tricall  flux into a flux tube. 
Byy going to Minkovski space the interpretation of the fields change. The ^-component 
off  the magnetic field becomes the pseudo scalar magnetic field in the (2+1) dimen-
sionall  Minkovski space, while the 9 and p components of the magnetic field get trans-
latedd into the p and 9 components of the electric field respectively. For the moment 
wee will ignore the factors of i as they will  have no influence on the picture we use, 
althoughh they do play an important role in the dynamics and the polarization of the 
instantonn density. 
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Changingg from Euclidean to Minkovski space allows us to interpreted the instanton 
densityy as a magnetic current density in Minkovski space. The nice thing of this two 
dimensionall  interpretation is that the confinement of the electrical flux into a flux 
tubee easily follows from the superposition of the field lines of the pair of charges and 
thee magnetic currents. In figure 6.13 we see that superimposing a magnetic current 
too the electric dipole configuration moves the field lines inwards. Indicating that a 
(polarized)) magnetic current density would confine the electric flux into a flux tube. 

(a)) (b) 

F i g u ree 6.13: In figure (a) we plotted the field configuration of two opposite charges in the absence 
off  instantons. In figure (b) we see that the introduction of magnetic currents, representing the 
instantonss in Minkovski space, pushes the field lines inwards explaining the fact that the electric flux 
getss confined in a flux tube in the presence of a (polarized) instanton density. 

Inn the previous section of this appendix we introduced an object in AED which can 
alsoo be identified as a magnetic (Cheshire) current. However the dynamics, due to 
thee factors of i, is very different. 
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Inn this thesis we investigated physical effects that occur if simple gauge theories 
gett broken to models with a non-abelian residual symmetry group. As a specific 
examplee we have investigated Alice Electrodynamics with gauge group U(l) lx Z2 
inn quite some detail. This is a theory in which charge conjugation symmetry is 
gauged,, which leads to a number of remarkable physical properties. We started by the 
constructionn and comparison of different types of (L)AED models, for example models 
whichh allowed for first order Bogomolny type equations. Exact numerical solutions 
forr the Alice fluxes in the continuum models were obtained. The phase structure of 
(L)AEDD in three and four dimensions was determined using a lattice formulation of 
thee theory. We measured quantities rather precisely, such as the Alice flux density 
andd the monopole/instanton density in different parts of the parameter space. After 
havingg investigated these lattice models we turned to stability questions related to 
topologicall  defects. We first noted that in a theory with a topological degeneracy 
dynamicss may well select a particular lowest energy state or asymptotic vacuum. This 
mechanismm was shown to hold for the situation of kinks and fluxes in a certain class 
off  models as a consequence of the fact that not all topologically non-trivial boundary 
conditionss allowed for static solutions. These features are in particular relevant for 
(1+1)-- and (2+l)-dimensional models with flat directions in their potential. In a 
followingg chapter we turned to the question whether a spherically symmetric magnetic 
monopolee could decay into a magnetically Cheshire charged Alice loop. With the help 
off  a variational method we demonstrated that this is indeed the case in some part 
off  the parameter space of the model. Although these magnetic Cheshire rings were 
nott necessarily exact solutions to the equations of motion, they did provide an upper 
boundd for the energy of the configuration from which instability could be concluded. 
Finallyy we looked at the fate of electric charge in (2+l)-dimensional AED. There 
wee basically established that a pair of static external charges is unstable under the 
creationn of a pair of Alice fluxes if they are separated far enough. This is in fact 
aa novel kind of screening in which binding of an electric charge to one of the fluxes 
impliess that its charge gets converted in a totally delocalized Cheshire charge. So 
inn (2+l)-dimensional AED the potential between two charges saturates around twice 
thee mass of an Alice flux. It would be interesting to determine the effective potential 
betweenn two external charges by a quantum Monte Carlo computation. However as is 
welll  known from QCD such a saturation of the potential is notoriously hard to detect 
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[98,, 99]. and we considered this problem beyond the scope of this thesis. 

Thee main ingredient in the monopole instability and the charge instability in (2+1)-
dimensionss is the possibility of an Alice loop or a pair of Alice fluxes to carry a 
Cheshiree charge. This possibility is a general feature of Alice models. In all Alice 
modelss there is a natural second candidate to carry the magnetic and/or electric 
charge.. So one would expect such instabilities to appear in other Alice models as 
well. . 

Althoughh AED might not be the phenomenologically most favored model for electro-
dynamics,, its physical properties are striking if one realizes how modest the change 
inn the theory in fact is. As we mentioned in the first chapter of this thesis there are 
severall  places in high energy physics and condensed matter physics where Alice effects 
mayy turn out to be relevant. 

Acknowledgments.. We wrould like to thank Jan Smit and Jeroen Vink for valuable 
advicee and support related to lattice gauge theories. M.M.H.Postma for his contri-
butionss in the early stages of the project and A. Achücarro, L. Pogosian and T. 
Vachaspatii  for discussions on dynamical vacuum selection. Furthermore we would 
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ExperienceExperience is a comb which nature 
givesgives to men when they are bald. 

(AA Chinese Proverb) 

Hett is de taak van de natuurkundigen om te proberen de wetten van de natuur te 
achterhalenn en om te voorspellen wat daaruit volgt. In analogie zouden natuurkundi-
genn proberen te achterhalen wat de Nederlandse wetten zijn en te voorspellen wat de 
uitkomstenn van rechtszaken zijn. Het belangrijkste gereedschap voor het achterhalen 
vann de natuurwetten is het doen van experimenten. In vergelijking kijken natuurkun-
digenn naar wat mensen voor en na een rechtszaak doen om aan de hand daarvan de 
Nederlandsee wetten te achterhalen. Dat lijk t een haast onmogelijke taak, maar hier 
komtt het uiteindelijk wel op neer. 

Err zijn verschillende soorten natuurkundigen. Zo zijn er bijvoorbeeld de experimen-
teell  natuurkundigen. Door het doen van experimenten proberen ze eigenschappen van 
dee natuurwetten bloot te leggen. De theoretisch natuurkundigen proberen deze eigen-
schappenn op hun beurt te verklaren. Onder theoretici heb je ook weer verschillende 
soorten.. Er zijn mensen die de gevonden eigenschappen met behulp van bestaande 
enn bekende natuurwetten proberen te verklaren. In analogie proberen deze theoretici 
dee uitkomst van complexe rechtszaken te voorspellen aan de hand van bestaande en 
bekendee wetten, ze zitten als het ware op de stoel van de rechter. Dit kan misschien 
triviaall  lijken, maar menig advocaat kan beamen dat de uitkomst van een complexe 
rechtszaakk lang niet altijd zo voorspelbaar is. Er is ook nog een ander soort theoretisch 
natuurkundigen,, waartoe ik behoor. Deze theoretici proberen onbekende natuurwet-
tenn te achterhalen. Ze nemen als het ware de plaats in van de politiek. Simpel gezegd 
verzinnenn ze een aantal wetten en proberen aan de hand van (verzonnen) simpele 
rechtszakenn te achterhalen of deze wetten mogelijk de Nederlandse wetten zijn. Be-
langrijkee richtlijnen in dit werk zijn de bekende natuurwetten. Aangezien deze tot op 
zekeree hoogte bevestigd zijn door de experimenteel natuurkundigen. 

Eenn belangrijk ingrediënt van de natuurwetten is symmetrie. Hiermee wordt niet de 
symmetriee van een voorwerp bedoeld, maar de symmetrie van de natuurwetten (de 
theorieënn die de voorwerpen beschrijven) zelf. Een voordeel van een symmetrie is dat 
hett aangeeft wat niet belangrijk is. In de natuurkunde is translatiesymmetrie een 
belangrijkk voorbeeld van zo'n soort symmetrie. Zo denken we in de natuurkunde dat 
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dee natuurwetten translatie-invariant zijn. Dit betekent dat de natuurwetten op elke 
plekk in het heelal hetzelfde zijn. Dit lijk t redelijk normaal, maar is tegelijkertijd ook 
ergg tegen intuïtief. Zijn bijvoorbeeld de natuurwetten op de Maan niet heel anders 
dann die op de Aarde? Het is bijvoorbeeld waar dat de aantrekkingskracht op de Maan 
veell  kleiner is dan op de Aarde. Dit betekent echter niet dat de natuurwetten ook 
anderss zijn op de Maan. Wat wel anders is, is de situatie en die zorgt ervoor dat de 
effectieveeffectieve natuurwetten op de Maan anders zijn dan op de Aarde. In analogie met de 
Nederlandsee rechtspraak zijn alle Nederlanders in beginsel gelijk voor de wet. Dat is 
ookk wel zo fijn. anders zou er voor elke Nederlander een nieuwe set wetten moeten 
wordenn gemaakt. Dit betekent echter niet dat ook elke rechtszaak gelijk is. Situaties 
kunnenn namelijk verschillen. Dus. ook al hebben de natuurwetten een hoge mate 
vann symmetrie, dan betekent dat nog niet dat die symmetrie manifest is voor elke 
situatie.. Dit zorgt ervoor dat het heel moeilijk kan zijn om de symmetrieën waar de 
natuurwettenn aan voldoen te vinden. Probeer bijvoorbeeld maar eens het principe 
datt alle Nederlanders in beginsel gelijk zijn voor de Nederlandse wet te achterhalen, 
doorr alleen te kijken naar de situatie waarin iemand zich bevindt voordat de rechts-
zaall  wordt betreden en wat de situatie is als deze persoon er weer uitkomt. Een 
anderr mooi voorbeeld dat aangeeft dat de symmetrie van een theorie niet manifest 
hoeftt te zijn, is een diner aan een ronde tafel. Op de tafel staan borden en tussen de 
bordenn staan glazen. Alles ziet er heel mooi en symmetrisch uit, totdat de mensen 
watt gaan drinken. Links en rechts van elk bord staat een glas. Iedereen heeft nu nog 
dee keuze om het linker of het rechter glas te pakken. Duidelijk is dat de keuze van 
éénn iemand de keuze van één van zijn buren beperkt. Om boze gezichten aan tafel 
tee voorkomen, is het van belang dat iedereen dezelfde keuze maakt: of iedereen pakt 
hett rechter glas of iedereen pakt het linker glas. Als niet iedereen het rechter (of het 
linker)) glas pakt, ontstaan er problemen. Er zullen mensen aan de ronde tafel zitten 
zonderr glas en er zullen elders op de tafel glazen over zijn. Als er eenmaal gegeten 
enn gedronken wordt, is het erg moeilijk om de links/rechts symmetrie weer terug te 
vinden.. Dit is een voorbeeld van een spontane symmetriebreking. Dit betekent dat 
dee natuurwetten wel een bepaalde symmetrie hebben, maar dat deze niet manifest is 
voorr de zogenaamde grondtoestand. Eén van de mogelijke gevolgen van een symme-
triebrekingg is het ontstaan van topologische defecten. Het diner aan de ronde tafel 
iss ook nu een mooi voorbeeld. Zoals we al eerder opmerkten, ontstaan er problemen 
alss niet iedereen het rechter (of linker) glas pakt. In zo'n situatie zijn er mensen die 
geenn glas hebben en zijn er glazen die los op de tafel staan. Deze 'frustraties' noe-
menn we topologische defecten. In 1-dimensionale natuurkunde kunnen ze ontstaan 
opp plekken waar verschillende vacua met elkaar botsen. In de situatie van het diner 
aann de ronde tafel zijn er twee vacua, namelijk links en rechts. Een persoon zonder 
glass heeft links van hem/haar iemand zitten die zijn/haar rechter glas heeft gepakt en 
heeftt rechts van hem/haar iemand zitten die zijn/haar linker glas heeft gepakt. Deze 
botsingg van de verschillende vacua zorgt voor de vorming van een topologisch defect, 
eenn persoon zonder glas. Bij een vrij glas is er ook een botsing van vacua, maar dan 
nett andersom. De begrippen symmetrie, symmetriebreking en topologische defecten 
komenn in dit proefschrift veelvuldig aan de orde. 
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Inn dit proefschrift hebben we grotendeels één bepaalde theorie onderzocht: Alice elek-
trodynamicaa (AED). AED is een simpel voorbeeld uit een hele klasse van theorieën. Al 
dezee theorieën hebben een bepaalde symmetriestructuur. De symmetriestructuur van 
hett model dat we bekeken hebben, lijk t heel erg op die van elektromagnetisme. Heel 
veell  eigenschappen van de natuurkunde van AED zijn gelijk aan de eigenschappen 
vann de natuurkunde van elektromagnetisme. Het interessante gedeelte is het verschil 
tussenn beide modellen. Het zijn juist deze verschillen waar we voornamelijk naar ge-
zochtt hebben en die we onderzocht hebben met behulp van verschillende methoden. 
Dee verschillen komen alleen voor in bepaalde situaties waar de zogenaamde topologi-
schee defecten in voorkomen. Bijna alle verschillen zijn gebaseerd op het zogenaamde 
Alice-effectt van een Alice-fiux (een topologisch defect). In AED zorgt het Alice-effect 
ervoorr dat een elektrische lading van teken verandert als het om een Alice-flux heen 
beweegt.. Het punt waarop dit gebeurt is fysisch niet belangrijk, maar dat het gebeurt 
heeftt wel een fysische betekenis. Dit soort interacties worden topologische interacties 
genoemd.. De interactie hangt namelijk alleen af van de topologie, hoe vaak het deeltje 
omm de flux heen draait, en niet van de afstand tussen de flux en de lading. 

Inn het begin van hoofdstuk één van dit proefschrift geven we een inleiding van Alice 
elektrodynamica.. We leggen uit wat de symmetriestructuur is en welke topologische 
defectenn er kunnen voorkomen in AED. Verder proberen we een beeld van AED te 
gevenn aan de hand van gewone elektrodynamica. In het tweede deel van het eerste 
hoofdstukk verklappen we alvast de belangrijkste resultaten van de andere hoofdstuk-
kenn zonder al te veel op de details in te gaan. 
Inn hoofdstuk twee wordt een oplossing voor de Alice-flux, een topologisch defect, in 
hett originele model voor AED gepresenteerd. Verder worden er ook twee alternatieve 
modellenn voor AED gepresenteerd, die als voordeel hebben dat ze in bepaalde situaties 
aff  te beelden zijn op bekende modellen. Deze bekende modellen hebben eigenschap-
penn die ervoor zorgen dat de oplossingen van de topologische defecten makkelijk te 
vindenn zijn. 
Inn hoofdstuk drie construeren we een roostermodel (lattice model) van AED (LAED). 
Hett voordeel van een roostermodel is dat je het goed met behulp van een computer 
kuntt onderzoeken. Ook LAED heeft topologische defecten. Alleen zijn ze bij dit 
modell  niet aanwezig als gevolg van een symmetriebreking, maar omdat het model op 
eenn rooster leeft. De gaatjes in het rooster kunnen zich namelijk gaan gedragen alsof 
zee een topologische defect bevatten. Met behulp van de computer hebben we het 
LAED-modell  in drie en vier dimensies kunnen bestuderen. We hebben bijvoorbeeld 
dee waarden van een aantal meetbare grootheden als functie van de modelparameters 
analytischh voorspeld. Deze uitkomsten hebben we met behulp van computerresulta-
tenn gecontroleerd. 
Inn hoofdstuk vier bestuderen we een specifiek dynamisch gedrag dat generiek is voor 
eenn bepaalde klasse van veldentheorieën. We laten zien dat een zogenaamde vlakke 
richtingg in de potentiaal van een veldentheorie ervoor zorgt dat sommige topologische 
defectenn niet statisch kunnen zijn. De manier waarop deze topologische defecten ver-
anderenn is heel goed voorspelbaar. We laten zien dat een systeem met zo'n topologisch 
defectt een voorkeur heeft voor een speciaal vacuüm en dat dit systeem dit vacuüm in 
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dee loop der tijd selecteert. Dit proces noemen we dynamische vacuümselectie. 
Inn hoofdstuk vijf bestuderen we een instabiliteit van de sferisch symmetrische magne-
tischee monopooloplossing in AED. We laten eerst zien dat een ring van Alice-flux ook 
eenn magnetische lading kan dragen. Daarna laten we met behulp van het zogenaamde 
variationelee principe en de computer zien dat de sferisch symmetrische magnetische 
monopooloplossingg niet altijd de laagste hoeveelheid energie heeft voor een configu-
ratiee met een magnetische lading. In de delen van de parameterruimte van het model 
waarr dit het geval is. vinden we een configuratie met minder energie, die heel erg 
veell  lijk t op wat je zou verwachten voor een magnetisch geladen Alice-ringoplossing. 
Wee laten dus zien dat een sferisch symmetrische magnetische monopooloplossing kan 
vervallenn in een magnetisch geladen Alice-ring. 
Inn het laatste hoofdstuk van dit proefschrift, hoofdstuk zes. bestuderen we een ladings-
instabiliteitt in AED in (2+l)-dimensies. De belangrijkste twee ingrediënten hiervoor 
zijn:: (1) het feit dat twee Alice-fluxen uit het vacuüm gecreëerd kunnen worden, wat 
niett mogelijk is voor een enkele Alice-flux, en (2) dat klassiek gezien de potentiële 
energiee tussen twree elektrische ladingen oneindig doorgroeit bij toenemende afstand 
tussenn de ladingen. Als de afstand tussen de twee ladingen groot genoeg is. is het 
energetischh voordeliger om een paar Alice-fluxen te creëren en elk aan één van de la-
dingenn te koppelen. Deze instabiliteit zorgt ervoor dat een enkele statisch elektrische 
ladingg in (2+l)-dimensies niet mogelijk is en dat de potentiaal tussen twee ladingen 
eenn maximum bereikt. Dit is het punt wTaarop de Alice-fluxen wTorden gecreëerd. 

Alhoewell  het grootste deel van het onderzoek zich op AED heeft gericht, verwachten 
wee dat de resultaten ook voor andere Alice-modellen gelden aangezien deze grotendeels 
gebaseerdd zijn op het Alice-effect van de Alice-fluxen. 
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