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Abstract 

In this Thesis we address the existence problem for the Hull-Strominger system. Firstly, we 
carry out a systematic search for solutions induced by the invariant geometry of Lie groups 
on complex homogenenous manifolds, based on the study of a natural family of invariant 
holomorphic vector bundles on these manifolds, and discuss moduli aspects restricted to the 
invariant situation. Motivated by our results, we propose a refned version of a Conjecture 
by Yau for solutions to the Hull-Strominger, and fnd a new obstruction which goes beyond 
the balanced property of the Calabi-Yau manifold (X, Ω) and the Mumford-Takemoto slope 
stability of the bundle over it. The basic principle is the construction of a (possibly indefnite) 
Hermitian-Einstein metric G on the holomorphic string algebroid Q associated to a solution 
of the system, provided that the connection ∇ on the tangent bundle is Hermitian-Yang Mills. 
Using the construction of (Q, G), we defne a family of Futaki invariants associated to an 
infnite dimensional moment map obstructing the existence of solutions in a given balanced 
class. The precise conditions for G to be Hermite-Einstein lead to study a new system 
of equations in Hermitian Geometry called the coupled Hermite-Einstein system, which is 
strictly weaker and can be solved, in principle, in any compact complex manifold. We then 
move on to investigate stability conditions on holomorphic Courant algebroids reminiscent 
of GIT, inspired by the picture provided by the Donaldson-Uhlenbeck-Yau theorem. At 
this point of the Thesis, our main development is a notion of harmonic metric for the Hull-
Strominger system, motivated by an infnite-dimensional hyperKähler moment map and 
related to a numerical stability condition, which we expect to exist generically for families 
of solutions. 
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Resumen 

En esta Tesis tratamos el problema de existencia para el sistema de Hull-Strominger. En 
primer lugar, buscamos sistemáticamente soluciones inducidas por la geometŕıa invariante 
de grupos de Lie en variedades homogeneneas complejas, basada en el estudio de una familia 
natural de fbrados vectoriales holomorfos invariantes en estas variedades, y discutimos as-
pectos del espacio de moduli restringido a la situación invariante. Motivados por nuestros 
resultados, proponemos una versión refnada de una Conjetura de Yau para soluciones de 
Hull-Strominger, y encontramos una nueva obstrucción que va más allá de la propiedad 
balanceada de la variedad Calabi-Yau (X, Ω) y la estabilidad de pendiente de Mumford-
Takemoto para el fbrado sobre ella. El principio básico es la construcción de una métrica 
Hermite-Einstein (posiblemente indefnida) G en el algebroide de cuerdas holomorfo Q aso-
ciado a una solución del sistema, suponiendo que la conexión ∇ en el fbrado tangente es 
Hermite-Yang-Mills. Usando la construcción de (Q, G), defnimos una familia de invariantes 
de Futaki asociados a una aplicación momento en dimensión infnita obstruyendo la existen-
cia de soluciones en una clase balanceada dada. Las condiciones precisas para que G sea 
Hermite-Einstein lleva a estudiar un nuevo sistema de ecuaciones en Geometŕıa Hermı́tica 
llamado sistema Hermite-Einstein acoplado, que es estrictamente más débil que el sistema 
de Hull-Strominger y puede resolverse, en principio, en cualquier variedad compleja com-
pacta. A continuación, investigamos condiciones de estabilidad en algebroides de Courant 
holomorfos reminiscentes de GIT inspirados por la imagen global dada por el Teorema de 
Donaldson-Uhlenbeck-Yau. Nuestra principal aportación en este punto de la Tesis es una 
noción de métrica armónica para el sistema de Hull-Strominger, motivada por una aplicación 
momento hyperKähler en dimensión infnita y relacionada con una condición de estabilidad 
numérica, que esperamos que exista genéricamente en familias de soluciones. 

11 



Introduction 

The aim of the present Thesis is to address the existence problem for the Hull-Strominger 
system. This system frst appeared in the physical literature [85, 127] as the consistency 
conditions for the compactifcation of the heterotic string to 4-dimensional space time with 
minimal supersymmetry. Mathematically, it is stated as a system of partial diferential 
equations in the following terms. Let (X, Ω) be a compact complex manifold of dimension 
three endowed with a holomorphic volume form. Let V be a holomorphic vector bundle over 
X, and α be a real constant. Then a pair of hermitian metrics g on X and h on V satisfy 
the Hull-Strominger system if: 

Fh ∧ ω2 = 0, 
d(∥Ω∥ωω2) = 0, (1) 

ddcω − α(trR∇ ∧ R∇ − trFh ∧ Fh) = 0, 

where ω denotes the hermitian form of g. In the last equation, there is an ambiguity in the 
choice of the metric connection ∇ in the tangent bundle of the manifold, back to its origins 
in heterotic string theory. 

In the past few decades, the Hull-Strominger system has generated a great deal of interest 
in mathematics, both for its applications to the study of non-Kähler Calabi-Yau manifolds 
[43, 62, 108] and its relation to a conjectural generalization of mirror symmetry [5, 138]. As 
originally proposed in the seminal work by Li-Yau [98] and Fu-Yau [57, 58] on these equations, 
it is expected that the Hull-Strominger system plays a key role on the geometrization of Reid’s 
fantasy [27, 55], connecting complex threefolds with trivial canonical bundle via conifold 
transitions. This proposal has important implications in our understanding of the moduli 
space of projective Calabi-Yau manifolds in complex dimension three, and also physical 
applications to the string landscape. 

The existence problem for the Hull-Strominger is currently widely open. The present 
work is motivated by a question about the existence of solutions by S.-T. Yau [139]. 

Conjecture (Yau [139]). Let (X, Ω) be a compact Calabi-Yau threefold endowed with a 
balanced class b0. Let V be a holomorphic vector bundle over X satisfying: 

degb0 (V ) = 0, ch2(V ) = ch2(X) ∈ H2,2 (X, R). (2)BC 

If V is polystable with respect to b0, then (X, Ω, V ) admits a solution of (1). 

In order to make progress in this interesting question, about which we know very little at 
present, in this Thesis we strenghten the statement of this Conjecture in two ways. Firstly, 
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it is natural to demand that the class b = [||Ω||ωω2] associated to a solution coincides with 
b0, so that one has control over the balanced class. Moreover, as originally formulated in 
[139], the connection ∇ in (1) is not specifed in the statement of the Conjecture. Hence, 
we propose that ∇ is a hermitian connection (with respect to some fxed hermitian metric) 
satisfying the Hermite-Yang-Mills equations: 

0,2 R∇ ∧ ω2R = 0, = 0. (3)∇ 

This ansatz for ∇ seems to have strong physical and geometrical signifcance: a solution 
of (1) with this ansatz solves the heterotic equations of motion [47, 88] and furthermore 
has many desirable properties in perturbation theory [37, 84, 100]. As for the geometry, 
solutions of (1) satisfying (3) are generalized Ricci fat [61, 63] and have a moment map 
interpretation [13, 70], which leads to an interesting metric on its moduli space. Furthermore, 
there is currently strong evidence that these solutions play an important role in (0,2) mirror 
symmetry via T-duality and the theory of vertex algebras [5, 6, 64]. 

Motivated by the previous discussion, in this Thesis we address a Question which refnes 
Yau’s Conjecture taking into account these observations. Avoiding technical aspects that 
will be made precise, it is stated as follows: 

Question. Let (X, Ω) be a compact Calabi-Yau threefold, and let b0 be a balanced class. Let 
V be a b0-polystable holomorphic vector bundle over X satisfying (2). Let V0 be a generic 
b0-polystable holomorphic vector bundle structure on T 1,0 . Does (X, Ω, V ) admit a solution 
(ω, h) of the Hull-Strominger system (1) such that [||Ω||ωω2] = b0 and ∇ is the Chern 
connection of a Hermite-Einstein metric h0 on V0? 

Observe that an afrmative answer to this Question provides, in particular, a solution of 
Yau’s Conjecture with the ansatz (3). 

To gain some insight into this Question, in this Thesis we explore the geometric situation 
provided by complex locally homogenenous manifolds with hermitian structure induced by 
the invariant geometry of Lie groups [51, 47, 105]. On these manifolds, there is a natural 
class of holomorphic vector bundles of invariant type that can always be considered. In 
Chapter 4, we charaterise them using the representation theory of Lie algebras and use 
this to develop a systematic approach to fnding invariant solutions to the Hull-Strominger 
system. Furthermore, this approach allows to carry out simplifed analyses on the moduli 
space of solutions to the Hull-Strominger system [70, 13]. 

With the insights obtained from this invariant setup, we then provide compelling evidence 
that this refned version of Yau’s Conjecture has a negative answer. In order to do this, we 
will exploit the special features of the solutions of the Hull-Strominger system with the ansatz 
(3). More precisely, we will be able to use generalized geometry and to apply the theory of 
metrics on holomorphic string algebroids introduced in [68, 69]. In few words, let (X, Ω) be a 
(possibly non-Kähler) Calabi-Yau manifold and P a holomorphic principal bundle satisfying 

p1(P ) = 0 ∈ H2,2 (X, R). (4)BC 

To link with the above discussion, one can take P to be the bundle of split frames of 
V0 ⊕ V . Using (4), one can canonically associate to P a family of holomorphic vector bundle 

14 



extensions of the form 
0 −→ T1 

∗ 
,0 −→ Q −→ AP −→ 0, (5) 

where AP denotes the holomorphic Atiyah algebroid of P . These are a particular class of 
holomorphic Courant algebroids, called string. Then, for a fxed balanced class b0, we are 
able to construct a family of Futaki invariants : 

⟨Fs, b0⟩ : Hs → C, (6) 

where Hs = H0(X, Qs) and s parametrizes extensions of the form (5). Crucially, we prove 
that a solution to the Hull-Strominger system with the ansatz (3) determines a string alge-
broid Qs such that its Futaki invariant vanishes for the balanced class determined by the 
solution. This construction provides a new obstruction to the existence of solutions which 
goes beyond the balanced property of the Calabi-Yau manifold (X, Ω) and the Mumford-
Takemoto slope stability of the bundles V0 and V1. 

As a consequence of our main result, in order to disprove the Question above, it sufces 
2,2to fnd a tuple (X, Ω, V, V0), for V0 generic in moduli, and a balanced class b0 ∈ HBC (X, R) 

as in the statement, such that V0 and V are b0-polystable and 

⟨Fs, b0⟩ ≠ 0, ∀s ∈ S. (7) 

In the particular case X satisfes the ∂∂-Lemma, the family above reduces to a unique 
Futaki invariant F0. We expect that F0 provides an efcient tool to attack the posed Ques-
tion, with potential interesting implications in the geometrization of Reid’s fantasy and the 
string landscape. 

Our method of proof has several interesting salient features. It is inspired by an important 
result by De La Ossa, Larfors, and Svanes [36], who showed that the Hull-Strominger system 
is equivalent to a suitable Hermite-Yang-Mills equation on a Courant algebroid to all orders 
in perturbation theory. Here we give a precise mathematical counterpart of their result 
characterizing the Hermite-Einstein condition: 

FG ∧ ωn−1 = 0, (8) 

for a generalized pseudo-hermitian metric G on a holomorphic string algebroid Qs in terms 
of classical tensors. Using this, we prove that any solution of the Hull-Strominger system 
with the ansatz (3) induces a solution of (8), which allows us to construct Futaki invariants. 

Interestingly, the hermitian conditions under which (8) holds motivate the defnition of a 
new system of coupled equations in hermitian geometry, which we call the coupled Hermite-
Einstein system. This system is more fexible than the Hull-Strominger system as it can 
be solved, in principle, in any compact complex manifold. Here we construct solutions 
on manifolds that do not carry balanced metrics, and whose canonical bundle is not trivial. 
Moreover, in Chapter 7, we prove that the coupled Hermite-Einstein system admits a natural 
interpretation as a dimensional reduction of hermitian metrics satisfying: 

ddcω = 0, ρB = 0, (9) 
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of central interest in the problem of fnding canonical geometry for pluriclosed manifolds, 
and also as the fxed points of pluriclosed fow [126, 71]. 

We then go on to investigate GIT stability conditions for the holomorphic string algebroid 
Q associated to a solution of the Hull-Strominger system with the ansatz (3). Firstly, we 
recover a no-go result for solutions ‘without the ∇ connection’, which goes back to the 
seminal work of Candelas-Horowitz-Strominger-Witten [24]. From our point of view, this is 
a consequence of the slope stability of Q with respect to the balanced class b = [||Ω||ωω2] 
of the solution, combined with the existence of the holomorphic volume form Ω. We argue 
that the naive guess of considering slope polystability of the Bott-Chern algebroid Q with 
respect to b is too rigid. Motivated by this, we propose a refned stability condition based on 
hyperKähler moment maps. The basic idea is that a solution of the Hull-Strominger system 
should carry a positive defnite harmonic metric H for (Q, ⟨·, ·⟩, DG), that is, satisfying 

(∇H) ∗ Ψ+ iθ♯ Ψ = 0,
ω 

where DG = ∇H + Ψ is the unique decomposition of the Chern connection DG into an 
H-unitary connection and a Higgs feld. Using a diferent decomposition of DG à la Hitchin 
[83], we prove that the existence of a harmonic metric implies a numerical stability condition 
in the sense of GIT. Even though our picture is mostly conjectural, we expect that this 
stability condition will lead us to new obstructions to the existence of solutions in future 
studies. Our proposal is illustrated with a continuous family of solutions on the Iwasawa 
manifold. 

The structure of this Thesis is as follows. The frst Part, which is intended to serve 
as a background on non-Kähler geometry, is divided in three Chapters. In Chapter 1, we 
review metric and topological aspects of complex non-Kähler manifolds, and then we give 
some details on their gauge theory and its algebraic counterpart. Chapter 2 is devoted to 
explain the elements of Generalized Geometry that will be used in the sequel. We give a brief 
account on smooth and holomorphic Courant algebroids, including the study of generalized 
metrics, focusing on the exact and string cases. Next, in Chapter 3 we introduce the Hull-
Strominger system, its potential applications and the known solutions in the literature. 
We then make precise the Conjecture by Yau about the existence problem. The second 
Part of this Thesis presents the contents that are new in the literature, and forms the 
rest of this work. In Chapter 4, we study complex locally homogenenous manifolds and 
apply the results obtained to carry out a search for solutions of the Hull-Strominger system 
using an invariant ansatz. Moreover, we propose a refned version of Yau’s Conjecture. 
Then, we go on to discuss metric aspects of the moduli space of solutions to the Hull-
Strominger system. Chapter 5 is at the core of this Thesis. In this Chapter, based on [65], 
we prove the relation between solutions to the Hull-Strominger system and connections on 
Courant algebroids satisfying a Hermite-Yang-Mills condition. We then use the moment map 
interpretation of this equation to construct Futaki invariants, thus providing obstructions 
to the Hull-Strominger system. The Chapter fnishes with an account of the computations 
of Futaki invariants we have carried out. Chapters 6 and 7 deal with the geometry of 
the coupled Hermite-Einstein system. In the frst one, we prove basic properties of the 
geometric and topological properties it determines, and construct the frst solutions that do 
not satsify the Hull-Strominger system. Moreover, we show its relation to other topics in 
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geometry and physics. In the next Chapter, based on ongoing work by the author jointly 
with M. Garćıa-Fernández and J. Streets, we recast the coupled Hermite-Einstein system 
as a dimensional reduction of canonical pluriclosed metrics. In Chapter 8, based on [66], 
we discuss suitable stability conditions for string algebroids carrying a solution to the Hull-
Strominger system. Moreover, we propose a notion of harmonic metric on string algebroids 
based on a hyperKähler moment map picture, which allows to relate to a numerical stability 
condition. Finally, in Chapter 9, we give some interesting directions related to the material 
covered in this Thesis that are currently ongoing. 
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Introducción 

El objetivo de esta Tesis es estudiar el problema de existencia para el sistema de Hull-
Strominger. Este sistema apareció por primera vez en la literatura f́ısica [86, 127] como las 
condiciones de coherencia para la compactifcación de la cuerda heterótica a 4 dimensiones 
espacio-temporales con mı́nima supersimetŕıa. Matemáticamente, se trata de un sistema 
de ecuaciones en derivadas parciales en los siguientes términos. Sea (X, Ω) una variedad 
compleja, compacta de dimensión tres, provista de una forma de volumen holomorfa. Sea V 
un fbrado vectorial holomorfo sobre X, y α una constante real. Ahora, un par de métricas 
hermı́ticas g en X y h en V satisface el sistema de Hull-Strominger si: 

Fh ∧ ω2 = 0, 
d(∥Ω∥ωω2) = 0, (10) 

ddcω − α(trR∇ ∧ R∇ − trFh ∧ Fh) = 0, 

donde ω es la forma hermıtica de g. En la ´ on, hay una ambigüedad en la´ ultima ecuaci´ 
elección de la conexión métrica ∇ en el fbrado tangente a la variedad, por sus oŕıgenes en 
teoŕıa heterótica de cuerdas. 

En las ´ ecadas, el sistema de Hull-Strominger ha generado un gran inter´ ultimas d´ es en 
matemáticas, tanto por sus aplicaciones al estudio de variedades Calabi-Yau no Kähler [43, 
62, 108] como por su relación con una generalización conjetural de la simetŕıa espejo [5, 
138]. Tal como fue originalmente propuesto en el trabajo seminal de Li-Yau [98] y Fu-Yau 
[57, 58] acerca de estas ecuaciones, se espera que el sistema de Hull-Strominger juegue un 
papel clave en la geometrización de la fantaśıa de Reid [27, 55], conectando variedades en 
tres dimensiones con fbrado canónico trivial por medio de transiciones coniformes. Esta 
propuesta tiene importantes implicaciones en nuestro entendimiento del espacio de moduli 
de variedades Calabi-Yau proyectivas de dimensión tres, y también aplicaciones f́ısicas al 
paisaje de las cuerdas. 

El problema de existencia para el sistema de Hull-Strominger está actualmente muy 
abierto. Este trabajo está motivado por una pregunta acerca de la existencia de soluciones 
por S.-T. Yau [139]. 

Conjetura (Yau [139]). Sea (X, Ω) una variedad Calabi-Yau compacta de dimensión tres 
provista de una clase balanceada b0. Sea V un fbrado vectorial holomorfo sobre X que 
satisface: 

2,2degb0 (V ) = 0, ch2(V ) = ch2(X) ∈ HBC (X, R). (11) 

Si V es poliestable con respecto a b0, entonces (X, V ) admite una solución a (10). 
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Para progresar en esta interesante pregunta, de la que sabemos bastante poco actual-
mente, en esta Tesis proponemos una pregunta más fuerte que esta Conjetura en dos man-
eras. En primer lugar, es natural pedir que la clase b = [||Ω||ωω2] asociada a una solución 
coincida con b0, para tener control sobre la clase balanceada. Además, como fue formulado 
originalmente en [139], la conexión ∇ en (10) no se especifca en la Conjetura . Aqúı, pro-
ponemos que ∇ sea una conexión hermı́tica (con respecto a una métrica hermı́tica fja) que 
satisface las ecuaciones de Hermite-Yang-Mills: 

R0,2 
∇ = 0, R∇ ∧ ω2 = 0. (12) 

Este ansatz para ∇ parece tener un importante signifcado f́ısico y geométrico: una solución 
a (10) con este ansatz satisface las ecuaciones heteróticas del movimiento [47, 88] y además 
tiene numerosas propiedades deseables en teoŕıa de perturbaciones [37, 84, 100]. Para la 
geometŕıa, soluciones de (10) que satisfacen (12) son Ricci planas generalizadas [61, 63] y 
tienen una interpretación de aplicación momento [13, 70], que proporciona una interesante 
métrica en el espacio de moduli. Más aún, actualmente hay una gran evidencia de que estas 
soluciones juegan un papel importante en simetŕıa espejo (0, 2) por medio de T-dualidad y 
la teoŕıa de álgebras de vértices [5, 6, 64]. 

Motivados por la discusión anterior, en esta Tesis tratamos una Pregunta que refna la 
Conjetura de Yau teniendo en cuenta estas observaciones. Evitando aspectos técnicos que 
serán precisados, se formula como sigue: 

Pregunta. Sea (X, Ω) una variedad Calabi-Yau compacta de dimensión tres, y sea b0 una 
clase balanceada. Sea V un fbrado vectorial holomorfo b0-poliestable que satisface (11). 
Sea V0 una estructura holomorfa b0-poliestable genérica sobre T 1,0 . ¿Admite (X, Ω, V ) una 
solución (ω, h) al sistema de Hull-Strominger (10) tal que [||Ω||ωω2] = b0 y ∇ es la conexión 
de Chern de una métrica Hermite-Einstein h0 en V0? 

Obsérvese que una respuesta afrmativa a esta pregunta proporciona, en particular, una 
solución a la Conjetura de Yau con el ansatz (12). 

Para obtener alguna intuición acerca de esta pregunta, en esta Tesis exploramos la 
situación geométrica proporcionada por variedades complejas localmente homogéneas con 
una estructura hermı́tica inducida por la geometŕıa invariante de grupos de Lie [51, 47, 105]. 
En estas variedades, hay una clase natural de fbrados vectoriales holomorfos que siempre 
puede ser considerada. En el Caṕıtulo 4, los caracterizamos usando la teoŕıa de representa-
ciones de ´ etodo sistem´algebras de Lie y usamos esto para desarrollar un m´ atico para en-
contrar soluciones invariantes al sistema de Hull-Strominger. Además, este método permite 
hacer análisis simplifcados del espacio de moduli de soluciones al sistema de Hull-Strominger 
[70, 13]. 

Con estas intuiciones obtenidas de la situación invariante, a continuación proporcionamos 
evidencia importante de que esta versión refnada de la Conjetura de Yau tiene una respuesta 
negativa. Para esto, explotamos las caracteŕısticas especiales de las soluciones al sistema 
de Hull-Strominger con el ansatz (12). En términos más precisos, usamos la geometŕıa 
generalizada y la teoŕıa de métricas en algebroides de cuerdas holomorfos introducidos en 
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[68, 69]. En pocas palabras, sea (X, Ω) una variedad Calabi-Yau (posiblemente no Kähler) 
y P un fbrado principal holomorfo que satisface 

2,2 p1(P ) = 0 ∈ HBC (X, R). (13) 

Para relacionar esta construcción con la discusión anterior, basta elegir P el producto de los 
fbrados de referencias de V0 y V . Usando (13), se asocia canónicamente a P una familia de 
fbrados vectoriales de la forma: 

0 −→ T ∗ −→ Q −→ AP −→ 0, (14)1,0 

donde AP es el algebroide holomorfo de Atiyah de P . Estos son una clase particular de 
algebroides de Courant holomorfos, llamados de cuerdas. Ahora, para una clase balanceada 
b0, construimos una familia de invariantes de Futaki : 

⟨Fs, b0⟩ : Hs → C, (15) 

donde Hs = H0(X, Qs) y s parametrizan extensiones de la forma (14). Crucialmente, 
probamos que una solución al sistema de Hull-Strominger con el ansatz (12) determina 
un algebroide string Qs tal que su invariante de Futaki se anula para la clase balanceada 
de la solución. Esta construcción proporciona una obstrucción a la existencia de soluciones 
más allá de la existencia de métricas balanceadas en la variedad Calabi-Yau (X, Ω) y la 
estabilidad de pendiente de Mumford-Takemoto de los fbrados V0 y V1. 

Como consecuencia de nuestro resultado principal, para refutar la pregunta anterior, 
es sufciente con encontrar una tupla (X, V, V0), para V0 genérico en moduli, y una clase 
balanceada b0 ∈ H2,2 (X, R) como en el enunciado, tal que V0 y V son b0-poliestables yBC 

⟨Fs, b0⟩ ≠ 0, ∀s ∈ S. (16) 

En el caso particular en que X satisface el Lema ∂∂, la familia anterior reduce a un único 
invariante de Futaki F0. Esperamos que F0 proporcione una herramienta efcaz para atacar 
el problema propuesto por la pregunta anterior, con potenciales importantes implicaciones 
en la geometrización de la fantaśıa de Reid o el paisaje de las cuerdas. 

Nuestro método para probar el resultado tiene algunas propiedades sobresalientes. Está 
inspirado en un resultado de De la Ossa, Larfors, Svanes [36], que probaron que el sistema 
de Hull-Strominger es equivalente a una ecuación Hermite-Yang-Mills apropiada en un al-
gebroide de Courant en todos los ´ ´ Aqúı damos unaordenes en teorıa de perturbaciones. 
contraparte matemática precisa caracterizando la condición Hermite-Einstein: 

FG ∧ ωn−1 = 0, (17) 

para una métrica generalizada pseudo-hermı́tica G en un algebroide de cuerdas holomorfo 
Qs en términos de tensores clásicos. Usando esto, demostramos que una solución al sistema 
de Hull-Strominger con el ansatz (12) induce una solución a (17), que nos permite construir 
invariantes de Futaki. 

Es interesante observar que las condiciones hermı́ticas bajo las que (17) se satisface 
motivan la defnición de un nuevo sistema en geometŕıa hermı́tica, que llamamos sistema de 
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Hermite-Einstein acoplado. Este sistema es más fexible que el sistema de Hull-Strominger 
y puede, en principio, ser resuelto en cualquier variedad compleja compacta. En esta Tesis 
construimos soluciones en variedades que no admiten métricas balanceadas y cuyo fbrado 
canónico no es trivial. Además, en el Caṕıtulo 7, demostramos que el sistema de Hermite-
Einstein acoplado admite una interpretación natural como una reducción dimensional de 
métricas hermı́ticas que satisfacen: 

ddcω = 0, ρB = 0, (18) 

de interés central en el problema de encontrar geometŕıa canónica para variedades pluricer-
radas, y también como los puntos fjos de el fujo pluricerrado [126, 71]. 

A continuación, investigamos condiciones de estabilidad GIT para algebroides de cuerdas 
holomorfos Q asocidados a soluciones del sistema de Hull-Strominger con el ansatz (12). 
Primero, recuperamos un resultado de rigidez ’sin la conexión ∇’, ya obtenido en el trabajo 
seminal de Candelas-Horowitz-Strominger-Witten [24]. Desde nuestro punto de vista, esto 
es una consecuencia de la estabilidad de pendiente de Q respecto de la clase balanceada 
b = [||Ω||ωω2] de la solución, combinado con la existencia de una forma de volumen holomorfa 
Ω. Argumentamos que la noción ingenua de estabilidad de pendiente para el algebroide de 
Courant Q respecto de b es demasiado ŕıgida. Motivados por este resultado, proponemos 
una condición de estabilidad refnada basada en una aplicación momento hyperKähler. La 
idea básica es que una solución al sistema de Hull-Strominger debeŕıa admitir una métrica 
armónica defnida positiva H para (Q, ⟨·, ·⟩, DG), esto es, satisfaciendo: 

(∇H) ∗ Ψ+ iθ♯ Ψ = 0,
ω 

donde DG = + Ψ es la unica descomposici´ de la conexión de Chern DG en una∇H ´ on 
conexión H-unitaria y un campo de Higgs. Usando una descomposición diferente de DG à la 
Hitchin [83], demostramos que la existencia de una métrica armónica implica una condición 
numérica de estabilidad en el sentido de GIT. Aunque esta construcción es mayoritariamente 
conjetural aún, esperamos que esta condición de estabilidad proporcione nuevas obstrucciones 
a la existencia de soluciones en futuros estudios. Nuestra propuesta está ilustrada en una 
familia continua de soluciones en la variedad de Iwasawa. 

La estructura de esta Tesis es la siguiente. La primera Parte, prevista para servir de ref-
erencia para geometŕıa no Kähler, está dividida en tres caṕıtulos. En el Caṕıtulo 1 revisamos 
aspectos métricos y topológicos de variedades complejas no Kähler, y damos algunos detalles 
de su teoŕıa gauge y su contraparte algebraica. El Caṕıtulo 2 está dedicado a explicar los 
elementos de Geometŕıa Generalizada que se utilizarán más tarde. Explicamos brevemente 
los algebroides de Courant diferenciables y holomorfos, incluyendo el estudio de métricas 
generalizadas con atención especial a los casos exacto y de cuerdas . A continuación, en 
el Caṕıtulo 3 introducimos el sistema de Hull-Strominger, sus potenciales aplicaciones y las 
soluciones conocidas en la literatura. Ah́ı precisamos la Conjetura de Yau sobre el problema 
de existencia. En la segunda Parte de esta Tesis presentamos los contenidos que son nuevos 
en la literatura, y forma el resto de este trabajo. En el Caṕıtulo 4, estudiamos variedades 
complejas localmente homogéneas y aplicamos los resultados obtenidos para una búsqueda 
sistemática de soluciones al sistema de Hull-Strominger con un ansatz invariante. Además 
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proponemos una versión refnada a la Conjetura de Yau. También discutimos aspectos 
métricos del espacio de moduli de soluciones al sistema de Hull-Strominger. El Caṕıtulo 5 es 
el núcleo de esta Tesis. En este Caṕıtulo, demostramos la relación entre soluciones al sistema 
de Hull-Strominger y conexiones en algebroides de Courant que satisfacen una condición 
Hermite-Yang-Mills. A continuación usamos la interpretación de aplicación momento de 
esta ecuación para construir invariantes de Futaki, proporcionando aśı obstrucciones al sis-
tema de Hull-Strominger. Este Caṕıtulo fnaliza con un resumen acerca de los cálculos de 
invariantes de Futaki que hemos obtenido. Los Caṕıtulos 6 y 7 tratan de la geometŕıa 
del sistema Hermite-Einstein acoplado. En el primero, obtenemos propiedades métricas y 
topológicas básicas, y construimos las primeras soluciones que no satisfacen el sistema de 
Hull-Strominger. Además, exponemos su relación con otros temas en geometŕıa y f́ısica. En 
el siguiente Caṕıtulo, que está basado en trabajo en progreso junto con M. Garćıa-Fernández 
y J. Streets, reinterpretamos el sistema Hermite-Einstein acoplado como una reducción di-
mensional de métricas pluricerradas canónicas. En el Caṕıtulo 8, basado en [66], discutimos 
condiciones de estabilidad apropiadas para algebroides de cuerdas que admiten solución al 
sistema de Hull-Strominger. Además, proponemos una noción de métrica armónica en al-
gebroides de cuerdas basado en una construcción de aplicación momento hyperKähler, que 
permite relacionarla con una condición numérica de estabilidad. Finalmente, en el Caṕıtulo 
9, damos algunas direcciones interesantes relacionadas con el material expuesto en esta Tesis, 
que actualmente están en progreso. 
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Background 
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Chapter 1 

Hermitian Geometry 

In this Chapter, we review basic notions of Hermitian Geometry and set the notation and 
conventions that will be used throughout this Thesis. Intended to serve as background, we 
will limit ourselves to recall the relevant results that will be necessary in the sequel. We 
refer to [38, 79, 86, 142], for further details. References for the hermitian geometry of non-
Kähler manifolds are not so abundant and will be given along the text. The author claims 
no originality for any of the results contained in this Chapter, except for Section 4.1.2. 

1.1 Hermitian manifolds 

1.1.1 Special metrics 
In this Section we review fundamental notions of Hermitian Geometry that will be used 
throughout this Thesis. Hermitian manifolds are given by triples (M, J, g) where X = (M, J) 
is a complex manifold and g is a riemannian metric satisfying: 

g(JX, JY ) = g(X, Y ), X, Y ∈ Γ(TM), (1.1.1) 

that is, it is hermitian. Frequently, by abuse of language we will also call hermitian metric 
the 2-form: 

ω = g(J ·, ·). (1.1.2) 

Let dimRM = 2n. A compact hermitian manifold (M, J, g) admits a natural inner 
product on diferential forms. Pointwise, given x ∈ M and αx, βx ∈ ΛkTx 

∗M : P 
⟨αx, βx⟩ = αx(e1, ..., ek)βx(e1, ..., ek), (1.1.3)1≤i1<...ik ≤2n 

where {ei} stands for an orthonormal frame of TxM with respect to g. The pointwise inner 
product (1.1.3) defnes implicitly a Hodge star operator: 

⋆ : ΛkT ∗ M −→ Λ2n−kT ∗ M (1.1.4) 

given by declaring that: 

⟩ωn 
αx ∧ ⋆βx , βx (1.1.5)= ⟨αx n! 
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holds for any αx, βx. Then, the inner product on global sections of α, β ∈ Ω• is given by: M ˆ
⟨⟨α, β⟩⟩ = α ∧ ⋆β, α, β ∈ Ω• 

M , (1.1.6) 
M 

inducing associated metric-adjoint operators: 

⟨⟨dα, β⟩⟩ = ⟨⟨α, d ⋆ β⟩⟩, ⟨⟨ω ∧ α, β⟩⟩ = ⟨⟨α, Λωβ⟩⟩, (1.1.7) 

and a Lefschetz splitting of the space of diferential forms: M 
Ωk = ωi ∧ P k−2i , P r = ker(ωn−r+1 ∧ ·) ⊂ ΩM

r , (1.1.8)M 
i 

where sections of P r are called primitive. 

A broad goal of Hermitian Geometry is to fnd the canonical geometry of complex man-
ifolds. To this end, several notions of special metrics are introduced: 

Defnition 1.1.1. Let X be a complex manifold of complex dimension n. A hermitian metric 
is called 

1. Kähler if dω = 0. 
2. Balanced if dωn−1 = 0 
3. Conformally balanced if ef ω is balanced, for some smooth function f . 
4. Gauduchon if ddcωn−1 = 0. 
5. Pluriclosed (or SKT) if ddcω = 0. 

From the defnitions, the following scheme of relations follows: 

pluriclosed ⇐ Kähler ⇒ balanced ⇒ Gauduchon. (1.1.9) 

Currently, determining the existence of special non-Kähler metrics is, in general, a difcult 
task. Balanced metrics where introduced in [102] and shown to be topologically obstructed. 
Since then, a number of constructions [2], and further Examples have appeared in [1, 55]. 
For Gauduchon metrics, there is the following general existence result: 

Theorem 1.1.2 ([72]). Let X be a compact complex manifold, and let ω be a hermitian 
metric. Then, there exists a unique real function f such that 

1. ef ω is a Gauduchon metric. 

2. The function f satisfes the normalization 
ˆ 

e f dvolω = 1. 
X 
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In particular, every compact complex surface admits pluriclosed metrics. Further exam-
ples of pluriclosed manifolds in higher dimension are constructed in [76, 112, 140]. 

There is also interest in determining to what extent the existence of special hermitian 
metrics implies kählerianity. The following is the prototype of these no-go results. 

Theorem 1.1.3 ([90]). Let (X, ω) be a hermitian manifold and suppose that ω is pluriclosed 
and conformally balanced. Then ω is Kähler. 

Interestingly, in Section 8.1, we use Generalized Geometry (see Chapter 2) as a novel 
approach to recover an instance of the above Theorem. 

1.1.2 Torsion of hermitian metrics 
To make progress in the geometrization of non-Kähler manifolds, the following tensors are 
introduced to measure the failure of a hermitian metric to be Kähler: 

Defnition 1.1.4. Let (X, ω) be a hermitian manifold. 

1. The torsion of ω is given by −dcω. 

2. The Lee 1-form of ω is given by 

θω = Jd ⋆ ω. (1.1.10) 

Remark 1.1.5. In the literature, several other quantities such as dcω, dω, i∂ω, etc. are often 
referred to as the torsion of ω too. Our choice of −dcω is motivated by (1.2.3). 

In complex dimension 2, both forms contain the same information, as ([71]): 

θω = ⋆(−dcω). (1.1.11) 

In the sequel, we use the following properties of the Lee form: 

Proposition 1.1.6. Let (X, ω) be a hermitian manifold of complex dimension n. 

1. θω is the unique 1-form that satisfes 

dωn−1 = θω ∧ ωn−1 . (1.1.12) 

In particular, the following formula holds: 

θω = Λωdω (1.1.13) 

2. Let ω̃ = ef ω, where f is a real function. Then: 

θω̃ = θω + (n − 1)df (1.1.14) 

From the previous Proposition, ω is balanced if and only if θω = 0. Similarly, ω is (locally) 
conformally balanced if θω is exact (resp. closed). An account of further properties and the 
geometry of the Lee 1-form can be found in [73]. 
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1.1.3 Topology of non-Kähler manifolds 
The complex cohomology of a Kähler manifold (X, ω) is characterised by the following con-
sequence of the Hodge decomposition Theorem: M 

Hk (X, C) ∼= H 
∂

p,q(X). (1.1.15)dR 
p+q=k 

where the isomorphism above is canonical, but the cohomology of non-Kähler complex man-
ifolds, or more precisely, of manifolds that do not satisfy the ∂∂-Lemma, do not satisfy this 
result, and can be substantially more difcult to study. Bott-Chern and Aeppli cohomology 
groups are introduced as tools to tackle this subtlety: 

ker(d : Ωp,q −→ Ωp+q+1)
Hp,q X X(X) = (1.1.16)BC 

: Ωp−1,q−1 −→ Ωp,qim(ddc X X ) 
: Ωp,q −→ Ωp+1,q+1 

Hp,q ker(ddc X X )
(X) = . (1.1.17)A 

: Ωp+q−1 ) ∩ Ωp,qim(d ⊕ dc −→ Ωp+q 
X X X 

These complex cohomologies are related to one another ftting in the following diagram: 

•,•HBC 

H•,• H• ⊗ C H•,• (1.1.18)
dR ∂∂ 

•,•HA 

where the maps are induced by identity at the level of forms. Importantly, on a compact 
complex manifold Xn , these cohomologies are related by duality: 

ˆ
Hp,q =∼ 

−→ Hn−p,n−q 
BC (X) A (X) ∗ , [α] 7→ α ∧ · (1.1.19) 

X 

For a survey on these complex cohomologies, see [121]. 

While the isomorphism (1.1.15) does not hold for a general complex manifold, the 
Frölicher spectral sequence [54] relates Dolbeault and de Rham cohomology: 

Ep,q(X) ⇒ Hp+q(X, C), Ep,q(X) = Hp,q 
1 ∂ (X), (1.1.20) 

inducing further complex cohomology groups. The existence of special metrics on compact 
complex manifolds often has topological consequences in the complex cohomologies or in the 
Frölicher sequence (see [114, 113]). We will see an instance of this phenomenon in Proposition 
6.2.2. 

As a generalization of Kähler classes, special metrics (see Section 1.1.1) defne suit-
able cohomology classes: if ω is balanced, then it defnes naturally a cohomology class 
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[ωn−1] ∈ H2n−2(X, R) or in Hn−1,n−1 
dR BC (X, R). Similarly, if ω is Gauduchon, then [ωn−1] ∈ 

Hn−1,n−1 
A (X, R), and if ω is pluriclosed, [ω] ∈ HA 

1,1(X, R). We also have generalizations of 
the Kähler cone of X. Given a compact complex manifold X, the balanced and Gauduchon 
cones ([56, 114]) are: 

= {[ωn−1] ∈ Hn−1,n−1BX BC (X) | ω balanced} (1.1.21) 
= {[ωn−1] ∈ Hn−1,n−1GCX A (X) | ω Gauduchon}. (1.1.22) 

and cohomology classes in this cones are said to be balanced and Gauduchon, accordingly. 

1.2 Hermitian connections 

1.2.1 Distinguished linear connections 
Let (M, J, g) be a hermitian manifold, and let ∇g denote the Levi-Civita connection of g. The 
following formula describes a 2-parameter family of linear connections that have attracted 
attention in non-Kähler geometry [19, 72, 76, 105, 135, 141], among many others. For real 
parameters r, s: 

g(∇t,s 
X Y, Z) = g(∇g

X Y, Z) − tdcω(X, Y, Z) − sdω(JX, Y, Z), X, Y, Z ∈ Γ(TM). (1.2.1) 

∇0,0Among this family of connections there are the Levi-Civita connection ∇g = , the 
∇0,1/2 ∇1/2,0Chern connection ∇C = and the Bismut (also Strominger) connection ∇B = . 

The Bismut connection is the unique linear connection that is unitary: 

∇BJ = ∇B g = 0, (1.2.2) 

and has totally skew-symmetric torsion. It is given by: 

g(T∇B (X, Y ), Z) = −dcω(X, Y, Z), X, Y, Z ∈ Γ(TM). (1.2.3) 

Finally, the connection ∇− = ∇−1/2,0 is an orthogonal connection with totally skew-symmetric 
torsion T∇− = g−1dcω sometimes called Hull connection in the literature. 

When ω is a Kähler metric, the above family of linear connections collapses to a single 
point. Otherwise, it defnes a set of mutually distinct connections, among which the line 
joining ∇C and ∇B are the unitary connections. Hence, they induce complex connections 
on T 1,0 and is often called the canonical line of unitary connections [72]. 

For future reference, we include here Koszul formula for the ∇g, which will be useful in 
computations: 

g(∇g
X Y, Z) = 

2
1 (X(g(Y, Z)) + Y (g(X, Z)) − Z(g(X, Y )) 

(1.2.4)
+ g([X, Y ], Z) + g([Z, X], Y ) + g(X, [Z, Y ]) 

for arbitrary vector felds X, Y, Z. 
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1.2.2 Curvature and holonomy 
Let (M, J, g) be a hermitian manifold, and let (E, ∇) → M be a real or complex vector 
bundle with connection. Our convention for the curvature tensor of ∇ is: 

R∇(X, Y )s = ([∇X , ∇Y ] −∇[X,Y ])s, X, Y ∈ Γ(TM), s ∈ Γ(E). (1.2.5) 

Now, we restrict to the case E = TM . Then, the Ricci curvature of ∇ is: 

Ric∇(X, Y ) = tr(Z 7→ R∇(Z, X)Y ), X, Y ∈ Γ(TM). (1.2.6) 

If ∇ is a complex connection (i.e. ∇J = 0), and F∇ denotes the curvature of the induced 
connection on T 1,0X, then the Ricci form of ∇ is given by: 

ρ∇ = itr F∇. (1.2.7) 

Similarly, we will denote by ρB, ρC the Bismut or Chern-Ricci forms. By defnition, 
ρ∇ ∈ 2πc1(X) for any connection, hence in particular it is d-closed. The Ricci form is in 
general a real 2-form. However, if ∇ = ∇C , it is of type (1, 1) with respect to J . 

In the sequel we will use the following identity for the Bismut and Hull curvature tensors 
(see the Proof of [71, Proposition 3.21]): 

g(R∇− (X1, X2)X3, X4) − g(R∇B (X3, X4)X1, X2) = 1
2 dd

cω(X1, X2, X3, X4), Xi ∈ Γ(TM). 
(1.2.8) 

Related to curvature is the notion of holonomy. For a linear connection ∇, we will denote 
by hol0(∇) and hol(∇) for the restricted and general holonomy respectively. If ∇ is unitary, 
then hol(∇) ⊂ U(n), for n the complex dimension of X. Moreover, we have: 

Proposition 1.2.1. Let ∇ be a linear unitary connection. Then: 

• hol0(∇) ⊂ SU(n) if and only if ρ∇ = 0. 

• hol(∇) ⊂ SU(n) if and only if there exists a ∇-parallel global section. 

Defnition 1.2.2. A hermitian metric ω such that 

ρB = 0 (1.2.9) 

is called Calabi-Yau with torsion (CYT). 

CYT metrics can be regarded as a non-Kähler replacement for Kähler-Ricci fat metrics 
and have been the subject of much interest in the non-Kähler geometry literature [49, 67, 
71, 76]. 

Defnition 1.2.3. A Kähler-Calabi-Yau manifold is tuple (M, J, g, Ω) where (M, J, g) is 
Kähler and Ω ∈ Γ(KX ) is holomorphic and ∇gΩ = 0. Equivalently, hol(∇g) ⊂ SU(n). 
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1.3 Gauge theory of principal bundles 

1.3.1 Diferential geometry of principal bundles 
Here we recall fundamental notions of the geometry of principal bundles. A particularly 
useful reference for this Section is [94]. 

Let G be a real or complex Lie group with quadratic Lie algebra (g, ⟨·, ·⟩), that is, satis-
fying: 

⟨[ξ, η], γ⟩ + ⟨η, [ξ, γ]⟩ = 0, ξ, η, γ ∈ g. (1.3.1) 

A quadratic structure exists if G is compact or admits a compact real form ([102]). 

Moreover, let P →p 
M be a principal G-bundle with a right G-action, i.e. a smooth 

manifold P with a free and transitive right G-action, for which P/G ∼= M . If the structure 
group G is real, associated to P , we have the Atiyah-Lie short-sequence: 

0 −→ ad P −→ AP −→ TM −→ 0, (1.3.2) 

where ad P = P ×G g is the adjoint bundle of P , and AP = T P/G → M is the Atiyah 
algebroid of P , with the bracket on right invariant vector felds on TP . Moreover, ad P 
is naturally a bundle of quadratic Lie algebras with the structure induced by (g, ⟨·, ·⟩). In 
case G is complex, we will consider the complex Atiyah-Lie algebroid AcP ftting in the short 
exact sequence: 

0 −→ ad P −→ AcP −→ TM ⊗ C, (1.3.3) 

that, is AcP = TP ⊗ C/(ad P )0,1 . 

Example 1.3.1. Let E → M be an either real or complex vector bundle, and let P = Fr E 
be the frame bundle of E, with structure group G = GL(rk(E)). This group has a natural 
quadratic Lie algebra given by the pairing: 

⟨A, B⟩ = tr(ABt) (1.3.4) 

The fbration p gives rise to an involutive vertical distribution V P = ker dp which fts 
into the exact sequence 

0 −→ V P −→ TP −→ p ∗ TM −→ 0. (1.3.5) 

∼The bundle V P admits a global trivialization P × g = V P given by the infnitesimal action: 

tξ),(p, ξ) 7→ Xξ(p) = 
d 
(p · e ξ ∈ g. (1.3.6)

dt 
Such vector felds generated by a Lie algebra element are called canonical. Note, however 

that these vector felds are not G-invariant. Rather, vertical G-invariant vector felds are 
described by G-equivariant maps 

Φ : P −→ g, Φ(p · g) = Adg(Φ(p)), (1.3.7) 
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or, equivalently, by sections of the adjoint bundle ad P = P ×G g → M . These are the 
infnitesimal symmetries of P . More precisely, given the gauge group of P 

GG(P ) = {φ : P −→ P | p ◦ φ = p}, (1.3.8) 

then the variation of a one-parameter family ∂tφt of gauge transformations is naturally a 
section of ad P . Then, ⟨·, ·⟩ induces a pairing on sections of ad P , which we denote again by 
⟨·, ·⟩. In a local trivialization of P , canonical and G-invariant vertical vector felds are given, 
respectively, by fbrewise left-invariant and right-invariant felds. 

To describe the horizontal geometry, we make use of connections. In this context, a 
connection is given by an equivariant 1-form A ∈ Ω1 

P (g)
G which restricts to the identity on 

V P . Given A, there is a G-equivariant splitting 

TP = V P ⊕ ker A. (1.3.9) 

We call H = ker A the horizontal distribution with respect to A, and we have associated 
projection maps 

pV : TP −→ V P, pH : TP −→ H. (1.3.10) 

Using the above, for any basic vector feld X ∈ Γ(TM), we defne a lifted horizontal vector 
feld XA = pH (X̃), where X̃ is any lift of X. The resulting feld XA is G-invariant. 

The connection A induces parallel transport and covariant derivatives in the usual manner 
in all vector bundles associated to P , in particular on ad P . The pullback of forms gives a 
natural embedding: 

Ωk
M (ad P ) ,→ ΩP

k (g)G , (1.3.11) 

whose image are basic forms. Here, Ωk
P (g)

G stand for k-forms α that are G-equivariant, that 
is: 

Rg 
∗ α = Adg−1 ◦ α, g ∈ G. (1.3.12) 

Through this embedding, the covariant derivative of a section β ∈ Ωk (ad P ) is given by: M 

dAβ = dβ ◦ pH = dβ + [A ∧ β]. (1.3.13) 

Moreover, the curvature of A, which measures the non-involutivity of H, is given by: 

FA = dA ◦ pH = dA + 1
2 [A ∧ A], (1.3.14) 

and is naturally a section of Ω2 (ad P ), which satisfes the Bianchi identity dAFA = 0. InM 
case (E, ∇) is associated to a principal bundle with connection (P, A) with representation 
map ρ and ∇ = ∇A = dρ∗A, then R∇ = ρ∗FA, as defned in Section 1.2.2. Furthermore, the 
gauge group G(P ) acts on the connection A by 

φ · A = dφ ◦ A ◦ (dφ)−1 . (1.3.15) 
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At the infnitesimal level, given a section s ∈ Γ(ad P ) identifed with the G-invariant feld 
Xs ∈ Γ(V P ), we have 

LXs A = dAs. (1.3.16) 

where A = prH ∈ Γ(End TP ) is understood as a tensor on P to defne the Lie derivative. 

On the total space of the principal bundle P , associated to a principal connection A, we 
recall here the Chern-Simons 3-form CS(A) ∈ Ω3 

P given by: 

CS(A) = −1
6 ⟨[A ∧ A] ∧ A⟩ + ⟨FA ∧ A⟩. (1.3.17) 

satisfying the key property: 

dCS(A) = ⟨FA ∧ FA⟩. (1.3.18) 

Given two connections A, A ′ on P , the following combination of 3-forms is basic: 

CS(A ′ ) − CS(A) − d⟨A ′ ∧ A⟩ = p ∗ (2⟨a ∧ FA⟩ + ⟨a ∧ dAa⟩ + 1
3 ⟨a ∧ [a ∧ a]⟩). (1.3.19) 

In the case the structure group G is a complex reductive group and P is a holomorphic 
principal bundle for G, there is a notion of hermitian reduction. Let K ⊂ G be a maximal 
compact subgroup. Then, a section h ∈ Γ(P/K) determines a K-principal bundle Ph = 
h−1([K]) ⊂ P . The Chern correspondence in this context asserts that there is a unique 
connection Ah compatible with the holomorphic structure of P and restricting to a connection 
on Ph ([120]). Conversely, given a principal bundle PK for a compact Lie group K, we will 
denote PKc = P ×K K

c , where Kc stands for the complexifcation of K (see e.g. [26, Ch. 
12]). PKc is naturally a Kc-principal bundle, but carries no natural holomorphic structure. 

Moreover, complex reductive groups satisfy a polar decomposition: given a maximal 
compact subgroup K ⊂ G, then: 

G = exp(ik) · K, (1.3.20) 

and the decomposition of any element g ∈ G is unique with respect to (1.3.20). Therefore, 
any left K-coset is expressed as eisK for a unique s ∈ k. A global version of this fact is 
that on a G-principal bundle P , given two hermitian reductions h0, h, there exists a section 
σ ∈ Γ(iad Ph0 ) such that: 

h = exp(iσ)h0. (1.3.21) 

In particular, the set of hermitian reductions is path-connected. 

It is well-known by Chern-Weil theory that Chern classes of complex principal bundles 
are well-defned characteristic classes in de Rham cohomology. In Bott-Chern cohomology, 
these are well-defned using hermitian reductions if one specifes a holomorphic structure. 
Since this is not completely standard, we provide a proof of this fact here: 
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Proposition 1.3.2. Let X be a complex manifold, and let P → X be a holomorphic principal 
G-bundle, where G is a complex reductive Lie group. Assume there is a bi-invariant product: 

⟨·, . . . , ·⟩k : g × · · · × g −→ C (1.3.22)| {z } 
k 

Then, the kth-Chern character form given by: 

k,k chk(E , h) = ⟨Fh ∧ · · · ∧ Fh⟩k ∈ ΩX (1.3.23) 

where h is a hermitian reduction on P to a maximal compact subrogrup induces a well-defned 
characteristic class chk(E)BC BC (X) that does not depend on the hermitian= [chk(E , h)] ∈ Hk,k 

reduction h. If P = Fr E is the frame bundle of a holomorphic vector bundle, then the total 
j,j Chern class c(E)BC ∈ ⊕j HBC (X, R) given by: � � 

c(E)BC = [det IdE + 
2 
i
π Fh ] (1.3.24) 

is independent of h too. 

Proof. Let h0 and h1 be any two hermitian reductions on P . Then, since G is a reductive Lie 
group, by the polar decomposition, there exists a path σt ∈ ad(Ph0 ) such that ht = eiσt h0 is 
a smooth path joining h0 and h1. Moreover, by the computation in the proof of [68, Lemma 
3.24] (see also [40, Section 1]), we have: 

dt
d Fht = ∂∂ht σt. (1.3.25) 

Now, the variation of the Chern character form is given by: 

d chk(E , ht) = d ⟨Fht ∧ . . . Fht ⟩kdt dt 

= k⟨ d ∧ . . . Fhtdt Fht ⟩k 

= k⟨∂∂ht σt ∧ . . . Fht ⟩k 

= ∂∂k⟨σt, · · · ∧ Fht ⟩k, 

where in the last step we use the Bianchi identity dht Fht = 0. Since this result is Bott-Chern 
exact at any time t, we obtain that [chk(E , ht)] ∈ Hk,k (X) is constant along the path, henceBC 
[chk(E , h0)] = [chk(E , h1)]. The last part of the statement follows for the particular case of 
G = GL(r, C), where r = rk E , and the Ad-invariant matrix polynomials ⟨·, . . . , ·⟩k given 
implicitly by (see e.g. [95, Sections XII.1-3]): P rdet(I + A) = 1 + i=1⟨A, . . . , A⟩i, A ∈ gl(r, C). (1.3.26) 

We fnish this Section by recalling the notion of instanton connection. Although these 
are defned in multiple geometric contexts, in this Thesis we will be mainly interested in the 
ones arising in Hermitian Geometry: 
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Defnition 1.3.3. Let P → (M2n, J, g) be a principal bundle over a hermitian manifold. 
Then: 

1. a connection A on P is Hermite-Yang-Mills if: 

FA ∧ ωn−1 = 0, FA 
0,2 = 0. (1.3.27) 

2. if P is holomorphic and the Chern connection of a hermitian reduction Ah is Hermite-
Yang-Mills, h is called Hermite-Einstein metric. 

1.3.2 Slope stability in non-Kähler manifolds 
Here, we recall briefy the fundamental notions of slope-stability in the non-Kähler setting. 
For details, we refer to [93, Chapter 5] for the general theory, and to [67, Section 4.1] for 
the application to complex non-Kähler manifolds. Let X be a compact complex manifold of 
complex dimension n, and let σ = [ωn−1] ∈ HA

n−1,n−1(X, R) be a Gauduchon class. Moreover, 
let F be a coherent, torsion-free OX -module. Then, it has a well defned rank rk F = r. 
The determinant sheaf of F given by: 

det F = ((ΛrF ) ∗ ) ∗ (1.3.28) 

is a free sheaf, hence it is the sheaf of sections of a holomorphic line bundle, which we denote 
again by det F . 

Defnition 1.3.4. 1. The degree of F with respect to σ is: 

degσF = c1(det F)BC · σ (1.3.29) 

in the natural duality pairing: 

H1,1 
BC (X, R) × HA

n−1,n−1(X, R) −→ R. (1.3.30) 

2. The slope of F with respect to σ is given by: 

degσF 
µσ(F) = . (1.3.31) 

r 
Defnition 1.3.5. The sheaf F is: 

′ 1. σ-stable if for any non-trivial coherent subsheaf F ⊂ F : 

µσ(F ′ ) < µσ(F). (1.3.32) 

2. σ-semistable if for any non-trivial coherent subsheaf F ′ ⊂ F : 

µσ(F ′ ) ≤ µσ(F), (1.3.33) 

and if equality holds, then: 
′ ′ F ∼= F ⊕F/F . (1.3.34) 
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3. σ-unstable if it is not semistable. 

4. σ-polystable if it is isomorphic to a direct sum of σ-stable sheaves of the same degree. 

The fundamental connection between slope-stability and gauge theory is given by the 
Donaldson-Uhlenbeck-Yau theorem and its extension to general hermitian manifolds: 

Theorem 1.3.6 ([99]). Let Q be a holomorphic vector bundle and σ = [ωn−1] a Gauduchon 
class. Then Q is σ-polystable if and only if there exists a Hermite-Einstein metric h on Q 
such that: 

Fh ∧ ωn−1 = 
λωn 

⊗ Id, (1.3.35) 
n 

where λ is a topological constant determined by Q and σ. Moreover, in such case, h is unique 
up to holomorphic automorphism of Q. 

Remark 1.3.7. In the Kähler setting, a result analogous to Theorem 1.3.6 for holomorphic 
principal bundles was proved in [7]. 
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Chapter 2 

Generalized Geometry 

In this Chapter we introduce the fundamental notions of Generalized Geometry that will be 
necessary in the sequel. In broad terms, Generalized Geometry studies Courant algebroids, 
which in its most elementary form correspond to the geometry of T ⊕ T ∗ , where a number of 
non-trivial geometric structures arise. Some useful references for this Chapter are [71, 80, 81]. 

Here, in the frst Section, we recall the notion of Courant algebroids, the two main families 
of exact and string Courant algebroids that will be of interest for this Thesis, and introduce 
generalized metrics. The second Section deals with the interaction of Generalized Geometry 
with Complex Geometry. Further references for these topics are given along the text. The 
author claims no originality for the contents of this chapter. 

2.1 Courant algebroids 

2.1.1 Defnition 
Throughout, let M be a real smooth manifold of dimension n. We will also denote T = TM 
and T ∗ = T ∗M when the manifold is understood. 

Defnition 2.1.1. A real, smooth Courant algebroid over M is a tuple (E, ⟨·, ·⟩, [·, ·], π), 
where: 

1. E −→ M is a vector bundle. 
2. There is a symmetric, non-degenerate pairing on sections: 

⟨·, ·⟩ : Γ(E) × Γ(E) −→ CM 
∞ (2.1.1) 

bilinear over smooth functions. 
3. There is a bracket on sections: 

[·, ·] : Γ(E) × Γ(E) −→ Γ(E) (2.1.2) 

bilinear over constants. 
ρ 

4. There is an anchor bundle map E −→ T . 
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satisfying the following compatibility axioms. For sections a, b, c ∈ Γ(E) and f ∈ CM 
∞: 

1. [a, [b, c]] = [[a, b], c] + [b, [a, c]] (2.1.3) 
2. ρ(a)(⟨b, c⟩) = ⟨[a, b], c⟩ + ⟨b, [a, c]⟩ (2.1.4) 
3. [a, fb] = f [a, b] + ρ(a)(f)b (2.1.5) 
4. ρ([a, b]) = [ρ(a), ρ(b)] (2.1.6) 
5. [a, b] + [b, a] = 2ρ ∗ d⟨a, b⟩, (2.1.7) 

ρ∗ ⟨·,·⟩ 
where, in the last relation, the pairing ⟨·, ·⟩ is used to identify T ∗ → E∗ → E. 

Remark 2.1.2. 1. The axioms of Defnition 2.1.1 are not completely independent, and 
some of them can be derived from the others. However, we have kept them for clarity. 

2. In the literature, sometimes the Axioms (2.1.3) and (2.1.7) are replaced by asking that 
[·, ·] is skew-symmetric. Here, with the above axioms, it is usually named Dorfman 
bracket, as opposed to other conventions. 

3. From the axioms above, it follows that E fts in the complex: 

ρ∗ ρ 
T ∗ −→ E −→ T. (2.1.8) 

We stress that this complex need not be exact. 

4. The analogous notion of Courant algebroid is defned over the complex numbers. 
A complex Courant algebroid is a smooth complex vector bundle EC for which ⟨·, ·⟩, 
[·, ·] are analogous morphisms of sheaves of smooth complex sections, and the anchor is 
defned as ρ : EC → T ⊗ C, satisfying the analogous complex Axioms of (2.1.3)-(2.1.7). 
If E is a real Courant algebroid, then E ⊗ C is naturally a complex Courant algebroid. 

When attempting to classify Courant algebroids, there are several inequivalent notions of 
morphisms in the literature. We will not study each one of them and their diferences here, 
but we will make precise which morphisms we take into account for the relevant families of 
Courant algebroids for this Thesis, in Section 2.1.2. 

Associated to any Courant algebroid E, there are a number of distinguished bundles with 
additional structure induced from that of E. First, there are natural subbundles given by: 

T ∗ ⊂ (ker ρ)⊥ ⊂ ker ρ ⊂ E, 

where the inclusions follow from the Axioms (2.1.3)-(2.1.7). Then, we defne: 

E ker ρ 
AE = , adE = . (2.1.9)

(ker ρ)⊥ (ker ρ)⊥ 

The bundle AE is naturally a Lie algebroid with the bracket inherited from E. This 
follows from the fact that (ker ρ)⊥ is a two-sided ideal for (E, [·, ·]). Since ker ρ is also an 
ideal, this structure restricts to adE . Moreover, adE also inherits the pairing from E, hence 
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it is a bundle of quadratic Lie algebras. The same applies for a complex Courant algebroid, 
yielding a complex Lie algebroid AEC and a quadratic Lie algebroid adEC . 

We fnish this Section recalling that for any real Courant algebroid, there always exists 
an isotropic splitting σ : T → E, i.e. satisfying 

ρ ◦ σ = id, ⟨σ(X), σ(Y )⟩ = 0, X, Y ∈ Γ(T ). 

and the same is true for complex Courant algebroids. As will become clear in the sequel, 
the importance of splittings stems from the fact that they produce explicit representations 
of Courant algebroids. 

2.1.2 Exact and string Courant algebroids 
The sequence (2.1.8) in which a Courant algebroid fts allows to consider diferent families 
of Courant algebroids depending on the specifc details of this sequence. The simplest case 
is the following. 

Defnition 2.1.3. A real smooth exact Courant algebroid (E, ⟨·, ·⟩, [·, ·], ρ) is a Courant al-
gebroid such that the sequence: 

ρ∗ ρ 
0 −→ T ∗ −→ E −→ T −→ 0 (2.1.10) 

is exact. Similarly, a complex smooth Courant algebroid is exact if the sequence 

ρ∗ ρ 
0 −→ T ∗ ⊗ C −→EC −→ T ⊗ C −→ 0 (2.1.11) 

is exact. 

Defnition 2.1.4. An isomorphism ϕ of real exact Courant algebroids E, E ′ is an orthogonal, 
bracket preserving invertible bundle map covering the identity on the manifold, such that the 
following diagram commutes: 

0 T ∗ E T 0 
id (2.1.12)ϕid 

0 T ∗ E ′ T 0 

Similarly, an isomorphism ϕ between complex smooth Courant algebroids EC, EC 
′ is an or-

thogonal, bracket preserving invertible bundle map such that: 

0 T ∗ ⊗ C EC T ⊗ C 0 

0 T ∗ ⊗ C E ′ T ⊗ C 0. 

id ϕ id (2.1.13) 

Remark 2.1.5. In the literature, a wider notion of exact Courant algebroid isomorphisms 
is considered (see e.g. [71, Defnition 2.18], which does not require the fbre-preserving con-
dition. For the purposes of this Thesis, we will however restrict to Defnition 2.1.4 above. 
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Exact Courant algebroids can be described via explicit models. The following is the 
prototypical Example. 

Example 2.1.6. Let E = T ⊕ T ∗ and H ∈ Ω3 such that dH = 0. Moreover, consider theM 
structure: 

⟨·, ·⟩0 : Γ(E) × Γ(E) −→ CM 
∞ 

[·, ·]H : Γ(E) × Γ(E) −→ Γ(E) (2.1.14) 
ρ0 : E → T 

given by the following formulae: 

⟨X + ξ, Y + η⟩0 = 
2
1 (η(X) + ξ(Y )) 

[X + ξ, Y + η]H = [X, Y ] + LX η − iY dξ + iY iX H (2.1.15) 
ρ0(X + ξ) = X, 

where X, Y ∈ Γ(T ) and ξ, η ∈ Γ(T ∗). Then (E, ⟨·, ·⟩0, [·, ·]H , ρ0) is an exact Courant alge-
broid. Conversely, if (E, ⟨·, ·⟩0, [·, ·]H , ρ0) is an exact Courant algebroid for a 3-form H, then 
dH = 0. For a proof see e.g. [71, Proposition 2.17]. The analogous result holds for complex 
exact Courant algebroids EC = (T ⊕ T ∗) ⊗ C and complex 3-forms. In what follows we will 
denote: 

EH = (T ⊕ T ∗ , ⟨·, ·⟩0, [·, ·]H , ρ0). (2.1.16) 

In what follows, we characterize abstract exact Courant algebroids and describe their 
symmetries. We will write the results for real Courant algebroids, being their complex 
counterparts straightforward generalizations. 

Proposition 2.1.7. Let (E, ⟨·, ·⟩, [·, ·], ρ) be a smooth real Courant algebroid, and let σ : 
T → E be an isotropic splitting. Then, the map 

ϕσ : EH −→ E, X + ξ 7→ σ(X) + 
2
1 ρ ∗ (ξ) (2.1.17) 

is an isomorphism of Courant algebroids for 

H(X, Y, Z) = 2⟨[σ(X), σ(Y )], σ(Z)⟩, X, Y, Z ∈ Γ(T ). (2.1.18) 

As a consequence, we obtain: 

Theorem 2.1.8 (Ševera). There is a one-to-one correspondence between isomorphism classes 
of real exact Courant algebroids and H3 (M).dR 

Remark 2.1.9. The above result can be reinterpreted in terms of sheaf cohomology by con-
sidering the sheaf complex: 

j d d d
0 −→ Ω2 −→ Ω2 −→ Ω3 −→ Ω4 −→ . . . . (2.1.19)cl. M M M 

Then, H3 (M) ∼= H1(Ω2 ).dR M 
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Proposition 2.1.7 provides explicit presentations for abstract exact Courant algebroids. 
However, it is not unique, and any two of them difer by a Courant algebroid automorphism. 
These are characterized in the following result: 

′Proposition 2.1.10. Let EH and EH be exact Courant algebroids as in Example 2.1.6, and 
′assume [H ′ ] = [H] ∈ H3 (M). Moreover, let ϕ : EH be an isomorphism. Then:dR → EH 

ϕ(X + ξ) = X + iX b + ξ, (2.1.20) 

where b is a 2-form satisfying 

H ′ = H + db. (2.1.21) 

In particular, exact Courant algebroid automorphisms of EH are given by maps: 

e b : EH −→ EH , e b(X + ξ) = X + iX b + ξ, (2.1.22) 

where db = 0. 

Observe this result is a geometric realization of exact cocycles in Remark 2.1.9 preserving 
the algebroid isomorphism class. In the literature, the 2-form b in Proposition 2.1.10 is usu-
ally called the B-feld, and the maps (2.1.22) are B-feld transformations. As a consequence 
of Propositions 2.1.7, 2.1.10, we obtain a characterization of the exact Courant algebroid 
explicit models that are isomorphic to a given abstract exact Courant algebroid E. 

Next, we introduce string algebroids following [69], also known as heterotic in the liter-
ature [32]. This is a generalization of exact Courant algebroids that incorporates naturally 
the geometry of principal bundles and will play a central role in this Thesis. Here, we will 
follow the notations and conventions of Section 1.3.1. Let K be a compact Lie group with 
quadratic Lie algebra (k, ⟨·, ·⟩) and let P → M be a principal K-bundle. 

Defnition 2.1.11. 1. A real, smooth string algebroid is a triple (E, P, ρP ) such that E 
is a real, smooth Courant algebroid ftting in the short exact sequence: 

ρP0 −→ T ∗ −→ E −→ AP −→ 0, (2.1.23) 

where AP is the Atiyah algebroid of P , ρP is a bracket-preserving map, and the induced 
map ρP : AE → AP is an isomorphism of Lie algebroids restricting to an isomorphism 

∼of quadratic Lie algebroids adE = ad P . 

2. A complex, smooth string algebroid is a triple (EC, PC, ρPC ) such that EC is a complex 
smooth Courant algebroid ftting in the short exact sequence: 

ρPC0 → T ∗ ⊗ C −→ EC −→ AcPC 
, (2.1.24) 

where AcPC 
is the complex Atiyah-Lie algebroid of PC, and the induced map ρPC : AEC → 

AP
c 
C 
is an isomorphism of complex Lie algebroids restricting to an isomorphism of 

∼quadratic Lie algebroids adEC = ad PC. 
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0 T ∗ E AP 

0 T ∗ E ′ AP ′ 

id 

ρP 

ϕ g 

ρP ′ 

Defnition 2.1.12 ([69]). Let (E, P, ρP ) and (E ′ , P ′ , ρP ′ ) be real string algebroids. Then, a 
map ϕ : E → E ′ is an isomorphism of string Courant algebroids if it is orthogonal, bracket-
preserving, and the following diagram commutes: 

0 
(2.1.25) 

0 

′where g : AP → AP is the isomorphism induced by a principal bundle isomorphism g : P → 
P ′ covering the identity on M . In case (E, P, ρP ) = (E ′ , P ′ , ρP ′ ), we say ϕ is a restricted 
automorphism if moreover g = id. An isomorphism of complex string algebroids EC and EC 

′ 

is analogously defned substituting the defning short exact sequences of E, E ′ in (2.1.23) by 
the corresponding complex short exact sequences (2.1.24). 

The following are explicit Examples of string algebroids, ande are the counterpart of 
Example 2.1.6 for exact Courant algebroids. 

Example 2.1.13. Let E = T ⊕ ad P ⊕ T ∗ for a real principal bundle P → M . Moreover, 
let H ∈ Ω3 and A be a principal connection for P such that:M 

dH − ⟨FA ∧ FA⟩ = 0. (2.1.26) 

We consider the structure: 

⟨·, ·⟩0 : Γ(E) × Γ(E) −→ CM 
∞ 

[·, ·]H,A : Γ(E) × Γ(E) −→ Γ(E) (2.1.27) 
ρ0 : E → T 

given by the following formulae: 

⟨X + r + ξ, Y + s + η⟩0 = 
2
1 (ξ(Y ) + η(X)) + ⟨r, s⟩, 

[X + r + ξ, Y + s + η]H,A = [X, Y ] − FA(X, Y ) + iX dAr − iY dAs − [r, s] + LX η+ 
+ iY dξ + iY iX H + 2⟨dAr, t⟩ + 2⟨iX FA, s⟩ − 2⟨iY FA, r⟩, 

ρ(X + r + ξ)0 = X, 
(2.1.28) 

where X, Y ∈ Γ(T ), r, s ∈ Γ(ad P ) and ξ, η ∈ Γ(T ∗). Then (E, ⟨·, ·⟩0, [·, ·]H,A, ρ0) is a string 
algebroid. Conversely, if (E, ⟨·, ·⟩0, [·, ·]H,A, ρ0) is a string algebroid for a 3-form H and a 
principal connection A on P then dH − ⟨FA ∧ FA⟩ = 0. The analogous result holds for 
complex exact Courant algebroids EC = T ⊗ C ⊕ ad PC ⊕ T ∗ ⊗ C and complex 3-forms and 
principal connections. The string algebroid described above will be denoted in the sequel by: 

EP,H,A = (E, ⟨·, ·⟩0, [·, ·]H,A, ρ0). (2.1.29) 

The following results give the real string analogs of Propositions 2.1.7, 2.1.10. The 
complex versions are a straightforward generalization and are ommited. 
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Proposition 2.1.14. Let (E, P, ρP ) be a smooth real string algebroid, and let σ0 : T → E 
be an isotropic splitting, and let g0 : P0 → P be a principal bundle isomorphism covering the 
identity. Then, the map 

ϕσ0,g0 : EP0,H0,A0 −→ E, X + ξ 7→ σ0(X) + ρP |−1 ◦ g0(r) + 1 ρ ∗ (ξ) (2.1.30)
(im σ0)⊥ 2 

is an isomorphism of Courant algebroids for 

H0(X, Y, Z) = 2⟨[σ0(X), σ0(Y )], σ0(Z)⟩, X, Y, Z ∈ Γ(T ). (2.1.31) 

and A0 the principal connection on P0 determined by A⊥ 
0 = (g0)

−1 ◦ ρP ◦ σ0, where A⊥ 
0 : T → 

AP0 is the horizontal lift of A0. 

The following results describe the relation between diferent models for string algebroids. 
In particular, we obtain the group of symmetries of a given string algebroid. 

Proposition 2.1.15. Let E = EP,H,A and E ′ = EP ′ ,H ′ ,A ′ , and assume P and P ′ are isomor-
phic principal bundles. Then, the set of isomorphisms ϕ : E ′ → E is one-to-one with pairs 
(g, b) of principal bundle isomorphisms covering the identity g : P ′ → P and 2-forms b such 
that: 

H ′ = H + CS(A ′ ) − CS(g −1A) − d⟨A ′ ∧ g −1A⟩ + db. (2.1.32) 
(b,a)Explicitly, given (g, b) such that (2.1.32) holds, then ϕ = e , where: 

e(b,a)(X + r + ξ) = X + g(a(X) + r) + iX b + ⟨a(X), a⟩ + 2⟨a, r⟩ + ξ, (2.1.33) 

where a = g−1A − A ′ ∈ Ω1(ad P ′ ). 

Corollary 2.1.16. The automorphisms of EP,H,A are in correspondence with pairs (g, b) ∈ 
GP × Ω2 such thatM 

db + CS(A) − CS(g −1A) − d⟨A ∧ g −1A⟩ = 0, (2.1.34) 

or, equivalently, such that: 

db − 2⟨a ∧ FA⟩ − ⟨a ∧ dAa⟩ − 
3
1 ⟨a ∧ [a ∧ a]⟩ = 0, (2.1.35) 

where a = g−1A − A ∈ Ω1(ad P ). The automorphism to a pair (g, b) satisfying (2.1.35) is 
given by the formula (2.1.33). 

As a direct consequence of Propositions 2.1.14 and 2.1.15, the following result provides 
formulae for the change of presentation of a given abstract string algebroid (E, P, ρP ). 

Corollary 2.1.17. Let E = (E, P, ρP ) be a string algebroid and suppose ϕσ0,g0 : EP0,H0,A0 → 
∼E is an isomorphism. Then EP1,H1,A1 is isomorphic to E if and only if P1 = P and there 

exist a pair (g, b) such that (2.1.33) holds, where a = g−1A0 − A1. In that case, the induced 
isomorphism is ϕσ1,g1 : EP1,H1,A1 → E, where: 

g1 = g0 ◦ g (2.1.36) 
σ1(X) = σ0(X) + ρP |−1 ◦ g1(a(X)) − 1 ρ ∗ (iX b + ⟨a(X), a⟩). (2.1.37)

(im σ0)⊥ 2 

As in the exact case, the classifcation of isomorphism classes of smooth string algebroids 
can be described in terms of sheaf cohomology (see [69, Appendix A]). However, we will not 
use directly that classifcation and therefore we omit it here. 
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2.1.3 Generalized metrics 
Generalized metrics are one of the fundamental geometric structures Courant algebroids can 
be endowed with. In broad terms, these play a similar role as riemannian metrics in standard 
diferential geometry. In this Section, we recall basic properties of generalized metrics and 
particularize for the case of exact and string Courant algebroids. For further details we refer 
to [61]. Throughout, let E → M be a real, smooth Courant algebroid. Generalized metrics 
can be defned in various degrees of generality. In this Thesis, we will adopt the following: 

Defnition 2.1.18. A generalized metric on E is a subbundle V+ ⊂ E such that: 

1. The restriction ⟨·, ·⟩|V+ is a positive-defnite inner product. 
2. ρ|V+ : V+ → T is an isomorphism. 

Given a pair (E, V+), we defne the complement V− = (V+)
⊥ . Note that for general 

Courant algebroids, the restriction of the ambient pairing ⟨·, ·⟩|V− does not have a sign. 
However, by the condition of Defnition 2.1.18(1), we have that: 

E = V+ ⊕ V−. (2.1.38) 

Moreover, by the condition of 2.1.18(2), we have a lifting induced by the generalized metric: 

)−1 ∼= 
σ+ = (ρ|V+ : T −→ V+, (2.1.39) 

and hence a riemannian metric g = ⟨σ+, σ+⟩. Then, the lifting given by: 

σ : T → E, σ(X) = σ+(X) − 1
2 ρ ∗ (g(X)) (2.1.40) 

is an isotropic splitting. In this situation, we call σ the splitting induced or preferred by V+. 
Conversely, given a pair (σ, g) of an isotropic splitting on E and a riemannian metric on M , 
the expression: 

V+(σ, g) = {σ(X) + 1 ρ ∗ (g(X)) | X ∈ T } (2.1.41)
2 

is a generalized metric on E. The next result further refnes what is the geometric content 
of a generalized metric in case the Courant algebroid is of the types of Section 2.1.2. 

Proposition 2.1.19. 1. Let E be an exact Courant algebroid, and V+ ⊂ E a generalized 
metric. Let σ : T → E be the isotropic splitting preferred by V+. Then: 

ϕ−1(V+) = eg(T ) := {X + g(X) | X ∈ T } ⊂ EH , (2.1.42)σ 

where EH is the exact Courant algebroid of Example 2.1.6 for H = 2⟨[σ, σ], σ⟩. 

2. Let (E, P, ρP ) be a string algebroid and let V+ ⊂ E a generalized metric. Let σ be the 
isotropic splitting preferred by V+. Then: 

ϕ− 
σ, 
1
id(V+) = eg(T ) = {X + g(X) | X ∈ T } ⊂ EP,H,A, (2.1.43) 

where EP,H,A is the exact Courant algebroid of Example 2.1.13 for H = 2⟨[σ, σ], σ⟩ and 
A is the principal connection determined by A⊥ = ρP ◦ σ. 
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Hence, a generalized metric determines a preferred presentation of an exact or string 
Courant algebroid. Alternatively, if E is an exact Courant algebroid, a generalized metric is 
equivalent to a triple (σ, g, H). Moreover, in this case: 

ϕ− 
σ 
1(V−) = e −g(T ) ⊂ EH . (2.1.44) 

If E is a string algebroid, a generalized metric is equivalent to a quadruple (σ, g, H, A). 
Moreover, then: 

ϕ−1 
σ,id(V−) = e −g(T ) ⊕ ad P ⊂ EP,H,A. (2.1.45) 

2.2 Holomorphic Courant algebroids 
In the previous Section we have reviewed the smooth theory of Courant algebroids and 
particularized to exact and string cases. Now, we use it to induce holomorphic structures 
on them. The relation of smooth and holomorphic Courant algebroids allows to study the 
interaction with the hermitian geometry of the manifold, leading to the notions of Bott-
Chern algebroids and generalized hermitian metrics. These will play a central role in this 
Thesis. The references for this Section are [69, 68] and [81, Appendix A]. 

We start by introducing holomorphic Courant algebroids. Throughout, let X = (M, J) 
a complex manifold. We will denote T 1,0 = T 1,0X, and T1 

∗ 
,0 = (T ∗X)1,0 . 

Defnition 2.2.1. A holomorphic Courant algebroid is a tuple (Q, ⟨·, ·⟩, [·, ·], ρ), where: 
1. Q → X is a holomorphic vector bundle. 

2. The pairing ⟨·, ·⟩ is a symmetric, non-degenerate morphism of sheaves: 
⟨·, ·⟩ : O(Q) ⊗OX O(Q) → OX . (2.2.1) 

3. The Dorfman bracket [·, ·] is a morphism of sheaves: 
[·, ·] : O(Q) ⊗C O(Q) → O(Q). (2.2.2) 

4. The anchor is a holomorphic vector bundle map: 
ρ : Q → T 1,0 . (2.2.3) 

such that the following hold for a, b, c ∈ O(Q) and f ∈ OX : 
1. [a, [b, c]] = [[a, b], c] + [b, [a, c]] (2.2.4) 
2. ρ(a)(⟨b, c⟩) = ⟨[a, b], c⟩ + ⟨b, [a, c]⟩ (2.2.5) 
3. [a, fb] = f [a, b] + ρ(a)(f)b (2.2.6) 
4. ρ([a, b]) = [ρ(a), ρ(b)] (2.2.7) 
5. [a, b] + [b, a] = 2ρ ∗ ∂⟨a, b⟩, (2.2.8) 

ρ∗ ⟨·,·⟩ 
where in (2.2.8) we have used the identifcation T ∗ → Q∗ → Q.1,0 

Associated to a holomorphic Courant algebroid Q, we consider the following bundles: 
Q ker ρ 

AQ = , adQ = . (2.2.9)
(ker ρ)⊥ (ker ρ)⊥ 

Analogous to the smooth case, (AQ, [·, ·]) is a Lie algebroid, and (adQ, ⟨·, ·⟩, [·, ·]) is a 
quadratic Lie algebroid, where the structure is inherited from Q. 
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2.2.1 Liftings and reduction 
Given a complex, smooth Courant algebroid, one can produce a holomorphic Courant alge-
broid through a procedure of choosing a lifting followed by reduction. This was observed in 
[81, Appendix A], and we recall it here briefy. Then, we particularize to smooth and string 
algebroids. 

Defnition 2.2.2. Let EC be a smooth, complex Courant algebroid. Then, a lifting ℓ ⊂ EC 
is a complex subbundle that satisfes: 

1. ℓ is isotropic: ⟨ℓ, ℓ⟩ = 0. 
2. ℓ is an involutive distribution of (EC, [·, ·]): [ℓ, ℓ] ⊂ ℓ. 
3. ρC|ℓ : ℓ → T 0,1 is an isomorphism. 

By property of Defnition 2.2.2(3), given a lifting ℓ we have a vector bundle map: 

∼= 
: T 0,1σℓ = (ρC|ℓ)−1 −→ ℓ. (2.2.10) 

Proposition 2.2.3. Let EC be a smooth, complex Courant algebroid, and let ℓ ⊂ EC be a 
lifting. Moreover, let Qℓ = ℓ⊥/ℓ. Then, the following defnes an integrable Dolbeault operator 
∂Qℓ such that Qℓ is a holomorphic Courant algebroid: 

iX0,1 ∂Qℓ [a] = [σℓ(X
0,1), a] mod ℓ. (2.2.11) 

Remark 2.2.4. In Proposition 2.2.3, the defnition of Qℓ is chosen such that ∂Qℓ is well 
defned independent of choices. Then, the integrability is a formal consequence of Axiom 
(2.2.4). 

Next, we detail what the above result amounts to in the case EC is exact or string. For 
this, it is convenient to extend the formalism to the holomorphic category: 

Defnition 2.2.5. 1. A holomorphic Courant algebroid Q is exact if the sequence: 

ρ∗ ρ 
0 −→ T1 

∗ 
,0 −→ Q −→ T 1,0 −→ 0 (2.2.12) 

is exact. 
2. Let G be a complex Lie group and let P → X be a holomorphic principal bundle. Then, 

(Q, P, ρP ) is a holomorphic string algebroid if the sequence: 

ρ∗ ρP0 −→ T1 
∗ 
,0 −→ Q −→ AP −→ 0 (2.2.13) 

is exact, where AP = T 1,0P/G → T 1,0 is the holomorphic Atiyah algebroid of P , and 
ρP is a bracket preserving map inducing isomorphism of holomorphic Lie algebroids 
AQ ∼= AP , and of holomorphic quadratic Lie algebrois adQ ∼= ad P . 
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∗ 3,0+2,1Example 2.2.6 ([69]). 1. Let Q = T 1,0 ⊕T1,0 as a smooth vector bundle, and τ ∈ ΩX 
such that dτ = 0. Moreover, consider the structure: 

⟨·, ·⟩0 : Γ(Q) × Γ(Q) −→ CX 
∞ 

∂Q : Γ(T 0,1) × Γ(Q) → Γ(Q) 
(2.2.14)

[·, ·]τ : Γ(Q) × Γ(Q) −→ Γ(Q) 
ρ0 : Q → T 1,0 

given by the following formulae: 

⟨X + ξ, Y + η⟩0 = 
2
1 (η(X) + ξ(Y )) 

iV 0,1 ∂Q(X + ξ) = ∂V 0,1 X + ∂V 0,1 ξ + τ 2,1(V 0,1, X, ·) 
(2.2.15)

[X + ξ, Y + η]τ = [X, Y ] + iX ∂η + ∂(iX η) − iY dξ + iY iX τ 3,0 

ρ0(X + ξ) = X, 

where X, Y ∈ Γ(T 1,0), V 0,1 ∈ Γ(T 0,1) and ξ, η ∈ Γ(T1 
∗ 
,0). Then, Qτ = (Q, ∂Q) is 

a holomorphic vector bundle and (Qτ , ⟨·, ·⟩0, [·, ·]τ , ρ0) is a holomorphic exact Courant 
algebroid. Conversely, if (Qτ , ⟨·, ·⟩0, [·, ·]τ , ρ0) is a holomorphic exact Courant algebroid 

3,0+2,1for a 3-form τ ∈ ΩX , then dτ = 0. 

2. Let G be a complex Lie group with quadratic Lie algebra (g, ⟨·, ·⟩), and P a holomorphic 
principal G-bundle. Moreover, let Q = T 1,0 ⊕ ad P ⊕ T1 

∗ 
,0 as a smooth vector bundle, 

∈ Ω3,0+2,1and τ X and A principal connection on P compatible with the holomorphic 
structure, such that: 

dτ − ⟨FA ∧ FA⟩ = 0. (2.2.16) 

Furthermore, consider the structure as in (2.2.14) given by the following formulae: 

⟨X ++r + ξ, Y + s + η⟩0 = 
2
1 (η(X) + ξ(Y )) + ⟨r, s⟩ 

iV 0,1 ∂Qτ (X + r + ξ) = ∂V 0,1 X + ∂Ar − FA(V 0,1, X)+ 
+ ∂V 0,1 ξ + τ 2,1(V 0,1, X, ·) + 2⟨iV 0,1 FA, r⟩ 

[X + r + ξ, Y + s + η]τ,A = [X, Y ] − FA 
2,0(X, Y ) + iX ∂As − iY ∂Ar − [r, s]+ 

+ iX ∂η + ∂(iX η) − iY dξ + iY iX τ
3,0 + 2⟨∂Ar, s⟩+ 

2,0 2,0+ 2⟨iX FA , t⟩ − 2⟨iY FA , r⟩ 
ρ0(X + r + ξ) = X, 

(2.2.17) 

V 0,1 ∗where X, Y ∈ Γ(T 1,0), ∈ Γ(T 0,1), r, s ∈ Γ(ad P ) and ξ, η ∈ Γ(T1,0). Then, 
QP,τ,A = (Q, ∂Q) is a holomorphic vector bundle and (QP,τ,A, ⟨·, ·⟩0, [·, ·]τ , ρ0) is a holo-
morphic string algebroid. Conversely, if (QP,τ,A, ⟨·, ·⟩0, [·, ·]τ,A, ρ0) is a holomorphic 
string algebroid for a 3-form τ ∈ Ω3 

X
,0+2,1 and a compatible principal connection A in 

P , then (2.2.16) holds. 
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The next two results characterize the space of liftings for exact and string algebroids, and 
identify what is the explicit holomorphic model of the type of Example 2.2.6 of the resulting 
holomorphic reduction. Although this procedure is purely complex, for the purposes of this 
Thesis it will be enough to apply it to complexifed real algebroids. These have, by defnition, 
a natural real form E ⊂ E ⊗ C. The description of liftings uses, in particular, this structure. 
The reader is directed to [70] for the general theory of holomorphic reduction of Courant 
algebroids. 

Proposition 2.2.7. The set of liftings on EH ⊗C is one-to-one with pairs (ψ, b) ∈ ΩM, 
1,1 

R×Ω2 
M 

such that: 

H + dcψ + db = 0. (2.2.18) 

Explicitly, given (ψ, b) satisfying (2.2.18), then: 
−(b+iψ)(T 0,1) = {X0,1 − iX0,1 (b + iψ) | X0,1 ∈ T 0,1}ℓ(ψ, b) = e (2.2.19) 

is a lifting. Moreover: 

ϕℓ : Q2i∂ψ → Qℓ(ψ,b), X + ξ 7→ [e −(b+iψ)(X) + ξ] (2.2.20) 

is an isomorphism. 

Proposition 2.2.8. The set of liftings on EPK ,H,A ⊗ C is one-to-one with triples (ψ, b, a) ∈ 
Ω1,1(M, R) × Ω2 

M × Ω1(adPK ) such that: 

H + dcψ + CS(A ′ ) − CS(A) − d⟨A ′ ∧ A⟩ + db = 0, 
(2.2.21)

F 0,2 = 0, 

where A ′ = A + a. Explicitly, given (ψ, b, a) satisfying (2.2.21), then the associated lifting is: 
(−(b+iψ),−a)(T 0,1), 

A ′ 

ℓ(ψ, b, a) = e (2.2.22) 

where e(−(b+iψ),−a) is as in (2.1.33). Moreover: 

ϕℓ : QP,2i∂ψ,A+a → Qℓ(ψ,b,a), X + r + ξ 7→ [e(−(b+iψ),−a)(X + r + ξ)] (2.2.23) 

is an isomorphism, where P = (PK
c , ∂A). 

2.2.2 Generalized hermitian metrics 
Throughout this Section, let X = (M, J) be a complex manifold and E a real Courant 
algebroid. The fundamental compatibility condition between Generalized Geometry with 
the complex structure is the following: 

Defnition 2.2.9 ([67]). A generalized metric V+ ⊂ E is compatible with J if: 

ℓ = V+ ⊗ C ∩ ρ−1(T 0,1) ⊂ E ⊗ C (2.2.24) 

is a lifting. 
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Proposition 2.2.10. 1. Let E be an exact Courant algebroid, and V+ a generalized met-
ric. Moreover, let (σ, g, H) be the data associated to V+. Then, V+ is compatible with 
J if and only if g is a hermitian metric and: 

H = −dcω, (2.2.25) 

where ω = g(J ·, ·). In particular: 

ddcω = 0. (2.2.26) 

2. Let E be a string algebroid, and V+ a generalized metric. Moreover, let (σ, g, H, A) be 
the data associated to V+. Then, V+ is compatible with J if and only if g is a hermitian 
metric and: 

H = −dcω, FA 
0,2 = 0. (2.2.27) 

In particular: 

ddcω + ⟨FA ∧ FA⟩ = 0. (2.2.28) 

From Propositions 2.2.7, 2.2.8 and Proposition 2.2.10, we obtain as an immediate conse-
quence explicit models for holomorphic reductions in case these are induced by J-compatible 
generalized metrics: 

Corollary 2.2.11. 1. Let E be an exact Courant algebroid, V+ a J-compatible generalized 
metric, and Qℓ its holomorphic reduction. Moreover, let ω be the hermitian metric 
given by Proposition 2.2.10(1). Then: 

ϕℓ : Q2i∂ω → Qℓ (2.2.29) 

is an isomorphism. 

2. Let (E, PK , ρPK ) be a string algebroid, V+ a J-compatible generalized metric, and Qℓ 
its holomorphic reduction. Moreover, let (ω, A) be as given by Proposition 2.2.10(2). 
Then: 

ϕℓ : QP,2i∂ω,A → Qℓ (2.2.30) 

is an isomorphism, where P = (PK
c , ∂A). 

Remark 2.2.12. The Courant algebroids obtained in Corollary 2.2.11 do not fully exhaust 
the set of all holomorphic Courant algebroids, as the condition of E ⊗ C admitting a real 
form and the lifting being induced by a generalized metric are not vacuous. In the exact case, 
one can readily see that algebroids in the family Q2i∂ω for ω a hermitian metric are rather 
special within the family of Example 2.2.6(1). Similarly, the string algebroids admitting a 
presentation as in Corollary 2.2.11(2) form a special family within its category, which is 
encoded in the following notion. 
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Defnition 2.2.13 ([68]). Let (Q, P, ρP ) a holomorphic string algebroid. Then, Q is called 

to a maximal compact subgroup (see Section 1.3.1). If ω is moreover a hermitian metric, 
then Q is said to be positive. 

[68, Section 3]. 

follows that: 

by elementary considerations, where the isomorphism above is induced by the projection 

Bott-Chern algebroid if there exists isomorphism:a an 

Q → Q ϕ (2.2.31): ,P,2i∂ω,Ah 

⊂where ω is (1 1)-form and A is the Chern connection of P P for hermitian reduction a a, h h 

Remark 2.2.14. The existence of Bott-Chern string algebroids is in general structures on 
difcult question. Moreover, how determine if Bott-Chern algebroid is positive istoa a an 

problem in general. For discussion these issues and particular known results open a on see 

Now introduce the notion that gives title this Section. Let (E, V ) be Courant towe a+ 
algebroid endowed with J-compatible generalized metric, in Defnition 2.2.9. Then, ita as 

∼⊥ ⊥C C⊗ ⊕ ⇒ Q ⊗ℓ V ℓ ℓ /ℓ V (2.2.32)= = = ,− −ℓ

π− 

⊂Defnition 2.2.15. Let E be Courant algebroid and V E J-compatible generalized a a+ 
Qmetric, and let the its holomorphic reduction. Then, call weℓ 

−⟨ ⟩G([ ] [b]) π ( ) π (b) (2.2.33)a = a, ,− − 

Remark 2.2.16. 1. The generalized hermitian metric G defned above has sign innot a 

let (σ, g,H,A) be induced by generalized metric V compatible with J Then, in thea .+ 

  

E −→ V−. 

the generalized hermitian metric on Qℓ. 

general. For the case of interest for this Thesis, where E is a real string algebroid, 

∼given isomorphism Qℓ = QP,2i∂ω,A of Corollary 2.2.11(2), explicitly: 

g(·, ·) 0 0 
G = 0 −⟨·, ·⟩ 0 (2.2.34) 

0 0 1
4 g

−1(·, ·) 

with respect to the natural smooth splitting QP,2i∂ω,A 
C 
= 
∞ 
T 1,0 ⊕ ad P ⊕ T ∗ given by1,0 

construction of QP,2i∂ω,A (see Example 2.2.6). Its indefnite signature is a fundamental 
feature that will be recurrent in subsequent Chapters. However, if E is exact, the 
analogous generalized hermitian metric G of (2.2.34) is: �� 

g(·, ·) 0 
(2.2.35)

0 1
4 g

−1(·, ·) 

∗in the smooth splitting Q2i∂ω 
C 
= 
∞ 
T 1,0 ⊕ T1,0, and therefore, is positive defnite. The 

string case will be dealt with in detail in Chapter 4. 
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2. As given in Defnition 2.2.15, generalized hermitian metrics are hermitian metrics on 
Courant algebroids in the standard sense of Diferential Geometry. However, the name 
stems from the fact that these are induced by a choice of generalized data, and in some 
contexts it can be useful to adopt this more abstract point of view (see [67, Defnition 
3.15] for the exact case). 

2.2.3 Classifcation of holomorphic Courant algebroids 
In Section 2.1.2, the classifcation of exact Courant algebroids was sketched (see Proposi-
tion 2.1.7 and Corollary 2.1.8). Here, we refne this classifcation for holomorphic Courant 
algebroids, and include the string case to the picture. Firstly, we provide the notion of 
isomorphism in this category. 

Defnition 2.2.17. 1. Let Q, Q ′ be exact holomorphic Courant algebroids. Then a vector 
bundle map ϕ : Q → Q ′ is an isomorphism if it preserves the Courant algebroid pairing 
and bracket, and makes the following diagram commute: 

0 T ∗ Q T 1,0 01,0 

idϕid 

0 T ∗ Q ′ T 1,0 01,0 

2. Let (Q, P, ρP ), (Q ′ , P ′ , ρP ′ ) be string algebroids. Then a vector bundle map ϕ : Q → Q ′ 
is an isomorphism if it preserves the Courant algebroid pairing and bracket, and makes 
the following diagram commute: 

0 T ∗ Q AP 01,0 

gϕid 

′0 T1 
∗ 
,0 Q ′ AP 0 

where g : AP → A ′ P is an isomorphism induced from a principal bundle map g : P → 
P ′ . If P = P ′ and g = id, we will call this isomorphism restricted. 

The following result give a explicit characterization of isomorphisms in terms of explicit 
presentations: 

Proposition 2.2.18 ([69]). Let QP,τ,A, QP ′ ,τ ′ ,A ′ be holomorphic string algebroids as described 
in Example (2.2.6). Then, the set of isomorphisms ϕ : QP,τ,A → QP ′ ,τ ′ ,A ′ is one-to one with 
the set of pairs (g, β) where g : P → P ′ is an isomorphism of principal bundles and β ∈ Ω2,0 

such that: 

τ ′ = τ + CS(A ′ ) − CS(gA) − d⟨A ′ ∧ gA⟩ − dβ. (2.2.36) 

We now recall the classifcation result obtained in [68] for Bott-Chern algebroids. For the 
exact case, the classifcation for positive algebroids follows formally by taking the structure 
group G to be trivial. For this, we introduce the sheaf complex Ω≤2 given by: 

j d d d−→ Ω3,0+2,1 −→ Ω4,0+3,1+2,20 −→ Ω2
cl 
,
. 
0 −→ Ω2,0 −→ . . . (2.2.37) 
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Proposition 2.2.19 ([68]). Let G be a complex Lie group and P a holomorphic principal 
G-bundle. Then, the set of isomorphism classes of Bott-Chern algebroids (Q, P, ρP ) with 
respect to restricted isomorphism is naturally a (possibly empty) afne space modelled on the 
image of the map: 

1,1 ∂
HA (X, R) −→ H1(Ω≤2), [ψ] 7→ [2i∂ψ]. (2.2.38) 

Explicitly, given a Bott-Chern algebroid Q ∼= QP,2i∂ω,A, to a class [2i∂ψ] in the image of 
(2.2.38) we associate the class of Q2i∂(ω+ψ),A. 

Remark 2.2.20. 1. The statement above does not make any claim about the positivity 
of the members of the family. Typically, once a positive Bott-Chern algebroid is fxed, 
only elements in a neighbourhood admit a positive structure. 

2. In case X satisfes the ∂∂-lemma, it is straightforward to check that 2.2.38 is constant. 
Hence, there is at most one Bott-Chern algebroid over P up to restricted isomorphism. 

One can check that Proposition 2.2.19 above indeed agrees with Proposition 2.2.18: 
the Bott-Chern algebroids QP,2i∂ω,P and QP,2i∂(ω+ψ),A are isomorphic when [2i∂ψ] = 0 ∈ 
H1(Ω≤2), that is, when there exists β ∈ Ω2,0 such that 2i∂ψ + dβ = 0. Then, it is clear that: 

2i∂(ω + ψ) = 2i∂ω − dβ (2.2.39) 

showing a particular case of the isomorphism provided by (2.2.36), where (P ′ , A ′ ) = (P, A). 
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Chapter 3 

Background and Yau’s Conjecture for 
the Hull-Strominger system 

This Chapter introduces the main object of study of this Thesis: the Hull-Strominger system 
[85, 127]. See [62] for a survey and references therein. Here, we give an account of several 
aspects of its geometry. 

In the frst Section, we review its origin and how it is regarded currently in the mathe-
matical literature, including the promising potential application to the Calabi-Yau web. We 
then give an overview of the known exact solutions in the literature. In the second Section, 
we address the existence problem for the Hull-Strominger system following a conjecture by 
S. T. Yau [138], and discuss the current state of the problem. 

3.1 The Hull-Strominger system 

3.1.1 Physical origin and mathematical formulation 
The Hull-Strominger system is a system of geometric PDEs on a complex manifold. It frst 
appeared independently in the physics literature in the works of A. Strominger [127] and C. 
Hull [85]. Here, we sketch how this system is obtained. 

The starting point is the aim to describe the low energy limit of supersymmetric heterotic 
string theory from the spacetime point of view, that is, as a sigma model of maps C∞(Σ, T ), 
where the space-time T is required to be 10-dimensional and assumed to be of the form: 

= R3,1T × M, (3.1.1) 

where the frst factor stands for Minkowski 4-dim. space-time, and the second is called the 
internal space. With a suitable product ansatz for the matter content, the theory is reduced 
to M and the relevant felds are given by tuples (g, ϕ, H, A) of a riemannian metric g, a 
smooth function ϕ (dilaton), a 3-form H and a connection A on a principal bundle PK → M 
with compact structure group K. We assume Lie K is endowed with an inner product, that 
we denote in this Section by tr. The low-energy theory is governed by the action: ˆ

S[g, ϕ, H, A] = e −2ϕ(scalg + 4|dϕ|2 − 1 |H|2 + α (|R∇|2 − |FA|2))dvolg, (3.1.2)
12 2 

M 
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where ∇ is a linear connection introduced to produce an anomaly cancellation, i.e. forcing a 
classical symmetry to carry over the quantized theory, and α is a physical parameter required 
to be positive. This requirement is expressed locally via the existence of a 2-form b such 
that: 

H − αCS(∇) + αCS(A) + db = 0. (3.1.3) 

As a consequence, the following constraint arises for an anomaly-free theory: 

dH − αtrR∇ ∧ R∇ + αtr FA ∧ FA = 0, (3.1.4) 

which is known in the literature as the Bianchi identity. The stationary points of S given 
the ansatz (3.1.3) satisfy the heterotic equations of motion: P P 

Ricg + 2∇g(dϕ) − 1 H2 − α tr(iei R∇) + α tr(iei4 i R∇ ⊗ iei i FA ⊗ iei FA) = 0 
d ⋆ (e −2ϕH) = 0 

(3.1.5) 
d ⋆A(e −2ϕFA) + e −2ϕ ⋆ (FA ∧ ⋆H) = 0 

scalg − 4∆gϕ − 4|dϕ|2 − 1 |H|2 − α |R∇|2 + α |FA|2 = 0,
12 2 2 

where {ei} is an orthonormal frame for g, and ∆g = dd⋆ + d⋆d is the Hodge Laplacian. 

A special class of solutions satisfy suitable lower order equations, and are related to 
supersymmetry. In precise terms, this amounts to the existence of spinor feld ϵ (Majorana 
spinor) in an irreducible real spin module for Cl(T M, g) with respect to the Hull connection 
∇− = ∇g − 1

2 g
−1H that satisfes the Killing spinor equations : 

FA · ϵ = 0 
∇−ϵ = 0 (3.1.6) 

(H + 2dϕ) · ϵ = 0. 

Then, the main result is the following: 

Theorem 3.1.1 ([85, 127]). Let (g, ϕ, H, ∇, A, ϵ) be the geometric structure defned above. 
Then, (3.1.4) and (3.1.6) hold if and only if there is a (possibily non-Kähler) Calabi-Yau 
structure on M , (J, Ω) such that: 

FA ∧ ω2 = 0, FA 
0,2 = 0 

dclog ||Ω||ω − d ⋆ ω = 0 (3.1.7) 
ddcω − αtr R∇ ∧ R∇ + αtr FA ∧ FA = 0, 

where ω = g(J ·, ·), and: 

H = −dcω, dϕ = −1 dlog ||Ω||ω. (3.1.8)
2 

The geometry determined by the system becomes more transparent once the second 
equation is rewritten as a conformally balanced condition [98], see also [74]: 

dclog ||Ω||ω − d ⋆ ω = 0 ⇔ d(||Ω||ωω2) = 0. (3.1.9) 

54 



Moreover, it is useful to fx a holomorphic structure P = (PK
c , ∂P ). Then, compatible 

connections A satisfying the frst line of (3.1.7) are equivalent to hermitian metrics h on P 
satisfying: 

Fh ∧ ω2 = 0, (3.1.10) 

by the Chern correspondence. Hence, we obtain the Hull-Strominger system as it is usually 
written in the mathematical literature: 

Fh ∧ ω2 = 0 
d(||Ω||ωω2) = 0 (3.1.11) 

ddcω − αtr R∇ ∧ R∇ + αtr Fh ∧ Fh = 0 

as a system in the unknowns (ω, h) on a Calabi-Yau manifold endowed with a holomorphic 
principal bundle (X, Ω, P ). Moreover, in the mathematical literature the constant α is often 
regarded as a real parameter, and it is natural to study (3.1.11) also for non-positive values. 
The indefnition of the connection ∇ is an original feature of the system and has been 
the subject of much debate in the physical as well as in the mathematical community (see 
[37]). Since the Hull-Strominger system appeared in the mathematical literature with the 
remarkable work of [98], and further [58], to a considerable extent ∇ has been identifed with 
the Chern connection of ω, yielding a strongly coupled system. However, other choices for 
∇ have been considered, singularly the instanton ansatz. From the point of view of physics, 
this choice is supported by the following result. 
Theorem 3.1.2 ([88]). Let (ω, A) satisfy the Hull-Strominger system 3.1.7. Then, the het-
erotic equations of motion 3.1.5 hold if and only if ∇ satisfes: 

R∇ ∧ ω2 = 0, R∇ 
0,2 = 0. (3.1.12) 

Mathematically, this choice is also at the core of a good amount of recent theory of the 
Hull-Strominger system [5, 13, 70]. Moreover, note that with this choice, ∇ also satisfes its 
own equation of motion [47, 63]: 

d ⋆ 
∇(e −2ϕR∇) + e −2ϕ ⋆ (R∇ ∧ ⋆H) = 0. (3.1.13) 

In this Thesis, we will prove a slightly stronger result using purely hermitian geometry in 
Proposition 6.4.1. It is because of this evidence that throughout this Thesis, in the sequel 
we advocate for the ansatz (3.1.12). Further, for virtually all of the methods and techniques 
that we develop, it is worth to embrace an abstract formulation of the system. Hence by 
Hull-Strominger system, we will mean the following: 
Defnition 3.1.3. Let (X, Ω) be a (possibly non-Kähler) compact Calabi-Yau manifold of 
complex dimension n, and let P → X be a holomorphic principal bundle for a complex 
reductive group. Then, a pair (ω, h) of a hermitian metric and a reduction of P to a maximal 
compact subgroup satisfes the Hull-Strominger system if: 

Fh ∧ ωn−1 = 0 
d(||Ω||ωωn−1) = 0 (3.1.14) 

ddcω + ⟨Fh ∧ Fh⟩ = 0. 

To recover (3.1.11) from the system in Defnition (3.1.14) with the instanton ansatz for 
∇, one considers Fr TX ×X P as the principal bundle and restricts to split solutions. 
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3.1.2 Application to the Calabi-Yau web 
This Section provides a motivation for studying the Hull-Strominger system from the point of 
view of algebraic geometry, for the problem of classifcation of complex-algebraic Calabi-Yau 
threefolds. 

This proposal stems from the contrast with the situation in complex dimension 2. For 
K3-surfaces, back to the work of Kodaira [96], as an application of the deformation theory of 
complex manifolds, a moduli space of analytic K3-surfaces is constructed, with a countable 
set of codimension 1 subvarieties of algebraic surfaces sitting inside. In particular, the 
moduli of smooth complex K3-surfaces is connected and every two of them are shown to be 
difeomorphic. 

The situation for Calabi-Yau 3-folds is dramatically diferent. The following construction 
yields examples of Calabi-Yau 3-folds with diferent topologies [23, 78]: we consider complete 
intersection Calabi-Yau manifolds (CICYs) defned as: 

X = {p1 = · · · = pk = 0} ⊂ CP r1 × · · · × CP rl , (3.1.15) 

where pi are polynomial expressions that are homogeneous of a certain degree dij in each of 
the CP rj factors. Then, the elementary combinatorial considerations: P 

ri = k + 3 P i (3.1.16) 
i dij = rj + 1 

place constraints on the degrees of pi and dimensions ri such that X is a Calabi-Yau manifold. 
Moreover, the non-trivial Hodge numbers h1,1(X), h2,1(X) are obtained- in many cases, from 
this data too, resulting in a vast 10.000 topologically distinct CICYs, as proved by Friedman 
[53] building on results of Smale. To emulate the picture of surfaces, in [115] it was proposed 
to use complex transitions to relate threefolds with diferent topology, conjecturing that 
there could be a unique moduli of smooth Calabi-Yau threefolds in the birational sense. 
This expectation is now known as Reid’s fantasy. In [53], conifold transitions are used to 
produce changes in the Hodge numbers of X. This is a two-step process of contracting a set 
of suitable disjoint rational curves ⊔ki=1Ci ⊂ X producing a singular space X with double 
point singularities. The typical element in the smooth resolution Xt has diferent Hodge 
numbers than X, depending on the analytical properties of X and of the transition (see 
[117, Theorem 3.2] and references therein). It can be the case that the resulting manifold 
Xt is a non-Kähler manifold e.g. because of this cohomological result, or for other reasons. 
Hence non-Kähler geometry enters naturally in the picture. An extreme case that appears is 
that of threefolds difeomorphic to ♯kS3 × S3 ([21]). Due to the lack of canonical geometry in 
non-Kähler manifolds, in [138], it was proposed that the Hull-Strominger system should serve 
as a tool to geometrize conifold transitions. The following results are successful instances of 
this program: 

Theorem 3.1.4 ([55]). Let X be a Kähler Calabi-Yau threefold and let X → X ⇝ Xt be a 
conifold transition, with deformation parameter t ∈ ∆ ⊂ C. Then, for sufciently small t, 
Xt admits balanced metrics. 
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Theorem 3.1.5 ([28]). The tangent bundle T 1,0Xt is slope-polystable with respect to the 
balanced class given by the metric in Theorem 3.1.4. 

The same result of Theorem 3.1.5 holds for the manifolds ♯kS3 × S3 above [21]. A com-
plete answer to the problem of classifcation of Calabi-Yau threefolds following this proposal 
should, in particular, provide sufcient conditions to pass a solution to the Hull-Strominger 
system across conifold transitions or obstructions that prevent it. In this Thesis, we study 
the existence problem for the Hull-Strominger system to obtain new insights on the viability 
of this program. 

3.1.3 Solutions to the Hull-Strominger system 
In a prior analysis of heterotic compactifcations [24], it was proposed that the internal 
space M should be a complex manifold carrying a Kähler-Ricci fat metric. These geome-
tries without torsion trivially satisfy the Hull-Strominger system and are known as standard 
embeddings. Later, when the Hull-Strominger system was frst addressed in the mathemati-
cal literature in [98], the authors deformed the holomorphic structure of TX ⊕OX 

⊕r providing 
solutions around the large volume limit (α = 0). Moreover, large families of deformation 
solutions around the large volume limit were further obtained in [8, 9]. Recently, a general 
existence result for the Hull-Strominger system in Kähler backgrounds has been obtained, 
compatible with both the Chern and instanton choices for ∇ [28]. 

The frst solutions in non-Kähler manifolds were obtained in [58] on elliptic fbrations over 
K3 surfaces, and have been. In [64], new solutions are constructed on the same manifolds 
with the instanton ansatz (3.1.12) and are compatible with T -duality. Recently, more solu-
tions have been constructed on more general fbrations admitting orbifold bases [50]. Other 
non-Kähler backgrounds that admit solutions are twistor spaces for hyperKähler manifolds. 
In these geometries, called generalized Calabi-Gray, solutions are constructed in [42, 43, 44]. 
Moreover, homogeneous complex manifolds as described in Section 4.1 have invariant solu-
tions with diferent choices for the connection ∇ [25, 45, 46, 47, 77, 105, 132, 133]. Apart 
from these known explicit solutions, there is also interest in reaching exact solutions by 
means of geometric fows, and study long-time existence, covergence and stability properties 
of the fows themselves. To this end, a family of anomaly fows is introduced and studied in 
[107, 109, 110], showing a diversity of behaviours. 

3.2 Existence conjecture of Yau for the Hull-Strominger 
system 

This Section introduces the problem of existence of solutions to the Hull-Strominger sys-
tem that we will address in the following Chapters, following a suitable reformulation of a 
conjecture by Yau [137]. Before we state it, we comment on some aspects of the geometry 
determined by the system. Throughout, let (X, Ω) be a compact Calabi-Yau manifold. We 
do not assume that X supports a Kähler structure. Moreover, let V be a holomorphic vector 
bundle, and V0 = (T 1,0 , ∂V0 ) a holomorphic structure on the smooth bundle T 1,0X. In the 
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following discussion, principal bundles are substituted by vector bundles for clarity and to 
link to classical theory more directly. 

3.2.1 Preliminary remarks and the conjecture by Yau 
We discuss some cohomological and algebraic conditions that are implied directly by a so-
lution (3.1.11) on (X, Ω, V ). Firstly, the existence of a holomorphic volume form Ω and the 
conformally balanced equation: 

d(||Ω||ωω2) = 0 (3.2.1) 

are non-trivial conditions for the complex geometry and topology of X (see Section 1.1.1). 
In particular, the form ||Ω||ωω2 ∈ Ω2,2 determines a balanced class b ∈ H2,2 (X, R). Further, X BC 
the Hermite-Einstein equation: 

Fh ∧ ω2 = 0 (3.2.2) 

implies the vector bundle V satisfes: 

degbV = c1(V ) · b = 0, (3.2.3) 

where b is identifed with its de Rham class through (1.1.18), and importantly V is slope-
polystable in the sense of Mumford-Takemoto with respect to the balanced class b. This 
is a consequence of the Donaldson-Uhlenbeck-Yau theorem [40, 134] and its extension to 
hermitian manifolds [97] (see also [64, Section 4], [93, Chapter 5]). Finally, the Bianchi 
identity implies the cohomological condition (see Proposition 1.3.2): 

2,2[ch2(T X, ∇)] = ch2(V ) ∈ HBC (X, R) (3.2.4) 

T 1,0In particular, if ∇ is taken to be the Chern connection of ω on , then the previous 
condition reads: 

ch2(X) = ch2(V ) ∈ H2,2 (X, R). (3.2.5)BC 

Then, the existence conjecture by Yau states that the above necessary conditions are 
actually sufcient: 

Conjecture 3.2.1 ([139]). Let (X, Ω) be a compact Calabi-Yau manifold. Moreover, let b0 
be a balanced class and V → X a holomorphic vector bundle that is b0-stable and satisfying 
(3.2.3), (3.2.5). Then, there exists a solution of (3.1.11), where ∇ is the Chern connection 
of ω. 

Note that the above Conjecture does not demand that the balanced class b = [||Ω||ωω2] 
bears any relation with the given balanced class b0 in the statement. 
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3.2.2 State of the problem 
The Conjecture 3.2.1 was addressed in [8, 9] using a method inspired in the seminal article 
[98] to produce non-Kähler solutions deforming Kähler Calabi-Yau metrics. The result pro-
vides solutions to the Hull-Strominger system (3.1.11) with the ansatz (3.1.12) for arbitrary 
polystable vector bundles stable with respect to the initial Kähler class , by simultaneously 
deforming the hermitian metric and the Hermite-Einstein bundle metric by means of ana-
lytic techniques, but does not fx the balanced class. Recently, in [28] the authors solve the 
Hull-Strominger system with a control of the balanced class, in the large volume limit, which 
is in turn equivalent to deforming standard embedding solutions. Their existence result is 
moreover compatible with the choice of (3.1.12) assuming the holomorphic tangent bundle 
is stable (see [28, Section 3.2]), thus providing evidence for Question 4.3.1. 

Despite the above positive results supporting Conjecture 3.2.1 and Question 4.3.1, recent 
advances in the theory of the Hull-Strominger system also suggest there may be non-trivial 
obstructions beyond the cohomological and algebraic necessary conditions stated in Section 
3.2.1. In [13, 70] appearing in the physical and mathematical literature respectively, the 
Hull-Strominger system is recasted as the set of equations for a moment map, suggesting 
the existence of invariants reminiscent of GIT that prevent solutions. However, these may 
not be straightforward to interpret and compute. Hence, in this Thesis, we take a distinct 
approach to produce new moment map invariants for the Hull-Strominger system exploiting 
special features of the system amenable to the use of techniques in Generalized Geometry. 
This will be addressed in Chapter 5. 

59 



Part II 

Results 
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Chapter 4 

The Hull-Strominger system on 
locally homogeneous manifolds 

This Chapter begins the investigation of the Hull-Strominger system in this Thesis. By frst 
studying the geometry and gauge theory of complex locally homogenenous manifolds, we 
develop a systematic approach to obtain solutions to the Hull-Strominger system using an 
invariant ansatz. Motivated by these results, in the next Section, we suggest to tackle a 
refnement of the existence Conjecture by Yau (see Section 3.2), leading to a proposal that 
continues in subsequent Chapters. Then, we move on to study metric aspects of the moduli 
space of solutions to the system constructed in [70], restricted to invariant solutions, and 
illustrated through Examples. 

4.1 Locally homogeneous manifolds 
This Section describes families of locally homogeneous spaces of Lie groups admitting in-
variant hermitian structure. Hermitian manifolds of this type are particularly well suited for 
exterior algebra computations, and under certain assumptions, the determination of their 
complex cohomology groups is also completely explicit. Thus, they have been regarded as a 
pool of manageable geometries to look for special metrics [51, 131, 132], or for solutions to 
geometric PDE systems [105]. In the present Chapter, locally homogeneous manifolds are 
used to construct families of solutions to the Hull-Strominger system. 

Throughout, let G be a real Lie group with Lie algebra g, and let Γ ⊂ G a discrete 
subgroup with compact quotient M = Γ\G. A left-invariant complex structure J on G is 
induced from a linear complex structure on g satisfying the integrability condition NJ = 0, 
where: 

NJ (ξ, η) = [ξ, η] + J [Jξ, η] + J [ξ, Jη] − [Jξ, Jη] = 0, ξ, η ∈ g. (4.1.1) 

In particular, left-invariance implies it is Γ-invariant and descends to M . By abuse of lan-
guage, we still call such a complex structure invariant. This motivates the following defni-
tion: 

Defnition 4.1.1. A complex locally homogenenous manifold is a quotient M = Γ\G en-
dowed with a left-invariant, integrable complex structure J . 

61 



Remark 4.1.2. While in the literature one can fnd more general notions of locally homo-
geneous manifolds, for the objectives of this Thesis it will be enough to consider Defnition 
4.1.1. 

Similarly, linear tensor felds on g induce left-invariant felds on M . In particular, we 
have natural embeddings: 

Λk ∗ Λp,q ∗ ,→ Ωp,qg ,→ Γ(TM), g ,→ ΩM
k , g X (4.1.2) 

These felds are similarly, by abuse of language, still called left-invariant. If g1 
∗ 
,0 = ⟨ωi⟩, then: P P 

1,0dωi = j,k αijkωjk̄ + j<k βijkωjk, αijk, βijk ∈ C, i = 1, ..., dim g . (4.1.3) 

These complex structure equations determine the Lie algebra structure and the complex 
structure J . Observe that (G, J) is not in general a complex Lie group. This is the case 
precisely when the structure constants αijk = 0 in (4.1.3) above, as this is equivalent to g1,0 

being involutive. 

4.1.1 Cohomology of locally homogeneous manifolds 
Let X = (M, J) be a complex locally homogenenous manifold. The set of invariant diferen-
tial forms inherits a chain complex structure induced by Chevalley-Eilenberg diferential: 

∗ ∗ ∗ 0 → g →d 
Λ2 g →d 

Λ3 g →d 
... (4.1.4) 

determined by: 

dγ(ξ, η) = −γ([ξ, η]), ξ, η ∈ g, γ ∈ g ∗ . (4.1.5) 

and extending to higher exterior products by: 

d(γ1 ∧ γ2) = dγ1 ∧ γ2 + (−1)|γ1|γ1 ∧ dγ2. (4.1.6) 

Observe that (4.1.5) makes (4.1.2) an embedding of chain complexes, hence inducing maps 
in cohomology: 

H•(g) −→ H• (4.1.7)dR(M). 

This map need not be injective nor surjective in general. However, for some families 
of Lie groups this is the case. To cite the result of interest here, we recall the following 
defnition: 

Defnition 4.1.3 ([92]). 1. A Lie algebra g is completely solvable (or split-solvable) if 
there is an ascending chain of ideals: 

0 ⊂ a1 ⊂ ... ⊂ an−1 ⊂ g, (4.1.8) 

where dim. ai = i. 
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2. A Lie group G is completely solvable if Lie g is. 

Then, building on the work of [104], we have: 

Theorem 4.1.4 ([82]). Let G be a completely solvable Lie group, then (4.1.7) is a ring 
isomorphism. 

In particular, this result applies for nilpotent Lie groups. There is interest in extending the 
situation of Theorem 4.1.4 to the complex Dolbeault, Bott-Chern and Aeppli cohomologies 
(1.1.16), (1.1.17). Results in this direction can be found in [10, 30, 29, 116, 118] . In this 
Thesis, the following results will be sufcient for our purposes: 

Theorem 4.1.5 ([10]). Let G be a nilpotent Lie group and suppose J is a left-invariant 
complex structure satisfying one of the following conditions: 

1. (g, J) is a complex Lie algebra 
1,02. g is abelian. 

3. g = gQ ⊗ R and J(gQ) ⊂ gQ for some rational Lie algebra gQ. 

Then, the Dolbeault cohomology map 

H•,•(g, J) → H•,•(X)
∂ ∂ (4.1.9) 

is a ring isomorphism. 

Theorem 4.1.6 ([10]). Let (M, J) be a complex locally homogenenous manifold and suppose 
that: 

∼ ∼= = 
H•,•H•(g) −→ H• (M), 
∂ (g, J) −→ H 

∂ 
•,•(X).dR 

Then, also: 
∼= 

H•,• (g, J) −→ H•,• (X).BC BC 

Remark 4.1.7. Under the hypothesis of Theorem 4.1.6, by the Bott-Chern and Aeppli co-
homology duality (1.1.19), then also the natural map from Chevalley-Eilenberg Aeppli coho-
mology maps isomorphically to Aeppli cohomology of (M, J). 

4.1.2 Vector bundles over locally homogeneous manifolds 
In this Section we describe a natural class of holomorphic vector bundles that can be con-
sidered on locally homogeneous manifolds. First, we recall that given a compact complex 
manifold, isomorphism classes of holomorphic line bundles are classifed by H1(X, O×). This 
group fts in the exact sequence: 

c1 · · · −→ H1(X, Z) −→ H1(X, O) −→ H1(X, O×) −→ H2(X, Z) −→ . . . (4.1.10) 

The topological type of a holomorphic line bundle L is determined by c1(L) while the space 
of holomorphic deformations is given by 

H0,1 
H1(X, O) ∼ ∂ (X) 

= , (4.1.11)
H1(X, Z) H1(X, Z) 
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where on the right hand side we quotient by the set: 

{[α0,1] ∈ H0,1(X) | α ∈ H1(X, Z)}. (4.1.12)
∂ 

Here, we identify α ∈ H1(X, Z) with its de Rham class in H1(X, Z) ⊗ R ∼= H1 (X, R), updR 
to torsion. 

Observe that in the hypothesis of Theorems 4.1.5, 4.1.6, this quotient can be explicitly 
computed in terms of Lie algebra cohomologies. 

In higher rank, the precise characterization of a holomorphic vector bundle is not avail-
able. However, as the frst novel result of this Thesis, we now prove a correspondence for 
a specifc family of vector bundles over locally homogeneous manifolds using representation 
theory and Lie group theory. Our results shall be compared with the analysis of holomorphic 
vector bundles over locally homogeneous manifolds in [4, 93]. 

Defnition 4.1.8. Let X = (Γ\G, J) be a complex locally homogenenous manifold and let 
E → X be a holomorphic vector bundle. We say E is of homogeneous type if there exists a 
global frame {sj} ⊂ Γ(E) such that: P 

∂E sj = k Akj sk, (4.1.13) 

where {Akj } are induced left-invariant (0, 1)-forms on G. 

The existence of a distinguished global frame in the previous defnition implies in par-
ticular that the topological type of a holomorphic bundle E of homogeneous type is trivial, 
that is, it is difeomorphic to X × Cr , for r = rk E . In particular ck(E) = 0 for k ≤ r. The 
next Lemma shows we can associate a vector bundle of homogeneous type Eρ of rank r and 
distinguished frame {si} as in Defnition 4.1.8 to any representation of g0,1 . 

Lemma 4.1.9. Let Eρ = (X ×Cr , ∂Eρ ) be the vector bundle with Dolbeault operator associated 
to the representation: 

ρ : g 0,1 −→ gl(r, C) (4.1.14) 

by declaring that: 

iX0,1 ∂Eρ ei = ρ(X0,1)(ei), (4.1.15) 

for the canonical basis {ei} ⊂ Cr . Then, Eρ is holomorphic. Conversely, given a holomorphic 
vector bundle E of homogeneous type, we obtain an associated representation ρ. 

Proof. Given a basis {Xi} of g1,0 and dual basis {ωi}: �P � 
ρ([X i, Xj ]) = ρ ωk([X i, Xj ])XkP k 

= − ∂ωk(X i, Xj)ρ(Xk)Pk 

= − k ∂ωk(X i, Xj)A
k 

[ρ(X i), ρ(Xj )] = [Ai, Aj ]. 
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Therefore: � � 
ρ [X i, Xj ] = [ρ(X i), ρ(Xj )], ∀ i, j P 

⇔ [Ai, Aj ] = − k ∂ωk(X i, Xj )A
k , ∀ i, j 

2 ⇔ ∂ = 0.Eρ 

The converse is obvious defning ρ by (4.1.15). 

The rest of this Section studies the relation between vector bundles of homogeneous type 
and their representations. Firstly, we obtain the following result, whose proof is straightfor-
ward from the construction above and Defnition 4.1.8. 

Proposition 4.1.10. Let X be a homogeneous complex manifold. Then the map: 

ρ 7→ Eρ (4.1.16) 

induces a surjective map between the set of gl(r, C)-representations of g0,1 up to conjugation 
and isomorphism classes of holomorphic vectors bundles of homogeneous type of rank r. 

Example 4.1.11. The map ρ 7→ Eρ above is in general not injective, as the following Ex-
ample shows. Let X = C/Z⟨1, i⟩, and consider 1-dim. representations: 

ρ : C −→ gl(1, C) ∼= C. (4.1.17) 

We denote A = ρ(1). Then, 

∼ 
Φ : OX 

= −→ Eρ (4.1.18) 

if and only if 

∂Φ + AΦ = 0, (4.1.19) 

where Φ has been identifed with a complex function in the smooth global trivializations of 
the bundles given by the constant section 1. Expanding in Fourier modes in X: X 

πin(z+z̄) πm(z−z̄)Φ = cnme e , (4.1.20) 
(n,m)∈Z2 

we rewrite the PDE (4.1.19) above as a Z2-indexed set of algebraic equations: 

cnm(πin − πm + A) = 0, (n, m) ∈ Z2 . (4.1.21) 

Then, a non-trivial solution to (4.1.19) exists if and only if A ∈ πZ⟨1, i⟩. Hence, the fbre of 
the map 4.1.16 at OX is canonically identifed with H1(X, Z) (compare with (4.1.11)). 

Now, we extract some consequences of Proposition 4.1.10. These aim at understand-
ing the homogeneous locus of the moduli of poystable bundles over homogeneous complex 
manifolds. We will need frst a technical Lemma. 
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Lemma 4.1.12. Let G be a Lie group and assume g is unimodular. Moreover, assume G 
admits a discrete, cocompact subgroup Γ ⊂ G, and let ∆ be a fundamental domain for Γ. 
Let: 

f : G −→ Cn 

be a Γ-invariant smooth function. Then, ˆ
1 

f 0 : G −→ Cn , f 0(x) = (ℓ ∗ 
gf)(x)dvolG,vol(∆) ∆ 

for dvolG a bi-invariant measure, is constant. 

Proof. First, observe that indeed there exists a bi-invariant measure dvolG: extend a linear 
volume form on g to G by left-invariance. Then, unimodularity implies that it is moreover 
adjoint-invariant, and this is equivalent to bi-invariance. Now, we check that f 0(h·x) = f 0(x) 
for any h, x ∈ G. For this, frst observe that since Γ is a lattice with compact quotient, a 
fundamental domain ∆ for Γ has fnite volume with respect to dvolG. Then, we compute: ˆ

vol(∆)f 0(h · x) = (ℓ ∗ f)(h · x)dvolG|∆g 
∆ ˆ

= (ℓ ∗ 
′ f)(x)(rh 

∗ 
−1 dvolG)|∆·hg 

∆·h ˆ
= (ℓ ∗ 

′ f)(x)dvolG|∆·h,g 
∆·h 

using the change of variable theorem applied to rh : ∆ → ∆ · h and integration variables 
g ∈ ∆, g ′ ∈ ∆ · h. Moreover, because of the fnite volume of ∆ and the fact that f is 
continuous, the above functions are indeed integrable. To complete the above computation, 
we introduce the measurable subsets: 

Uγ = (γ−1 · ∆ · h) ∩ ∆, γ ∈ Γ. 

which satisfy:F 
1. ∆ · h = γ∈Γ γ · Uγ , F 
2. Uγ = ∆. 

To see 1, frst observe that {γ · ∆}γ∈Γ cover G by defnition of ∆, hence {γ · Uγ }γ∈Γ cover 
∆ · h. Moreover, they do not overlap as neither do {γ · ∆}γ∈Γ. For 2, by defnition of ∆, for 
any x ∈ G, there are unique γ ∈ Γ and δ ∈ ∆ such that x = γ(x) · δ(x). Applying this to 
xh−1: 

xh−1 = γ(xh−1) · δ(xh−1) ⇒ x = γδh ∈ Uγ−1 . 
Therefore, property 2 above follows considering x ∈ ∆. Hence, fnally: ˆ

f 0(h · x) = (ℓ ∗ f)(x)dvolG|∆·hg P∆·h ´
= (ℓ∗f)(x)dvolG|γ·Uγγ∈Γ γ·Uγ gP ´
= (ℓ∗ f)(x)(ℓ∗ dvolG)|Uγγ∈Γ Uγ γg γ ˆ
= (ℓ ∗ 

gf)(x)dvolG = f 0(x), 
∆ 
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where in the last line we have used crucially that f is Γ-invariant. 

Now, we prove the main result of this Section. Here, following standard representation 
theory, a representation ρ : g0,1 → gl(r, C) is simple if it has no non-trivial subrepresentations, 
and it is semisimple if for any subrepresentation V ⊂ Cr there exists a complementary 
subrepresentation W ⊂ Cr , that is, such that V ⊕ W = Cr . 

Proposition 4.1.13. Let X = (Γ\G, J), and assume g is unimodular. Moreover, let E → X 
be of homogeneous type with associated representation ρ, as given by (4.1.15), and let σ be a 
Gauduchon class on X. If E is σ-slope polystable (resp. stable), then ρ is semisimple (resp. 
simple). 

Proof. We prove the polystable case. The stable case is then a formal consequence. First, 
observe that c1(E) = 0, since it is of homogeneous type. Now, assume E is σ-polystable. 
Then, given a coherent subsheaf F ⊂ E , either µ(F) < 0 or µ(F) = 0 and E ∼= F ⊕ E/F . 

If V ⊂ Cr is a subrepresentation of ρ, then there is an associated holomorphic vector 
bundle V ⊂ E , since it is preserved by ∂E . It is clear that V and E/V are of homogeneous type, 
with Dolbeault operator given by restricting ρ to V , and inducing a quotient representation 
ρ mod V on Cr/V , respectively. Moreover, let W be a linear complement of V and associated 
(smooth) vector bundle W . Then, by polystability of E and given that c1(V) = c1(E) = 0, 
there exists a biholomorphic bundle map: 

Φ : E −→ V ⊕ E/V , (4.1.22) 

where Φ has a matrix expression in terms of the smooth splitting E = V ⊕W given by: � � 
Id Φ12Φ = (4.1.23)
0 πE/V ◦ Φ|W 

To obtain the result, we argue that Φ can be chosen with constant coefcients with respect 
to a distinguished basis, hence Φ−1(E/V) is a holomorphic subbundle of E of homogeneous 
type, corresponding to a complementary subrepresentation of V . 

We prove this claim by choosing basis {vi} and {wj } of V, W ⊂ Cr corresponding to 
distinguished frames of V , W . Hence {[wi]} is a frame for E/V . Then we can write explicitly 
Dolbeault operators in such frames as: � � 

∂E = ∂ + � 
A11 A12 
0 A22 � (4.1.24) 

∂V⊕E/V = ∂ + A11 
0 

0 
A22 

(4.1.25) 

Then, the condition 

∂V⊕E/V ◦ Φ = Φ ◦ ∂E (4.1.26) 

of being biholomorphic translates to the PDE system on X: 

∂Φ12 − A12 + A11Φ12 − Φ12A22 = 0. (4.1.27) 
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We now consider the pullback of this equation to G, and observe that since J is left-
invariant, and so are Aij , if Φ12 solves (4.1.27), so does the translation ℓ∗ 

gΦ12. Hence, the 
following average is a solution to (4.1.27) too: 

ˆ
1 

Φ0 ´ ℓ ∗ 
12 = gΦ12dvolG, (4.1.28) 

∆ dvolG ∆ 

where ∆ is a fundamental domain for Γ ⊂ G, and dvolG is a bi-invariant measure on G, 
whose existence follows from unimodularity of g. Finally, by Lemma 4.1.12, Φ0 has constant 12 
coefcients. 

Corollary 4.1.14. Let X = (Γ\G, J) homogeneous with g unimodular and assume g0,1 is 
solvable. Let E → X of homogeneous type (see Defnition 4.1.8) and polystable with respect 
to some Gauduchon class. Then: E = L1 ⊕ · · · ⊕Lr, for Li line bundle of homogeneous type 
for each i. 

Proof. Since E is polystable, by Proposition 4.1.13 the representation ρ is semisimple. By 
Lie’s Theorem on solvable representations, we can choose a dim. 1 subrepresentation L1 
corresponding to a line bundle of homogeneous type L1 such that E = E ′ ⊕ L1, with E ′ of 
homogeneous type. Then, applying inductively this argument, the result follows. 

The following result give sufcient conditions under which the hypothesis of the above 
Corollary 4.1.14 hold. 

Proposition 4.1.15. 1. Let (g, J) be a solvable Lie algebra endowed with a left-invariant 
complex structure. Then g0,1 is solvable. 

2. If g is a nilpotent Lie algebra, then it is unimodular. 

In particular, Corollary 4.1.14 holds if Lie G is nilpotent. 

(0) (k+1) (k)Proof. Let g = g and inductively defne g as the vector space generated by [g , g(k)]. 
By induction, we claim that: 

0,1)(k) ⊂ g(k) ⊗ C.(g (4.1.29) 

Indeed, for (k) = 0, this is trivial, and assuming this holds for k ∈ N: 

0,1)(k) (k+1) ⊗ C,[(g , (g 0,1)(k)] ⊂ [(gC)(k), (gC)(k)] ⊂ [g(k), g(k)] ⊗ C ⊂ g 

0,1)(k+1)therefore (g ⊂ g(k+1) ⊗ C and the claim follows. By assumption g is solvable, so 
g(N) = {0} for some N >> 0. Therefore (g0,1)(N) = {0}, hence the frst item follows. For 
the second item, see e.g. the Corollary to [103, Proposition 25]. 

We fnish this Section with some results that will be useful in the sequel. The frst of 
these, which holds for any compact complex manifold, allows to consider holomorphic line 
bundles endowed with hermitian metrics directly from their Chern curvature forms: 
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Lemma 4.1.16. Let X be a compact complex manifold and let F ∈ ΩX 
1,1 be a closed, purely 

imaginary form such that the cohomology class: � � 
[
2 
i
π F ] ∈ im H2(X, Z) ,→ H2(X, R) . (4.1.30) 

Then, there exists a holomorphic line bundle L and a hermitian metric h on L such that the 
curvature of the Chern connection Fh = F . 

Proof. By general theory (see e.g. [136]), under the integrality hypothesis (4.1.30), to the 
cohomology class [ i F ] corresponds a smooth line bundle L0 such that c1(L0) = [ i F ]. Let

2π 2π 
∇0 be an arbitrary connection on L0. By considering the space of connections ∇ + a, for 
a ∈ Ω1(X, C), the curvature: 

F∇0+a = F∇0 + da (4.1.31) 

can be taken to agree with F . Let ∇ = ∇0 + a such that F∇ = F . Then, in particular 
(L0, ∇0,1) is a holomorphic line bundle. We consider the family of holomorphic line bundles 
Lα = (L0, ∇0,1 + α), where α ∈ Ω0 

X
,1 satisfying ∂α = 0, and let h be an arbitrary hermitian 

metric on L0. We denote Dh,α the Chern connection of h on Lα. Observe that: 

Dh,0 = ∇ + β, (4.1.32) 

where β ∈ Ω1 
X
,0 , and comparing the curvatures: 

FDh,0 = F∇ + dβ, (4.1.33) 

we obtain that dβ ∈ iΩ1,1(X, R), in particular ∂β = 0. It follows that we can choose α = 1
2 β, 

and L = Lα with this choice. Then: 

FDh,α = FDh,0 + d(α − α) = F∇ + d(α − α) + dβ = F, (4.1.34) 

where in the last step we observe that dα = 1
2 dβ = −1

2 dβ, as dβ is pure imaginary. 

The next result holds for complex locally homogenenous manifolds. Let X = (Γ\G, J) 
be complex homogeneous. Then, T 1,0X admits a global smooth frame given left-invariant 
sections induced by elements in g1,0 . Therefore, we can consider holomorphic structures on 
the smooth tangent bundle T 1,0 of homogeneous type, as in Defnition 4.1.8. 

Lemma 4.1.17. Let X = (Γ\G, J) be a complex locally homogenenous manifold, and assume 
Lie g is solvable and unimodular. Let E = (T 1,0 , ∂E ) be a holomorphic vector bundle of 
homogeneous type on X with distinguished global frame inducing a bundle difeomorphism: 

s : E −→ X × Cn (4.1.35) 

for n = dim. X. Let b ∈ Hn−1,n−1(X, R) be a balanced class admitting an invariant metricBC 
ω ∈ Ω1,1(X, R) such that [ωn−1] = b. Moreover, assume E is b-polystable. Then, there exists 
a hermitian matrix h ∈ Mn×n(C) such that: 

Fs ∗h ∧ ωn−1 = 0, (4.1.36) 

where s ∗h is the hermitian metric on E obtained pulling back by (4.1.35) the constant her-
mitian metric induced by h on X × Cn . 
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Proof. Under the hypothesis, Corollary 4.1.14 implies that E = L1 ⊕ · · · ⊕ Ln, where Li 
are holomorphic line bundles of homogeneous type. Moreover, the change of frame from s 
to the distinguished split frame (s1, . . . , sn) of L1 ⊕ · · · ⊕ Ln is given by a constant gauge 
transformation g : s 7→ (si). In the new frame: 

(s1, ..., sn) : L1 ⊕ · · · ⊕ Ln −→ X × Cn (4.1.37) 

the standard hermitian hermitian matrix h0 = idn pulls back to a split hermitian metric 
(si)

∗h0. As the Dolbeault operator ∂E is also split, so is the Chern connection D(si)
∗h0 and 

the Chern curvature is written as: 

F(si)∗h0 = 

  F1 0 
. 

  . (4.1.38). . 
0 Fn 

Setting h = g ∗h0, since g is holomorphic, we have that: 

Fs ∗h = g −1 ◦ F(si)∗h0 ◦ g. (4.1.39) 

Therefore, it is enough to prove: 

Fi ∧ ωn−1 = 0. (4.1.40) 

Given that ∂E is of homogeneous type and h0 is constant in the distinguished frame (si), 
it follows that Fi ∈ Ω1 

X
,1 is induced by an invariant form on G. Since ω is also invariant by 

hypothesis, there exists a constant λi such that: 

Fi ∧ ωn−1 = λiωn , (4.1.41) 

and upon integration over X, we obtain that λi = 0 if and only if degb Li = 0. Finally, indeed 
the degree of Li vanishes as a consequence of polystability of E and c1(E) = c1(X × Cn) = 
0. 

4.2 Invariant solutions to the Hull-Strominger system 
Here, we use the results on holomorphic vector bundles of homogeneous type obtained in 
Section 4.1.2 to look for solutions to the Hull-Strominger system with the instanton con-
dition (3.1.12) on complex locally homogenenous manifolds systematically. Our solutions 
will be obtained using an invariant ansatz, that is, where hermitian metrics, connection and 
curvature components with respect to a distinguished frame are induced by invariant forms 
on Lie groups. In this analysis, we recover solutions already constructed in the literature 
using the instanton ansatz (3.1.12), but moreover, we construct new solutions by a careful 
determination of balanced classes and instantons. 
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4.2.1 Solutions on the Iwasawa manifold 
The Iwasawa manifold X = Γ\H is a complex nilmanifold given by the quotient of the 
complex Heisenberg Lie group H = H3(C), given by: 

H3(C) = 

  
 1 z2 z3 

0 1 z1 

 | zi ∈ C 

  , (4.2.1) 
0 0 1 

by the lattice Γ ⊂ H of matrices with entries in Gaussian integers Z[i]. We briefy describe its 
geometry: the 6-dimensional real Lie algebra underlying Lie H is h5, that is, Lie H = (h5, J0), 
according to the classifcation in [132]. X is a holomorphic torus fbration given by the 
submersion to the standard complex torus: 

p : X → T 4 = Z[i]2\C2 , [(z1, z2, z3)] 7→ [(z1, z2)]. (4.2.2) 

The 1-forms ωi ∈ Ω1 
H
,0 given by: 

ω1 = dz1 , ω2 = dz2 , ω3 = dz3 − z2dz1 (4.2.3) 

are Γ-invariant and descend to X, defning a global frame of T1 
∗ 
,0 satisfying: 

dω1 = dω2 = 0 , dω3 = ω12. (4.2.4) 

The Iwasawa manifold admits an SU(3) structure defned by: 

Ω0 = ω123 , ω0 = 
2 
i (ω11 + ω22 + ω33). (4.2.5) 

A straightforward computation using (4.2.4) shows that ω0 is a balanced hermitian metric 
and Ω is a holomorphic volume form. 

Now we introduce line bundles over X that will play the role of the gauge bundle in our 
solutions to the Hull-Strominger system. For this, we frst check that the vector space: 

⟨[ω11], [ω12], [ω21], [ω22]⟩C (4.2.6) 

is the subspace of H2 (X, C) of classes admitting representatives of bidegree (1, 1), wheredR 
we use that the de Rham Lie cohomology computes the de Rham cohomology of X (see 
Theorem 4.1.4) Then, for any choice of: 

(m, n, p, q) ∈ Z4\{0} (4.2.7) 

we consider the following purely imaginary (1, 1)-form on the base T 4: 

F = π(m(ω11 − ω22) + n(ω12 + ω21) + ip(ω12 − ω21) + q(ω11 + ω22)). (4.2.8) 

Note that 
2 
i
π F has integral periods and hence, by Lemma 4.1.16, this is the curvature 

form of the Chern connection of a holomorphic hermitian line bundle (LN , h) → T 4 , where 
N = (m, n, p, q). In the sequel, we will identify (LN , h) and F = Fh with their corresponding 
pull-backs to X via p. 
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By the Donaldson-Uhlenbeck-Yau theorem (see Theorem 1.3.6), solutions to the Hull-
Strominger system (3.1.11) with the instanton condition (3.1.12) involve, in particular, con-
nections ∇ on T 1,0 such that (T 1,0 , ∇0,1) is a holomorphic vector bundle that is polystable 
with respect to the balanced class of the solution. To produce these connections within the 
invariant ansatz of this Section, we demand that (T 1,0 , ∇0,1) is also of homogeneous type 
(see Defnition 4.1.8). 

2,2For this, we fx a balanced class σ ∈ HBC (X, R) admitting an invariant metric ω such 
that ω2 ∈ σ. By Theorem 4.1.5, σ admits an invariant representative. Therefore, given σ, it 
is enough to check if there is a positive (2, 2)-form among its invariant representatives. For 
such a class, we obtain the following result: 

Lemma 4.2.1. Assume σ ∈ H2,2 (X, R) admits an invariant balanced metric ω, and letBC 
E = (T 0,1 , ∇0,1) be a σ-polystable bundle of homogeneous type. Then, any hermitian metric 
h on E satisfying the Hermite-Einstein equation: 

Fh ∧ ωn−1 = 0 (4.2.9) 

is fat. 

Proof. Since (h5, J0)0,1 satisfes the hypothesis of Corollary 4.1.14 of solvability and unimod-
ularity, assuming (T 1,0 , ∇0,1) is σ-polystable implies that it splits as a sum of line bundles 
V0

1 ⊕ V02 ⊕ V03 , such that V0 
i are of homogeneous type, hence we may write their Dolbeault 

operator as: 

∂V i = ∂ + ai (4.2.10)
0 

with respect to its distinguished frame. Here ai ∈ Ω0 
X
,1 are invariant forms satisfying ∂ai = 0. 

Using (4.2.4), this implies ai ∈ ⟨ω1, ω2⟩C. Now, consider the hermitian metric h0 on E 
satisfying: 

∧ ωn−1Fh0 = 0 (4.2.11) 

given by Lemma 4.1.17. Since h0 is also split with respect to the splitting V01 ⊕ V02 ⊕ V03 , we 
may write h0 = (hi 0)i=1,2,3. Then: 

Fhi = ∂ai − ∂ai = 0, (4.2.12)
0 

as a simple consequence of the structure equations (4.2.4). Then, Fh0 = 0. Since the solution 
to the Hermite-Einstein equation is unique up to holomorphic gauge transformation, the 
result follows. 

Remark 4.2.2. As X is a complex-parallelizable manifold, that is, the holomorphic tangent 
∼ O3bundle T 1,0 = X , the Chern connection of any invariant hermitian metric is trivial, in 

particular, it is fat. Therefore, the previous result can be regarded as a generalization of this 
observation for diferent holomorphic structures on T 1,0 . 
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We are ready to state the family of solutions to the Hull-Strominger system that we obtain 
with this construction. For this, we introduce the following notation for the coefcients of 
an invariant hermitian form: P3ω = isj ωjj + s4(ω12 − ω21) + is5(ω12 + ω21)j=1 (4.2.13) 

+ s6(ω13 − ω31) + is7(ω13 + ω31) + s8(ω23 − ω32) + is9(ω23 + ω32). 

In particular, the constants sj ∈ R. LkProposition 4.2.3. Let V0 be a bundle of homogeneous type, and let V1 = fori=1 LNi 

tuples Ni = (mi, ni, pi, qi) ∈ Z4\{0}. Moreover, let ω be an invariant hermitian metric on 
X. Then: 

1. ω is balanced, and therefore defnes a balanced class σ(ω) = [||Ω0||ωω2] ∈ H2,2 (X, R).BC 

Let h0 be a (fat) hermitian metric on V0 given by Lemma 4.1.17. Let h1 
i be the hermitian 

metric on LNi such that Fhi = F (Ni) (see (8.3.6)), and let h1 = (hi 1). Then: 1 

2. (ω, h0, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if: 

−s3
α = P , (4.2.14)2 2 2 2π2 m + n + p − qi i i i i 

is well-defned and: 

degσ(ω)LNi = 0 i = 1, ..., k. (4.2.15) 

Proof. The frst item is a consequence of the fact (see [1]) that an invariant hermitian metric 
on a complex-parallelizable manifold is balanced, combined with Ω0 being invariant, in par-
ticular ||Ω0||ω is constant. The conditions on the second item are equivalent to solving the 
rest of the equations of (3.1.11): the Hermite-Einstein equation for h0 is automatic as h0 is 
fat. Since hi 1 have invariant Chern curvature F (Ni), the Hermite-Einstein equation for h1 
is actually equivalent to the cohomological condition (4.2.15). Finally, the straightforward 
computations: 

ddcω (4.2.16)= 2s3ω1212, 
tr Fh0 ∧ Fh0 = 0, (4.2.17) 

2 2 2 2Fhi ∧ Fhi = 2π2(mi + ni + pi − qi )ω1212 (4.2.18)
1 1 

imply that the condition (4.2.14) is equivalent to the Bianchi identity in (3.1.11). 

Remark 4.2.4. Note that, by (4.2.14), the solutions obtained in Proposition 4.2.3 need 
α < 0. 

Remark 4.2.5. This existence result shall be compared with [25, Section 4.1], where abelian 
instantons of the form (8.3.6) are used to solve the Hull-Strominger system, while the family 
of balanced classes of solutions in Proposition 4.2.3 and the study of instanton connections 
for bundles of homogeneous type in Lemma 4.1.17 are new of this Thesis. 
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4.2.2 Further solutions on nilmanifolds 
The search for solutions to the Hull-Stromiger system in other complex nilmanifolds emulates 
the case of the Iwasawa manifold. 

We now turn to the Lie algebra h3. Solutions to the Hull-Strominger system on nilman-
ifolds with this Lie algebra have been found in [46, 105, 132] with ∇ being an instanton or 
other ansatze. On h3 there is only one complex structure J− up to Lie isomorphism that 
supports balanced invariant metrics (see, [132]). Let H = H3 be the associated connected, 
simply-connected Lie group. The corresponding bundle T1 

∗ 
,0H has a global frame of invariant 

1-forms subject to the structure equations: 

dω1 = dω2 = 0, dω3 = ω11 − ω22. (4.2.19) 

Note that, unlike the case of the Iwasawa manifold, here ωi} is not a holomorphic frame. 
Moreover, from (4.2.19), it follows that a linear lattice Λ ⊂ h3 can be chosen such that if 
Γ = exp(Λ), then there is a well-defned holomorphic submersion: 

p : X = Γ\H −→ T = Z[i]2\C2 , (4.2.20) 

where a frame for T is given by {ω1, ω2}, similarly as in the case of the Iwasawa manifold. 
We fx a holomorphic volume form on X given by: 

Ω0 = ω123. (4.2.21) 

Moreover, we consider the space: 

⟨[ω11 + ω22], [ω12], [ω21]⟩C (4.2.22) 

spanning the classes in H2 (X, C) that admit a representative of bidegree (1, 1). Now, we dR 
consider the 2-form: 

F = π(n(ω12 + ω21) + ip(ω12 − ω21) + q(ω11 + ω22)). (4.2.23) 

By the same argument as for the Iwasawa manifold, F is the curvature of the Chern con-
nection of a suitable hermitian metric on a holomorphic line bundle LN , for N = (n, p, q). 

Over X, there exist non-fat instantons ∇ on T 1,0 , as described in [47, 105]. Here, we 
classify instanton connections such that E = (T 1,0 , ∇0,1) is of homogeneous type. Since 
h3
0,1 is abelian, the hypothesis of Corollary 4.1.14 are satisfed, and it is enough to classifyLkabelian instantons of homogeneous type. Therefore, assume E = i=1 V0 

i . With respect to 
a distinguished frame of V0 

i , we write: 

= ∂ + ai, (4.2.24)∂V0 
i 

∈ Ω0,1where ai X is invariant and ∂ai = 0. Using Theorem 4.1.5 combined with the fact 
that (h3, J) is rational, we can compute Hp,q(X) via its Lie algebra cohomology. A quick 
computation shows: 

∂ 

H0,1 
∂ (h3, J) = ⟨[ω1], [ω2], [ω3]⟩. (4.2.25) 
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Therefore ai is any invariant (0, 1)-form, and we write: P 
ai = aj ωj . (4.2.26)j i 

Let hi 0 be the standard hermitian structure in V0 
i with respect to its distinguished frame. 

Then, using (4.2.19): 

Fi = Fhi 
1 
= ∂ai − ∂ai = −(a 3 

i + a3 
i )(ω11 − ω22). (4.2.27) 

Here again assuming a balanced class σ ∈ H2,2 (X, R) that admits an invariant hermitianBC 
metric ω, the Hermite-Einstein equation: 

Fi ∧ ω2 = 0 (4.2.28) 

is solved if and only if degσV0 
i = 0, which is obvious since c1(V0 

i) = 0. Hence (4.2.27) 
describes, up to isomorphism, the curvature of all abelian instantons on line bundles of 
homogeneous type, and by Corollary 4.1.14 on bundles of homogeneous type and higher 
rank, it is enough to consider instantons that are isomorphic to split sums of these ones. 

Remark 4.2.6. With the aid of a mathematical software, one can check that if ω ′ is any 
invariant hermitian metric on X, then ∇B(ω ′ ) the Bismut connection of ω ′ satisfes: 

F∇B (ω ′ ) ∧ ω2 = 0, F∇ 
0, 
B 
2
(ω ′ ) = 0. (4.2.29) 

T 1,0Therefore, this connections on fall inside the family of split sums of instantons just 
described. 

We give now our existence result for solutions to the Hull-Strominger system on X: LkProposition 4.2.7. Let V0 be a bundle of homogeneous type, and let V1 = i=1 LNi for 
tuples Ni = (ni, pi, qi) ∈ Z3\{0}. Moreover, let ω be an invariant hermitian metric on X. 
We parametrize ω as in (4.2.13). Then: 

1. ω defnes a balanced class σ(ω) = [||Ω0||ωω2] ∈ H2,2 (X, R) if and only if:BC 

2 2 2 2(s1 − s2)s3 − s6 − s7 + s8 + s9 = 0. (4.2.30) 

Let hi be the hermitian metric on V i of (4.2.27), and let h0 = (h0 
i ). Let hi be the hermitian0 0 1 

metric on LNi such that Fhi = F (Ni), and let h1 = (hi 1). Then: 1 

2. (ω, h0, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.30) holds and: 

2s3
α = P3 P , (4.2.31)

4 j=1 Re(aj )
2 − π2 

i n
2 
i + p2 

i − qi 2 

is well-defned and: 

degσ(ω)LNi = 0 i = 1, ..., k. (4.2.32) 
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Proof. The frst item is a consequence of the computation: 

2 2 2 2dω2 = −2(s6 + s7 − s8 + s9 + (−s1 + s2)s3)(ω12312 + ω12123) (4.2.33) 

combined with Ω0 being invariant, in particular ||Ω0||ω is constant. The conditions on the 
second item are equivalent to solving the rest of the equations of (3.1.11): the Hermite-
Einstein equation for h0 is automatic, using c1(V0 

i) = 0 and the fact that Fi and ω are 
invariant forms. Since hi 1 also have invariant Chern curvature F (Ni), the Hermite-Einstein 
equation for h1 is actually equivalent to the cohomological condition (4.2.46). Finally, the 
straightforward computations: 

ddcω = 4s3ω1212, (4.2.34) 
Fi ∧ Fi = 8Re(ai)2ω1212, (4.2.35) 

2 2 2F (Ni) ∧ F (Ni) = 2π2(ni + pi − qi )ω1212 (4.2.36) 

imply that the condition (4.2.45) is equivalent to the Bianchi identity in (3.1.11). 

Remark 4.2.8. We note that here, unlike the case of the Iwasawa manifold, it is clear from 
(4.2.45) that there are solutions in Proposition 4.2.7 with coupling parameter α > 0. 

Remark 4.2.9. The solutions above can be modifed to recover those of [47, Theorem 5.1.b), 
5.2.b)] with ∇+ 

t , ∇+ 
t ′ and A as particular cases of the instantons of (4.2.27), and setting 

ω = ω0, and similarly with the solutions in [105, Proposition 3.2]. Finally, the solutions in 
[132, Theorem 5.3] using the instantons ∇B(ω) also fall into Proposition 4.2.7 with ω = ω ′ 
in Remark 4.2.6. 

By now, we have discussed the existence of solutions to the Hull-Strominger system with 
an invariant ansatz on two particular nilmanifolds. The reader can see that in both Examples 
the discussion about the diferent aspects of the discussion runs parallel, and this is the case 
for the rest of our solutions on nilmanifolds. Therefore, here we summarize the information 
for the solutions in the rest of Examples. These are based on the nilmanifolds described 
in [47, Sections 6-8]. Here, we approach systematically the problem of fnding solutions 
to the Hull-Strominger system with the invariant ansatz of the previous Examples. In the 
following table we give frst the structure equations in a global invariant frame, as in (4.2.4), 
(4.2.19). Then, we write the most general invariant form representing the curvature of a line 
bundle, like in the previous Examples in (4.2.8), (4.2.23), and then we give the curvature 
of abelian instantons of homogeneous type with respect to an arbitrary invariant balanced 
metric, as the fat instantons in the Iwasawa manifold of Lemma 4.2.1 and (4.2.27) for h3. For 
completeness, we also include the computation of the relevant cohomology groups H 

∂ 
0,1(X) 

and the subspace E ⊂ H2 (X, R) of classes admitting a representative of bidegree (1, 1),dR 
which can be computed via the analogous Lie algebra cohomologies. 
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Lie algebra h2, h4, h5 (b ∈ Q) h6 h− 
19 

Structure equations dω1 = 0, dω2 = 0, 
dω3 = ω12 + ω11 + bω12 − ω22 

dω1 = 0, dω2 = 0, 
dω3 = ω12 − ω21 

dω1 = 0, 
dω2 = ω13 + ω13, 
dω3 = i(ω12 − ω21) 

E basis [iω11], [iω22], [ω12 − ω21], 
[i(ω12 + ω21)] 

[iω11], [iω22], [ω12 − ω21], 
[i(ω12 + ω21)], [ω23 − ω32] 

[iω11] 

H0,1(X) basis 
∂ [ω1], [ω2] [ω1], [ω2] [ω1], [ω3] 

Curvature of gauge 
line bundles 

N = (m, n, p, q), 
F (N) = π(m(ω11 − ω22)+ 
n(ω12 +ω21)+ip(ω12 −ω21)+ 
q(ω11 + ω22)) 

N = (m, n, p, q, r), 
F (N) = π(m(ω11 − ω22)+ 
n(ω12+ω21)+ip(ω12−ω21)+ 
q(ω11 +ω22) + ir(ω23 −ω32)) 

N = m, 
F (N) = πmω11 

Curvature of abelian 
instantons of 
homogeneous type 

Fi = 0 Fi = 0 Fi = Re(ai)i(ω12−ω21) 

With this data, we now state our existence results, whose proofs are completely analogous 
to those of Propositions 4.2.3, 4.2.7. 

For the frst of these Examples, let X = (Γ\H, J), where Lie H = h2, h4 or h5, depending 
on the parameter b ∈ Q, corresponding to the structure equations: 

dω1 = 0, dω2 = 0, dω3 = ω12 + ω11 + bω12 − ω22. (4.2.37) 

Explicitly (see [47, Section 6]), h2 for b2 < 1, h4 for b2 = 1 and h5 for b2 > 1. Note, however, 
that the latter (h5, J) is not isomorphic to the complex structure of the Iwasawa manifold. 
Then, according to the second column of the table above, we have the following result: L3Proposition 4.2.10. Let X = (Γ\H, J), where Lie H or h5, and let V0 = V i= h2, h4 i=1 0Lkbe a direct sum of line bundles of homogeneous type, and V1 = for tuples Ni = i=1 LNi 

(mi, ni, pi, qi) ∈ Z4\{0}. Moreover, let ω be an invariant hermitian metric on X. We 
parametrize ω as in (4.2.13). Then: 

1. ω defnes a balanced class σ(ω) = [||Ω0||ωω2] ∈ H2,2 (X, R) if and only if:BC 

2 2 2 2− s (4.2.38)(s1 − s2)s3 − s6 7 + s8 + s9 + b(s3s5 − s6s8 − s7s9) = 0 
b(s3s4 + s7s8 − s6s9) = 0. (4.2.39) 

Let hi be the hermitian metric on V i with curvature Fi, and let h0 = (hi ). Let hi be the0 0 0 1 
hermitian metric on LNi such that Fhi = F (Ni), and let h1 = (hi 1). Then: 1 

2. (ω, h0, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.38), (4.2.39) hold and: 

−(6 + b2)s3
α = P , (4.2.40)2 2 2 22π2 m + n + p − qi i i i i 

is well-defned and: 

degσ(ω)LNi = 0 i = 1, ..., k. (4.2.41) 
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Now, we consider the next column in the table above. Then: L3Proposition 4.2.11. Let X = Γ\H for Lie H = h6, and let V0 = i=1 V0 
i be a sum of line 

bundles of homogeneous type, and V1 = 
Lk LNi for tuples Ni = (mi, ni, pi, qi, ri) ∈ Z5\{0}.i=1 

Moreover, let ω be an invariant hermitian metric on X. We parametrize ω as in (4.2.13). 
Then: 

1. ω defnes a balanced class σ(ω) = [||Ω0||ωω2] ∈ H2,2 (X, R) if and only if:BC 

s3s4 − s6s9 + s7s8 = 0 (4.2.42) 
s3s5 − s6s8 − s7s9 = 0. (4.2.43) 

Let hi 0 be the hermitian metric on V0 
i with curvature Fi, and let h0 = (hi 0). Let hi 1 be the 

hermitian metric on LNi such that Fhi = F (Ni), and let h1 = (h1 
i ). Then: 

1 

2. (ω, h0, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.42), (4.2.43) hold, 

ri = 0, i = 1, ..., k, (4.2.44) 

and moreover: 

−s3
α = P 

2 , (4.2.45)2 2 2π2 m + n + p − qi i i i i 

is well-defned and: 

degσ(ω)LNi = 0 i = 1, ..., k. (4.2.46) 

Remark 4.2.12. The solution to the Hull-Strominger system of Propositions 4.2.10, 4.2.11 
require α < 0, as the only instanton connections on T 1,0 are fat and therefore the same 
rigidity result as in the Iwasawa manifold applies (see Remark 4.2.4). However, if one does 
not require that ∇ is an instanton, then solutions with α > 0 exist, and are described in [47, 
Theorem 6.1]. 

h−When X = Γ\H for Lie H = 19, it is easy to see that there are no solutions to the 
Hull-Strominger system such that ∇ is an instanton within our construction. Even more, it 
is not possible to solve the Bianchi identity: 

ddcγ − αtr Fh0 ∧ Fh0 + αtr Fh1 ∧ Fh1 = 0 (4.2.47) 

using an invariant (1, 1)-form γ that is a hermitian metric (see Example 4.3.6). From the 
point of view of Generalized Geometry, the Bott-Chern algebroid associated to the solution 
(τ, h0, h1) of (4.2.47) does not admit an invariant positive structure (see Remark 2.2.14). 
Still, there are solutions (see [47, Theorem 8.2(ii)]) if one does not require (3.1.12). In 
this solution, however, Corollary 4.1.14 shows that holomorphic T 1,0 is not polystable with 
respect to any class admitting an invariant balanced metric. 
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4.2.3 Solutions on compact quotients of SL(2, C) 
In this Section, we provide invariant solutions to the Hull-Strominger system (3.1.11) on the 
compact threefold given by the quotient X = SL(2, Z[i])\SL(2, C). This complex manifold 
admits a global frame of T1 

∗ 
,0 induced by left-invariant forms on SL(2, C), which satisfy the 

structure equations: 

dω1 = ω23, dω2 = −ω13, dω3 = ω12, (4.2.48) 

From the above equations, the frame {ωi} is holomorphic. Therefore, X is a complex-
parallelizable manifold. Explicitly, this frame is dual to the frame given by left-translation 
of the elements in T[1]X = sl(2, C): ���� � 

i/2 
� 

0 i/2 0 1/2 0 
X1 = X2 , X3 = . (4.2.49)=, −1/2 0 −i/2i/2 0 0 

Moreover, we fx the SU(3) structure: 

Ω0 = ω123, ω0 = 
2 
i (ω11 + ω22 + ω33), (4.2.50) 

where Ω0 is a holomorphic volume form and ω0 is a balanced metric. 
Unlike the nilpotent Examples above, sl(2, C) is a simple Lie algebra. Here, we use its 

irreducible representations to produce irreducible holomorphic vector bundles of homoge-
neous type and higher rank. Explicitly, using the notations of Section 4.1.2, the rank r 
representations: 

ρr : sl(2, C)0,1 −→ End(Cr) (4.2.51) 

are obtained by conjugating the well-known irreducible representations of sl(2, C). In the 
(conjugated) basis of (4.2.48), ρr is given by:   

  

p
1 · (r − 1)0 p 0 . . . 0 0 

2 · (r − 2) . . . 0 0
p
1 · (r − 1) 0 

i 
2 

. . . . .. . . . . . . .. . . .X1 7→ (4.2.52).p , 
(r − 2) · 20 0 0 

0 0 0 
0 0 0 

0. . . p
(r − 1) · 10. . . p

1 · (r − 1) 0. . .   

  , 
p
1 · (r − 1)0 0 . . . 0 0p p

− 1 · (r − 1) 2 · (r − 2) . . . 0 00 
1 
2 

. . . . .. . . . . . . .. . . .X2 7→ (4.2.53).p
(r − 2) · 20 0 0 

0 0 0 
0 0 0 

r − 1 
0 

0 
r − 3 

0 
0 

. . . 

. . . 
0 
0 

0 
0 

0. . . p
(r − 1) · 10   

. . . 

. . . 
p

− 1 · (r − 1) 

. . . . .. . . . . . . 

0  
i 

X3 7→ .. . . . . 
2 

. (4.2.54) 
0 0 0 . . . 0 0 
0 0 0 . . . −(r − 3)) 0 
0 0 0 . . . 0 −(r − 1) 
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We will denote by Er the holomorphic vector bundle of homogeneous type given by the rank 
r representation above. In particular E3 is a holomorphic structure on T 1,0 , given by the 
conjugated-adjoint representation ρ3. 

Incidentally, by uniqueness of irreducible representations of sl(2, C) in each dimension, the 
bundle of homogeneous type (T 1,0 , ∇B (ω0)

0,1) is shown to be [ω0
2]-stable, as it is irreducible 

and the corresponding Hermite-Einstein equation holds (see [105, Section 4]), hence it is 
isomorphic to E3. 

Now, we show that the bundles Er are well-suited to solve the Hull-Strominger system. 
First, we prove the following: 

Lemma 4.2.13. Let h(0 
r) 

be the hermitian metric on Er induced by the standard hermitian 
metric on Cr . Then, the following hold: 

F
h
(r) ∧ ω2 = 0, (4.2.55)0 
0 

r(r2−1)tr F
h
(r) ∧ F

h
(r) = 

6 (ω1212 + ω1313 + ω2323). (4.2.56) 
0 0 

Proof. For the frst item, let Ar be the Chern connection of h0
(r) 
. Then, observe that by 

functoriality of ρr: 

F 
h
(r) = Fρr ∗A2 
0 

= dρr(A2) + ρr(A2) ∧ ρr(A2) 
= ρr(dA2 + A2 ∧ A2) 

(2) .= ρr∗Fh0 

Therefore, it is enough to check that: 

F 
h
(2) ∧ ω2 = 0. (4.2.57)0 
0 

This can be checked directly, by computing frst: � � 
− i 1(ω12 − ω21) (ω13 − ω31 − i(ω23 − ω32))F

h
(2) = 2 2 , (4.2.58)1 i 
0 (−ω13 + ω31 − i(ω23 − iω32)) (ω12 − ω21)2 2 

ω2 (4.2.59)0 = 2(ω1212 + ω1313 + ω2323). 

While ω0
2 is straightforward to compute, for F

h we have used the formula for the curvature: (2) 
0 

FA = dA + A ∧ A (4.2.60) 

with respect to a global frame, and the facts that ρ2 = id, A2 = A0,1 − (A0,1)† with respect 
(2)

to the standard metric h0 in C2 . 

For the second item, using (4.2.58), we frst compute: 

tr F 
h
(2) ∧ F 

h
(2) (4.2.61)= ω1212 + ω1313 + ω2323. 

0 0 
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To conclude, we use repeatedly the identity: 

r(r2−1)tr(ρr(M)ρr(M)†) = 
6 tr(MM †), M ∈ sl(2, C)0,1 (4.2.62) 

applied to each matrix M = F
h
(2) (Xi, Xj ), for 1 ≤ i, j ≤ 3. Finally, we argue that (4.2.62) 
0 

r(r2−1)holds by proving that ρr is a dilation of factor 
6 with respect to the inner products 

tr(··†). This follows by checking that {ρr(Xi)} is an orthogonal basis of im ρr and: 

tr(Xi Xi 
† 
) = 1

2 , (4.2.63) 
r(r2−1)tr(ρr(Xi)ρr(Xi)

†) = 
12 , (4.2.64) 

which the reader can check easily by induction on r. 

Now, we give the result of existence of solutions to Hull-Strominger on X. These come 
in a discrete family parametrized by r. 

(3) (r)
Proposition 4.2.14. Let V0 = E3, and V1 = Er, for r ̸= 3. Then, (ω0, h0 , h0 ) is a solution 
to the Hull-Strominger system (3.1.11) with the instanton condition (3.1.12) if and only if: 

12 
α = . (4.2.65)

24 − r(r2 − 1) 

Proof. By [1], the invariant metric ω0 is balanced as X is a complex-parallelizable manifold. 
Since Ω0 is an invariant holomorphic volume form, ||Ω0||ω0 is constant. Hence we get: 

d(||Ω0||ω0 ω
2) = 0. (4.2.66)0 

(2) (r)
The Hermite-Einstein equation for h0 , h0 follow from Lemma 4.2.13(1). Finally, the 
Bianchi identity is equivalent to (4.2.65) by Lemma 4.2.13(2) and: 

ddcω0 = 2(ω1212 + ω1313 + ω2323). (4.2.67) 

Remark 4.2.15. The solutions above shall be compared with the family of solutions found 
in [45, Section 4]. There, non-fat instantons are produced on the trivial holomorphic bundle 
O⊕r 
X on SL(2, C) by a non-trivial ansatz for the hermitian metric. As this method is not 

compatible with taking compact quotients of SL(2, C), here we rather consider the non-trivial 
holomorphic structure Er while keeping the standard hermitian metric h0

(r) 
. 

Remark 4.2.16. With respect to the solutions found in [105], here we recover the one com-
patible with the instanton condition (3.1.12) (see [105, Theorem 4.3(i.2)]), as (T 1,0 , ∇B(ω0)

0,1) ∼= 
E3, as discussed above. 

Our solutions in Proposition 4.2.14 include the cases α > 0 for r < 3 and α < 0 for r > 3. 
Moreover, with independence of the sign of α, the instantons Ar for r > 3 above are, to the 
knowledge of the author, new in the literature. 
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4.2.4 Solutions on complex solvmanifolds 
Here, we address the systematic approach to fnding solutions to the Hull-Strominger system 
on solvmanifolds with the invariant ansatz used in the previous Sections. 

The complex manifolds we examine are given by quotients X = Γ\G, where G is a 
solvable real Lie group of even dimension, and Γ ⊂ G is a discrete subgroup yielding a 
compact quotient. To support solutions to the Hull-Strominger system, X must admit in 
particular a holomorphic volume form and a balanced metric. Here, we use the classifcation 
results on solvable, unimodular Lie algebras admitting a (left)-invariant Calabi-Yau structure 
and special metrics in real dimension 6 in [51], see in particular Theorem 4.5. Moreover, 
the existence of lattices on the corresponding connected, simply-connected Lie groups is 
also guaranteed (see [51, Proposition 2.10]). Hence, we obtain explicit complex Calabi-Yau 
solvmanifolds supporting balanced metrics. These Examples are denoted by the underlying 
real Lie algebra as: (g1, J), (g2 

β, J±) for parameter value β ∈ [0, π 
2 ), (g3, Jx) (for x > 0), 

(g5, J), (g7, J±), and (g8, JA) for A ∈ C\R. While we have carried a systematic case-by-case 
examination of the previous solvmanifolds, here we report on the ones on which we fnd 
solutions to the Hull-Strominger system. These are g20 and g7. 

We describe the invariant geometry of the solvmanifold X = (Γ\G, J), with Lie G = g02 
by the global frame {ωi} of T ∗ satisfying the structure equations:1,0 

dω1 = iω1 ∧ (ω3 + ω3) dω2 = −iω2 ∧ (ω3 + ω3) dω3 = 0. (4.2.68) 

Moreover, the invariant form Ω0 = ω123 is a holomorphic volume form, and the family of 
hermitian metrics: 

ω = is1ω11 + is2ω22 + is3ω33, sj > 0 (4.2.69) 

is in fact Kähler. It is easy to check that this is the most general invariant Kähler metric on 
X. 

There is a one-parameter family of homogeneous line bundles of homogeneous type La, 
given by the Dolbeault operator: 

∂La = ∂ + aω3, a ∈ C, (4.2.70) 

with respect to a distinguished frame. We apply Corollary 4.1.14 to deduce that holomorphic 
structures on T 1,0 of homogeneous type that are poystable with respect to a class admitting 
an invariant balanced metric must be of the form V0 = ⊕3 , and h0 the hermitian metric i=1Lai 

on V0 induced by the standard metric on C3 . Then, using (4.2.68), it is immediate to check 
that h0 is fat. 

The most general invariant form F ∈ Ω1,1 that is d-closed and purely imaginary on X is 
given by: 

F = (mω11 + nω22 + pω33), (m, n, p) ∈ R3 . (4.2.71) 

If the cohomology class [F ] has integral periods, then by Lemma 4.1.16, it is the curvature 
of the Chern connection on some hermitian line bundle. We now state the existence result 
in this manifold. With the above ansatz, solutions are necessarily Kähler and fat: 

82 



Proposition 4.2.17. Let V0 and h0 be as above. Assume [F (Ni)] given by (4.2.71) with 
Ni = (mi, ni, pi) ∈ R3 for i = 1, ..., r have integral periods, and let (Li, hi 1) be the holomorphic 
line bundle and hermitian metric with Chern curvature F (Ni), and V1 = ⊕i

r 
=1Li, h1 = (h1 

i ). 
Moreover, let ω be an invariant hermitian metric on X. Then, parametrizing ω as in (4.2.13), 
(ω, h0, h1) is a solution to the Hull-Strominger system if and only if ω is Kähler and h0, h1 
are fat. 

Proof. Let ω be an arbitrary invariant hermitian metric, and F (Ni) given by (4.2.71). Then, 
the terms in the Bianchi identity of the Hull-Strominger system are given by: 

ddcω = 8i(s4 + is5)ω1323 − 8i(s4 − is5)ω2313, (4.2.72) 
tr Fh0 ∧ Fh0 = 0, (4.2.73)P 
tr Fh1 ∧ Fh1 = − (4.2.74)i miniω1212 + mipiω1313 + nipiω2323. 

By inspection on the above computations, it is clear that for any solution to the Bianchi 
identity, ω must be pluriclosed, and two out of the three mi, ni, pi must vanish for each i. 
Now, since ||Ω0||ω is a constant, the conformally balanced equation: 

d(||Ω0||ωω2) = 0 (4.2.75) 

implies that ω is balanced. Since it is also pluriclosed, it must be Kähler, hence it is given 
by (4.2.69). Then, the degree condition imposed by the Hermite-Einstein equations: 

Fhi ∧ ω2 = 0 (4.2.76)
0 

immediately implies that the remaining parameters in Ni must vanish, and the result follows. 

Remark 4.2.18. The general rigidity result by which solutions to the Hull-Strominger system 
(ω, h0, h1) with h0 fat and α > 0 must have ω Kähler and h1 fat (see [24]) holds here with 
reversed sign α < 0 in the presence of non-fat h1 and invariant ansatz. It is an interesting 
open question if one can fnd any non-Kähler solutions on this manifold. 

We now turn to the solvmanifold X with underlying real Lie algebra g7, where non-Kähler 
solutions are already known in the literature [105, Section 5]. The structure equations are 
given with respect to an invariant frame {ωi} of T ∗ by: 1,0 

dω1 = iω1 ∧ (ω3 + ω3) dω2 = −iω2 ∧ (ω3 + ω3) dω3 = ±(ω11 − ω22), (4.2.77) 

where the choice of ± corresponds to the complex structure considered J±. The complex 
manifolds X± = (Γ\G, J±) with Lie G = g7 are Calabi-Yau with the invariant holomor-
phic volume form Ω0 = ω123. Moreover, since g7 is unimodular and solvable, Corollary 
4.1.14 applies. Hence, to look for instantons on bundles of homogeneous type to solve the 
Hull-Strominger system, we may restrict to the abelian case. The Dolbeault operator of 
homogeneous line bundles L are given, with respect to the distinguished frame, by: 

∂L = ∂ + aω3. (4.2.78) 
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Let V0 = ⊕3 
i=1Li. Using (4.2.77), we obtain the curvature of the Chern connection on V0 

with respect to the standard hermitian metric h0:   
Fh0 

=   
2Re(a1) 

2Re(a1)  (ω11 − ω22). (4.2.79) 
2Re(a3) 

The most general invariant form F ∈ Ω1,1 that is d-closed and purely imaginary is given, 
up to d-exact terms, by: 

F = m(ω11 + ω22), m ∈ R. (4.2.80) 

For any [F ] having integral periods, we denote Lm for a holomorphic line bundle with Chern 
curvature given by F (m) as in (4.2.80) with respect to some hermitian metric hm (see Lemma 
4.1.16). Let V1 = ⊕r and let h1 ). Then, we have the following: i=1Lmi = (hmi 

Proposition 4.2.19. Let (V0, h0), (V1, h1) be as above, and let ω be an invariant hermitian 
metric parametrized as in (4.2.13). Then, (ω, h0, h1) is a solution to the Hull-Strominger 
syste with ∇ satisfying (3.1.12) if and only: 

ω = is1(ω11 + ω22) + is3ω33, sj > 0, (4.2.81) 

and moreover h1 is fat, and: 
s3

α = P (4.2.82) 
i Re(ai)

2 

is well-defned. 

Proof. Let ω be an arbitrary invariant hermitian metric on X parametrized by (4.2.13). 
First, we observe that the Hermite-Einstein equation for Lmi is given by: 

2 2 2 2F (mi) ∧ ω2 = 2mi(s1s3 − s6 − s7 + s2s3 − s8 − s9)Ω0 ∧ Ω0 = 0. (4.2.83) 

Given that ω is a positive (1, 1)-form, we have that: 

ω2(X1, X3, X1, X3) = s1s3 − s 26 − s72 > 0, (4.2.84) 
ω2(X2, X3, X2, X3) = s2s3 − s 28 − s92 > 0. (4.2.85) 

Therefore, equations (4.2.83) hold if and only if mi = 0 for all i, and h1 is fat. 

Now, using that ||Ω0||ω is a constant and (4.2.77), the conformally balanced equation of 
(3.1.11) is equivalent to the system: 

2 2 2 2(s1 − s2)s3 − s6 − s7 + s8 + s9 = 0, 
s1s8 + s4s7 − s5s6 = 0, 
s1s9 − s4s6 − s5s7 = 0, (4.2.86) 
s2s6 − s4s9 − s5s8 = 0, 
s2s7 + s4s8 − s5s9 = 0. 
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Moreover, we compute the terms in the Bianchi identity: 

ddcω = 4s3ω1212 + 8i((s4 + is5)ω1323 − (s4 − is5)ω2313), (4.2.87)P 
tr Fh0 ∧ Fh0 = 4 i Re(ai)

2(ω1212), (4.2.88) 
tr Fh1 ∧ Fh1 = 0. (4.2.89) 

By inspection of the terms appearing above, it is clear that we must have s4 = s5 = 0. 
Plugging this in the system (4.2.86), and using that s1, s2, s3 > 0, we obtain (4.2.81). Finally, 
the value of α is also a consequence of the above computations. 

The solutions given by Proposition 4.2.19 coincide essentially with the ones found in [105, 
Section 5] that are compatible with the choice of (3.1.12). Here, moreover, we have shown 
that restricting to the invariant ansatz given by bundles of homogeneous type, it is unlikely 
that this family of solutions can be enlarged. 

We fnish this Section mentioning that the solutions to the Hull-Strominger system we 
have found in all of the preceding Examples give strong evidence for the Conjecture stated 
in [105, Introduction] (restricting to hermitian connections) about the existence of invariant 
solutions to the Hull-Strominger system. Indeed, if we impose the physically natural condi-
tion α > 0, our solutions are given exactly in the manifolds X with underlying Lie algebra 
h3, sl(2, C) and g7. 

4.3 A refnement of the existence conjecture by Yau 
In this Section, we propose to address a question based on Conjecture 3.2.1. In the refnement 
we make, we fnd it is natural to strenghten the statement of the conjecture by Yau in two 
ways. Firstly, Conjecture 3.2.1 does not specify the relation of b0 with the balanced class of 
the solution b = [||Ω||ωω2]. Hence, it is desirable that a complete answer to Conjecture 3.2.1 
has control on the balanced class, producing a solution of the Hull-Strominger with b0 = b. 
Secondly, here, we propose to take ∇ satisfying the Hermite-Einstein equation as in (3.1.11), 
both for its physical and geometrical signifcance (see Section 3.1.1). 

Our approach to the existence problem for the Hull-Strominger system, with ∇ satisfying 
(3.1.12), lead us to consider holomomorphic vector bundle structures V0 on T 1,0 which are 
polystable with respect to the balanced class b. For special choices of V and V0, however, 
one may fnd solutions of the Hermite-Einstein equation with special metric properties that 
obstruct the existence of solutions to the Bianchi identity when X does not admit Kähler 
structures. Some of these choices have to do with twisting V0 by a holomorphic line bundle 
in the kernel of the natural map: 

(c1)BC 

→ H1,1PicX −−− BC (X, R) (4.3.1) 

This motivates the statement of the following Question: 

Question 4.3.1. Let (X, Ω) be a compact Calabi-Yau threefold with ker(c1)BC = 0 with 
respect to (4.3.1), and endowed with a balanced class b. Let V be a b-polystable holomorphic 
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vector bundle over X satisfying (3.2.3), (3.2.5). Let V0 be a generic b-polystable holomorphic 
vector bundle structure on T 1,0 . Does (X, Ω, V ) admit a solution (ω, h) of the Hull-Strominger 
system (3.1.11) and balanced class [||Ω||ωω2] = b, such that ∇ is the Chern connection of a 
Hermitian-Einstein metric h0 on V0? 

Remark 4.3.2. Observe that an afrmative answer to Question 4.3.1 provides, in particular, 
a solution to Conjecture 3.2.1 with the ansatz (3.1.12) (see the discussion in Section 3.1.1). 
It is an open question whether, assuming that the holomorphic tangent bundle T 1,0 of X is 
b-polystable, one can reduce Yau’s Conjecture 3.2.1 for ∇ the Chern connection of ω, as 
proposed in [58], to Question 4.3.1. 

To fnish this Section, we justify the hypothesis in Question 4.3.1 on homogeneous com-
plex manifolds. Firstly, the condition ker(c1)BC = 0 is motivated by the following result. 

Proposition 4.3.3. Let (X, Ω) be a compact Calabi-Yau threefold endowed with a balanced 
class b. Assume that X does not admit any Kähler metric. Let L → X be a holomorphic 

0 ∈ H1,1line bundle on X with vanishing frst Chern class c1(L) = BC (X, R). Let V0 be a 
holomorphic bundle structure on T 1,0 which is polystable with respect to b. Then, (X, Ω, V0 ⊗ 
L) does not admit a solution of the Hull-Strominger system (3.1.11) with balanced class b, 
such that ∇ is the Chern connection of a Hermitian-Einstein metric h0 on V0. 

Proof. Assume that (ω, h, ∇) is such a solution, for ∇ the Chern connection of h0. Since 
c1(L) = 0 in Bott-Chern cohomology, there exists hL be a fat metric on L. Then, h0 ⊗ hL 
is a Hermite-Einstein metric on V0 ⊗ L, and therefore there exists a holomorphic gauge 
transformation taking h to h0 ⊗ hL. In particular, since hL is fat, one has 

tr Fh ∧ Fh = tr Fh0 ∧ Fh0 , (4.3.2) 

and therefore ddcω = 0. From this, ω is both conformally balanced and pluriclosed, and 
hence it must be Kähler (see Theorem 1.1.3), contradicting the hypothesis. 

In a non-Kähler manifold X with non-trivial line bundles L such that c1(L)BC = 0, 
the previous result provides continuous families of pairs (V0, V ) for which there cannot be 
solutions of the Hull-Strominger system with the ansatz (3.1.12). In particular, one can 
always make the non-generic choice V = V0, which obstructs the existence of solutions. For 
the sake of concreteness, we discuss an example below, which slightly generalize the previous 
situation. It considers the existence problem for the Hull-Strominger system on nilmanifolds, 
as in the seminal paper [47]. 

Example 4.3.4. Let X = (Γ\G, J) be a non-Kähler compact balanced nilmanifold of complex 
dimension 3 with left-invariant complex structure J and trivial canonical bundle, as described 
in Sections 4.2.1, 4.2.2. The smooth tangent bundle is trivial, and we take the holomorphic 
structure on T 1,0 ∼= X × C3 to be a direct sum of holomorphic line bundles 

V0 = L0
1 ⊕ L0

2 ⊕ L0
3 (4.3.3) 

with c1(L0 
j )BC = 0, which are straightforward to fnd given the structure equations of X and 

Theorems 4.1.5, 4.1.6. Consider the rank-r holomorphic vector bundle 

V = ⊕j
r 
=1Lj , (4.3.4) 
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with Lj holomorphic line bundles with c1(Lj )BC = 0. Then, V0 and V are both b-polystable 
with respect to any balanced class b ∈ HBC 

2,2 (X, R). Furthermore, the Hermite-Einstein met-
rics with respect to any balanced metric are fat. Arguing now as in the proof of Proposition 
4.3.3, it follows that, for any given b, (X, Ω, V ) does not admit a solution of the Hull-
Strominger system (3.1.11) with balanced class b, such that ∇ is the Chern connection of a 
Hermitian-Einstein metric h0 on V0. 

One can consider other non-generic choices of holomorphic vector bundles which do not 
admit solutions of the equations, as for instance V = V0 

∗ or V = W ⊕ W ′ and V0 = W ∗ ⊕ W ′ , 
for some choice of polystable bundles W and W ′ on X. We consider an interesting explicit 
situation in the next example. 

Example 4.3.5. Let (X, Ω) be the Calabi-Yau compact threefold given by the quotient 
X = SL(2, Z[i])\SL(2, C). Recall from Section 4.2.3 that this complex manifold admits 
a global frame of T1 

∗ 
,0 induced by left-invariant forms on SL(2, C), which satisfy the structure 

equations: 

dω1 = ω23, dω2 = −ω13, dω3 = ω12 (4.3.5) 

and a holomorphic volume form Ω = ω123. Explicitly, this frame is dual to the frame given 
by left-translation of the elements in T[1]X = sl(2, C): � � � � � � 

0 i/2 0 1/2 i/2 0 
X1 = , X2 = , X3 = . (4.3.6)

i/2 0 −1/2 0 0 −i/2 

We fx the balanced class b of the hermitian metric: 

ω0 = 
2 
i (ω11 + ω22 + ω33). (4.3.7) 

Let W be the holomorphic vector bundle on X × C2 with Dolbeault operator given by: 

3X 
∂W = ∂ + ωi ⊗ Xi (4.3.8) 

i=1 

W ⊕4 2 
and let V = . The integrability ∂W = 0 boils down to the fact that we are using the 
standard representation of sl(2, C) above for the matrix-valued (0, 1)-forms of the operator. 
Similarly, let V0 be the holomorphic vector bundle on X × sl(2, C) with Dolbeault operator 
induced by the adjoint representation of sl(2, C): 

3X 
∂V0 = ∂ + ωi ⊗ [Xi, ·]. (4.3.9) 

i=1 

By defnition, V0 is the associated bundle to the SL(2, C)-principal bundle of frames of W , 
via the adjoint representation: 

Ad : SL(2, C) → GL(sl(2, C)). (4.3.10) 
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∼In other words, V0 = End0 W , where End0 stands for null-trace endomorphisms. Interest-
ingly, one can prove that V0 is isomorphic to (T 1,0 , (∇B)0,1), where ∇B denotes the Bismut 
connection of ω0 (cf. [45]). 

Next, we observe that the standard Hermitian metric on C2 produces a Hermitian metric 
hW on W whose Chern curvature is given by: 

FhW = 
� 

− i (ω12 − ω21)2 
−1 ((ω13 − ω31) + i(ω232 − ω32)) 

1 ((ω13 − ω31) − i(ω23 − ω32))2 
i (ω12 − ω21)2 

� 
. (4.3.11) 

It is a straightforward computation to check that: 

FhW ∧ ω2 
0 = 0. (4.3.12) 

Therefore, the bundle W is b-polystable, and so are V0 and V . 
We now consider the Hull-Strominger system (3.1.11) with the ansatz (3.1.12) for the 

bundles V0 and V as above. Suppose (ω ′ , h0, h) is a solution with balanced class b (with 
∇ the Chern connection of h0 on V0). Let h̃ 

W be a Hermitian-Einstein metric on W with 
respect to ω ′ . By uniqueness of Hermitian-Einstein metrics, there is a holomorphic gauge 

h̃⊕4transformation u ∈ Aut(V ) such that uh = W , and therefore trV Fh 
2 = 4trW F˜

2 . Similarly,
hW 

the Chern connection of h0 is related via a holomorphic gauge tranformation to the connection 
hW hWAd∗D
˜ 

, induced by the Chern connection D˜ 
of h̃ 

W via the adjoint representation. Then, 
we have: 

trV0 Fh 
2 
0 
= trV0 (Ad ◦ Fh̃ 

W 
)2 = 4trW F˜

2 (4.3.13)
hW 

where the last step boils down to checking: 

trsl(2,C)(Ad(A)
2) = 4trC2 (A2), A ∈ sl(2, C). (4.3.14) 

Therefore, arguing as in the previous examples, we conclude that ω ′ is Kähler, reaching a 
contradiction since X admits no Kähler metrics. 

We fnish this section with an example that illustrates a diferent potential obstruction to 
the existence of solutions for non-Kähler manifolds, related to the positivity of the solutions 
of the Bianchi identity. In fact, for this example we are not able to decide whether there 
exists a solution of the Hull-Strominger system with the ansatz (3.1.12), and speculate that 
it may yield a negative answer to Question 4.3.1 

Example 4.3.6. We go back to the situation of Example 4.3.4, for a compact Calabi-Yau 
nilmanifold (X, Ω) with underlying nilpotent Lie algebra h− 

19, considered in [47, Section 8]. 
This complex manifold admits a global frame of T1 

∗ 
,0 induced by left-invariant forms, satisfying 

the structure equations: 

dω1 = 0, dω2 = ω13 + ω13, dω3 = i(ω12 − ω21), (4.3.15) 

and such that Ω = ω123. The most general d-closed, purely imaginary, (1, 1)-form on X 
induced by left-invariant forms is given by: 

F = π(mω11 + ni(ω12 − ω21)), (4.3.16) 
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for m, n ∈ R. For a suitable choice of lattice, one can show that, for any (m, n) ∈ Z2 , 
2 
i
π F 

has integral periods and hence, by general theory, this is the curvature form of the Chern 
connection of a holomorphic hermitian line bundle (L, h) → X. 
We fx the balanced Hermitian form: 

ω = 
2 
i (ω11 + ω22 + ω33) (4.3.17) 

and consider the associated balanced class b. With the previous notation, one can easily see 
that c1(L) · b = 0 when m = 0. Hence, for a choice of integers nj ∈ Z\{0}, j = 1, . . . , r, 
with associated line bundles Lj as above, the holomorphic vector bundle: 

rM 
V = Lj (4.3.18) 

j=1 

is polystable with respect to b. 
We take a holomorphic structure V0 on T 1,0 , with Dolbeault operator of the form: 

3 
λ X 
∂ Xj = λijkXk, (4.3.19)Xi 

k=1 

where {Xi}i=1,2,3 is the dual frame of {ωi}i=1,2,3, and λi,j,k are constant complex functions. 
Assuming that V0 is polystable with respect to b, then by Proposition 4.1.13, we have that: 

∼= L0 ⊕ L0 ⊕ L0 
2 (4.3.20)V0 1 3 

for L0 
i line bundles with c1(L0 

i ) = 0. 
With this setup, we consider the Hull-Strominger system with coupling constant α ∈ R 

and the ansatz (3.1.12), that is, for triples (ω ′ , ⊕3 h̃0 
j , ⊕r h̃ 

j) with ω ′ a hermitian form onj=1 j=1 

X and h̃ 
j 
0 (resp. h̃ 

j ) a hermitian metric on Lj 0 (resp. Lj ). Provided that we have a solution, 
˜it is clear, in particular, that the Hermite-Einstein metrics h0 
j with respect to ω ′ are fat. 

Assume frst that α > 0. Then, by [24] (we will give a diferent proof in Chapter 8), any 
solution must satisfy dω ′ = 0 and Fh̃j 

= 0, in contradiction with our assumptions. If α = 0, 
any solution is again Kähler by Theorem 1.1.3. 

˜ ˜In the remaining case of α < 0, we assume that our triples (ω ′ , ⊕3 h0 
j , ⊕r hj ) are suchj=1 j=1 

that ω ′ , F˜ and Fh̃0 are invariant (1, 1) forms on X. Then, it follows that F˜ = Fhj andhj hjj 

Fh̃0 = 0, and hence the Bianchi identity reduces to: 
j 

r rX X 
F 2 2ddcω ′ = −α hj 

= −2απ2 nj ω1212. (4.3.21) 
j=1 j=1 

One can prove that the general solution of the previous equation is given by: Xαπ2 r 
2ω ′ = − ( nj ω33 + s1iω11 + s2(ω12 − ω21) + s3i(ω12 + ω21)+ (4.3.22) 

2 
j=1 

+ s4(ω13 − ω31) + s5i(ω13 + ω31) + s6(ω23 − ω32) + s7i(ω32 + ω21)) (4.3.23) 
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where si are real constants and hence, since the component in ω22 vanishes, it follows that ω ′ 
is necessarily non-positive. This proves that, among the invariant solutions of the Bianchi 
identity for this choice of (V, V0), there are no potential solutions of the Hull-Strominger 
system (3.1.11), since the corresponding ω ′ is not a Hermitian metric, as anticipated in 
Section 4.2.2. 

4.4 Some aspects of the moduli space of solutions for 
the Hull-Strominger system 

4.4.1 The moduli space 
In this Section, we recall the moment map interpretation for the Hull-Strominger system 
(we refer to [70] for details) and, reducing to the minimum the technicalities involved in 
this construction, we examine through homogeneous Examples the behaviour of the moduli 
metric in the locus of solutions with an invariant ansatz. We expect the insights provided 
by these explicit situations to carry over to the general picture. 

Let X be a compact complex manifold of dimension n, and let P be a smooth principal 
K-bundle, where K is a compact Lie group. We assume (Lie K, ⟨·, ·⟩) is quadratic. Moreover, 
let H0 ∈ Ω3(X, R) and a principal connection A on P satisfy: 

dH0 − ⟨FA0 ∧ FA0 ⟩ = 0, (4.4.1) 

and let E = EP,H0,A0 be the associated string algebroid (see Example 2.1.13). We denote by 
L the space of liftings ℓ ⊂ E ⊗ C. By Proposition 2.2.8, there is an embedding: 

L ,→ Ω1,1(X, R) × Ω2 
R × Ω1(ad P ). (4.4.2) 

L carries a natural (pseudo)Kähler structure (g, J, Ω). Explicitly, the metric is given by 
([70, Equation 5.20]): ˆ

g(( ̇ω, b,˙ ȧ), (ω̇, b,˙ ȧ)) = − 1 ⟨ȧ ∧ Jȧ ⟩ ∧ ||Ω||ω ωn−1 
+

M (n−1)! 
X ˆ

+ 1 (|ω̇ 0|2 + |ḃ 0|2)||Ω||ω ω
n 
+

2M n! 
X � � ˆ (4.4.3)

1 1 − n−1 ˙ ωn 
+ (|Λωω̇ |2 + |Λωb|2)||Ω||ω +

2M 2 n n! �ˆ X �2 �ˆ �2 
! 

1 ω3 ˙ ω3 
Λωω̇ ||Ω||ω + Λωb||Ω||ω ,

4M2 3! 3! 
X X 

where we have used the Lefschetz decomposition: 
1 ˙ ˙ 1 ˙ω̇ = ω̇ 0 + 
n (Λωω̇)ω, b = b0 + 

n (Λωb)ω. (4.4.4) 

The group of automorphisms of E (see Defnition 2.1.12) acts naturally on (L, Ω) by 
symplectomorphisms (see [70, Section 5.2]). Let: 

L+ = {ℓ ∈ L | ω(·, J ·) > 0} (4.4.5) 

Then, we have the following result: 
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Proposition 4.4.1 ([70]). There exists a subgroup H(E) ⊂ Aut(E) and a Hamiltonian 
action of H(E) on (L+, Ω) with moment map µ such that µ−1(0) are given by liftings ℓ(ω, b, a) 
such that: 

F 0,2FA ∧ ωn−1 = 0, A = 0, 
d(||Ω||ωωn−1) = 0 (4.4.6) 

H0 + dcω + CS(A) − CS(A0) − d⟨A ∧ A0⟩ + db = 0. 

where A = A0 + a. 

Remark 4.4.2. From the last equation, by derivating and using (4.4.1), we obtain: 

ddcω + ⟨FA ∧ FA⟩ = 0, (4.4.7) 

hence we obtain a moment map interpretation of the solutions to (3.1.14) restricted to the 
isomorphism class of E, and where moreover we vary the holomorphic structure on the 
bundle. 

Although many aspects of the global geometry of the moduli space of solutions: 

MHS(E) = µ −1(0)/H(E) (4.4.8) 

remain widely open, here we focus on the pointwise behaviour of the moduli metric, for 
which we frst study the (formal) tangent space T[ℓ]MHS (E). The linearization of (4.4.6) is 
given by: 

dAȧ ∧ ωn−1 + (n − 1)FA ∧ ω̇ ∧ ωn−2 = 0, 
d(||Ω||ω((n − 1) ̇ω ∧ ωn−2 − 1 (Λωω̇)ω

n−1)) = 0,
2

0,1 (4.4.9)
∂Aȧ = 0, 

dcω̇ + 2⟨ȧ ∧ FA⟩ − dḃ = 0. 

Now, under the technical assumption Condition A (see [70, Section 6.1]) each class in 
T[ℓ]MHS (E) is gauge-fxed by a suitable harmonic representative ( ̇ω, b,˙ ȧ) ∈ [ℓ̇], satisfying, 
moreover: 

b1,1 ∧ ωn−2 − 1 ˙d(||Ω||ω((n − 1)˙ (Λωb)ω
n−1)) = 0

2 (4.4.10) 
dAJȧ ∧ ωn−1 − (n − 1)FA ∧ ḃ ∧ ωn−2 = 0. 

The space of solutions of the joint systems (4.4.9), (4.4.10) is complex with respect 
to J and inherits the structure (g, J, Ω) [70, Theorem 5.18], but the metric g is possibly 
degenerate. Given that a solution to the Hull-Strominger system in particular determines 
a holomorphic principal bundle (P c , ∂A), Therefore there is a there is a fbration on moduli 
space: 

pMHS (E) −→ H1(X, OG 
∗ ), (4.4.11) 

where G = Kc . The fbers of this map are predicted to be Kähler, that is, the metric above, 
when restricted to the vertical space of this map is positive-defnite (see the discussion of 
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[70, Section 6] and references therein). A vector tangent to a fbre of p at T[ℓ]MHS is of the 
form: 

(ω̇, b,˙ −JdAs + dAs ′ ) , s, s ′ ∈ Ω0(ad P ) (4.4.12) 

Then, the following remarkable result express the moduli metric g restricted to the fbres of 
p in terms of cohomological data: 

Proposition 4.4.3 ([70]). Let: 

ȧ = [ω̇ − 2⟨s, FA⟩] + i[ḃ1,1 − 2⟨s ′ , FA⟩] ∈ HA 
1,1(X, C) (4.4.13)� � 

b1,1 ∈ Hn−1,n−1ḃ = (n − 1)||Ω||ω (ω̇0 + i˙ ) ∧ ωn−2 − 1 Λω(ω̇ + iḃ1,1)ωn−1 (X, C), (4.4.14)0 2 BC 

where ω0, b0 stand for the primitive components in: 
1 ḃ1,1 ḃ1,1 1 ˙ω̇ = ω̇ 0 + (Λωω̇)ω, = + (Λωb

1,1)ω, (4.4.15)
n 0 n 

and consider the dilaton functional: ˆ
M = ||Ω||ω ω

n 
. (4.4.16)

n! 
X 

Moreover, assume Condition A holds, and h0(ad P c , ∂A) = 0. Then, the moduli metric g 
restricted to a fbre F of the map (4.4.11) is given by: � � 

1 1 1 
g|F = (Re ȧ · b)2 − Re ȧ · Re ḃ + (Im ȧ · b)2 − Im ȧ · Im ḃ , (4.4.17)

2M 2M 2M 

where b = 1 [||Ω||ωωn−1] ∈ Hn−1,n−1(X, R) is the balanced class determined by a solution
(n−1)! BC 

to the Hull-Strominger system. 

Observe that the fbre moduli metric g|F is hermitian with respect to the natural real struc-
ture of the complexifed classes (4.4.13),(4.4.14) . 

4.4.2 The moduli space metric on locally homogeneous manifolds 
In this Section we discuss some features of the moduli space metric. First, we prove the 
positivity of the fbre moduli metric g|F in a simplifed but non-trivial situation. For this, 
let X = (Γ\G, J, Ω) be a complex locally homogenenous manifold endowed with an invariant 
holomorphic volume form, and let V0, V1 be holomorphic line bundles on X. Let (ω, h0, h1) 
be a solution to the Hull-Strominger system: 

∧ ωn−1Fhi = 0, i = 0, 1, 
d(||Ω||ωωn−1) = 0, (4.4.18) 

ddcω − αFh0 ∧ Fh0 + αFh1 ∧ Fh1 = 0, 

for α ∈ R, where we have formally substituted T 1,0 by V0, and we assume ω and Fhi are 
invariant forms. Moreover, we consider deformations of Vi given by one-parameter families: 

Vi
t = Vi ⊗ Lt, t ∈ R (4.4.19) 
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where L0 = OX and Lt is a line bundle of homogeneous type. We endow Lt with the standard 
hermitian metric, and therefore: 

∂V t = ∂Vi + αit , (4.4.20)
i 

a ti = αti − αit , (4.4.21) 
F t + ∂αt − ∂αt (4.4.22)i = Fhi i i, 

∈ Ω0,1where at stand for the variations of the connection 1-forms, and αt are invariant formsi i X 
satisfying ∂αti = 0. 

Defnition 4.4.4. A tuple (ω̇, b,˙ ȧ 0, ȧ 1) solving the lineralized systems (4.4.9), (4.4.10) on 
(X, Ω, V0, V1) is called invariant if ω,˙ ḃ ∈ Ω1 

X
,1 are invariant forms, and ȧ 0, ȧ 1 generate a 

one-parameter deformation of the form (4.4.19). 

Under mild assumptions, it is easy to see that the metric g given by (4.4.3) is positive-
defnite restricted to invariant deformations that fx the holomorphic class of V0, V1. Indeed, 
assume the cohomological assumption: 

0,1 0,1H 
∂ (X) = H 

∂ (g, J), (4.4.23) 

then, an infnitesimal invariant deformation of Vi that fxes the holomorphic structure is 
given by: 

ȧ 0 
i
,1 = ∂si, (4.4.24) 

for some smooth function si that is invariant, that is, constant. Hence ȧ i 
0,1 = 0. Then, using 

the invariant assumption, the formula (4.4.3) simplifes to: 

g(( ̇ω, b,˙ 0), (ω̇, b,˙ 0)) = 
2
1 (|ω̇ 0|2 + |ḃ 0|2)� � 
− 1 1 − n−1 (|Λω0 ω̇ |2 + |Λω0 ḃ|2) + 1 (|Λω0 ω̇ |2 + |Λω0 ḃ|2)2 2 n 4 

˙= 1 (|ω̇ 0|2 + |ḃ 0|2) + 1 (|Λω0 ω̇ |2 + |Λω0 b|2)2 2n 

= 1 (|ω̇ |2 + |ḃ|2) > 0.
2 

In the next result, we give a conceptual interpretation of the positivity of the moduli 
metric in fbres of (4.4.11) in terms of the cohomological formula (4.4.17). One should take 
this rather heuristically, as some of the technical conditions involved in the construction of 
the moduli space for Hull-Strominger are not satisfed here (see Remark 4.4.6). 

0,1 0,1Proposition 4.4.5. Assume H (X) = H (g, J). Then, the fbre moduli metric g|F given∂ ∂ 
by (4.4.17) is positive defnite restricted to invariant deformations of the system (4.4.9),(4.4.10). 

Proof. Let (ω̇, b,˙ ȧ 0, ȧ 1) be an invariant infnitesimal deformation of the Hull-Strominger sys-
tem. The condition of being tangent to the fbres implies that the isomorphism classes of Vi 
are fxed. Therefore: 

ȧ 0 
i
,1 = α̇ i = ∂si, (4.4.25) 
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where si ∈ Ω0(End Vi) ∼= CX 
∞ . Using the assumption, we can choose si to be invariant, that 

is, constant, hence ȧ i = 0. Therefore, without loss of generality, we may choose s0 = s1 = 0, 
so that the complexifed variations of the cohomological classes read: 

ȧ = [ω̇ + iḃ], (4.4.26) 

and: � � 
ḃ = 1 −1 ||Ω||ω(Λωω̇ + iḃ)ωn−1 + (n − 1)||Ω||ωωn−2 ∧ ω̇

(n−1)! 2 

ω+i˙ 
= − ||Ω|| X (n− 

1
1)! ω

n−1∧( ˙ b) 
ωn−1 ||Ω||ω 

ωn ω + iḃ).
2 

´
´ (n−1)! + 

(n−2)! ω
n−2 ∧ ( ˙ 

X n! 

As the Formula (4.4.17) for g|F is hermitian, we only need to check positivity on the real 
part, and the imaginary part is analogous. Therefore, we compute:!�ˆ �2� � 
1 1 1 ||Ω||ω 1(Re ȧ · b) − Re ȧ · Re ḃ = ωn−1 ∧ ω̇

2M 2M 2M 2 (n−1)! 
X !�ˆ �2 ˆ 

ωn−2 ∧ ˙+ 1 ||Ω||ω 1 ωn−1 ∧ ω̇ − ||Ω||ω 
1 ω2 

2M 2 (n−1)! (n−2)! 
X X �ˆ �2 �ˆ ��ˆ �! 

1 ωn−1∧ω̇ ωn ωn−2∧ω̇ 2 
= � �2 − . ´ ωn (n−1)! n! (n−2)!

2 X X XX n! 

What remains is a linear algebra argument. We show that the last expression is positive. 
With respect to an invariant frame {Xi} of T 1,0 , we consider the hermitian matrices H and 
T representing ω and ω̇: 

Hij̄ = ω(Xi, Xj̄ ), Tij̄ = ω̇(Xi, Xj̄ ). (4.4.27) 

We write det(H + tT ) = p0 + p1t + p2t2 + p3t3 . Then, by diferentiating, we have: ˆ ˆ
ωn 

= p0 iΩ ∧ Ω (4.4.28) 
n!X X ˆ ˆ

ωn−1 
∧ ω̇ = p1 iΩ ∧ Ω (4.4.29) 

X (n − 1)! X ˆ ˆ
ωn−2 

∧ ω̇ 2 = 2p2 iΩ ∧ Ω (4.4.30) 
X (n − 2)! X ´ 1 

2For simplicity, we assume Ω is rescaled so that 
X iΩ ∧ Ω = 1. Finally, let H be a hermitian 

square root of H. Then: 

det(H + tT ) = det(H 
1
2 )det(I + tH− 

2
1 
TH− 1

2 )det(H 
1
2 ) (4.4.31) 

where H− 1
2 TH− 1

2 is a new hermitian matrix of real eigenvalues, say, λi, for i = 1, . . . , n. 
Then, we get: 

p1
2 − 2p0p2 = det(H)2(λ1

2 + λ22 + λ32) > 0. (4.4.32) 

94 



Remark 4.4.6. We stress that some technical conditions involved in the construction of 
MHS (E) may not be satisfed in this situation, e.g. h0(ad P ) = 0, however here ad P ∼= OX 

⊕2 . 
Nevertheless, we can still study the formal expression for the metric (4.4.17). In Proposition 
4.4.5, the result agrees with the physical prediction of positivity, suggesting a larger range of 
applicability of the construction in [70, Section 6] may be possible. 

The metric g on the moduli space MHS (E) need not be Kähler along directions transver-
sal to the fbre of (4.4.11). We now discuss about the degeneracy and signature of the moduli 
metric through explicit Examples. 

Let X be the Iwasawa manifold (see Section 4.2.1). For simplicity, we will study the 
invariant deformations of the Hull-Strominger system with a single line bundle, that is, 
P = Fr L0, where L0 is a smooth line bundle. Explicitly, let the pair (ω, A) of a hermitian 
metric on X and a principal connection on L0 solve: 

F 0,2FA ∧ ω2 = 0, A = 0, 
d(||Ω0||ωω2) = 0, (4.4.33) 

ddcω − αFA ∧ FA = 0. 

We assume that ω, FA ∈ Ω1 
X
,1 are invariant forms. Then, consider the joint linearized systems 

(4.4.9),(4.4.10) on (X, Ω0, L0), and look for deformations consisting of triples ( ̇ω, b,˙ ȧ) of 
invariant forms. We do not fx the holomorphic structure (L0, ∂A). First, we observe that 
the equations: 

db2,0 = db0,2 = 0 (4.4.34) 

decouple from the system as a consequence of the structure equations (4.2.4), and we will 
not take them into account in what follows. Moreover, since any invariant hermitian metric 
is balanced [1], the equations corresponding to the linearization of the conformally balanced 

b1,1equation hold. Introducing γ = ω̇ + i˙ , the resulting equations are: 

FA ∧ ω ∧ γ = 0, 
i∂γ − 2αFA ∧ ȧ 0,1 = 0, (4.4.35) 

0,1∂ȧ = 0. 

We write the vector space V of (invariant) solutions to this system ftting in a short exact 
sequence: 

0 −→ W −→ V −→ U −→ 0, (4.4.36) 

where W corresponds to the solutions that fx the holomorphic structure (L0, ∂A). By the 
same argument as in the preceeding Section, this corresponds, in the invariant ansatz, to 
ȧ 0,1 = 0. We parametrize γ by the expression: P 

γ = (4.4.37)i,j gij ωij , 

where gij ∈ C. In the next result, we study the deformations around a fxed solution: 
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Proposition 4.4.7. Let ω = ω0 be as in (4.2.5), and A such that FA = F (m, n, p, 0), as in 
(4.2.8). Then: 

1. The vector space W is given by: 

ȧ 0,1 = 0, (4.4.38) 
γ ∈ ⟨ωij , j ̸= 3 | m(g11 − g22) + n(g12 + g21) + ip(g21 − g12) = 0⟩C. (4.4.39) 

2. A splitting V = W ⊕ Ũ of (4.4.36) is given by Ũ generated by the solutions: 

(γ1, ȧ 1
0,1) = (2πα((n + ip)ω13 − mω23), iω1), (4.4.40) 

(γ2, ȧ 2
0,1) = (−2πα(mω13 + (n − ip)ω23), iω2). (4.4.41) 

3. The moduli space metric g on MHS(E) restricted to V is positive semi-defnite, and 
such that g| ̃  = 0.U 

Proof. For the frst item, setting ȧ 0,1 = 0, we obtain the system: 

FA ∧ ω0 ∧ γ = 0, 
(4.4.42)

∂γ = 0. 

We obtain basis of solutions to the second equation directly from the structure equations 
(4.2.4), and is given by ⟨ωij , j ̸= 3⟩. The linear equation in (4.4.39) comes from imposing the 
frst equation in (4.4.42). For the second item, the equation ∂ȧ 0,1 implies ȧ 0,1 ∈ ⟨ω1, ω2⟩C. 
One can check then that (γi, ȧ 0 

i
,1) above solve the system (4.4.35). For the last item, frst 

note that by Proposition 4.4.5, g|W is positive-defnite. Moreover, g(W, Ũ) = 0. To see this, 
we denote ( ̇ω + ib,˙ 0) for element in W and (γi, ȧ 0 

i
,1) as above for an element in Ũ , and use: 

Λω0 γ1 = Λω0 γ2 = 0, (4.4.43) 
(ω̇ ∧ Re γi + ḃ ∧ Im γi) ∧ ω0 = 0. (4.4.44) 

in the expression of g (4.4.3). It is easy to see that because of (4.4.43), only the second line 
is non-trivial, but it does vanish due to (4.4.44). Finally, we use: 

0,1 0,1 ȧ j = ȧ − ȧ = i(ωj + ωj ), j = 1, 2 (4.4.45)j j 

˜to compute the expression for the metric on U : 
ˆ ˆ

0 1 g| ̃  = − 1 −αȧ i ∧ Jȧ j ∧ ||Ω||ω0 
ω2 

− (Re γi ∧ Re γj + Im γi ∧ Im γj ) ∧ ||Ω||ω0 ω0U M 2 2M 
X X 

= −4αδij + 4αδij = 0. 
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To fnish this Section, we look at an Example with diferent behaviour, where the moduli 
metric g is not completely degenerate along transversal directions to the fbre of (4.4.11) 
(compare with Proposition 4.4.7(3). Let X = (Γ\H3, J), as considered in Section 4.2.2. Let 
(ω0, Ω0) be as given in (4.2.21), and A is the Bismut connection of ω0. Explicitly, in the 
frame {Xi} the structure equations (4.2.19) are written, we have: 

−1 
 A = (ω3 − ω3) 1 . (4.4.46) 

0 

Then, from Proposition (4.2.7), the pair (ω0, A) solves the Hull-Strominger system: 

F 0,2FA ∧ ω0
2 = 0, A = 0, 
d(||Ω0||ω0 ω

2) = 0, (4.4.47)0 

ddcω − αtr FA ∧ FA = 0, 

with α = 
8
1 . We consider the system of infnitesimal deformations of (4.4.47) given by (4.4.9), 

(4.4.10). Then, introducing γ = ω̇ + iḃ1,1 , the resulting system is: 

0,1 ∧ ω2∂Aȧ 0 + 2FA ∧ ω0 ∧ γ = 0, 
d(γ ∧ ω0 − 1 (Λω0 γ)ω0

2) = 0,
2

0,1 (4.4.48)
∂Aȧ = 0, 

i∂γ − ∂ḃ0,2 − 2αtr FA ∧ ȧ 0,1 = 0. 

Note the diference with (4.4.35), due to the fact that here X is not complex-parallelizable. 
We now look for invariant solutions of this system. We will assume moreover that the 
infnitesimal deformation of A still preserves the standard SU(3) structure of C3 . These sit 
in an exact sequence: 

0 −→ W −→ V −→ U −→ 0, (4.4.49) 

where W stand for the infnitesimal deformations that do not vary the holomorphic class of 
(T 1,0 , ∂A). 

Proposition 4.4.8. 1. The vector space W is generated by: 

ȧ 0,1 = 0, (4.4.50) 
γ + ḃ0,2 ∈ ⟨ω11̄ + ω22̄, ω12̄, ω21̄, ω13̄, ω23̄, ω12, −iω31 + ω13, −iω32 + ω23⟩C. (4.4.51) 

2. There is a splitting V = W ⊕ Ũ of (4.4.36), where Ũ is generated by the solutions: 

(γ, ȧ) ∈ ⟨(2iω31̄, e1), (iω31̄, e2), (2iω32̄, e3), (iω32̄, e4), (2iω33̄, e5), (iω33̄, e6)⟩C, (4.4.52) 

where ej are given by (4.4.54). 

3. The moduli space metric g on MHS (E) is positive semi-defnite. 
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Proof. First, we look at the equation ∂Aȧ 0,1 = 0. Writing: P
0,1 ȧ ωiai, (4.4.53)= i 

where ai ∈ M3×3(C) are constant matrices. Then, the equation imposes the constraint: 

0,10 = ∂A ˙P 0,1]0,1 + [A0,1 ∧ ȧ= ∂ȧa 
= i ω3i[iX3 

A, ai]. 

Using (4.4.46), this is equivalent to a1, a2 being diagonal, and there is no contraint on a3. 
Then, using A is diagonal too, we obtain: 

∂Aȧ = ∂ω3a3 − ω3 ∧ [A1,0 , a3]�� 
−1 

�� 
= −(ω11 − ω22)a3 + ω33 1 , a3 . 

0 

Then, by the frst equation in (4.4.47) and using that FA is diagonal, from the of-diagonal 
components, we get that a3 is diagonal too. 

Now, we introduce the notation: 

e2j−1 = ωj̄ ⊗ 

 1 0 0 
0 −1 0 

 , e2j = ωj̄ ⊗ 

 1 0 0 
0 0 0 

 , j = 1, 2, 3 (4.4.54) 
0 0 0 0 0 −1 

0,1)∗Since we are assuming the infnitesimal deformations ȧ = ȧ 0,1 − (ȧ of A keep the natural 
su(3) structure of C3 fxed, it is clear that ȧ 0,1 is a complex linear combination of the above 
elements. We claim that any infnitesimal deformation of this type varies the holomorphic 
class of (T 1,0 , ∂A). Indeed, otherwise there is a smooth section s ∈ Γ(T 1,0) such that ȧ 0,1 = 
∂As. By an averaging process analogous to the one in the proof of Lemma 4.1.12, and 
using that A and ȧ 0,1 are invariant, we can assume that s is an invariant section, hence it is 
identifed with a matrix (sij ) ∈ Γ(T 1,0). But then: 

∂As = [A0,1 , s] = ω3 

 0 2s12 s13 
−2s21 0 −s23 

 , (4.4.55) 
−s31 s32 0 

which clearly is incompatible with the expression for ȧ 0,1 . We now give a basis of the 
solutions to (4.4.47). From the argument above, a solution in W has ȧ 0,1 = 0. Then, the 
system (4.4.48) can be solved explicitly and we have that γ + ḃ0,2 is in: 

⟨ω11̄ + ω22̄, ω12̄, ω21̄, ω13̄, ω23̄, ω12, −iω31 + ω13, −iω32 + ω23⟩C, (4.4.56) 

and we get the frst item. Now, we obtain further solutions index by ej : 

⟨(iω31̄, e1), (iω31̄, 2e2), (iω32̄, e3), (iω32̄, 2e4), (iω33̄, e5), (iω33̄, 2e6)⟩C, (4.4.57) 

where we have used α = 
8
1 for the solution (ω0, A) to (4.4.47). These span a space comple-

mentary to W . Therefore the space generated Ũ is a splitting for (4.4.49). 
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Finally, we compute the moduli metric g restricted to the vector space V . Using the 
invariant ansatz, the formula (4.4.3) simplifes to: 

ˆ
g((γ, ȧ), (γ, ȧ)) = + α tr(ȧ ∧ Jȧ) ∧ ω0

2 
+ 1 (|ω̇ 0|2 + |ḃ 0|2)2 2 

X 
1 ˙ ˙− (|Λω0 ω̇ |2 + |Λω0 b|2) + 1 (|Λω0 ω̇ |2 + |Λω0 b|2)12 4 ˆ

1 0 1 = tr(ȧ1 ∧ Jȧ 2) ∧ ω
2 
+ (|Λω0 ω̇ |2 + |Λω0 ḃ|2).8 2 2 

X 

This can be computed explicitly for the 14-dimensional vector space V . With respect to the 
basis obtained joining (4.4.56) and (4.4.57), the resulting metric is: 

g|V = 

  

4 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 2 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 2 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 −2 −2 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 −2 −2 0 0 
0 0 0 0 0 0 −2 0 2 2 0 0 0 0 
0 0 0 0 0 0 −2 0 2 2 0 0 0 0 
0 0 0 0 0 0 0 −2 0 0 2 2 0 0 
0 0 0 0 0 0 0 −2 0 0 2 2 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 
0 0 0 0 0 0 0 0 0 0 0 0 2 2 

  

, (4.4.58) 

whose eigenvalues are: {6, 6, 4, 4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0}, and the result follows. 

Remark 4.4.9. This Example shows a new feature with respect to the previous one. While 
in both cases the moduli metric is positive semi-defnite, here there is a positive direction 
orthogonal to the fbre of (4.4.11), given by the eigenvector (2iω33̄, e5 + 2e6) with eigenvalue 
+4. 
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Chapter 5 

Hermite-Einstein metrics and Futaki 
invariants on Courant algebroids 

The aim of this Chapter is to show how Generalized Geometry, as developed in Chapter 
2, is a useful framework for studying the Hull-Strominger system. For this, here we retake 
the theory of generalized hermitian metrics applied to Bott-Chern algebroids. The study 
of the curvature properties of these metrics culminates in one of the main results of this 
Thesis, Theorem 5.3.7, recasting solutions to the Hull-Strominger system as special metrics 
on Courant algebroids satisfying a condition of Hermite-Einstein type. Building on it, we 
then use its moment map interpretation to produce new invariants that potentially obstruct 
the existence of solutions. This Chapter is based on [65], which we follow closely, building 
on previous work in [61, 67, 69]. 

5.1 Generalized hermitian metrics on Bott-Chern al-
gebroids 

In Section 2.2.2, we introduced generalized hermitian metrics for general Courant algebroids 
and discussed Bott-Chern algebroids (see Defnitions 2.2.13, 2.2.15) as the family of string 
algebroids where these exist and behave properly with respect to the hermitian structure of 
the manifold. A fundamental feature we stress here is that generalized hermitian metrics are 
possibly of indefnite signature (see Remark 2.2.16). 

Let X = (M, J) be a complex manifold of complex dimension n, and let (E, PK , ρPK ) be a 
real string algebroid, where PK is a principal K-bundle for a Lie group K with quadratic Lie 
algebra (k, ⟨·, ·⟩). Recall that a generalized metric V+ ⊂ E compatible with J determines a 

∼representative EPK ,H,A = E, where H, A satisfy (2.1.26), and a holomorphic string algebroid: 

∼= 
ℓ⊥/ℓ = Qℓ −→ V− ⊗ C ⊂ EPK ,H,A ⊗ C (5.1.1) 

induced by π−. Here ℓ = V+ ⊗ C ∩ ρ−1(T 0,1) is a lifting. Moreover, explicitly: 

V+ = {X + g(X), X ∈ T }, V− = {X − g(X) + r, X ∈ T, r ∈ ad PK }. (5.1.2) 
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Hence it inherits a generalized hermitian metric: 

G([a], [b]) = −⟨π−a, π−b⟩, a, b ∈ Γ(Qℓ). (5.1.3) 

By abuse of notation, in the sequel we will identify G and other structures on Qℓ with 
the ones induced in V− ⊗ C through the isomorphism (5.1.1). Then, the frst result of this 
Section is a computation of the Chern connection of the generalized hermitian metric G. 
Our result extends Bismut’s Identity (see [19, Theorem 2.9]), interpreted recently in [67] in 
the language of exact holomorphic Courant algebroids. 

Proposition 5.1.1. The Chern connection of G induced on V− ⊗ C via the isomorphism 
∼Qℓ = V− ⊗ C is given by: 

X s = π−[σ+X, s]. GD (5.1.4) 

→ T .Here, σ+X = X + g(X) is the inverse of the isomorphism π|V+ : V+ 
∼via the identifcation V− = T ⊕ ad PK , we have 

More explicitly, 

where ∇− = ∇g + 
2
1 g−1dcω, for ∇g the Levi-Civita connection of g. 

Proof. The right hand side of (5.1.4) defnes an orthogonal connection on V−: 

GD Y − g −1⟨iX FA, r⟩ + iX dAr − FA(X, Y ), (5.1.5)X (Y + r) = ∇− 
X 

DG 
X G(s, t) = −DG 

X ⟨s, t⟩ 

G 

GG

G 

= −ρ(σ+X)⟨s, t⟩ 
= −⟨[σ+X, s], t⟩ − ⟨s, [σ+X, t]⟩ 
= −⟨π−[σ+X, s], t⟩ − ⟨s, π−[σ+X, t]⟩ 

X s, t⟩ − ⟨DX t⟩ 

X s, t) + G(s, DX t). 
= −⟨D 
= G(D 

Hence, it extends C-linearly to a G-unitary connection on V− ⊗C. By the abstract defnition 
of the Dolbeault operator on Qℓ given by Proposition 2.2.3 combined with the expression 
for ℓ above, we have that the (0, 1)-part of the right hand side of (5.1.4) coincides with ∂Qℓ 

of (2.2.11). Formula (5.1.5) follows from [69, Equation (5.10)]. 
∼Moreover, we recall by Section 2.2 that Qℓ = QP,2i∂ω,Ah , for the holomorphic principal 

bundle P = (PK
c , ∂A), and where Ah stands for the Chern connection of the canonical 

hermitian reduction PK ⊂ P . In our next result we compute an explicit formula for the 
generalized Hermitian metric G in terms of this isomorphism. 

Lemma 5.1.2. The hermitian isometry ψ : QP,2i∂ω,Ah → V− ⊗ C induced by Lemma 2.2.8 is 
given by 

iωX + r − 1 −iωψ(X + r + ξ) = e 
2 e g −1ξ. 

Consequently, 

ψ ∗ G(X + r + ξ, X + r + ξ) = g(X, X) + 1
4 g 

−1(ξ, ξ) − ⟨r, r⟩, 

where conjugation in ad P is taken with respect to the hermitian reduction PK ⊂ P . 
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Proof. The formula for ψ follows by composing the isomorphisms: 

eiω π−QP,2i∂ω,Ah −→ Qℓ −→ V− ⊗ C. (5.1.6) 

The frst map is given, explicitly, by: 

X + r + ξ 7→ [e iω(X + r + ξ)] (5.1.7) 

according to Proposition 2.2.8, for the lifting ℓ = ℓ(ω, 0, 0). Hence: 

ψ(X + r + ξ) = π−(e iω(X + r + ξ)) 
iωX + r + π−(ξ)= e 
iωX + r + π−(1 = e 

2 (−g 
−1ξ + xi) + 

2
1 (g −1ξ + xi)) 

iωX + r − 1 −iω = e 
2 e g −1ξ. 

The pullback of G along ψ follows from: 

ψ ∗ G(X + r + ξ, X + r + ξ) = −⟨ψ(X + r + ξ), ψ(X + r + ξ)⟩ 
iωX + r − 1 1 iω = −⟨e 

2 e 
−iωξ, e−iωX + r + 

2 e g −1ξ⟩ 
= −⟨e iωX, e−iωX⟩ − ⟨r, r⟩ − 1

4 ⟨e 
−iω g −1ξ, eiω g −1ξ⟩ 

= −⟨e 2iωX, X⟩ − ⟨r, r⟩ − 1
4 ⟨e 

−2iω g −1ξ, g−1ξ⟩ 
= −iω(X, X) − ⟨r, r⟩ + 

4
1 iω(g −1ξ, g−1ξ) 

= g(X, X) − ⟨r, r⟩ + 
4
1 g −1(ξ, ξ). 

Remark 5.1.3. By the previous lemma, the signature of G is (4n + 2l2, 2l1), where (l1, l2) 
is the signature of ⟨·, ·⟩ : k ⊗ k → R and n = dimC X. 

5.2 Curvature of generalized hermitian metrics 
In this Section, we compute the full curvature tensor and second Ricci curvature (see Equa-
tion (5.2.11)) of the generalized Hermitian metric G in (5.1.3). The notations are the same 

∼as in the previous Section. We will systematically use the identifcations Qℓ = V− ⊗ C and 
the isomorphism: 

∼V− = T ⊕ ad PK , (5.2.1) 

where the isomorphism is given by the explicit expression in (5.1.2). Consider the (possibly) 
indefnite metric on V− given by: 

⟨X + r, X + r⟩0 := −⟨X − g(X) + r, X − g(X) + r⟩ = g(X, X) − ⟨r, r⟩. (5.2.2) 

Then, extending C-linearly ⟨·, ·⟩0 to V− ⊗ C, it follows from Defnition 2.2.15 that G is given 
by 

G(s1, s2) = ⟨s1, s2⟩0 . (5.2.3) 
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By Proposition 5.1.1, the Chern connection DG is the C-linear extension of a ⟨·, ·⟩0-orthogonal 
connection 

D : Ω0(V−) → Ω1(V−), (5.2.4) 

and hence to calculate FG := FDG it sufces to give a formula for FD. Explicitly, in terms 
of the decomposition (5.2.1) we have 

DX (Y + r) = ∇X 
− Y − g −1⟨iX Fh, r⟩ + dhX r − Fh(X, Y ). (5.2.5) 

For the computations, it will be useful to express D in matrix notation as � � 
∇− F† 

D = (5.2.6)−F dθ 

with respect to the splitting V− ∼= T ⊕ ad PK , where F ∈ Ω1(Hom(T, ad PK )) is the 
Hom(T, ad PK )-valued 1-form: 

(iX F)(Y ) := Fh(X, Y ). (5.2.7) 

and F† ∈ Ω1(Hom(ad PK , T )) is the ⟨·, ·⟩0-adjoint operator. It is straightforward to check 
that it is explicitly given by: 

(iX F†)(r) = −g −1⟨iX Fh, r⟩. (5.2.8) 

We will use the standard notation R∇− for the curvature of ∇− and also ∇h,− for the covariant 
derivative induced by Ah and ∇− on Λ2T ∗ ⊗ ad PK . In particular, 

(∇h,−Fh)(X, Y ) = dhZ (Fh(X, Y )) − Fh(∇−X, Y ) − Fh(X, ∇−Y ) (5.2.9)Z Z Z 

for any triple of vector felds X, Y, Z on M . 

Lemma 5.2.1. The curvature of D is given by � � 
R∇− − F† ∧ F −I† 

FD = I [Fh, ] − F ∧ F† 

where 

iY iX F† ∧ F(Z) = g −1⟨iY Fh, Fh(X, Z)⟩ − g −1⟨iX Fh, Fh(Y, Z)⟩, 
iY iX I(Z) = (∇h,− 

Z Fh)(X, Y ) − Fh(X, g−1iZ iY d
cω) + Fh(Y, g−1iZ iX d

cω), 
iY iX F ∧ F†(r) = Fh(Y, g−1⟨iX Fh, r⟩) − Fh(X, g−1⟨iY Fh, r⟩). 

Proof. To compute the curvature, we write � � 
0 F† 

D = D0 + −F 0 
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where D0 = ∇− ⊕ dh . Then, we have � � � � 
0 F† −F† ∧ F 0 

FD = FD0 + dD0 + −F 0 0 −F ∧ F† � � (5.2.10)
(dh,−F)†R∇− − F† ∧ F 

= −dh,−F [Fh, ] − F ∧ F† 

where dh,− : Ω1(Hom(T, ad PK )) → Ω2(Hom(T, ad PK )) is the exterior covariant derivative 
induced by ∇− and Ah . The explicit formulae for F† ∧ F and F ∧ F† above follow from: 

iY iX F† ∧ F(Z) = iX F†(iY F)(Z) − iY F†(iX F)(Z) 
= −g −1⟨iX Fh, iY F(Z)⟩ + g −1⟨iY Fh, iX F(Z)⟩ 
= g −1⟨iY Fh, Fh(X, Z)⟩ − g −1⟨iX Fh, Fh(Y, Z)⟩ 

iY iX F ∧ F†(r) = iX F(iY F†)(r) − iY F(iX F†)(r) 
= Fh(Y, g−1⟨iX Fh, r⟩) − Fh(X, g−1⟨iY Fh, r⟩). 

As for dh,−F, we have: 

−iY iX d
h,−F(Z) = −dh 

X (Fh(Y, Z)) + dhY (Fh(X, Z)) + Fh([X, Y ], Z) 
+ Fh(Y, ∇− 

X Z) − Fh(X, ∇− 
Y Z) 

= dhZ (Fh(X, Y )) + Fh([X, Z], Y ) − Fh([Y, Z], X) 
+ Fh(Y, ∇− 

X Z) − Fh(X, ∇− 
Y Z) 

= (∇h,− 
Z Fh)(X, Y ) + Fh(Y, T∇− (X, Z)) − Fh(X, T∇− (Y, Z)) 

where T∇− denotes the torsion tensor of ∇− and in the second equality we have used the 
Bianchi identity dhFh = 0. Our formula for I follows now from T∇− (Y, Z) = g−1iZ iY d

cω. 

We next calculate the second Ricci curvature of the generalized Hermitian metric G, 
defned by the expression 

SG 
ωn 

= FG ∧ ωn−1 (5.2.11) 
n 

where ω is the hermitian metric in Proposition 2.2.8. Similarly as before, the skew-hermitian 
endomorphism SG ∈ Γ(End Qℓ) is given by the C-linear extension of the second Ricci 
curvature SD of the connection D. To calculate SD below, we need the following technical 
lemma. 

Lemma 5.2.2. Let (M, g) be a Riemannian manifold of even dimension. Let F ∈ Ω2 and 
H ∈ Ω3 be diferential forms. Then, the Hodge star operator satisfes: 

X1 m 

iX ∗ (F ∧ ∗H) = F (ei, g −1iX iei H)
2 
i=1 

for any vector feld X and any choice of g-orthonormal frame {ei} of T . 
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Proof. For ei the dual frame, one has 

∗(e i ∧ ∗ψ) = iei ψ 

for ψ ∈ Ωp, and therefore 

∗(e i ∧ ej ∧ ∗ψ) = (−1)piej iei ψ. 

By bilinearity, we get X 
∗(F ∧ ∗H) = − F (ei, ej )H(ei, ej , ·), 

i<j 

and therefore X 
iX ∗ (F ∧ ∗H) = − F (ei, ej )H(ei, ej , X) = 

X
1
2

F (ei, g −1iX iei H). 
i<j i 

Recall that the Bismut connection of the hermitian metric g in Proposition 2.2.8 is given 
by (cf. Proposition 5.1.1) 

∇B = ∇− 1 
2
g −1dcω. (5.2.12) 

for ∇g the Levi-Civita connection of g, which is a unitary connection on T 1,0 (see Section 
1.2.1). Recall also that it induces a well-defned curvature on the anti-canonical bundle 
−iρB , where ρB is the Bismut Ricci form (1.2.7) . Explicitly, for a choice of g-orthonormal 
basis {ei} of T at a point, one has: P 

ρB (X, Y ) = 1 
2 j g(R∇B (X, Y )Jej , ej ). (5.2.13) 

Proposition 5.2.3. The second Ricci form SD of the connection D is given by � � 
−g−1(ρB + ⟨Sh, Fh⟩) −S† 

SD = S [Sh, ] 

where ! 
− dh⋆Fh − iS(V ) = iJV θω

♯ Fh + ∗(Fh ∧ ∗dcω) , 

for dh⋆ the adjoint of dh and θω = Jd⋆ω the Lee form of g. 

Proof. In terms of the g-orthonormal frame {ei}, the second Ricci form is expressed as: P 
SD = 1 

2 j FD(ej , Jej ). (5.2.14) 

Using this and applying Lemma 5.2.1, we have � � 
1−
2 
I(ei, Jei) [Sh, ] − 
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F† ∧ F(ei, Jei) 1 
2
I†(ei, Jei)S∇− 

SD = − 
(5.2.15).F ∧ F†(ei, Jei)

1 1 
22 



We frst compute: 

g(iJei iei F† ∧ F(V ),W ) = ⟨Fh(Jei,W ), Fh(ei, V )⟩ − ⟨Fh(ei,W ), Fh(Jei, V )⟩. (5.2.16) 

Combining this with the identity (1.2.8)and Proposition 2.2.8, we also obtain 

g(S∇− (X), Y ) = 
2
1 g(R∇− (ei, Jei)X, Y ) 

= 1
2 g(R∇B (X, Y )ei, Jei) + 

4
1 ddcω(ei, Jei, X, Y ) 

= − ρB (X, Y ) − 1
4 ⟨Fh ∧ Fh⟩(ei, Jei, X, Y ) 

= − ρB (X, Y ) − 1 Fh ∧ Fh⟩(Jei, X, Y )
2 ⟨iei 

= − ρB (X, Y ) − ⟨Sh, Fh(X, Y )⟩ + 1
2 ⟨iei Fh ∧ iJei Fh⟩(X, Y ) 

= − ρB (X, Y ) − ⟨Sh, Fh(X, Y )⟩ + 
2
1 ⟨Fh(ei, X), Fh(Jei, Y )⟩ 

− 1
2 ⟨Fh(ei, Y ), Fh(Jei, X)⟩ 

= − ρB (X, Y ) − ⟨Sh, Fh(X, Y )⟩ + 1
2 g(iJei iei F† ∧ F(X), Y ), 

= F 1,1 as claimed. Using again Proposition 2.2.8, in particular Fh h , we also have 

iJei iei F ∧ F†(r) = Fh(Jei, g −1⟨iei Fh, r⟩) − Fh(ei, g −1⟨iJei Fh, r⟩) 
= −Fh(ei, Jg−1⟨iei Fh, r⟩) − Fh(ei, g −1⟨Fh(Jei, ), r⟩) 
= −2Fh(ei, g −1⟨Fh(Jei, ), r⟩) 
= −2Fh(ei, ej )⟨Fh(Jei, ej ), r⟩. 

Finally, the last expression vanishes using again Fh = Fh 
1,1 and symmetry considerations. 

In the computation of the remaining term, we will use the following standard expressions 
for the covariant derivative of the almost complex structure J , the adjoint of dh , and the Lee 
form: 

(∇g
X J)Y =

1 
g −1(dω(X, Y, ·) − dcω(JX, Y, ·)), (5.2.17)

2 
dh⋆Fh ∇h,g= −iei ei 

Fh, (5.2.18) 
θω(X) = 

2
1 dω(ei, Jei, X). (5.2.19) 

where ∇h,g is the covariant derivative with respect to the Levi-Civita connection ∇ and Ah . 
Combining this with (5.2.10), we conclude that: 

dh,−F(X)iJei iei I(X) = − iJei iei 

= iJei iei d
h(iX Fh) − Fh(ei, ∇Je 

− 
i 
X) + Fh(Jei, ∇e 

− 
i 
X) 

= 2dh (Fh(ei, JX)) + Fh([ei, Jei], X) + 2Fh(Jei, ∇− X)ei ei 

= 2(∇h,g 
ei 
Fh)(ei, JX) + 2Fh(∇g ei, JX) + 2Fh(ei, ∇g JX)ei ei 

+ 2Fh(∇g Jei, X) + 2Fh(Jei, (∇− −∇g)ei X) + 2Fh(Jei, ∇g X)ei ei 

= − 2dh⋆Fh(JX) + 2Fh((∇g
ei 
J)ei, X) + 2Fh(Jei, (∇− −∇g)ei X) 

+ 2Fh(ei, (∇g
ei 
J)X) 

= − 2dh⋆Fh(JX) − 2Fh(θω♯ , JX) + Fh(ei, g −1iJX iei d
cω). 

The statement follows from Lemma 5.2.2. 
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5.3 Hermite-Einstein metrics on Bott-Chern algebroids 

5.3.1 Coupled Hermite-Einstein metrics 
This section is devoted to the study of basic structural properties of coupled Hermite-Einstein 
metrics on Bott-Chern algebroids. Continuing with the notation of the previous Sections, 
let X = (M, J) a complex manifold, and let E be a string algebroid. Moreover, let V+ a 
generalized metric compatible with J , and we denote by Qℓ the holomorphic reduction of E. 

Defnition 5.3.1. Let G be the generalized hermitian metric on Qℓ induced by V+. Then, 
G is called a coupled Hermite-Einstein metric if: 

FG ∧ ωn−1 = 0, (5.3.1) 

where g = ω(·, J ·) is the hermitian metric on X determined by V+. 

Our frst goal is to obtain the conditions for G on a Bott-Chern algebroid to be a coupled 
the Hermitian-Einstein metric (5.3.1). 

The following Lemma can be compared with the classical result which states that a 
Hermite-Yang-Mills connection is Yang-Mills, provided that the background metric is Kähler. 
The analogue in Hermitian Geometry is apparently well-known to experts but, since we have 
not been able to fnd it in the literature, we shall provide a complete proof here. 

Lemma 5.3.2. Let (X, ω) be a hermitian manifold of complex dimension n endowed with a 
holomorphic principal G-bundle P , and let h be a hermitian reduction on P to a maximal 
compact subgroup. Then: 

Jdh(ΛωFh) = −dh⋆Fh − iθ♯ Fh + ⋆(Fh ∧ ⋆dcω). (5.3.2)
ω 

In particular, if h is Hermite-Einstein, that is, satisfying: 

zFh ∧ ωn−1 = 
n ω

n (5.3.3) 

for z a central element in the Lie algebra k, then: 

dh(ΛωFh) = 0, (5.3.4) 

or, equivalently: 

dh⋆Fh + iθ♯ Fh − ⋆(Fh ∧ ⋆dcω) = 0. (5.3.5)
ω 

Proof. By general theory, the curvature form of a Chern connection Fh satisfes: 

= F 1,1Fh h , dhFh = 0, (5.3.6) 
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Using the conditions above, we obtain: 

− (∇h,gdh∗ Fh(V ) = ei 
Fh)(ei, V ) 

= − dhei 
(Fh(Jei, JV )) + Fh(∇ei ei, V ) + Fh(ei, ∇ei V ) 

= − dhFh(ei, Jei, JV ) − dh (Fh(ei, JV )) + dJV 
h (Fh(ei, Jei))Jei 

− Fh([ei, Jei], JV ) + Fh([ei, JV ], Jei) − Fh([Jei, JV ], ei) 
+ Fh(∇ei ei, V ) + Fh(ei, ∇ei V ) 

= (∇h,g 
Jei 
Fh)(Jei, V )) + Fh(∇Jei Jei, V ) + Fh(Jei, ∇Jei V ) 

− Fh([ei, Jei], JV ) + Fh([ei, JV ], Jei) − Fh([Jei, JV ], ei) 
+ Fh(∇ei ei, V ) + Fh(ei, ∇ei V ) 

= − dh∗ Fh(V ) + 2Fh(∇ei ei, V ) + 2Fh(ei, ∇ei V ) + 2dhJV (ΛωFh) 
− 2Fh(∇ei Jei, JV ) + 2Fh(∇ei JV, Jei) + 2Fh(∇JV Jei, ei) 
+ 2dh (ΛωFh).JV 

= F 1,1Collecting the terms dh∗Fh(V ) and using again that Fh h , we have: 

dh∗ Fh(V ) = −Fh((∇ei J)ei, JV ) + Fh((∇ei J)V, Jei) + Fh(∇JV Jei, ei) + dh(ΛωFh)(JV ). 

Using elementary symmetry properties, which imply 

Fh(∇JV Jei, ei) = Fh(ej , ei)g(∇JV Jei, ej ) = 0, 

combined with the formulae for ∇J and θω in the proof of Proposition 5.2.3, which imply: 

Fh((∇ei J)ei, JV ) = Fh(θω♯ , V ), (5.3.7) 
1 dcω),Fh((∇ei J)V, Jei) = 
2 Fh(ei, g 

−1iV iei (5.3.8) 

then (5.3.2) now follows from Lemma 5.2.2. For the second part of the Lemma, note that 
the Hermite-Einstein equation (5.3.3) implies: 

ΛωFh = z, (5.3.9) 

for a central element z ∈ k, therefore dh(ΛωFh) = 0. By (5.3.2), this is equivalent to: 

dh⋆Fh + iθ♯ Fh − ⋆(Fh ∧ ⋆dcω) = 0. (5.3.10)
ω 

In the next result we characterize the generalized hermitian metrics on Qℓ that are 
coupled Hermite-Einstein equation, in the sense of Defnition (5.3.1). 

Lemma 5.3.3. Let X be a complex manifold endowed with a holomorphic principal G-bundle 
P . Assume that a pair (ω, h) satisfes the Bianchi identity: 

ddcω + ⟨Fh ∧ Fh⟩ = 0. (5.3.11) 

108 



Consider the holomorphic vector bundle underlying the Bott-Chern algebroid QP,2i∂ω,Ah (see 
Example 2.2.6) endowed with the (possibly) indefnite hermitian metric G in Lemma 5.1.2. 
Then, G solves the coupled Hermite-Einstein equation (5.3.1) if and only if the following 
conditions hold: 

[Sh, ·] = 0, 
dh(ΛωFh) = 0, (5.3.12) 

ρB + ⟨Sh, Fh⟩ = 0, 

where Sh denotes the second Ricci curvature of h. 

Proof. By construction, the Chern connection of G is the C-linear extension of the ⟨·, ·⟩0-
orthogonal connection D in Section 5.2. Then, the proof is straightforward from Proposition 
5.2.3. 

As one can directly see from (5.3.12), the coupled Hermite-Einstein condition (5.3.1) for a 
generalized Hermitian metric is very sensitive to the choice of quadratic Lie algebra (g, ⟨·, ·⟩). 
For example, when g is abelian the frst condition is trivially satisfed. In particular, when 
g = {0}, Lemma 5.3.3 recovers [67, Proposition 4.4] for pluriclosed hermitian metrics. On 
the other extreme, when g is semisimple, the frst equation implies that Sh = 0 and hence 
the second equation is satisfed by Lemma 5.3.2. Furthermore, in this case one has ρB = 0. 
We will return to the geometry of this system in Chapter 5 under the name of coupled 
Hermite-Einstein system. We are ready to prove the frst main result of this section. 

Proposition 5.3.4. Let X be a complex manifold endowed with a holomorphic principal G-
bundle P . Assume that (ω, h) solves (5.3.11) and (5.3.12). Consider the holomorphic vector 
bundle QP,2i∂ω,Ah endowed with the (possibly) indefnite Hermitian metric G in Lemma 5.1.2. 
Then, G solves the Hermitian-Einstein equation (5.3.1). 

Proof. The proof is straightforward from (5.3.12) with Lemma 5.3.2 and Lemma 5.3.3. 

5.3.2 Relation to the Hull-Strominger system 
We study next the relation between coupled Hermite-Einstein metrics on Bott-Chern alge-
broids (see Defnition 5.3.1) and the Hull-Strominger system (3.1.11). We recall that the 
construction in the previous Section requires the ansatz (3.1.12) for the connection ∇, and 
hence in our discussion we will always assume this condition. In this Section, frst we will 
embrace an abstract defnition of the Hull-Strominger system, as considered in (3.1.14), and 
then particularize to the more familiar situation of (3.1.11). 

Let (X, Ω) be a compact Calabi-Yau manifold of dimension n, and let P be a holomorphic 
principal G-bundle, for complex Lie group G with quadratic Lie algebra (g, ⟨·, ·⟩), saitsfying: 

p1(P ) = 0 ∈ H2,2 (X, R), (5.3.13)BC 

where its Chern-Weyl representative is taken with respect to the pairing ⟨·, ·⟩ induced in 
ad P . The next result yields the fundamental relation between the Hull-Strominger system 
and coupled Hermite-Einstein metrics (5.3.1). 
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Proposition 5.3.5. Let (ω, h) be a hermitian metric on X and a hermitian reduction of P 
satisfying the Hull-Strominger system (3.1.14). Then, (ω, h) solve (5.3.12). 

Proof. By the frst equation of (3.1.14), it is clear that Sh = 0, hence also the frst equation of 
(5.3.12) holds. Moreover, by Lemma 5.3.2 with z = 0, the second equation of (5.3.12) holds 
too. Therefore, to conclude, it is enough to show that the conformally balanced equation: 

d(||Ω||ωωn−1) = 0 (5.3.14) 

implies that ρB = 0. To see this, we frst use (6.1.8), which implies (see [62, Proposition 
3.6]) 

∇B (∥Ω∥− 
ω 
1Ω) = 0. (5.3.15) 

In particular, the connection induced by ∇B in the (anti)-canonical bundle is fat. Then, 
since ρB is proportional to the curvature of this connection, it vanishes. 

Corollary 5.3.6. Let (ω, h) be a hermitian metric on X and a hermitian reduction of P 
satisfying the Hull-Strominger system (3.1.14). Then, the generalized hermitian metric G 
given by Lemma 5.1.2 on QP,2i∂ω,Ah is a coupled Hermite-Einstein metric. 

Proof. This is a direct consequence of Propositions 5.3.5 and 5.3.4. 

The previous results apply to the Hull-Strominger system (3.1.11) straightforwardly in 
the following manner. Let V0 and V1 denote holomorphic vector bundles over X, where V0 
is a holomorphic structure on T 1,0 , and satisfying 

ch2(V0) = ch2(V1) ∈ H2,2 (X, R). (5.3.16)BC 

Let P be the holomorphic principal bundle with structure group given by: 

P = Fr V0 ×X Fr V1, G = GL(r0) × GL(r1), (5.3.17) 

for ri = rk Vi. Its Lie algebra is endowed with the quadratic structure: 

⟨·, ·⟩ : gl(r0) × gl(r1) −→ C 
(5.3.18)

((s0, s1), (t0, t1)) 7→ −αtr0(s0t0) + αtr1(s1t1) 

depending on the parameter α ∈ R. Then, Corollary 5.3.6 reads: 

Theorem 5.3.7. Let (X, Ω) be a compact Calabi-Yau manifold and V0, V1 holomorphic 
vector bundles. Assume that V0 has as underlying smooth vector bundle T 1,0 . Moreover, let 
(ω, h) be a hermitian metric on X and a hermitian metric on V1 solving the Hull-Strominger 
system (3.1.11) for ∇ the Chern connection on V0 of a hermitian metric h0 satisfying 

Fh0 ∧ ω2 = 0. (5.3.19) 

Then, on the Bott-Chern algebroid QP,2i∂ω,Ah0,h , the generalized hermitian metric G of 
Lemma 5.1.2 is coupled Hermite-Einstein, where P is as in (5.3.17), and Ah0,h is the product 
Chern connection of (h0, h) on P . 
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As we discussed in Section 3.1.1, solutions to the Hull-Strominger system (3.1.11) with 
the Hermite-Yang-Mills ansatz (3.1.12) for ∇ are not equivalent to solutions with the choice 
of ∇ being the Chern connection of g on the holomorphic tangent bundle T 1,0 . However, 
these ansatze are related if one frees the holomorphic structure of T 1,0 , as we observe in the 
following Remark. 

Remark 5.3.8. Any solution of (3.1.11) with the Hermite-Yang-Mills ansatz (3.1.12) deter-
mines a solution to (3.1.11) with V0 = (T 1,0 , ∇0,1). Hence ∇ = Dh0 where h0 is a hermitian 
metric on V0. Moreover, by pulling-back the Chern connection Dh0 via a complex gauge 

T 1,0transformation on taking h0 to g, we obtain a solution to (3.1.11) for ∇ the Chern 
connection of ω on a vector bundle isomorphic to V0. Observe that the equations (3.1.11) 
are invariant under this change. 

Remark 5.3.9. Lemma 5.3.3 and Theorem 5.3.7 shall be compared with the original result by 
De la Ossa, Larfors, and Svanes in [36, Corollary 1], who observed that the Hull-Strominger 
system is equivalent to (5.3.1) to all orders in perturbation theory. 

5.4 Futaki invariants for the Hull-Strominger system 
In this Section, we prove a moment map interpretation for the coupled Hermite-Einstein 
metric equation (5.3.1). Since the case of (possibly) indefnite signature of the metric is not 
completely standard in the literature, we will give here the details. Then, we will exploit this 
to provide families of non-Kähler Futaki invariants for the Hull-Strominger system. These 
are potentially non-trivial further obstructions to the existence of solutions to the system 
beyond balanced metrics and slope-stability of the bundles. 

5.4.1 Finite-dimensional picture 
The construction of our Futaki invariants stems from a general formalism that associates an 
invariant to any equation with a moment map interpretation, which we call Futaki invariant 
by analogy with the classical invariant obstructing the existence of Kähler-Einstein metrics 
on a Kähler manifold [60]. To draw parallels with the picture here, we give the following 
fnite-dimensional abstraction of the Futaki invariant. 

Lemma 5.4.1. Let (M, J, ω) be a compact Kähler manifold, and let K → Aut(M, J, ω) be 
a hamiltonian action, for a real, connected, compact Lie group K with infnitesimal action: 

k −→ Γ(T M), s 7→ Xs , (5.4.1) 

and moment map: 

µ : M −→ k ∗ . (5.4.2) 

Let G = Kc be the complexifcation of K. Then, for any x ∈ M and ξ ∈ Lie Gx the isotropy 
group of x, the map: 

Fx,ξ : G → C, g 7→ ⟨µ(g · x), Adg(ξ)⟩ (5.4.3) 

is constant. 
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Proof. First, observe that the K-action can be regarded, in particular, as a map: 

K → Aut(M, J), (5.4.4) 

where the group of biholomorphisms is a (fnite-dimensional) complex Lie group ([20]). We 
now use the universal property of the complexifcation of Lie groups. Namely, given any real 
Lie group map: 

K → C, (5.4.5) 

where C is a complex Lie group, there exists a complex Lie group map: 

G = KC → C (5.4.6) 

that restricts to the previous real map on K ⊂ KC . Then, the universal property of G 
extends (5.4.4) to a complex Lie group map: 

G → Aut(M, J), (5.4.7) 

extending the previous action, though G does not act symplectically on (M, ω). Now, fx 
x ∈ X. The complexifcation of the moment map µ satisfes: 

dx⟨µ, α⟩(Xβ) = ω(XRe α, Xβ ) + iω(X Im α, Xβ ), α, β ∈ g. (5.4.8) 

Let s ∈ Lie G = Lie K ⊗ C, and ξ ∈ Lie Gx. We write s = s0 + is1 and ξ = ξ0 + iξ1 with 
si, ξi ∈ k. Then, using (5.4.7), (5.4.8), and the K-equivariance of µ: � � 

d stdFx,ξ e = ⟨dxµ(Xs), ξ⟩ + ⟨µ(x), [s, ξ]⟩ 
dt |t=0 

= ω(Xξ0 , Xs) + iω(Xξ1 , Xs) − ⟨µ(x), [ξ0, s] + i[ξ1, s]⟩ 
= ω(Xξ0 , Xs0 + JXs1 ) + iω(Xξ1 , Xs0 + JXs1 ) + dx⟨µ, s⟩(Xξ0 + iXξ1 ) 
= ω(Xξ0 , Xs0 + JXs1 ) + iω(Xξ1 , Xs0 + JXs1 )+ 
+ ω(Xs0 + iXs1 , Xξ0 ) + iω(Xs0 + iXs1 , Xξ1 ) 

= − ω(JXs1 , Xξ) + iω(Xs1 , Xξ) = 0, 

the last step following from the hypothesis ξ ∈ Lie Gx. Now, it follows that: � � 
d � � dts) ts)Fx,ξ(e = dFet0s·x,Ad t0s ξ (e = 0, (5.4.9) 

edt |t=t0 dt |t=0 

where the last step follows from the above computation substituting x by et0s · x and ξ by 
Adet0s ξ, using that indeed Adet0s ξ ∈ Lie Get0sx. Therefore, F(·, ξ) is constant along the curve 
t 7→ ets , for any s ∈ Lie G. 

exp
Now by standard theory of Lie groups, the exponential map Lie G → G is a local 

difeomorphism around 0. Moreover, using that G is connected, since K is, any open set 
around 1 ∈ G generates G. Combining these facts with the above result that F(·, ξ) is 
constant in exponential curves, the Lemma follows. 
Remark 5.4.2. The interpretation of the Futaki invariant in [60] along the lines of the 
above Lemma follows from realizing the scalar curvature as a moment map [41, 59] (see also 
[128, Section 6.1]). However, in this infnite-dimensional situation, technical problems arise 
and one should think of Lemma 5.4.1 rather formally. 
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5.4.2 Aeppli classes and Futaki invariants 
In this Section we introduce a family of characters which obstructs the existence of solutions 
to the Hull-Strominger system in the form of (3.1.14). The construction of our Futaki 
invariants can be regarded as a formal infnite-dimensional analogous of the picture described 
in the previous Section. To see this, let X be a compact complex manifold and fx a balanced 
class b ∈ Hn−1,n−1(X, R). Moreover, let (Q, H) be a hermitian vector bundle, and let: 

G(Q, H) ⊂ G(Q) (5.4.10) 

be its unitary and complex gauge groups. Consider the space: 

A1,1 = {∇ is H − unitary , F∇ ∈ Ω1,1(Q, H)}, (5.4.11)H 

where [ωn−1] ∈ b, carrying the Atiyah-Bott symplectic structure [14], and consider the 
moment map : 

ˆ
⟨µ(∇), s⟩ = tr(sF∇) ∧ ωn−1 , s ∈ Lie G(Q, H) (5.4.12) 

X 

for the action of G(Q, H) by conjugation (see [41, Section 1.1] for details). The space of 
connections A1,1 admits a complex structure induced by the natural complex structure onH 
the space of integrable Dolbeault operators on Q via Chern correspondence. Moreover, the 
action is extended to a complex action of G(Q) on A1.1 . Explicitly, on the Chern connectionH 
associated to a holomorphic structure Q = (Q, ∂Q), the action is: 

g · DC (∂Q, H) = DC (g · ∂Q, H). (5.4.13) 

Therefore, the isotropy Lie algebra at this connection is naturally identifed with H0(End Q). 
Now, applying formally Lemma 5.4.1 to this infte-dimensional situation, we obtain: 

ˆ ˆ
tr(ϕFH) ∧ ωn−1 = tr(Adgϕ FDC (g·∂Q,H)) ∧ ωn−1 

X X ˆ
= tr(Adgϕ F g◦DC (∂Q,g ∗H)◦g−1 ) ∧ ωn−1 

X ˆ
= tr(Adgϕ AdgFDC (∂Q,g ∗H)) ∧ ωn−1 

X ˆ
= tr(ϕFg ∗H) ∧ ωn−1 . 

X 

For the applications in this Thesis, we will use a stronger version of this result with the 
novelty that we allow (non-degenerate) hermitian metrics G on Q with arbitrary signature. 
Since this is not completely standard in the literature, and passing from the fnite-dimensional 
picture to our situation is not completely straightforward, we give now the details that apply 
in our setting. 
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Lemma 5.4.3. Let X be a compact complex manifold, Q a holomorphic vector bundle over 
X, and b ∈ Hn−1,n−1(X, R) a Bott-Chern class. Then, the mapBC 

Fb : H0(X, End Q) −→ C ˆ 
(5.4.14)

φ 7→ tr(φFG) ∧ ν 
X 

defnes a character of the Lie algebra H0(X, End Q), which does not depend on the repre-
sentative ν of b = [ν] and neither on the choice of a pseudo-Hermitian metric G on Q. 
In particular, Fb = 0 if there exists a pseudo-Hermitian metric G on Q and a balanced 
Hermitian metric ω on X, with b = [ωn−1], solving the Hermitian-Einstein equation 

FG ∧ ωn−1 = 0. 

Proof. Let ν̃, ν ∈ Ωn−1,n−1 be d-closed forms on X, such that 

ν̃ − ν = ∂∂α 

for some α ∈ Ωn−2,n−2 . Then, by type decomposition and the Bianchi identity for DG , we 
have ˆ ˆ ˆ

tr(φFG) ∧ ∂∂α = d(tr(φFG) ∧ ∂α) − tr(∂φFG) ∧ ∂α = 0, 
X X X 

where the two summands vanish independently by hypothesis. Now, let G and G ′ be arbi-
trary pseudo-Hermitian metrics on Q. Since G and G ′ are both non-degenerate, there exists 
a smooth complex gauge transformation g on Q such that G ′ (·, ·) = G(g·, ·). Then, their 
Chern curvatures are related by 

−1∂GFG ′ = FG + ∂(g g) 

and it follows that, again by type decomposition and the holomorphicity of φ, 
ˆ ˆ 

−1∂Gtr(φ(FG ′ − FG)) ∧ ν = tr(φ∂(g g)) ∧ ν 
X X ˆ ˆ

−1∂G −1∂G = d(tr(φ(g g)) ∧ ν) − tr(∂φ ∧ (g g)) ∧ ν 
X X ˆ 

−1∂G+ tr(φ(g g)) ∧ ∂ν 
X 

= 0. 

Finally, for φ, φ ′ ∈ H0(X, End Q), using that [FG, φ ′ ] = ∂∂Gφ ′ , one has 
ˆ ˆ ˆ

tr([φ, φ ′ ]FG) ∧ ν = − tr(φ∂∂Gφ ′ ) ∧ ν = − d(tr(φ∂Gφ ′ )) ∧ ν = 0. 
X X X 
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Remark 5.4.4. Lemma 5.4.3 can be regarded as a formal infnite-dimensional of the Futaki 
invariant as described in Lemma 5.4.1, where the complex gauge group of Q acts on the 
space of connections with curvature of bidegree (1, 1) (see [40] for details). Accordingly, the 
isotropy Lie subalgebra at DG is precisely End(Q). 

Using the duality isomorphism Hn−1,n−1(X)∗ ∼= H1,1(X), the Futaki invariants in Lemma BC A 
5.4.3, with b varying along Hn−1,n−1(X), can be written more elegantly as a H1,1(X)-valued BC A 
character 

F : H0(X, End Q) → H1,1(X) : φ 7→ [tr(φFG)].A 

In order to apply Lemma 5.4.3 to the Hull-Strominger system (3.1.14), we assume that the 
compact complex manifold X is endowed with a holomorphic volume form Ω. Let P be a 
holomorphic principal bundle for a complex reductive Lie group G with quadratic Lie algebra 
(g, ⟨·, ·⟩). Moreover, we assume: 

p1(P ) = 0 ∈ H2,2 (X, R), (5.4.15)BC 

with respect to the pairing ⟨·, ·⟩. By Proposition 2.2.19, the set of equivalence classes of 
Bott-Chern algebroids over X with principal bundle P and bundle of quadratic Lie algebras 
(ad P, ⟨·, ·⟩) is a non-empty afne space S modelled on the image of 

∂ : HA 
1,1(X, R) → H1(Ω2 

cl
,0). (5.4.16) 

Our aim is to construct families of Futaki invariants indexed by isomorphism classes of 
Bott-Chern algebroids, as prescribed by (5.4.16). For this, we consider the family of fnite-
dimensional complex Lie algebras: 

H → S, (5.4.17) 

where the fbre over s ∈ S is given by the Lie algebra of the group of holomorphic gauge 
transformations of the vector bundle Qs 

Hs := H0(X, EndQs). (5.4.18) 

Then, by application of Lemma 5.4.3, there is a family of HA 
1,1(X)-valued characters 

Fs : Hs −→ HA 
1,1(X). (5.4.19) 

Theorem 5.4.5. Assume that (X, Ω, P ) admits a solution (ω, h) of the Hull-Strominger 
system (3.1.14) and balanced class 

b = [∥Ω∥ωωn−1] ∈ Hn−1,n−1 
BC (X, R). (5.4.20) 

Then, there exists s ∈ Sα such that ⟨Fs, b⟩ = 0. 

Proof. Consider the Bott-Chern algebroid QP,2i∂ω,Ah associated to the solution (ω, h), defned 
as in Example 2.2.6. Denote by s = [QP,2i∂ω,Ah ] ∈ S its isomorphism class. Then, by 
Proposition 5.3.5, the (possibly) indefnite Hermitian metric G in Lemma 5.1.2 solves the 
Hermitian-Einstein equation (5.3.1), and hence ⟨Fs, b⟩ = 0 by application of Lemma 5.4.3. 
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Remark 5.4.6. Following [70], we expect that the family of Lie algebras H depends holomor-
phically on parameters, upon restriction to any locus Sσ ⊂ Sα with fxed real string class σ 
(see [115] and [69, Proposition 3.11]). 

Observe from Lemma 5.4.3, that the algebroid structure of Q is superfuous to the Futaki 
invariant. Rather, only the holomorphic bundle underlying Q determines the value of F . 
These are classifed by the image of the composition: 

∂
HA 

1,1(X, R) −→ H1(Ω2 
cl
,0) −→ H 

∂ 
2,1(X). (5.4.21) 

Hence, Lemma 5.4.3 implies Fs is constant in the fbres of the second map of (5.4.21). This 
is the main motivation to introduce the more fexible anchored endomorphisms in Section 
5.4.3 to compute Futaki invariants. It is an open question whether it is possible to refne 
Lemma 5.4.3 to produce a genuine Bott-Chern algebroid invariant. 

As a direct application of Theorem 5.4.5, we obtain: 

Theorem 5.4.7. Let (X, Ω) be a Calabi-Yau threefold endowed with a pair of holomorphic 
vector bundles V0 and V , where the underlying smooth bundle of V0 is isomorphic to T 1,0 

and satisfying (3.2.5). Assume that (X, Ω, V ) admits a solution (ω, h) of the Hull-Strominger 
system (3.1.14) with balanced class b ∈ H2,2 (X, R), such that ∇ is the Chern connection onBC 
V0 of a Hermite-Einstein metric h0 satisfying: 

∧ ωn−1Fh0 = 0. (5.4.22) 

Then, there exists s ∈ S such that ⟨Fs, b⟩ = 0. 

In the case that the holomorphic tangent bundle T 1,0 (with the standard holomorphic 
structure) is polystable with respect to some balanced class b ∈ H2,2 (X, R), we expect thatBC 
Theorem 5.4.5 provides also an obstruction to the existence of solutions to (3.1.11) with 
∇ = Dg. 

As a consequence of Theorem 5.4.5, in order to disprove the strong version of Yau’s 
Conjecture in Question 4.3.1 for the case of Calabi-Yau threefolds, it sufces to fnd a tuple 
(X, Ω, V ), α ∈ R and a balanced class b ∈ H2,2 (X, R), such that V is b-polystable andBC 

⟨Fs, b⟩ ≠ 0, ∀s ∈ U0 , 

where U0 denotes the restriction of the relative family of string algebroid extensions over a 
dense open subset of the moduli space for V0. 

When the Calabi-Yau manifold X satisfes the ∂∂-Lemma the space S reduces to a 
point (see Proposition 2.2.19). In this case we obtain a unique invariant F0 obstructing the 
existence of solutions, which can be regarded as a stringy version of the classical Futaki 
invariant for the holomorphic bundle P . Based on this, we expect that F0 provides a useful 
tool to address Question 4.3.1 in the case of Calabi-Yau manifolds obtained via conifold 
transitions and fops. 
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Remark 5.4.8. As a consequence of Proposition 5.3.4 and Lemma 5.4.3, we obtain a 
stronger version of Theorem 5.4.5. For instance, let P be a holomorphic principal bun-
dle over a compact complex manifold X which admits a solution (g, h) of (5.3.12). Let g̃ be 
a Gauduchon metric in the conformal class of g. Then, if g̃ is balanced, then Fb = 0 where 
b = [ω̃n−1]. 

Remark 5.4.9. While Theorem 5.4.5 provides a new method to tackle Question 4.3.1, as 
discussed in this Section, it may also be regarded as a tool to study canonical geometry on 
string algebroids. This question was addressed in [68]. In the light of the results of this 
Section, can be rephrased as the possibility of constructing a conjectural map: 

ΣQ(R) ⊃ U −→ {b ∈ Hn−1,n−1(X, R) | ⟨F , b⟩ = 0} (5.4.23)BC 

that associates to an Aeppli class σ in Q (see [68, Defnition 3.20]), the balanced class of 
the solution to the Hull-Strominger system (3.1.14) in σ. 

5.4.3 Anchored endomorphisms of Bott-Chern algebroids 
Our frst goal is to defne a new family of holomorphic endomorphisms of Bott-Chern al-
gebroids. This notion, much wider than Defnition 2.1.12, is actually enough to defne the 
Futaki invariants in this setting, and allows to test a larger number of obstructions. 

Let (X, Ω) a compact Calabi-Yau manfold and we fx P a holomorphic principal bundle, 
for a complex Lie group G, with quadratic Lie algebra (g, ⟨·, ·⟩) as in the previous Sec-
tions. Consider the Bott-Chern algebroid Q = QP,2i∂ω,Ah (see Example 2.2.6) associated to 
a solution of 

ddcω + ⟨Fh ∧ Fh⟩ = 0. (5.4.24) 

Let End Q be the bundle of endomorphisms of the holomorphic vector bundle underlying 
Q, that is, a priori no compatibility is required with the algebroid structure. We will denote 
by Λ2Q ⊂ End Q the bundle of orthogonal endomorphisms of Q with respect to the ambient 
pairing ⟨·, ·⟩0, that is, of sections satisfying 

⟨φ·, ·⟩0 + ⟨·, φ·⟩0 = 0. (5.4.25) 

Defnition 5.4.10. An element φ ∈ Γ(Λ2Q) is called an anchored endomorphism of Q if 
there exists ϕ ∈ Γ(End T 1,0) such that: 

π ◦ φ = ϕ ◦ π. (5.4.26) 

In our next result we provide an explicit characterization of anchored endomorphisms, via 
the identifcation of the smooth complex vector bundle underlying Q with T 1,0 ⊕ adP ⊕ T ∗ 

1,0 
(see Example 2.2.6). 

Lemma 5.4.11. Let Q = QP,2i∂ω,Ah be the Bott-Chern algebroid associated to a solu-
tion of (5.4.24). Let φ be a smooth anchored endomorphism of Q. Then, there exists 
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ϕ ∈ Γ(EndT 1,0), b ∈ Ω2,0 , σ ∈ Γ(Λ2adP ) skew-orthogonal, and α ∈ Ω1,0(ad P ), uniquely 
determined by φ, such that 

ϕ 0 0 
φ = φ(ϕ, α, σ, b) := 

 α σ 0 

 . (5.4.27) 
b −2⟨α, ·⟩ −ϕ∗ 

Conversely, any tuple (ϕ, b, σ, α) as above defnes a smooth anchored endomorphism φ of Q 
via formula (5.4.27). 

Proof. The proof follows directly from [61, Section 3.1]. 

In our next result we characterize the holomorphicity condition ∂Qφ = 0, for φ in (5.4.27), 
where ∂Q denotes the Dolbeault operator in Example 2.2.6. 

Lemma 5.4.12. Let Q ∼= QP,2i∂ω,Ah be the Bott-Chern algebroid associated to a solution 
of (5.4.24). Let φ = φ(ϕ, α, σ, b) be a smooth anchored endomorphism of Q. Then φ is 
holomorphic if and only if the following conditions are satisfed 

∂ϕ = 0 
∂σ = 0 

(5.4.28)
∂α + σ(Fh) − ϕ⌟Fh = 0 

∂b + ϕ⌟(2i∂ω) − 2⟨α ∧ Fh⟩ = 0 

where: 

iX1,0 (ϕ⌟Fh) = iϕ(X1,0)Fh (5.4.29) 
iY 1,0 iX1,0 (ϕ⌟(2i∂ω)) = iY 1,0 iϕ(X1,0)(2i∂ω) + iϕ(Y 1,0)iX1,0 (2i∂ω) (5.4.30) 

Proof. With the notation in Lemma 5.4.11, the proof follows from 

(∂Qφ)(X + ξ + r) = ∂Q(φ(X + ξ + r)) − φ(∂Q(X + ξ + r)) 

using the expression for ∂Q given by (2.2.17). Imposing that this expression vanishes for 
any X, ξ and r, a lengthy but straightforward computation shows it is equivalent to the 
equations above. 

The system of holomorphicity equations (5.4.28) can be, in general, difcult to solve 
completely. However, we now observe there exist natural families of solutions. 

Remark 5.4.13. The subspace of solutions to (5.4.28) with ϕ = σ = 0 is given by 

S0 = {(b, α) | ∂b − 2⟨α ∧ Fh⟩ = 0 , b ∈ Ω2,0 , α ∈ H0(X, Ω1,0(ad P ))}. (5.4.31) 

If we defne (cf. [70, Proposition 4.6]) 

δP : H0(X, Ω1,0(ad P )) −→ H2,1(X) : α 7→ [2⟨α ∧ Fh⟩],∂ (5.4.32) 

the space S0 fts in the short exact sequence 

0 → H2,0(X) → S0 → ker δP∂ → 0 (5.4.33) 
2,0In particular if h (X) > 
∂ 

anchored endomorphism. 
0 or if h0(Ω1,0(ad P )) > 2,1h (X),

∂ then Q has a holomorphic 
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Remark 5.4.14. Suppose that X satisfes the ∂∂-Lemma. Then, for any s ∈ H0(X, ad P ), 
we can construct holomorphic anchored endomorphisms φ = φ(ϕ, α, σ, b), defned by (5.4.27), 
as follows: set 

ϕ = 0 , α = ∂h s , σ = [s, ·]. (5.4.34) 

Then, the frst three equations of (5.4.28) hold. Now, we have: 

∂⟨∂h s ∧ Fh⟩ = ⟨∂∂h s ∧ Fh⟩ = ⟨[Fh, s] ∧ Fh⟩ = −⟨s ∧ [Fh ∧ Fh]⟩ = 0, (5.4.35) 

and hence, by the ∂∂-Lemma, there exists b ∈ Ω2,0 such that 

∂b = 2⟨∂h s ∧ Fh⟩, (5.4.36) 

since the right hand side is ∂-exact and d-closed. 

Next, we address the computation of the Futaki invariants in Theorem 5.4.5 for holomor-
phic anchored endomorphism of Q. For this, given a pair of Hermitian metrics g and g0 on 
X, γ ∈ Γ(End T ⊗ C), and τ ∈ Ω2 , we denote 

1 1 
trg,g0 γ = g(γJe0 

j , e 0 
j ), Λω0 τ = τ(e 0 

j , Je
0 
j ), (5.4.37)

2 2 

for any choice of g0-orthonormal basis e10 , . . . , e2
0 
n of T , where we use Einstein’s convention 

to sum over repeated indices. 

Proposition 5.4.15. Consider the Bott-Chern algebroid Q = QP,2i∂ω,Ah associated to a 
solution (ω, h) of (5.4.24), with ω positive. Let φ = φ(ϕ, α, σ, b) be a holomorphic anchored 

] ∈ Hn−1,n−1endomorphism of Q and let b = [ωn−1 (X, R) be a balanced class. Then, the0 BC 
evaluation of the Futaki character in Lemma 5.4.3 is given by 

ˆ 
0,1 0⟨F(φ), b⟩ = − R∇B Fh, Fh⟩)(ek, ϕ ∗ g e − ϕe1,0) 

ωn 
(trg,g0 + ⟨Λω0 k k nX ˆ 

ωn 
R0,2 0− ⟨trg,g0 ∇B , b⟩g 

n ˆX (5.4.38)� � ωn 
+ trad P (σ[Λω0 Fh, ·]) + ⟨σFh(e 0 

j , ek), Fh(Jej 
0 , ek)⟩ 0 

nX ̂ 
∇h,− −1dcω(e 0 ω0 

n 
+ 2 ⟨α(ek), Λω0 ek 

Fh + Fh(Jej 0 , g j , ek, ·))⟩ nX 

for any choices of g-orthonormal basis e1, . . . , e2n and g0-orthonormal basis e10 , . . . , e02n of T . 

Proof. Consider the isomorphism ψ : QP,2i∂ω,Ah → T ⊗ C ⊕ ad P defned by Lemma 5.1.2, 
that is, 

ψ(X + r + ξ) = X − 1
2 g 

−1ξ + r. 

Then φ̃ := ψ ◦ φ ◦ ψ−1 is given by 

φ̃(X + r) = ϕ(X1,0) − ϕ ∗ g (X0,1) − 
2
1 g −1iX1,0 b + g −1⟨α, r⟩ + σ(r) + iX1,0 α 
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where ϕ∗ g (X0,1) = g−1g(X0,1, ϕ·). By Lemma 5.4.3 and formula (5.2.11), it sufces to com-
pute: 

1 
tr( ̃φSG) = tr(φ̃FG(ej 

0, Je0 
j )). 2 

For this, using that φ = φ(ϕ, α, σ, b) depends linearly on ϕ, α, σ, and b, we can decompose 
uniquely 

φ̃ = φ̃ϕ + φ̃b + φ̃α + φ̃σ, 

so that φ̃ϕ only depends on ϕ, and similarly for the rest. Now, denoting π1,0 : T ⊗ C → T 1,0 

the natural projection, by Lemma 5.2.1 we have 

0 0 0tr( ̃φϕFG(ej , Je
0 
j )) = trT ⊗C(ϕ ◦ π1,0(R∇− (ej , Jej 

0) − F† ∧ F(ej , Je0 
j ))) 

− trT ⊗C(ϕ ∗ g ◦ π0,1(R∇− (e 0 
j , Jej 

0) − F† ∧ F(e 0 
j , Jej 

0))) 
0 0,1 = g(R∇− (e , Je0)ek, ϕ ∗ g e − ϕe1,0)j j k k 

0,1 1,0 0− ⟨Fh(Je0 
j , ϕ ∗ g e − ϕe ), Fh(ej , ek)⟩k k 

0 0,1+ ⟨Fh(e , ϕ ∗ g e − ϕe1,0), Fh(Jej 0 , ek)⟩j k k 
1 0 0,1 = ddcω(e , Je0 

j , ek, ϕ ∗ g e − ϕe1,0)
2 j k k 

0,1 0+ g(R∇B (ek, ϕ ∗ g e − ϕe1,0)e , Je0)k k j j 
0,1 0− ⟨Fh(Je0 

j , ϕ ∗ g e − ϕe1,0), Fh(ej , ek)⟩k k 
0 0,1 1,0+ ⟨Fh(ej , ϕ ∗ g e − ϕe ), Fh(Jej 

0 , ek)⟩k k 

= (R∇B (ek, ϕ ∗ g e 0,1 − ϕe1,0))− 2trg,g0 k k 

Fh, Fh(ek, ϕ ∗ g e 0,1 − ϕe1,0)⟩,− 2⟨Λω0 k k 

where in the third and fourth equalities we have used (1.2.8) and (5.4.24), respectively. 
Similarly, 

0 − 1 0 0tr( ̃φbFG(ej , Jej 
0)) = 

2 trT ⊗C(g −1b ◦ π1,0(R∇− (ej , Jej 
0) − F† ∧ F(ej , Jej 0))) 

− 1 0 0 = 
2 b(R∇− (ej , Jej 

0)ek, ek) + 
2
1 b(g −1⟨Fh(Jej 0 , ·), Fh(ej , ek)⟩, ek) 

− 
2
1 b(g −1⟨Fh(e 0 

j , ·), Fh(Jej 0 , ek)⟩, ek) 
= − 1

2 g(R∇B (ek, em)e 0 
j , Je

0 
j )b(em, ek) 

1 0 0+ 
2 b(g 

−1⟨Fh(ej , ·), Fh(ej , ek)⟩, Jek) 
− 

2
1 b(g −1⟨Fh(e 0 

j , ·), Fh(Jej 0 , ek)⟩, ek) 
R0,2 = − 2⟨trg,g0 ∇B , b⟩g, 

and, using the notation in Lemma 5.2.1, 

tr ̃φαFG(ej 
0, Je0 

j ) = 2⟨α(ek), I(ej 0, Je0 
j )ek⟩ 

∇h,− 0 = 4⟨α(ek), Λω0 ek 
Fh⟩ + 4⟨α(ek), Fh(Je0 

j , g −1dcω(ej , ek, ·))⟩ 
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Finally, taking basis {rk} and {r̃k} of ad P such that ⟨rk, r̃j ⟩ = δkj , we have: 
0 0 0tr( ̃φσFG(ej , Je

0 
j )) = trad P (σ ◦ ([Fh(ej , Jej 0), ·] − F ∧ F†(ej , Je

0 
j ))) 

= ⟨r̃k, σ([Fh(ej 0, Je0 
j ), rk])⟩ 

− ⟨r̃k, σFh(Jej 0 , g −1⟨Fh(ej 0 , ·), rk⟩)⟩ 
+ ⟨r̃k, σFh(ej 0 , g −1⟨Fh(Je0 

j , ·), rk⟩)⟩ 
= 2trad P (σ([Λω0 Fh, ·]) 
− ⟨r̃k, σFh(Je0 

j , ek)⟩⟨Fh(ej 0 , ek), rk⟩ 
+ ⟨r̃k, σFh(ej 0 , ek)⟩⟨Fh(Je0 

j , ek), rk⟩ 
= 2trad P (σ([Λω0 Fh, ·]) + 2⟨σFh(e 0 

j , ek), Fh(Jej 
0 , ek)⟩. 

5.4.4 Computations of Futaki invariants 
In this Section we give an account of several computations of the Futaki invariant on families 
of Bott-Chern algebroids (5.4.19). While for the moment being our results are not conclusive 
to give an answer to the Question 4.3.1, they rule out some families of manifolds and hint 
towards some others where potential non-trivial obstructions may appear. 

We begin by giving the details of a slight generalization to of a comment that was anticipated 
in [28, Introduction]. 

Proposition 5.4.16. Let (X, Ω) be a compact Kähler Calabi-Yau threefold, and let V0 and 
V1 be holomorphic vector bundles satisfying (3.2.3), (3.2.5). We assume V0 is difeomorphic 
to T 1,0 . Moreover, suppose there exists a Kähler class κ ∈ H1,1(X) such that V0 and V1 are 
κ-stable. Then: 

1. There exists a unique Bott-Chern algebroid (Q, P, ρ), up to isomorphism, where P = 
Fr V0 ×X Fr V1 with Lie algebra pairing given by: 

⟨(r0, r1), (s0, s1)⟩ = −αtrV0 (r0s0) + αtrV1 (r1s1), α ∈ R. (5.4.39) 

2. For any balanced class b ∈ H2,2(X), the Futaki invariant: 

⟨F , b⟩ : End(Q) −→ C (5.4.40) 

given by pairing (5.4.19) against b vanishes. 

Proof. Given that (3.2.5) holds, by assumption for any hi hermitian metrics on Vi, there 
exists τ ∈ Ω1,1(X, R) such that: 

ddcτ − αtrV0 Fh0 ∧ Fh0 + αtrV1 Fh1 ∧ Fh1 = 0, (5.4.41) 

which defnes a Bott-Chern algebroid Q = QP,2i∂τ,A(h0,h1) (see Defnition 2.2.13). Since X 
is Kähler, in particular it satisfes the ∂∂-Lemma, hence the deformation map (2.2.38) is 
constant. Then, the frst item follows by Proposition 2.2.19. 
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For the second item, frst recall that the stability condition for Vi is open in the Kähler 
cone of X. Therefore there exists an open set Uκ ⊂ H1,1(X) within the stability locus 
of V0 and V1. Let κ ′ ∈ Uκ . Then, by the existence result in [28, Proposition 3.2], there 
exists a solution to the Hull-Strominger system (3.1.11) with the condition (3.1.12) and 
V0 = (T 1,0 , ∇0,1), and with balanced class λκ ′2 , for λ >> 0. Therefore, by Theorem 5.4.7, 
the Futaki invariant ⟨F , λκ ′2⟩ = 0. Using the linearity of F , we see that it vanishes on any 
balanced class given by the square of a Kähler class in Uκ . Now, we claim this is actually 
an open set in the balanced cone of X. Hence the Futaki invariant vanishes identically on 
all the balanced cone, using again that it is linear in the balanced class. Finally, to prove 
the claim, we just use that the map (see [56]): 

b : H1,1(X) −→ H2,2(X), σ 7→ σ2 (5.4.42) 

has invertible diferential at Kähler classes, as a consequence of Hard Lefschetz Theorem. 

Our next aim is to exhibit non-trivial Futaki invariants that capture slope unstability of 
the bundles. Observe that, in general, for a holomorphic string algebroid (Q, P, ρ), the set 
H0(End(ad P )) does not embed in H0(End Q), hence (5.4.19) does not accomodate in a 
straightforward manner the classical Futaki invariant of Lemma 5.4.14 for the bundle ad P . 
Therefore, in the following Example we consider a particular situation: 

Example 5.4.17. Let X be a compact complex manifold of dimension n, and let V0, V1 be 
holomorphic vector bundles. Moreover, assume V0 = U ⊕ W is a split sum. Let (ω, h0, h1) a 
solution to the Bianchi identity: 

ddcω − αtr Fh0 ∧ Fh0 + αtr Fh1 ∧ Fh1 , α ∈ R\{0}, (5.4.43) 

where h0 is a split sum (hU , hW ). Consider the Bott-Chern algebroid Q = QP,2i∂ω,A(h0,h1) , 
where P = Fr V0 × Fr V1. Then: 

ad P ∼= End V0 ⊕ End V1 
(5.4.44)∼= End U ⊕ End W ⊕ Hom(U, W ) ⊕ Hom(W, U) ⊕ End V1. 

Then, we defne a section σ ∈ Γ(End(ad P )) given by: 

σ = idHom(U,W ) − idHom(W,U), (5.4.45) 

extending by zero on the rest of components of End(ad P ). and vanishes on traceless endo-
morphisms of U, W , and has zero component in the rest of the terms of End(ad P ). Next, 
check that σ is orthogonal as a section of (Q, ⟨·, ·⟩), where the pairing is the same as in 
(5.4.39). For this, we write for a section r ∈ Γ(ad P ): 

r = rU + rW + rUW + rWU + r1 (5.4.46) 

to denote each of the terms in the decomposition (5.4.44), with obvious notations. Then, for 
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any two sections r, s ∈ ad P we have: 

⟨σ(r), s⟩ + ⟨r, σ(s)⟩ = ⟨rUW − rWU , s⟩ + ⟨r, sUW − sWU ⟩� �� � 
− αtr � 

0 
rUW 

−rW U 
0 �� 

sU 
sUW 

sW U 
sW 

+ αtr(0 · s1) � 
− αtr rU 

rUW 

rW U 
rW 

0 
sUW 

−sW U 
0 + αtr(r1 · 0) 

= − α (−tr(rWU sUW ) + tr(rUW sWU )) − α (tr(rWU sUW ) − tr(rUW sWU )) 
= 0. 

Moreover, by Lemma 5.4.12, ∂Qσ = 0 if and only if: 

∂End(ad P )σ = 0, 
(5.4.47)

σ(F(h0,h1)) = 0. 

The frst of this equations holds clearly by the expression of σ. For the second one, we use 
that σ has vanishing components in End(End(U)), End(End(W )) and End(End(V1)), while, 
by assumption on h0, F(h0,h1) has non-trivial components precisely in these terms. Then, we 

] ∈ Hn−1,n−1 can evaluate the Futaki invariant on σ for a balanced class b0 = [ω0 
n−1 

BC (X, R). 
By (5.4.38), and using the second equation in (5.4.47): 

ˆ 
0⟨F(σ), b0⟩ = 2 trad P (σ ◦ [Λω0 F(h0,h1), ·])
ω

n 
n 

X ˆ
= 2 trEnd V0 (σ ◦ [Λω0 Fh0 , ·])

ω

n 
0 
n 

X 

To compute this, frst note that if r ∈ Γ(End V0), then: � � 
0 (Λω0 FhU ) ◦ rWU − rWU ◦ (Λω0 FhW )[Λω0 Fh0 , r] = 

(Λω0 FhW ) ◦ rUW − rUW ◦ (Λω0 FhU ) 0� � 
0 −(Λω0 FhU ) ◦ rWU + rWU ◦ (Λω0 FhW )σ ◦ [Λω0 Fh0 , r] = ,

(Λω0 FhW ) ◦ rUW − rUW ◦ (Λω0 FhU ) 0 

from where we obtain: 

trEnd V0 (σ ◦ [Λω0 Fh0 , ·]) = 2trW (Λω0 FhW ) − 2trU (Λω0 FhU ). (5.4.48) 

Therefore, we can fnish computing the Futaki invariant: 
ˆ 

0⟨F(σ), b0⟩ = 4 (trW (Λω0 FhW ) − trU (Λω0 FhU ))
ω

n 
n 

X 

= − 8πi(n − 1)!(rk W · µb0 W − rk U · µb0 U). 

If a solution to the Hull-Strominger (3.1.14) exists in b0 implies, in particular that µb0 V0 = 0, 
we conclude that ⟨F(σ), b0⟩ measures whether the splitting V0 = U ⊕ W destabilizes V0 with 
respect to b0. 
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Now, we give some Examples about the computation of Futaki invariants for the Hull-
Strominger system on complex homogeneous manifolds. Next, we exhibit a situation in 
which one can abstractly argue the vanishing of the Futaki invariant, while at the same time 
we show that it is computationally very involved, even for homogeneous manifolds. 

Example 5.4.18. Let X = (Γ\G, J) be the one-parameter family of complex locally homo-
genenous threefolds determined by the structure relations: 

dω1 = dω2 = 0, dω3 = ω12 + ω11 + bω12 − ω22, (5.4.49) 

in a suitable invariant frame {ωi} of T1 
∗ 
,0, corresponding to the real Lie algebras Lie G = h2, 

h4 or h5 depending on whether the parameter b ∈ Q satisfes b2 < 1, b2 = 1 or b2 > 1 
respectively (see Section 5.4.28), and let α < 0 be a fxed constant. Then, we obtain a family 
of solutions to the Bianchi identity: 

ddcω − αtr Fh0 ∧ Fh0 + αtr Fh1 ∧ Fh1 , (5.4.50) 

by Proposition 4.2.10 setting rk V1 = 1. Here, the parameter s3 of ω as in (4.2.13) is 
determined by α and Fh1 . In particular, we also obtain a family of balanced classes {σ(ω)}
indexed by ω. 

Let QP,2i∂ω,A(h0,h1) be the associated family of Bott-Chern algebroids, where P = Fr V0 ×X 
Fr V1, and the pairing ⟨·, ·⟩ is as in (5.4.39). In the manifold X, the cohomology group 
HA 

1,1((Lie G, J), R) computes HA 
1,1(X, R) as a direct application of Theorems 4.1.5 ,4.1.6 

and Remark 4.1.7. It is then straightforward to check that the map (2.2.38) is constant. 
Therefore, by Proposition (2.2.19), every Bott-Chern algebroid in the family QP,2i∂ω,A(h0,h1) 

shares the same isomorphism class, that we denote by Q. 

Now, again by Proposition 4.2.10, Q admits solutions to the Hull-Strominger system in 
any of the balanced classes σ(ω) in the above family. Then, by Theorem 5.4.5 the Futaki 
invariants for Q: 

⟨F , σ(ω)⟩ = 0. (5.4.51) 

Since F is linear in the balanced class, then even: 

⟨F , b⟩ = 0, (5.4.52) 

where b is any balanced class represented by an invariant metric. Therefore, we do not fnd 
non-trivial invariants for this Example. Even though, for completeness we now give some 
details on how an explicit computation of (5.4.52) is performed exploiting the invariant 
ansatz. This can be extrapolated to other locally homogenenous Examples, where an abstract 
argument to determine F may not be available. 

The computation of the Futaki invariant requires frst knowing the holomorphic sections 
of End Q. While determining all of them may not be feasible, a distinguished family is given 
by anchored endomorphisms (see Section 5.4.3). Recall that an anchored endomorphism is a 
tuple (ϕ, α, σ, b) as in Lemma (5.4.11), where ϕ ∈ Γ(End T 1,0), α = (α0, α1) ∈ Ω1,0(End V0 ⊕ 
End V1), σ ∈ Γ(End(ad P )) and b ∈ Ω2 

X
,0 . To obtain manageable formulae, we will restrict 
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O⊕3here to V0 = X , σ ∈ Γ(End(End V0)) and Fh1 = F (0, n, p, 0) (see Proposition 4.2.10). 
Then, using the global invariant frame {Xi} for T 1,0 and dual frame {ωi} for T1 

∗ 
,0, each of 

these tensors admit a natural invariant ansatz. Therefore, we can write them in the following 
form: 

ϕ = (ϕij ), ϕij ∈ C, i, j = 1, 2, 3. P3α0 = ωi(α
i ), αi ∈ C, j, k = 1, 2, 3.i=1 0jk 0jk P3α1 = ωiα1 

i , αi ∈ C. (5.4.53)
i=1 1 

σ = (σijkl), σijkl ∈ C, i, j, k, l = 1, 2, 3.P 
b = 1≤i<j≤3 ωij bij , bij ∈ C. 

With the aid of a mathematical software, one can check that the invariant solutions to the 
holomorphicity equations (5.4.28) for the presentation Q = QP,2i∂ω0,A(h0,h1) , where: 

ω0 = 
2 
i (ω11 + ω22 + ω33), (5.4.54) 

and coupling constant α as in (4.2.40), are given by: 

ϕ = 

  0 0 0 
0 0 0 

  , 
2(3+b2)(im2α1−m1α2)1 1 0ϕ31 2 − b23 + bϕ31m2 

α0 free, (5.4.55) 
α1 = ω1α1

1 + ω2α
2
1, 

�σ ∈ End(End V0, ⟨·, ·⟩) 
2i(3+b2)α2 

1b = b12ω12 + − bb23 − ϕ31 ω13 + b23ω23. m2 

We give now the result of evaluating each of the terms of the expression (5.4.38). Although 
our computations are general, here because of limitations of space, we have restricted to the 
family of balanced classes b = [ω2], where (cf. (4.2.13)): 

ω = i(ω11 + s2ω22 + s3ω33) + s4(ω12 − ω21) + s6(ω13 − ω31) + is9(ω23 + ω32). (5.4.56) 

Then, we compute separately each of the integrals in the expression for the Futaki invariant 
of Proposition 5.4.15 associated to each of the classical tensors for anchored endomorphisms. 
We provide here the explicit expressions: 

ˆ
2i(2(3+b2)s6α1+(m2+im3)(is6b23+s9ϕ31)) ω3 

Iϕ(b) = 1 ,2(m2+im3)(s3−s ) 36 X ˆ
4(3+b2)(−is6α1(m2−im3)+s9α2(m2+im3) ω3 

Iα(b) = 1 1 ,2 2 2(m +m )(s3−s )) 32 3 6 X (5.4.57) 
Iσ(b) = 0, ˆ

2s6b23(m2−im3)−2s9(2(3+b2)α2+i(m2−im3)ϕ31) ω3 
Ib(b) = 1 .2(m2−im3)(s3−s ) 36 X 

free, � 
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We stress that each of the terms φϕ, φα, φb is not holomorphic and only the sum of these 
Futaki terms is a sensible invariant. One can readily check that this sum indeed vanishes, 
as expected. However, these computations show that the Futaki invariant constructed can be 
computationally very involved. 

A number of issues from the above Example should be avoided to fnd non-trivial in-
variants for the Hull-Strominger system. In the frst place, we can test Futaki invariants 
for families of Bott-Chern algebroids modelled on the image of the map (2.2.38), which was 
trivial in Example 5.4.18. Moreover, from Section 5.4.2, it is clear that only the holomorphic 
structure of Bott-Chern algebroids is used to defne Futaki invariants, hence the restriction 
to evaluating on anchored endomorphisms is not necessary. In the following Example, we 
embrace this more general setting to compute invariants. 

Example 5.4.19. Let X = (Γ\G, J) be the complex homogeneous manifold with underlying 
h−real Lie algebra Lie G = 19. We refer to Section 4.2.2 and Example 4.3.6 for details. 

We have not been able to fnd solutions to the Hull-Strominger system with the instanton 
condition (3.1.12) on X, hence it is reasonable to look for obstructions on this manifold. 

Recall that T ∗ has global frame {ωi} satisfying the structure equations: 1,0 

dω1 = 0, dω2 = ω13 + ω13, dω3 = i(ω12 − ω21). (5.4.58) 

For simplicity, we will consider the Hull-Strominger system (3.1.14), where the principal 
bundle is P = Fr L0 ×X FrL1, where L0 and L1 are the holomorphic line bundles admitting 
hermitian metrics h0, h1 respectively satisfying: 

Fhj = imj (ω12 − ω21), mj ∈ R. (5.4.59) 

Then, a solution to the Bianchi identity with coupling constant α ∈ R: 

ddcγ − αFh0 ∧ Fh0 + αFh1 ∧ Fh1 = 0 (5.4.60) 

is given by: 

α 2 2γ = 
8 (m0 − m1)ω33. (5.4.61) 

This determines a Bott-Chern algebroid QP,2i∂γ,A (see Example 2.2.6), where we denote 
A = A(h0,h1) for the Chern connection of of (h0, h1) on P . 

On X, by Theorems 4.1.5, 4.1.6 and Remark 4.1.7, the Chevalley-Eilenberg cohomology 
group HA 

1,1((h19 
− , J), R) computes the group HA 

1,1(X, R). Therefore, it is easy to check that 
the image of the map (2.2.38) parametrizing isomorphism classes of Bott-Chern algebroids 
extending P is parametrized by: 

τ = it(ω12 + ω21), t ∈ R. (5.4.62) 

determining an associated one-parameter family Qτ = QP,2i∂(γ+τ),A of Bott-Chern algebroids. 
Moreover, using the composition map (5.4.21), one can see the holomorphic vector bundles 
underlying the algebroids Qτ and Qτ are also non-isomorphic if τ ̸= τ ′ . The holomorphic′ 
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bundle Qτ has by construction a natural smooth splitting Qτ = (T 1,0 ⊕ ad P ⊕ T1 
∗ 
,0, ∂Qτ ). 

O⊕2Moreover, here ad P ∼= . Therefore, using the smooth global frames {Xi} for T 1,0 andX 
{ωi} for T1 

∗ 
,0, we have a fbre-preserving bundle difeomorphism Qτ → X × C8 . Explicitly: 

Xi 7→ ei, idEnd Vj 7→ ej+4, ωi 7→ ei+5, i = 1, 2, 3, j = 0, 1, (5.4.63) 

where ei are the constant sections induced by the standard basis of C8 . With respect to this 
frame, we compute the Dolbeault operator of Qτ , ∂Qτ = ∂ + δ, where δ ∈ M8×8(Ω

0,1) is givenX 
by: 

δ = 

  

  . 
0 0 0 0 0 0 0 0 
ω3 0 0 0 0 0 0 0 
iω2 −iω1 0 0 0 0 0 0 

im0ω2 −im0ω1 0 0 0 0 0 0 
im1ω2 −im1ω1 0 0 0 0 0 0 

2
0−m 21)iα(m− −2iαm1ω2 0 −ω3 −iω20 0 4tω1 ω2 2iαm0ω24 

2
0 

2
1−miα(m ) 
ω1 −2iαm0ω10 0 2iαm1ω1 0 0 iω14 

2
0−m 21)

2
0 

2
1)−iα(m −miα(m−4tω ω ω 0 0 0 0 0 0+1 2 14 4 

(5.4.64) 

Moreover, with respect to this frame, invariant endomorphisms are identifed with constant 
sections with values in M8×8(C). Moreover, they are holomorphic if they commute with δ, 
that is, it commutes with iXj 

δ for j = 1, 2, 3. For generic t ∈ R, there are 12 independent 
holomorphic endomorphisms. For illustration, we give here one of them: 

φ = (φij ), φ41 = m1, φ51 = m0, (5.4.65) 

and the rest of components vanish. 
We endow Qτ with the hermitian metric H0 induced by the standard hermitian inner 

product on C8 . Then, the Futaki invariants with values in HA 
1,1(X, R) with respect to the 

above holomorphic endomorphisms are given by [trQτ (φFH0 )]. For instance, for φ in (5.4.65) 
we obtain: 

[trQτ (φFH0 )] = 2im0m1[ω13] = 2im0m1[∂ω2] = 0 ∈ H1,1(X, C). (5.4.66)A 

For the other elements in the basis of holomorphic endomorphisms of Qτ , we also ob-
tain the zero Aeppli class. Therefore, we do not fnd non-trivial Futaki invariants for this 
Example. 

The computations in Example 5.4.19 can be performed analogously on other complex 
homogeneous manifolds, with several choices for bundles (including higher rank), and for 
metrics solving the Bianchi identity. Using the ICMAT cluster, we have performed a large 
amount of computations applying the above method of Examples 5.4.18 and 5.4.19 systemat-
ically on every complex manifold described in Section 4.2, and also on the rest of homogenous 
manifolds in [51], with bundles V0 and V1 of ranks 1 to 5, and obtained Futaki invariants sym-
bolically whenever possible or recurring to random sampling when the set of free parameters 
is too large. However, despite our eforts, we have not been able to fnd non-vanishing Futaki 
invariants with the property that the bundles are polystable with respect to the balanced 
class. It is highly unlikely that there is a non-trivial invariant on these manifolds using an 
invariant ansatz. Nevertheless, it is still completely plausible that there are non-vanishing 
Futaki invariants in higher cohomogeneity or outside the homogeneous realm. 
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Chapter 6 

The coupled Hermite-Einstein system 

The aim of this Chapter is to introduce a new system of diferential equations in hermitian 
geometry called the coupled Hermite-Eistein system, frst appearing in [65] as the set of 
conditions to construct a coupled Hermite-Einstein metric, in the sense of Chapter 4. Here, 
we retake the study of the geometry of this system, construct explicit solutions and discuss 
some interesting relations to other systems of equations in hermitian geometry and heterotic 
supergravity. 

6.1 Introduction 
Let X = (M, J) be a complex manifold of complex dimension n, and let P be a holomorphic 
principal bundle with structure group G. We will assume that G is a complex reductive Lie 
group, with K ⊂ G maximal compact subgroup. Moreover, we will assume (g, ⟨·, ·⟩) is a 
quadratic Lie algebra, with the pairing restricting to real values on k = Lie K. 

Defnition 6.1.1 ([65]). Let (ω, h) be a pair of a hermitian metric on X and a reduction of 
structure of P to K, and let z ∈ Lie Z(K). Then (ω, h) solves the coupled Hermite-Einstein 
system with degree z in (X, P ) if: 

z 
Fh ∧ ωn−1 = ωn , 

n 
(6.1.1)ρB + ⟨z, Fh⟩ = 0, 

ddcω + ⟨Fh ∧ Fh⟩ = 0. 

From the last equation, the Bianchi identity, a solution to the coupled Hermite-Einstein 
system determines a positive Bott-Chern algebroid Q = QP,2i∂ω,Ah as described in Example 
2.2.6 (see also Defnition 2.2.13). In fact, the coupled Hermite-Einstein system is closely 
related to the existence of coupled Hermite-Einstein metrics on Q, as the next result shows: 

Proposition 6.1.2. Let (ω, h) be a solution to the Bianchi identity: 

ddcω + ⟨Fh ∧ Fh⟩ = 0. (6.1.2) 

Moreover, assume that (ω, h) solves the coupled Hermite-Einstein system (6.1.1) on (X, P ) 
with degree z. Then, the generalized hermitian metric G in Lemma 5.1.2 is a coupled 
Hermite-Einstein metric in Q. The converse holds if K is connected. 
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Proof. Let (ω, h) solve the coupled Hermite-Einstein system. Then, by Lemma 5.3.3, it is 
enough to show that the system (5.3.12) holds. By the frst equation of (6.1.1), it follows 
that: 

Sh = ΛωFh = z (6.1.3) 

is central, hence [Sh, ·] = 0. Moreover, combining the frst equation of (6.1.1) with Lemma 
5.3.2, we get that the second equation of (5.3.12) holds too, hence (5.3.12) is satisfed. 

Conversely, assume (ω, h) satisfes the Bianchi identity and (5.3.12), and K is connected. 
By the frst equation of (5.3.12), ΛωFh is a section of Ph ×K z(k) ⊂ ad Ph. Using that K is 
connected, the adjoint action of K on z(k) is trivial, hence the bundle Ph ×K z(k) admits a 
global trivialization by a basis of z(k). Therefore, we obtain that: 

ΛωFh ∈ Γ(X × z(k)). (6.1.4) 

By the computation in the proof of Lemma 5.3.2, it follows that: 

dh⋆Fh + iθ♯ Fh − ⋆(Fh ∧ ⋆dcω) = −Jdh(ΛωFh), (6.1.5)
ω 

which vanishes by the frst equation of (5.3.12). But then, combined with (6.1.4), we conclude 
that dh restricted to the trivial subbundle X × z(k) ⊂ ad Ph is the trivial connection and 
ΛωFh is constant. Therefore, we obtain that: 

ΛωFh = z, (6.1.6) 

for some central element z. Using the last equation of (5.3.12) and the Bianchi identity, we 
conclude that the coupled Hermite-Einstein system (6.1.1) holds with degree z. 

Remark 6.1.3. The condition of K being connected does not suppose a strong loss of gener-
ality as the principal application of the results in this Thesis is the study of Hull-Strominger 
system (3.1.11) with the ansatz (3.1.12), for which K = SU(3) × SU(r) is indeed a con-
nected Lie group. Therefore, in the sequel, we will implicitly assume this and identify cou-
pled Hermite-Einstein metrics as in Defnition 5.3.1 with equivalently solutions to (5.3.12) 
or (6.1.1). 

As suggested in the previous Remark, the coupled Hermite-Einstein system is related to 
the Hull-Strominger system via the following result, which should be regarded as a slight 
strengthening of Proposition 5.3.5, in the light of Proposition 6.1.2 above. 

Proposition 6.1.4. Let (X, Ω) be a Calabi-Yau manifold. Let P a holomorphic principal G-
bundle as stated in this Section. Assume (ω, h) solves the Hull-Strominger system (3.1.14). 
Then (ω, h) is a solution to the coupled Hermite-Einstein system on (X, Ω, P ) with z = 0. 

Proof. The Hermite-Einstein equation of the Hull-Strominger system (3.1.14) forces z = 0. 
Now, by the argument of the proof of Proposition 5.3.5, we obtain that: 

ρB = 0, (6.1.7) 

hence the coupled Hermite-Einstein system (6.1.1) holds with z = 0. 
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Observe that in contrast to the Hull-Strominger system (3.1.14), the more fexible cou-
pled Hermite-Einstein system can be, in principle, posed for any complex manifold with no 
topological or holomorphic requirements. However, if X satisfes some additional conditions, 
one has the next partial converse to Proposition 6.1.4: 

Proposition 6.1.5. Let (X, Ω) be a compact, simply-connected Calabi-Yau manifold and P 
a holomorphic principal G-bundle as in this Section. Then a solution (ω, h) to the coupled 
Hermite-Einstein system (6.1.1) with z = 0 solves the Hull-Strominger system (3.1.14). 

Proof. It is enough to prove that under the assumptions, ρB = 0 actually implies the con-
formally balanced condition: 

d(||Ω||ωωn−1) = 0. (6.1.8) 

To see this, observe that by Proposition 1.2.1(1) and the fact that X is simply connected, 
then the global holonomy of ∇B induced in KX is trivial. Then, since X is compact, by [62, 
Proposition 3.6], the equation (6.1.8) holds. 

We fnish this Section with a discussion about the quantity z appearing in the coupled 
Hermite-Einstein system. To give an interpretation of z as a degree, we need to regard: 

z 
Fh ∧ ωn−1 = ωn (6.1.9) 

n 
as the Hermite-Einstein equation with respect to a hermitian metric on X defning a coho-
mology class. For this, let ω̃ = ef ω be the Gauduchon representative of the conformal class 
of ω (see Theorem 1.1.2). Recall that f is unique up to an additive constant, which for the 
moment we do not fx. Then, (6.1.9) is equivalent to: 

−fze 
ωn−1 ωnFh ∧ ˜ = ˜ . (6.1.10) 

n 

ω] ∈ Hn−1,n−1Where now [˜ A (X, R). To recover a Hermite-Einstein equation, we now describe 
a conformal change in h. 

Using the polar decomposition of a complex reductive group, we have that G = exp(ik)K. 
Hence, a reduction to a maximal compact subgroup K given by h ∈ Γ(P/K) is equivalent 
to an equivariant map: 

h : P −→ exp(ik). (6.1.11) 

Then, we set h ′ = eiuh, for a section u with central values. Under the hypothesis that K is 
connected, u is identifed with a section of the trivial bundle u ∈ Γ(X × k) (see the proof of 
Proposition 6.1.2. Then, one can prove that (see e.g. the proof of [68, Lemma 3.23]): 

Fh ′ = Fh + 2i∂∂u. (6.1.12) 

Therefore, the Hermite-Einstein equation for h ′ : 
z 

ωn−1 ωnFh ′ ∧ ˜ = ˜ (6.1.13) 
n 
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is equivalent to the scalar Poisson equation: 

∆ω̃ u = z(1 − e −f ). (6.1.14) 

Then, the normalization of f may be chosen such that (6.1.14) admits a solution. The 
upshot is that (6.1.9) is actually equivalent to a Hermite-Einstein equation that measures a 
topological degree, and therefore links directly to the GIT theory of stability for principal 
bundles (see [7], in a Kähler setting). Of course, if in the previous discussion the structure 
group is taken to be G = GL(r, C) acting on the frames of a vector bundle P = Fr V , then, 
the conformal rescaling described above is equivalent to the rescaling of a hermitian metric 
on V . 

Once the interpretation of z as a degree is justifed, one can ask about its uniqueness. 
In the vector bundle case, it is well-known the degree is determined by its topological type. 
For principal bundles, this result carries over with minor assumptions: 
Proposition 6.1.6. Let (X, P ) be a compact complex manifold and a holomorphic principal 
bundle as in this Section. Moreover, assume that: 

[g, g] ∩ z(k) = {0}. (6.1.15) 

Moreover, let ω be a Gauduchon metric and h a hermitian metric on P solving the Hermite-
Einstein equation with degree z ∈ k: 

z 
Fh ∧ ωn−1 = ωn , (6.1.16) 

n 
then z is uniquely determined. 
Proof. The characters of the Lie algebra g are one-to-one with elements in (g/[g, g])∗ . There-
fore, under condition (6.1.15), there are no non-trivial central elements in the kernel of every 
character. Now, let χ be a character. Observe that by defnition, it induces a well-defned 
map: 

χ : Γ(ad P ) −→ CC 
∞ . (6.1.17) 

Hence, by evaluation of (6.1.16), we obtain complex numbers: ˆ
c1(P, χ) = χ(Fh) ∧ ωn−1 , (6.1.18) 

X 

which may be regarded as an abstract frst Chern class for P . We claim that these are 
invariants of P : indeed, for a diferent metric h ′ on P , given the polar decomposition of G, 
we can write h ′ = eiuh, where u ∈ Γ(ad Ph). Then, we consider the path ht = eituh joining 
h and h ′ . Using the formulae in the proof of [68, Lemma 3.23]: 

d
χ(Fht ) = χ(−2∂∂ht (( d ht)h

−1)) = −2∂∂χ( d ht)h
−1),

dt |t=t0 t0 dt |t=t0 t0dt |t=t0 

hence, we obtain: ˆ
d

c1(P, χ) = −2 ∂∂χ( d ht)h
−1) ∧ ωn−1 = 0,

dt |t=t0 t0dt |t=t0 X 

since ω is Gauduchon. Finally, by the frst argument in this proof, if any two solutions of 
(6.1.16) exist on (X, P ), they share the same degree z, as it is uniquely determined by P 
using all characters. 
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6.2 Obstructions the existence of solutions 

6.2.1 Topological obstructions 
In this Section, we exploit the cohomological features of the coupled Hermite-Einstein system 
6.1.1 to produce obstructions depending on the complex topology of X and the signature of 
the pairing on g. Throughout this Section, we make the same assumptions on X and P as 
in the previous Section. First, we need the following defnition: 

Defnition 6.2.1. Let X be a compact complex manifold of complex dimension n and σ ∈ 
H1,1 
BC (X, R). Then σ is called: 

1. Bott-Chern numerically positive (negative) if for any cohomology class a ∈ HA
n−1,n−1(X, R) 

represented by a Gauduchon metric, 

σ · a > 0 (resp. < 0) (6.2.1) 

2. Bott-Chern numerically semipositive (seminegative) if for any cohomology class a ∈ 
Hn−1,n−1 
A (X, R) represented by a Gauduchon metric, 

σ · a ≥ 0 (resp. ≤ 0) (6.2.2) 

Observe that any class represented by a pointwise (semi)positive (1, 1)-form is Bott-
Chern numerically (semi)positive, and analogously in the (semi)negative case. Moreover, 
if X is Kähler, then any positive (negative) class is Bott-Chern numerically positive (resp. 
negative) in this sense too. However, the converse is not true, even if X is Kähler. In that 
case, integral Bott-Chern numerically semipositive classes are naturally identifed with nef 
line bundles, for which hermitian metrics with positive curvature need not exist (see e.g. [39, 
Example 1.7]). 

Before introducing the topological obstructions, we recall that for a smooth vector bundle, 
while E → X, c1(E) is well-defned in H2 (X, R), to defne a class in Bott-Chern cohomology, dR 
a holomorphic structure E on E is needed (see Section 1.3.1), so that: 

c1(E) = [c1(E, Dh)] = [ i FDh ] ∈ H1,1 (X, R) (6.2.3)
2π BC 

where Dh is the Chern connection of any hermitian metric h on E. In what follows, we 
H1,1 reserve the notation c1(T 1,0) ∈ BC (X, R) for the frst Chern class of the holomorphic 

tangent bundle of X. This discussion motivates the introduction of the vector space: 

KBC (X) = ker(H2 
dR(X, R)),BC (X, R) → H2 (6.2.4) 

where we denote: 

ker(d : Ω2 −→ Ω3 )
H2 X X . (6.2.5)BC (X) = 

im(ddc : ΩX
0 −→ ΩX

2 ) 
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Note that: 

H2 (X) ⊃ H2,0 (X) ⊕ H1,1 (X) ⊕ H0,2 
BC BC BC BC (X), (6.2.6) 

but they are not equal, in general. Here, H2 (X, R) ⊂ H2 (X) is the set of fxed classesBC BC 
under conjugation. Then: 

c1(E) ∈ HBC 
2 (X, R)/KBC (6.2.7) 

is well-defned, irrespective of holomorphic structures. We also denote: 

K1,1 (X, R) = KBC (X) ∩ H1,1 (X, R). (6.2.8)BC BC 

In the sequel we will use the following observation connecting the topology and hermitian 
geometry of complex manifolds, which is interesting on its own. 

Proposition 6.2.2. Let X be a compact complex manifold, and assume KBC (X) = {0}. 
Then, any Gauduchon metric is balanced. Conversely, if any Gauduchon metric is balanced, 
then K1,1 (X) = 0.BC 

Proof. Suppose KBC (X) = {0} and let ω be a Gauduchon metric. We denote a = [ωn−1] ∈ 
Hn−1,n−1 
A (X, R). Since [dd⋆ω] = 0 ∈ H2 (X, R), using the hypothesis, we have that [dd⋆ω] = dR 

0 ∈ HBC 
2 (X, R). Therefore, we may write dd⋆ω = ddcf , for some smooth function f . Then : 

ˆ ˆ ˆ
dd ⋆ ω ∧ ωn−1 = ddcf ∧ ωn−1 = − fddcωn−1 = 0. 

X X X 

Using this result, integrating by parts we obtain: 
ˆ ˆ ˆ

0 = dd ⋆ ω ∧ ωn−1 = dd ⋆ ω ∧ (n − 1)! ⋆ ω = (n − 1)! d ⋆ ω ∧ d(⋆ω) 
X X X 

= (n − 1)!||d ⋆ ω||2 
L2(ω) 

which holds if and only if d∗ω = 0, that is, ω is balanced. 

= Hn−1,n−1Conversely, let b ∈ K1,1 (X). Then, using the duality pairing H1,1 (X) ∼ (X)∗ ,BC BC A 
the class b vanishes on the Gauduchon cone, since b is represented by a d-exact form and 
any Gauduchon metric is balanced, hence d-closed. Given that the Gauduchon cone is a 
non-empty open set inside HA

n−1,n−1(X), it follows that b = 0. 

Remark 6.2.3. Observe that the condition KBC (X) = {0} is equivalent to the condition that 
the ∂∂-Lemma holds on 2-forms. Hence Proposition 6.2.2 can be regarded as a strengthening 
of the fact that Gauduchon metrics are balanced on ∂∂-manifolds. 

Now, building on Proposition 6.2.2, we obtain topological obstructions to solving the 
coupled Hermite-Einstein system (6.1.1). Interestingly, these restrictions depend on the 
signature of the pairing in the quadratic Lie algebra (k, ⟨·, ·⟩). 

Proposition 6.2.4. Let X be a compact complex manifold, P a principal G-bundle as in 
this Section. Consider the coupled Hermite-Einstein system on (X, P ) with degree z. Then: 

133 



1. If ⟨·, ·⟩ is negative defnite and c1(T 1,0) is Bott-Chern seminegative, then for any solu-
tion (ω, h), ω is Kähler and h is fat. 

2. If ⟨·, ·⟩ is seminegative defnite and c1(T 1,0) is Bott-Chern negative, then there exist no 
solutions. 

Moreover, if KBC (X) = {0}: 

3. If ⟨·, ·⟩ is positive defnite and c1(T 1,0) is Bott-Chern semipositive, then any solution is 
conformally balanced and has degree z = 0. 

4. If ⟨·, ·⟩ is semipositive defnite and c1(T 1,0) is Bott-Chern positive, then there exist no 
solutions. 

Proof. Suppose (ω, h) is a solution to the coupled Hermite-Einstein system with degree z, 
and let ω̃ = euω be the Gauduchon metric in the conformal class of ω, for some smooth real 
function u, and let a = [ω̃n−1]. Then, by the transformation rule for conformal rescaling (see 
e.g. [17]): 

ρB (ω̃) = ρB(ω) + (n 
2 − 1)ddc u (6.2.9) 

and the relation to the Chern-Ricci form ([3]): 

ρB = ρC − dd ∗ (ω) (6.2.10) 

which is valid for any hermitian metric. Then, 

ωn−1 ωn−1⟩0 = ρB (ω) ∧ ˜ + ⟨z, Fh ∧ ˜ 
ωn−1 (n−1)u ωn 

= (ρC (ω̃) − dd∗̃ ω̃ − (n 
2 − 1)ddc u) ∧ ˜ + ⟨z, z⟩e 

n 

where we have used the above formulas and the Hermite-Einstein equation for h with respect 
to ω. 

Then, integrating on X the above equation: 
ˆ 

ωn 
(n−1)u2πc1(T 1,0) · a − ||d∗̃ ω̃||L2(ω̃) + |z|2 e = 0 (6.2.11) 

nX 

(n−1)uIn the hypothesis of (1), since e is a positive function, all the terms in (6.2.11) are 
non-positive. Therefore any solution must be, in particular, conformally balanced and with 
degree z = 0. Hence, in particular: 

ωn−1Fh ∧ ˜ = 0 (6.2.12) 
ωn−1d˜ = 0. (6.2.13) 

Using these conditions, it follows from a computation that: 
ˆ 

ωn−2 −udc ̃ω(dd
cω + ⟨Fh ∧ Fh⟩) ∧ ˜ = 2(n − 1)!(⟨⟨e ω, dcω̃⟩⟩ω̃ − ||Fh||2 ) (6.2.14)Λ˜ ω̃ 

X 
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related to already existing formulas in the literature with no bundle term [52, Formula 
(18)], [64, Lemma 5.3] (see also [101]). Since the left hand side vanishes and the pairing is 
negative-defnite, h is fat. It follows that ω is pluriclosed and conformally balanced. Then, 
by Theorem 1.1.3 it is a Kähler metric. In the hypothesis of (2), the frst term in (6.2.11) is 
negative and the rest are non-positive, reaching a contradiction. 

If KBC (X) = {0}, by Proposition 6.2.2, the second term vanishes hence ω is confor-
mally balanced. Moreover, in the hypothesis of (3), the remaining terms are non-negative. 
Therefore, z = 0. In the case of (4) any solution yields a contradiction. 

Remark 6.2.5. We observe that combining Proposition 6.1.4 (see also [65, Section 5.2]) and 
Proposition 6.2.4(1), we recover in particular the no-go result in [24] for solutions on a (a 
priori non-Kähler) Calabi-Yau manifold (X, Ω) endowed with a holomorphic vector bundle, 
to the system 

Fh ∧ ωn−1 = 0 
d(||Ω||ωωn−1) = 0 

ddcω + αtr Fh ∧ Fh = 0 

where Ω is a holomorphic volume form, and with coupling constant α > 0, which corresponds 
to the Hull-Strominger system 3.1.11 dropping the ∇ connection on the tangent bundle. 

Remark 6.2.6. As a by-product of Proposition 6.2.4, observe in particular that taking the 
principal bundle P to be trivial, (2) and (4) provide topological obstructions to existence of 
hermitian metrics satisfying: 

ddcω = 0, ρB = 0. (6.2.15) 

We will return to the study of these metrics in Chapter 7. 

The rest of this Section is devoted to illustrate in explicit Examples applications of the 
topological obstructions of Proposition 6.2.4 in a variety of contexts. 

Example 6.2.7. Let X ⊂ CP N be a projective manifold defned by the vanishing of homo-
genenous polinomials 

X = {P1 = ... = Pr = 0} 

and let di = deg Pi. In particular, X is Kähler and therefore KBC (X) = {0}. By theP radjunction formula, c1(T 1,0) is positive, negative or vanishing if i=1 di is less, greater or 
equal to N + 1 respectively. 

Let P → X be a principal G-bundle with the assumptions of this Section, and suppose 
(ω, h) is a solution to the coupled Hermite-Einstein with degree z. By Proposition 6.2.4,P 
in case di < N + 1, X is Fano and no solutions exist for semipositive-defnite pairing. i P 
Analogously, in case i di > N + 1, no solutions exist for seminegative-defnite pairing. P 

In the case i di = N + 1, X is a projective Calabi-Yau manifold and only solutions of 
degree z = 0 can exist when ⟨·, ·⟩ has a sign. Observe that these do in fact exist e.g. for ω 
Kähler Calabi-Yau and h fat. 
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Example 6.2.8. Let X = Γ\H be the Iwasawa manifold (see Example 4.2.1), where HC is 
the complex Heisenberg group: 

H = 

  
 1 z2 z3 

0 1 z1 

 | zi ∈ C 

  , (6.2.16) 
0 0 1 

and Γ is the lattice of matrices with entries in Gaussian integers Z[i]. Recall the left-invariant 
(1, 0)-forms that descend to global frame of T1 

∗ 
,0X 

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z2dz1 (6.2.17) 

and the real Lie algebra of X is determined by the structure equations: 

dω1 = dω2 = 0, dω3 = ω12. (6.2.18) 

Then, it is straightforward that Ω = ω123 is a holomorphic volume form, hence c1(T 1,0) = 
0 ∈ H1,1 (X, R). Moreover, the d-exact form dω3 ∈ Ω2,0 is not ddc-exact, X does not satisfyBC 
the ∂∂-lemma. In particular X does not admit Kähler metrics. 

Let P → X be a principal G-bundle as in this Section and consider the coupled Hermite-
Einstein system on (X, P ) with negative-defnite pairing. By Proposition 6.2.4, supposing a 
solution (ω, h) exists, in particular ω is a Kähler metric. Since X does not support Kähler 
structures, we reach a contradiction. 

The following is an interesing Example where we illustrate how Proposition 6.2.4 car-
ries over to complex manifolds which do not admit a Kähler structure and neither carry a 
holomorphic volume form. 

Example 6.2.9. Consider the non-Kähler family of Inoue surfaces SM ([87]), which we 
briefy describe here for the beneft of the reader. Let M = (mij ) ∈ SL(Z, 3) with real 
eigenvalue r > 1 and complex eigenvalues w, w, and consider the action 

Z → Aut(Z3), n · (k1, k2, k3) 7→ (k1, k2, k3)Mn . (6.2.19) 

We denote (r1, r2, r3) ∈ R3 and (w1, w2, w3) ∈ C3 its r and w-eigenvectors respectively. 
Then, {(ri, wi)}3 is an R-basis of R × C. Consider the group action Γ = Z ⋉ Z3 oni=1 
S̃ = H × C, where H denotes the complex upper-half plane, given by the biholomorphisms: 

f(k1,k2,k3)(z1, z2) = (z1 + Σi kiri, z2 + Σi kiwi), (k1, k2, k3) ∈ Z3 

n n (6.2.20)
fn(z1, z2) = (r z1, w z2), n ∈ Z. 

which is free and properly discontinuous due to the relations: P 
mij (rj , wj ) = (rri, wwi).j (6.2.21) 

˜The Inoue surface is SM = Γ\ ̃S. Now, following [130], the (1, 1)-forms on S 

dz1 ∧ dz̄1
α1 = i ,

Re(z1)2 α2 = iRe(z1)dz2 ∧ dz̄2 (6.2.22) 
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are Γ-invariant and hence they descend to SM . Moreover, 
α1

ρC (α1 + α2) = − (6.2.23)
4 

so we conclude c1(T 1,0SM ) ∈ H1,1 (SM , R) is Bott-Chern numerically seminegative in theBC 
sense of Defnition 6.2.1. 

Now, let P → SM be a principal G-bundle as in this Section. Then the coupled Hermite-
Einstein system on (SM , P ) with negative-defnite pairing admits no solutions. Indeed, by 
Proposition 6.2.4, any such solution is Kähler on SM , reaching a contradiction. 

6.2.2 Algebraic obstructions 
There is another source of obstructions to the coupled Hermite-Einstein system 6.1.1 related 
to slope-stability in the sense of Mumford-Takemoto. This theory has been recently studied 
in [67] to produce algebraic obstructions with no bundle P . We now generalize this picture 
to accomodate the gauge bundle. 

Next, we apply this theory to the coupled Hermite-Einstein system. As usual, we denote 
by X a compact complex manifold of complex dimension n, and P a holomorphic principal 
bundle for a complex reductive Lie group G. The Lie algebra of G is quadratic with pairing 
⟨·, ·⟩ restricting to real values on Lie K, where K ⊂ G is a fxed maximal compact subgroup. 
First, as a consequence of the above result we obtain the following: 

Proposition 6.2.10. Let X be a compact complex manifold and P a principal bundle as 
above. Assume the pairing ⟨·, ·⟩ is negative defnite. Moreover, assume (ω, h) is a solution to 
the coupled Hermite-Einstein system (6.1.1) on (X, P ) for some degree z. Then, the Bott-
Chern algebroid QP,2i∂ω,Ah in Example 2.2.6 is polystable with respect to the Gauduchon class 
[ω̃n−1], with ω̃ in the conformal class of ω. 

Proof. As a consequence of Proposition 6.1.2, the generalized hermitian metric G of Lemma 
5.1.2 in Q = QP,2i∂ω,Ah is positive-defnite, as ⟨·, ·⟩ is negative-defnite, by assumption, and 
moreover satisfes: 

FG ∧ ωn−1 = 0. (6.2.24) 

Then, Theorem 1.3.6 applies with h = G and σ = [ω̃n−1], hence Q is σ-polystable. 

As a consequence of this result, we extract algebraic obstructions to the existence of 
solutions to the coupled Hermite-Einstein system in the case the pairing ⟨·, ·⟩ is negative-
defnite, that go beyond the topological obstructions of Section 6.2.2. In particular, when 
the bundle P is trivial these obstructions recover the ones introduced in [67, Section 4.3]. 

Corollary 6.2.11. Let X be a compact complex manifold and P a principal bundle as above, 
such that the structure group G is unimodular. Assume the pairing ⟨·, ·⟩ is negative defnite, 
and consider the coupled Hermite-Einstein system (6.1.1) on (X, P ): 

1. If c1(T 1,0) is Bott-Chern numerically seminegative, then for any solution (ω, h), ω is 
Kähler and h is fat. 
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2. If there exists a subsheaf F ⊂ T1 
∗ 
,0 with c1(F) Bott-Chern numerically positive, then 

there exist no solutions. 

Proof. Let (ω, h) be a solution to the coupled Hermite-Einstein system under the hypothesis. 
Using Proposition 6.2.10, the bundle Q = QP,2i∂ω,Ah is σ-polystable, for σ the Gauduchon 
class determined by the solution. Now, observe that by construction of Q: 

c1(Q) = c1(T1 
∗ 
,0) + c1(AP ) 

= c1(T1 
∗ 
,0) + c1(T 1,0) + c1(ad P ) = 0, 

where we have used c1(T1 
∗ 
,0) = −c1(T 1,0), and c1(ad P ) = 0, as its curvature form [FA, ·] 

for A a principal connection on P , is traceless, since by assumption G is unimodular. Now 
ρ∗ 

consider T ∗ ,→ Q as a holomorphic subbundle. In the hypothesis of (1):1,0 

degσT1 
∗ 
,0 = −degσT 1,0 ≥ 0, 

but by polystability of Q it must actually vanish and Q splits. Since G is a Hermite-Einstein 
metric for Q, it provides a holomorphic and metric splitting: 

Q = T ∗ ⊕ AP . (6.2.25)1,0 
⊥G 

However, then by the expression of ∂Q in Example 2.2.6, this means that: 

∂ω = 0, ⟨Fh, ·⟩ = 0. (6.2.26) 

It follows that ω is Kähler, and since ⟨·, ·⟩ is non-degenerate, that h is fat, and the frst item 
follows. For the second, the existence of a solution to the coupled Hermite-Einstein system 
implies the polystability of Q as before, but then, by assumption: 

degσF > 0 = degσQ, 

reaching a contradiction. 

Example 6.2.12. Let X →p 
Z be a generically holomorphic submersion, where Z is Kähler 

manifold with c1(Z) < 0, and let P → X as in this Section, with unimodular structure 
group and negative-defnite pairing. Then, the coupled Hermite-Einstein system (6.1.1) does 
not admit solutions on (X, P ). Indeed, by the Aubin-Yau theorem [15, 137], there exists a 
hermitian metric ωZ in Z such that: 

ρ(ωZ ) = −ωZ . (6.2.27) 

Then: 
∗ T ∗ ∗ T 1,0Z) = 2π[p ∗ ωZ ]c1(p 1,0Z) = −c1(p 

is Bott-Chern numerically positive, as for any Gauduchon class [ω0 
n−1]: ˆ ˆ ˆ 

ωn 
p ∗ ωZ ∧ ωn−1 = p|∗ ωZ ∧ ωn−1 = (Λω0 p|∗ ωZ ) 0 > 0,0 0 nX X\Y X\Y 

where we have restricted to the locus X\Y where p is submersive. Then, Corollary 6.2.11(2) 
applies for the subsheaf p ∗T ∗ Z ⊂ T ∗ X.1,0 1,0 
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6.3 Exact solutions 
The Hull-Strominger system (3.1.14) is a natural source of solutions to the coupled Hermite-
Einstein system. However, the latter is more fexible and does not require any extra topolog-
ical or holomorphic condition. In particular, it admits solutions on complex manifolds that 
do not support a holomorphic volume form or balanced metrics. The purpose of this Section 
is to describe some solutions of the coupled Hermite-Einstein system on these manifolds. 

6.3.1 Solutions in low dimensions 
In this Section, we construct solutions to the coupled Hermite-Einstein system in low dimen-
sions. Throughout, we denote by C a Riemann surface, S a compact complex surface, and 
in either case P is a holomorphic principal bundle with the same assumptions as in previous 
Sections. In the case of Riemann surfaces, the solutions are completely classifed. 

Proposition 6.3.1. Let C be a compact Riemann surface of genus g, and let P be a holo-
morphic principal bundle as in this Section. Let (ω, h) be a solution to the coupled Hermite-
Einstein system (6.1.1) on (C, P ) with degree z. Then, ω is a constant scalar curvature 
metric and h is Hermite-Einstein with respect to ω. Moreover: 

1. g = 1 if and only if |z|2 = 0. 

2. If g ̸= 1, then the volume of C is fxed by: 

2π(2g − 2)
vol(C, ω) = . (6.3.1)

|z|2 

Proof. Let (ω, h) be a solution. Then, combining the frst and second equations of (6.1.1), 
we obtain: 

Fh = zω (6.3.2) 
ρ = −|z|2ω, (6.3.3) 

hence the frst part of the result follows. Now, recall that: ˆ 
ρ = 2πχ(C) = 2π(2 − 2g). (6.3.4) 

C 

Therefore, integrating (6.3.3): 

2π(2 − 2g) + |z|2vol(C, ω) = 0. (6.3.5) 

Therefore (1) and (2) follow. 

From complex dimension 2 onwards, the situation is richer and more subtle. This shall 
be compared with the case of the Hull-Strominger system, for which solutions in surfaces 
are completely classifed (see e.g. [62]). This is due to the fact that there, in dimension 2 
solutions are still (conformally) Kähler, while this is not the case for the coupled Hermite-
Einstein system. For the case of trivial principal bundle, the system reduces to fnding 
hermitian metrics satisfying the following conditions: 
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Defnition 6.3.2. [71] Let X be a complex manifold. Then a hermitian metric ω is Bismut-
Hermite-Einstein if: 

ddcω = 0, ρB = 0. (6.3.6) 

In dimension 2, solutions are already classifed by the following result. 

Proposition 6.3.3 ([71]). Let S be a compact complex surface. Let ω be a Bismut-Hermite-
Einstein metric on S. Then either: 

1. ω is Kähler Calabi-Yau and S is biholomorphic to a complex torus or a K3 surface. 

2. S is a fnite quotient of a diagonal Hopf surface, which is given by 

(C2\{0, 0})/Z, n · (z1, z2) = (t1 
n z1, t

n 
2 z2), |t1| = |t2| > 1. 

with hermitian metric induced on S by 

idz1 ∧ dz1 + idz2 ∧ dz2
ω = 

|z1|2 + |z2|2 

on C2\{0, 0}. 

In the following results, we give sufcient conditions under which a similar rigidity result 
holds. Note that we do not claim that these exhaust the solutions of the coupled Hermite-
Einstein system in complex dimension 2. 

Proposition 6.3.4. Let (S, P ) be a compact complex surface and a holomorphic principal 
bundle as in this Section. Moreover, assume the pairing ⟨·, ·⟩ has defnite signature. Consider 
the coupled Hermite-Einstein system on (S, P ). If (ω, h) is a solution with degree z = 0, then 
ω is Bismut-Hermite-Einstein and h is fat. 

Proof. Let (ω, h) be a solution to (6.1.1). Then, (ω, h) solves in particular the Bianchi 
identity: 

ddcω + ⟨Fh ∧ Fh⟩ = 0. (6.3.7) 

Now, using that h satisfes the Hermite-Eistein equation with respect to ω, integrating 
(6.3.7) over S we obtain: 

ˆ ˆ
0 = ddcω + ⟨Fh ∧ Fh⟩ = − ⟨Fh ∧ ∗Fh⟩ = −||Fh||2 (6.3.8)ω 

S S 

Since the pairing has defnite-signature, we conclude that h is fat, and in consequence, 
that ω is Bismut-Hermite-Einstein. 

Corollary 6.3.5. Let S be a compact Kähler surface with c1(S) = 0, and let P be a holo-
morphic principal bundle as in this Section. Moreover, assume the pairing ⟨·, ·⟩ has a defnite 
signature. Consider the coupled Hermite-Einstein system on (S, P ). If (ω, h) is a solution, 
then ω is Kähler Calabi-Yau and h is fat. 
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Proof. Since ⟨·, ·⟩ is positive-defnite or negative defnite, by Proposition 6.2.4, in either case 
we have (ω, h) solves the coupled Hermite-Einstein system with degree z = 0. Then by 
Proposition 6.3.4, h is fat and ω is Bismut-Hermite-Einstein. Then by Proposition 6.3.3 we 
conclude that ω is in fact Kähler Calabi-Yau. 

Remark 6.3.6. The conditions of S being of dimension 2 in Propositions 6.3.3, 6.3.4, and 
S being Kähler in dim. 2 in Corollary 6.3.5 are necessary. Otherwise, in Section 6.3.2 we 
construct solutions to the coupled Hermite-Einstein system which escape these results. 

6.3.2 Examples in higher dimension 
The purpose of this section is to construct families of solutions to the coupled Hermite-
Einstein system (6.1.1) in any dimension. The construction in this Section follows closely 
the torus bundle geometries described in [75, 76]. We briefy recall their fundamentals here. 

Throughout, let (Z, ωZ ) be a compact Kähler manifold of complex dimension n, and let 
Li, for i = 1, ..., 2k be holomorphic line bundles. We denote by hi the Hermite-Einstein 
metric on Li with respect to ωZ , and Pi ⊂ Fr Li the hermitian reduction with respect to hi. 
Hence, Pi are naturally U(1)-principal bundles endowed with a Chern connection Ai = Ahi 

such that: 
ziFi ∧ ωn−1 = 
n ωZ

n , (6.3.9) 

where zi are the degrees of Li. 

Now, consider the fbered product: 
p L2kT 2k ,→ X = P1 ×Z · · · ×Z P2k → Z, A = i=1 p ∗ 

i Ai, (6.3.10) 

where pi : Pi → Z are the canonical projections. Using the horizontal lift given by A, we 
defne the complex structure on X given by 

J = A⊥JZ + JF ◦ A (6.3.11) 

where JZ is the complex structure of Z, and JF is an invariant complex structure on the fbre. 
The integrability of J follows from the integrability of J0 and JF , together with Fi 

0,2 = 0 
(see Lemma 7.1.6). Moreover, we endow X with the 2-form: 

2kX 
ωX = p ∗ ωZ + 

b 
JAi ∧ Ai. (6.3.12)

2 
i=1 

This form is of bidegree (1, 1) with respect to J and gX = ωX (·, J ·) is positive-defnite if 
b > 0, hence defnes a hermitian metric. Similarly we denote gZ = ωZ (·, JZ ·). Then, building 
on the results of [76] we have: 

Lemma 6.3.7. The following formulas hold. P 
ρB(ωX ) = p ∗ ρ(ωZ ) + 

2 
b

j zj Fj + (ΛωZ d
cAj )d

cAj (6.3.13)P 
ddcωX = 

2 
b

j Fj ∧ Fj + dcAj ∧ dcAj (6.3.14) 
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Proof. For the frst item, frst we compute d⋆ωX . For this, let N = dimC X, n = dimC Z, 
and let {ej }N be a gX -orthonormal frame, where {ej }n is p ∗ gZ -orthonormal restricted toj=1 j=1 
the horizontal lift of TZ with respect to the connection A. Then: PN 1d ⋆ ωX (V ) = − (∇gX ωX )(ej , V ) = dωX (ej , Jej , JV )j=1 ej 2 

where the frst step is standard in riemannian geometry and for the second we use the identity 
valid for any hermitian manifold: 

1 
(∇g

U 
X ω)(V, W ) = (dωX (U, V, W ) − dωX (U, JV, JW )). (6.3.15)

2 

Next, we observe that dAi is basic, and since JAi ∈ ⟨A1, . . . , A2k⟩R, then so is d(JAi). It 
follows that: 

dωX ∈ Ann Λ2ker dp (6.3.16) 

Therefore, we have: 

d ⋆ ωX (V ) = 

= 

b 
4 
b 
2 

P nS 
P2k (dJAk ∧ Ak − JAk ∧ Fk)(ej , Jej , JV )j=1 k=1P2k ((ΛωZ d

cAk)JAk − zkAk) (V ).k=1 

Now, recall the formula relating the Ricci forms of the canonical connections in the 
Gauduchon line {∇t}t∈R (see Section 1.2.1) for which t = −1 is the Bismut connection and 
t = +1 is Chern: 

ρt(ω) − ρs(ω) = t− 
2 
s dd ⋆ ω. (6.3.17) 

Using this together with ρC (ωX ) = p ∗ρ(ωZ ) ([76, Lemma 3]), we compute: 

ρB(ωX ) = p ∗ ρ(ωZ ) − dd ⋆ ωX . (6.3.18) 

Finally, Ai are Hermitian-Yang-Mills connections over Z with respect to ωZ , so we have 

d(ΛωZ dAi) = d(ΛωZ d
cAi) = 0, i = 1, 2. (6.3.19) 

Combining this with the above formula for d⋆ωX we obtain the result. The second item 
follows using ωZ Kähler and: 

ddc(JAi ∧ Ai) = dAi ∧ dAi + dcAi ∧ dcAi. (6.3.20) 

Calabi-Eckmann threefolds 

With the previous computations at hand, now we specify to the frst case of our interest. 
In order to obtain infnite families of solutions to the coupled Hermite-Einstein system, we 
introduce several real and complex parameters to be determined. Let Z = Z1 × Z2 where 
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Zi are compact complex manifolds of dimension ni carrying Kähler-Einstein metrics ωZi of 
positive scalar curvature, with the normalization 

ρ(ωZi ) = ωZi . (6.3.21) 

In the sequel, pullback through the canonical projections Z → Zi is implicitly understood, 
and we omit it in the formulae. Then we defne the Kähler metric: 

ωZ = a1ωZ1 + a2ωZ2 . (6.3.22) 

K−kifor positive constants ai ∈ R. Moreover, consider the holomorphic line bundles Li = Zi 
, 

where ki ∈ Z, i = 1, 2. These are naturally endowed with hermitian metrics hi satisfying: 

iFhj = kjωZj (6.3.23) 

In particular, a simple computation shows they are Hermite-Einstein with respect to ωZ : 

∧ ωn1+n2−1 −inj kj ωn1+n2Fhj = (6.3.24)Z aj (n1+n2) Z 

Let Pi be the U(1)-principal bundle determined by the hermitian reduction of (Li, hi), and 
X = P1 ×Z P2. Then X is a T 2-principal bundle over Z and denote by ∂i the infnitesimal 
generators of the action of Pi sitting inside X. We consider a family of T 2-invariant complex 
structures JF on the fbre F of X → Z via the isomorphism: 

TF → F × C, ∂1 7→ 1, ∂2 7→ β, β ∈ C\R. (6.3.25) 

Alternatively, T 2 = (F, JF ) ∼= C/Z⟨1, β⟩ is an elliptic curve with complex structure parametrized 
by β. It will be useful for computations to express JF in the basis {∂1, ∂2}: � � ! 

−Re β (Re β)2 
− Im β +

Im β Im βJF = (6.3.26)
1 Re β 

Im β Im β 

By the discussion above, we get a family of hermitian manifolds (X, ωX ) depending on 
complex parameter β and real parameters a1, a2, b. 

To construct solutions to the coupled Hermite-Einstein system, we consider P = Fr E 
where E → X is a holomorphic line bundle of the family: 

= K−ℓ1 ⊗ K−ℓ2E , (6.3.27)Z1 Z2 

for integers ℓi ∈ Z. We endow P with the hermitian metric with Chern curvature: 

iFh = ℓ1ωZ1 + ℓ2ωZ2 , (6.3.28) 

and further endow the bundle P with the bi-invariant pairing 

⟨r, s⟩ = −αr · s, r, s ∈ u(1), α ∈ R. (6.3.29) 
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Then, we consider the coupled Hermite-Einstein system on (X, P ) with degree z ∈ u(1): 

zFh ∧ ωN−1 = ωN 
X N X 

ρB (ωX ) − αzFh = 0 (6.3.30) 
ddcωX − αFh ∧ Fh = 0. 

in the variables a1, a2, b, β, k1, k2, ℓ1, ℓ2, z and α. To avoid cumbersome notation, we denote 
x = Re β, y = Im β ̸= 0, and we will omit pullback notation when the map is understood. 

Proposition 6.3.8. Let (X, P ) as constructed in this Section. Then, the solutions of the 
coupled Hermite-Einstein system (6.3.30) are given, up to complex and hermitian isometry, 
by 

∼1. Z1 = {∗}, Z2 = CP 1 , and: 

bk2
2(1 + |β|2)|β|2 

a2 = − αℓ22 , (6.3.31)
2y2 

where b, β, k2, ℓ2 and α are subject to a2 > 0. Furthermore, the degree is given by: 

ℓ2
iz = . (6.3.32) 

a2 

2. Z1, Z2 =∼ CP 1 , and either: 

(a) αℓ1ℓ2 = 0, k1k2x = 0, and: 

bk2(1 + |β|2) bk2(1 + |β|2)|β|2 
a1 = 1 − αℓ21, a2 = 2 − αℓ2 (6.3.33)

2y2 2y2 2 

where b, β, k1, k2, ℓ1, ℓ2 and α are moreover subject to a1, a2 > 0. 
(b) α, ℓ1ℓ2, k1, k2, x ̸= 0, and: � � � � 

2k1ℓ2 k2ℓ1|β|2 2αℓ1ℓ2y 
a1 = αℓ1 − ℓ1 , a2 = αℓ2 − ℓ2 , b = (6.3.34)

k2x k1x k1k2x(1 + |β|2) 

where β, k1, k2, ℓ1, ℓ2 and α are moreover subject to a1, a2, b > 0. 

Further, in either (2)(a), (2)(b), the degree is given by: 

ℓ1 ℓ2
iz = + . (6.3.35) 

a1 a2 

Remark 6.3.9. The above solutions provide infnite families of Hopf surfaces and Calabi-
Eckmann threefolds [22] supporting solutions to the coupled Hermite-Einstein system. In the 
case of threefolds, these manifolds do not support either a holomorphic volume form, nor 
balanced metrics. 

Before proving this result, we will need some preliminary computations. 
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Lemma 6.3.10. The system of equations (6.3.30) is equivalent to: � � 
n1ℓ1 n2ℓ2 

+ = iz (6.3.36) 
a1 a2� 

bk1(1 + |β|2) � �� 
n1k1 n2k21 + iαzℓ1 − + x ωZ1 = 0 (6.3.37) 

2 a1 a22y� ���bk2(1 + |β|2) n1k1 + |β|2 k2n21 + iαzℓ2 − x ωZ2 = 0 (6.3.38) 
a1 a22y2 � � 

bk1
2(1 + |β|2) 

2y2 − αℓ12 ωZ 
2 
1 
= 0 (6.3.39) � � 

bk1k2x(1 + |β|2) − αℓ1ℓ2 ωZ1 ∧ ωZ2 = 0 (6.3.40) 
2y2 � � 
bk2|β|2(1 + |β|2)2 − αℓ22 ωZ 

2 
2 
= 0 (6.3.41) 

2y2 

Proof. The Hermite-Einstein equation (6.3.30) is rewritten as: P n1 n2Fh ∧ ωX
N−1 = − i(ℓ1ωZ1 + ℓ2ωZ2 ) ∧ (n1 + n2)2 

b ( j JAj ∧ Aj )a1 a2 ∧ �� � � � � 
n1 + n2 − 1 n1 + n2 − 1 ∧ ωn1−1 ∧ ωn2−1 ωZ1 ωZ2∧ +Z1 Z2 a2 a1n1 n2� � 

(n1+n2−1 (n1+n2−1 
−i(n1+n2) ) )n2 ℓ1 n1 ℓ2 ωN = 
n1+n2+1 (n1+n2) a1 

+
(n1+n2) a2 X 

n1 n2� � 
−i n1ℓ1 + n2ℓ2 ωN = .XN a1 a2 

from which we can read (6.3.36). To rewrite in terms of the variables the second equation 
in (6.3.30), we frst observe that: 

ρC (ωZ ) = ωZ1 + ωZ2 . (6.3.42) 

Moreover, using the matrix expression for JF (6.3.26), we obtain the following formulas. 

idcA1 = − x
y k1ωZ1 − (y + x

y 
2 
)k2ωZ2 

idcA2 = 
y 
1 k1ωZ1 + x

y k2ωZ2 

1 n1(ΛωZ idA1)idA1 = k
a 
2

1 
ωZ1 

k2 
(ΛωZ idA2)idA2 = 2 n2 ωZ2�a2 � 

2 k2 3x 1n1 )k1k2n2(ΛωZ id
cA1)id

cA1 = 2 + (x + x ωZ12y a1 y a2� � 
3 2

2 n2+ (x + x 
2 )

k1k2n1 + (y + x )2 k2 
ωZ2y a1 y a2� � 

1 1 n1 x k1k2n2(ΛωZ id
cA2)id

cA2 = 2 
k2 

+ 2 ωZ1y a1 y a2� � 
x k1k2n1 2 n2+ 2 + x2 k2 

ωZ2 .2y a1 y a2 
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Then, we use Lemma 6.3.7 combined with the above formulae to express the left hand 
side of the second equation in system (6.3.30) in terms of ωZi , which must vanish. Hence we 
get (6.3.37), (6.3.38). Finally, using Lemma 6.3.7 together with the above formulas, we can 
rewrite the components of the Bianchi identity in the terms ωZ 

2 
1 
, ωZ1 ∧ ωZ2 and ωZ 

2 
2 
. These 

result in the equations (6.3.39), (6.3.40), (6.3.41). 

Proof of Proposition 6.3.8. By exchanging the role of Z1 and Z2 if necessary, we will assume 
dim. Z1 ≤ dim. Z2. If dim. Z1 = 0, then the only equations of Lemma 6.3.10 that are 
non-trivial are (6.3.36) and (6.3.38), and also (6.3.41) if dim. Z2 ≥ 2. In this case, it is easy 
to see that there are no solutions. Indeed, by plugging the value of z given by (6.3.36) in 
equation (6.3.38), the resulting equation is in contradiction with (6.3.41). On the contrary, 
if dim. Z2 = 1, then Z2 ∼= CP 1 , as we have assumed Zi admit a positive curvature Kähler-
Einstein metric. The two relevant equations combined give us 

bk2|β|2(1 + |β|2) 
a2 + ℓ22α = 2 ,

2y2 

from which a2 is determined from the rest of the parameters. The degree z of the solution 
is given by (6.3.36) with n1 = 0, n2 = 1. 

Now, we move on to the case dim. Z1 ≥ 1. Then dim. Z2 ≥ 1 too. Here every equation 
in Lemma 6.3.10 is non-trivial, except (6.3.37) if dim. Z1 = 1, and (6.3.41) if dim. Z2 = 1. 
Using (6.3.36) and (6.3.40) in equations (6.3.37) and (6.3.38), we obtain � � 

bk1
2(1 + |β|2) 

a1 = n1 − αℓ2 
2y2 1 � � 

bk2(1 + |β|2)|β|2 
a2 = n2

2 − αℓ22 ,
2y2 

which are assumed to be positive. Observe the terms in brackets match the ones in equations 
(6.3.39) and (6.3.41). Therefore, there is no solution to the system (6.3.36)-(6.3.41) unless 
dim. Z1 = dim. Z2 = 1. Finally, we focus on this case. We must have Z1, Z2 ∼= CP 1 by 
the assumption that Zi are positive curvature Kähler-Einstein manifolds. We have already 
observed that a1, a2 must be given by the formulas above. Further, equation (6.3.40) must 
be satisfed. Then, either both terms vanish, in which case we obtain (2)(a), or they do not, 
in which case k1, k2, x, ℓ1, ℓ2, α ̸= 0, from where 

2αℓ1ℓ2y
2 

b = . 
k1k2x(1 + |β|2) 

Substituting this in the expressions for ai we obtain (2)(b). In either case (2)(a) or (2)(b) 
the degree z of the solution is then given by (6.3.36) with n1 = n2 = 1. 

Torus bundles over Calabi-Yau manifolds 

Here, we construct solutions to the coupled Hermite-Einstein system in every dimension. 
Let Z be a Kähler Calabi-Yau manifold of complex dimension n, and let Li, 1, ..., 2k be 
holomorphic line bundles on Z, and let: 

P = Fr L1 ×Z · · · ×Z Fr L2k (6.3.43) 
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the principal fbered product. Then, P is a (C×)2k-principal bundle, with a natural family 
of Lie algebra pairings given by: P2k⟨(ri), (si)⟩ = −α i=1 ri · si, (ri), (si) ∈ C⊕2k . (6.3.44) 

where α is a real constant. 

Proposition 6.3.11. Let σ ∈ KZ be a Kähler class, and ωZ ∈ σ be its Kähler Ricci fat met-
ric. Let hi be Hermite-Einstein metrics on Li with respect to ωZ , Ai their Chern connections 
and Pi the associated U(1) reductions. Moreover, defne: 

M = P1 ×Z · · · ×Z P2k. (6.3.45) 

Then: 

1. The complex structure on M given by: 

J = A⊥JZ + J0 ◦ A (6.3.46) 

is integrable, where A = (Ai) is the connection on the bundle M →p 
Z induced by Ai in 

each factor, and J0 is the standard fbre complex structure given by: 

J0∂2i−1 = ∂2i, J0∂2i = −∂2i−1, i = 1, ..., k. (6.3.47) 

We denote X = (M, J). 

2. Let: 

α P2kωX = ωZ + 
2 i=1 JAi ∧ Ai. (6.3.48) 

Then, if α > 0, ωX is a hermitian metric and (ωX , (p ∗hi)) solves the coupled Hermite-
Einstein system on (X, p∗P ), where P is given by (6.3.43). 

Remark 6.3.12. In the cases α ≤ 0, the tuple (ωX , (p ∗hi)) formally solve the coupled 
Hermite-Einstein equations too. However, ωX is not a hermitian metric anymore, since 
it becomes degenerate α = 0 or indefnite α < 0 in the bundle directions. 

Proof. The frst item is already known in the literature (see e.g. [76], or Lemma 7.1.6). Note 
moreover that with this choice of J0, we have: 

JA2i−1 = A2i, JA2i = −A2i−1, i = 1, ..., k. (6.3.49) 

and the formulas in Lemma 6.3.7 simplify to: P2kρB (ωX ) = ρ(ωZ ) + α ziFi (6.3.50)P2k

i=1 

ddcωX = α i=1 Fi ∧ Fi (6.3.51) 

using that hi are Hermite-Einstein with respect to ωZ , where we have denoted Fi = dAi and 
zi = ΛωZ Fi. 
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Now, to check that (ωX , (p ∗hi)) solve the coupled Hermite-Einstein system, we frst check 
that hi are Hermite-Einstein with respect to ωX with the same degree as hi: P2kFi ∧ ωn = nFi ∧ ωn−1 ∧ α JAi ∧ AiX Z 2 i=1P2k zi ωn+1 = ziωn ∧ α JAi ∧ Ai = .Z 2 i=1 n+1 X 

Moreover, since ωZ is Kähler Ricci fat, ρ(ωZ ) = 0. Thus, using the above formulas (6.3.50), 
(6.3.51), we obtain: P2kρB (ωX ) − α i=1 ziFi = 0 (6.3.52)P2kddcωX − α i=1 Fi ∧ Fi = 0, (6.3.53) 

and the result follows. 

Remark 6.3.13. We stress that (p ∗hi) are a solution to the Hermite-Einstein equation for 
P on X, even if the line bundles Li have diferent slopes, as the structure group is the abelian 
split group (C×)2k , rather than GL(2k, C), hence the tuple of degrees (zi) is a central element. 

6.4 Relation with Heterotic Supergravity and Vertex 
algebras 

The purpose of this Section is to discuss the position of the coupled Hermite-Einstein system 
in relation to some other systems of equations or constructions relevant to Hermitian and 
Generalized Geometry, and Physics. 

In the next Chapter, we will investigate the geometry determined by the coupled Hermite-
Einstein system via a systematic study of the equivariant geometry of suitable total spaces 
of principal bundles, yielding a non-abelian generalization of some aspects that have already 
implicitly appeared in the solutions provided in Section 6.3.2. The coupled Hermite-Einstein 
system will then be regarded as a reduction of natural geometry for these manifolds. 

For the time being, here we provide a riemannian characterization of the coupled Hermitian-
Einstein system. In particular, we will see that the solutions of (6.1.1) correspond to a natural 
class of generalized Ricci fat metrics on string algebroids and exhibit an interesting relation 
to heterotic supergravity, giving further motivation for their study. 

Proposition 6.4.1. Let X be a complex manifold endowed with a holomorphic principal 
G-bundle P . Assume that (ω, h) solves (5.3.12) and the Bianchi identity: 

ddcω + ⟨Fh ∧ Fh⟩ = 0. (6.4.1) 

Then, (g, h) solves the equations 

H2 1Ricg − 1 + F 2 
4 A + 

2 Lφ♯ g = 0, 
d ⋆ H − dφ + iφ♯ H = 0, (6.4.2) 

d ⋆AFA + iφ♯ FA + ⋆(FA ∧ ⋆H) = 0, P 
where Ricg is the Riemannian Ricci tensor, FA 

2 = i⟨iei FA, iei FA⟩ and 

H = −dcω, A = Ah , φ = θω. (6.4.3) 
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Proof. We have already seen that (5.3.12) implies the last equation in (6.4.2) (see Lemma 
5.3.2). Therefore, it is enough to prove that (5.3.12) implies: 

ρ1,1 1(·, J ·) = Ricg − 1 H2 + ⟨iei Fh, iei Fh⟩ + ⟨Sh, Fh(J, )⟩ + Lφ♯ g, (6.4.4)B 4 2 
2,0+0,2ρB (·, J ·) = −1

2 (d ⋆ H − dφ + iφ♯ H). (6.4.5) 

To check this, we will use the following formulae, valid on any Hermitian manifold (see [90, 
Proposition 3.1]): 

Ricg(X, Y ) = RicB(X, Y ) − 
2
1 d ∗ dcω(X, Y ) + 

4
1 g(dcω(X, ei), dcω(Y, ei)), (6.4.6) 

ρB(X, Y ) = −RicB(X, JY ) − (∇B
X θω)JY + 1

4 dd
cω(X, Y, ei, Jei), (6.4.7) 

where RicB denotes the Ricci tensor of ∇B , and {ei} is g-orthonormal frame. To prove the 
frst identity in (6.4.4), we now compute: 

ρ1,1 1 
B (X, JY ) = 

2 (ρB(X, JY ) − ρB(JX, Y )) 
= 

2
1 (RicB(X, Y ) + RicB (JX, JY ) + (∇B

X θω)Y + (∇JX 
B θω)JY 

+ 
4
1 ddcω(X, JY, ei, Jei) − 1

4 dd
cω(JX, Y, ei, Jei)) 

= 
2
1 (2Ricg(X, Y ) − 1

2 g(d
cω(X, ei, ), dcω(Y, ei, )) 

− 1 ⟨Fh ∧ Fh⟩(X, JY, ei, Jei) + L ♯ g(X, Y ))� 2 θω � 
− 1 H2 1 = Ricg + ⟨iei Fh, iei Fh⟩ + ⟨Sh, Fh(J ·, ·)⟩ + L ♯ g (X, Y ),

4 2 θω 

where we denote: P 
H2 = i,j H(ei, ej , ·)H(ei, ej , ·) (6.4.8) 

and for the third equality we have used the identity (see [90, Equation 3.23]): 

RicB(Y, JX) = −RicB (X, JY ) − (∇B
X θω)JY − (∇B

Y θω)JX (6.4.9) 

combined with: 
(∇B θω)Y + (∇B θω)X = (∇g θω)Y + (∇g θω)XX Y X Y 

= g(∇g
X θω

♯ , Y ) + g(∇g
Y θω

♯ , X) 
= g(∇g 

♯ X + [X, θω♯ ], Y ) + g(∇g 
♯ Y + [Y, θω♯ ], X)

θ θω ω 

= θω♯ (g(X, Y )) − g(Lθ♯ X, Y ) − g(X, Lθ♯ Y )
ω ω 

= (Lθ♯ g)(X, Y ). 
ω 

Similarly, the second identity (6.4.5) follows from: 
2,0+0,2 1ρB (X, JY ) = 

2 (ρB (X, JY ) + ρB(JX, Y )) 
= 

2
1 (RicB (X, Y ) + (∇B

X θω)Y + 
4
1 ddcω(X, JY, ei, Jei) 

− RicB (JX, JY ) − (∇B θω)JY + 
4
1 ddcω(JX, Y, ei, Jei))JX 

= 1 (RicB (X, Y ) − RicB (Y, X) + (∇B θω)Y − (∇Bθω)X)
2 X Y 

= 1
2 (d ∗ dcω(X, Y ) + dθω(X, Y ) + θω(g −1dcω(X, Y ))) 

= − 1
2 (d ∗ H − dθω + iθω♯ H)(X, Y ). 
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Remark 6.4.2. Consider the smooth string algebroid in Example 2.1.13. Applying [63, 
Lemma 7.1], equations (6.4.2) correspond to the vanishing of the generalized Ricci tensor 
Ric+ of the generalized metric V+ (see (5.1.2)), for a suitable choice of divergence operator 
determined by φ. Thus, by the previous result, any solution to (5.3.12) is generalized Ricci 
fat. This applies in particular to solutions to the coupled Hermite-Einstein system (6.1.1), 
by Proposition 6.1.2 and Lemma 5.3.3. 

In the next result, we make the connection between the Generalized Ricci fat equations 
(6.4.2) and the equations of motion of the heterotic supergravity in the mathematical physics 
literature (3.1.5) (see e.g. [47]). 

Proposition 6.4.3. Let M be a smooth manifold, and let P → M be a principal K-bundle. 
Let (g, A, H, ϕ) be a tuple consisting of a riemannian metric, a principal connection on P , 
a real 3-form and a smooth function, satisfying (6.4.2), where φ = 2dϕ. Then, the following 
system holds: 

Ricg + 2∇g(dϕ) − 1
4 H

2 + FA 
2 = 0 

d ⋆ (e −2ϕH) = 0 (6.4.10) 
d ⋆A(e −2ϕFA) + e −2ϕ ⋆ (FA ∧ ⋆H) = 0. 

Proof. To obtain the frst equation of (6.4.10), we combine the frst equation of (6.4.2) with 
the computations of the symmetric and skew components of the term ∇g(dϕ). These are 
well-known in riemannian geometry, but we provide them for the beneft of the reader: 

Λ2∇g(dϕ) = 1 (∇g (dϕ)(Y ) −∇g (dϕ)(X))
2 X Y 

= 1 (X(dϕ(Y )) − Y (dϕ(X)) − dϕ(∇g Y −∇g X))
2 X Y 

= 
2
1 d2ϕ(X, Y ) 

= 0, 
S2∇g(dϕ)(X, Y ) = 1 (∇g (dϕ)(Y ) + ∇g (dϕ)(X))

2 X Y 

= 1 (X(g(∇ϕ, Y )) + Y (g(∇ϕ, X)) − g(∇ϕ, ∇g Y ) − g(∇ϕ, ∇g Y ))
2 X X 

= 1 (g(∇g (∇ϕ), Y ) + g(∇g (∇ϕ), X))
2 X Y� � 
1 g(∇g= 
2 ∇ϕX + [X, ∇ϕ], Y ) + g(X, ∇g 

∇ϕY + [Y, ∇ϕ]) 
= 1

2 (∇ϕ(g(X, Y )) − g([∇ϕ, X], Y ) − g(X, [∇ϕ, Y ])) 
= 1

2 (L∇ϕg)(X, Y ) 
= 

4
1 (Lφ♯ g)(X, Y ). 

Therefore, we obtain: 2∇g(dϕ) = 1
2 Lφ♯ g, and consequently, the frst equation in (6.4.10) 

holds. Now, for the second equation in (6.4.10), we compute: 

d ⋆ (e −2ϕH) = − ⋆ d ⋆ (e −2ϕH) 
= e −2ϕd ⋆ H + 2e −2ϕ ⋆ (dϕ ∧ ⋆H) 
= e −2ϕd ⋆ H + 2e −2ϕi∇ϕH 
= e −2ϕ(d ⋆ H + iφ♯ H) 
= 0, 
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where in the last step we have used the second equation in (6.4.2) combined with dφ = 
2d2ϕ = 0. Similarly, for the third equation in (6.4.10): 

d ⋆A(e −2ϕFA) = − ⋆ dA ⋆ (e −2ϕFA) 
2ϕd ⋆ = e AFA + 2e −2ϕ ⋆ (dϕ ∧ ⋆FA) 
−2ϕd ⋆ = e AFA + 2e −2ϕi∇ϕFA. 

Then: 

−2ϕ(d ⋆ d ⋆A(e −2ϕFA) + e −2ϕ ⋆ (FA ∧ ⋆H) = e AFA + 2i∇ϕFA + ⋆(FA ∧ ⋆H)) 
−2ϕ(d ⋆ = e AFA + iφ♯ FA + ⋆(FA ∧ ⋆H)) 

= 0, 

where in the last step we have used the last equation in (6.4.2). 

The system (6.4.10) matches the equations of motion of heterotic supergravity (3.1.5) 
(with the choices outlined in that Section) except for the last equation of the system, the 
dilaton equation. We now prove that, under natural assumptions, it holds up to a constant, 
generalizing the already known result in the case of trivial principal bundle [71, Proposition 
4.33]. For this, we will need some technical computations. 

Lemma 6.4.4. Let M be a smooth manifold, and let P → M be a principal K-bundle, where 
K has a quadratic Lie algebra (k, ⟨·, ·⟩). Let (g, A, H) be a tuple consisting of a riemannian 
metric, a principal connection on P and a real 3-form. Moreover, let Xp ∈ TpM at a point 
p ∈ M . Then: 

1. There exists a smooth vector feld X extending Xp such that (∇gX)p = 0. 

2. The following formulas hold at p: 

X(div Y ) = div(∇g
X Y ) − Ricg(X, Y ) (6.4.11) 

d ⋆ (iX Ric
g) = − 1 X(scalg) (6.4.12)

2 P 
− 1d ⋆ (iX H

2) = X(|H|2) + 1 dH(X, ei, ej , ek)H(ei, ej , ek)+6 3 i,j,k P 
+ j,k d

⋆H(ej , ek)H(X, ej , ek) (6.4.13)P 
d ⋆ (iX FA 

2 ) = − 1
4 X(|FA|2) + i⟨d⋆AFA(ei), FA(X, ei)⟩, (6.4.14) 

where X is any vector feld extending Xp such that (∇gX)p = 0, Y is any vector feld 
and {ei} is a g-orthonormal basis. 

Proof. For the frst item, we work in normal coordinates around p ∈ M . In particular, there 
is a basis of vector felds {ei} such that: 

(∇gei)p = 0, gp(ei, ej ) = δij . (6.4.15) 

Then, we choose: P 
X = i gp(Xp, ei)ei. (6.4.16) 
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Now, let Y be any vector feld and X as above. Then, at p: P 
X(div Y ) = g(∇g ∇g Y, ei) + g(∇g Y, ∇g

X ei)i X ei eiP 
∇g + ∇g= i g((R

g(X, ei) + ∇g
X )Y, ei)ei [X,ei] 

= −Ricg(X, Y ) + div(∇g
X Y ). 

For (6.4.12), using the normal coordinates conditions and the assumption for X, we compute 
at p: P � � 

d ⋆ (iX Ric
g) = − i ∇g

ei 
iX Ric

g (ei)P P 
= − i ei (Ric

g(X, ei)) + Ricg(X, ∇g
eii ei)P 

= − i,j ei (g(R
g(ej , X)ei, ej ))P 

= g(∇g Rg(ej , X)ei, ej )i,j eiP 
= g((∇g

ej 
Rg(X, ei) + ∇g Rg(ei, ej ))ei, ej )i,j XP 

= i,j g(∇g
ej 
Rg(ei, X)ej , ei) + g(∇g

X R
g(ej, ei)ei, ej )P 

= − 1 g(∇g Rg(ej , ei)ei, ej )2 i,j X�P � 
= − 1 X Rg(ej , ei)ei, ej )2 i,j 

= − 1
2 X(scalg), 

where we have used throughout the symmetries and the Bianchi identity for the Riemann 
curvature tensor Rg. 

The third formula follows from the same computation as in [71, Lemma 3.19]. Note 
however the extra term in (6.4.13) since we are not assuming H is closed. The last formula 
(6.4.14) follows again from analogous computations, using here that dAFA = 0. 

Proposition 6.4.5. Let M be a smooth manifold, and let P → M be a principal K-bundle, 
where K has a quadratic Lie algebra (k, ⟨·, ·⟩). Let (g, A, H, ϕ) be a tuple consisting of a rie-
mannian metric, a principal connection on P , a real 3-form and a smooth function, satisfying 
(6.4.2), where φ = 2dϕ and the Bianchi identity: 

dH − ⟨FA ∧ FA⟩ = 0. (6.4.17) 

Then: � � 
d scalg − 4∆gϕ − 4|dϕ|2 − 1 |H|2 + 1 |FA|2 = 0. (6.4.18)

12 2 

Proof. First, taking the trace of the frst equation in (6.4.10), we get: 

scalg − 1
4 |H|2 + |FA|2 − 2∆gϕ = 0, (6.4.19) 

where ∆gϕ = d⋆dϕ is the Hodge Laplacian of ϕ. In the sequel, let X be a vector feld such 
that (∇gX)p = 0 for some p ∈ M . Then, using (6.4.19), at the point p we have: 

X(scalg) = X(1 |H|2 − |FA|2) + 2X(div(∇ϕ))
4 

= X(1 |H|2 − |FA|2) − 2Ricg(X, ∇ϕ) + 2div(∇g ∇ϕ)
4 � X � 

= X(1 |H|2 − |FA|2) − 2Ricg(X, ∇ϕ) − d ⋆ iX (Ric
g − 1 H2 + F 2 ) ,

4 4 A 
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� 

where in the last step we have used again the frst equation in (6.4.10). Then, using the 
formulae in Lemma 6.4.4, we continue the above computation to get: � � � � 

X(scalg) = X 1 |H|2 − |FA|2 − 2Ricg(X, ∇ϕ) + 1 X(scalg) + d ⋆ 1 H2 − F 2 
4 2 4 A� � � � 
1 1 H2 − 2F 2 = X |H|2 − 2|FA|2 − 4Ricg(X, ∇ϕ) + d ⋆ A�2 � 2 

= X 1 |H|2 − 2|FA|2 − 4Ricg(X, ∇ϕ) − 1 X(|H|2)
2P 12 P 

+ 1 dH(X, ei, ej , ek)H(ei, ej , ek) + 1 d⋆H(ej, ek)H(X, ej , ek)6 i,j,k 2 j,k P
1 ⟨d⋆ + 
2�X(|FA|2) − 2 i AFA(ei), FA(X, ei)⟩� 

= X 5 |H|2 − 3 |FA|2 − 4Ricg(X, ∇ϕ) + 
P 

H(∇ϕ, ej , ek)H(X, ej , ek)+12 2 j,k 
1 P P 

+ ⟨FA ∧ FA⟩(X, ei, ej , ek)H(ei, ej , ek) − 2 ⟨d⋆ FA(ei), FA(X, ei)⟩6 i,j,k i A� � � � 
= X 5 |H|2 − 3 |FA|2 − 4 Ricg − 1 H2 (X, ∇ϕ)

12 2 4 

− 2⟨(d ⋆ FA + ⋆(FA ∧ ⋆H))(ei), FA(X, ei)⟩� A � 
= X 5 |H|2 − 3 |FA|2 − 4(Ricg − 1 H2 + F 2 )(X, ∇ϕ)

12 2 4� � A 

= X 5 |H|2 − 3 |FA|2 − 8(∇X
g dϕ)(∇ϕ)

12 2 � 
= X 5 |H|2 − 3 |FA|2 − 4X(|dϕ|2),

12 2 

where, in the second line we have collected the terms in X(scalg), and from the sixth line 
onwards, we use the equations in (6.4.2) with φ = 2dϕ and the Bianchi identity (6.4.17). 
Since the above computation is tensorial in X, it follows that: � � 

d scalg − 5 |H|2 + 3 |FA|2 + 4|dϕ|2 = 0. (6.4.20)
12 2 

Finally, the result follows substracting (6.4.20) from twice the expression obtained by taking 
exterior derivative in (6.4.19). 

Corollary 6.4.6. Let X = (M, J) be a complex manifold, and let P → X be a holomorphic 
principal G-bundle. Assume (ω, h) is a solution to the coupled Hermite-Einstein system 
(6.1.1), and assume the Lee form is exact, θω = 2dϕ. Moreover, let: 

g = ω(·, J ·), A = Ah , H = −dcω. (6.4.21) 

Then (g, A, H, ϕ) solve (6.4.10). 

Proof. This is a straightforward consequence of Propositions 6.4.1, 6.4.3. 

We fnish this Section mentioning a further motivation for the study of the coupled 
Hermite-Einstein system. Recently, the system has also appeared remarkably in the context 
of SUSY vertex algebras. There, the existence of coupled Hermite-Einstein metrics on Bott-
Chern algebroids (see Defnition 5.3.1) is a fundamental structure to regard the chiral de 
Rham complex - of central interest in the study of superconformal feld theory in the physics 
literature - as a representation of certain N = 2 superconformal vertex algebras [6, Theorem 
4.18]. This proposal is then used to study certain aspects of (0, 2)-mirror symmetry, recasted 
as an involution of suitable vertex algebras on mirror spaces [5, 34]. While this theory is 
already well-known in the Kähler and Generalized Kähler case, the coupled Hermite-Einstein 
system seems to stand out as consistency conditions for such phenomena to be realised in 
the non-Kähler setting. 
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Chapter 7 

Dimensional reduction of canonical 
pluriclosed metrics 

In this Chapter, we revisit the coupled Hermite-Einstein system introduced in Chapter 5 
from the point of view of hermitian reduction. The underlying principle, which was already 
implicit in Section 6.3.2, is to build on the results of [75, 76] to show that suitable invariant 
geometry on the total space of principal bundle fbrations induces the coupled Hermite-
Einstein system on the base upon reduction. We make this precise in Theorem 7.2.3. Here 
we generalize this picture to non-abelian symmetries and fnd correspondences between both 
spaces. This Chapter is based on ongoing work jointly with M. Garćıa-Fernández and J. 
Streets (see Chapter 9). 

7.1 Equivariant geometry of principal bundle fbrations 

7.1.1 Riemannian curvatures of equivariant metrics 
Let M be a compact smooth manifold and let K be a real, compact Lie group. We assume 
K has a quadratic Lie algebra (K, ⟨·, ·⟩). Moreover, we fx a smooth principal bundle: 

p
K −→ P −→ M. (7.1.1) 

We will assume that P satisfes: 

p1(P ) = 0 ∈ H4 (M).dR (7.1.2) 

Next, we introduce the equivariant geometry of P . Let (gM , HM ) be a riemannian metric 
and a 3-form on M , and let A ∈ (Ω1 

P )
K be a principal connection. Then, we consider the 

total space symmetric tensor and 3-form given by: 

g = p ∗ gM − ⟨A ⊗ A⟩ (7.1.3) 
H = p ∗ HM − CS(A), (7.1.4) 

where CS(A) stands for the Chern-Simons 3-form of A (1.3.17). Observe that when ⟨·, ·⟩ is 
negative defnite, g is a riemannian metric on P . In the sequel, if this is case, we will denote: 

gK (·, ·) = −⟨·, ·⟩. (7.1.5) 
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Moreover, the restriction of H to the fbres of P , identifed with the Lie group K is the 
Cartan 3-form of K, given by the extension of: 

HK (ξ, µ, γ) = ⟨[ξ, µ], γ⟩, ξ, µ, γ ∈ k, (7.1.6) 

by left translations. This form satisfes the following key property: 

Lemma 7.1.1. Let (K, gK , HK ) as in this Section, and let D be the Levi-Civita connection 
of gK . Then: 

DHK = 0. (7.1.7) 

In particular: 

dHK = d ⋆ HK = 0. (7.1.8) 

Proof. We compute DHK evaluating at left-invariant vector felds. For clarity in notation, 
only in this proof we denote them by A, B, C and E. First, we note that: 

DAB = 1 
2
[A, B] (7.1.9) 

as a straightforward consequence of the Koszul formula for D (1.2.4), using bi-invariance of 
gK . Then, we have: 

1−H ([A,B], C, E)K 2 

HK (B, C, [A, E]) 

1 
2

(DAHK )(B, C, E) = A(HK (B, C, E)) − HK (B, [A, C], E) 
1 
2

− 
1 1 

2
⟨[B, [A, C]], E⟩ − 1 

2
⟨[B, C], [A, E]⟩⟨[[B, A], C], E⟩ − = 

2 

= 0, 

where in the last step we use the Jacobi indentity combined with the fact that ⟨·, ·⟩ is 
adjoint-invariant. The second part of the statement follows inmediately using that dHK 
is the complete skew-symmetrization of DHK , and the standard formula in Riemannian 
Geometry: P 

d ⋆ HK = − HK )(Uj , ·, ·), (7.1.10)j (DUj 

where {Uj } is an orthonormal basis for gK . 

We now compute the Levi-Civita and Bismut curvatures of the Ricci tensors of g (resp. of 
(g, H)) in (7.1.3),(7.1.4), in the case it is riemannian. While these results seem to be known 
by experts, we have not been able to fnd the proofs, hence we give some details about the 
former and fully spell out the latter. For efciency in the next computations, we adopt the 
following notation and use it sistematically: we will denote by X, Y, Z (and possibly primed 
or with some other decoration) for horizontal lifts with respect to A of basic vector felds, and 
abusing of notation, we will identify them with their basic projections. Similarly, U, V, W, ... 
will denote vertical vector felds. Whenever they are canonical (see (1.3.6)) and we want to 
make explicit reference to the Lie algebra generator, we will prefer the notation Xξ for ξ ∈ k. 
Furthermore, {Xj } will denote an orthonormal frame of p ∗TX (resp. {Uj } of the vertical 
distribution V P = ker dp ⊂ TP ). 

To obtain the Ricci tensor of g on P , we adapt the general computations for riemannian 
submersions in [18, Chapter 9] to the case of interest. 
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Defnition 7.1.2. [18, Defnition 9.25] Assume g in (7.1.3) is a riemannian metric, and let 
D be the Levi-Civita connection of g. Consider the tensors T,B ∈ Γ(End TP ) given by: 

T = pH DpV pV + pV DpV pH (7.1.11) 
B = pH DpH pV + pV DpH pH . (7.1.12) 

Equivalently, D is decomposed as: 

DU V = DU
gK V + TU V (7.1.13) 

DU X = TU X + pH DU X (7.1.14) 
DX U = pV DX U + BX U (7.1.15) 
DX Y = BX Y + pH DX Y, (7.1.16) 

where DgK is the Levi-Civita connection of gK , and pH , pV are the projections (1.3.10). 

Now, we make some preliminary observations that will be applied to the case of principal 
bundle fbrations (7.1.1) throughout without further mention. 

Lemma 7.1.3. With the previous notations, the following hold: 

1. [U, V ] ∈ V P . 

2. [Xξ, R] = 0, for R a K-invariant vector feld. In particular, for R lifted horizontal, or 
induced by a section of ad P . 

3. BX Y = 1 
2
pV ([X, Y ]) = −1 

2
FA(X, Y ) under the identifcation V P ∼= P × k. 

4. The tensor T in (7.1.11) vanishes. 

5. pV DX X
ξ = 0, for any lifted horizontal X, and canonical Xξ . 

Proof. The frst item follows from the involutivity of V P . The second follows from the fact 
that the fow for canonical felds is given by right translations. The third item follows from 
[18, Proposition 9.24] and the defnition of FA. For the fourth, we prove that: 

TU V = TU X = 0 (7.1.17) 

for any choice of vertical felds U, V and horizontal X. First, we show that g(DU V, X) 
vanishes. Using the Koszul formula for D (1.2.4), we write it in terms of: 

X(g(U, V )), g(X, [U, V ]), (7.1.18) 

and their cyclic permutations. Since T is a tensor, this computation is pointwise and ex-
tensions of U, V are irrelevant, hence we may use canonical felds, and we choose X to be 
a lifted horizontal feld, similarly. Then, it is straightforward to check that all these terms 
vanish by our elections of felds combined with [18, Proposition 9.18]. TU X = 0 is similar. 
For the last item, g(DX X

ξ, V ) = 0 similarly, but note however that it is not tensorial in 
Xξ . 
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Proposition 7.1.4. [18, Proposition 9.36] With the previous notations, the following for-
mulas hold: P 

Ricg(U, V ) = RicgK (U, V ) + 1 gK (FA(Xj , Xk), U)gK (FA(Xj , Xk), V ), (7.1.19)
4 j,k 

Ricg(U, X) = 1 gK (d ⋆ FA(X), U), (7.1.20)�2 A � 
Ricg(X, Y ) = RicgM − 1

2 FA 
2 (X, Y ), (7.1.21) 

where the notation FA 
2 stands for: P 

FA 
2 (X, Y ) = j gK (FA(Xj , X), FA(Xj , Y )). (7.1.22) 

Proof. These formulas follow combining [18, Proposition 9.36] in the case the riemannian 
submersion is as in this Section and Lemma 7.1.3. The explicit computations are straight-
forward and hence ommited. 

Now, we move on to compute the Ricci tensor of the Bismut connection of the pair (g, H) 
as in (7.1.3),(7.1.4). By this, we mean the connection given by: 

Dg,H 1 = D + 
2 g 

−1H, (7.1.23) 

where D is the Levi-Civita connection of g, and H is given by (7.1.4). The dimensional 
reduction of Bismut curvature quantities on torus bundles has already appeared in the lit-
erature with a view towards relating diferent geometric fows [124, 125] and Generalized 
Geometry and T-duality [123]. Here, we provide the formulae for the Bismut-Ricci tensor of 
a general principal bundle fbration as in (7.1.1), which will be used in the sequel: 

Proposition 7.1.5. The Ricci tensor of Dg,H satisfes: � � 
Ricg,H (X, Y ) = RicgM − 

4
1 HM 

2 − FA 
2 − 

2
1 d ⋆ HM (X, Y ), 

Ricg,H (U, X) = gK (U, iX (d ⋆AFA + ⋆(FA ∧ ⋆HM )), 
(7.1.24)

Ricg,H (X, U) = 0, 
Ricg,H (U, V ) = 0, 

where we use the notation (6.4.8) for HM 
2 . 

Proof. The proof is a combination of Proposition 7.1.4 and the relation between Bismut and 
Levi-Civita Ricci tensor (e.g. [89, Proposition 3.1]): 

Ricg,H = Ricg − 
2
1 d ⋆ H − 

4
1 H2 , 

that holds on any smooth manifold. Now, using the notations of this section, we compute 
explicitly the components of each of these extra terms for (P, g, H). The vertical felds 
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involved are assumed to be canonical throughout the computations. P P 
d ⋆ H(U, V ) = − j (DXj H)(Xj , U, V ) − k(DUk H)(Uk, U, V )P 

= j −Xj (H(Xj , U, V )) + H(DXj Xj, U, V ) 
+ H(Xj , DXj U, V ) + H(Xj , U, DXj V ) + d ⋆ gK HK (U, V )P 

= d ⋆ gK HK (U, V ) + j H(Xj , BXj U, V ) + H(Xj , U, BXj V )P 
= d ⋆ gK HK (U, V ) − j,k H(Xj , Xk, V )gK (BXj Xk, U)P 
− j,k H(Xj , U, Xk)gK (V, BXj Xk)P 

= d ⋆ gK HK (U, V ) + P 1 
2 j,k gK (FA(Xj , Xk), U)gK (FA(Xj , Xk), V ) 

− 1 

= d ⋆ gK HK (U, V ) = 0. 

where in the last step we apply (7.1.8). The next component of this term is: P 
d ⋆ H(U, X) = j −Xj (H(Xj , U, X)) + H(DXj Xj , U, X)+ 

+ H(Xj , DXj U, X) + H(Xj , U, DXj X)+jP 
+ k −Uk(H(Uk, U, X)) + H(DUk Uk, U, X)+P 
+ j H(Uk, DUk U, X) + H(Uk, U, DUk X)P 

= j Xj (gK (FA(Xj , X), U)) − gK (FA(DX
gM

j 
Xj , X), U) 

− gK (FA(Xj , DX
gM

j 
X), U) − HM (Xj , X, BXj U) 

2 

P

P 
= j gK (iXj dA(FA(Xj , X)), U) − gK (FA(DX

gM
j 
Xj , X), U)+P 

+ j −gK (FA(Xj , DX
gM

j 
X), U) − HM (Xj , X, BXj U)P 

j,k gK (FA(Xj , Xk), V )gK (FA(Xj , Xk), U) 

= − gK (d ⋆AFA(X), U) + 1 
2 j,k HM (Xj , Xk, X)gK (FA(Xj, Xk), U) 

where, in the last computation, we have used throughout Lemma 7.1.3 combined with: 

p∗DX ′ Y ′ = DX
gM Y ′ , (7.1.25)′ 

which can be easily proved combining the Koszul formulas (1.2.4) for g and gM . Turning to 
the horizontal component of this term, we have: P P 

d ⋆ H(X, Y ) = j −(DXj H)(Xj , X, Y ) + k −(DUk H)(Uk, X, Y ). (7.1.26) 

Each of these two terms require attention. 

−(DXj H)(Xj , X, Y ) = − Xj (H(Xj , X, Y )) + H(DXj Xj , X, Y )+ 
+ H(Xj , DXj X, Y ) + H(Xj , X, DXj Y )P 

= d ⋆ gM HM (X, Y ) + j H(Xj , BXj X, Y ) + H(Xj , X, BXj Y )P 
= d ⋆ g HM (X, Y ) + P 1 

2
gK (FA(Xj , Y ), FA(Xj , X))j,k 

1−
2 

= d ⋆ gM HM (X, Y ). 
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Furthermore, we compute the second term in (7.1.26): P 
−(DUk H)(Uk, X, Y ) = k −Uk(H(Uk, X, Y )) + H(DUk Uk, X, Y )+ 

+ H(Uk, DUk X, Y ) + H(Uk, X, DUk Y )P 
= k −Uk(gK (FA(X, Y ), Uk)) + gK (FA(X, Y ), DU

gK
k 
Uk)P 

+ j,k H(Uk, Xj , Y )g(DUk X, Xj ) + H(Uk, X, Xj )g(DUk Y, Xj )P 
= k −gK ([Uk, FA(X, Y )], Uk)P 
− 1 gK (FA(Xj , Y ), Uk)gK (FA(Xj , X), Uk)4 j,k 

1 P + 
4 j,k gK (FA(Xj , X), Uk)gK (FA(Xj , Y ), Uk)P 

= k −gK ([Uk, FA(X, Y )], Uk) = 0. 

Then, we move to the components of the remaining term. P 
H2(U, V ) = j,k H(Xj , Xk, U)H(Xj , Xk, V ) + H(Uj , Uk, U)H(Uj , Uk, V )P 

= j,k gK (FA(Xj , Xk), U)gK (FA(Xj , Xk), V )+P 
+ j,k([Uj , Uk], U)([Uj , Uk], V )P 

H2(U, X) = j,k H(Xj , Xk, U)H(Xj , Xk, X)P 
= j,k HM (Xj , Xk, X)gK (FA(Xj , Xk), U)P 

H2(X, Y ) = j,k H(Xj , Xk, X)H(Xj , Xk, Y ) + 2H(Xj , Uk, X)H(Xj , Uk, Y )P 
= H2 (X, Y ) + 2 gK (FA(Xj , X), Uk)gK (FA(Xj , Y ), Uk)M j,k 

= (HM 
2 + 2FA 

2 )(X, Y ). 

Finally, combining all the previous computations and taking into account that d⋆H is 
skew and H2 is symmetric yields the result. The second formula uses also the fact that: P 

j,k FA(Xj , Xk)HM (Xj , Xk, X) = −2 ⋆ (FA ∧ ⋆HM )(X). (7.1.27) 

For the last formula, we get: 

Ricg,H (U, V ) = RicgK ,HK (U, V ) = 0, (7.1.28) 

where the last step follows from the fact that the ansatz we are using for the fbre metric 
and for HK is actually Bismut-fat ([71, Proposition 3.53]). 

7.1.2 Equivariant hermitian geometry of principal bundles 
Next, we introduce the complex structure in the picture of the previous Section. Let X = 
(M, JX ) be a compact complex manifold of complex dimension n. Let (K, JK ) be a compact, 
real Lie group of even dimension endowed with a left-invariant, integrable complex structure. 
We will assume K has a quadratic Lie algebra (k, ⟨·, ·⟩) and that JK is orthogonal for this 
structure, that is, ⟨JK ·, JK ·⟩ = ⟨·, ·⟩. Moreover, we fx a smooth principal bundle: 

p
K −→ P −→ X (7.1.29) 
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We will assume that P satisfes: 

p1(P ) = 0 ∈ H4 (X, R). (7.1.30)dR 

Furthermore, we will assume that P supports holomorphic complexifcations. These are 
given by principal connections A ∈ (Ω1 

P )
K such that: 

F 0,2 
A = 0. (7.1.31) 

In such case, indeed P c = P ×K K
c endowed with the Dolbeault operator ∂A = dA 

0,1 is 
naturally a holomorphic principal bundle over X, where Kc is the complexifcation of the 
real group K, inducing a canonical complex structure on P c . 

In the sequel, we adopt the notation of Section 1.3.1 to denote the canonical vector 
felds (1.3.6), and we identify basic vector felds X, Y, ... ∈ Γ(TX) with the lifted horizontal 
felds on P when the connection A used is implicit. The following result yields a wealth of 
integrable complex structures on the total space of P : 

Lemma 7.1.6. Let A be a principal connection on P satisfying (7.1.31), then: 

J = A⊥JX + JK ◦ A (7.1.32) 

is an integrable complex structure on P , where A⊥ denotes the horizontal lift induced by X. 

Proof. This result is well-known, but we give a sketch of the proof here. The integrability of 
J is equivalent to T 0,1P being involutive. Then, the result follows from these computations: 

[(Xξ)0,1 , (Xµ)0,1]1,0 = 1 (Xξ, Xµ)1,0 = 0,
4 NJK 

[X0,1 , (Xξ)0,1]1,0 = ([X, Xξ] + i[JX, Xξ] + i[X, JXξ] − [JX, JXξ])1,0 = 0, 
1,0[X0,1, Y 0,1]1 

q
,0 = (dp|ker A)

− 
q 
1([X0,1, Y 0,1]p(q)) − FA(X0,1, Y 0,1)1,0 = 0. 

For the frst item, we use the integrability of JK . For the second, we use that J as in (7.1.32) 
preserves the families of canonical and lifted horizontal felds, combined with the fact that 
lifted horizontal felds are K-invariant, hence invariant under the fow of canonical felds. 
For the last one we use integrability of JX together with (7.1.31). 

By the previous result, given a principal connection A, the manifold (P, J) where J is 
as in (7.1.32) is complex. Hence, we may study its hermitian geometry. We consider the 
hermitian metric given by: 

ω = g(J ·, ·) = p ∗ ωX + 1
2 ⟨JA ∧ A⟩, (7.1.33) 

where g is as in (7.1.3). Moreover, in the hermitian case, there is a distinguished choice for 
the 3-form HX given by: 

HX = −dcωX . (7.1.34) 

Then, we get the following compatibility result for the torsion of ω on the total space of 
(P, J): 
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Lemma 7.1.7. Let HX be as in (7.1.34). Then: 

H = −dcω, (7.1.35) 

where H and ω are given by (7.1.4) and (7.1.33). 

Proof. We compute: 

−dcω = p ∗ (−dcω) + 1 
2
Jd⟨JK ◦ A ∧ A⟩ 

∗ HX + J⟨JK ◦ (FA − 1 
2
[A ∧ A]) ∧ A⟩= p 

∗ HX +
1 
2
1 
6 

⟨[JK ◦ A ∧ JK ◦ A] ∧ A⟩ − ⟨FA ∧ A⟩ 
⟨A ∧ [A ∧ A]⟩ − ⟨FA ∧ A⟩ 

= p 
∗ HX += p 

= p ∗ HX − CS(A) 
=H, 

where we use throughout that NJK = 0, combined with the identity: 

JA = −JK ◦ A. (7.1.36) 

We now provide a formula for the Lee 1-form θω in terms of basic data, which will be 
useful in the sequel. 

Lemma 7.1.8. With the notations of this Section, the following formula holds: 

θω = p ∗ θωX − ⟨ΛωX FA, JA⟩ − ⟨θω♯ K 
, A⟩. (7.1.37) 

Proof. We frst obtain an equality that will be used in the main computation: P
1 
2 

1Λω⟨[A ∧ A] ∧ JA⟩ = j ⟨[A ∧ A] ∧ JA⟩(Uj , JUj )P4

1 ⟨[Uj , JUj ], JA⟩= j2P 
= ⟨DgK JUj , JA⟩j UjP 
= −1 

2 j ⟨g 
−1 
K dωK (Uj , JUj , J ·), JA⟩ 

= ⟨Jθω♯ K 
, JA⟩ 

= −⟨θω♯ K 
, A⟩, 

where we have used the standard identity in a hermitian manifold (M, g, J): 

g((DX
g J)Y, Z) = 1 

2
dω(X, Y, Z) − 1 

2
dω(X, JY, JZ). (7.1.38) 

Now, to compute the Lee form θω we apply the general formula that holds in any Hermitian 
manifold (X, ω): 

θω = Λωdω. (7.1.39) 
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Then, combining (7.1.33) with the above formulae, we have: 

θω = Λω(dωX + 1
2 ⟨d(JA) ∧ A⟩ − 

2
1 ⟨JA ∧ dA⟩ 

= ΛωX dωX − 1
2 Λω(⟨JK ◦ dA ∧ A⟩ + ⟨JA ∧ dA⟩) 

= θωX − Λω⟨JK ◦ (FA − 1
2 [A ∧ A]) ∧ A⟩ 

= θωX − ⟨ΛωX FA, JA⟩ + ⟨JK θω
♯ 
K 
, JA⟩ 

= θωX − ⟨ΛωX FA, JA⟩ − ⟨θω♯ K 
, A⟩. 

Next, to prove that the situation described in this Section is not trivial, we provide a 
large family of real Lie groups endowed with integrable complex structures for which the 
construction of this Section applies. 

Defnition 7.1.9. A tuple (P, K, JK , ⟨·, ·⟩) is of split type if: 

′ ′ ′ 1. K = K × K , where K is a compact, real Lie group. 

2. P ∼= P1 ×X P2, where Pj are (possibly non-isomorphic) principal K ′ -bundles. 

3. One has: 
(1) (2) (2) (1) ′ JK ∂i = ∂i , JK ∂i , i = 1, ..., dim K (7.1.40)= −JK ∂i 

where {∂(j)} runs over a basis of canonical vector felds on each Pj , j = 1, 2.i 

4. The inner product ⟨·, ·⟩ splits: 

⟨·, ·⟩ = ⟨·, ·⟩1 + ⟨·, ·⟩2, (7.1.41) 

where each (·, ·)j is a (possibly diferent) pairing in the jth-factor K ′ , and this splitting 
is respected by the adjoint action of K. 

When the structure is implicit, we will just say that P is of split type. It is obvious from 
(7.1.40) and (7.1.41) that split-type complex structures are orthogonal. The following result 
proves that they are moreover integrable. 

Lemma 7.1.10. The split-type almost complex structure JK of (7.1.40) is integrable. 

Proof. It is enough to show that NJK vanishes on left-invariant vector felds at a point. We 
′ ′ denote by X1 

ξ +X2 
η the left invariant vector feld which at the identity element of K = K ×K 

is the Lie algebra element (ξ, η). We frst compute: 

NJK (X1 
ξ, X1 

η) = [X1 
ξ, X1 

η] + JK ([JK X1 
ξ, X1 

η] + [X1 
ξ, JK X1 

η]) − [JK X1 
ξ, JK X1 

η]. (7.1.42) 

Observe that in a fxed coordinate chart: 

[JK X1 
ξ, X1 

η] = JK X1 
ξ(X1 

η) − X1 
η(JK X1 

ξ) = −X1 
η(JK X1 

ξ) = −JK (X1 
η(X1 

ξ)) 

162 



ξ 
1 only diferentiates where, in the second equality, the frst term vanishes given that JK X 

η, J XK 1 

along the second K ′ × K ′ factor. Similarly, we also get: 

ξ η ξ η ξ[X , J X ] J (X (X [J X= K K K 11111 )), ] = 0. 

Therefore, we conclude: 

21 

1 
ξ η ξ η η ξ ξ η ξ η ξ−(X ,X ) [X ,X ] + (X (X ) X (X )) [X ,X , X = = 1 1 

Now, this result does depend coordinates N is tensorial. Reasoning similarly, not on as JK 

ξ η ξ η ξ η ξ ξ η−(X ,X ) [X ,X ] + J ([J X ,X ] + [X ]) [J X , J X= K K K K1 

11

21 

11 

2 

1 

1 

1 

2 

1 

1 

1 
η] + [ X1NJK ] = 0. 

η, J XK 2NJK ] 

1 
ξ η η ξ ξ η 
1 (JK X ) − JK X 1 ) − [JK X1 , JK X 

12 

2 

2 
ξ η η ξ ξ η− −J (J X (X ) J X (X )) [J X , J X= K K K K K 21 ] 

= JK X (JK X ] = 0.2 2 

NJK = 0. 

ξ η ξ η(X ,X ) and X ,X2 

Observe that among split-type examples, there is the principal bundle involved in the 

2 

Hull-Strominger system 3.1.11, for which the is G SU(3) SU(3), if the×structure group = 

In general, in [111] there is a systematic study of the moduli space of complex structures 

1 

orthogonal with respect to a fxed bi-invariant pairing in real compact Lie groups. The cases 
of low rank are explicit and classifed. These are described in detail in [17] for the groups 

2 

bundle has rank 3.gauge 

SU(3), Spin(5) and G2. 

7.2 Hermitian metrics with non-abelian symmetries 
The aim of this Section is to prove a correspondence result for Bismut-Hermite-Einstein 
metrics (6.3.2) and solutions to the coupled Hermite-Einstein system (6.1.1). To do this, 
we study the hermitian reduction of invariant hermitian metrics satisfying special metric 
properties. In this Section, we use the same notations and conventions as in the previous 
Section. 

Proposition 7.2.1. Let H be as in (7.1.4). Then: 

dH = dHX − ⟨FA ∧ FA⟩. (7.2.1) 

In particular, if (X, ωX ) is a hermitian manifold and HX is given by (7.1.34), then: 

ddcω = ddcωX + ⟨FA ∧ FA⟩. (7.2.2) 

Proof. The proof of (7.2.1) follows from (1.3.18). For the beneft of the reader, we give here 
computation. We use throughout the following expressions in the total space of P : 

The vanishing of NJK , are analogous. Hence extending by bilinearity, 

FA = dA + [A ∧ A], dAFA = dA + [A ∧ FA] = 0. (7.2.3) 
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Moreover, the pairing ⟨·, ·⟩ is ad-invariant. In particular, we have: 

⟨[·, ·], ·⟩ − ⟨·, [·, ·]⟩ = 0. (7.2.4) 

Then, in the total space of P , 

dCS(A) = − 1
6 d⟨[A ∧ A] ∧ A⟩ + d⟨FA ∧ A⟩ 

= − 1
2 ⟨[dA ∧ A] ∧ A⟩ − ⟨[A ∧ FA] ∧ A⟩ + ⟨FA ∧ dA⟩ 

= − 1 ⟨[(FA − 1 [A ∧ A]) ∧ A] ∧ A⟩ + ⟨[FA ∧ A] ∧ A⟩ + ⟨FA ∧ (FA − 1 [A ∧ A])⟩
2 2 2 

= 
4
1 ⟨[[A ∧ A] ∧ A] ∧ A⟩ + ⟨FA ∧ FA⟩ 

= ⟨FA ∧ FA⟩. 

where the last step follows from elementary manipulations using (7.2.4) combined with the 
Jacobi identity for [·, ·]. The last part of the statement is consequence of (7.2.1) and Lemma 
7.1.7. 

The other piece of information we are interested in is the reduction of the Bismut-Ricci 
form ρB (see Section 1.2.2). We will also use the notation DB , RicB , etc. for the Bismut 
connection whenever the hermitian metric involved is implicit. 

Proposition 7.2.2. Let ω be as in (7.1.33). Then: 

ρB (ω) = ρB(ωX ) + ⟨ΛωX FA, FA⟩ + ⟨dA(ΛωX FA) ∧ A⟩ + 
2
1 ⟨[ΛωX FA, A] ∧ A⟩. (7.2.5) 

Proof. We use throughout Propositions 7.1.5, 7.2.1 and Lemma 7.1.8. Recall [89, Formula 
(3.16)] that on any hermitian manifold (M, J, g): P 
ρB (ω)(E1, E2) = − RicB(ω)(E1, JE2) − (DB θω)(JE2) + 1 ddcω(E1, E2, ei, Jei), (7.2.6)E1 4 i 

where {ei} is a g-orthonormal frame. To prove (7.2.5), we pay attention to the number of 
vertical components on each term in the equation. First, we compute the purely horizontal 
part of ρB (ω). We examine separately each of the terms in (7.2.6) for the hermitian manifold 
(P, J, g) where J and g are given by (7.1.32), (7.1.3), and E1 = X and E2 = Y are lifted 
horizontal vectors with respect to A: P 

RicB(X, JY ) = RicgX (X, JY ) − 1 
j,k HX (Xj , Xk, X)HX (Xj , Xk, JY )P 4 

− j gK (FA(Xj , X), FA(Xj , JY )) − 1
2 d

⋆ gX HX (X, JY )P 
= RicgX ,HX (X, JY ) − j gK (FA(Xj , X), FA(Xj , JY )). 
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Next we have: 

DB Dg,H (JY ) + Dg,H 
X θω(JY ) = θωX (gK (ΛωX FA, JA) + gK (θ

♯ , A))(JY )X X ωK 

Dg,H = X θωX (JY ) − (gK (ΛωX FA, JA) + gK (θω
♯ 
K 
, A))(pV DX

g,H JY ) 
Dg,H = (JY ) − (gK (ΛωX FA, JA)X θωX 

+ (θω
♯ 
K 
, A))(BX JY + 1 

2
FA(X, JY )) 

Dg,H = X θωX (JY ) 
(Dg,H = X(θωX (JY )) − θωX X JY ) 

−1H(X, JY, 1 
2

X(θωX (JY )) − θωX (DX JY + ·))= g 
−11 

2
(JY )) − θωX (D

gX JY +X(θωX X HX (X, JY, ·))= gX 

DgX ,HX= (JY ).X θωX 

Finally:P P 
i dd

cω(X, Y, Xi, JXi) = i(dd
cωX − gK (FA ∧ FA))(X, Y, Xi, JXi)P P 

= i dd
cωX (X, Y, Xi, JXi) − 4 i gK (FA(Xi, X), FA(Xi, JY )) 

− 4gK (ΛωX FA, FA(X, Y )). 

Plugging in these expressions in the above computation, we frst get: P 
ρB (ω)(X, Y ) = − RicgX ,HX (X, JY ) − DX

gX ,HX θωX (JY ) + 1 
4 i dd

cωX (X, Y, Xi, JXi) 
− gK (ΛωX FA, FA(X, Y )) 

= (ρB(ωX ) − gK (ΛωX FA, FA))(X, Y ), 

which indeed corresponds to the expected horizontal terms with the substitution gK = −⟨·, ·⟩. 
Next we compute: 

ρB(ω)(X, U) = − Ricg,H (X, JU) − Dg,H θω(JU)+P X 

+ 1 
4 i(dd

cωX − gK (FA ∧ FA))(X, U, Xi, JXi) 
= − X(θω(JU)) + θω(DX

g,H JU) 
= − X(gK (ΛωX FA, U) − gK (JK θω

♯ 
K 
, U)) + θω(DX JU + 1 

2
g −1H(X, JU, ·)) 

−1(gK (iX FA, JU)))
1−F ], U) + θ (B JU A ω X 2 

−1(gK (iX FA, JU)) − 
= − gK ([X, ΛωX g 

1 
2
g −1(gK (iX FA, JU)))

1 = − gK (iX dA(ΛωX FA), U) + θω( g2 

= − gK (dA(ΛωX FA) ∧ A)(X, U), 

as claimed. Finally we have: 

ρB (ω)(U, V ) = − Ricg,H (U, JV ) − Dg,H θω(JV )+P U 

+ 1 
4 i(dd

cωX − gK (FA ∧ FA))(U, V, Xi, JXi) 
= − U(θω(JV )) + θω(DU

g,H JV ) 
= − U(gK (ΛωX FA, V ) + gK (θω

♯ 
K 
, JV )) 

= − gK (ΛωX FA, [U, V ]) 
= − 1 

2
gK ([ΛωX FA, A] ∧ A)(U, V ), 

= −⟨·, ·⟩.which fnishes the proof replacing gK 
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We are now in position to prove the main result of this Section: 

Theorem 7.2.3. Assume the structure group K is connected and the pairing ⟨·, ·⟩ on Lie K 
is negative defnite. Then, with the notations of this Section: 

1. The hermitian metric ω on P given by (7.1.33) is pluriclosed if and only if: 

ddcωX + ⟨FA ∧ FA⟩ = 0. (7.2.7) 

2. The hermitian metric ω on P given by (7.1.33) is Bismut-Hermite-Einstein if and only 
if: 

z F 0,2FA ∧ ωn−1 = ωX
n , = 0,X n A 

ρB(ωX ) + ⟨z, FA⟩ = 0, (7.2.8) 
ddcωX + ⟨FA ∧ FA⟩ = 0, 

for a central element z ∈ k. 

Proof. The frst part of the result follows inmediately from Proposition 7.2.1. For the second 
part, by Proposition 7.2.2 and using the fltration by the number of basic components of Ω• 

P , 
the vanishing of ρB is equivalent to: 

ρB(ωX ) + ⟨ΛωX FA, FA⟩ = 0, (7.2.9) 
dA(ΛωX FA) = 0, (7.2.10) 
[ΛωX FA, ·] = 0. (7.2.11) 

Then, by the proof of Proposition 6.1.2, the equations (7.2.10),(7.2.11), are actually equiva-
lent to: 

zFA ∧ ωX
n−1 = 

n ωX
n , (7.2.12) 

for some degree z ∈ k, and consequently ΛωX FA = z. Hence, the result follows under the 
assumption (7.1.31) and the connectedness of K. 

Remark 7.2.4. Observe that the system (7.2.8) is completely equivalent to the coupled 
Hermite-Einstein system using the one-to-one correspondence of Hermite-Einstein metrics 
on P c and Hermite-Yang-Mills connections on P . Therefore, we call (7.2.8) the coupled 
Hermite-Yang-Mills system. 

Theorem 7.2.3 provides a further motivation to study the coupled Hermite-Einstein sys-
tem (6.1.1), as it then prescribes a method to construct Bismut-Hermite-Einstein metrics 
(6.3.2), for which the only known non-Kähler examples are (up to fnite quotients) given by 
local Samelson spaces [119, 135]. 
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Chapter 8 

Harmonic metrics for the 
Hull-Strominger system and stability 

As explained in Chapter 4, the Hull-Strominger system is reinterpreted in the context of 
Hermite-Einstein metrics for Courant algebroids, and a moment map picture has been put 
forward. Guided by the general principles of Kempf-Ness and its extensions to infnite 
dimension, in this Chapter, we study the existence of an algebraic counterpart of this picture 
in the sense of Geometric Invariant Theory. However, a fundamental feature intrinsic to this 
theory is the indefniteness of generalized hermitian metrics. This will be a recurrent issue 
leading to the introduction in this Chapter of harmonic metrics and Higgs felds, tailored 
to the needs of the Hull-Strominger system. We then propose a new notion of stability 
for holomorphic Courant algebroids reminiscent of GIT, which is sensible to study in this 
context. This Chapter is based on the article [66], which we follow closely. 

8.1 The Hull-Strominger system and slope stability 
In this Section we investigate the Mumford-Takemoto slope stability of holomorphic orthog-
onal bundles (Q, ⟨·, ·⟩). Of special interest will be those that arise in relation to solutions to 
the Hull-Strominger system, with a focus on the Kähler property of the solution. In particu-
lar, we will recover a no-go result for the Hull-Strominger system, back to the seminal work 
of Candelas, Horowitz, Strominger, and Witten [24]. 

Let X be a compact complex manifold of dimension n. We assume that X admits a 
balanced hermitian metric ω0. We denote by: 

= [ωn−1] ∈ Hn−1,n−1b0 0 BC (X, R) (8.1.1) 

the associated balanced class in Bott-Chern cohomology. Let (Q, ⟨·, ·⟩) be a holomorphic 
orthogonal bundle over X. A positive defnite hermitian metric H on Q is said to be com-
patible with the orthogonal structure ⟨·, ·⟩ if there exists a C-antilinear orthogonal involution 
σ : Q → Q, that is, ⟨σ·, σ·⟩ = ⟨·, ·⟩ and σ2 = id, and such that: 

H = ⟨·, σ⟩. (8.1.2) 
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Given such a metric H, we will denote by DH and FH := FDH its Chern connection and 
Chern curvature, respectively. 

Remark 8.1.1. Observe that the (possibly indefnite) hermitian metric G in Lemma 5.1.2 is 
precisely of this form, for σ(s) = −s. Here, the conjugation is obtained via the isomorphism 
Q ∼= (TX ⊕ ad Ph) ⊗ C induced by Lemma 5.1.2 composed with (5.2.1), where Ph denotes the 
bundle of unitary frames of P . In the sequel, we will reserve the notation H for hermitian 
metrics which are positive defnite. 

The existence of a compatible hermitian metric H on (Q, ⟨·, ·⟩) satisfying the Hermite-
Einstein equation 

FH ∧ ω0 
n−1 = 0 (8.1.3) 

can be characterized in terms of a slope stability criteria as in the Donaldson-Uhlenbeck-Yau 
Theorem [40, 134] and its extensions to hermitian manifolds (see [98]). Here, to accomodate 
the fact that Q is endowed with an orthogonal structure, we slightly refne the theory. Given 
a torsion-free coherent sheaf F of OX -modules over X, we say that a subsheaf F ⊂ Q is 
isotropic if ⟨F , F⟩ = 0 (see e.g. [11, 12]). 

Defnition 8.1.2. Let X be a compact complex manifold endowed with a balanced class 
b0 ∈ Hn−1,n−1(X, R). A holomorphic orthogonal bundle (Q, ⟨·, ·⟩) over X is:BC 

1. slope b0-semistable if for any isotropic coherent subsheaf F ⊂ Q one has: 

µb0 (F) ⩽ 0, (8.1.4) 

2. slope b0-stable if for any proper isotropic coherent subsheaf F ⊂ Q one has: 

µb0 (F) < 0, (8.1.5) 

3. slope b0-polystable if it is slope b0-semistable and whenever F ⊂ Q is an isotropic 
coherent subsheaf with µb0 (F) = 0, there is a coisotropic coherent subsheaf W ⊂ Q 
such that: 

Q = W ⊕F . (8.1.6) 

The relation between slope stability and the Hermite-Einstein equation (8.1.3) for com-
patible hermitian metrics is provided by the following version of the Donaldson-Uhlenbeck-
Yau Theorem (see e.g. [12, 99]): 

Theorem 8.1.3. Let X be a compact complex manifold. Let ω0 be a balanced hermitian 
[ωn−1] ∈ Hn−1,n−1metric on X with balanced class b0 = 0 BC . A holomorphic orthogonal bun-

dle (Q, ⟨·, ·⟩) over X admits a compatible hermitian metric H solving the Hermite-Einstein 
equation (8.1.3) if and only if it is slope b0-polystable. 
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Let us turn next to the relation with the Hull-Strominger system. For the purposes of 
this Chapter, we will adopt the formalism of vector bundles, much more transparent for 
the aspects we will cover here. Moreover, we stress that the connection ∇ in this Thesis 
is assumed to be an instanton (3.1.12). In precise terms, we assume that X admits a 
holomorphic volume form Ω. We fx a pair of holomorphic vector bundles V0 and V1 over our 
compact complex manifold X satisfying (5.3.16). Although it will not be necessary in our 
methods, one can assume that V0 has T 1,0 as its underlying smooth vector bundle. Then, 
we will assume throughout P is the holomorphic principal bundle of split frames of V0 ⊕ V1, 
and accordingly ad P = End V0 ⊕ End V1 equipped with the pairing: 

⟨(r0, r1), (s0, s1)⟩ = αtrV0 (r0s0) − αtrV1 (r1s1), (8.1.7) 

where α ∈ R. Then, the formulation of the Hull-Strominger system (3.1.14) with the above 
choices translates to the following defnition. 

Defnition 8.1.4. Let (X, Ω, V0, V1) be a compact Calabi-Yau manifold of complex dimension 
n endowed with a pair of holomorphic vector bundles satisfying (5.3.16). Then, a triple 
(ω, h0, h1) of a hermitian metric on X and hermitian metrics hi on Vi is a solution to the 
Hull-Strominger in (X, Ω, V0, V1) with coupling constant α if: 

∧ ωn−1Fh0 = 0 
∧ ωn−1Fh1 = 0 

(8.1.8)
d(||Ω||ωωn−1) = 0 

ddcω − αtrV0 Fh0 ∧ Fh0 + αtrV1 Fh1 ∧ Fh1 = 0. 

We stress that Defnition 8.1.4 is a particular case of Defnition 3.1.3, hence the theory 
developed in previous Chapter applies to this case. In the sequel, we will avoid confusion 
between both defnitions by making explicit that a solution to the Hull-Strominger system 
is considered for the tuple (X, Ω, V0, V1) or by making reference to Defnition 8.1.4. 

Let (ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8). Consider the associ-
ated holomorphic orthogonal bundle (Q, ⟨·, ·⟩) as in Example 2.2.6. In our next results we 
investigate the relationship between the slope polystable of (Q, ⟨·, ·⟩), in the sense of Defni-
tion 8.1.2, and the Kähler property of the solution. The key to our argument is the existence 
of a canonical isotropic subsheaf given by the holomorphic cotangent bundle 

π∗ 

T ∗ ,→ Q. (8.1.9)1,0 

Lemma 8.1.5. Let X be a compact Kähler manifold endowed with a holomorphic volume 
form Ω. Let V0 and V1 be holomorphic vector bundles over X satisfying (5.3.16). Let 
(ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) with α ∈ R and consider 
the associated holomorphic orthogonal bundle (Q, ⟨·, ·⟩). Suppose that X admits a balanced 
class b0 ∈ Hn−1,n−1(X, R) such that (Q, ⟨·, ·⟩) is slope b0-polystable, and Kähler classes 
[ωi] ∈ H1,1(X, R) such that Vi is [ωi]-polystable. Then g is a Kähler metric and h0 and h1 
are fat. 
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Proof. Assume frst that α ̸= 0. We will prove that (ω, h0, h1) is also a solution of (8.1.8) with 
α = 0. Consider the canonical isotropic subsheaf (8.1.9). The existence of a holomorphic 
volume form Ω implies that: 

µb0 (T1 
∗ 
,0) = 0, (8.1.10) 

for any given balanced class b0 ∈ Hn−1,n−1(X, R). Hence, assuming that Q is slope b0 -
polystable, we have that: 

Q = W ⊕ T ∗ (8.1.11)1,0 

for a holomorphic coisotropic subbundle W ⊂ Q. Note further that there are canonical 
isomorphisms of holomorphic vector bundles: 

∼W ∼= Q/T1 
∗ 
,0 = AP , (8.1.12) 

and therefore the class of the extension: 

π∗ π
0 −→ T ∗ −→ Q −→ AP −→ 0 (8.1.13)

1,0 

vanishes. Note that there is a biholomorphism AP ∼= (T 1,0 ⊕ End V0 ⊕ End V1, ∂0) where the 
Dolbeault operator on the right hand-side is: 

V0 V1
∂0(V + r0 + r1) = ∂V + iV Fh0 + iV Fh1 + ∂ r0 + ∂ r1 (8.1.14) 

and the class of (8.1.13) is represented by γ ∈ Ω0,1(Hom (AP , T1 
∗ 
,0)), defned by: 

iW γ(V + r0 + r1) = −iW iV (2i∂ω) − 2αtrV0 (iW Fh0 r0) + 2αtrV1 (iW Fh1 r1) (8.1.15) 

for any V + r0 + r1 ∈ T 1,0 ⊕ End V0 ⊕ End V1 and W ∈ T 0,1 . Therefore, the condition: 

[γ] = 0 ∈ H1(Hom (AP , T1 
∗ 
,0)) (8.1.16) 

jointly with α ̸= 0 implies, in particular, the existence of aj ∈ Ω1,0(End Vj ) such that: 

V0 V1
∂ a0 = Fh0 , ∂ a1 = Fh1 . (8.1.17) 

By hypothesis, there exists Kähler classes [ωi] ∈ H1,1(X, R) such that Vi is [ωi]-polystable. 
Let h̃ 

j be a Hermite-Einstein metric on Vj with respect to ωj. Then, we can use the standard 
identity in Kähler geometry: 

∥2− 
8π2 

ch2(Vj ) · [ωj ]n−2 = ∥Fh̃j L2 , (8.1.18)
(n − 2)! 

where the L2-norm of the curvature Fh̃j 
is calculated with respect to the metrics h̃ 

j and ωj 
using the volume form ωn/n!. Using that ∂ Vj 

aj = Fhj , the left hand side of this expressionj 

vanishes by Chern-Weyl theory, and therefore h̃ 
0 and h̃ 

1 are fat. In particular, 

∧ ωn−1F˜ = 0 (8.1.19)hj 
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and hence, since hj must be related to h̃ 
j by a holomorphic gauge transformation, hj are 

also fat. Therefore, (ω, h0, h1) solves (8.1.8) with α = 0, and the Bianchi identity reads 

ddcω = 0. (8.1.20) 

By [98], the conformally balanced equation is equivalent to 

dc(log∥Ω∥ω) − d ∗ ω = 0 (8.1.21) 

and, by 5.3.5, this implies 

∇B (∥Ω∥− 
ω 
1Ω) = 0. (8.1.22) 

Then, since −iρB(ω) is the induced curvature of ∇B on the anti-canonical bundle KX 
−1 , it 

follows that ρB (ω) = 0. Thus, applying [67, Theorem 4.7] it follows from the existence of a 
holomorphic volume form Ω that g is Kähler. 

Remark 8.1.6. Notice that the proof of [67, Theorem 4.7], which we have used to conclude 
that g is Kähler, uses a slope stability argument via exact holomorphic Courant algebroids. 
Therefore, our proof of Lemma 8.1.5 reduces to Geometric Invariant Theory. 

Our next result provides an obstruction to the existence of non-Kähler solutions of the 
Hull-Strominger system (8.1.8). It is a direct consequence of Lemma 8.1.5. 

Proposition 8.1.7. Let X be a compact Kähler manifold endowed with a holomorphic vol-
ume form Ω. Let V0 and V1 be holomorphic vector bundles over X satisfying (5.3.16). Let 
(ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) with α ∈ R and consider the 
associated holomorphic orthogonal bundle (Q, ⟨·, ·⟩). Suppose that (Q, ⟨·, ·⟩) is slope polystable 
with respect to b := [∥Ω∥ωωn−1] and furthermore that b is the (n − 1)th-power of a Kähler 
class, then g is Kähler and h0 and h1 are fat. 

Remark 8.1.8. Our previous result applies, in particular, to the solutions of the Hull-
Strominger system found recently by Collins, Picard, and Yau in [28, Section 3.2]. These 
solutions are on a Kähler Calabi-Yau threefold, have V0 isomorphic to T 1,0 , and are con-
structed such that b can be prescribed to be the square of any given Kähler class. Given 
that T 1,0 has non-trivial Chern classes (e.g., when X is simply connected), Proposition 8.1.7 
proves that the associated (Q, ⟨·, ·⟩) is not slope b-polystable in this case. 

Remark 8.1.9. Observe that the proof of Proposition 8.1.7 via Lemma 8.1.5 uses crucially 
the Kähler hypothesis of the manifold. This poses the question of whether on a a priori 
general compact complex manifold, a solution to the Hull-Strominger system with b-polystable 
orthogonal bundle (Q, ⟨·, ·⟩) must be Kähler. 

In virtue of this result, one is lead to think that although the generalized hermitian 
metric G constructed in Lemma 5.1.2 on Q is coupled Hermite-Einstein (see Defnition 
5.3.1, Corollary 5.3.6), its indefnite signature does not tie in properly with the notion of 
slope stability. To make future reference, we include here the explicit matrix expression of 
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G with respect to the (smooth) splitting Q = T ⊗ C ⊕ End V0 ⊕ End V1. This follows 
inmediately from complexifying (5.2.2) and (8.1.7): 

g(·, ·) 0 0 
 G = 0 αtrV0 (·, ·) 0 , (8.1.23) 

0 0 −αtrV1 (·, ·) 

where conjugation in End Vi is taken with respect to the hermitian metrics hi. Now, we 
show that even in the defnite signature case, a similar rigidity result holds. We consider 
next the special case that the Hermite-Einstein metric G on Q associated to our solution is 
positive defnite. Without loss of generality, we can assume that α > 0. Thus, by looking at 
the expression of G in (8.1.23), the metric G is positive defnite precisely when rk V0 = 0. 
Specifying to the case of complex dimension three, we recover a no-go result for the original 
Hull-Strominger system back to the seminal work of Candelas, Horowitz, Strominger, and 
Witten [24]. This shows the necessity of introducing the connection ∇ for the existence of 
non-Kähler solutions. 

Proposition 8.1.10. Let X be compact complex manifold endowed with a holomorphic 
volume form Ω. Let V be holomorphic vector bundle over X satisfying ch2(V ) = 0 ∈ 
H2,2 
BC (X, R). Let (ω, h) be a solution of the system 

Fh ∧ ωn−1 = 0, 
d(∥Ω∥ωωn−1) = 0, (8.1.24) 

ddcω + αtr Fh ∧ Fh = 0, 

with α > 0. Then, ω is Kähler and h is fat. 

Proof. Consider the holomorphic orthogonal bundle (Q, ⟨·, ·⟩) with the Hermite-Einstein 
metric G associated to the solution (ω, h) as in Corollary 5.3.6. Via the identifcation 

Q ∼= TX ⊗ C ⊕ End V (8.1.25) 

� we have the explicit formula (cf. (8.1.23)): 

g 0 
G = (8.1.26)

0 −αtrV 

and therefore G is defnes a compatible, positive defnite, Hermite-Einstein metric on (Q, ⟨·, ·⟩) 
with respect to the balanced metric: 

1 
n−1ω ′ = ∥Ω∥ω ω. (8.1.27) 

From Theorem 8.1.3, (Q, ⟨·, ·⟩) is b-polystable for b = [||Ω||ωωn−1]. Hence, µb(T ∗ ) = 1,0 
µb(Q) = 0 implies that Q ∼= T ∗ ⊕ AP holomorphically and metrically with respect to1,0 
the metric G. This means that the second fundamental form of the extension: 

0 → T ∗ → Q → AP → 0 (8.1.28)1,0 

given by γ ∈ Ω0,1(Hom(AP , T1 
∗ 
,0)) as: 

iW γ(V + r) = −iW iV (2i∂ω) + 2αtrV (Fhr) (8.1.29) 

must vanish identically. Therefore, the result follows. 

� 
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8.2 Harmonic metrics, Higgs felds and stability 

8.2.1 HyperKähler moment maps 
Let (X, ω) be a compact complex manifold of dimension n endowed with a balanced metric 
ω, that is, satisfes dωn−1 = 0. We fx a smooth complex vector bundle Q over X of degree 
zero: 

c1(Q) · [ωn−1] = 0, (8.2.1) 

where the product is considered in de Rham cohomology. We are interested in the geometry 
of the space of complex connections on Q, which we denote by AQ. In the application 
to Section 8.2.2, Q is a complex orthogonal bundle and AQ is replaced by the space of 
orthogonal complex connections. Nonetheless, the setup discussed here applies with minor 
modifcations and hence we stick to the simpler situation stated above. 

The infnite-dimensional space of complex connections AQ is afne, modelled on the 
complex vector space: 

Ω1(End Q). (8.2.2) 

It is endowed with a natural complex symplectic structure, defned by: 
ˆ 

ωn−1 
c c c cΩC(a1, a2) = − tr a1 ∧ a2 ∧ . (8.2.3) 

X (n − 1)! 

The group of complex gauge transformations G(Q) of Q acts on AQ by symplectomorphisms 
and, similarly as in the Atiyah-Bott-Donaldson picture, there is a complex moment map. 

Lemma 8.2.1. The G(Q)-action on (AQ, ΩC) is Hamiltonian with moment map: 
ˆ 

ωn−1 
⟨µC(D), s c⟩ = − tr(s cFD) ∧ , (8.2.4) 

X (n − 1)! 

cwhere s ∈ Γ(End Q) ∼= Lie G(Q) and FD denotes the curvature of D. 

Proof. The action of G(Q) on the space of connections is given by conjugation: 

g · D = g ◦ D ◦ g −1 , g ∈ G(Q). (8.2.5) 

Now, consider the one-parameter family of gauge transformations gt ∈ G(Q) such that 
dt
d 
|t=0

gt = sc . Then, by standard theory, we have: 

d c(gt · D) = −dDs . (8.2.6)
dt |t=0 
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Applying this, we compute: 

d⟨µC(D), s c⟩(a c) = d ⟨µC(D + tac), s c⟩
dt |t=0 � ˆ � 

= 
dt
d 
|t=0 − tr(s cFD+tac ) ∧ ωn−1 

(n−1)! 
X ˆ

= − tr(s cdDa c) ∧ ωn−1 

(n−1)! 
X ˆ

= tr(dDs c ∧ a c) ∧ ωn−1 

(n−1)! 
X̂ � � 

= − tr d (gt · D) ∧ a c ∧ ωn−1 

dt |t=0 (n−1)! 
X 

= ΩC(X
sc 
, a c). 

Therefore, the result follows. 

Observe that the zeros of the complex moment map are given by connections D ∈ AQ 
satisfying: 

FD ∧ ωn−1 = 0. (8.2.7) 

One can restrict the Hamiltonian G(Q)-action to the complex subspace A1 
Q
,1 ⊂ AQ given by 

= F 2,0connections with FD 
0,2 

D = 0, obtaining a complex analogue of the Hermite-Yang-Mills 
equations (see [91]). 

To introduce the hyperKähler structure on AQ of our interest, following [83] we fx a 
positive defnite hermitian metric H on Q. Then, given D ∈ AQ there is a unique decompo-
sition: 

D = ∇H +Ψ, (8.2.8) 

where ∇H is an H-unitary connection and Ψ ∈ iΩ1(End HQ), where: 

Ω1(End HQ) := {a ∈ Ω1(End Q) | a ∗ H = −a}. (8.2.9) 

This induces an identifcation: 

AQ = AH × iΩ1(End HQ) (8.2.10) 

and a decomposition: 

ΩC = ΩI + iΩJ (8.2.11) 

where: 
ˆ ˆ

ωn−1 ωn−1 
ΩI(a c 2 

c 
1, a ) = − tr a1 ∧ a2 ∧ − tr ψ1 ∧ ψ2 ∧ (8.2.12) 

X (n − 1)! X (n − 1)! ˆ ˆ
ωn−1 ωn−1 

ΩJ(a c 1, a c 2) = i tr ψ1 ∧ a2 ∧ + i tr a1 ∧ ψ2 ∧ (8.2.13) 
X (n − 1)! X (n − 1)! 
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for ac = aj + ψj . From this, using the fact that the base manifold has a complex structurej 
J , one can infer a hyperKähler structure with metric: ˆ ˆ

g(a c , a c) = − tr a ∧ ∗ ωa + tr ψ ∧ ∗ ωψ (8.2.14) 
X X 

and complex structures I, J, K, satisfying IJK = I2 = J2 = K2 = −Id, defned by: 
c c cIa = Ja − Jψ, Ja = −iJψ + iJa, Ka = iψ + ia. (8.2.15) 

We are interested in the Hamiltonian action of the unitary gauge group GH ⊂ G(Q) for the 
triple of symplectic structures ΩI, ΩJ, ΩK, where ΩK := g(K·, ·) is given by: 

ˆ ˆ
ωn−1 ωn−1 

ΩK(a1 
c , a c 2) = −i tr ψ1 ∧ Ja2 ∧ + i tr a1 ∧ Jψ2 ∧ . (8.2.16) 

X (n − 1)! X (n − 1)! 

Proposition 8.2.2. Assume that ω is balanced. Then, the GH-action on AQ is Hamiltonian 
for the three symplectic structures ΩI, ΩJ, ΩK, and there is a hyperKähler moment map: 

µ = (µI, µJ, µK) (8.2.17) 

where: ˆ 
ωn−1 

⟨µI(D), s⟩ = − tr s(F∇H + 1 [Ψ ∧ Ψ]) ∧ , (8.2.18) 
X 

2 (n − 1)! ˆ 
ωn−1 

⟨µJ(D), s⟩ = i tr s∇HΨ ∧ , (8.2.19) 
X (n − 1)! ˆ 

ωn−1 
⟨µK(D), s⟩ = i tr s∇H(JΨ) ∧ , (8.2.20) 

X (n − 1)! 

and s ∈ Ω0(End HQ) ∼= Lie GH. 

Proof. Equation (8.2.8) implies that 

FG = F∇H + ∇HΨ+ 
2
1 [Ψ ∧ Ψ]. (8.2.21) 

Then, the formula for µI and µJ follow from Lemma 8.2.1 by taking real and imaginary parts 
in the formula for µC. The fact that µK is a moment map follows easily from the explicit 
expression for ΩK above. 

To fnish this section, we give a characterization of the hyperKähler moment map equa-
tions µ(D) = 0 for a complex connection D = ∇H + Ψ, given by 

(F∇H + 1
2 [Ψ ∧ Ψ]) ∧ ωn−1 = 0, 
(∇HΨ) ∧ ωn−1 = 0, (8.2.22) 

(∇HJΨ) ∧ ωn−1 = 0. 

To link with the defnition of a harmonic metric in Section 8.2.2, it is convenient to remove 
our assumption that the hermitian metric ω is balanced (in our applications, the hermitian 
metric is conformally balanced). 
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Lemma 8.2.3. Let ω be an arbitrary hermitian form on X. Then, a complex connection 
D = ∇H +Ψ satisfes (8.2.22) if and only if 

(F∇H + 
2
1 [Ψ ∧ Ψ]) ∧ ωn−1 = 0, 

(∇H) ⋆ (JΨ) − iJθ♯ Ψ = 0, (8.2.23)
ω 

(∇H) ⋆ Ψ+ iθ♯ Ψ = 0. 
ω 

where θω = Jd∗ω is the Lee form of ω and (∇H)∗ denotes the adjoint operator with respect 
to the metric g = ω(·, J ·). 

Proof. The statement follows easily from the formula 

(∇H) ⋆ (JΨ) = 1 ⋆ (∇HΨ) ∧ ωn−1 + i ♯ Ψ. (8.2.24)
(n−1)! Jθω 

The third equation in (8.2.23), corresponding to the condition µK(D) = 0 when ω is 
conformally balanced, will be taken in Section 8.2.2 as the defning equation for our notion 
of harmonic metric for the Hull-Strominger system. 

8.2.2 Harmonic metrics 
We introduce next our notion of harmonic metric for the Hull-Strominger system, motivated 
by the hyperKähler moment map construction in the previous Section. We fx (X, Ω) and 
V0, V1 as in Section 8.1. Let (ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) and 
consider the associated holomorphic orthogonal bundle (Q, ⟨·, ·⟩). We are mainly interested 
in non-Kähler solutions, and therefore we will assume that α > 0 and rk V0 > 0 (see Corollary 
8.1.10). Consequently, the generalized hermitian metric G associated to our solution will be 
indefnite (see (8.1.23)). 

The fundamental object in our development is the orthogonal connection DG on (Q, ⟨·, ·⟩) 
in Proposition 5.1.1. Explicitly, in matrix notation in terms of the identifcation: 

Q ∼= TX ⊗ C ⊕ End V0 ⊕ End V1, (8.2.25) 

for any vector feld X the operator DX 
G is given by: 

DG 
X = 

 ∇− 
X g−1αtr (iX Fh0 ·) −g−1αtr (iX Fh1 ·) 

dh0(X, ·) X 

−Fh0 0 , (8.2.26) 
dh1(X, ·) 0−Fh1 X 

where ∇− denotes the C-linear extension of the g-compatible connection with totally skew-
symmetric torsion dcω, that is, 

∇− = ∇g 1 −1dcω+ 
2 g (8.2.27) 
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for ∇g the Levi-Civita connection of g, which we called Hull connection in Section 1.2.1. 
Given a compatible (positive defnite) hermitian metric H on the holomorphic orthogonal 
bundle (Q, ⟨·, ·⟩) there exists a unique decomposition: 

DG = ∇H +Ψ, (8.2.28) 

where ∇H is an H-unitary connection and Ψ ∈ Ω1(End Q) satisfes: 

Ψ ⋆ H = Ψ. (8.2.29) 

Lemma 8.2.4. The pair (∇H , Ψ) in (8.2.28) satisfes the equations 

(F∇H + 
2
1 [Ψ ∧ Ψ]) ∧ ωn−1 = 0, 

(∇H) ⋆ (JΨ) − iJθ♯ Ψ = 0, (8.2.30)
ω 

F 0,2 1 
∇H + (∇H)0,1Ψ0,1 + 

2 [Ψ
0,1 ∧ Ψ0,1] = 0. 

where (∇H)⋆ denotes the adjoint operator with respect to the metric g. 

Proof. By Corollary 5.3.6, G is Hermite-Einstein. Decomposing FG into its hermitian and 
skew-hermitian components with respect to H as in the proof of Proposition 8.2.2, the proof 
follows easily from Equation (8.2.21) and the proof of Lemma 8.2.3. 

Given that the hermitian form ω is conformally balanced, the frst and second equations 
in (8.2.30) correspond to the zeros of an infnite-dimensional complex moment map in the 
space of complex orthogonal connections on (Q, ⟨·, ·⟩) (see Section 8.2.1). Similarly as in the 
theory of Higgs bundles [83], it is therefore very natural to supplement these conditions with 
an additional equation arising from a hyperKähler moment map (see Proposition 8.2.2 and 
Lemma 8.2.3). 

Defnition 8.2.5. Let (Q, ⟨·, ·⟩, D) be a holomorphic orthogonal bundle over a hermitian 
manifold (X, ω) endowed with an orthogonal connection D. We say that a compatible her-
mitian metric H on (Q, ⟨·, ·⟩) is harmonic if: 

(∇H) ⋆ Ψ+ iθ♯ Ψ = 0, (8.2.31)
ω 

where we use the decomposition (8.2.28). 

Remark 8.2.6. The notion of harmonicity for H we propose is well-known in the Kähler 
case. Indeed, for (X, ω) a Kähler manifold, by [31], H is harmonic in the sense of Defnition 
8.2.5 if and only if it is a critical point of the functional: 

ˆ
E(H) = |Ψ|2 ωn 

. (8.2.32)H,ω n! 
X 

Adapting the proof to the case ω has torsion, the Euler-Lagrange equation of this functional 
is precisely (8.2.31). 
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We are interested in studying the existence of harmonic metrics under the hypothesis: 

FD ∧ ωn−1 = 0, FD 
0,2 = 0. (8.2.33) 

Notice this connection D is, in particular, a non-Hermite-Yang-Mills connection in the sense 
of Kaledin and Verbitsky [91]. It would be interesting to fnd further relations between our 
picture and the theory proposed in this reference. 

Our stability condition for the Hull-Strominger system is related to the existence of a 
harmonic metric on (Q, ⟨·, ·⟩, DG). We postpone its study to Section 8.2.3. Here, we propose 
to address the following problem: 

Question. Let (ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) and consider 
the associated holomorphic orthogonal bundle (Q, ⟨·, ·⟩) and orthogonal connection DG as in 
Proposition 5.1.1. Does (Q, ⟨·, ·⟩, DG) admit a harmonic metric H? 

In order to provide a non-trivial example of harmonic metric for (Q, ⟨·, ·⟩, DG) in Section 
8.3.2, next we compute the equation (8.2.31) for a particular choice of hermitian metric. Via 
the identifcation (8.2.25), we defne (compare with (8.1.23)): 

H = 

 g 0 0 
0 −αtr V0 0 

 . (8.2.34) 
0 0 −αtr V1 

It is not difcult to see that (8.2.34) defnes a compatible hermitian metric on (Q, ⟨·, ·⟩). In 
our next result we compute the decomposition (8.2.28) for this particular choice of hermitian 
metric. 

Lemma 8.2.7. Let (∇H , Ψ) be the pair in (8.2.28) associated to the compatible hermitian 
metric (8.2.34). Then, in matrix notation in terms of the identifcation (8.2.25), one has: 

∇H = 

  , Ψ = 

  F† 
h1 

F† 
h0 

0∇− 0 0 
0 dh0 −Fh00 0 0 . (8.2.35) 

−Fh1 0 dh1 0 0 0 

where Fhj ∈ Ω1(Hom (TX ⊗ C, End Vj )) are the Hom (TX ⊗ C, End Vj )-valued 1-forms 
defned by 

(iV Fhj )(W ) := Fhj (V, W ) (8.2.36) 

and F† 
hj 

denote the corresponding adjoints with respect to G, that is, 

iV F† (r0) = g −1αtr (iV Fh0 r0), iV F† (r1) = −g −1αtr (iV Fh1 r1) (8.2.37)h0 h1 

Proof. It is not difcult to see that ∇H , as defned above, is H-unitary and furthermore that 
Ψ∗ H = Ψ. The statement follows from formula (8.2.26). 

The desired characterization of the harmonicity of (8.2.34) is as follows: 
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Lemma 8.2.8. Let (∇H , Ψ) be the pair in (8.2.28) associated to the compatible hermitian 
metric H defned by (8.2.34). Then,  

0 −U† 0 
 (∇H) ⋆ Ψ + i ♯ Ψ = U

θω 
0 −V†  . (8.2.38) 

0 V 0 

where ! 
U(V ) = −iV dh0⋆ Fh0 + iθ♯ Fh0 + ⋆(Fh0 ∧ ⋆dcω) , (8.2.39)

ω 

V(r0) = αFh1 (ei, ej )tr (Fh0 (ei, ej )r0) (8.2.40) 

for any choice of g-orthonormal frame e1, . . . , e2n of T , and U† and V† denote the corre-
sponding adjoints with respect to G. Consequently, H is harmonic if and only if the following 
conditions are satisfed 

Fh0 ∧ ⋆dcω = 0, αFh1 (ei, ej )tr (Fh0 (ei, ej )·) = 0. (8.2.41) 

Proof. By the identity Ψ⋆H = Ψ, it sufces to calculate U and V† . For this, we compute 

(∇H) ⋆ Ψ(V ) = −iei (∇e 
H 
i 
,gΨ)(V ) 

= −(∇H(iei Ψ(V )) − iei Ψ(∇HV ) − i∇ei ei Ψ(V ))ei ei 

= dh0 (Fh0 (ei, V )) − Fh0 (ei, ∇− V ) − Fh0 (∇ei ei, V )ei ei 

= −iV d
h0⋆ Fh0 − 1 (ei, g −1iV iei d

cω)
2 Fh0 

= −iV (d
h0⋆ Fh0 + ⋆(Fh0 ∧ ⋆dcω)), 

(∇H) ⋆ Ψ(r1) = iei Ψ(∇e 
H 
i 
r1) = αFh0 (ei, ej)tr (Fh1 (ei, ej )r1). 

Formula (8.2.38) follows now from the explicit formula for Ψ in Lemma 8.2.7. The last part 
of the statement follows from Lemma 5.3.2, which proves that the Hermite-Einstein equation 
for h0: 

∧ ωn−1Fh0 = 0 (8.2.42) 

implies, in particular, 

dh0⋆ Fh0 + iθ♯ Fh0 − ⋆(Fh0 ∧ ⋆dcω) = 0. (8.2.43)
ω 

Remark 8.2.9. Geometrically, the condition (8.2.41) means that the two-form components 
of Fh0 are orthogonal to the two-form components of the torsion g−1dcω and also to the 
two-form components of the curvature Fh1 . 
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8.2.3 Stability and Higgs felds 
The moment map constructions in [13, 70] suggest that the Hull-Strominger system is related 
to a stability condition in the sense of Geometric Invariant Theory. As we have seen in 
Proposition 8.1.7, the naive guess of considering slope polystability of the orthogonal bundle 
(Q, ⟨·, ·⟩) with respect to the balanced class of the solution does not work. We propose 
next a refned stability condition based on the existence of harmonic metrics for the Hull-
Strominger system. Even though our picture is mostly conjectural, we expect that this 
stability condition will lead us to new obstructions to the existence of solutions in future 
studies. 

In order to relate the existence of a harmonic metric in the sense of Defnition 8.2.5 with 
a numerical stability condition, we introduce the following technical defnition. 

Defnition 8.2.10. Let X be a complex manifold, Q a holomorphic vector bundle over X, 
and F ⊂ Q a coherent subsheaf of OX -modules with singularity set S ⊂ X, i.e. S is minimal 
such that F|X\S is locally free. Then, given a (smooth complex) connection D on Q, we say 
that F is preserved by D if: 

D(F|X\S ) ⊂ Ω1(X\S, F|X\S). (8.2.44) 

Remark 8.2.11. Observe that any coherent subsheaf of a vector bundle is in particular 
torsion-free, so the notions of degree and slope introduced in Section 6.2.2 apply. 

The stability condition of our interest, is for tuples (Q, ⟨·, ·⟩, D), where (Q, ⟨·, ·⟩) is a 
holomorphic orthogonal bundle and D is a (smooth) orthogonal connection such that D0,1 = 
∂Q, as follows (cf. [91, Defnition 8.3]). 

Defnition 8.2.12. Let (X, ω) be a compact complex manifold X endowed with a balanced 
hermitian metric ω with balanced class b ∈ HBC 

n−1,n−1(X, R). Let (Q, ⟨·, ·⟩, D) be a holo-
morphic orthogonal bundle over X endowed with an orthogonal connection D such that 
D0,1 = ∂Q. We say that (Q, ⟨·, ·⟩, D) is: 

1. slope b-semistable if for any isotropic coherent subsheaf F ⊂ Q that is preserved by D 
one has: 

µb(F) ⩽ 0, (8.2.45) 

2. slope b-stable if for any proper isotropic coherent subsheaf F ⊂ Q that is preserved by 
D one has: 

µb(F) < 0, (8.2.46) 

3. slope b-polystable if it is slope b-semistable and whenever F ⊂ Q is a isotropic coherent 
subsheaf that is preserved by D with µb(F) = 0, there is a coisotropic subsheaf W ⊂ Q 
that is D-preserved and: 

Q = W ⊕F . (8.2.47) 
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Remark 8.2.13. The analogous notions of b-semistability (resp. stability, polystability) can 
be defned for pairs (Q, D) with no preferred orthogonal structure as in Defnition 8.2.12, by 
ommiting the requirement that F and W be isotropic and coisotropic, respectively. 

The relation between the existence of harmonic metrics, in the sense of Defnition 8.2.5, 
and slope stability is given in our next result. 

Proposition 8.2.14. Let (X, ω) be a compact complex manifold X endowed with a balanced 
hermitian metric ω with balanced class b ∈ Hn−1,n−1(X, R). Let (Q, ⟨·, ·⟩, D) be a holomor-BC 
phic orthogonal bundle over X endowed with an orthogonal connection D such that D0,1 = ∂Q 
and satisfying: 

FD ∧ ωn−1 = 0. (8.2.48) 

Assume that (Q, ⟨·, ·⟩, D) admits 
polystable.. 

a harmonic metric H. Then, (Q, ⟨·, ·⟩, D) is slope b-

Before proving Proposition 8.2.14, we make some observations. 

Remark 8.2.15. The analogous result of Proposition 8.2.14 holds also if (Q, D) does not 
have a preferred orthogonal structure, using the notion of slope stability given by Remark 
8.2.13. 

Remark 8.2.16. Proposition 8.2.14 shall be compared with the main result of [106], where 
the authors show, in a Kähler setting, that the existence of harmonic metrics on Q is equiv-
alent to Q being semisimple. Moreover, the methods used in both results can be combined in 
the following result, which we expect to carry over to non-Kähler manifolds. 

Theorem 8.2.17. Let (X, ω) a compact Kähler manifold and (Q, D) a holomorphic vector 
bundle endowed with a connection such that: 

FD ∧ ωn−1 = 0, D0,1 = ∂Q. (8.2.49) 

Assume that (Q, D) admits a harmonic metric H, and let F ⊂ Q be a D-preserved subbundle. 
Then: 

deg[ω]F = deg[ω]Q. (8.2.50) 

The analogous result holds for orthogonal bundles (Q, ⟨·, ·⟩, D) and isotropic subbundles F ⊂ 
Q. 

Proof. Let F be a D-preserved subbundle of Q. Then, by the main result of [106]: 

Q = F ⊕F⊥H , (8.2.51) 

where F⊥H is D-preserved. Then, combining (8.2.51) with Proposition 8.2.14 (ignoring the 
orthogonal structure, see Remark 8.2.15), we obtain: 

deg[ω]F = deg[ω]Q. (8.2.52) 

If moreover Q has an orthogonal structure, the result of [106] also applies, as if F is 
isotropic, an elementary linear algebra argument shows F⊥H is coisotropic, whenever H is 
compatible with ⟨·, ·⟩. Then, the argument follows in this refned case too. 
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In order to prove Proposition 8.2.14, we consider the following decomposition of our 
connection D. Given a compatible hermitian metric H on (Q, ⟨·, ·⟩) we can uniquely write: 

D = DH + ϕ, (8.2.53) 

where DH denotes the Chern connection of H and ϕ is a Higgs feld : 

ϕ ∈ Ω1,0(End Q). (8.2.54) 

Lemma 8.2.18. Let (Q, ⟨·, ·⟩, D) be a holomorphic orthogonal bundle over X endowed with 
an orthogonal connection D such that D0,1 = ∂Q and satisfying: 

FD ∧ ωn−1 = 0. (8.2.55) 

Then, the pair (DH, ϕ) in (8.2.53) satisfes the equations 

1 ∂Hϕ ⋆ H ) ∧ ωn−1(FH + ∂Qϕ − 1 = 0,
2 2 

(∂Qϕ + ∂Hϕ ⋆H ) ∧ ωn−1 = 0, (8.2.56) 
∂Hϕ + 1

2 [ϕ ∧ ϕ] = 0, 

where FH denotes the Chern curvature of H. Futhermore, H is harmonic if and only if: 

(FH + 
2
1 [ϕ ∧ ϕ ⋆H ]) ∧ ωn−1 = 0. (8.2.57) 

Proof. Taking the H-unitary part in the expression (8.2.53), one can easily see that: 

∇H = DH + 1
2 (ϕ − ϕ ⋆H ), Ψ = 1

2 (ϕ + ϕ ⋆H ). (8.2.58) 

The frst part of the statement follows from Lemma 8.2.4. As for the second part, we combine 
(8.2.24) with: 

i (−∂Qϕ + ∂Hϕ ⋆ H(∇HJΨ) ∧ ωn−1 = 
2 + [ϕ ∧ ϕ ⋆ H ]) ∧ ωn−1 . (8.2.59) 

We give next the proof of Proposition 8.2.14. 

Proof of Proposition 8.2.14. Let H be a harmonic metric for D. Let F ⊂ Q be an isotropic 
subsheaf preserved by D. By [93, Ch. V, Proposition 7.6], there exists a refexive subsheaf 
F1 ⊂ Q such that F ⊂ F1, F1/F is a torsion sheaf, and: 

µb0 (F) ⩽ µb0 (F1). (8.2.60) 

Since the singular (analytic) set S ⊂ X of F has codim S ≥ 2, it follows by a density 
argument that F1 is also preserved by D. Hence, it sufces to assume that F is refexive. 
In that case, there exists an analytic set S ⊂ X of codim S ≥ 3 and a holomorphic vector 

∼bundle F defned on X\S such that F|X\S = O(F ). Denote by E = Q|X\S/F . Using H we 
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can make a smooth identifcation of E and F ⊥H on X\S. In the splitting Q|X\S = F ⊕ F ⊥H 

we have: � � 
DH β 

DH|X\S = F (8.2.61)−β⋆ H DH 
E 

for DF 
H , DE 

H the restricted Chern connections of F and E and some β ∈ Ω0,1(Hom(E, F )). 
Similarly, for the (restricted) Higgs feld we have: � � � � 

ϕ ⋆ HϕF θ β 
ϕ = , ϕ ⋆H = F (8.2.62)

β⋆H θ⋆H ϕ ⋆HϕE E 

since we assumed that F is D-preserved. Now, by Lemma 8.2.18, � � 
FH + 

2
1 [ϕ ∧ ϕ ⋆ H ] ∧ ωn−1 = 0. (8.2.63) 

and therefore: � � 
0 = FH + 1

2 [ϕ ∧ ϕ ⋆ H ] |F ∧ ωn−1 = (FDH − 
2
1 β ∧ β ⋆ H + 

2
1 [ϕF ∧ ϕF

⋆H ] + 1
2 θ ∧ θ ⋆ H ) ∧ ωn−1 . 

F 

Note that tr FDH is the restriction to X\S of a (smooth) representative of −2πic1(det F)).
F 

Then, taking traces in the previous expression and integrating over X we get: 
ˆ

(n−1)! 1 c1(F) · b + trF (β ∧ (⋆β) ⋆H ) + 1 trF (θ ∧ (⋆θ) ⋆H ) = 0, (8.2.64)
2π 2 2 

X 

where we used that trF [ϕF ∧ ϕF
⋆H ] = 0. Note that the integral in the previous expression is 

nonnegative, since for any φ ∈ Hom(E, F ) �� �� �� 
0 φ 0 0 

trF (φ ◦ φ ⋆H ) =trF ⊕E ≥ 0. (8.2.65)
φ⋆ H0 0 0 

Thus, it follows that µb(F) ≤ µb(Q) = 0 and hence Q is semistable. In case of equality, 
one has β, θ = 0 and we get a holomorphic splitting Q|X\S = F|X\S ⊕ Q/F|X\S which is 
furthermore preserved by D. Then, since F is refexive, so are Hom (Q, F) and Hom (F , F); 
in particular they are normal. Then we can extend uniquely the projection map r : Q|X\S → 
F|X\S to X. Moreover, the composition with j : F → Q is the unique extension to X of 
IdF|X\S and hence r is a retraction for the exact sequence: 

0 → F → Q → Q/F → 0. (8.2.66) 

We conclude that the sequence is split. Then, F and Q/F are locally free. Therefore, 
we identify Q/F ∼= F⊥H extending the identifcation over X\S, and F⊥H is D-preserved. 
Finally, it is a linear algebra exercise that F⊥H is a coisotropic vector bundle. Hence, the 
result follows. 

We are ready to prove the main result of this Section. 
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Theorem 8.2.19. Let (ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) with 
balanced class b := [∥Ω∥ωωn−1]. Consider the associated triple (Q, ⟨·, ·⟩, DG) as in Proposi-
tion 5.1.1 and assume that (Q, ⟨·, ·⟩) admits a harmonic metric H. Then, (Q, ⟨·, ·⟩, DG) is 
slope b-polystable. 

1 

Proof. Observe that the H is also harmonic for ω ′ = ∥Ω∥ωn−1 ω (see Lemma 8.2.3), which is 
balanced dω ′n−1 = 0. Consequently, the result follows as a direct consequence of Proposition 
5.1.1 and Proposition 8.2.14. 

8.2.4 Non-holomorphic Higgs felds 
We establish next a comparison between the equations in Lemma 8.2.18 and the Hitchin’s 
Equations in the theory of Higgs bundles [83]. The main qualitative diference between these 
quations is that the Higgs feld ϕ in our picture is very often not holomorphic, as we can see 
from the following result. 

Lemma 8.2.20. Let X be a compact Kähler manifold endowed with a holomorphic vol-
ume form Ω. Let V0 and V1 be holomorphic vector bundles over X satisfying (5.3.16). Let 
(ω, h0, h1) be a solution of the Hull-Strominger system (8.1.8) and consider the associated 
triple (Q, ⟨·, ·⟩, DG) as in Proposition 5.1.1. Let H be a compatible hermitian metric on 
(Q, ⟨·, ·⟩) such that the associated Higgs feld in (8.2.53) satisfes 

∂Qϕ ∧ ωn−1 = 0. 

Assume that b := [∥Ω∥ωωn−1] is a (n − 1)th-power of a Kähler class. Then, g is Kähler and 
h0 and h1 are fat. 

Proof. By (8.2.53), we have that 

FG ∧ ωn−1 = (FH + ∂Qϕ) ∧ ωn−1 = 0. 

By Theorem 8.1.3, ∂Qϕ ∧ ωn−1 = 0 implies that (Q, ⟨·, ·⟩) is slope b-polystable and hence 
the statement follows from Proposition 8.1.7. 

Remark 8.2.21. In order to relate our stability condition to a practical obstruction to the 
existence of solutions to (8.1.8), it seems necessary to establish a more clear relation between 
the Dorfman bracket [, ] on Q (see Example 2.2.6) and the orthogonal connection DG , in a 
way that the slope inequality is formulated more naturally in terms of the triple (Q, ⟨·, ·⟩, [, ]). 

In Section 8.3, we will see an explicit family of Examples over homogeneous manifolds 
where the Higgs feld ϕ as in this picture is not holomorphic in these non-Kähler backgrounds 
as well. 

8.3 Examples 

8.3.1 A family of solutions on the Iwasawa manifold 
In Section 8.2.3 we have proved that triples (Q, ⟨·, ·⟩, DG) associated to solutions of the Hull-
Strominger system are polystable in the sense of Defnition 8.2.12, provided that they admit 
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a harmonic metric (see Defnition 8.2.5). The aim of this section is to give some examples 
where one has a positive answer to Question 8.2.2. 

Consider the Iwasawa manifold X = Γ\H (see Example 4.2.1), given by the quotient of 
the complex Heisenberg Lie group: 

H = 

  
 1 z2 z3 

0 1 z1 

 | zi ∈ C 

  (8.3.1) 
0 0 1 

by the lattice Γ ⊂ H of matrices with entries in Gaussian Z[i]. Note that there is a holo-
morphic projection to the standard complex torus: 

p : X → T 4 = C2/Z[i]2 , (8.3.2) 

which makes X a holomorphic torus fbration. Recall that the 1-forms: 

ω1 = dz1 , ω2 = dz2 , ω3 = dz3 − z2dz1 (8.3.3) 

are Γ-invariant and descend to X, defning a global frame of T1 
∗ 
,0 satisfying: 

dω1 = dω2 = 0 , dω3 = ω12. (8.3.4) 

For any choice of: 

(m, n, p) ∈ Z3\{0} (8.3.5) 

we consider the following purely imaginary (1, 1)-form on the base T 4 

F = π(m(ω11 − ω22) + n(ω12 + ω21) + ip(ω12 − ω21)). (8.3.6) 

Note that 
2 
i
π F has integral periods and hence, by general theory, this is the curvature form 

of the Chern connection of a holomorphic hermitian line bundle (L, h) → T 4 . In the sequel, 
we will identify (L, h) and F = Fh with their corresponding pull-backs to X via p. 

Fix (m0, n0, p0), (m1, n1, p1) ∈ Z3\{0} and consider the associated holomorphic hermitian 
bundles (Lj , hj ) → X, for j = 0, 1. Consider the SU(3) structure on X defned by: 

Ω = ω123 , ω0 = 
2 
i (ω11 + ω22 + ω33). (8.3.7) 

Note that ω0 is a balanced hermitian metric and Ω is a holomorphic volume form. 

Proposition 8.3.1. With the notation above, the triple (ω0, h0, h1) is a solution of the Hull-
Strominger system (8.1.8) on (X, Ω, L0, L1) if and only if: 

1 
α = . (8.3.8)

2 2 2 2 2 22π2(m0 + n0 + p0 − m1 − n1 − p1) 
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Proof. The frst two equations of the system follow from the fact that L0 and L1 have degree 
zero combined with the fact that Fh0 and Fh1 are induced by left-invariant forms. The 
conformally balanced equation follows from dω0

2 = 0 and the fact that ∥Ω∥ω0 is constant. 
Finally, 

ddcω0 = ω1212, 
2 2 2F 2 = 2π2(mh0 1 + n1 + p1)ω1212, 

F 2 2 2 2 
h1 

= 2π2(m2 + n2 + p2)ω1212. 

and hence the Bianchi identity, given by the last equation in (8.1.8), is equivalent to (8.3.8). 

8.3.2 Existence of harmonic metrics 
Recall that there is a fbration structure p : X → T 4 and that Li are pull-back from the 
base. Let P be the smooth complex principal bundle underlying the bundle of split frames 
of L0 ⊕ L1. We consider the set of holomorphic structures on P given by the torsor for the 
abelian group: 

B = PicX 
0 × Pic0 

X , (8.3.9) 

which is a complex 4-dimensional Abelian variety, since H 
∂ 
0,1(X) ∼= C2 (see [10]). We will 

denote by Px the holomorphic bundle associated to x ∈ B. More precisely, we will identify 
with the holomorphic bundle of split frames of a direct sum of line bundles Lx ⊕ LxPx 0 1 , 

where L0
0 ⊕ L0

1 = L0 ⊕ L1. 
To state the main result of this section, for each x ∈ B we need to consider holomorphic 

orthogonal bundles (Qx, ⟨·, ·⟩) which may arise from solutions of the Hull-Strominger system 
(see Corollary 5.3.6 and Remark 8.3.3). As discussed in Section 5.4.2 around (5.4.21), these 
are parametrized by the image of the natural map 

∂ : HA 
1,1(X, R) → H 

∂ 
2,1(X). (8.3.10) 

The holomorphic deformations of Qx given by the map above correspond to the observation 
here that the construction of the Dolbeault operator in Example 2.2.6 can be modifed in the 
following way: given [τ ] ∈ HA 

1,1(X, R) we can change 2i∂ω → 2i∂(ω + τ), which still defnes 
an integrable Dolbeault operator. Observe furthermore that this induces a new holomorphic 
orthogonal bundle structure on Q with the same pairing. 

Proposition 8.3.2. Let (mi, ni, pi) ∈ Z3\{0}, i = 0, 1 such that 

c1(L0) · c1(L1) = 0 ∈ HdR 
4 (T 4 , R). (8.3.11) 

We fx the coupling constant α as in (8.3.8). Then, for any x ∈ B there exists a holomor-
phic orthogonal bundle (Q0 , ⟨·, ·⟩) induced by a solution of the Hull-Strominger system onx 
(X, Ω, Lx 

0 , L1 
x) which admits a harmonic metric. Furthermore, for any small deformation 

(Qx, ⟨·, ·⟩) of (Q0 
x, ⟨·, ·⟩) parametrized by an element in the image of (8.3.10), there exists a 

solution to the Hull-Strominger system inducing (Qx, ⟨·, ·⟩) and a harmonic metric for this 
solution. 
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i 

Proof. We proceed in steps. Firstly, we prove the result for a single holomorphic orthogonal 
bundle as in the statement. Then, we check that this construction is stable with respect to 
deformations. The holomorphic pairing will remain constant along the family. 

Step 1. Let x = (x0, x1) ∈ B and choose lifts x̃i ∈ H 
∂ 
0,1(X). We denote by L ′ the 

holomorphic line bundle corresponding to x̃i. The Chern connections of hi on Li and L ′ i are 
related by: 

A ′ i = Ai + ai, i = 0, 1 (8.3.12) 

0,1 ∈ Ω0,1where ai X is an invariant form representative of x̃i. Observe that: 

Fh ′ = Fhi + dai = Fhi (8.3.13)
i 

1,1 2,0 0,2since Fh ′ , Fhi ∈ Ω and dai ∈ Ω ⊕Ω for ai invariant. From this, (ω0, A ′ 0, A1 
′ ) is a solutionX X Xi 

of the Bianchi identity: 

ddcω − αFA ′ ∧ FA ′ + αFA ′ ∧ FA ′ = 0, (8.3.14)
0 0 1 1 

and we consider the associated Bott-Chern algebroid Q0 . Then, Q0 admits a solution to thex x 
Hull-Strominger system (ω0, h0, h1). Furthermore, we obtain a harmonic metric on Q0 :x   

g0 H0 = 0 
0 
−α 

0 
0  (8.3.15) 

0 0 −α 

under the topological constraints (8.3.11) in the statement. To see this, by Lemma 8.2.8, it 
is equivalent to: P 

0 0 0 0∧ ⋆dcω0 = 0 , (ei , e (ei , e (8.3.16)Fh0 i,j Fh0 j )Fh1 j ) = 0. 

for any ω0-orthonormal basis {e0}. Using the expression (8.3.6) for the curvature Fh0 com-i 
bined with: 

⋆dcω0 = 
2 
i (ω123 − ω312) (8.3.17) 

we get that the frst of these equations holds for any value of the integers (m0, n0, p0) ∈ 
Z3\{0}. Using that Fhi are Hermite-Yang-Mills, the second equation may be rewritten as: 

Fh0 ∧ Fh1 ∧ ω0 = 0 (8.3.18) 

or, in terms of the parameters, 

m0m1 + n0n1 + p0p1 = 0. (8.3.19) 

Finally, using that Fhi are pull-back from the base torus T 4 , one can easily see that this 
condition is equivalent to (8.3.11). 
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Step 2. It is easy to check that in this manifold, a basis of HA 
1,1(X, R)/ker ∂ is given by 

the classes of the real (1, 1)-forms: 

τ1 = ω13 − ω31, τ2 = i(ω13 + ω31), τ3 = ω23 − ω32, τ4 = i(ω23 + ω32). (8.3.20) 

Then, any holomorphic orthogonal bundle in the deformation family of (Q0 , ⟨·, ·⟩) (as in thexP4statement) is isomorphic to (Qτ , ⟨·, ·⟩) where τ = tiτi, ti ∈ R, Qτ is the holomorphicx i=1 x 
vector bundle with Dolbeault operator as in Example (2.2.6) with 2i∂ω replaced by 2i∂(ω+τ), 
and ⟨·, ·⟩ is constant given by (8.1.7). Now, one can readily check that, for any small 
τ , (ω0 + τ, h ′ , h ′ ) is a solution to the Hull-Strominger system which induces (Qτ , ⟨·, ·⟩).0 1 x 
Furthermore, applying Lemma 8.2.8 the harmonicity conditions for the metric: g0 + τ(·, J ·) 0 0 

0 −α 0 

Hτ = (8.3.21) 
0 0 −α 

follow again from a straightforward calculation which implies: 

Fh0 ∧ ⋆ ω0+τ d
c(ω0 + τ) = 0, (8.3.22) 

combined with condition (8.3.11). 

Remark 8.3.3. More invariantly, in the formalism of Bott-Chern algebroids introduced in 
Chapter 2, the previous result can be stated as follows: for any x ∈ B there exists a Bott-
Chern algebroid with underlying bundle Px and fxed Lie algebra bundle determined by the 
pairing (8.1.7) such that any small Bott-Chern algebroid deformation admits a solution to 
the Hull-Strominger system and a harmonic metric for this solution. 

As an immediate consequence of the previous result and Theorem 8.2.19, we obtain fam-
ilies of examples of holomorphic orthogonal bundles with connection associated to solutions 
of the Hull-Strominger system which satisfy the stability condition in Defnition 8.2.12. 

Corollary 8.3.4. The orthogonal vector bundles with connection 

(Qx, ⟨·, ·⟩, DG) 

given by Proposition 8.3.2 are b-polystable in the sense of Defnition 8.2.12, where b is the 
balanced class of the solution which induces (Qx, ⟨·, ·⟩). 

Proof. This is immediate from Proposition 8.2.14 and Proposition 8.3.2. 

8.3.3 Higgs felds on the Iwasawa manifold 
As we discussed in Section 8.2.4, we cannot expect the Higgs feld defned by a harmonic 
metric H for the Hull-Strominger system to be holomorphic. Motivated by Lemma 8.2.20, 
the aim of this section is to provide a non-Kähler example which illustrates this phenomenon. 
The failure of the Higgs feld ϕ to be holomorphic was computed in general in [66, Lemma 
3.19]. Here, we avoid this somewhat involved expression by means of a direct computation 
building on the results of the previous Section. 

We shall focus on the family of examples constructed in Proposition 8.3.2, with harmonic 
metrics Hτ defned in (8.3.21). 
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Proposition 8.3.5. Let (ω0 + τ, h0, h1) be the solution of the Hull-Strominger system in 
(X, Ω, L0 

x, L1 
x) constructed in Proposition 8.3.2, for α given by (8.3.8). Let Hτ be the har-

monic metric for this solution constructed in the proof of Proposition 8.3.2. Then, for any 
small τ , the Higgs feld ϕ of Hτ satisfes 

∂Qϕ ̸= 0. 

Proof. By continuity on the parameter τ , it is enough to check that ∂Qϕ ̸= 0 for τ = 0. Notice 
that in our examples both V0 and V1 are line bundles, and therefore End Vi =∼ C canonically. 
The general expression for the Higgs feld ϕ is obtained from (8.2.35) and (8.2.58). Using 
the identifcation of Q = TC ⊕ C ⊕ C (see (8.2.25)), we obtain: 

0 2(F† 
h0 
)1,0 0 

  −2F1,0 
h0 

ϕ = 0 0 (8.3.23), 
0 0 0 

where F1,0 ∈ Ω1,0(Hom(TC, C)) and (F† )1,0 ∈ Ω1,0(TC) are given by the formulas: h0 h0 

iX1,0 F1,0 (8.3.24)h0 
= iX1,0 Fh0 

iX1,0 (F† 
h0 
)1,0 = 2αg0 

−1(iX1,0 Fh0 ). (8.3.25) 

 
We can write ∂Qϕ in matrix form corresponding to this splitting: 

(∂Qϕ)11 (∂Qϕ)12 0 
∂Qϕ = (∂Qϕ)21 (∂Qϕ)22 (∂Qϕ)23 . (8.3.26) 

0 (∂Qϕ)32 0 

whose components are (1, 1)-forms with values in End TC for (∂Qϕ)11, in TC for (∂Qϕ)12, in 
TC 

∗ for (∂Qϕ)21, and are scalar for the rest. Now, we compute the term (∂Qϕ)23 above. Let 
s = (0, 0, 1) ∈ Γ(Q) corresponding to the constant section 1 in End V1 = OX . By the matrix 
expression above (8.3.26), it follows that: 

(∂Qϕ)23 = (∂Qϕ)(s) = ∂Q(ϕ(s)) + ϕ ∧ (∂Q(s)) = ϕ ∧ (∂Q(s)). 

Then, using the expression for Fh1 given by (8.3.6) and the Dolbeault operator given by the 
(0, 1)-component of (8.2.26), we obtain: 

∂Q(s) = −αg−1F0,1 + ∂End V1 (1)0 h1 

= −2πα(ω1̄ ⊗ (m1X1 − (n1 − ip1)X2) + ω2̄(−m1X1 − (n1 + ip1)X2)) 

It then follows that: 

(∂Qϕ)23 = − ϕ(∂Q(s)) 
= − 4π2α((m0m1 + (n0 + ip0)(n1 − ip1))ω11+ 
+ (m0(n1 + ip1) − m1(n0 + ip0))ω12+ 
+ (−m0(n1 − ip1) + m1(n0 − ip0))ω21+ 
+ (m0m1 + (n0 − ip0)(n1 + ip1))ω22). 

Finally, subject to the condition (8.3.11) together with (mi, ni, pi) ∈ Z3\{0}, it is easy to 
check that (∂Qϕ)23 ̸= 0. 
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Chapter 9 

Outlook 

Higher gauge theory 

A promising approach for studying the geometry of Courant algebroids and constructing 
moduli of gauge-like equations is provided by higher gauge theory, in the sense of [16]. 

Roughly, in this context, one regards the space of sections of a Courant algebroid as 
infnitesimal symmetries of a higher gauge group [122]. Morally, this picture is equivalent to 
interpreting sections of the Atiyah bundle AP of a principal bundle P over a smooth manifold 
M as the diferential version of the extended gauge group of P : 

1 −→ G(P ) −→ G̃(P ) −→ Dif(M) −→ 1. 

The ongoing work of R. Téllez-Domı́nguez in his PhD Thesis, under the supervision of L. 
´ Alvarez-Cónsul and M. Garćıa-Fernández make precise this correspondence. Furthermore, 
Téllez obtains a higher Chern correspondence in [129], recovering the Chern correspondence 
for string algebroids of [70]. Moreover, jointly with the above cited supervisors, they con-
struct the space of connections for higher principal bundles up to gauge equivalence in the 
language of higher stacks, where gauge or holomorphicity equations can be studied. 

This point of view provides a convenient mathematical framework to study stability con-
ditions for holomorphic higher principal bundles, whose classical interpretation for Courant 
algebroids could clarify some aspects of the stability notions put forward in Chapter 8, par-
ticularly its (in)dependence on metric data. If such a program is successful, potentially there 
are higher analogous of a GIT theory that allow to consider a less singular space of stable 
objects. Then, one can speculate with the possibility of a higher Donaldson-Uhlenbeck-Yau 
result that regards this space as a symplectic reduction for suitable moment map equations 
e.g. the Hull-Strominger system, or else, as a higher analog of the moduli construction in 
[70]. 

Heterotic geometry of G2 and Spin(7) manifolds 

The Hull-Strominger system has natural analogs in dimension 7 and 8, called the heterotic 
G2 system and heterotic Spin(7) system, respectively. These were frst studied in physics as 
consistency conditions for the inner spaces of compactifcations of the heterotic string with 
minimal supersymmetry to spacetimes with a diferent number of dimensions, hence the 
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diferent dimensions, and later introduced in the mathematical literature in [48]. A solution 
to these systems determines, in particular, a G2 or Spin(7) structure with torsion on the 
manifold, respectively, and share further formal features with the Hull-Strominger system. 
It is therefore reasonable to expect that the results obtained in this Thesis can be exported 
to dimension 7 and 8. 

In this direction, prior to this Thesis, in the physical literature [35, 36] obtain results 
analogous to the Hull-Strominger case regarding instanton connections and moduli of solu-
tions. As a matter of fact, the perturbative result in [36, Corollary 1] inspired our Corollary 
5.3.6. Recently, A. A. da Silva Junior has shown [33] that a solution to the heterotic G2 
system determines a G2-instanton connection on a real Courant algebroid. Moreover, he 
obtains the precise G2-instanton conditions analogous to the system (5.3.12). 

On the other hand, in the G2 and Spin(7) cases, generalizing other aspects covered in 
this Thesis, such as the Futaki invariants in Chapter 5 or algebraic obstructions for real 
Courant algebroids related to GIT remain mysterious, mainly due to the lack of rigidity of 
complex manifolds. 

New fows for the Hull-Strominger system 

The dimensional reduction approach of Chapter 7 is based on ongoing work jointly with 
Mario Garćıa-Fernández and Jefrey Streets. In a nutshell, Theorem 7.2.3 suggests a strong 
relation between the coupled Hermite-Einstein system and pluriclosed geometry on manifolds 
with non-abelian symmetries. 

In this context, running pluriclosed fow [126], is a promising tool to look for canonical 
geometry. Moreover, under suitable invariant initial conditions, the fow preserves the sym-
metry and hence admits a natural reduction, leading to a new family of coupled fows worth 
exploring. These serve, at the same time, as a motivation and as a tool to study the coupled 
Hermite-Einstein system beyond the basic properties and solutions established in Chapter 
6. 

The analysis of these fows poses new challenges. For instance, when one regards them as 
instances of Generalized Ricci fow [71], typically, the indefnite signature of the Lie algebra 
(Lie K, ⟨·, ·⟩) associated to the bundle means the techniques based on the fow of monotone 
quantities, which is at the core of a good number of results on Generalized Ricci fow, should 
now be handled very carefully. Nevertheless, we expect that studying the behaviour of these 
fows on non-Kähler Calabi-Yau threefolds provides new insights on the geometrization of 
Reid’s fantasy [115]. 
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Conclusión 

El objetivo inicial marcado para esta Tesis ha sido estudiar la existencia de soluciones al 
sistema de Hull-Strominger [86, 127], y más concretamente, una versión refnada de la Con-
jetura de Yau propuesta en [139] (ver también Caṕıtulo 3). Para este sistema de ecuaciones, 
cuya comprensión es aún muy incompleta, son conocidas algunas familias de soluciones (ver 
Sección 4.2) pero las herramientas teóricas que sirvan para abordar sistemáticamente este 
problema están ahora solamente empezando a ser construidas en la literatura matemática. 
Este trabajo propone enfoques novedosos que, según esperamos, puedan ser utilizados para 
progresar en el problema de existencia de soluciones y de sus posibles implicaciones en la 
construcción de un espacio de moduli de variedades Calabi-Yau proyectivas [115, 27, 55], y 
en teoŕıa heterótica de cuerdas. A continuación se resumen las aportaciones originales que 
han sido desarrolladas en esta Tesis. 

En los ultimos´ años, la geometŕıa generalizada se ha demostrado clave en la comprensión 
del sistema de Hull-Strominger [36, 61, 68, 70]. En este trabajo, siguiendo este principio 
como gúıa, en el Caṕıtulo 5 hemos reinterpretado el sistema de Hull-Strominger, fjando los 
datos holomorfos de los fbrados, y cohomológicos de la clase balanceada en términos de un 
algebroide de Courant holomorfo Q provisto de una métrica generalizada G que satisface 
una ecuación de tipo Hermite-Einstein (Sección 5.3): 

FG ∧ ωn−1 = 0, 

donde ω es la métrica hermı́tica dada por la solución al sistema. Este resultado es una con-
traparte en la literatura matemática que hace preciso el obtenido en teoŕıa de perturbaciones 
en f́ısica [36]. Además generaliza para un tipo concreto algebroides de Courant transitivos, 
llamados de cuerdas [64], el resultado obtenido para algebroides de Courant holomorfos 
exactos en [67]. Más aún la interpretación de la ecuación Hermite-Einstein para G como 
aplicación momento nos permite construir invariantes de Futaki (ver Sección 5.4.2) en forma 
de caracteres holomorfos: 

F : H0(End Q) −→ H1,1 ,A 

que proporcionan un nuevo criterio de obstrucción para el sistema de Hull-Strominger más 
allá de la existencia de métricas balanceadas y estabilidad de pendiente para los fbrados. 
Esperamos que el cálculo de estos invariantes constituya, en futuros estudios, una técnica que 
permita decidir efcazmente sobre la posibilidad de resolver el sistema de Hull-Strominger en 
variedades Calabi-Yau no Kähler. De esta manera, obtenemos importante evidencia de que 
la pregunta que motiva esta Tesis (ver Sección 4.3) tiene una respuesta negativa. 

Como resultado derivado de esta construcción, en los Caṕıtulos 6 y 7 hemos estudiado las 
condiciones en geometŕıa hermı́tica correspondientes a la existencia de métricas generalizadas 
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G Hermite-Einstein en el sentido anterior. Este nuevo sistema de ecuaciones, que llamamos 
sistema Hermite-Einstein acoplado (Defnición 6.1.1) es más fexible que Hull-Strominger, 
y según hemos visto, tiene interesantes propiedades en Geometŕıa Generalizada, y relación 
con las ecuaciones del movimiento de supergravedad heterótica y la teoŕıa de álgebras de 
vértices (Sección 6.4, ver también [6]). Más aún, en el Caṕıtulo 7 hemos visto que, v́ıa 
reducción dimensional, el sistema Hermite-Einstein acoplado está también relacionado con 
la búsqueda de geometŕıa canónica en variedades pluricerradas, dada por métricas hermı́ticas 
que satisfacen: 

ddcω = 0, ρB = 0. 

La segunda aportación principal en esta Tesis está relacionada con describir algunos as-
pectos de una conjetural correspondencia de Hitchin-Kobayashi [40, 99, 134] para algebroides 
de Courant que admiten soluciones al sistema de Hull-Strominger. En el Caṕıtulo 8 hemos 
discutido la rigidez de la noción clásica de estabilidad de Mumford-Takemoto en este con-
texto y hemos propuesto una noción refnada de estabilidad inspirados por la construcción de 
Hitchin [83], y damos una defnición de métrica armónica basada en una aplicación momento 
hyperKähler en dimensión infnita. Asimismo, demostramos su relación con una condición 
numérica de estabilidad. Este estudio es un paso importante para obtener, en el futuro, 
condiciones algebraicas para la existencia de soluciones de Hull-Strominger y para la con-
strucción de espacios de moduli de algebroides de Courant holomorfos. 

Además de los avances conceptuales descritos, una buena comprensión del problema de 
existencia pasa por estudiar ejemplos concretos. Aśı, en esta Tesis, nos hemos centrado en 
la geometŕıa dada por variedades complejas localmente homogéneas (ver Caṕıtulo 4), en la 
que los cálculos son particularmente expĺıcitos, y hemos dado un procedimiento sistemático 
para la búsqueda de soluciones del sistema de Hull-Strominger con un ansatz de tipo invari-
ante, recuperando muchas de las soluciones que se hayan ya en la literatura [25, 47, 105] y 
añadiendo nuevas familias. Estas geometŕıas también nos han servido para ilustrar discu-
siones sobre aspectos métricos del espacio de moduli de soluciones a Hull-Strominger (Sección 
4.4), el cálculo de invariantes de Futaki expĺıcitos (Sección 5.4.4), y una familia de métricas 
armónicas para algebroides de Courant (Sección 8.3.2). 
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[54] A. Frölicher. Relations between the cohomolog groups of Dolbeault and topological 
invariants. Proc. Nat. Aca. Sci., 41(9):641–644, 1955. 

[55] J. Fu, J. Li, and S.T. Yau. Balanced metrics on non-Kähler Calabi-Yau threefolds. 
Jour. Dif. Geom., 90:81–129, 2012. 

[56] J. Fu and J. Xiao. Relations between the Kähler cone and the balanced cone of a 
Kähler manifold. Adv. Math., 263:230–252, 2014. 

[57] J. Fu and S.T. Yau. A Monge-Ampère type equation motivated by string theory. 
Comm. Anal. Geom., 15:29–76, 2007. 

[58] J. Fu and S.T. Yau. The theory of superstring with fux on non-Kähler manifolds and 
the complex Monge-Ampère equation. Jour. Dif. Geom., 78:369–428, 2009. 

[59] A. Fujiki. Moduli space of polarized algebraic manifolds and Kähler metrics. Sug. Exp. 
5, 2:173–191, 1992. 

[60] A. Futaki. An obstruction to the existence of Einstein-Kähler metrics. Inv. Math., 
73:437–444, 1983. 

[61] M. Garcia-Fernandez. Torsion-free generalized connections and heterotic supergravity. 
Comm. Math. Phys., 332:89–115, 2014. 

[62] M. Garcia-Fernandez. Lectures on the Hull-Strominger system. Trav. Math., XXIV:7– 
61, 2016. 

197 



[63] M. Garcia-Fernandez. Ricci fow, Killing spinors and T-duality in generalized geometry. 
Adv. Math., 350:1059–1108, 2019. 

[64] M. Garcia-Fernandez. T-dual solutions of the Hull-Strominger system on non-Kähler 
threefolds. Jour. Reine Angew. Math., to appear. 

[65] M. Garcia-Fernandez and R. Gonzalez Molina. Futaki invariants and Yau’s conjecture 
for the hull-strominger system. arXiv:2303.05274, 2023. 

[66] M. Garcia-Fernandez and R. Gonzalez Molina. Harmonic metrics for the hull-
strominger system and stability. arXiv:2301.08236, 2023. 

[67] M. Garcia-Fernandez, J. Jordan, and J. Streets. Non-Kähler Calabi-Yau geometry and 
pluriclosed fow. Jour. Math. Pure Appl, 177:329–367, 2023. 

[68] M. Garcia-Fernandez, R. Rubio, C.S. Shahbazi, and C. Tipler. Canonical metrics on 
holomorphic Courant algebroids. Proc. Lon. Math. Soc., 125(3):700–758, 2022. 

[69] M. Garcia-Fernandez, R. Rubio, and C. Tipler. Holomorphic string algebroids. Tran. 
Amer. Math. Soc., 373(10):7347–7382, 2020. 

[70] M. Garcia-Fernandez, R. Rubio, and C. Tipler. Gauge theory for string algebroids. 
Jour. Dif. Geom., to appear. 

[71] M. Garcia-Fernandez and J. Streets. Generalized Ricci Flow. University Lecture Series. 
American Mathematical Society, 2021. 

[72] P. Gauduchon. La 1-forme de torsion d’une varieté hermitienne compacte. Math. Ann., 
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[78] P. S. Green, T. Hübsch, and A. Lütken. All the Hodge numbers for all Calabi-Yau 
complete intersections. Class. Quan. Grav., 6:105–124, 1989. 

[79] P. Grifths and J. Harris. Principles of Algebraic Geometry. Wiley Classics Library. 
Wiley-Interscience, 1994. 

198 



[80] M. Gualtieri. Generalized complex geometry. Ann. Math, 174:75–123, 2011. 

[81] M. Gualtieri. Generalized Kähler geometry. Comm. Math. Phys., 331:297–331, 2014. 

[82] A. Hattori. Spectral sequence in the de Rham cohomology of fbre bundles. J. Fac. 
Sci. Univ. Tokyo Sect. I, 8:289–331, 1960. 

[83] N. Hitchin. The self-duality equations on a Riemann surface. Proc. Lon. Math. Soc., 
55:59–126, 1987. 

[84] C. Hull. Compactifcations of the heterotic superstring. Phys. Lett. B, 178:357–364, 
1986. 

[85] C. Hull. Superstring compactifcations with torsion and space-time supersymmetry. 
Proc. ’Superunifcation and Extra Dimensions’, pages 347–375, 1986. 

[86] D. Huybrechts. Complex Geometry: An Introduction. Universitext. Springer Berlin, 
Heidelberg, 2005. 

[87] M. Inoue. On surfaces of class V II0. Acta Math., 24:269–310, 1974. 

[88] S. Ivanov. Heterotic supersymmetry, anomaly cancellation and equations of motion. 
Phys. Lett. B., 685:190–196, 2010. 

[89] S. Ivanov and G. Papadopoulos. Vanishing theorems and string backgrounds. Class. 
Quan. Grav., 18:1089, 2001. 

[90] S. Ivanov and G. Papadopoulos. Vanishing theorems on (l|k)-strong Kähler manifolds 
with torsion. Adv. Math., 237:147–164, 2013. 

[91] D. Kaledin and M. Verbitsky. Non-Hermitian Yang-Mills connections. Sel. Math. New 
Ser., 4:279–320, 1998. 

[92] A. Knapp. Lie groups. Beyond an introduction. Progress in Mathematics. Springer, 
1996. 

[93] S. Kobayashi. Diferential geometry of complex vector bundles. Publications of the 
Mathematical Society of Japan. Iwanami Shoten, Publishers and Princeton University 
Press, 1987. 

[94] S. Kobayashi and K. Nomizu. Foundations of Diferential Geometry, Volume I. Wiley 
Classics Library. Wiley Interscience, 1996. 

[95] S. Kobayashi and K. Nomizu. Foundations of Diferential Geometry, Volume II. Wiley 
Classics Library. Wiley Interscience, 1996. 

[96] K. Kodaira. On the structure of compact complex analytic surfaces I. Amer. Jour. 
Math., 86:751–798, 1964. 

[97] J. Li and S.T. Yau. Hermitian–Yang–Mills connections on non-Kähler manifolds. Adv. 
Ser. Math. Phys., 1, World Sci. Publishing, pages 560–573, 1986. 

199 



[98] J. Li and S.T. Yau. The existence of supersymmetric string theory with torsion. Jour. 
Dif. Geom., 70(1):143–181, 2005. 
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