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Abstract

In this Thesis we address the existence problem for the Hull-Strominger system. Firstly, we
carry out a systematic search for solutions induced by the invariant geometry of Lie groups
on complex homogenenous manifolds, based on the study of a natural family of invariant
holomorphic vector bundles on these manifolds, and discuss moduli aspects restricted to the
invariant situation. Motivated by our results, we propose a refined version of a Conjecture
by Yau for solutions to the Hull-Strominger, and find a new obstruction which goes beyond
the balanced property of the Calabi-Yau manifold (X, Q) and the Mumford-Takemoto slope
stability of the bundle over it. The basic principle is the construction of a (possibly indefinite)
Hermitian-Einstein metric G on the holomorphic string algebroid Q associated to a solution
of the system, provided that the connection V on the tangent bundle is Hermitian-Yang Mills.
Using the construction of (Q, G), we define a family of Futaki invariants associated to an
infinite dimensional moment map obstructing the existence of solutions in a given balanced
class. The precise conditions for G to be Hermite-Einstein lead to study a new system
of equations in Hermitian Geometry called the coupled Hermite-FEinstein system, which is
strictly weaker and can be solved, in principle, in any compact complex manifold. We then
move on to investigate stability conditions on holomorphic Courant algebroids reminiscent
of GIT, inspired by the picture provided by the Donaldson-Uhlenbeck-Yau theorem. At
this point of the Thesis, our main development is a notion of harmonic metric for the Hull-
Strominger system, motivated by an infinite-dimensional hyperKahler moment map and
related to a numerical stability condition, which we expect to exist generically for families
of solutions.
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Resumen

En esta Tesis tratamos el problema de existencia para el sistema de Hull-Strominger. En
primer lugar, buscamos sistematicamente soluciones inducidas por la geometria invariante
de grupos de Lie en variedades homogeneneas complejas, basada en el estudio de una familia
natural de fibrados vectoriales holomorfos invariantes en estas variedades, y discutimos as-
pectos del espacio de moduli restringido a la situacién invariante. Motivados por nuestros
resultados, proponemos una version refinada de una Conjetura de Yau para soluciones de
Hull-Strominger, y encontramos una nueva obstrucciéon que va mas alld de la propiedad
balanceada de la variedad Calabi-Yau (X, ) y la estabilidad de pendiente de Mumford-
Takemoto para el fibrado sobre ella. El principio bésico es la construccion de una métrica
Hermite-Einstein (posiblemente indefinida) G en el algebroide de cuerdas holomorfo Q aso-
ciado a una solucién del sistema, suponiendo que la conexiéon V en el fibrado tangente es
Hermite-Yang-Mills. Usando la construccion de (Q, G), definimos una familia de invariantes
de Futaki asociados a una aplicacion momento en dimension infinita obstruyendo la existen-
cia de soluciones en una clase balanceada dada. Las condiciones precisas para que G sea
Hermite-Einstein lleva a estudiar un nuevo sistema de ecuaciones en Geometria Hermitica
llamado sistema Hermite-Einstein acoplado, que es estrictamente mas débil que el sistema
de Hull-Strominger y puede resolverse, en principio, en cualquier variedad compleja com-
pacta. A continuacion, investigamos condiciones de estabilidad en algebroides de Courant
holomorfos reminiscentes de GIT inspirados por la imagen global dada por el Teorema de
Donaldson-Uhlenbeck-Yau. Nuestra principal aportacion en este punto de la Tesis es una
nociéon de métrica armoénica para el sistema de Hull-Strominger, motivada por una aplicacién
momento hyperKahler en dimensién infinita y relacionada con una condicion de estabilidad
numérica, que esperamos que exista genéricamente en familias de soluciones.
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Introduction

The aim of the present Thesis is to address the existence problem for the Hull-Strominger
system. This system first appeared in the physical literature [85, 127] as the consistency
conditions for the compactification of the heterotic string to 4-dimensional space time with
minimal supersymmetry. Mathematically, it is stated as a system of partial differential
equations in the following terms. Let (X, (2) be a compact complex manifold of dimension
three endowed with a holomorphic volume form. Let V' be a holomorphic vector bundle over
X, and « be a real constant. Then a pair of hermitian metrics g on X and h on V satisty
the Hull-Strominger system if:

Fy Aw® =0,
d([[2.w?) =0, (1)
dd‘w — Oé(tl"Rv N RV — tI‘Fh AN Fh) = O,

where w denotes the hermitian form of g. In the last equation, there is an ambiguity in the
choice of the metric connection V in the tangent bundle of the manifold, back to its origins
in heterotic string theory.

In the past few decades, the Hull-Strominger system has generated a great deal of interest
in mathematics, both for its applications to the study of non-Kéhler Calabi-Yau manifolds
[43, 62, 108] and its relation to a conjectural generalization of mirror symmetry [5, 138]. As
originally proposed in the seminal work by Li-Yau [98] and Fu-Yau [57, 58] on these equations,
it is expected that the Hull-Strominger system plays a key role on the geometrization of Reid’s
fantasy [27, 55|, connecting complex threefolds with trivial canonical bundle via conifold
transitions. This proposal has important implications in our understanding of the moduli
space of projective Calabi-Yau manifolds in complex dimension three, and also physical
applications to the string landscape.

The existence problem for the Hull-Strominger is currently widely open. The present
work is motivated by a question about the existence of solutions by S.-T. Yau [139].

Conjecture (Yau [139]). Let (X,Q2) be a compact Calabi-Yau threefold endowed with a
balanced class by. Let V' be a holomorphic vector bundle over X satisfying:

deg,, (V) =0,  chao(V) = cho(X) € Hp2(X,R). (2)
If V is polystable with respect to by, then (X,Q, V) admits a solution of (1).

In order to make progress in this interesting question, about which we know very little at
present, in this Thesis we strenghten the statement of this Conjecture in two ways. Firstly,
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it is natural to demand that the class b = [||Q||,w?] associated to a solution coincides with
by, so that one has control over the balanced class. Moreover, as originally formulated in
[139], the connection V in (1) is not specified in the statement of the Conjecture. Hence,
we propose that V is a hermitian connection (with respect to some fixed hermitian metric)
satisfying the Hermite-Yang-Mills equations:

RY =0, RyAuw?=0. (3)

This ansatz for V seems to have strong physical and geometrical significance: a solution
of (1) with this ansatz solves the heterotic equations of motion [47, 88] and furthermore
has many desirable properties in perturbation theory [37, 84, 100]. As for the geometry,
solutions of (1) satisfying (3) are generalized Ricci flat [61, 63] and have a moment map
interpretation [13, 70], which leads to an interesting metric on its moduli space. Furthermore,
there is currently strong evidence that these solutions play an important role in (0,2) mirror
symmetry via T-duality and the theory of vertex algebras [5, 6, 64].

Motivated by the previous discussion, in this Thesis we address a Question which refines
Yau’s Conjecture taking into account these observations. Avoiding technical aspects that
will be made precise, it is stated as follows:

Question. Let (X, Q) be a compact Calabi-Yau threefold, and let by be a balanced class. Let
V' be a bg-polystable holomorphic vector bundle over X satisfying (2). Let Vy be a generic
bo-polystable holomorphic vector bundle structure on T*Y. Does (X,,V) admit a solution
(w,h) of the Hull-Strominger system (1) such that [||Q|],w?] = by and V is the Chern
connection of a Hermite-Einstein metric hg on Vo ?

Observe that an affirmative answer to this Question provides, in particular, a solution of
Yau’s Conjecture with the ansatz (3).

To gain some insight into this Question, in this Thesis we explore the geometric situation
provided by complex locally homogenenous manifolds with hermitian structure induced by
the invariant geometry of Lie groups [51, 47, 105]. On these manifolds, there is a natural
class of holomorphic vector bundles of invariant type that can always be considered. In
Chapter 4, we charaterise them using the representation theory of Lie algebras and use
this to develop a systematic approach to finding invariant solutions to the Hull-Strominger
system. Furthermore, this approach allows to carry out simplified analyses on the moduli
space of solutions to the Hull-Strominger system [70, 13].

With the insights obtained from this invariant setup, we then provide compelling evidence
that this refined version of Yau’s Conjecture has a negative answer. In order to do this, we
will exploit the special features of the solutions of the Hull-Strominger system with the ansatz
(3). More precisely, we will be able to use generalized geometry and to apply the theory of
metrics on holomorphic string algebroids introduced in [68, 69]. In few words, let (X, ) be a
(possibly non-Kéhler) Calabi-Yau manifold and P a holomorphic principal bundle satisfying

p(P)=0¢ HyZ(X,R). (4)

To link with the above discussion, one can take P to be the bundle of split frames of
Vo @ V. Using (4), one can canonically associate to P a family of holomorphic vector bundle
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extensions of the form
0— Ty — Q@ — Ap — 0, (5)

where Ap denotes the holomorphic Atiyah algebroid of P. These are a particular class of
holomorphic Courant algebroids, called string. Then, for a fixed balanced class by, we are
able to construct a family of Futaki invariants:

<~Ev b0> . 5{)5 — (C7 (6)

where $; = H°(X, Q,) and s parametrizes extensions of the form (5). Crucially, we prove
that a solution to the Hull-Strominger system with the ansatz (3) determines a string alge-
broid Q, such that its Futaki invariant vanishes for the balanced class determined by the
solution. This construction provides a new obstruction to the existence of solutions which
goes beyond the balanced property of the Calabi-Yau manifold (X,2) and the Mumford-
Takemoto slope stability of the bundles V and V;.

As a consequence of our main result, in order to disprove the Question above, it suffices
to find a tuple (X, 2, V, V}), for Vj generic in moduli, and a balanced class by € Hé’é(X, R)
as in the statement, such that V5 and V' are by-polystable and

(Fobo) £0, Vs€G. (7)

In the particular case X satisfies the 90-Lemma, the family above reduces to a unique
Futaki invariant Fy. We expect that Fy provides an efficient tool to attack the posed Ques-
tion, with potential interesting implications in the geometrization of Reid’s fantasy and the
string landscape.

Our method of proof has several interesting salient features. It is inspired by an important
result by De La Ossa, Larfors, and Svanes [36], who showed that the Hull-Strominger system
is equivalent to a suitable Hermite-Yang-Mills equation on a Courant algebroid to all orders
in perturbation theory. Here we give a precise mathematical counterpart of their result
characterizing the Hermite-Einstein condition:

FG N wnil = 0, (8)

for a generalized pseudo-hermitian metric G on a holomorphic string algebroid Q, in terms
of classical tensors. Using this, we prove that any solution of the Hull-Strominger system
with the ansatz (3) induces a solution of (8), which allows us to construct Futaki invariants.

Interestingly, the hermitian conditions under which (8) holds motivate the definition of a
new system of coupled equations in hermitian geometry, which we call the coupled Hermite-
FEinstein system. This system is more flexible than the Hull-Strominger system as it can
be solved, in principle, in any compact complex manifold. Here we construct solutions
on manifolds that do not carry balanced metrics, and whose canonical bundle is not trivial.
Moreover, in Chapter 7, we prove that the coupled Hermite-Einstein system admits a natural
interpretation as a dimensional reduction of hermitian metrics satisfying:

dd‘w = 0, pe =0, (9)
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of central interest in the problem of finding canonical geometry for pluriclosed manifolds,
and also as the fixed points of pluriclosed flow [126, 71].

We then go on to investigate GIT stability conditions for the holomorphic string algebroid
Q associated to a solution of the Hull-Strominger system with the ansatz (3). Firstly, we
recover a no-go result for solutions ‘without the V connection’, which goes back to the
seminal work of Candelas-Horowitz-Strominger-Witten [24]. From our point of view, this is
a consequence of the slope stability of Q with respect to the balanced class b = [||Q|],w?]
of the solution, combined with the existence of the holomorphic volume form 2. We argue
that the naive guess of considering slope polystability of the Bott-Chern algebroid Q with
respect to b is too rigid. Motivated by this, we propose a refined stability condition based on
hyperKahler moment maps. The basic idea is that a solution of the Hull-Strominger system
should carry a positive definite harmonic metric H for (Q, (-,-), D9), that is, satisfying

(V)W 4 U = 0,

where DG = V¥ + U is the unique decomposition of the Chern connection D€ into an
H-unitary connection and a Higgs field. Using a different decomposition of DS a la Hitchin
[83], we prove that the existence of a harmonic metric implies a numerical stability condition
in the sense of GIT. Even though our picture is mostly conjectural, we expect that this
stability condition will lead us to new obstructions to the existence of solutions in future
studies. Our proposal is illustrated with a continuous family of solutions on the Iwasawa
manifold.

The structure of this Thesis is as follows. The first Part, which is intended to serve
as a background on non-Kahler geometry, is divided in three Chapters. In Chapter 1, we
review metric and topological aspects of complex non-Kéahler manifolds, and then we give
some details on their gauge theory and its algebraic counterpart. Chapter 2 is devoted to
explain the elements of Generalized Geometry that will be used in the sequel. We give a brief
account on smooth and holomorphic Courant algebroids, including the study of generalized
metrics, focusing on the exact and string cases. Next, in Chapter 3 we introduce the Hull-
Strominger system, its potential applications and the known solutions in the literature.
We then make precise the Conjecture by Yau about the existence problem. The second
Part of this Thesis presents the contents that are new in the literature, and forms the
rest of this work. In Chapter 4, we study complex locally homogenenous manifolds and
apply the results obtained to carry out a search for solutions of the Hull-Strominger system
using an invariant ansatz. Moreover, we propose a refined version of Yau’s Conjecture.
Then, we go on to discuss metric aspects of the moduli space of solutions to the Hull-
Strominger system. Chapter 5 is at the core of this Thesis. In this Chapter, based on [65],
we prove the relation between solutions to the Hull-Strominger system and connections on
Courant algebroids satisfying a Hermite-Yang-Mills condition. We then use the moment map
interpretation of this equation to construct Futaki invariants, thus providing obstructions
to the Hull-Strominger system. The Chapter finishes with an account of the computations
of Futaki invariants we have carried out. Chapters 6 and 7 deal with the geometry of
the coupled Hermite-Einstein system. In the first one, we prove basic properties of the
geometric and topological properties it determines, and construct the first solutions that do
not satsify the Hull-Strominger system. Moreover, we show its relation to other topics in
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geometry and physics. In the next Chapter, based on ongoing work by the author jointly
with M. Garcia-Fernandez and J. Streets, we recast the coupled Hermite-Einstein system
as a dimensional reduction of canonical pluriclosed metrics. In Chapter 8, based on [66],
we discuss suitable stability conditions for string algebroids carrying a solution to the Hull-
Strominger system. Moreover, we propose a notion of harmonic metric on string algebroids
based on a hyperKahler moment map picture, which allows to relate to a numerical stability
condition. Finally, in Chapter 9, we give some interesting directions related to the material
covered in this Thesis that are currently ongoing.
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Introduccion

El objetivo de esta Tesis es estudiar el problema de existencia para el sistema de Hull-
Strominger. Este sistema aparecié por primera vez en la literatura fisica [86, 127] como las
condiciones de coherencia para la compactificacién de la cuerda heterdtica a 4 dimensiones
espacio-temporales con minima supersimetria. Mateméaticamente, se trata de un sistema
de ecuaciones en derivadas parciales en los siguientes términos. Sea (X, {2) una variedad
compleja, compacta de dimension tres, provista de una forma de volumen holomorfa. Sea V'
un fibrado vectorial holomorfo sobre X, y a una constante real. Ahora, un par de métricas
hermiticas g en X y h en V satisface el sistema de Hull-Strominger si:

Fy Aw? =0,
d([|Q]]ww®) =0, (10)
dd‘w — Oé(tI'Rv A Rv — tI"Fh VAN Fh) = O,

donde w es la forma hermitica de g. En la ultima ecuacién, hay una ambigiiedad en la
eleccién de la conexién métrica V en el fibrado tangente a la variedad, por sus origenes en
teoria heterdtica de cuerdas.

En las ultimas décadas, el sistema de Hull-Strominger ha generado un gran interés en
matemadticas, tanto por sus aplicaciones al estudio de variedades Calabi-Yau no Kéhler [43,
62, 108] como por su relacién con una generalizacién conjetural de la simetria espejo [5,
138]. Tal como fue originalmente propuesto en el trabajo seminal de Li-Yau [98] y Fu-Yau
[57, 58] acerca de estas ecuaciones, se espera que el sistema de Hull-Strominger juegue un
papel clave en la geometrizaciéon de la fantasia de Reid [27, 55], conectando variedades en
tres dimensiones con fibrado candnico trivial por medio de transiciones coniformes. Esta
propuesta tiene importantes implicaciones en nuestro entendimiento del espacio de moduli
de variedades Calabi-Yau proyectivas de dimensién tres, y también aplicaciones fisicas al
paisaje de las cuerdas.

El problema de existencia para el sistema de Hull-Strominger estd actualmente muy
abierto. Este trabajo estd motivado por una pregunta acerca de la existencia de soluciones
por S.-T. Yau [139].

Conjetura (Yau [139]). Sea (X,Q) una variedad Calabi-Yau compacta de dimension tres
provista de una clase balanceada by. Sea V' un fibrado vectorial holomorfo sobre X que
satisface:

deg,, (V) =0,  chao(V) = cho(X) € HpZ(X,R). (11)

Si V' es poliestable con respecto a by, entonces (X, V) admite una solucion a (10).
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Para progresar en esta interesante pregunta, de la que sabemos bastante poco actual-
mente, en esta Tesis proponemos una pregunta mas fuerte que esta Conjetura en dos man-
eras. En primer lugar, es natural pedir que la clase b = [||Q||,w?| asociada a una solucién
coincida con by, para tener control sobre la clase balanceada. Ademas, como fue formulado
originalmente en [139], la conexién V en (10) no se especifica en la Conjetura . Aqui, pro-
ponemos que V sea una conexién hermitica (con respecto a una métrica hermitica fija) que
satisface las ecuaciones de Hermite-Yang-Mills:

RY =0, RyAw?=0. (12)

Este ansatz para V parece tener un importante significado fisico y geométrico: una solucién
a (10) con este ansatz satisface las ecuaciones heterdticas del movimiento [47, 88] y ademés
tiene numerosas propiedades deseables en teoria de perturbaciones [37, 84, 100]. Para la
geometria, soluciones de (10) que satisfacen (12) son Ricci planas generalizadas [61, 63] y
tienen una interpretacién de aplicacién momento [13, 70], que proporciona una interesante
métrica en el espacio de moduli. Mas atin, actualmente hay una gran evidencia de que estas
soluciones juegan un papel importante en simetria espejo (0,2) por medio de T-dualidad y
la teoria de dlgebras de vértices [5, 6, 64].

Motivados por la discusién anterior, en esta Tesis tratamos una Pregunta que refina la
Conjetura de Yau teniendo en cuenta estas observaciones. Evitando aspectos técnicos que
seran precisados, se formula como sigue:

Pregunta. Sea (X, ) una variedad Calabi-Yau compacta de dimension tres, y sea by una
clase balanceada. Sea V' un fibrado wvectorial holomorfo bg-poliestable que satisface (11).
Sea Vy una estructura holomorfa bg-poliestable genérica sobre T, ;Admite (X,,V) una
solucion (w, h) al sistema de Hull-Strominger (10) tal que [[|Q]|,w?] = by y V es la conezidn
de Chern de una métrica Hermite-Einstein hy en V5 ?

Obsérvese que una respuesta afirmativa a esta pregunta proporciona, en particular, una
solucién a la Conjetura de Yau con el ansatz (12).

Para obtener alguna intuicion acerca de esta pregunta, en esta Tesis exploramos la
situacion geométrica proporcionada por variedades complejas localmente homogéneas con
una estructura hermitica inducida por la geometria invariante de grupos de Lie [51, 47, 105].
En estas variedades, hay una clase natural de fibrados vectoriales holomorfos que siempre
puede ser considerada. En el Capitulo 4, los caracterizamos usando la teoria de representa-
ciones de algebras de Lie y usamos esto para desarrollar un método sistematico para en-
contrar soluciones invariantes al sistema de Hull-Strominger. Ademas, este método permite
hacer analisis simplificados del espacio de moduli de soluciones al sistema de Hull-Strominger

70, 13).

Con estas intuiciones obtenidas de la situacion invariante, a continuacién proporcionamos
evidencia importante de que esta version refinada de la Conjetura de Yau tiene una respuesta
negativa. Para esto, explotamos las caracteristicas especiales de las soluciones al sistema
de Hull-Strominger con el ansatz (12). En términos mds precisos, usamos la geometria
generalizada y la teorfa de métricas en algebroides de cuerdas holomorfos introducidos en
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(68, 69]. En pocas palabras, sea (X, ) una variedad Calabi-Yau (posiblemente no Kéhler)
y P un fibrado principal holomorfo que satisface

m(P)=0¢ HyZ(X,R). (13)

Para relacionar esta construccion con la discusion anterior, basta elegir P el producto de los
fibrados de referencias de V5 y V. Usando (13), se asocia candénicamente a P una familia de
fibrados vectoriales de la forma:

0—1T7y — Q@ — Ap — 0, (14)

donde Ap es el algebroide holomorfo de Atiyah de P. Estos son una clase particular de
algebroides de Courant holomorfos, llamados de cuerdas. Ahora, para una clase balanceada
bo, construimos una familia de invariantes de Futaki:

<E7 b0> : 5{)5 — (C7 (]'5>

donde 9, = H°(X,Q,) y s parametrizan extensiones de la forma (14). Crucialmente,
probamos que una solucién al sistema de Hull-Strominger con el ansatz (12) determina
un algebroide string Q, tal que su invariante de Futaki se anula para la clase balanceada
de la solucion. Esta construccion proporciona una obstruccion a la existencia de soluciones
méas alld de la existencia de métricas balanceadas en la variedad Calabi-Yau (X, ) y la
estabilidad de pendiente de Mumford-Takemoto de los fibrados Vg y V.

Como consecuencia de nuestro resultado principal, para refutar la pregunta anterior,
es suficiente con encontrar una tupla (X, V, V), para Vi genérico en moduli, y una clase
balanceada by € HE’%(X ,R) como en el enunciado, tal que Vy y V son bg-poliestables y

(Fo,bo) £0, Vs €. (16)

En el caso particular en que X satisface el Lema 00, la familia anterior reduce a un tinico
invariante de Futaki Fy. Esperamos que Fy proporcione una herramienta eficaz para atacar
el problema propuesto por la pregunta anterior, con potenciales importantes implicaciones
en la geometrizacion de la fantasia de Reid o el paisaje de las cuerdas.

Nuestro método para probar el resultado tiene algunas propiedades sobresalientes. Esta
inspirado en un resultado de De la Ossa, Larfors, Svanes [36], que probaron que el sistema
de Hull-Strominger es equivalente a una ecuacién Hermite-Yang-Mills apropiada en un al-
gebroide de Courant en todos los 6rdenes en teoria de perturbaciones. Aqui damos una
contraparte matematica precisa caracterizando la condicién Hermite-Einstein:

Fg AWt =0, (17)

para una métrica generalizada pseudo-hermitica G en un algebroide de cuerdas holomorfo
Q; en términos de tensores clasicos. Usando esto, demostramos que una solucién al sistema
de Hull-Strominger con el ansatz (12) induce una solucién a (17), que nos permite construir
invariantes de Futaki.

Es interesante observar que las condiciones hermiticas bajo las que (17) se satisface
motivan la definicién de un nuevo sistema en geometria hermitica, que llamamos sistema de
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Hermite-Einstein acoplado. Este sistema es mas flexible que el sistema de Hull-Strominger
y puede, en principio, ser resuelto en cualquier variedad compleja compacta. En esta Tesis
construimos soluciones en variedades que no admiten métricas balanceadas y cuyo fibrado
canénico no es trivial. Ademas, en el Capitulo 7, demostramos que el sistema de Hermite-
Einstein acoplado admite una interpretaciéon natural como una reduccion dimensional de
métricas hermiticas que satisfacen:

dd‘w =0, pg=0, (18)

de interés central en el problema de encontrar geometria candnica para variedades pluricer-
radas, y también como los puntos fijos de el flujo pluricerrado [126, 71].

A continuacion, investigamos condiciones de estabilidad GIT para algebroides de cuerdas
holomorfos Q asocidados a soluciones del sistema de Hull-Strominger con el ansatz (12).
Primero, recuperamos un resultado de rigidez ’sin la conexién V', ya obtenido en el trabajo
seminal de Candelas-Horowitz-Strominger-Witten [24]. Desde nuestro punto de vista, esto
es una consecuencia de la estabilidad de pendiente de Q respecto de la clase balanceada
b = [||||.w?] de la solucién, combinado con la existencia de una forma de volumen holomorfa
. Argumentamos que la nocién ingenua de estabilidad de pendiente para el algebroide de
Courant Q respecto de b es demasiado rigida. Motivados por este resultado, proponemos
una condicién de estabilidad refinada basada en una aplicacion momento hyperKahler. La
idea béasica es que una solucién al sistema de Hull-Strominger deberia admitir una métrica
arménica definida positiva H para (Q, (-,-), D), esto es, satisfaciendo:

(V)W + iy U = 0,

donde D& = VH 4+ ¥ es la tnica descomposicién de la conexién de Chern D€ en una
conexiéon H-unitaria y un campo de Higgs. Usando una descomposicién diferente de D€ 4 la
Hitchin [83], demostramos que la existencia de una métrica arménica implica una condicién
numérica de estabilidad en el sentido de GIT. Aunque esta construccién es mayoritariamente
conjetural ain, esperamos que esta condicién de estabilidad proporcione nuevas obstrucciones
a la existencia de soluciones en futuros estudios. Nuestra propuesta estd ilustrada en una
familia continua de soluciones en la variedad de Iwasawa.

La estructura de esta Tesis es la siguiente. La primera Parte, prevista para servir de ref-
erencia para geometria no Kahler, estd dividida en tres capitulos. En el Capitulo 1 revisamos
aspectos métricos y topoldgicos de variedades complejas no Kahler, y damos algunos detalles
de su teoria gauge y su contraparte algebraica. El Capitulo 2 estd dedicado a explicar los
elementos de Geometria Generalizada que se utilizaran mas tarde. Explicamos brevemente
los algebroides de Courant diferenciables y holomorfos, incluyendo el estudio de métricas
generalizadas con atencién especial a los casos exacto y de cuerdas . A continuacion, en
el Capitulo 3 introducimos el sistema de Hull-Strominger, sus potenciales aplicaciones y las
soluciones conocidas en la literatura. Ahi precisamos la Conjetura de Yau sobre el problema
de existencia. En la segunda Parte de esta Tesis presentamos los contenidos que son nuevos
en la literatura, y forma el resto de este trabajo. En el Capitulo 4, estudiamos variedades
complejas localmente homogéneas y aplicamos los resultados obtenidos para una busqueda
sistematica de soluciones al sistema de Hull-Strominger con un ansatz invariante. Ademas
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proponemos una version refinada a la Conjetura de Yau. También discutimos aspectos
métricos del espacio de moduli de soluciones al sistema de Hull-Strominger. El Capitulo 5 es
el nicleo de esta Tesis. En este Capitulo, demostramos la relacién entre soluciones al sistema
de Hull-Strominger y conexiones en algebroides de Courant que satisfacen una condicion
Hermite-Yang-Mills. A continuacién usamos la interpretacion de aplicacion momento de
esta ecuacién para construir invariantes de Futaki, proporcionando asi obstrucciones al sis-
tema de Hull-Strominger. Este Capitulo finaliza con un resumen acerca de los cédlculos de
invariantes de Futaki que hemos obtenido. Los Capitulos 6 y 7 tratan de la geometria
del sistema Hermite-Einstein acoplado. En el primero, obtenemos propiedades métricas y
topoldgicas bésicas, y construimos las primeras soluciones que no satisfacen el sistema de
Hull-Strominger. Ademads, exponemos su relacion con otros temas en geometria y fisica. En
el siguiente Capitulo, que esté basado en trabajo en progreso junto con M. Garcia-Ferndndez
y J. Streets, reinterpretamos el sistema Hermite-Einstein acoplado como una reduccién di-
mensional de métricas pluricerradas canénicas. En el Capitulo 8, basado en [66], discutimos
condiciones de estabilidad apropiadas para algebroides de cuerdas que admiten solucion al
sistema de Hull-Strominger. Ademds, proponemos una nocién de métrica armonica en al-
gebroides de cuerdas basado en una construccién de aplicacién momento hyperKahler, que
permite relacionarla con una condicién numérica de estabilidad. Finalmente, en el Capitulo
9, damos algunas direcciones interesantes relacionadas con el material expuesto en esta Tesis,
que actualmente estan en progreso.
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Part 1

Background
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Chapter 1

Hermitian Geometry

In this Chapter, we review basic notions of Hermitian Geometry and set the notation and
conventions that will be used throughout this Thesis. Intended to serve as background, we
will limit ourselves to recall the relevant results that will be necessary in the sequel. We
refer to [38, 79, 86, 142], for further details. References for the hermitian geometry of non-
Kéhler manifolds are not so abundant and will be given along the text. The author claims
no originality for any of the results contained in this Chapter, except for Section 4.1.2.

1.1 Hermitian manifolds

1.1.1 Special metrics

In this Section we review fundamental notions of Hermitian Geometry that will be used
throughout this Thesis. Hermitian manifolds are given by triples (M, J, g) where X = (M, J)
is a complex manifold and ¢ is a riemannian metric satisfying:

g(JX,JY) = g(X,Y), X,Y e(TM), (1.1.1)

that is, it is hermitian. Frequently, by abuse of language we will also call hermitian metric
the 2-form:

w=g(J"). (1.1.2)

Let dimgM = 2n. A compact hermitian manifold (M, J, g) admits a natural inner
product on differential forms. Pointwise, given x € M and «, 3, € A¥TM:

(Ogy Be) =D Lir<. in<on ag(er, ..., ex)fuler, ..., ex), (1.1.3)

where {e;} stands for an orthonormal frame of T, M with respect to g. The pointwise inner
product (1.1.3) defines implicitly a Hodge star operator:

x: AFT*M — AT M (1.1.4)
given by declaring that:

e A xSy = (0, Ba) s (1.1.5)
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holds for any a,, 5,. Then, the inner product on global sections of «, 8 € €23, is given by:

({a, B)) = / aNxB, a,B€Qy, (1.1.6)
M
inducing associated metric-adjoint operators:

({da, ) = (e, d"B)),  ((w A, ) = (@, Auf)), (1.1.7)

and a Lefschetz splitting of the space of differential forms:

Q= @( A P20 P = ker(W" A ) € Q4 (1.1.8)
where sections of P" are called primitive.

A broad goal of Hermitian Geometry is to find the canonical geometry of complex man-
ifolds. To this end, several notions of special metrics are introduced:

Definition 1.1.1. Let X be a complex manifold of complex dimension n. A hermitian metric
15 called

Kahler if dw = 0.

Balanced if dw™ ' =0

Conformally balanced if e/w is balanced, for some smooth function f.
Gauduchon if dd°w™1 = 0.

Pluriclosed (or SKT) if dd‘w = 0.

ARSI

From the definitions, the following scheme of relations follows:

pluriclosed < Kahler = balanced = Gauduchon. (1.1.9)

Currently, determining the existence of special non-Kéahler metrics is, in general, a difficult
task. Balanced metrics where introduced in [102] and shown to be topologically obstructed.
Since then, a number of constructions [2], and further Examples have appeared in [1, 55].
For Gauduchon metrics, there is the following general existence result:

Theorem 1.1.2 ([72]). Let X be a compact complex manifold, and let w be a hermitian
metric. Then, there exists a unique real function f such that

1. efw is a Gauduchon metric.

2. The function f satisfies the normalization

/ el dvol, = 1.
X
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In particular, every compact complex surface admits pluriclosed metrics. Further exam-
ples of pluriclosed manifolds in higher dimension are constructed in [76, 112, 140].

There is also interest in determining to what extent the existence of special hermitian
metrics implies kdhlerianity. The following is the prototype of these no-go results.

Theorem 1.1.3 ([90]). Let (X,w) be a hermitian manifold and suppose that w is pluriclosed
and conformally balanced. Then w is Kahler.

Interestingly, in Section 8.1, we use Generalized Geometry (see Chapter 2) as a novel
approach to recover an instance of the above Theorem.

1.1.2 Torsion of hermitian metrics

To make progress in the geometrization of non-Kéahler manifolds, the following tensors are
introduced to measure the failure of a hermitian metric to be Kahler:

Definition 1.1.4. Let (X,w) be a hermitian manifold.
1. The torsion of w is given by —d‘w.
2. The Lee 1-form of w is given by
0, = Jd*w. (1.1.10)

Remark 1.1.5. In the literature, several other quantities such as d°w, dw, 10w, etc. are often
referred to as the torsion of w too. Our choice of —d‘w is motivated by (1.2.3).

In complex dimension 2, both forms contain the same information, as ([71]):
0, = *(—dw). (1.1.11)
In the sequel, we use the following properties of the Lee form:
Proposition 1.1.6. Let (X,w) be a hermitian manifold of complex dimension n.
1. 6, is the unique 1-form that satisfies
dw™t =0, AWt (1.1.12)
In particular, the following formula holds:
0, = A,dw (1.1.13)
2. Let @ = efw, where f is a real function. Then:
0 =0, + (n— 1)df (1.1.14)
From the previous Proposition, w is balanced if and only if §,, = 0. Similarly, w is (locally)

conformally balanced if 6, is exact (resp. closed). An account of further properties and the
geometry of the Lee 1-form can be found in [73].

27



1.1.3 Topology of non-Kahler manifolds

The complex cohomology of a Kéhler manifold (X, w) is characterised by the following con-
sequence of the Hodge decomposition Theorem:

Hj,(X,C) = P (H2Y(X (1.1.15)

pt+q=

where the isomorphism above is canonical, but the cohomology of non-Kéahler complex man-
ifolds, or more precisely, of manifolds that do not satisfy the 90-Lemma, do not satisfy this
result, and can be substantially more difficult to study. Bott-Chern and Aeppli cohomology
groups are introduced as tools to tackle this subtlety:

 ker(d: Q5 — QR
im(dde : QF T — QRY)
ker(dde : Q%% — Q5L
m(d @ de: Q5 — QR N QR

(1.1.16)

HY(X) = (1.1.17)

These complex cohomologies are related to one another fitting in the following diagram:

/l\

Hp 0 C (1.1.18)

\l/

where the maps are induced by identity at the level of forms. Importantly, on a compact
complex manifold X", these cohomologies are related by duality:

HPA(X) =5 HYPoa(x), H/ ah- (1.1.19)

For a survey on these complex cohomologies, see [121].

While the isomorphism (1.1.15) does not hold for a general complex manifold, the
Frolicher spectral sequence [54] relates Dolbeault and de Rham cohomology:

EPI(X) = HP(X,C), EPYX) = H2Y(X), (1.1.20)

inducing further complex cohomology groups. The existence of special metrics on compact
complex manifolds often has topological consequences in the complex cohomologies or in the
Frolicher sequence (see [114, 113]). We will see an instance of this phenomenon in Proposition
6.2.2.

As a generalization of Kahler classes, special metrics (see Section 1.1.1) define suit-
able cohomology classes: if w is balanced, then it defines naturally a cohomology class
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Wl € HX72(X,R) or in Hpg"" '(X,R). Similarly, if w is Gauduchon, then [w™!] €
Hg_l’”_l(X ,R), and if w is pluriclosed, [w] € Hi\’l(X ,R). We also have generalizations of
the Kahler cone of X. Given a compact complex manifold X, the balanced and Gauduchon
cones ([56, 114]) are:

Bx = {[w"™ '] € Hp,"" ' (X) | w balanced} (1.1.21)
GCx = {[w" ! € H "™ (X) | w Gauduchon}. (1.1.22)

and cohomology classes in this cones are said to be balanced and Gauduchon, accordingly.

1.2 Hermitian connections

1.2.1 Distinguished linear connections

Let (M, J, g) be a hermitian manifold, and let V9 denote the Levi-Civita connection of g. The
following formula describes a 2-parameter family of linear connections that have attracted
attention in non-Kéhler geometry [19, 72, 76, 105, 135, 141], among many others. For real
parameters r, s:

g(VY, Z) = g(V%Y, Z) — td°w(X,Y, Z) — sdw(JX,Y,Z), X,Y,Z € T(TM). (1.2.1)

Among this family of connections there are the Levi-Civita connection V9 = V%9 the
Chern connection V¢ = V%2 and the Bismut (also Strominger) connection VZ = V1/20,
The Bismut connection is the unique linear connection that is unitary:

VB =VFg =0, (1.2.2)

and has totally skew-symmetric torsion. It is given by:
9g(Tys(X,Y), Z2) = —dw(X,Y,Z), X,Y,Ze[(TM). (1.2.3)
Finally, the connection V~ = V=29 is an orthogonal connection with totally skew-symmetric

torsion Ty- = ¢~ 'd°w sometimes called Hull connection in the literature.

When w is a Kahler metric, the above family of linear connections collapses to a single
point. Otherwise, it defines a set of mutually distinct connections, among which the line
joining V¢ and V? are the unitary connections. Hence, they induce complex connections
on TH0 and is often called the canonical line of unitary connections [72].

For future reference, we include here Koszul formula for the V9, which will be useful in
computations:

9(ViY, Z) = 5 (X (g(Y, 2)) + Y (9(X, 2)) = Z(9(X,Y))

+9(X, Y], 2) +9([Z2, X],Y) + 9(X, [2,Y])

1
2

(1.2.4)

for arbitrary vector fields X,Y, Z.
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1.2.2 Curvature and holonomy

Let (M, J,g) be a hermitian manifold, and let (E,V) — M be a real or complex vector
bundle with connection. Our convention for the curvature tensor of V is:

Ry(X,Y)s = ([Vx,Vy] = Vixy))s, X, Y e(TM), seI'(E). (1.2.5)
Now, we restrict to the case £ = T'M. Then, the Ricci curvature of V is:
Ricy(X,Y) =tr(Z — Ry(Z,X)Y), X, Y e (TM). (1.2.6)

If V is a complex connection (i.e. V.J = 0), and Fy denotes the curvature of the induced
connection on TH°X | then the Ricci form of V is given by:

Py = itr Fv. (127)

Similarly, we will denote by pg, pc the Bismut or Chern-Ricci forms. By definition,
pv € 2mcy(X) for any connection, hence in particular it is d-closed. The Ricci form is in
general a real 2-form. However, if V = VY it is of type (1,1) with respect to .J.

In the sequel we will use the following identity for the Bismut and Hull curvature tensors
(see the Proof of [71, Proposition 3.21]):

g(va (Xl,Xz)X3,X4) - g(RvB(Xa,X4)X1,X2) = %ddcw(XbXQ,XS,XO, X; € F(TM)-
(1.2.8)

Related to curvature is the notion of holonomy. For a linear connection V, we will denote
by hol’(V) and hol(V) for the restricted and general holonomy respectively. If V is unitary,
then hol(V) C U(n), for n the complex dimension of X. Moreover, we have:

Proposition 1.2.1. Let V be a linear unitary connection. Then:
e hol’(V) € SU(n) if and only if py = 0.
e hol(V) C SU(n) if and only if there exists a V-parallel global section.
Definition 1.2.2. A hermitian metric w such that
p? =0 (1.2.9)
is called Calabi-Yau with torsion (CYT).

CY'T metrics can be regarded as a non-Kéahler replacement for Kahler-Ricci flat metrics
and have been the subject of much interest in the non-Kéahler geometry literature [49, 67,
71, 76].

Definition 1.2.3. A Kdhler-Calabi- Yau manifold is tuple (M, J,g,) where (M, J,g) is
Kihler and Q € T'(Kx) is holomorphic and VIQ = 0. Equivalently, hol(V9) C SU(n).
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1.3 Gauge theory of principal bundles

1.3.1 Differential geometry of principal bundles

Here we recall fundamental notions of the geometry of principal bundles. A particularly
useful reference for this Section is [94].

Let G be a real or complex Lie group with quadratic Lie algebra (g, (-,-)), that is, satis-
fying:
(&)1 + M, [69]) =0, &ny e (1.3.1)

A quadratic structure exists if G is compact or admits a compact real form ([102]).

Moreover, let P % M be a principal G-bundle with a right G-action, i.e. a smooth
manifold P with a free and transitive right G-action, for which P/G = M. If the structure
group G is real, associated to P, we have the Atiyah-Lie short-sequence:

0—adP — Ap —TM — 0, (1.3.2)

where ad P = P X¢ g is the adjoint bundle of P, and Ap = TP/G — M is the Atiyah
algebroid of P, with the bracket on right invariant vector fields on T'P. Moreover, ad P
is naturally a bundle of quadratic Lie algebras with the structure induced by (g, (-,-)). In
case GG is complex, we will consider the complex Atiyah-Lie algebroid A% fitting in the short
exact sequence:

0 —adP — A, — TM®C, (1.3.3)
that, is A% = TP ® C/(ad P)*.

Example 1.3.1. Let E — M be an either real or complex vector bundle, and let P = Fr E
be the frame bundle of E, with structure group G = GL(rk(E)). This group has a natural
quadratic Lie algebra given by the pairing:

(A, BY = tr(AB") (1.3.4)

The fibration p gives rise to an involutive vertical distribution V P = ker dp which fits
into the exact sequence

0 —VP—TP—p'TM — 0. (1.3.5)

The bundle V P admits a global trivialization P x g = V' P given by the infinitesimal action:

d
(p,€) = X8(p) = —(p- ), e (1.3.6)
Such vector fields generated by a Lie algebra element are called canonical. Note, however
that these vector fields are not G-invariant. Rather, vertical G-invariant vector fields are

described by G-equivariant maps

O:P—g, ®p-g)=Ad,(P(p)), (1.3.7)
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or, equivalently, by sections of the adjoint bundle ad P = P Xxg g — M. These are the
infinitesimal symmetries of P. More precisely, given the gauge group of P

G(P)={g:P -5 Plpoy=p}, (1.3.8)

then the variation of a one-parameter family 0,p; of gauge transformations is naturally a
section of ad P. Then, (-,-) induces a pairing on sections of ad P, which we denote again by
(-,). In a local trivialization of P, canonical and G-invariant vertical vector fields are given,
respectively, by fibrewise left-invariant and right-invariant fields.

To describe the horizontal geometry, we make use of connections. In this context, a
connection is given by an equivariant 1-form A € QL(g)¢ which restricts to the identity on
V P. Given A, there is a G-equivariant splitting

TP =VP&ker A (1.3.9)

We call H = ker A the horizontal distribution with respect to A, and we have associated
projection maps

py TP — VP,  pg:TP—s H. (1.3.10)

Using the above, for any basic vector field X € I'(T'M), we define a lifted horizontal vector
field X4 = py(X), where X is any lift of X. The resulting field X4 is G-invariant.

The connection A induces parallel transport and covariant derivatives in the usual manner
in all vector bundles associated to P, in particular on ad P. The pullback of forms gives a
natural embedding:

Qk (ad P) — Q% (g)¢, (1.3.11)

whose image are basic forms. Here, Q% (g)¢ stand for k-forms o that are G-equivariant, that
is:

Ria=Adg10a, g€G. (1.3.12)
Through this embedding, the covariant derivative of a section 3 € Qk (ad P) is given by:
daff=dBopy =dB+[AN[]. (1.3.13)
Moreover, the curvature of A, which measures the non-involutivity of H, is given by:
FA:dAopH:dA—i—%[A/\A], (1.3.14)

and is naturally a section of Q3,(ad P), which satisfies the Bianchi identity daFs = 0. In
case (F,V) is associated to a principal bundle with connection (P, A) with representation
map p and V = V4 =d, 4, then Ry = p.Fa, as defined in Section 1.2.2. Furthermore, the
gauge group G(P) acts on the connection A by

w-A=dpo Ao (dp)™L. (1.3.15)
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At the infinitesimal level, given a section s € I'(ad P) identified with the G-invariant field
X* e I'(VP), we have

LxsA = dys. (1.3.16)

where A = pry € I'(End T'P) is understood as a tensor on P to define the Lie derivative.

On the total space of the principal bundle P, associated to a principal connection A, we
recall here the Chern-Simons 3-form C'S(A) € Q% given by:

CS(A) = —3([ANAIANA) 4+ (FA N A). (1.3.17)
satisfying the key property:
dCS(A) = (Fy A Fy). (1.3.18)
Given two connections A, A’ on P, the following combination of 3-forms is basic:
CS(A") —CS(A) —d(A'NA) =p*(2(a A Fa) + (a Adaa) + 5(aN[ana])).  (1.3.19)

In the case the structure group G is a complex reductive group and P is a holomorphic
principal bundle for GG, there is a notion of hermitian reduction. Let K C G be a maximal
compact subgroup. Then, a section h € I'(P/K) determines a K-principal bundle P, =
h~'([K]) € P. The Chern correspondence in this context asserts that there is a unique
connection A, compatible with the holomorphic structure of P and restricting to a connection
on Py, ([120]). Conversely, given a principal bundle Pk for a compact Lie group K, we will
denote Pj, = P Xy K¢ where K¢ stands for the complexification of K (see e.g. [26, Ch.
12]). Pg is naturally a K°-principal bundle, but carries no natural holomorphic structure.

Moreover, complex reductive groups satisfy a polar decomposition: given a maximal
compact subgroup K C G, then:
G = exp(it) - K, (1.3.20)

and the decomposition of any element g € GG is unique with respect to (1.3.20). Therefore,
any left K-coset is expressed as €K for a unique s € €. A global version of this fact is
that on a G-principal bundle P, given two hermitian reductions hg, h, there exists a section
o € I'(tad P,) such that:

h = exp(io)hy. (1.3.21)

In particular, the set of hermitian reductions is path-connected.

It is well-known by Chern-Weil theory that Chern classes of complex principal bundles
are well-defined characteristic classes in de Rham cohomology. In Bott-Chern cohomology;,
these are well-defined using hermitian reductions if one specifies a holomorphic structure.
Since this is not completely standard, we provide a proof of this fact here:
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Proposition 1.3.2. Let X be a complex manifold, and let P — X be a holomorphic principal
G-bundle, where G is a complex reductive Lie group. Assume there is a bi-invariant product:

(yoory)kigx--xg—C (1.3.22)

k
Then, the k'™-Chern character form given bix (
chi(E,h) = (Fu A - A Fy)y € QY (1.3.23)

where h is a hermitian reduction on P to a mazimal compact subrogrup induces a well-defined
characteristic class chy,(€)pe = [chp(E, )] € Hyt(X) that does not depend on the hermitian
reduction h. If P = Fr & is the frame bundle of a holomorphic vector bundle, then the total
Chern class ¢(€)po € ©;HEL(X,R) given by:

(&) pe = [det (Idg + %F,J]( (1.3.24)
1s independent of h too.

Proof. Let hy and hq be any two hermitian reductions on P. Then, since G is a reductive Lie
group, by the polar decomposition, there exists a path o; € ad(Py,) such that h; = e'thg is
a smooth path joining hy and hy. Moreover, by the computation in the proof of [68, Lemma
3.24] (see also [40, Section 1]), we have:

4, = 00" oy (1.3.25)
Now, the variation of the Chern character form is given by:
%Chk(g, ht> = i<th VAR th>k
= k(L F, Ao Fy)i
= k<58ht0't VAN th>k
== 58k<0’t, ERRIVAY th>k7
where in the last step we use the Bianchi identity d" F},, = 0. Since this result is Bott-Chern
exact at any time ¢, we obtain that [chy(E, hy)] € Hpe(X) is constant along the path, hence
[chi (&, ho)] = [chi(E, h1)]. The last part of the statement follows for the particular case of

G = GL(r,C), where r = rk &, and the Ad-invariant matrix polynomials (-, ..., ), given
implicitly by (see e.g. [95, Sections XII.1-3]):

det(I +A) =1+ Z:<1<A, oAy, Aegl(r,C). (1.3.26)
[l

We finish this Section by recalling the notion of instanton connection. Although these
are defined in multiple geometric contexts, in this Thesis we will be mainly interested in the
ones arising in Hermitian Geometry:
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Definition 1.3.3. Let P — (M*",J,g) be a principal bundle over a hermitian manifold.
Then:

1. a connection A on P is Hermite- Yang-Mills if:

FaAw'™t=0, F}*=0. (1.3.27)

2. if P 1s holomorphic and the Chern connection of a hermitian reduction A, is Hermite-
Yang-Mills, h is called Hermite-Finstein metric.

1.3.2 Slope stability in non-Kahler manifolds

Here, we recall briefly the fundamental notions of slope-stability in the non-Kéahler setting.
For details, we refer to [93, Chapter 5] for the general theory, and to [67, Section 4.1] for
the application to complex non-Kéhler manifolds. Let X be a compact complex manifold of
complex dimension n, and let 0 = [wW"™!] € HZ_I’n_I(X ,R) be a Gauduchon class. Moreover,
let F be a coherent, torsion-free Ox-module. Then, it has a well defined rank rk F = r.
The determinant sheaf of F given by:

det F = ((A"F)*)* (1.3.28)

is a free sheaf, hence it is the sheaf of sections of a holomorphic line bundle, which we denote
again by det F.

Definition 1.3.4. 1. The degree of F with respect to o is:
deg, F = c¢i(det F)pc - o (1.3.29)
i the natural duality pairing:
Hpo(X,R) x HY V" H(X,R) — R. (1.3.30)

2. The slope of F with respect to o is given by:

deg, F
1o (F) = gT' (1.3.31)

Definition 1.3.5. The sheaf F is:

1. o-stable if for any non-trivial coherent subsheaf F' C F:

116 (F') < pio(F). (1.3.32)

2. o-semistable if for any non-trivial coherent subsheaf F' C F:
1o (F') < pio(F), (1.3.33)
and if equality holds, then:

F2FaF/F. (1.3.34)
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3. o-unstable if it 1s not semistable.
4. o-polystable if it is isomorphic to a direct sum of o-stable sheaves of the same degree.

The fundamental connection between slope-stability and gauge theory is given by the
Donaldson-Uhlenbeck-Yau theorem and its extension to general hermitian manifolds:

Theorem 1.3.6 ([99]). Let Q be a holomorphic vector bundle and o = [w™ '] a Gauduchon
class. Then Q is o-polystable if and only if there exists a Hermite-FEinstein metric h on Q
such that:

Aw"

FyAw't = ® Id, (1.3.35)
n

where X is a topological constant determined by Q and o. Moreover, in such case, h is unique
up to holomorphic automorphism of Q.

Remark 1.3.7. In the Kdhler setting, a result analogous to Theorem 1.5.6 for holomorphic
principal bundles was proved in [7].
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Chapter 2

Generalized Geometry

In this Chapter we introduce the fundamental notions of Generalized Geometry that will be
necessary in the sequel. In broad terms, Generalized Geometry studies Courant algebroids,
which in its most elementary form correspond to the geometry of T'® T™, where a number of
non-trivial geometric structures arise. Some useful references for this Chapter are [71, 80, 81].

Here, in the first Section, we recall the notion of Courant algebroids, the two main families
of exact and string Courant algebroids that will be of interest for this Thesis, and introduce
generalized metrics. The second Section deals with the interaction of Generalized Geometry
with Complex Geometry. Further references for these topics are given along the text. The
author claims no originality for the contents of this chapter.

2.1 Courant algebroids

2.1.1 Definition

Throughout, let M be a real smooth manifold of dimension n. We will also denote T'= T M
and T = T*M when the manifold is understood.

Definition 2.1.1. A real, smooth Courant algebroid over M is a tuple (E,{-,-),[-,],7),
where:

1. E — M is a vector bundle.

2. There is a symmetric, non-degenerate pairing on sections:
(.):T(E)xT(FE) — Cy (2.1.1)

bilinear over smooth functions.

3. There is a bracket on sections:
[,] : T(F) xT'(F) — ['(E) (2.1.2)

bilinear over constants.

4. There is an anchor bundle map E -2 T.
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satisfying the following compatibility axioms. For sections a,b,c € I'(E) and f € C33:

where, in the last relation, the pairing (-,-) is used to identify T* LNy <—>> E.

Remark 2.1.2. 1. The axioms of Definition 2.1.1 are not completely independent, and
some of them can be derived from the others. However, we have kept them for clarity.

2. In the literature, sometimes the Azxioms (2.1.3) and (2.1.7) are replaced by asking that
[-,:] is skew-symmetric. Here, with the above axioms, it is usually named Dorfman
bracket, as opposed to other conventions.

3. From the axioms above, it follows that E fits in the complex:
™2 E 2T (2.1.8)
We stress that this complex need not be ezxact.

4. The analogous notion of Courant algebroid is defined over the complex numbers.

A complex Courant algebroid is a smooth complex vector bundle Ec for which (-, ),
-, -] are analogous morphisms of sheaves of smooth complex sections, and the anchor is
defined as p : Ec — T ®C, satisfying the analogous complex Azioms of (2.1.3)-(2.1.7).
If E is a real Courant algebroid, then E ® C is naturally a complex Courant algebroid.

When attempting to classify Courant algebroids, there are several inequivalent notions of
morphisms in the literature. We will not study each one of them and their differences here,
but we will make precise which morphisms we take into account for the relevant families of
Courant algebroids for this Thesis, in Section 2.1.2.

Associated to any Courant algebroid E, there are a number of distinguished bundles with
additional structure induced from that of F. First, there are natural subbundles given by:

T* C (ker p)*- Ckerp C E,
where the inclusions follow from the Axioms (2.1.3)-(2.1.7). Then, we define:

E ker p
Ap = ——— dg = ——. 2.1.9
2= Tl " e ) (2.19)
The bundle Ag is naturally a Lie algebroid with the bracket inherited from FE. This
follows from the fact that (ker p)* is a two-sided ideal for (E,[-,-]). Since ker p is also an
ideal, this structure restricts to adg. Moreover, adg also inherits the pairing from E, hence
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it is a bundle of quadratic Lie algebras. The same applies for a complex Courant algebroid,
yielding a complex Lie algebroid Ag. and a quadratic Lie algebroid adg,.

We finish this Section recalling that for any real Courant algebroid, there always exists
an isotropic splitting o : T' — FE, i.e. satisfying

poo=id, (0(X),0(Y)) =0, X, Y eI(T).

and the same is true for complex Courant algebroids. As will become clear in the sequel,
the importance of splittings stems from the fact that they produce explicit representations
of Courant algebroids.

2.1.2 Exact and string Courant algebroids

The sequence (2.1.8) in which a Courant algebroid fits allows to consider different families
of Courant algebroids depending on the specific details of this sequence. The simplest case
is the following.

Definition 2.1.3. A real smooth exact Courant algebroid (E,{(-,-),[, "], p) is a Courant al-
gebroid such that the sequence:

0—T 5 E-25T 50 (2.1.10)

1s exact. Stmilarly, a complexr smooth Courant algebroid is exact if the sequence

0—T"0C B 5 ToC—0 (2.1.11)
18 exact.

Definition 2.1.4. An isomorphism ¢ of real exact Courant algebroids E, E' is an orthogonal,
bracket preserving invertible bundle map covering the identity on the manifold, such that the
following diagram commutes:

0 s T >

FE s T
lid lqb lid (2~1~12>
s T

0 s T s Y s 0

~
o

Similarly, an isomorphism ¢ between complex smooth Courant algebroids Ec, Ef is an or-
thogonal, bracket preserving invertible bundle map such that:

0 —— T*®C > B¢ >y TRC —— 0

lid l¢> lid (2.1.13)

00— T C s B s TC —— 0.

Remark 2.1.5. In the literature, a wider notion of exact Courant algebroid isomorphisms
is considered (see e.qg. [T1, Definition 2.18], which does not require the fibre-preserving con-
dition. For the purposes of this Thesis, we will however restrict to Definition 2.1.4 above.
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Exact Courant algebroids can be described via explicit models. The following is the
prototypical Example.

Example 2.1.6. Let E =T ®T* and H € Q3; such that dH = 0. Moreover, consider the
structure:

(-, :T(F)xT'(F) — Cy
[ lu : T(E) x T(E) —s T(E) (2.1.14)
Lo - E—-T

given by the following formulae:

(X + &Y +n)o = 3(n(X) +£(Y))
po(X +¢&) = X,

where X, Y € I(T') and &, n € T'(T*). Then (E,{-,")o, [, ]u, po) is an exact Courant alge-
broid. Conversely, if (E, (-, Yo, [, ]u, po) is an exact Courant algebroid for a 3-form H, then
dH = 0. For a proof see e.g. [T1, Proposition 2.17]. The analogous result holds for complex
exact Courant algebroids Ec = (T & T*) ® C and complex 3-forms. In what follows we will
denote:

Ep =TT (o[ 1u, po)- (2.1.16)

In what follows, we characterize abstract exact Courant algebroids and describe their
symmetries. We will write the results for real Courant algebroids, being their complex
counterparts straightforward generalizations.

Proposition 2.1.7. Let (E,(-,-),[,"],p) be a smooth real Courant algebroid, and let o :
T — E be an isotropic splitting. Then, the map

¢o: En — E, X +&m0(X)+1p°(8) (2.1.17)
1s an isomorphism of Courant algebroids for
H(X,Y,Z)=2(o(X),0(Y)],0(Z)), X,Y,ZeT(T). (2.1.18)
As a consequence, we obtain:

Theorem 2.1.8 (Severa). There is a one-to-one correspondence between isomorphism classes
of real exact Courant algebroids and Hip(M).

Remark 2.1.9. The above result can be reinterpreted in terms of sheaf cohomology by con-
sidering the sheaf complex:

0— 02 L0z, Lol Lo, L (2.1.19)
Then, Hip(M) = HY(Q3,).
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Proposition 2.1.7 provides explicit presentations for abstract exact Courant algebroids.
However, it is not unique, and any two of them differ by a Courant algebroid automorphism.
These are characterized in the following result:

Proposition 2.1.10. Let Ey and Ey be exact Courant algebroids as in Example 2.1.6, and
assume [H'] = [H| € H3p(M). Moreover, let ¢ : Eyr — Epy be an isomorphism. Then:

HX+E) =X+ixb+ &, (2.1.20)
where b is a 2-form satisfying
H' = H + db. (2.1.21)
In particular, exact Courant algebroid automorphisms of Ey are given by maps:
By — By, (X +&) =X +ixb+¢, (2.1.22)
where db = 0.

Observe this result is a geometric realization of exact cocycles in Remark 2.1.9 preserving
the algebroid isomorphism class. In the literature, the 2-form b in Proposition 2.1.10 is usu-
ally called the B-field, and the maps (2.1.22) are B-field transformations. As a consequence
of Propositions 2.1.7, 2.1.10, we obtain a characterization of the exact Courant algebroid
explicit models that are isomorphic to a given abstract exact Courant algebroid FE.

Next, we introduce string algebroids following [69], also known as heterotic in the liter-
ature [32]. This is a generalization of exact Courant algebroids that incorporates naturally
the geometry of principal bundles and will play a central role in this Thesis. Here, we will
follow the notations and conventions of Section 1.3.1. Let K be a compact Lie group with
quadratic Lie algebra (£, (-,-)) and let P — M be a principal K-bundle.

Definition 2.1.11. 1. A real, smooth string algebroid is a triple (E, P, pp) such that E
i1s a real, smooth Courant algebroid fitting in the short exact sequence:

0— T — E% Ap — 0, (2.1.23)

where Ap is the Atiyah algebroid of P, pp is a bracket-preserving map, and the induced
map pp : Ag — Ap is an isomorphism of Lie algebroids restricting to an isomorphism
of quadratic Lie algebroids adg = ad P.

2. A complex, smooth string algebroid is a triple (Ec, Pc, pp.) such that Ec is a complex
smooth Courant algebroid fitting in the short exact sequence:

0= T"@C — Ec 75 A5, (2.1.24)
where A%, is the complex Atiyah-Lie algebroid of Pc, and the induced map pp, : Ap. —

A%, is an isomorphism of complex Lie algebroids restricting to an isomorphism of
quadratic Lie algebroids adg, = ad FPc.
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Definition 2.1.12 ([69]). Let (E, P,pp) and (E’, P', pp:) be real string algebroids. Then, a
map ¢ : B — E' is an isomorphism of string Courant algebroids if it is orthogonal, bracket-
preserving, and the following diagram commutes:

0 y T+ sy B —22 5 Ap 5 0
lid l(b lg (2.1.25)
0 y T+ y B L2 Ap 5 0

where g : Ap — Ap: is the isomorphism induced by a principal bundle isomorphism g : P —
P’ covering the identity on M. In case (E,P,pp) = (E', P, pp:), we say ¢ is a restricted
automorphism if moreover g = id. An isomorphism of complex string algebroids Ec and E¢
is analogously defined substituting the defining short exact sequences of E, E' in (2.1.23) by
the corresponding complex short exact sequences (2.1.24).

The following are explicit Examples of string algebroids, ande are the counterpart of
Example 2.1.6 for exact Courant algebroids.

Example 2.1.13. Let E =T ®&ad P & T* for a real principal bundle P — M. Moreover,
let H € 23, and A be a principal connection for P such that:

dH — <FA/\FA> =0. (2126)
We consider the structure:
(-, :T(E)xT'(F) — Cy

[, ]ga:T(E) x T(E) — [(E) (2.1.27)
po: =T

giwen by the following formulae:

(X +7r+&6Y +s+m0=3E1) +n(X)) + (r,s),
(X +r+&Y +s+npa=[X,Y] = Fa(X,)Y) + ixdar — iydas — [r,s] + Lxn+
+iydE + iyix H + 2{dar,t) + 2(ix Fa, s) — 2(iy Fa,r),
p(X +7r+&)o=2X,
(2.1.28)

where X,Y € I'(T), r,s € I'(ad P) and §,n € I'(T*). Then (E, (-, )o, [, |m,4, po) is a string
algebroid. Conversely, if (E,(-,")o,["s]m a4, po) is a string algebroid for a 3-form H and a
principal connection A on P then dH — (Fa A Fa) = 0. The analogous result holds for
complex exact Courant algebroids Ec =T @ C® ad Pec & T* ® C and complex 3-forms and
principal connections. The string algebroid described above will be denoted in the sequel by:

Epma=(E, {0 [, |14, po)- (2.1.29)

The following results give the real string analogs of Propositions 2.1.7, 2.1.10. The
complex versions are a straightforward generalization and are ommited.
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Proposition 2.1.14. Let (E, P, pp) be a smooth real string algebroid, and let oy : T — E
be an isotropic splitting, and let gy : Py — P be a principal bundle isomorphism covering the
tdentity. Then, the map

¢Uo,go : EPO,HO,AO — FE, X+ UO(X) + ,0p|(_ir1n o0) L o gO(r) + %p*(ﬁ) (2'1'30)
1s an isomorphism of Courant algebroids for
Hy(X,Y,Z) = 2([00(X),00(Y)],00(2)), X,Y,Z cT(T). (2.1.31)

and Ay the principal connection on Py determined by Ay = (go) ™o pp ooy, where Ay : T —
Ap, is the horizontal lift of Ay.

The following results describe the relation between different models for string algebroids.
In particular, we obtain the group of symmetries of a given string algebroid.

Proposition 2.1.15. Let E = Epy a and E' = Epr g 4, and assume P and P are isomor-
phic principal bundles. Then, the set of isomorphisms ¢ : E' — E is one-to-one with pairs
(g,b) of principal bundle isomorphisms covering the identity g : P' — P and 2-forms b such
that:

H =H+CS(A) - CS(g'A) —d(A' A gt A) + db. (2.1.32)
Explicitly, given (g,b) such that (2.1.32) holds, then ¢ = e®®  where:
PN X +r4+8) =X+ g(a(X) +7) +ixb+ (a(X),a) + 2{a, ) + &, (2.1.33)

where a = g A — A" € Ql(ad P').

Corollary 2.1.16. The automorphisms of Ep g a are in correspondence with pairs (g,b) €
Gp X Q%\/[ such that

db+ CS(A) — CS(g7'A) —d{ANgtA) =0, (2.1.34)
or, equivalently, such that:
db—2(a A Fa) — (a ANdaa) — 5{a A a Aa]) =0, (2.1.35)
where a = g'A — A € Ql(ad P). The automorphism to a pair (g,b) satisfying (2.1.35) is
given by the formula (2.1.33).

As a direct consequence of Propositions 2.1.14 and 2.1.15, the following result provides
formulae for the change of presentation of a given abstract string algebroid (E, P, pp).

Corollary 2.1.17. Let E = (E, P, pp) be a string algebroid and suppose ¢y, g : Epy o409 —
E is an isomorphism. Then Ep, g, a, s isomorphic to E if and only if P, = P and there
exist a pair (g,b) such that (2.1.33) holds, where a = g~' Ay — Ay. In that case, the induced
isomorphism 1S ¢g, g, : Ep, g, 4, — E, where:

g1=go°g (2.1.36)
01(X) = oo(X) + ,0p|(7irln oyt © 91(a(X)) — 0" (ixb+ (a(X), a)). (2.1.37)

As in the exact case, the classification of isomorphism classes of smooth string algebroids
can be described in terms of sheaf cohomology (see [69, Appendix A]). However, we will not
use directly that classification and therefore we omit it here.
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2.1.3 Generalized metrics

Generalized metrics are one of the fundamental geometric structures Courant algebroids can
be endowed with. In broad terms, these play a similar role as riemannian metrics in standard
differential geometry. In this Section, we recall basic properties of generalized metrics and
particularize for the case of exact and string Courant algebroids. For further details we refer
to [61]. Throughout, let E— M be a real, smooth Courant algebroid. Generalized metrics
can be defined in various degrees of generality. In this Thesis, we will adopt the following;:

Definition 2.1.18. A generalized metric on E is a subbundle V., C E such that:

1. The restriction (-, )|y, is a positive-definite inner product.

2. plv, : Vi = T is an isomorphism.

Given a pair (E,V,), we define the complement V_ = (V,)*. Note that for general
Courant algebroids, the restriction of the ambient pairing (-,-)|y. does not have a sign.
However, by the condition of Definition 2.1.18(1), we have that:

E=V,&V._. (2.1.38)

Moreover, by the condition of 2.1.18(2), we have a lifting induced by the generalized metric:
or=(plv) T =V, (2.1.39)

and hence a riemannian metric g = (0, ,0.). Then, the lifting given by:
c:T—E, oX)=0.(X)-3p(9(X)) (2.1.40)

is an isotropic splitting. In this situation, we call o the splitting induced or preferred by V.
Conversely, given a pair (o, g) of an isotropic splitting on F and a riemannian metric on M,
the expression:

Vi(o,9) = {o(X) + 30" (9(X)) | X € T} (2.1.41)

is a generalized metric on E. The next result further refines what is the geometric content
of a generalized metric in case the Courant algebroid is of the types of Section 2.1.2.

Proposition 2.1.19. 1. Let E be an exact Courant algebroid, and V. C E a generalized
metric. Let o : T — FE be the isotropic splitting preferred by V.. Then:

o (Vo) =e9(T) :={X +¢g(X)| X €T} C Ey, (2.1.42)

where Ey is the exact Courant algebroid of Example 2.1.6 for H = 2([0, 0], 0).

2. Let (E, P, pp) be a string algebroid and let V.. C E a generalized metric. Let o be the
1sotropic splitting preferred by V.. Then:

¢;,i1d(v+) =e/T)={X+g(X)| X €T} C Epn,a, (2.1.43)

where Epp 4 is the ezact Courant algebroid of Example 2.1.13 for H = 2([o, 0], 0) and
A is the principal connection determined by A+ = ppoo.
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Hence, a generalized metric determines a preferred presentation of an exact or string
Courant algebroid. Alternatively, if F is an exact Courant algebroid, a generalized metric is
equivalent to a triple (o, g, H). Moreover, in this case:

¢, (V2) = e (T) C Epn. (2.1.44)

g

If £ is a string algebroid, a generalized metric is equivalent to a quadruple (o, g, H, A).
Moreover, then:

ﬁb;ild(v—) =e Y(T)®ad P C Epp,a. (2.1.45)

2.2 Holomorphic Courant algebroids

In the previous Section we have reviewed the smooth theory of Courant algebroids and
particularized to exact and string cases. Now, we use it to induce holomorphic structures
on them. The relation of smooth and holomorphic Courant algebroids allows to study the
interaction with the hermitian geometry of the manifold, leading to the notions of Bott-
Chern algebroids and generalized hermitian metrics. These will play a central role in this
Thesis. The references for this Section are [69, 68] and [81, Appendix A].

We start by introducing holomorphic Courant algebroids. Throughout, let X = (M, J)
a complex manifold. We will denote 7"* = T"X, and T, = (T*X)"°

Definition 2.2.1. A holomorphic Courant algebroid is a tuple (Q, (-,-), [, ], p), where:
1. @ — X s a holomorphic vector bundle.

2. The pairing (-, -) is a symmetric, non-degenerate morphism of sheaves:

()1 O(Q) ®oy O(Q) — Ox. (2.2.1)

3. The Dorfman bracket [-,-] is a morphism of sheaves:
[,:]: O(Q) ®c O(Q) = O(Q). (2.2.2)

4. The anchor is a holomorphic vector bundle map:

p:Q—TH, (2.2.3)

such that the following hold for a,b,c € O(Q) and f € Ox:
L [a, [b,]] = [la, b], ¢] + [b, [a, ] (2.2.4)
2. p(a)((b, ) = ([a,b],c) + (b, |a, c]) (2.2.5)
3. [a, fb] = fla,b] + p(a)(f)b (2.2.6)
4. p(la, b)) = [p(a), p(b)] (2.2.7)
5. [a,b] + [b,a] = 2p*0{a, b), (2.2.8)

where in (2.2.8) we have used the identification Ty, LN Qr vy Q.
Associated to a holomorphic Courant algebroid Q, we consider the following bundles:
Q ker p
Ag=-——"——, adg=-—+.
7 herp)t "0 (ker p)?
Analogous to the smooth case, (Ag,[-,-]) is a Lie algebroid, and (adg, (-,-),[-,"]) is a
quadratic Lie algebroid, where the structure is inherited from Q.

(2.2.9)
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2.2.1 Liftings and reduction

Given a complex, smooth Courant algebroid, one can produce a holomorphic Courant alge-
broid through a procedure of choosing a lifting followed by reduction. This was observed in
[81, Appendix A], and we recall it here briefly. Then, we particularize to smooth and string
algebroids.

Definition 2.2.2. Let E¢ be a smooth, complex Courant algebroid. Then, a lifting ¢ C E¢
15 a complex subbundle that satisfies:

1. ¢ is isotropic: (¢, ) = 0.
2. 0 is an involutive distribution of (Ec, [-,-]): [¢,€] C L.

3. pcle: € — T% is an isomorphism.

By property of Definition 2.2.2(3), given a lifting ¢ we have a vector bundle map:

~

oo = (pcle)™t: T — 2. (2.2.10)

Proposition 2.2.3. Let E¢ be a smooth, complex Courant algebroid, and let £ C E¢ be a
lifting. Moreover, let Qp = (/0. Then, the following defines an integrable Dolbeault operator
0g, such that Q, is a holomorphic Courant algebroid:

ix010g,la)] = [0¢(X*"),a] mod ¢. (2.2.11)

Remark 2.2.4. In Proposition 2.2.3, the definition of Q; is chosen such that dg, is well
defined independent of choices. Then, the integrability is a formal consequence of Axiom
(2.2.4).

Next, we detail what the above result amounts to in the case E¢ is exact or string. For
this, it is convenient to extend the formalism to the holomorphic category:

Definition 2.2.5. 1. A holomorphic Courant algebroid Q is exact if the sequence:
0— Ty 25 QLT — 0 (2.2.12)

18 exact.

2. Let G be a complex Lie group and let P — X be a holomorphic principal bundle. Then,
(Q, P, pp) is a holomorphic string algebroid if the sequence:

00— T7o 25 QL2 Ap — 0 (2.2.13)

is exact, where Ap = T P/G — T is the holomorphic Atiyah algebroid of P, and
pp 18 a bracket preserving map inducing isomorphism of holomorphic Lie algebroids
Ag = Ap, and of holomorphic quadratic Lie algebrois adg = ad P.
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Example 2.2.6 ([69]). 1. Let Q = T'°@TY, as a smooth vector bundle, and T € Q021
such that dr = 0. Moreover, consider the structure:
(00 : T(Q) xT(Q) — CFX
do : T(T"") x T(Q) — I(Q)

(2.2.14)
[ ] T(Q) x T(Q) — I'(Q)
po:Q— T
giwen by the following formulae:
(X +&Y +n)o = 3(n(X) +£(Y))
ivO,lEQ(X +¢&) = gvo,lX +5v0,1€ + T2’I(V0’1,X, ) (2.2.15)
(X +&Y +n), =[X,Y]+ix0n+ 0(ixn) — iydé + iyixm™’ o
pO(X + 5) = X7
where XY € T(T™0), VO € T(T*) and & n € T(T},). Then, Q. = (Q,0q) is
a holomorphic vector bundle and (Q-, (-, *)o, [, ]+, po) is a holomorphic exact Courant
algebroid. Conversely, if (Q-, (-, )0, [, |+, po) is a holomorphic exact Courant algebroid

for a 3-form T € Q}OHJ, then dr = 0.

2. Let G be a complex Lie group with quadratic Lie algebra (g, (-,+)), and P a holomorphic
principal G-bundle. Moreover, let Q = T** ® ad P @ 17, as a smooth vector bundle,

and T € Q?&D’Lm and A principal connection on P compatible with the holomorphic
structure, such that:

dr — <FA VAN FA> =0. (2.2.16)
Furthermore, consider the structure as in (2.2.14) given by the following formulae:

(X++r+&Y +s+n)0=3mX)+£Y)) + (r,s)
7;‘/0,159T (X+r+¢) = Ovor X + a1 — FA(V071, X)+
+ Oyoal + 72 VO X ) + 2(iyoa Fa, )

(X 47+ &Y + 5+ mma=[X,Y] = F?°(X,Y) 4 ix0us — iyOar — [r, s]+
+ixOn + 0(ixn) — iydé +iyixm>0 4 2(0ar, 8)+
+2(ix FY%,t) — 2(iy F3°,7)

po(X +1+§) =X,
(2.2.17)

where X,Y € T(TY?), V&' e T(T%"), r,s € T'(ad P) and &§,n € T(T},). Then,
Qpra=(Q,00) is a holomorphic vector bundle and (Qpr.a, (-, Yo, [, ]+, o) is a holo-
morphic string algebroid. Conversely, if (Qpr.a, (-, o, [s]r.a,p0) is a holomorphic

string algebroid for a 3-form T € Q§50+2’1 and a compatible principal connection A in
P, then (2.2.16) holds.
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The next two results characterize the space of liftings for exact and string algebroids, and
identify what is the explicit holomorphic model of the type of Example 2.2.6 of the resulting
holomorphic reduction. Although this procedure is purely complex, for the purposes of this
Thesis it will be enough to apply it to complexified real algebroids. These have, by definition,
a natural real form £ C F ® C. The description of liftings uses, in particular, this structure.
The reader is directed to [70] for the general theory of holomorphic reduction of Courant
algebroids.

Proposition 2.2.7. The set of liftings on Eg®C is one-to-one with pairs (v, b) € Q}\;},RX 02,
such that:

H + d* + db = 0. (2.2.18)
Ezxplicitly, given (v,b) satisfying (2.2.18), then:
(1, b) = e~ CH(TO) = [XOL —j o (b+iv)) | X0 € TO1) (2.2.19)
1s a lifting. Moreover:
b0 Qaioy — Qupyy X + & [eOT(X) +¢] (2.2.20)
18 an isomorphism.

Proposition 2.2.8. The set of liftings on Ep, g4 ® C is one-to-one with triples (¢, b,a) €
QY (M, R) x 932, x QY (adPg) such that:

H+d%+CS(A") — CS(A) —d(A" N A) +db =0,
o (2.2.21)
FA; - 0,
where A = A+a. Ezxplicitly, given (¢,b,a) satisfying (2.2.21), then the associated lifting is:
0(1p, b, a) = eZOFI)—a)(TOL) (2.2.22)
where e~OT)=a) s g5 in (2.1.33). Moreover:

qbg : QP,Qi&/},A—HL — Qé(d),b,a), X+r+ 5 — [6(_(b+iw)’_a)(X +7r+ f)] (2223)

is an isomorphism, where P = (P§,04).

2.2.2 Generalized hermitian metrics

Throughout this Section, let X = (M, J) be a complex manifold and E a real Courant
algebroid. The fundamental compatibility condition between Generalized Geometry with
the complex structure is the following:

Definition 2.2.9 ([67]). A generalized metric V. C E is compatible with J if:
=V, @Cnp ' (T")CE®C (2.2.24)

s a lifting.
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Proposition 2.2.10. 1. Let E be an exact Courant algebroid, and V., a generalized met-
ric. Moreover, let (0,9, H) be the data associated to V. Then, V. is compatible with
J if and only if g is a hermitian metric and:

H=—dw, (2.2.25)
where w = g(J-,-). In particular:

dd°w = 0. (2.2.26)

2. Let E be a string algebroid, and V., a generalized metric. Moreover, let (o, g, H, A) be
the data associated to V.. Then, V is compatible with J if and only if g is a hermitian
metric and:

H=—dw, F}*=0. (2.2.27)
In particular:
dd‘w + <FA N FA> = 0. (2228)

From Propositions 2.2.7, 2.2.8 and Proposition 2.2.10, we obtain as an immediate conse-
quence explicit models for holomorphic reductions in case these are induced by J-compatible
generalized metrics:

Corollary 2.2.11. 1. Let F be an exact Courant algebroid, Vi a J-compatible generalized
metric, and Q its holomorphic reduction. Moreover, let w be the hermitian metric
given by Proposition 2.2.10(1). Then:

¢g : QQi@w — Q( (2229)
s an isomorphism.

2. Let (E, Pk, pp,) be a string algebroid, V. a J-compatible generalized metric, and Qy
its holomorphic reduction. Moreover, let (w, A) be as given by Proposition 2.2.10(2).
Then:

Ge 2 Qpoiow.a — Qi (2.2.30)
is an isomorphism, where P = (P§,04).

Remark 2.2.12. The Courant algebroids obtained in Corollary 2.2.11 do not fully exhaust
the set of all holomorphic Courant algebroids, as the condition of E ® C admitting a real
form and the lifting being induced by a generalized metric are not vacuous. In the exact case,
one can readily see that algebroids in the family Qoia, for w a hermitian metric are rather
special within the family of Example 2.2.6(1). Similarly, the string algebroids admitting a
presentation as in Corollary 2.2.11(2) form a special family within its category, which is
encoded in the following notion.

49



Definition 2.2.13 ([68]). Let (Q, P, pp) a holomorphic string algebroid. Then, Q is called
a Bott-Chern algebroid if there exists an isomorphism:

¢ Qp2idw.a, — 9, (2.2.31)

where w is a (1,1)-form and Ay, is the Chern connection of P, C P for a hermitian reduction
to a mazximal compact subgroup (see Section 1.3.1). If w is moreover a hermitian metric,
then Q is said to be positive.

Remark 2.2.14. The existence of Bott-Chern structures on string algebroids is in general
a difficult question. Moreover, how to determine if a Bott-Chern algebroid is positive is an
open problem in general. For a discussion on these issues and particular known results see
[68, Section 3].

Now we introduce the notion that gives title to this Section. Let (E,V, ) be a Courant
algebroid endowed with a J-compatible generalized metric, as in Definition 2.2.9. Then, it
follows that:

r=V.@Caol = Q=("/t =2 V_xC, (2.2.32)

by elementary considerations, where the isomorphism above is induced by the projection
E-5 V.

Definition 2.2.15. Let E be a Courant algebroid and V. C E a J-compatible generalized
metric, and let Qp the its holomorphic reduction. Then, we call

G((a], b)) = —{r_(a), 7_(B)) (2.2.33)
the generalized hermitian metric on Q.

Remark 2.2.16. 1. The generalized hermitian metric G defined above has not a sign in
general. For the case of interest for this Thesis, where E is a real string algebroid,
let (0,9, H, A) be induced by a generalized metric V. compatible with J. Then, in the
given isomorphism Qp = Qpaia, a of Corollary 2.2.11(2), explicitly:

g("T) 0 0
G=(l o —¢7 0 (2.2.34)
0 0 ig_l('a_)

with respect to the natural smooth splitting Qpoisw, A < 10 @®ad PP 17, given by
construction of Qpaiaw.a (see Example 2.2.6). Its indefinite signature is a fundamental
feature that will be recurrent in subsequent Chapters. However, if E s exact, the
analogous generalized hermitian metric G of (2.2.34) is:

(6(5 ) (2259)

in the smooth splitting Qs;o. T 10 g 1Ty, and therefore, is positive definite. The
string case will be dealt with in detail in Chapter 4.
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2. As given in Definition 2.2.15, generalized hermitian metrics are hermitian metrics on
Courant algebroids in the standard sense of Differential Geometry. However, the name
stems from the fact that these are induced by a choice of generalized data, and in some
contexts it can be useful to adopt this more abstract point of view (see [67, Definition
3.15] for the exact case).

2.2.3 Classification of holomorphic Courant algebroids

In Section 2.1.2, the classification of exact Courant algebroids was sketched (see Proposi-
tion 2.1.7 and Corollary 2.1.8). Here, we refine this classification for holomorphic Courant
algebroids, and include the string case to the picture. Firstly, we provide the notion of
isomorphism in this category.

Definition 2.2.17. 1. Let Q, Q' be exact holomorphic Courant algebroids. Then a vector
bundle map ¢ : @ — Q' is an isomorphism if it preserves the Courant algebroid pairing
and bracket, and makes the following diagram commute:

0 » Tt y Q sy TV —— 0

RN

0 » T s O y T — )

2. Let (Q, P,pp), (Q, P, ppr) be string algebroids. Then a vector bundle map ¢ : Q — Q'
s an isomorphism if it preserves the Courant algebroid pairing and bracket, and makes
the following diagram commute:

0 » TT, Q s Ap —— 0

bk

0 » TT Q’ Ap —— 0

~

~
~

where g : Ap — Alp is an isomorphism induced from a principal bundle map g : P —
P'. If P=P and g = id, we will call this isomorphism restricted.

The following result give a explicit characterization of isomorphisms in terms of explicit
presentations:

Proposition 2.2.18 ([69]). Let Qp 4, Qpr 4 be holomorphic string algebroids as described
in Example (2.2.6). Then, the set of isomorphisms ¢ : Qpra — Qpr .4 is one-to one with
the set of pairs (g, 3) where g : P — P’ is an isomorphism of principal bundles and 3 € Q*°
such that:

7' =1+ CS(A') = CS(gA) — d(A' A gA) — dp. (2.2.36)

We now recall the classification result obtained in [68] for Bott-Chern algebroids. For the
exact case, the classification for positive algebroids follows formally by taking the structure
group G to be trivial. For this, we introduce the sheaf complex Q=? given by:

j d d d
0 — QF0 Ly 020 Ly 30rat 1, groraiezz 4, (2.2.37)
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Proposition 2.2.19 ([68]). Let G be a complex Lie group and P a holomorphic principal
G-bundle. Then, the set of isomorphism classes of Bott-Chern algebroids (Q, P, pp) with
respect to restricted isomorphism is naturally a (possibly empty) affine space modelled on the
image of the map:

HYY(X,R) -L HYQS), [Y] — [2i00)]. (2.2.38)

Explicitly, given a Bott-Chern algebroid Q = Qpagw.a, to a class [2i0v¢] in the image of
(2.2.38) we associate the class of Qaip(wtv),A-

Remark 2.2.20. 1. The statement above does not make any claim about the positivity
of the members of the family. Typically, once a positive Bott-Chern algebroid is fized,
only elements in a neighbourhood admit a positive structure.

2. In case X satisfies the 00-lemma, it is straightforward to check that 2.2.38 is constant.
Hence, there is at most one Bott-Chern algebroid over P up to restricted isomorphism.

One can check that Proposition 2.2.19 above indeed agrees with Proposition 2.2.18:
the Bott-Chern algebroids Qpaiawp and Qpaigw+v),a are isomorphic when [2i0¢)] = 0 €
H'(Q=2), that is, when there exists 3 € Q*° such that 2i0¢ +dS = 0. Then, it is clear that:

2i0(w + ) = 2i0w — dfs (2.2.39)

showing a particular case of the isomorphism provided by (2.2.36), where (P’, A") = (P, A).
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Chapter 3

Background and Yau’s Conjecture for
the Hull-Strominger system

This Chapter introduces the main object of study of this Thesis: the Hull-Strominger system
[85, 127]. See [62] for a survey and references therein. Here, we give an account of several
aspects of its geometry.

In the first Section, we review its origin and how it is regarded currently in the mathe-
matical literature, including the promising potential application to the Calabi-Yau web. We
then give an overview of the known exact solutions in the literature. In the second Section,
we address the existence problem for the Hull-Strominger system following a conjecture by
S. T. Yau [138], and discuss the current state of the problem.

3.1 The Hull-Strominger system

3.1.1 Physical origin and mathematical formulation

The Hull-Strominger system is a system of geometric PDEs on a complex manifold. It first
appeared independently in the physics literature in the works of A. Strominger [127] and C.
Hull [85]. Here, we sketch how this system is obtained.

The starting point is the aim to describe the low energy limit of supersymmetric heterotic
string theory from the spacetime point of view, that is, as a sigma model of maps C*(3,T),
where the space-time T is required to be 10-dimensional and assumed to be of the form:

T =R> x M, (3.1.1)

where the first factor stands for Minkowski 4-dim. space-time, and the second is called the
internal space. With a suitable product ansatz for the matter content, the theory is reduced
to M and the relevant fields are given by tuples (g, ¢, H, A) of a riemannian metric g, a
smooth function ¢ (dilaton), a 3-form H and a connection A on a principal bundle Px — M
with compact structure group K. We assume Lie K is endowed with an inner product, that
we denote in this Section by tr. The low-energy theory is governed by the action:

Slg. ¢, H, Al = / e *(scal? +4ldo[* — 5| H|* + (| Ry|* — |[Fal*))dvoly, (3.1.2)
M
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where V is a linear connection introduced to produce an anomaly cancellation, i.e. forcing a
classical symmetry to carry over the quantized theory, and « is a physical parameter required
to be positive. This requirement is expressed locally via the existence of a 2-form b such
that:

H—-aCS(V)+aCS(A)+db=0. (3.1.3)
As a consequence, the following constraint arises for an anomaly-free theory:
dH — atrRy A\ Ry + atr Fa A Fy =0, (3.1.4)

which is known in the literature as the Bianchi identity. The stationary points of S given
the ansatz (3.1.3) satisfy the heterotic equations of motion:

Ric? 4+ 2V9(dg) — 1H? —ay tr(ie, Ry ® i, Ry) + @Y ifr(ic, Fa @ ic, Fa) =0
d*(e™°H) =0

(e Fy) + e % (FaNxH) =0

scal’ — 4A,¢ — 4|dp|> — L|H? — &|Ry|” + &|Fal* =0,

(3.1.5)

where {e;} is an orthonormal frame for g, and A, = dd* + d*d is the Hodge Laplacian.

A special class of solutions satisfy suitable lower order equations, and are related to
supersymmetry. In precise terms, this amounts to the existence of spinor field € (Majorana
spinor) in an irreducible real spin module for C1(T'M, g) with respect to the Hull connection
V™ =V9— %gilH that satisfies the Killing spinor equations:

F A €= 0
Ve=0 (3.1.6)
(H +2d¢g) -e=0.

Then, the main result is the following:

Theorem 3.1.1 ([85, 127]). Let (g, ¢, H,V, A, €) be the geometric structure defined above.
Then, (3.1.4) and (3.1.6) hold if and only if there is a (possibily non-Kdhler) Calabi-Yau
structure on M, (J,Q) such that:

FaAw?=0, F*=0
dlog |||, — d*w =10 (3.1.7)
dd‘w — atr RvARv+atr FA/\FA :O,

where w = g(J-,-), and:
H=—dw, d¢=—3idlog ||| (3.1.8)

The geometry determined by the system becomes more transparent once the second
equation is rewritten as a conformally balanced condition [98], see also [74]:

dlog ||Q|], —d*'w =0 < d(||9]|.w?) = 0. (3.1.9)

o4



Moreover, it is useful to fix a holomorphic structure P = (Pg,dp). Then, compatible
connections A satisfying the first line of (3.1.7) are equivalent to hermitian metrics h on P
satisfying:

Fy Aw? =0, (3.1.10)

by the Chern correspondence. Hence, we obtain the Hull-Strominger system as it is usually
written in the mathematical literature:

FpyAw?=0
d(]|2f]w?) = 0 (3.1.11)
dd‘w — atr Ry AN Ry +atr Fj, N Fj, =0

as a system in the unknowns (w, k) on a Calabi-Yau manifold endowed with a holomorphic
principal bundle (X, Q, P). Moreover, in the mathematical literature the constant « is often
regarded as a real parameter, and it is natural to study (3.1.11) also for non-positive values.
The indefinition of the connection V is an original feature of the system and has been
the subject of much debate in the physical as well as in the mathematical community (see
[37]). Since the Hull-Strominger system appeared in the mathematical literature with the
remarkable work of [98], and further [58], to a considerable extent V has been identified with
the Chern connection of w, yielding a strongly coupled system. However, other choices for
V have been considered, singularly the instanton ansatz. From the point of view of physics,
this choice is supported by the following result.

Theorem 3.1.2 ([88]). Let (w, A) satisfy the Hull-Strominger system 3.1.7. Then, the het-
erotic equations of motion 3.1.5 hold if and only if V satisfies:
Ry Aw?=0, RY =0. (3.1.12)

Mathematically, this choice is also at the core of a good amount of recent theory of the
Hull-Strominger system [5, 13, 70]. Moreover, note that with this choice, V also satisfies its
own equation of motion [47, 63]:

d5(e™* Ry) 4+ e % (Ry AxH) = 0. (3.1.13)

In this Thesis, we will prove a slightly stronger result using purely hermitian geometry in
Proposition 6.4.1. It is because of this evidence that throughout this Thesis, in the sequel
we advocate for the ansatz (3.1.12). Further, for virtually all of the methods and techniques
that we develop, it is worth to embrace an abstract formulation of the system. Hence by
Hull-Strominger system, we will mean the following:

Definition 3.1.3. Let (X,2) be a (possibly non-Kdhler) compact Calabi-Yau manifold of
complex dimension n, and let P — X be a holomorphic principal bundle for a complex
reductive group. Then, a pair (w,h) of a hermitian metric and a reduction of P to a mazximal
compact subgroup satisfies the Hull-Strominger system if:

Fh VAN wnil =0
d(]|Qf|,w" ) =0 (3.1.14)
dd‘w + (F, A Fy) = 0.

To recover (3.1.11) from the system in Definition (3.1.14) with the instanton ansatz for
V, one considers Fr T'X X x P as the principal bundle and restricts to split solutions.
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3.1.2 Application to the Calabi-Yau web

This Section provides a motivation for studying the Hull-Strominger system from the point of
view of algebraic geometry, for the problem of classification of complex-algebraic Calabi-Yau
threefolds.

This proposal stems from the contrast with the situation in complex dimension 2. For
K3-surfaces, back to the work of Kodaira [96], as an application of the deformation theory of
complex manifolds, a moduli space of analytic K 3-surfaces is constructed, with a countable
set of codimension 1 subvarieties of algebraic surfaces sitting inside. In particular, the
moduli of smooth complex K 3-surfaces is connected and every two of them are shown to be
diffeomorphic.

The situation for Calabi-Yau 3-folds is dramatically different. The following construction
yields examples of Calabi-Yau 3-folds with different topologies [23, 78]: we consider complete
intersection Calabi-Yau manifolds (CICYs) defined as:

XZ{p1=---=pk=O}C(CPT1><---><(CP”, (3115)

where p; are polynomial expressions that are homogeneous of a certain degree d;; in each of
the CP"s factors. Then, the elementary combinatorial considerations:

(3.1.16)

place constraints on the degrees of p; and dimensions r; such that X is a Calabi-Yau manifold.
Moreover, the non-trivial Hodge numbers A (X)), h?!(X) are obtained- in many cases, from
this data too, resulting in a vast 10.000 topologically distinct CICYSs, as proved by Friedman
[53] building on results of Smale. To emulate the picture of surfaces, in [115] it was proposed
to use complex transitions to relate threefolds with different topology, conjecturing that
there could be a unique moduli of smooth Calabi-Yau threefolds in the birational sense.
This expectation is now known as Reid’s fantasy. In [53], conifold transitions are used to
produce changes in the Hodge numbers of X. This is a two-step process of contracting a set
of suitable disjoint rational curves ¥ C; C X producing a singular space X with double
point singularities. The typical element in the smooth resolution X; has different Hodge
numbers than X, depending on the analytical properties of X and of the transition (see
[117, Theorem 3.2] and references therein). It can be the case that the resulting manifold
X, is a non-Kéhler manifold e.g. because of this cohomological result, or for other reasons.
Hence non-Kéhler geometry enters naturally in the picture. An extreme case that appears is
that of threefolds diffeomorphic to #;,5% x S* ([21]). Due to the lack of canonical geometry in
non-Kéhler manifolds, in [138], it was proposed that the Hull-Strominger system should serve
as a tool to geometrize conifold transitions. The following results are successful instances of
this program:

Theorem 3.1.4 ([55]). Let X be a Kdhler Calabi-Yau threefold and let X — X ~~ X; be a
conifold transition, with deformation parameter t € A C C. Then, for sufficiently small t,
X: admits balanced metrics.
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Theorem 3.1.5 ([28]). The tangent bundle T'°X; is slope-polystable with respect to the
balanced class given by the metric in Theorem 3.1.4.

The same result of Theorem 3.1.5 holds for the manifolds ;S x S* above [21]. A com-
plete answer to the problem of classification of Calabi-Yau threefolds following this proposal
should, in particular, provide sufficient conditions to pass a solution to the Hull-Strominger
system across conifold transitions or obstructions that prevent it. In this Thesis, we study
the existence problem for the Hull-Strominger system to obtain new insights on the viability
of this program.

3.1.3 Solutions to the Hull-Strominger system

In a prior analysis of heterotic compactifications [24], it was proposed that the internal
space M should be a complex manifold carrying a Kéhler-Ricci flat metric. These geome-
tries without torsion trivially satisfy the Hull-Strominger system and are known as standard
embeddings. Later, when the Hull-Strominger system was first addressed in the mathemati-
cal literature in [98], the authors deformed the holomorphic structure of TX & O%" providing
solutions around the large volume limit (o« = 0). Moreover, large families of deformation
solutions around the large volume limit were further obtained in [8, 9]. Recently, a general
existence result for the Hull-Strominger system in Kahler backgrounds has been obtained,
compatible with both the Chern and instanton choices for V [28].

The first solutions in non-Kéhler manifolds were obtained in [58] on elliptic fibrations over
K3 surfaces, and have been. In [64], new solutions are constructed on the same manifolds
with the instanton ansatz (3.1.12) and are compatible with T-duality. Recently, more solu-
tions have been constructed on more general fibrations admitting orbifold bases [50]. Other
non-Kahler backgrounds that admit solutions are twistor spaces for hyperKahler manifolds.
In these geometries, called generalized Calabi-Gray, solutions are constructed in [42; 43, 44].
Moreover, homogeneous complex manifolds as described in Section 4.1 have invariant solu-
tions with different choices for the connection V [25, 45, 46, 47, 77, 105, 132, 133]. Apart
from these known explicit solutions, there is also interest in reaching exact solutions by
means of geometric flows, and study long-time existence, covergence and stability properties
of the flows themselves. To this end, a family of anomaly flows is introduced and studied in
[107, 109, 110], showing a diversity of behaviours.

3.2 Existence conjecture of Yau for the Hull-Strominger
system

This Section introduces the problem of existence of solutions to the Hull-Strominger sys-
tem that we will address in the following Chapters, following a suitable reformulation of a
conjecture by Yau [137]. Before we state it, we comment on some aspects of the geometry
determined by the system. Throughout, let (X, ) be a compact Calabi-Yau manifold. We
do not assume that X supports a Kahler structure. Moreover, let V' be a holomorphic vector
bundle, and V; = (T, dy;) a holomorphic structure on the smooth bundle 7"°X. In the
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following discussion, principal bundles are substituted by vector bundles for clarity and to
link to classical theory more directly.

3.2.1 Preliminary remarks and the conjecture by Yau

We discuss some cohomological and algebraic conditions that are implied directly by a so-
lution (3.1.11) on (X, 2, V). Firstly, the existence of a holomorphic volume form 2 and the
conformally balanced equation:

d(]|9|.w?) =0 (3.2.1)

are non-trivial conditions for the complex geometry and topology of X (see Section 1.1.1).
In particular, the form ||Q||,w? € Q% determines a balanced class b € Hye (X, R). Further,
the Hermite-Einstein equation:

FyAw?=0 (3.2.2)
implies the vector bundle V' satisfies:
deg,V=c1(V)-b=0, (3.2.3)

where b is identified with its de Rham class through (1.1.18), and importantly V' is slope-
polystable in the sense of Mumford-Takemoto with respect to the balanced class b. This
is a consequence of the Donaldson-Uhlenbeck-Yau theorem [40, 134] and its extension to
hermitian manifolds [97] (see also [64, Section 4], [93, Chapter 5]). Finally, the Bianchi
identity implies the cohomological condition (see Proposition 1.3.2):

[cho(TX, V)] = chao(V) € HpZ (X, R) (3.2.4)

In particular, if V is taken to be the Chern connection of w on T%°, then the previous
condition reads:

cha(X) = chy(V) € HEL(X,R). (3.2.5)

Then, the existence conjecture by Yau states that the above necessary conditions are
actually sufficient:

Conjecture 3.2.1 ([139]). Let (X, Q) be a compact Calabi- Yau manifold. Moreover, let by
be a balanced class and V' — X a holomorphic vector bundle that is by-stable and satisfying
(3.2.3), (3.2.5). Then, there exists a solution of (3.1.11), where V is the Chern connection
of w.

Note that the above Conjecture does not demand that the balanced class b = [||Q]],w?]
bears any relation with the given balanced class by in the statement.
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3.2.2 State of the problem

The Conjecture 3.2.1 was addressed in [8, 9] using a method inspired in the seminal article
[98] to produce non-Kéhler solutions deforming Kéhler Calabi-Yau metrics. The result pro-
vides solutions to the Hull-Strominger system (3.1.11) with the ansatz (3.1.12) for arbitrary
polystable vector bundles stable with respect to the initial Kahler class , by simultaneously
deforming the hermitian metric and the Hermite-Einstein bundle metric by means of ana-
lytic techniques, but does not fix the balanced class. Recently, in [28] the authors solve the
Hull-Strominger system with a control of the balanced class, in the large volume limit, which
is in turn equivalent to deforming standard embedding solutions. Their existence result is
moreover compatible with the choice of (3.1.12) assuming the holomorphic tangent bundle
is stable (see [28, Section 3.2]), thus providing evidence for Question 4.3.1.

Despite the above positive results supporting Conjecture 3.2.1 and Question 4.3.1, recent
advances in the theory of the Hull-Strominger system also suggest there may be non-trivial
obstructions beyond the cohomological and algebraic necessary conditions stated in Section
3.2.1. In [13, 70] appearing in the physical and mathematical literature respectively, the
Hull-Strominger system is recasted as the set of equations for a moment map, suggesting
the existence of invariants reminiscent of GIT that prevent solutions. However, these may
not be straightforward to interpret and compute. Hence, in this Thesis, we take a distinct
approach to produce new moment map invariants for the Hull-Strominger system exploiting
special features of the system amenable to the use of techniques in Generalized Geometry.
This will be addressed in Chapter 5.
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Chapter 4

The Hull-Strominger system on
locally homogeneous manifolds

This Chapter begins the investigation of the Hull-Strominger system in this Thesis. By first
studying the geometry and gauge theory of complex locally homogenenous manifolds, we
develop a systematic approach to obtain solutions to the Hull-Strominger system using an
invariant ansatz. Motivated by these results, in the next Section, we suggest to tackle a
refinement of the existence Conjecture by Yau (see Section 3.2), leading to a proposal that
continues in subsequent Chapters. Then, we move on to study metric aspects of the moduli
space of solutions to the system constructed in [70], restricted to invariant solutions, and
illustrated through Examples.

4.1 Locally homogeneous manifolds

This Section describes families of locally homogeneous spaces of Lie groups admitting in-
variant hermitian structure. Hermitian manifolds of this type are particularly well suited for
exterior algebra computations, and under certain assumptions, the determination of their
complex cohomology groups is also completely explicit. Thus, they have been regarded as a
pool of manageable geometries to look for special metrics [51, 131, 132], or for solutions to
geometric PDE systems [105]. In the present Chapter, locally homogeneous manifolds are
used to construct families of solutions to the Hull-Strominger system.

Throughout, let G be a real Lie group with Lie algebra g, and let I' C G a discrete
subgroup with compact quotient M = I'\G. A left-invariant complex structure J on G is
induced from a linear complex structure on g satisfying the integrability condition N; = 0,
where:

Ny(&n) = [&n] + J[JEn] + J[§, In] = [JE, In] =0, &n€g. (4.1.1)

In particular, left-invariance implies it is I'-invariant and descends to M. By abuse of lan-
guage, we still call such a complex structure invariant. This motivates the following defini-
tion:

Definition 4.1.1. A complex locally homogenenous manifold is a quotient M = T'\G en-
dowed with a left-invariant, integrable complex structure J.
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Remark 4.1.2. While in the literature one can find more general notions of locally homo-
geneous manifolds, for the objectives of this Thesis it will be enough to consider Definition
4.1.1.

Similarly, linear tensor fields on g induce left-invariant fields on M. In particular, we
have natural embeddings:

g — D(TM), Arg*— Qk,  APig* s QORI (4.1.2)
These fields are similarly, by abuse of language, still called left-invariant. If g7 = (w;), then:

dwi = Zj,k QW + Zj<k ﬁijkwjk, Qjjks Bijk € C, 7= 1, ey dim gl,O. (413)

These complex structure equatidns determine the Lie algebra structure and the complex
structure J. Observe that (G, .J) is not in general a complex Lie group. This is the case
precisely when the structure constants «;j; = 0 in (4.1.3) above, as this is equivalent to g'*
being involutive.

4.1.1 Cohomology of locally homogeneous manifolds

Let X = (M, J) be a complex locally homogenenous manifold. The set of invariant differen-
tial forms inherits a chain complex structure induced by Chevalley-Eilenberg differential:

0—g" KN Ag* LN A3g* < (4.1.4)
determined by:
dy(&n) = —((&n), &nee yeg" (4.1.5)
and extending to higher exterior products by:
Ay A y2) = dy Ay + (=1)Mlyy A dry,. (4.1.6)

Observe that (4.1.5) makes (4.1.2) an embedding of chain complexes, hence inducing maps
in cohomology:

H*(g) — Hiz(M). (4.1.7)

This map need not be injective nor surjective in general. However, for some families
of Lie groups this is the case. To cite the result of interest here, we recall the following
definition:

Definition 4.1.3 ([92]). 1. A Lie algebra g is completely solvable (or split-solvable) if
there is an ascending chain of ideals:

0OCe;C...Ca,1 C g, (418)

where dim. a; = 1.
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2. A Lie group G is completely solvable if Lie g is.
Then, building on the work of [104], we have:

Theorem 4.1.4 ([82]). Let G be a completely solvable Lie group, then (4.1.7) is a ring
1somorphism.

In particular, this result applies for nilpotent Lie groups. There is interest in extending the
situation of Theorem 4.1.4 to the complex Dolbeault, Bott-Chern and Aeppli cohomologies
(1.1.16), (1.1.17). Results in this direction can be found in [10, 30, 29, 116, 118] . In this
Thesis, the following results will be sufficient for our purposes:

Theorem 4.1.5 ([10]). Let G be a nilpotent Lie group and suppose J is a left-invariant
complex structure satisfying one of the following conditions:

1. (g,J) is a complex Lie algebra
2. gV is abelian.

3. =00 ®R and J(gg) C go for some rational Lie algebra gg.
Then, the Dolbeault cohomology map

Hg’ (g,J) — HE’ (X) (4.1.9)
1S a ring isomorphism.

Theorem 4.1.6 ([10]). Let (M, J) be a complez locally homogenenous manifold and suppose
that:
H*(g) — Hijp(M), HZ*(g,J) — HZ*(X).

Then, also:
HEe (g, J) — Hpe(X).

Remark 4.1.7. Under the hypothesis of Theorem 4.1.6, by the Bott-Chern and Aeppli co-
homology duality (1.1.19), then also the natural map from Chevalley-FEilenberg Aeppli coho-
mology maps isomorphically to Aeppli cohomology of (M, J).

4.1.2 Vector bundles over locally homogeneous manifolds

In this Section we describe a natural class of holomorphic vector bundles that can be con-
sidered on locally homogeneous manifolds. First, we recall that given a compact complex
manifold, isomorphism classes of holomorphic line bundles are classified by H*(X, 0*). This
group fits in the exact sequence:

o — HY(X,Z) — HY(X,0) — HY(X,0*) 2 H*(X,Z) — ... (4.1.10)

The topological type of a holomorphic line bundle £ is determined by ¢;(£) while the space
of holomorphic deformations is given by

~

H'\(X,0) _ HZ'(X)
HY(X,Z)  HYX,Z)’

(4.1.11)
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where on the right hand side we quotient by the set:

{["" € H'(X) | a € H'(X, Z)}. (4.1.12)
Here, we identify a € H'(X,Z) with its de Rham class in H'(X,Z) @ R = H!,(X,R), up
to torsion.

Observe that in the hypothesis of Theorems 4.1.5, 4.1.6, this quotient can be explicitly
computed in terms of Lie algebra cohomologies.

In higher rank, the precise characterization of a holomorphic vector bundle is not avail-
able. However, as the first novel result of this Thesis, we now prove a correspondence for
a specific family of vector bundles over locally homogeneous manifolds using representation
theory and Lie group theory. Our results shall be compared with the analysis of holomorphic
vector bundles over locally homogeneous manifolds in [4, 93].

Definition 4.1.8. Let X = (I'\G, J) be a complez locally homogenenous manifold and let
& — X be a holomorphic vector bundle. We say £ is of homogeneous type if there exists a
global frame {s;} C I'(€) such that:

558]' = Z Akjsk, (4.1.13)
where {Ay;} are induced left-invariant (0, 1)-forxms on G.

The existence of a distinguished global frame in the previous definition implies in par-
ticular that the topological type of a holomorphic bundle £ of homogeneous type is trivial,
that is, it is diffeomorphic to X x C, for r = rk €. In particular ¢ (€) = 0 for k£ < r. The
next Lemma shows we can associate a vector bundle of homogeneous type &, of rank r and
distinguished frame {s;} as in Definition 4.1.8 to any representation of g!.

Lemma 4.1.9. Let £, = (X xC, ggp) be the vector bundle with Dolbeault operator associated
to the representation:

p:g”t — gl(r,C) (4.1.14)
by declaring that:
ix010g,e; = p(X*)(e;), (4.1.15)

for the canonical basis {e;} C C". Then, £, is holomorphic. Conversely, given a holomorphic
vector bundle £ of homogeneous type, we obtain an associated representation p.

Proof. Given a basis {X;} of g'? and dual basis {w;}:



Therefore:

(X, X5 ) p(X;)], Vi, j
& Al Al = fwky Y Ak i,
7
& g =0.
The converse is obvious defining p by (4.1.15). O

The rest of this Section studies the relation between vector bundles of homogeneous type
and their representations. Firstly, we obtain the following result, whose proof is straightfor-
ward from the construction above and Definition 4.1.8.

Proposition 4.1.10. Let X be a homogeneous complexr manifold. Then the map:

p—E, (4.1.16)

induces a surjective map between the set of gl(r, C)-representations of g% up to conjugation

and isomorphism classes of holomorphic vectors bundles of homogeneous type of rank r.

Example 4.1.11. The map p — &, above is in general not injective, as the following Ex-
ample shows. Let X = C/Z(1,i), and consider 1-dim. representations:

p:C —sgl(1,C) ~C, (4.1.17)
We denote A = p(1). Then,
d:O0x — &, (4.1.18)
if and only if
0% + AD =0, (4.1.19)

where ® has been identified with a complex function in the smooth global trivializations of
the bundles given by the constant section 1. Ezxpanding in Fourier modes in X :

o = Z( Crme™ M ETE) gz =2) (4.1.20)
2

(n,m)e
we rewrite the PDE (4.1.19) above as a Z*-indexed set of algebraic equations:
Com(min —mm + A) =0, (n,m) € Z°. (4.1.21)

Then, a non-trivial solution to (4.1.19) exists if and only if A € wZ(1,1). Hence, the fibre of
the map 4.1.16 at Ox is canonically identified with H'(X,Z) (compare with (4.1.11)).

Now, we extract some consequences of Proposition 4.1.10. These aim at understand-
ing the homogeneous locus of the moduli of poystable bundles over homogeneous complex
manifolds. We will need first a technical Lemma.
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Lemma 4.1.12. Let G be a Lie group and assume g is unimodular. Moreover, assume G
admits a discrete, cocompact subgroup I' C G, and let A be a fundamental domain for T.
Let:

f:G—C"
be a I'-invariant smooth function. Then,
1
0 . n 0 _ *
f7:G—C" fx)= wol(B) /A(Kgf)(x)dvolg,

for dvolg a bi-invariant measure, is constant.

Proof. First, observe that indeed there exists a bi-invariant measure dvolg: extend a linear
volume form on g to G by left-invariance. Then, unimodularity implies that it is moreover
adjoint-invariant, and this is equivalent to bi-invariance. Now, we check that f°(h-z) = f°(x)
for any h,z € G. For this, first observe that since I' is a lattice with compact quotient, a
fundamental domain A for I' has finite volume with respect to dvolg. Then, we compute:

vol(&)£°(h ) = [ ()0 2ydvolals
~ [ G N@) 0 dvole) s
A-h
:/ (E;,f)(x)dvolg|A.h,
A-h

using the change of variable theorem applied to r, : A — A - h and integration variables
g € A, g € A-h. Moreover, because of the finite volume of A and the fact that f is
continuous, the above functions are indeed integrable. To complete the above computation,
we introduce the measurable subsets:

U, =(n{"A-RNA, ~el.
which satisfy:
L. A-h:LL(eny-U%

2. Ly, =A.
To sde 1, first observe that {v-A},er cover G by definition of A, hence {~- U, },er cover
A - h. Moreover, they do not overlap as neither do { - A},er. For 2, by definition of A, for
any € G, there are unique v € I' and § € A such that x = v(z) - §(z). Applying this to
xh™L:
zh™ =y(zh™") - 6(xzh™") = x = v6h € U,-1.

Therefore, property 2 above follows considering x € A. Hence, finally:
b z) = / (€ ) () dvolg|
Ah

— Z'yGF U, (€; f)(x)dvolgl|,.u,
=> er va (gikygf)(x) (gfdeOIG)’Uy

_ / “f)(z)dvolg = f°(x),
A
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where in the last line we have used crucially that f is I'-invariant. O]

Now, we prove the main result of this Section. Here, following standard representation
theory, a representation p : g%' — gl(r, C) is simple if it has no non-trivial subrepresentations,
and it is semisimple if for any subrepresentation V' C C” there exists a complementary
subrepresentation W C C", that is, such that V& W = C".

Proposition 4.1.13. Let X = (I'\G, J), and assume g is unimodular. Moreover, let € — X
be of homogeneous type with associated representation p, as given by (4.1.15), and let o be a
Gauduchon class on X. If € is o-slope polystable (resp. stable), then p is semisimple (resp.
simple).

Proof. We prove the polystable case. The stable case is then a formal consequence. First,
observe that ¢;(€) = 0, since it is of homogeneous type. Now, assume £ is o-polystable.

Then, given a coherent subsheaf F C &, either pu(F) < 0or u(F)=0and EZ FHE/F.

If V C C" is a subrepresentation of p, then there is an associated holomorphic vector
bundle V C &, since it is preserved by d¢. It is clear that V and £/V are of homogeneous type,
with Dolbeault operator given by restricting p to V', and inducing a quotient representation
pmod V on C"/V respectively. Moreover, let W be a linear complement of V' and associated
(smooth) vector bundle WW. Then, by polystability of £ and given that ¢;(V) = ¢;(€) = 0,
there exists a biholomorphic bundle map:

O E—VBE), (4.1.22)

where ® has a matrix expression in terms of the smooth splitting £ =V & W given by:

Id Py
P = 4.1.23
( 0 7Tg/y o (I)‘W ) ( ( )

To obtain the result, we argue that ® can be chosen with constant coefficients with respect
to a distinguished basis, hence ®1(€/V) is a holomorphic subbundle of £ of homogeneous
type, corresponding to a complementary subrepresentation of V.

We prove this claim by choosing basis {v;} and {w;} of V,W C C" corresponding to
distinguished frames of V, W. Hence {[w;]} is a frame for £/V. Then we can write explicitly
Dolbeault operators in such frames as:

s =0+ ( AO” ﬁ;z ) (4.1.24)
vaey =0+ ( AO” A022 ) (4.1.25)
Then, the condition
Ovasyo® =00 (4.1.26)
of being biholomorphic translates to the PDE system on X:
0Py — Ay + Ay Py — P1pAy = 0. (4.1.27)
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We now consider the pullback of this equation to GG, and observe that since J is left-
invariant, and so are Agj, if @15 solves (4.1.27), so does the translation £;®;5. Hence, the
following average is a solution to (4.1.27) too:

1

0y = ———
12 fA dVOlG

/ gzq)leVOlg, (4128)
A
where A is a fundamental domain for I' C G, and dvolg is a bi-invariant measure on G,

whose existence follows from unimodularity of g. Finally, by Lemma 4.1.12, ®9, has constant
coefficients. n

Corollary 4.1.14. Let X = (I'\G, J) homogeneous with g unimodular and assume g*' is
solvable. Let € — X of homogeneous type (see Definition 4.1.8) and polystable with respect
to some Gauduchon class. Then: € =Ly @ ---® L,, for L; line bundle of homogeneous type
for each 1.

Proof. Since & is polystable, by Proposition 4.1.13 the representation p is semisimple. By
Lie’s Theorem on solvable representations, we can choose a dim. 1 subrepresentation L
corresponding to a line bundle of homogeneous type £; such that & = & @ L, with &£ of
homogeneous type. Then, applying inductively this argument, the result follows. O

The following result give sufficient conditions under which the hypothesis of the above
Corollary 4.1.14 hold.

Proposition 4.1.15. 1. Let (g,J) be a solvable Lie algebra endowed with a left-invariant
complex structure. Then g*' is solvable.

2. If g 1s a nilpotent Lie algebra, then it is unimodular.

In particular, Corollary 4.1.14 holds if Lie G is nilpotent.

Proof. Let g = g and inductively define gi**1) as the vector space generated by [g*), g(®].
By induction, we claim that:

(g"H® c g™ & C. (4.1.29)
Indeed, for (k) = 0, this is trivial, and assuming this holds for k € N:
[(6”)™®, (g"H)®™] € [(9)™, (8c)™] C [oay: 8™ @ C C gV & C,

therefore (gO!) +1) ¢ g*+1) @ C and the claim follows. By assumption g is solvable, so
g™ = {0} for some N >> 0. Therefore (g"")™) = {0}, hence the first item follows. For
the second item, see e.g. the Corollary to [103, Proposition 25]. ]

We finish this Section with some results that will be useful in the sequel. The first of
these, which holds for any compact complex manifold, allows to consider holomorphic line
bundles endowed with hermitian metrics directly from their Chern curvature forms:
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Lemma 4.1.16. Let X be a compact complex manifold and let F' € Q;l be a closed, purely
imaginary form such that the cohomology class:

[LF] €im (H*(X,Z) — H*(X,R)) (4.1.30)
Then, there exists a holomorphic line bundle L and a hermitian Xnetric h on L such that the
curvature of the Chern connection Fy, = F.
Proof. By general theory (see e.g. [136]), under the integrality hypothesis (4.1.30), to the

cohomology class [5-F] corresponds a smooth line bundle Lo such that ¢;(Ly) = [5- F]. Let
Vo be an arbitrary connection on Ly. By considering the space of connections V + a, for

a € QY(X,C), the curvature:
Fvo+a = FVo + da (4131)

can be taken to agree with F'. Let V = Vy + a such that Fy = F. Then, in particular
(Lo, V1) is a holomorphic line bundle. We consider the family of holomorphic line bundles
Lo = (Lo, VO + @), where a € ng satisfying 0o = 0, and let h be an arbitrary hermitian
metric on Ly. We denote D" the Chern connection of A on L,. Observe that:

D" =V + 3, (4.1.32)

where (€ Q;O, and comparing the curvatures:

Fpno = Fo + dB, (4.1.

w

3)
we obtain that d8 € iQ" (X, R), in particular 93 = 0. It follows that we can choose a = 18,
and L = L, with this choice. Then:

Fpha = Fpro +d(a —@) = Fy +d(a — @) +df = F, (4.1.34)
where in the last step we observe that da = %dﬁ = —%dﬁ, as df is pure imaginary. O

The next result holds for complex locally homogenenous manifolds. Let X = (I'\G, J)
be complex homogeneous. Then, T*°X admits a global smooth frame given left-invariant
sections induced by elements in g'¥. Therefore, we can consider holomorphic structures on
the smooth tangent bundle T%° of homogeneous type, as in Definition 4.1.8.

Lemma 4.1.17. Let X = (T'\G, J) be a complex locally homogenenous manifold, and assume
Lie g is solvable and unimodular. Let €& = (T'Y 0¢) be a holomorphic vector bundle of
homogeneous type on X with distinguished global frame inducing a bundle diffeomorphism:

s:&E— X xC" (4.1.35)

forn =dim. X. Let b € Hgal’nfl(X, R) be a balanced class admitting an invariant metric
w € QM(X,R) such that [w" '] = b. Moreover, assume & is b-polystable. Then, there exists
a hermitian matriz h € M,,»,,(C) such that:

Fopn Aw™ 1 =0, (4.1.36)

where s*h is the hermitian metric on £ obtained pulling back by (4.1.35) the constant her-
matian metric induced by h on X x C".
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Proof. Under the hypothesis, Corollary 4.1.14 implies that &€ = £, & --- & L,,, where L;
are holomorphic line bundles of homogeneous type. Moreover, the change of frame from s
to the distinguished split frame (s1,...,s,) of L1 & --- @& L,, is given by a constant gauge
transformation g : s — (s;). In the new frame:

(S1yecsSn) : L1B - B L, — X xC" (4.1.37)

the standard hermitian hermitian matrix hg = id,, pulls back to a split hermitian metric
(5;)*ho. As the Dolbeault operator d¢ is also split, so is the Chern connection D)% and
the Chern curvature is written as:

Iy 0
Flsiyno = ( (4.1.38)
0 F,

Setting h = g*hg, since g is holomorphic, we have that:
Fop, =9 " 0 Flsyny ©9- (4.1.39)
Therefore, it is enough to prove:
FiAw"t =0. (4.1.40)

Given that O is of homogeneous type and hy is constant in the distinguished frame (s;),
it follows that F; € Qigl is induced by an invariant form on G. Since w is also invariant by
hypothesis, there exists a constant \; such that:

FiAw™™! = \w", (4.1.41)

and upon integration over X, we obtain that \; = 0 if and only if deg, £; = 0. Finally, indeed
the degree of £; vanishes as a consequence of polystability of £ and ¢;(£) = ¢1(X x C") =
0. O

4.2 Invariant solutions to the Hull-Strominger system

Here, we use the results on holomorphic vector bundles of homogeneous type obtained in
Section 4.1.2 to look for solutions to the Hull-Strominger system with the instanton con-
dition (3.1.12) on complex locally homogenenous manifolds systematically. Our solutions
will be obtained using an invariant ansatz, that is, where hermitian metrics, connection and
curvature components with respect to a distinguished frame are induced by invariant forms
on Lie groups. In this analysis, we recover solutions already constructed in the literature
using the instanton ansatz (3.1.12), but moreover, we construct new solutions by a careful
determination of balanced classes and instantons.
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4.2.1 Solutions on the Iwasawa manifold

The Iwasawa manifold X = I'\H is a complex nilmanifold given by the quotient of the
complex Heisenberg Lie group H = H3(C), given by:

1 Z9 23
0 0 1

by the lattice T' C H of matrices with en¢ries in Gaussian integers Z[i]. We briefly describe its
geometry: the 6-dimensional real Lie algebra underlying Lie H is bs, that is, Lie H = (bs, Jp),
according to the classification in [132]. X is a holomorphic torus fibration given by the
submersion to the standard complex torus:

p: X = T =Z[2\C?, [(21, 20, 23)] = [(21, 22)]. (4.2.2)
The 1-forms w; € on given by:
wy =dz , wy=dzy , wy=dz3— 2odz; (4.2.3)
are [-invariant and descend to X, defining a global frame of 77 satisfying:
dwi =dws =0 |, dws = wia. (4.2.4)
The Iwasawa manifold admits an SU(3) structure defined by:
Qo =wizz , wo = 2(wyT + wyg + wag). (4.2.5)

A straightforward computation using (4.2.4) shows that wy is a balanced hermitian metric
and €2 is a holomorphic volume form.

Now we introduce line bundles over X that will play the role of the gauge bundle in our
solutions to the Hull-Strominger system. For this, we first check that the vector space:

(lwit), [wiz)s [warls [wezl)c (4.2.6)

is the subspace of H25(X,C) of classes admitting representatives of bidegree (1,1), where
we use that the de Rham Lie cohomology computes the de Rham cohomology of X (see
Theorem 4.1.4) Then, for any choice of:

(m,n.p,q) € Z*\{0} (4.2.7)
we consider the following purely imaginary (1,1)-form on the base T:
F = m(m(wiy — wag) + nlwig + wyr) + ip(wiz — war) + qlwir + wy)). (4.2.8)

Note that iF has integral periods and hence, by Lemma 4.1.16, this is the curvature
form of the Chern connection of a holomorphic hermitian line bundle (Ly,h) — T*, where
N = (m,n,p,q). In the sequel, we will identify (Ly,h) and F' = F}, with their corresponding
pull-backs to X via p.
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By the Donaldson-Uhlenbeck-Yau theorem (see Theorem 1.3.6), solutions to the Hull-
Strominger system (3.1.11) with the instanton condition (3.1.12) involve, in particular, con-
nections V on T such that (7T1° V%) is a holomorphic vector bundle that is polystable
with respect to the balanced class of the solution. To produce these connections within the
invariant ansatz of this Section, we demand that (7T%°, V%) is also of homogeneous type
(see Definition 4.1.8).

For this, we fix a balanced class o € Hé’é(X ,R) admitting an invariant metric w such
that w? € 0. By Theorem 4.1.5, 0 admits an invariant representative. Therefore, given o, it
is enough to check if there is a positive (2,2)-form among its invariant representatives. For
such a class, we obtain the following result:

Lemma 4.2.1. Assume o € Hé’é(X, R) admits an invariant balanced metric w, and let
E = (T, V%) be a o-polystable bundle of homogeneous type. Then, any hermitian metric
h on & satisfying the Hermite-Finstein equation:

FyAw"™ =0 (4.2.9)
is flat.

Proof. Since (bs, Jy)*! satisfies the hypothesis of Corollary 4.1.14 of solvability and unimod-
ularity, assuming (7% V%1) is o-polystable implies that it splits as a sum of line bundles
Vit @ V@ & V2, such that Vj are of homogeneous type, hence we may write their Dolbeault
operator as:

Dyg = 0+ a (4.2.10)

with respect to its distinguished frame. Here a; € Qggl are invariant forms satisfying da; = 0.
Using (4.2.4), this implies a; € (wy,ws)c. Now, consider the hermitian metric hy on &
satisfying:

Fpy Aw™ 1 =0 (4.2.11)

given by Lemma 4.1.17. Since hy is also split with respect to the splitting V' & VZ @V, we
may write hg = (h)i=123. Then:

Fyy = Oa; — Oa; =0, (4.2.12)

as a simple consequence of the structure equations (4.2.4). Then, Fj, = 0. Since the solution
to the Hermite-Einstein equation is unique up to holomorphic gauge transformation, the
result follows. O

Remark 4.2.2. As X is a complez-parallelizable manifold, that is, the holomorphic tangent
bundle T'? = O3, the Chern connection of any invariant hermitian metric is trivial, in
particular, it is flat. Therefore, the previous result can be regarded as a generalization of this
observation for different holomorphic structures on T,
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We are ready to state the family of solutions to the Hull-Strominger system that we obtain
with this construction. For this, we introduce the following notation for the coefficients of
an invariant hermitian form:

3 :

w =) 18w+ sa(wiz — wor) + 85 (w3 + Wor) (12.13)
+ s6(wiz — war) + is7(wig + war) + ss(wyz — wag) + ise(wWag + wya).

In particular, the constants s; € R.

Proposition 4.2.3. Let Vy be a bundle of homogeneous type, and let Vi = @le Ly, for
tuples N; = (mg,n, pi, ;) € Z*\{0}. Moreover, let w be an invariant hermitian metric on
X. Then:

1. w is balanced, and therefore defines a balanced class o(w) = [||Q0||ww?] € Hpe (X, R).

Let hg be a (flat) hermitian metric on Vy given by Lemma 4.1.17. Let h' be the hermitian
metric on Ly, such that Fy; = F(N;) (see (8.3.6)), and let hy = (h7). Then:

2. (w, ho, hy) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if:

o =

, 4.2.14
7T2Z<m +n?+pl—q’ ( )

15 well-defined and:

deg, Ly, =0 i=1,.. k. (4.2.15)

Proof. The first item is a consequence of the fact (see [1]) that an invariant hermitian metric
on a complex-parallelizable manifold is balanced, combined with €2y being invariant, in par-
ticular [|Q2||, is constant. The conditions on the second item are equivalent to solving the
rest of the equations of (3.1.11): the Hermite-Einstein equation for hy is automatic as hq is
flat. Since A} have invariant Chern curvature F(N;), the Hermite-Einstein equation for h;
is actually equivalent to the cohomological condition (4.2.15). Finally, the straightforward
computations:

dd‘w = 253w 973, (4.2.16)

tr Fho AN Fho = O, (4217)

Fyi A Fyi =2 (m? +nf + p} — ¢ )wiors (4.2.18)

imply that the condition (4.2.14) is equivalent to the Bianchi identity in (3.1.11). O

Remark 4.2.4. Note that, by (4.2.14), the solutions obtained in Proposition 4.2.3 need
a < 0.

Remark 4.2.5. This existence result shall be compared with [25, Section 4.1], where abelian
instantons of the form (8.3.6) are used to solve the Hull-Strominger system, while the family
of balanced classes of solutions in Proposition 4.2.3 and the study of instanton connections
for bundles of homogeneous type in Lemma 4.1.17 are new of this Thesis.
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4.2.2 Further solutions on nilmanifolds
The search for solutions to the Hull-Stromiger system in other complex nilmanifolds emulates

the case of the Iwasawa manifold.

We now turn to the Lie algebra h3. Solutions to the Hull-Strominger system on nilman-
ifolds with this Lie algebra have been found in [46, 105, 132] with V being an instanton or
other ansatze. On b3 there is only one complex structure J~ up to Lie isomorphism that
supports balanced invariant metrics (see, [132]). Let H = Hj be the associated connected,
simply-connected Lie group. The corresponding bundle 77, H has a global frame of invariant
1-forms subject to the structure equations:

dwi; = dws =0, dws = Wy — Wys. (4.2.19)

Note that, unlike the case of the Iwasawa manifold, here w;} is not a holomorphic frame.
Moreover, from (4.2.19), it follows that a linear lattice A C b3 can be chosen such that if
I’ = exp(A), then there is a well-defined holomorphic submersion:

p: X =T\H — T = Z[i]’\C?, (4.2.20)

where a frame for 7" is given by {w,ws}, similarly as in the case of the Iwasawa manifold.
We fix a holomorphic volume form on X given by:

Qo = wias. (4.2.21)
Moreover, we consider the space:

(Jwt + wazl, [wizl, [watl)c (4.2.22)

spanning the classes in H2(X,C) that admit a representative of bidegree (1,1). Now, we
consider the 2-form:

F = m(n(wiz + wor) + ip(wiz — war) + qlwig + wa3))- (4.2.23)
By the same argument as for the Iwasawa manifold, F' is the curvature of the Chern con-

nection of a suitable hermitian metric on a holomorphic line bundle Ly, for N = (n,p, q).

Over X, there exist non-flat instantons V on T as described in [47, 105]. Here, we
classify instanton connections such that & = (T1° V%1) is of homogeneous type. Since
bg’l is abelian, the hypothesis of Corollary 4.1.14 are satisfied, and it is enough to classify
abelian instantons of homogeneous type. Therefore, assume £ = @le V3. With respect to
a distinguished frame of V{, we write:

Dyg = 0+ a;, (4.2.24)

where a; € Qg(’—l is invariant and Oa; = 0. Using Theorem 4.1.5 combined with the fact
that (hs, J) is rational, we can compute Hg’q(X ) via its Lie algebra cohomology. A quick
computation shows:

Hz' (b3, J) = ([wil, [wi], [ws])- (4.2.25)
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Therefore a; is any invariant (0, 1)-form, and we write:

a=>3 j<a§fwj. (4.2.26)

Let h{ be the standard hermitian structure in\V; with respect to its distinguished frame.
Then, using (4.2.19):

Fy = Fy = 0a; — da; = —(a® + a¥) (w1 — wag)- (4.2.27)

Here again assuming a balanced class o € H?B’é(X ,R) that admits an invariant hermitian
metric w, the Hermite-Einstein equation:

FiAw?=0 (4.2.28)

is solved if and only if deg,Vy = 0, which is obvious since ¢;(Vy) = 0. Hence (4.2.27)
describes, up to isomorphism, the curvature of all abelian instantons on line bundles of
homogeneous type, and by Corollary 4.1.14 on bundles of homogeneous type and higher
rank, it is enough to consider instantons that are isomorphic to split sums of these ones.

Remark 4.2.6. With the aid of a mathematical software, one can check that if W' is any
invariant hermitian metric on X, then V(W) the Bismut connection of W' satisfies:

Fysy Aw? =0, FZZ . =0. (4.2.29)

(@)

Therefore, this connections on T fall inside the family of split sums of instantons just
described.

We give now our existence result for solutions to the Hull-Strominger system on X:

Proposition 4.2.7. Let Vy be a bundle of homogeneous type, and let V; = @5:1 Ly, for
tuples N; = (ni, pi, qi) € Z*\{0}. Moreover, let w be an invariant hermitian metric on X.
We parametrize w as in (4.2.13). Then:

1. w defines a balanced class o(w) = [||Qo|ww?] € Hye( X, R) if and only if:
(51 — 89)83 — 55 — 52 + 55 + 55 = 0. (4.2.30)
Let hi, be the hermitian metric on V§ of (4.2.27), and let hg = (h)). Let h' be the hermitian
metric on Ly, such that Fy; = F(N;), and let hy = (h}). Then:

2. (w, ho, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.30) holds and:

283
o = s
43°% | Re(aj)? — w23 02 + p? — ¢?

(4.2.31)

is well-defined and:

degg(w)LNi =0 = 1, ey k. (4232)
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Proof. The first item is a consequence of the computation:
dw? = —=2(s§ + 57 — 53 + 55+ (=51 + 52)53) (Wi2313 + Wiz733) (4.2.33)

combined with €y being invariant, in particular ||Ql|, is constant. The conditions on the
second item are equivalent to solving the rest of the equations of (3.1.11): the Hermite-
Einstein equation for hg is automatic, using ¢;(Vyj) = 0 and the fact that F; and w are
invariant forms. Since h! also have invariant Chern curvature F'(N;), the Hermite-Einstein
equation for hy is actually equivalent to the cohomological condition (4.2.46). Finally, the
straightforward computations:

dd‘w = 453w 973, (4.2.34)

F; A F; = 8Re(a;)*w;o13, (4.2.35)

F(N) A F(N) = 27302 + p? — onam (4.2.36)

imply that the condition (4.2.45) is equivalent to the Bianchi identity in (3.1.11). O

Remark 4.2.8. We note that here, unlike the case of the Iwasawa manifold, it is clear from
(4.2.45) that there are solutions in Proposition 4.2.7 with coupling parameter a > 0.

Remark 4.2.9. The solutions above can be modified to recover those of [47, Theorem 5.1.b),
5.2.b)] with V", V}; and A as particular cases of the instantons of (4.2.27), and setting
w = wo, and similarly with the solutions in [105, Proposition 3.2]. Finally, the solutions in
[182, Theorem 5.3] using the instantons VZ(w) also fall into Proposition 4.2.7 with w = &'
in Remark 4.2.6.

By now, we have discussed the existence of solutions to the Hull-Strominger system with
an invariant ansatz on two particular nilmanifolds. The reader can see that in both Examples
the discussion about the different aspects of the discussion runs parallel, and this is the case
for the rest of our solutions on nilmanifolds. Therefore, here we summarize the information
for the solutions in the rest of Examples. These are based on the nilmanifolds described
in [47, Sections 6-8]. Here, we approach systematically the problem of finding solutions
to the Hull-Strominger system with the invariant ansatz of the previous Examples. In the
following table we give first the structure equations in a global invariant frame, as in (4.2.4),
(4.2.19). Then, we write the most general invariant form representing the curvature of a line
bundle, like in the previous Examples in (4.2.8), (4.2.23), and then we give the curvature
of abelian instantons of homogeneous type with respect to an arbitrary invariant balanced
metric, as the flat instantons in the Iwasawa manifold of Lemma 4.2.1 and (4.2.27) for 3. For
completeness, we also include the computation of the relevant cohomology groups Hg’l(X )
and the subspace £ C H2p(X,R) of classes admitting a representative of bidegree (1,1),
which can be computed via the analogous Lie algebra cohomologies.
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Lie algebra [ b2,b.bs (0E€Q) | b | b
. . o . dw1 = O,
Structure equations ZZI B S}’ :l_w; _—E;)w s Zil B S}’ dw_2 ;,07 dwy = w3 + w3,
3 = Wi2 T Wi 12 — Wo3 3 = Wi2 o1 dws = i(wys — Wap)
F basis [iwi1], [iwaz], [wiz — watl, [iws1], [iwss], w1z — watl, [iwy]
[i(wi3 + wat)] [i(wig + war)], [wog — wap]
0,1 .
Hp'(X) basis [wi], ws] [wr], ws] [wi], [ws]
N:(m7n7p7Q>7 N:(m7n7p7q7,r)7
Curvature of gauge | FI(N) = w(m(w;1 — weg)+ F(N)=m(m(wg —wyg)+ | N =m,
line bundles n(wig+wor) Fip(wig —war) + | n(wizt+wyr) +ip(wiz—wyr)+ | F(N) = mmw g
q(wiT + wy3) (w11 +wsz) 17 (Woz — ws3))
Curvature of abelian
instantons of F,=0 F,=0 F; = Re(a;)i(wig—wst)
homogeneous type

With this data, we now state our existence results, whose proofs are completely analogous
to those of Propositions 4.2.3, 4.2.7.

For the first of these Examples, let X =

(I'\H, J), where Lie H = by, h, or b5, depending

on the parameter b € Q, corresponding to the structure equations:

dw1 = O, dWQ

= O, dCL)3 = Wig + Wit + bw1§ —

(4.2.37)

Explicitly (see [47, Section 6]), b for b? < 1, b, for b*> = 1 and b for b> > 1. Note, however,
that the latter (b5, J) is not isomorphic to the complex structure of the Iwasawa manifold.
Then, according to the second column of the table above, we have the following result:

Proposition 4.2.10. Let X =
be a direct sum of line bundles of homogeneous type, and Vi

(mi, Ny, Piy Qi)

parametrize w as in (4.2.13).

1. w defines a balanced class o(w) =

Let hY be the hermitian metric on Vg with curvature F;, and let hy = (h}).
hermitian metric on Ly, such that Fy: = F(N;), and let hy =

(s1— 82)83 — sg —

(I\H, J), where Lie H = by, b, or bs, and let Vy =

€ Z"\{0}. Moreover, let w be an invariant hermitian metric on X. We
Then:

2, .2, 2
Sz + sg + S5 + b(s355 — S6Ss — S759) = 0

b(SgS4 + S7Sg — 8639)

(h).

D Vi

[1190]|uw?] € HpZ (X, R) if and only if:

(4.2.38)

= 0. (4.2.39)

Let hi be the
Then:

2. (w, ho, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.38), (4.2.39) hold and:

a =

1s well-defined and:

6+b2 83
WZ(n +n?+p?—q

degg W)LN =0 =

7

(4.2.40)

(4.2.41)




Now, we consider the next column in the table above. Then:

Proposition 4.2.11. Let X = T'\H for Lie H = bg, and let Vo = @l L Vi be a sum of line
bundles of homogeneous type, and Vi = @i:l Ly, for tuples N; = (my,n;, pi, qi,73) € Z5\{0}.
Moreover, let w be an invariant hermitian metric on X. We parametrize w as in (4.2.13).
Then:

1. w defines a balanced class o(w) = [||Qo]|ww?] € Hye (X, R) if and only if:

S$3S84 — SgSg9 + S7Sg — 0 (4242)

$385 — SgSg — S7S9 = 0. (4.2.43)

Let hi be the hermitian metric on V§ with curvature F;, and let hg = (h). Let hi be the
hermitian metric on Ly, such that Fy; = F(N;), and let hy = (h}). Then:

2. (w, ho, h1) is a solution to the Hull-Strominger system (3.1.11) with the instanton con-
dition (3.1.12) if and only if (4.2.42), (4.2.43) hold,

r, =0, 1=1,..,k, (4.2.44)
and moreover:

a =

, 4.9.45
WQZCH +n?+pP—q’ ( )

1s well-defined and:

deg,Ln, =0 i=1,...k. (4.2.46)

Remark 4.2.12. The solution to the Hull-Strominger system of Propositions 4.2.10, 4.2.11
require o < 0, as the only instanton connections on T are flat and therefore the same
rigidity result as in the Iwasawa manifold applies (see Remark 4.2.4). However, if one does

not require that V is an instanton, then solutions with o > 0 ezist, and are described in [47,
Theorem 6.1].

When X = I'\H for Lie H = by, it is easy to see that there are no solutions to the
Hull-Strominger system such that V is an instanton within our construction. Even more, it
is not possible to solve the Bianchi identity:

dd~ — atr Fypo N\ Fypy +atr Fy,, NFp, =0 (4247)

using an invariant (1,1)-form ~ that is a hermitian metric (see Example 4.3.6). From the
point of view of Generalized Geometry, the Bott-Chern algebroid associated to the solution
(7, ho, hy) of (4.2.47) does not admit an invariant positive structure (see Remark 2.2.14).
Still, there are solutions (see [47, Theorem 8.2(ii)]) if one does not require (3.1.12). In
this solution, however, Corollary 4.1.14 shows that holomorphic 7" is not polystable with
respect to any class admitting an invariant balanced metric.
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4.2.3 Solutions on compact quotients of SL(2,C)

In this Section, we provide invariant solutions to the Hull-Strominger system (3.1.11) on the
compact threefold given by the quotient X = SL(2,Z[i])\SL(2,C). This complex manifold
admits a global frame of T}, induced by left-invariant forms on SL(2,C), which satisfy the
structure equations:

dwl = Wa3, da)g = —Wwi3, da}3 = W19, (4248)

From the above equations, the frame {w;} is holomorphic. Therefore, X is a complex-
parallelizable manifold. Explicitly, this frame is dual to the frame given by left-translation
of the elements in T X = sl(2, C):

X, = ( 2?2 z‘éz ) Xy - ( _?/2 1(/)2 ) Xy — <<é2 _;)/2 >< (4.2.49)

Moreover, we fix the SU(3) structure:

where () is a holomorphic volume form and wy is a balanced metric.

Unlike the nilpotent Examples above, sl(2,C) is a simple Lie algebra. Here, we use its
irreducible representations to produce irreducible holomorphic vector bundles of homoge-
neous type and higher rank. Explicitly, using the notations of Section 4.1.2, the rank r
representations:

pr: 5l(2,C)% — End(C") (4.2.51)

are obtained by conjugating the well-known irreducible representations of s[(2,C). In the
(conjugated) basis of (4.2.48), p, is given by:

1-(r—1) 0 0 0
(,/ 0 2 (r—2) ... 0 0 (
X, oo : : : : D (4.2.52)

1 :
X5 = : (4.2.53)
2 0 0 (r—2)-2 0
0 0 0 0 (r—1)-1
0 0 0 1-(r—1) 0 (
-1 0 0 0 0
0 r—3 0 0 0
- 1 . .
X — = . : 4254
5779 g 0 0 0 0 ( )

o
o
o
o

—
3

\
—_
=

0 0 0 (r—1)-1
0 0 o VI D) 0
1-(r—1) 0 0 0
—/1 7’71 0 2-(r—2) ... 0 0 (

o
o
o

|
~—

=

|
w
S~—
S~—"
o
Y



We will denote by &, the holomorphic vector bundle of homogeneous type given by the rank
r representation above. In particular £; is a holomorphic structure on 7', given by the
conjugated-adjoint representation ps.

Incidentally, by uniqueness of irreducible representations of s[(2, C) in each dimension, the
bundle of homogeneous type (1%, VZ(wy)%?!) is shown to be [w3]-stable, as it is irreducible
and the corresponding Hermite-Einstein equation holds (see [105, Section 4]), hence it is
isomorphic to &.

Now, we show that the bundles &, are well-suited to solve the Hull-Strominger system.
First, we prove the following:

Lemma 4.2.13. Let h(()r) be the hermitian metric on &, induced by the standard hermitian
metric on C". Then, the following hold:

F. o Awj =0, (4.2.55)
0
T T'2—
tr By oy AF, o = mesh 5 2 (w13 + Wists + Waezg). (4.2.56)
0 0

Proof. For the first item, let A, be the Chern connection of hér). Then, observe that by
functoriality of p,:

B = Fppoa

h
- dpr(A2) + pr(A2) N pT(AQ)
= pr(dAs + Ay N Ay)

= pT*Fhéz).
Therefore, it is enough to check that:
Fyo Nwg =0. (4.2.57)

This can be checked directly, by computing first:

~ 4w — w) s = wir — i — )
F<)=( (0 — ) 2 ot 4.2.58
h' %(_Wlﬁ + Wyt — i(Wy3 — iwy3)) Q(Wli — Wo7) ( )
wh = 2(w1o13 + WisTs + Wszs)- (4.2.59)

While w? is straightforward to compute, for F), 2) we have used the formula for the curvature:
0

Fi=dA+ANA (4.2.60)

with respect to a global frame, and the facts that py = id, Ay = A% — (A%1)T with respect
to the standard metric héQ) in C?.

For the second item, using (4.2.58), we first compute:

tr Fyo A Fpe = Wit + Wizt + wags- (4.2.61)
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To conclude, we use repeatedly the identity:
tr(p(M)p, (M)T) = "= Der (M Mt), M e sl(2,C)* (4.2.62)

applied to each matrix M = F, ) (X;,X;), for 1 < 4,5 < 3. Finally, we argue that (4.2.62)
0

r(r2—1)
6

holds by proving that p, is a dilation of factor with respect to the inner products

tr(--1). This follows by checking that {p,(X;)} is an orthogonal basis of im p, and:

(X, X ) = 1, (4.2.63)
. N r(r2—
tr(p,(X3)pr (X)) = "2, (4.2.64)
which the reader can check easily by induction on r. ]

Now, we give the result of existence of solutions to Hull-Strominger on X. These come
in a discrete family parametrized by r.

Proposition 4.2.14. Let Vo = &3, and Vi = &, forr # 3. Then, (wo, h(()3), h(()r)) is a solution
to the Hull-Strominger system (3.1.11) with the instanton condition (3.1.12) if and only if:

- 12
24 —r(r2—1)

a (4.2.65)

Proof. By [1], the invariant metric wy is balanced as X is a complex-parallelizable manifold.
Since Qg is an invariant holomorphic volume form, ||€2||,, is constant. Hence we get:

d([|90|wow) = 0. (4.2.66)

The Hermite-Einstein equation for héQ),hér) follow from Lemma 4.2.13(1). Finally, the
Bianchi identity is equivalent to (4.2.65) by Lemma 4.2.13(2) and:

dd‘wy = 2(“’12@ + w33 + W23ﬁ)- (4.2.67)
O

Remark 4.2.15. The solutions above shall be compared with the family of solutions found
in [45, Section 4]. There, non-flat instantons are produced on the trivial holomorphic bundle
OY" on SL(2,C) by a non-trivial ansatz for the hermitian metric. As this method is not
compatible with taking compact quotients of SL(2,C), here we rather consider the non-trivial

holomorphic structure &, while keeping the standard hermitian metric hér).

Remark 4.2.16. With respect to the solutions found in [105], here we recover the one com-
patible with the instanton condition (3.1.12) (see [105, Theorem 4.3(i.2)]), as (T*°, V5 (w)®1)
&, as discussed above.

Our solutions in Proposition 4.2.14 include the cases a > 0 for r < 3 and a < 0 for r > 3.
Moreover, with independence of the sign of «, the instantons A, for r > 3 above are, to the
knowledge of the author, new in the literature.
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4.2.4 Solutions on complex solvmanifolds

Here, we address the systematic approach to finding solutions to the Hull-Strominger system
on solvmanifolds with the invariant ansatz used in the previous Sections.

The complex manifolds we examine are given by quotients X = I'\G, where G is a
solvable real Lie group of even dimension, and I' C G is a discrete subgroup yielding a
compact quotient. To support solutions to the Hull-Strominger system, X must admit in
particular a holomorphic volume form and a balanced metric. Here, we use the classification
results on solvable, unimodular Lie algebras admitting a (left)-invariant Calabi-Yau structure
and special metrics in real dimension 6 in [51], see in particular Theorem 4.5. Moreover,
the existence of lattices on the corresponding connected, simply-connected Lie groups is
also guaranteed (see [51, Proposition 2.10]). Hence, we obtain explicit complex Calabi-Yau
solvmanifolds supporting balanced metrics. These Examples are denoted by the underlying
real Lie algebra as: (g1, J), (gh,Ji) for parameter value 8 € [0, %), (93, Jz) (for z > 0),
(g5, J), (g7, J+), and (gs, J4) for A € C\R. While we have carried a systematic case-by-case
examination of the previous solvmanifolds, here we report on the ones on which we find
solutions to the Hull-Strominger system. These are g3 and gs.

We describe the invariant geometry of the solvmanifold X = (P\G, J), with Lie G = g5
by the global frame {w;} of T}, satisfying the structure equations:
dw1 = z'w1 VAN (u}3 + uﬁg) dw2 = —iu}2 A (wg + (Ug) dwg = 0. (4268)

Moreover, the invariant form {2y = w93 is a holomorphic volume form, and the family of
hermitian metrics:

W = 151w + 1SoWq3 + 1S3wsz, S5 >0 (4.2.69)
is in fact Kahler. It is easy to check that this is the most general invariant Kahler metric on
X.

There is a one-parameter family of homogeneous line bundles of homogeneous type L,,
given by the Dolbeault operator:

511@ = 5—}- awsg, a &€ C, (4270)

with respect to a distinguished frame. We apply Corollary 4.1.14 to deduce that holomorphic
structures on T of homogeneous type that are poystable with respect to a class admitting
an invariant balanced metric must be of the form Vy = @&?_, L,,, and hy the hermitian metric
on Vp induced by the standard metric on C®. Then, using (4.2.68), it is immediate to check
that hg is flat.

The most general invariant form F' € Qb that is d-closed and purely imaginary on X is
given by:

F = (mwi7 + nwys + pusz),  (m,n,p) € R, (4.2.71)

If the cohomology class [F] has integral periods, then by Lemma 4.1.16, it is the curvature
of the Chern connection on some hermitian line bundle. We now state the existence result
in this manifold. With the above ansatz, solutions are necessarily Kahler and flat:
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Proposition 4.2.17. Let Vi and hy be as above. Assume [F(N;)] given by (4.2.71) with
N; = (my,ng,p;) € R3 fori =1,...,r have integral periods, and let (L;, h%) be the holomorphic
line bundle and hermitian metric with Chern curvature F(N;), and Vi = &'_,L;, hy = (h%).
Moreover, let w be an invariant hermitian metric on X. Then, parametrizing w as in (4.2.13),
(w, ho, h1) is a solution to the Hull-Strominger system if and only if w is Kdhler and hgy, hq
are flat.

Proof. Let w be an arbitrary invariant hermitian metric, and F'(N;) given by (4.2.71). Then,
the terms in the Bianchi identity of the Hull-Strominger system are given by:

dd‘w = 8i(s4 + 1S5)wyg93 — Si(S4 — 1S5)WasTs, (4.2.72)
tr Fhy A Fiy = 0, (4.2.73)
tr By, A Fpy = — > miniw ot + mupiws1s + NiPiWasas. (4.2.74)

By inspection on the above computations, it is clear that for any solution to the Bianchi
identity, w must be pluriclosed, and two out of the three m;, n;, p; must vanish for each i.
Now, since |||, is a constant, the conformally balanced equation:

d(]|Qolluw?) = 0 (4.2.75)

implies that w is balanced. Since it is also pluriclosed, it must be Kahler, hence it is given
by (4.2.69). Then, the degree condition imposed by the Hermite-Einstein equations:

Fy Aw? =0 (4.2.76)

immediately implies that the remaining parameters in /V; must vanish, and the result follows.
m

Remark 4.2.18. The general rigidity result by which solutions to the Hull-Strominger system
(w, ho, hy) with hy flat and o > 0 must have w Kdhler and hy flat (see [24]) holds here with
reversed sign o < 0 in the presence of non-flat hy and invariant ansatz. It is an interesting
open question if one can find any non-Kahler solutions on this manifold.

We now turn to the solvmanifold X with underlying real Lie algebra g7, where non-Kahler
solutions are already known in the literature [105, Section 5]. The structure equations are
given with respect to an invariant frame {w;} of 17, by:

dwy =iwy A (ws +w3) dwy = —iws A (ws +w3) dws = £(w17 — wag), (4.2.77)

where the choice of 4 corresponds to the complex structure considered Jy. The complex
manifolds Xy = (I'\G, J.) with Lie G = g7 are Calabi-Yau with the invariant holomor-
phic volume form €y = wis3. Moreover, since g7 is unimodular and solvable, Corollary
4.1.14 applies. Hence, to look for instantons on bundles of homogeneous type to solve the
Hull-Strominger system, we may restrict to the abelian case. The Dolbeault operator of
homogeneous line bundles L are given, with respect to the distinguished frame, by:

J;, = 0 + aws. (4.2.78)
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Let Vo = @3_,L;. Using (4.2.77), we obtain the curvature of the Chern connection on V;
with respect to the standard hermitian metric hy:

Re(ay)
th =+ C 2Re(a1) <w11 — w2§). (4279)
2Re(as)

The most general invariant form F € Q! that is d-closed and purely imaginary is given,
up to d-exact terms, by:

For any [F] having integral periods, we denote L, for a holomorphic line bundle with Chern
curvature given by F'(m) as in (4.2.80) with respect to some hermitian metric h,, (see Lemma
4.1.16). Let V; = ®!_,L,,, and let hy = (hy,,). Then, we have the following:

Proposition 4.2.19. Let (Vy, ho), (V1, h1) be as above, and let w be an invariant hermitian
metric parametrized as in (4.2.13). Then, (w,ho, h1) is a solution to the Hull-Strominger
syste with V satisfying (3.1.12) if and only:

w = 151 (wi7 + Waz) + S3weg, S5 > 0, (4.2.81)
and moreover hy s flat, and:
a

- 2fRe(a:)’®
1s well-defined.

Proof. Let w be an arbitrary invariant hermitian metric on X parametrized by (4.2.13).
First, we observe that the Hermite-Einstein equation for L, is given by:

(4.2.82)

F(m;) Aw? = 2m;(s153 — 55 — 82 + 5953 — 53 — 53)Q0 A Qg = 0. (4.2.83)
Given that w is a positive (1, 1)-form, we have that:
wi( X1, X3, X1, X3) = 5153 — 52 — 52 > 0, (4.2.84)
w?( Xy, X3, Xo, X3) = 8953 — 532 — s > 0. (4.2.85)
Therefore, equations (4.2.83) hold if and only if m; = 0 for all i, and h, is flat.

Now, using that ||{2||, is a constant and (4.2.77), the conformally balanced equation of
(3.1.11) is equivalent to the system:

(51 — 89)83 — S5 — 87 + 55 + 55 = 0,
5188 + 487 — 8586 = 0,
85189 — 5486 — S5S7 = 0, (4286)
8986 — S4S89 — S588 = 0,

8987 + §488 — S5S9 = 0.
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Moreover, we compute the terms in the Bianchi identity:

dd‘w = 4s3w1973 + 8i((S4 + 155) w535 — (S4 — 1S5)Wast3), (4.2.87)
tr Fho N th =4 Zz e(a,-)z(wuﬁ), (4288)
tr Fh1 N Fh1 = 0. (4289)

By inspection of the terms appearing above, it is clear that we must have s4 = s5 = 0.
Plugging this in the system (4.2.86), and using that si, s, s3 > 0, we obtain (4.2.81). Finally,
the value of « is also a consequence of the above computations. O

The solutions given by Proposition 4.2.19 coincide essentially with the ones found in [105,
Section 5] that are compatible with the choice of (3.1.12). Here, moreover, we have shown
that restricting to the invariant ansatz given by bundles of homogeneous type, it is unlikely
that this family of solutions can be enlarged.

We finish this Section mentioning that the solutions to the Hull-Strominger system we
have found in all of the preceding Examples give strong evidence for the Conjecture stated
in [105, Introduction] (restricting to hermitian connections) about the existence of invariant
solutions to the Hull-Strominger system. Indeed, if we impose the physically natural condi-
tion o > 0, our solutions are given exactly in the manifolds X with underlying Lie algebra
b3, sl(2,C) and g7.

4.3 A refinement of the existence conjecture by Yau

In this Section, we propose to address a question based on Conjecture 3.2.1. In the refinement
we make, we find it is natural to strenghten the statement of the conjecture by Yau in two
ways. Firstly, Conjecture 3.2.1 does not specify the relation of by with the balanced class of
the solution b = [||Q||,w?]. Hence, it is desirable that a complete answer to Conjecture 3.2.1
has control on the balanced class, producing a solution of the Hull-Strominger with by = b.
Secondly, here, we propose to take V satisfying the Hermite-Einstein equation as in (3.1.11),
both for its physical and geometrical significance (see Section 3.1.1).

Our approach to the existence problem for the Hull-Strominger system, with V satisfying
(3.1.12), lead us to consider holomomorphic vector bundle structures V5 on TH? which are
polystable with respect to the balanced class b. For special choices of V' and Vj, however,
one may find solutions of the Hermite-Einstein equation with special metric properties that
obstruct the existence of solutions to the Bianchi identity when X does not admit Kahler
structures. Some of these choices have to do with twisting V) by a holomorphic line bundle
in the kernel of the natural map:

(c1)BC

Picxy — Hp (X, R) (4.3.1)
This motivates the statement of the following Question:

Question 4.3.1. Let (X,Q) be a compact Calabi-Yau threefold with ker(c1)pc = 0 with
respect to (4.3.1), and endowed with a balanced class b. Let V' be a b-polystable holomorphic
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vector bundle over X satisfying (3.2.3), (3.2.5). Let Vi be a generic b-polystable holomorphic
vector bundle structure on T°. Does (X,Q, V) admit a solution (w, h) of the Hull-Strominger
system (3.1.11) and balanced class [||Q||.w?] = b, such that V is the Chern connection of a
Hermitian-FEinstein metric hg on Vo ?

Remark 4.3.2. Observe that an affirmative answer to Question 4.3.1 provides, in particular,
a solution to Conjecture 3.2.1 with the ansatz (3.1.12) (see the discussion in Section 3.1.1).
It is an open question whether, assuming that the holomorphic tangent bundle T*° of X is
b-polystable, one can reduce Yau’s Conjecture 3.2.1 for V the Chern connection of w, as
proposed in [58], to Question 4.3.1.

To finish this Section, we justify the hypothesis in Question 4.3.1 on homogeneous com-
plex manifolds. Firstly, the condition ker(c;)pc = 0 is motivated by the following result.

Proposition 4.3.3. Let (X,Q) be a compact Calabi-Yau threefold endowed with a balanced
class b. Assume that X does not admit any Kdhler metric. Let L — X be a holomorphic
line bundle on X with vanishing first Chern class ¢;(L) = 0 € Hga(X,R). Let Vj be a
holomorphic bundle structure on TY° which is polystable with respect to b. Then, (X,Q, Vo ®
L) does not admit a solution of the Hull-Strominger system (3.1.11) with balanced class b,
such that V is the Chern connection of a Hermitian-Einstein metric hg on Vj.

Proof. Assume that (w,h,V) is such a solution, for V the Chern connection of hy. Since
c1(L) = 0 in Bott-Chern cohomology, there exists hy be a flat metric on L. Then, hq ® hy
is a Hermite-Einstein metric on Vy ® L, and therefore there exists a holomorphic gauge
transformation taking A to hg ® hy. In particular, since hy, is flat, one has

tth/\Fh:tr Fho/\Fh07 (432)

and therefore dd‘w = 0. From this, w is both conformally balanced and pluriclosed, and
hence it must be Ké&hler (see Theorem 1.1.3), contradicting the hypothesis. O]

In a non-Kéahler manifold X with non-trivial line bundles L such that ¢;(L)gc = 0,
the previous result provides continuous families of pairs (Vp, V') for which there cannot be
solutions of the Hull-Strominger system with the ansatz (3.1.12). In particular, one can
always make the non-generic choice V' = Vj, which obstructs the existence of solutions. For
the sake of concreteness, we discuss an example below, which slightly generalize the previous
situation. It considers the existence problem for the Hull-Strominger system on nilmanifolds,
as in the seminal paper [47].

Example 4.3.4. Let X = (I'\G, J) be a non-Kdahler compact balanced nilmanifold of complex
dimension 3 with left-invariant complex structure J and trivial canonical bundle, as described
in Sections 4.2.1, 4.2.2. The smooth tangent bundle is trivial, and we take the holomorphic
structure on T = X x C? to be a direct sum of holomorphic line bundles

Vo=Lo Lo L] (4.3.3)

with CI(L?)BC = 0, which are straightforward to find given the structure equations of X and
Theorems 4.1.5, 4.1.6. Consider the rank-r holomorphic vector bundle

V=a_Lj, (4.3.4)
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with L; holomorphic line bundles with ¢1(Lj)pc = 0. Then, Vo and V' are both b-polystable
with respect to any balanced class b € Hé’é(X ,R). Furthermore, the Hermite-Finstein met-
rics with respect to any balanced metric are flat. Arguing now as in the proof of Proposition
4.8.3, it follows that, for any given b, (X,Q,V) does not admit a solution of the Hull-
Strominger system (3.1.11) with balanced class b, such that V is the Chern connection of a
Hermitian-FEinstein metric hy on Vj.

One can consider other non-generic choices of holomorphic vector bundles which do not
admit solutions of the equations, as for instance V =V or V=W & W' and Vo = W*a W',
for some choice of polystable bundles W and W’ on X. We consider an interesting explicit
situation in the next example.

Example 4.3.5. Let (X,Q) be the Calabi-Yau compact threefold given by the quotient
X = SL(2,Z[i])\SL(2,C). Recall from Section 4.2.3 that this complex manifold admits
a global frame of Ty, induced by left-invariant forms on SL(2,C), which satisfy the structure
equations:

dw1 = Wa3, dCUQ = —Wwi3, dw;g = W12 (435)

and a holomorphic volume form €0 = wia3. Explicitly, this frame is dual to the frame given
by left-translation of the elements in Ty X = sl(2,C):

(0 Q)2 ([0 12 (20
X1 = ( i/2 0 ) X2 = ((—1/2 0 ) Xy = ( 0 —i/2 )( (4.3.6)
We fiz the balanced class b of the hermitian metric:

Wy = %(Wﬁ + Woz + Ws3). (4.3.7)

Let W be the holomorphic vector bundle on X x C? with Dolbeault operator given by:
3
dw=0+)Y §eX (4.3.8)
i=1

and let V.= W%, The integrability 5‘2,[, = 0 boils down to the fact that we are using the
standard representation of sl(2,C) above for the matriz-valued (0,1)-forms of the operator.
Similarly, let Vi be the holomorphic vector bundle on X x sl(2,C) with Dolbeault operator
induced by the adjoint representation of sl(2,C):

3
Dy =0+ {;0[X:, ] (4.3.9)
=1

By definition, Vy is the associated bundle to the SL(2,C)-principal bundle of frames of W,
via the adjoint representation:

Ad : SL(2,C) — GL(s(2,C)). (4.3.10)

87



In other words, Vo = Endy W, where Endg stands for null-trace endomorphisms. Interest-
ingly, one can prove that Vy is isomorphic to (T'°, (VP)%1) where VB denotes the Bismut
connection of wy (cf. [45]).

Next, we observe that the standard Hermitian metric on C? produces a Hermitian metric
hw on W whose Chern curvature is given by:

_ — % (w3 — wy1) +((wig — wgr) — i(wag — wyg))
FhW o (<_%((w13 - Cd:ﬁ) + z’(w2§ — w3§)) %(wﬁ _ w2T) ) ( (4311)

It is a straightforward computation to check that:
Fhy Awg = 0. (4.3.12)

Therefore, the bundle W 1is b-polystable, and so are Vi and V.

We now consider the Hull-Strominger system (3.1.11) with the ansatz (3.1.12) for the
bundles Vo and V' as above. Suppose (W', ho, h) is a solution with balanced class b (with
V the Chern connection of hy on Vy). Let hw be a Hermitian-Einstein metric on W with
respect to w'. By uniqueness of Hermitian-Einstein metrics, there is a holomorphic gauge
transformation u € Aut(V) such that uh = b, and therefore try F = = dtrw F7 2 Similarly,
the Chern connection of hg is related via a holomorphic gauge tranformation to the connection
Ad DhW, induced by the Chern connection D™ of hy, via the adjoint representation. Then,
we have:

tryy Fy, = tryy (Ad o F ) = dtrw Ff (4.3.13)
where the last step boils down to checking:
tre2,c)(Ad(A)?) = dtre2(A4%), A € sl(2,C). (4.3.14)

Therefore, arguing as in the previous examples, we conclude that w' is Kdhler, reaching a
contradiction since X admats no Kahler metrics.

We finish this section with an example that illustrates a different potential obstruction to
the existence of solutions for non-Kéhler manifolds, related to the positivity of the solutions
of the Bianchi identity. In fact, for this example we are not able to decide whether there
exists a solution of the Hull-Strominger system with the ansatz (3.1.12), and speculate that
it may yield a negative answer to Question 4.3.1

Example 4.3.6. We go back to the situation of Example 4.3.4, for a compact Calabi-Yau
nilmanifold (X, Q) with underlying nilpotent Lie algebra by, considered in [47, Section 8].
This complex manifold admits a global frame of T induced by left-invariant forms, satisfying
the structure equations:

dwy =0, dws = w13+ w3, dws = i(w;z — Wa), (4.3.15)

and such that Q = wie3. The most general d-closed, purely imaginary, (1,1)-form on X
induced by left-invariant forms is given by:

F = m(mwyg + ni(w;g — war)), (4.3.16)
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for m,n € R. For a suitable choice of lattice, one can show that, for any (m,n) € Z2, - F

727

has integral periods and hence, by general theory, this is the curvature form of the Chern
connection of a holomorphic hermitian line bundle (L,h) — X.

We fixz the balanced Hermitian form:

w = 5(wWT + Woz + wa3) (4.3.17)

and consider the associated balanced class b. With the previous notation, one can easily see
that c;(L) - b = 0 when m = 0. Hence, for a choice of integers n; € Z\{0}, j =1,...,r,
with associated line bundles L; as above, the holomorphic vector bundle:

V= @ Ej (4.3.18)

15 polystable with respect to b.

We take a holomorphic structure Vy on T*°, with Dolbeault operator of the form:

3

=A

O X; = KX, (4.3.19)
k=1

where {X;}iz123 ts the dual frame of {w;}iz123, and \; ;i are constant complex functions.
Assuming that Vi is polystable with respect to b, then by Proposition 4.1.13, we have that:

WwelieLye L) (4.3.20)

for LY line bundles with c¢;(L?) = 0.
With this setup, we consider the Hull-Strominger system with coupling constant o € R
and the ansatz (3.1.12), that is, for triples (W', ®3_,hY, ®%_,h;) with W' a hermitian form on
X and ﬁg (resp. hj) a hermitian metric on LY (resp. Lj). Provided that we have a solution,

it 1s clear, in particular, that the Hermaite-Einstein metrics h? with respect to W' are flat.
Assume first that « > 0. Then, by [24] (we will give a different proof in Chapter 8), any
solution must satisfy dw' = 0 and Fﬁj =0, in contradiction with our assumptions. If o =0,
any solution is again Kahler by Theorem 1.1.5.

In the remaining case of a < 0, we assume that our triples (W', @?Zlﬁg, @;Zlﬁj) are such
that W', F, and Fo are invariant (1,1) forms on X. Then, it follows that E,, = Fy, and
J
F;o =0, and hence the Bianchi identity reduces to:
J

ddw' = —a ) F} =—2ar*) ﬁwlm. (4.3.21)
j=1 j=1

One can prove that the general solution of the previous equation is given by:

2 r
am , :
W' = 5 ( E njwsz + s19017 + 82(Wiz — War) + 531wz 4 wor)+ (4.3.22)

j=1
+ 54wz — wyt) + s5i(wyz + wat) + S6(Woz — wag) + S7i(Wsz + wop))  (4.3.23)
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where s; are real constants and hence, since the component in wyy vanishes, it follows that W'
18 necessarily non-positive. This proves that, among the invariant solutions of the Bianchi
identity for this choice of (V,Vy), there are no potential solutions of the Hull-Strominger
system (3.1.11), since the corresponding ' is not a Hermitian metric, as anticipated in
Section 4.2.2.

4.4 Some aspects of the moduli space of solutions for
the Hull-Strominger system

4.4.1 The moduli space

In this Section, we recall the moment map interpretation for the Hull-Strominger system
(we refer to [70] for details) and, reducing to the minimum the technicalities involved in
this construction, we examine through homogeneous Examples the behaviour of the moduli
metric in the locus of solutions with an invariant ansatz. We expect the insights provided
by these explicit situations to carry over to the general picture.

Let X be a compact complex manifold of dimension n, and let P be a smooth principal
K-bundle, where K is a compact Lie group. We assume (Lie K, (-, -)) is quadratic. Moreover,
let Hy € Q3(X,R) and a principal connection A on P satisfy:

dHy — (Fa, A Fu,) =0, (4.4.1)

and let £ = Epp, 4, be the associated string algebroid (see Example 2.1.13). We denote by
L the space of liftings ¢ C E'® C. By Proposition 2.2.8, there is an embedding:

L — Q"(X,R) x Qf x Q'(ad P). (4.4.2)

L carries a natural (pseudo)Kéhler structure (g,J, ). Explicitly, the metric is given by
([70, Equation 5.20]):

865,00, (0 5,0) = = [ (@A Ta) A1l 5+

T, /X (ool + [bo )] €222+

ot (=) [ (A 4 I oL +

2 2
e ([ astonsg) + ([ adions) )(
X X

where we have used the Lefschetz decomposition:
W=y + LAD)w, b=by+ L(AD)w. (4.4.4)

The group of automorphisms of E (see Definition 2.1.12) acts naturally on (£, Q) by
symplectomorphisms (see [70, Section 5.2]). Let:

Lo={leLl|w(J)>0} (4.4.5)

Then, we have the following result:

(4.4.3)
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Proposition 4.4.1 ([70]). There exists a subgroup H(E) C Aut(E) and a Hamiltonian
action of H(E) on (L, Q) with moment map p such that p=*(0) are given by liftings {(w, b, a)
such that:
FaAw'™t=0, F}* =0,
(2™ ) = 0 (1.46)
Hy+ d‘w+ CS(A) — CS(Agp) — d{A N Ag) + db = 0.
where A = Ay + a.

Remark 4.4.2. From the last equation, by derivating and using (4.4.1), we obtain:
ddw + <FA A FA> =0, (4.4.7)

hence we obtain a moment map interpretation of the solutions to (3.1.14) restricted to the
1somorphism class of E, and where moreover we vary the holomorphic structure on the

bundle.

Although many aspects of the global geometry of the moduli space of solutions:
Mus(E) = p=(0)/H(E) (4.4.8)

remain widely open, here we focus on the pointwise behaviour of the moduli metric, for

which we first study the (formal) tangent space TjgMpyg(E). The linearization of (4.4.6) is
given by:

dga Aw" P+ (n—1FaANOAw™? =0,

d(|1Qlu((n = Dw Aw™™? = F(Auw)w" 1)) =0,

040" =0,

A%+ 2(a A Fa) — db = 0.

(4.4.9)

Now, under the technical assumption Condition A (see [70, Section 6.1]) each class in
TiyMus(E) is gauge-fixed by a suitable harmonic representative (w,b,a) € [¢], satisfying,
mMoreover:

d([[ Q] ((n = 10" Aw™™? = J(ALb)w" ™))
daJa AWt —(n—1)Fy AbAw2

N (4.4.10)

The space of solutions of the joint systems (4.4.9), (4.4.10) is complex with respect
to J and inherits the structure (g,J, Q) [70, Theorem 5.18], but the metric g is possibly
degenerate. Given that a solution to the Hull-Strominger system in particular determines
a holomorphic principal bundle (P, d,), Therefore there is a there is a fibration on moduli
space:

Mus(E) 25 HY(X, 0OF), (4.4.11)

where G = K*¢. The fibers of this map are predicted to be Kéhler, that is, the metric above,
when restricted to the vertical space of this map is positive-definite (see the discussion of

91



70, Section 6] and references therein). A vector tangent to a fibre of p at Ty Mgy is of the
g p [
form:

(W, b, —Jdas +dus’) , 5,5 €QadP) (4.4.12)

Then, the following remarkable result express the moduli metric g restricted to the fibres of
p in terms of cohomological data:

Proposition 4.4.3 ([70]). Let:
0= [w—2(s, Fu)] +i[b"' — 2(s', F1)] € HY' (X, C) (4.4.13)
b = (n = /Il (0 + iby") A w2 = FA (@ + b)) 6 Hype " {(X,C),  (4.4.14)
where wy, by stand for the primitive components in:
G =+ L(Auw)w, B = byt + L(ALDMw, (4.4.15)

and consider the dilaton functional:
M= / 19[4 (4.4.16)
X

Moreover, assume Condition A holds, and h°(ad PC,EA) = 0. Then, the moduli metric g
restricted to a fibre F' of the map (4.4.11) is given by:

o ]. 1 . 2 . : ]. . 2 . :
glr = 5 (ZM(Re a-b)>—Rea-Reb+ 2]\4(11][1 a-b)°—Ima-Im b) ( (4.4.17)

where b = ﬁ[HQwa"*l] € Hp " N(X,R) is the balanced class determined by a solution
to the Hull-Strominger system.

Observe that the fibre moduli metric g|p is hermitian with respect to the natural real struc-
ture of the complexified classes (4.4.13),(4.4.14) .

4.4.2 The moduli space metric on locally homogeneous manifolds

In this Section we discuss some features of the moduli space metric. First, we prove the
positivity of the fibre moduli metric g|r in a simplified but non-trivial situation. For this,
let X = (I'\G, J,Q) be a complex locally homogenenous manifold endowed with an invariant
holomorphic volume form, and let Vj, V; be holomorphic line bundles on X. Let (w, hg, h1)
be a solution to the Hull-Strominger system:

F, A\w" 1 =0, i=0,1,
d([|9]|.w" ) =0, (4.4.18)
ddw — OéFhO N Fho + thl VAN Fh1 = O,

for a € R, where we have formally substituted 7%° by Vj, and we assume w and F}, are
invariant forms. Moreover, we consider deformations of V; given by one-parameter families:

Vi=V,®L, teR (4.4.19)
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where Ly = Ox and L; is a line bundle of homogeneous type. We endow L; with the standard
hermitian metric, and therefore:

dye = Dy, + aj, (4.4.20)
at = ol —af, (4.4.21)
F!' = F,, + 0al — dal, (4.4.22)

where af stand for the variations of the connection 1-forms, and af € Q%' are invariant forms
satisfying daf = 0.

Definition 4.4.4. A tuple (w,b, ag, 1) solving the lineralized systems (4.4.9), (4.4.10) on

(X,Q, Vo, V1) is called invariant if w,b € Qﬁgl are invariant forms, and ag, a1 generate a
one-parameter deformation of the form (4.4.19).

Under mild assumptions, it is easy to see that the metric g given by (4.4.3) is positive-
definite restricted to invariant deformations that fix the holomorphic class of V4, Vi. Indeed,
assume the cohomological assumption:

0,1 7701
HY'(X) = HY (g, ), (4.4.23)

then, an infinitesimal invariant deformation of V; that fixes the holomorphic structure is
given by:

at = Os;, (4.4.24)

for some smooth function s; that is invariant, that is, constant. Hence d?’l = 0. Then, using
the invariant assumption, the formula (4.4.3) simplifies to:

g((w,b,0), (&,b,0)) = 3(Jwol* + [bol?)
-50G-"7%) CFAMQ + [ Aueb?) + 1| Ae@]? + | Awobl?)

i (Ao ? + [AugbI)

_ 1
2
= 1(Jw* + |b]*) > 0.

In the next result, we give a conceptual interpretation of the positivity of the moduli
metric in fibres of (4.4.11) in terms of the cohomological formula (4.4.17). One should take
this rather heuristically, as some of the technical conditions involved in the construction of
the moduli space for Hull-Strominger are not satisfied here (see Remark 4.4.6).

Proposition 4.4.5. Assume Hg’l(X) = Hg’l(g, J). Then, the fibre moduli metric g|r given
by (4.4.17) is positive definite restricted to invariant deformations of the system (4.4.9),(4.4.10).

Proof. Let (w, b, ao, a1) be an invariant infinitesimal deformation of the Hull-Strominger sys-
tem. The condition of being tangent to the fibres implies that the isomorphism classes of V;
are fixed. Therefore:

' = &; = s, (4.4.25)

)
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where s; € Q°(End V;) 2 C¥. Using the assumption, we can choose s; to be invariant, that
is, constant, hence a; = 0. Therefore, without loss of generality, we may choose sy = s; =0,
so that the complexified variations of the cohomological classes read:

a = [+ ib], (4.4.26)

and:

(n—1)!

b= gty (219 (Ao + iB) + (0 = DI A )

—1 n—1 . -7
e x e TR Qi ey e
=L - “;L—T ot WA (W + ib).

As the Formula (4.4.17) for g| is hermitian, we only need to check positivity on the real
part, and the imaginary part is analogous. Therefore, we compute:

2
o (ﬁ(Re a-b) —Rea-Re b) 6 1 Ll </X VTN /\d}) )
2
Q w n— . n— .
+ 54 H2H (/ (nimw 1/\w) —||Q||w/ﬁ¢u 2/\w2>
b b
2
— 1 (/ w"—lm> _ </ ﬁ) (/ w"—Q/\wQ)
n\ 2 n—1)! n! n—2)!
(15 %7) x 7 X x @Y

What remains is a linear algebra argument. We show that the last expression is positive.
With respect to an invariant frame {X;} of T"°, we consider the hermitian matrices H and
T representing w and w:

Hj = w(Xi, X;), T =w(Xi, X;). (4.4.27)
We write det(H + tT) = pg + pit + pat* + pst>. Then, by differentiating, we have:
w—, = po/ iQAQ (4.4.28)
x X

Ay QAQ 4.4.29

A= QA 4.
/X<n—1>! o= [ (4.4.29)
/ am—2 /\'2 9 / Q/\ﬁ (4430>

W = (3 .

 (n—2)! b2 [

For simplicity, we assume (Q is rescaled so that [ 5 16 AQ = 1. Finally, let H > be a hermitian
square root of H. Then:

det(H + tT) = det(H?)det(I + tH *TH 2)det(H?) (4.4.31)

where H-3TH™% is a new hermitian matrix of real eigenvalues, say, \;, for i = 1,...,n.
Then, we get:

Pl — 2popa = det(H)*(AT + A3+ )3) > 0. (4.4.32)

O
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Remark 4.4.6. We stress that some technical conditions involved in the construction of
Mpys(E) may not be satisfied in this situation, e.g. h®(ad P) = 0, however here ad P = O%°.
Nevertheless, we can still study the formal expression for the metric (4.4.17). In Proposition
4.4.5, the result agrees with the physical prediction of positivity, suggesting a larger range of
applicability of the construction in [70, Section 6] may be possible.

The metric g on the moduli space M pyg(E) need not be Kéhler along directions transver-
sal to the fibre of (4.4.11). We now discuss about the degeneracy and signature of the moduli
metric through explicit Examples.

Let X be the Iwasawa manifold (see Section 4.2.1). For simplicity, we will study the
invariant deformations of the Hull-Strominger system with a single line bundle, that is,
P = Fr Ly, where L is a smooth line bundle. Explicitly, let the pair (w, A) of a hermitian
metric on X and a principal connection on Lg solve:

Fahw? =0, F* =0,
d(||€0]|ow®) =0, (4.4.33)
ddcw—aFA/\FA = 0

We assume that w, Fy € Q;;l are invariant forms. Then, consider the joint linearized systems
(4.4.9),(4.4.10) on (X, Qq, Lo), and look for deformations consisting of triples (&, b,a) of
invariant forms. We do not fix the holomorphic structure (LO,EA). First, we observe that
the equations:

db*° = db™* = 0 (4.4.34)

decouple from the system as a consequence of the structure equations (4.2.4), and we will
not take them into account in what follows. Moreover, since any invariant hermitian metric
is balanced [1], the equations corresponding to the linearization of the conformally balanced
equation hold. Introducing v = w + b1, the resulting equations are:

FanwAvy=0,
i0y — 2aF 4 A a®' =0, (4.4.35)
9a>! = 0.

We write the vector space V' of (invariant) solutions to this system fitting in a short exact
sequence:

0 —W —V —U—0, (4.4.36)
where W corresponds to the solutions that fix the holomorphic structure (Lo, d4). By the

same argument as in the preceeding Section, this corresponds, in the invariant ansatz, to
101 = (0. We parametrize v by the expression:

a
v = Zi(gijwij’ (4.4.37)

where g;; € C. In the next result, we study the deformations around a fixed solution:
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Proposition 4.4.7. Let w = wy be as in (4.2.5), and A such that Fyx = F(m,n,p,0), as in
(4.2.8). Then:

1. The vector space W is given by:

a®t =0, (4.4.38)
v € (W, JF# 3| mlgin — g22) +n(g12 + g21) +ip(g21 — g12) = O)c- (4.4.39)

2. A splitting V=W & U of (4.4.36) is given by U generated by the solutions:

(’h, ay') = (2ra((n + ip)wig — mwsg), iwy), (4.4.40)
(72, a2 ) (—2ma(muwg + (n — ip)wsg), iws). (4.4.41)

3. The moduli space metric g on Mpys(E) restricted to V is positive semi-definite, and
such that g|; = 0.

Proof. For the first item, setting a®! = 0, we obtain the system:

FaNwyg Ny =0,

_ 4.4.42
0y =0. ( )

We obtain basis of solutions to the second equation directly from the structure equations
(4.2.4), and is given by (w;7, j # 3). The linear equation in (4.4.39) comes from imposing the
first equation in (4.4.42). For the second item, the equation 9a®! implies a%' € (wg, ws)c.
One can check then that (7;,a") above solve the system (4.4.35). For the last item, first
note that by Proposition 4.4.5, gy is positive- deﬁmte Moreover, g(W, U) = 0. To see this,

we denote (w + ib, 0) for element in W and (7;, ") as above for an element in U, and use:
Ayt = A2 =0, (4.4.43)
(WARe~; +bATIm~) Awy = 0. (4.4.44)

in the expression of g (4.4.3). It is easy to see that because of (4.4.43), only the second line
is non-trivial, but it does vanish due to (4.4.44). Finally, we use:

(Ij = CZO’ —a; = i(Wj —FW;), ] = 172 (4445)

to compute the expression for the metric on U:

g|g:——/ aal/\Jaj/\HQHwO (Re v A Re v; +Im v AIm ;) A || ]wewo

= —4a5ij + 40451’]’ = 0.

96



To finish this Section, we look at an Example with different behaviour, where the moduli
metric g is not completely degenerate along transversal directions to the fibre of (4.4.11)
(compare with Proposition 4.4.7(3). Let X = (I'\ Hs, J), as considered in Section 4.2.2. Let
(wo, Qo) be as given in (4.2.21), and A is the Bismut connection of wy. Explicitly, in the
frame {X;} the structure equations (4.2.19) are written, we have:

-1
A = (w3 — ws) 1 . (4.4.46)
0
Then, from Proposition (4.2.7), the pair (wg, A) solves the Hull-Strominger system:

Fahwi =0, Fy* =0,
d(]|Q]|ows) = 0, (4.4.47)
dd‘w —atr Fa N Fy =0,

with o = . We consider the system of infinitesimal deformations of (4.4.47) given by (4.4.9),
(4.4.10). Then, introducing v = w + ib"!, the resulting system is:

Daa’t /\wg+2FA/\w0/\'y =0,
d(y Awo — 5(Auyy)wi) = 0,
040" =0,

10y — O™ — 2atr Fy A a®' = 0.

(4.4.48)

Note the difference with (4.4.35), due to the fact that here X is not complex-parallelizable.
We now look for invariant solutions of this system. We will assume moreover that the
infinitesimal deformation of A still preserves the standard SU(3) structure of C3. These sit
in an exact sequence:

0 —W —V —U—0, (4.4.49)

where W stand for the infinitesimal deformations that do not vary the holomorphic class of
(Tl’o, 0 A)-

Proposition 4.4.8. 1. The vector space W is generated by:
a’t =0, (4.4.50)
v+ 002 e (W11 + waa, Wiz, Wai, W13, Wa3, Wiz, —iWsT + Wig, —iWsz + Wag)c (4.4.51)
2. There is a splittingV =W & U of (4.4.36), where U is generated by the solutions:
(7, a) € ((2iws, e1), (iwsi, €2), (2iwss, €3), (iwss, €4), (2iwss, €5), (iwsz, €6))c, (4.4.52)
where e; are given by (4.4.54).

3. The moduli space metric g on Mpys(E) is positive semi-definite.

97



Proof. First, we look at the equation 94a%! = 0. Writing:
™l =3 weay, (4.4.53)
where a; € M343(C) are constant matrices. Then, the equation imposes the constraint:

0= 514(.10’1 — 5&0,1 + [AO,I A C-LO,I]

Using (4.4.46), this is equivalent to &, ay being diagonal, and there is no contraint on ag.
Then, using A is diagonal too, we obtain:

Oai = Owsas — ws A [AM°, as)

= — (w7 — wyz)az + wg3 [((1 b > (‘LS] :

Then, by the first equation in (4.4.47) and using that F4 is diagonal, from the off-diagonal
components, we get that az is diagonal too.

Now, we introduce the notation:

1 0 0 1 0 0
€25—1 = w; (059 -1 0 , €25 = w; & 0 0 s j = 1, 2, 3 (4454)
0 0 O 00 -1
Since we are assuming the infinitesimal deformations'a = %' — (a®!)* of A keep the natural

s1(3) structure of C? fixed, it is clear that a*! is a complex linear combination of the above
elements. We claim that any infinitesimal deformation of this type varies the holomorphic
class of (T°,0,4). Indeed, otherwise there is a smooth section s € I'(T"?) such that a*! =
0as. By an averaging process analogous to the one in the proof of Lemma 4.1.12, and
using that A and %! are invariant, we can assume that s is an invariant section, hence it is
identified with a matrix (s;;) € T'(T*"). But then:

_ 0 2512 S13
Das = [AM 5] = wy 2591 0 —s23 |, (4.4.55)
—531 532 0

which clearly is incompatible with the expression for a®!'. We now give a basis of the

solutions to (4.4.47). From the argument above, a solution in W has a%!' = 0. Then, the
system (4.4.48) can be solved explicitly and we have that v + b%? is in:

(Wit 4 waz, w13, Wat, Wiz, Wa3, Wiy, —iwsT + Wig, —iwgy + Wag)c, (4.4.56)
and we get the first item. Now, we obtain further solutions index by e;:
<(i¢d3i, 61)’ (iUJ:ﬁ, 262)? (iw3§a 63)’ (iw3i> 264)7 (ing, 65)7 (iOJ3g, 266)>C7 (4457)

where we have used a = £ for the solution (wo, A) to (4.4.47). These span a space comple-
mentary to W. Therefore the space generated U is a splitting for (4.4.49).
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Finally, we compute the moduli metric g restricted to the vector space V. Using the
invariant ansatz, the formula (4.4.3) simplifies to:

g((y,a), (v,a)) = + a/

X

tr(a A Ja) A<+

~ 33 (1M @l” + [Aubl?) + §(1Auol® + [Auobl?)

%/Xtr(al A Jig) A 4 LAl + [AubP?).

This can be computed explicitly for the 14-dimensional vector space V. With respect to the
basis obtained joining (4.4.56) and (4.4.57), the resulting metric is:

glv =

T D

OO OO OO O oo
OO OO OO OO OO o oNOo

0

OO OO OO OO OO o NNOoOOo

OO OO OO OO OO NNO OO

SO DD DO DD IDODIDDDNN OO OO

SO DD DO DD DODIDOD OO oo 0o

[lDOl\DOOOOCDO

o O O O

o O

|
b OO MO oo oo

OO O oo

SO OO NN O

o O OO oo

-2

OO OO NN O

SO OO o oo

SO N DN OO

SO OO o oo

—2

SO NN OO

NN OOODODODDODOOOooo o

NN OOOD OO oo o

, (4.4.58)

whose eigenvalues are: {6,6,4,4,2,2,2,2,/0,0,0,0,0,0}, and the result follows.

]

Remark 4.4.9. This Ezample shows a new feature with respect to the previous one. While
in both cases the moduli metric is positive semi-definite, here there is a positive direction
orthogonal to the fibre of (4.4.11), given by the eigenvector (2iwss, e5 + 2eg) with eigenvalue

+4.
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Chapter 5

Hermite-Einstein metrics and Futaki
invariants on Courant algebroids

The aim of this Chapter is to show how Generalized Geometry, as developed in Chapter
2, is a useful framework for studying the Hull-Strominger system. For this, here we retake
the theory of generalized hermitian metrics applied to Bott-Chern algebroids. The study
of the curvature properties of these metrics culminates in one of the main results of this
Thesis, Theorem 5.3.7, recasting solutions to the Hull-Strominger system as special metrics
on Courant algebroids satisfying a condition of Hermite-Einstein type. Building on it, we
then use its moment map interpretation to produce new invariants that potentially obstruct
the existence of solutions. This Chapter is based on [65], which we follow closely, building
on previous work in [61, 67, 69].

5.1 Generalized hermitian metrics on Bott-Chern al-
gebroids

In Section 2.2.2, we introduced generalized hermitian metrics for general Courant algebroids
and discussed Bott-Chern algebroids (see Definitions 2.2.13, 2.2.15) as the family of string
algebroids where these exist and behave properly with respect to the hermitian structure of
the manifold. A fundamental feature we stress here is that generalized hermitian metrics are
possibly of indefinite signature (see Remark 2.2.16).

Let X = (M, J) be a complex manifold of complex dimension n, and let (E, Pk, pp, ) be a
real string algebroid, where Py is a principal K-bundle for a Lie group K with quadratic Lie
algebra (&, (-,-)). Recall that a generalized metric V, C E compatible with J determines a
representative Ep, g4 = E, where H, A satisfy (2.1.26), and a holomorphic string algebroid:

()= 0Q = V_®CC Ep,gsa®C (5.1.1)
induced by 7_. Here £ =V, ® C N p~1(T%) is a lifting. Moreover, explicitly:

Vo= {X+gX), XeT}, V.={X—g(X)+r, X T, readPy). (5.1.2)
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Hence it inherits a generalized hermitian metric:
G([a],[b]) = —(7_a,7_b), a,beT(Qy). (5.1.3)

By abuse of notation, in the sequel we will identify G and other structures on 9, with
the ones induced in V_ ® C through the isomorphism (5.1.1). Then, the first result of this
Section is a computation of the Chern connection of the generalized hermitian metric G.
Our result extends Bismut’s Identity (see [19, Theorem 2.9]), interpreted recently in [67] in
the language of exact holomorphic Courant algebroids.

Proposition 5.1.1. The Chern connection of G induced on V_ @ C wvia the isomorphism
Qy=V_®C is given by:
D$s=n_lo.X,s]. (5.1.4)

Here, 0. X = X + g(X) is the inverse of the isomorphism my, : V, — T. More explicitly,
via the identification V_ =T & ad Pg, we have

DG(Y +7)=VyY — g NixFa,r) +ixdar — Fa(X,Y), (5.1.5)
where V- = V9 + %g_ldcw, for V9 the Levi-Civita connection of g.
Proof. The right hand side of (5.1.4) defines an orthogonal connection on V_:
D)%G(S7t) = _D)(?<S7t>
— (o X)(5.1)
_<[U+X7 8]7 t) - <87 [O-+X7 t]>
< [U+X S] t) - <S77T— [U+X7 t])
—(D%s,t) — (D)
= G(D$s,t) + G(s, DSt).

Hence, it extends C-linearly to a G-unitary connection on V_®C. By the abstract definition
of the Dolbeault operator on Q, given by Proposition 2.2.3 combined with the expression
for £ above, we have that the (0, 1)-part of the right hand side of (5.1.4) coincides with Jo,
of (2.2.11). Formula (5.1.5) follows from [69, Equation (5.10)]. O

Moreover, we recall by Section 2.2 that Q; = Qpo;g, an, for the holomorphic principal
bundle P = (P§,d,4), and where A" stands for the Chern connection of the canonical
hermitian reduction Px C P. In our next result we compute an explicit formula for the
generalized Hermitian metric G in terms of this isomorphism.

Lemma 5.1.2. The hermitian isometry 1 : Qpoig, an — V- @ C induced by Lemma 2.2.8 is
given by . '

VX +r+&)=e“X+r—le™glc
Consequently,

VGX +r+&6X+r+8=9(X,X)+ 1978 — (7).

where conjugation in ad P is taken with respect to the hermitian reduction Px C P.
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Proof. The formula for ¢ follows by composing the isomorphisms:

Qp2iow b LN Q5 V._®C. (5.1.6)
The first map is given, explicitly, by:
X+r+&= (X +r+8) (5.1.7)
according to Proposition 2.2.8, for the lifting ¢ = ¢(w, 0, 0). Hence:
VX 47+ =1 (VX +7+9)
=e“X +r+7m_(€)
=X +r+a(3(—g7 ¢+ i) + 597 ¢ + i)
=e“X +r—1eglE
The pullback of G along v follows from:
V'GX+r+EX+r+8)=—0(X +7+8,0(X +1r+8))
— —<6’in T — %e—iwf’e—iw7+7+ %eiwg—lg>
_<€in’ e—iw7> o <7”, 77) o i(e—iwg—la eiwg—lg>
= ("X, X) — (r,7) — 3{e*g7'E,97'E)
= —iW(X, y) - <T7 F> + iiw(g—lgvg_lg)
= g(X, X) = (r,7) + 197(&,9).
O

Remark 5.1.3. By the previous lemma, the signature of G is (4n + 21y, 2ly), where (11, 1)
is the signature of (-,-) : €@t — R and n = dim¢ X.

5.2 Curvature of generalized hermitian metrics

In this Section, we compute the full curvature tensor and second Ricci curvature (see Equa-
tion (5.2.11)) of the generalized Hermitian metric G in (5.1.3). The notations are the same
as in the previous Section. We will systematically use the identifications Q, = V_ ® C and

the isomorphism:
V_o=Toad Py, (5.2.1)

where the isomorphism is given by the explicit expression in (5.1.2). Consider the (possibly)
indefinite metric on V_ given by:

(X+r X+ =—(X-g(X)+7rX —g(X)+7)=g(X,X) - (r,7). (5.2.2)

Then, extending C-linearly (-,-)° to V_ @ C, it follows from Definition 2.2.15 that G is given
by

G(Sl,Sg) = <81,S_2>0. (523)
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By Proposition 5.1.1, the Chern connection D is the C-linear extension of a (-, -)°-orthogonal
connection

D: QUV_) — QY(V), (5.2.4)

and hence to calculate Fg := Fpe it suffices to give a formula for Fp. Explicitly, in terms
of the decomposition (5.2.1) we have

Dx(Y +7)=VyY — g NixFp,r) +dyr — F(X,Y). (5.2.5)

For the computations, it will be useful to express D in matrix notation as

o= ([ ) 520

with respect to the splitting V. = T @ ad Pk, where F € Q'(Hom(T,ad Pg)) is the
Hom(T', ad Pk)-valued 1-form:

(ixF)(Y) == F(X,Y). (5.2.7)

and FT € Q'(Hom(ad Pk, T)) is the (-, )%adjoint operator. It is straightforward to check
that it is explicitly given by:

(ixFN)(r) = =g~ "(ix Fn, 7). (5.2.8)

We will use the standard notation Ry- for the curvature of V~ and also V»~ for the covariant
derivative induced by A" and V~ on A?’T* ® ad Pk. In particular,

for any triple of vector fields X, Y, Z on M.

Lemma 5.2.1. The curvature of D is given by

o Ry- —F'AF —T
b= I [Fy,] — F AT

where

iyixFT VAN F(Z) = g_1<7;YFh7 Fh(X, Z>> — g_1<ith, Fh(Y, Z)),
ivixI(Z) = (Vi F)(X,Y) — Fu(X, g Yigiydw) + Fr(Y, g Vigixdw),
ivixFAF(r) = F(Y, g YixFy, 7)) — Fi(X, g iy Fy, 7).

Proof. To compute the curvature, we write
p=py( O F
a -F 0
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where DY = V~ @ d". Then, we have

B D 0 [T LFTAF 0
FD_FD°+dO<—F 0o )T\l o —FAF

_( Ry-—FAF (& F)f

“\ - F  [F,]-FAF

where d»~: Q'(Hom(T,ad Pg)) — Q?(Hom(T,ad Py)) is the exterior covariant derivative
induced by V~ and A". The explicit formulae for FT AF and F A F' above follow from:

(5.2.10)

ivixFVAF(Z) = ixFi(iyF)(Z) — iyFi(ixF)(Z)
= —g NixFn, iyF(2)) + g iy Fy,ixF(2))
= g iy F, Fo(X, 2)) — g Hix Fy, Fi(Y, Z))
ivixF AFN(r) = ixF(iyF)(r) — iy F(ixF")(r)
= Fu(Y, g WixFp, 1)) — Fu(X, g7 iy F.r)).

As for d»~TF, we have:

—iyixd""F(Z) = =dy(Fu(Y, 2)) + dy(Fu(X, Z)) + Fa([X, Y], 2)
+ R (Y, V3 Z) — Fo(X,VyZ)
= dy(Fu(X,Y)) + Fu([X, Z],Y) = Fi([Y, Z], X)
+ I (Y, Vi Z) — Fi(X, Vy Z)
= (VY F)(X,Y) + F(Y,Ty-(X, 2)) — Fi(X, Ty~ (Y, Z))

where Ty- denotes the torsion tensor of V™~ and in the second equality we have used the
Bianchi identity d"F;, = 0. Our formula for I follows now from Ty- (Y, Z) = g tigiyd‘w. 0O

We next calculate the second Ricci curvature of the generalized Hermitian metric G,
defined by the expression

n

Se = Fg Aw™! (5.2.11)
n

where w is the hermitian metric in Proposition 2.2.8. Similarly as before, the skew-hermitian
endomorphism Sg € T'(End Q) is given by the C-linear extension of the second Ricci
curvature Sp of the connection D. To calculate Sp below, we need the following technical
lemma.

Lemma 5.2.2. Let (M, g) be a Riemannian manifold of even dimension. Let F € Q?* and
H € Q3 be differential forms. Then, the Hodge star operator satisfies:

m

1
ix* (FA*H) =5 ) Flei g ixic,H)

i=1

for any vector field X and any choice of g-orthonormal frame {e;} of T
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Proof. For € the dual frame, one has
x(e" A x1)) = ig0)
for ¢y € (2P and therefore
x(e' A&l A x)) = (—1)Pig i1

By bilinearity, we get

f(FAH) ==Y C(ei, e;)H(ei, e;,-),

1<j

and therefore

ix*x (FAxH) = —ZC(ei,ej)H ei,ej, X ZF €iy g Vixic, H).

i<j
O

Recall that the Bismut connection of the hermitian metric g in Proposition 2.2.8 is given
by (cf. Proposition 5.1.1)

VP =V -l4tdw. (5.2.12)

for V9 the Levi-Civita connection of g, which is a unitary connection on T° (see Section
1.2.1). Recall also that it induces a well-defined curvature on the anti-canonical bundle
—ipp, where pp is the Bismut Ricci form (1.2.7) . Explicitly, for a choice of g-orthonormal
basis {e;} of T at a point, one has:

pe(X,Y) = %Z](g(RVB(X, Y)Je;, e;). (5.2.13)

Proposition 5.2.3. The second Ricci form\Sp of the connection D is given by

Sp = ( —g '(pB g (Shs Fn)) [;if] ) (

where
S(V) = Z.JV — dh*Fh — Z.Oﬁ)Fh —+ *(Fh AN *dCW)> 7(

for d"™ the adjoint of d"* and 0, = Jd*w the Lee form of g.

Proof. In terms of the g-orthonormal frame {e;}, the second Ricci form is expressed as:

Sp = gzj(FD(ej, Je;). (5.2.14)
Using this and applying Lemma 5.2.1, we haxe
. Svf - %FT A F(ei, (]61) —%]IT(SZ, J@z)
5p = ( ey, Je,) [Sn,] — AF AT (e;, Jey) (5:2.15)
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We first compute:
G(ige,ie, FT ANF(V), W) = (Fi(Jes, W), Fy(es, V) — (Fi(es, W), Ep(Jey, V). (5.2.16)
Combining this with the identity (1.2.8)and Proposition 2.2.8, we also obtain

9(Sv-(X),Y) = 59(Ry-(es, Je;)) X, Y)
:%Q(RvB(X,Y)QZ,Jel) }—lddcw(ei,Jei,X,Y)

= —pp(X,Y) = X(F, A Fp) (e, Jei, X,Y)
= pp(XY) = Mi By A B)(Jes, X, Y)
= —pp(X)Y) — <Shth(X>Y)>+%<ieiFh/\iJeiFh>(XaY)
= = pp(X,Y) = (Sh, Fu(X,Y)) + 5(Fu(es, X), Fu(Jei, Y))

- §<Fh(€i,Y),Fh(J€i,X>>
= = pB<X7 Y) - <Sh7 Fh(X7 Y)> + %g@-]eiieiFT A F(X)a Y)a
as claimed. Using again Proposition 2.2.8, in particular Fj, = F) }1’1, we also have
Z.JeiieiF N FT(T> = Fh(‘]eiagilgeiFha 7’)) - Fh(eiagilﬁJeiFha T>)
= _Fh(€i7 Jg_1<ieiFh7/r>) - Fh(eiag_1<Fh(‘]ei> ),7’>)
- _2Fh(6i7g_1<Fh(Jei7 ),T’>)
= —2Fh(€i,€j)<Fh<J€i, €j),7’>.

Finally, the last expression vanishes using again Fj, = F; ,i 1 and symmetry considerations.

In the computation of the remaining term, we will use the following standard expressions
for the covariant derivative of the almost complex structure J, the adjoint of d", and the Lee
form:

1
A" Fy = —i., V"9 Fy, (5.2.18)
0.(X) = Ldw(e;, Jei, X). (5.2.19)

where V"9 is the covariant derivative with respect to the Levi-Civita connection V and A”.
Combining this with (5.2.10), we conclude that:

i 7eie I(X) = — e ic,d" F(X)

= ie,ie,d"(ixFy) — Fu(ei, V5, X) + Fu(Je;, V, X)

= 2d" (Fy(e;, JX)) + Fi(les, Jei), X) + 2Fy(Je;, V., X)
2(VEIF,) (€1, JX) 4 2F, (VY e, JX) + 2F(e;, VI I X)
+ 2, (VY Jey, X) + 2, (Jei, (V7 — V9), X) + 2F,(Je;, VI X)

= —2d"Fp(JX) + 2F, (V9 J)es, X) + 2F,(Jey, (V7 — V9)., X)
+ 2F (e, (VL J)X)

= —2d™F,(JX) — 2F, (6%, JX) 4 Fi(es, g Vigxie,dw).

The statement follows from Lemma 5.2.2. O
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5.3 Hermite-Einstein metrics on Bott-Chern algebroids

5.3.1 Coupled Hermite-Einstein metrics

This section is devoted to the study of basic structural properties of coupled Hermite-Einstein
metrics on Bott-Chern algebroids. Continuing with the notation of the previous Sections,
let X = (M, J) a complex manifold, and let E be a string algebroid. Moreover, let V, a
generalized metric compatible with J, and we denote by Q, the holomorphic reduction of F.

Definition 5.3.1. Let G be the generalized hermitian metric on Qp induced by V. Then,
G s called a coupled Hermite-FEinstein metric if:

Fg Aw" 1 =0, (5.3.1)
where g = w(-, J-) is the hermitian metric on X determined by V..

Our first goal is to obtain the conditions for G on a Bott-Chern algebroid to be a coupled
the Hermitian-Einstein metric (5.3.1).

The following Lemma can be compared with the classical result which states that a
Hermite-Yang-Mills connection is Yang-Mills, provided that the background metric is Kahler.
The analogue in Hermitian Geometry is apparently well-known to experts but, since we have
not been able to find it in the literature, we shall provide a complete proof here.

Lemma 5.3.2. Let (X,w) be a hermitian manifold of complex dimension n endowed with a
holomorphic principal G-bundle P, and let h be a hermitian reduction on P to a mazximal
compact subgroup. Then:

Jd"(AyFy) = —d"™ Fy — g Fyy + x(Fj A xd‘w). (5.3.2)
In particular, if h is Hermite-FEinstein, that is, satisfying:
Fp Aw™ = 20" (5.3.3)
for z a central element in the Lie algebra €, then:
d"(A,Fy) =0, (5.3.4)
or, equivalently:
A" Fy + e Fy, — *(Fy, A xdw) = 0. (5.3.5)
Proof. By general theory, the curvature form of a Chern connection F}, satisfies:

F,=F", d"F, =0, (5.3.6)
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Using the conditions above, we obtain:

d*F(V) = — (VI9F,) (e, V)

= —d" (Fy(Jei, JV)) + Fu(Ve,e, V) + Fi(e;, Ve, V)
= —d"Fy(es, Jei, V) — d, (Filei, JV)) + &y (Fi(es, Jei)
— Fy(lei, Jei], JV) + Fy(lei, JV], Jei) — Fy([Jei, JV], €;)
+ Fr(Veei, V) + Fr(ei, Ve, V)
= (V2R (Jei, V) + Fu(VieJen V) + Fi(Jei, Ve, V)
— Fy(les, Jei], JV) + Fn(les, JV], Je;) — Fr([Jes, JV], €;)
+ Fr(Veei, V) + Fr(ei, Ve, V)
= —d"F,(V) 4+ 2F,(Veei, V) + 2F,(ei, Vo, V) + 2d5 (A, F)
— 2F(V,, Jes, JV) + 2F5(Ve, JV, Jei) + 20 (V v Jei, )
+ 2d" (AL F).

Collecting the terms d"* F}, (V') and using again that Fj, = F,"', we have:
d"Fy(V) = =Fu((Ve,J)es, JV) + Fu(Ve, )V, Jei) + Fu(Vv Jei e5) + d" (A, ) (JV).
Using elementary symmetry properties, which imply
Fy(Vyvdeie) = Fulej,e)g(VyvJe;,e;) =0,
combined with the formulae for V.J and 6, in the proof of Proposition 5.2.3, which imply:

Fo((Ve)ei V) = Fy(65,V),
Ey((Ve, J)V, Je;) = 1 Fp(es, g tivie,dw),

then (5.3.2) now follows from Lemma 5.2.2. For the second part of the Lemma, note that
the Hermite-Einstein equation (5.3.3) implies:

ALF, = 2, (5.3.9)

for a central element 2 € €, therefore d"(A,F,) = 0. By (5.3.2), this is equivalent to:
A" Fy + gz Fyy — %(Fy, A xdw) = 0. (5.3.10)
[l

In the next result we characterize the generalized hermitian metrics on Q, that are
coupled Hermite-Einstein equation, in the sense of Definition (5.3.1).

Lemma 5.3.3. Let X be a complex manifold endowed with a holomorphic principal G-bundle
P. Assume that a pair (w,h) satisfies the Bianchi identity:

dd°w + (Fy A Fy) = 0. (5.3.11)
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Consider the holomorphic vector bundle underlying the Bott-Chern algebroid Qpso., an (see
Ezxample 2.2.6) endowed with the (possibly) indefinite hermitian metric G in Lemma 5.1.2.
Then, G solves the coupled Hermite-Einstein equation (5.3.1) if and only if the following
conditions hold:

[Sha ] = 07
d"(A,F) =0, (5.3.12)
PB + <Sh7Fh> = Oa

where Sy, denotes the second Ricci curvature of h.

Proof. By construction, the Chern connection of G is the C-linear extension of the (-, -)°-
orthogonal connection D in Section 5.2. Then, the proof is straightforward from Proposition
5.2.3. O

As one can directly see from (5.3.12), the coupled Hermite-Einstein condition (5.3.1) for a
generalized Hermitian metric is very sensitive to the choice of quadratic Lie algebra (g, (-, -)).
For example, when g is abelian the first condition is trivially satisfied. In particular, when
g = {0}, Lemma 5.3.3 recovers [67, Proposition 4.4] for pluriclosed hermitian metrics. On
the other extreme, when g is semisimple, the first equation implies that S, = 0 and hence
the second equation is satisfied by Lemma 5.3.2. Furthermore, in this case one has pg = 0.
We will return to the geometry of this system in Chapter 5 under the name of coupled
Hermite-Einstein system. We are ready to prove the first main result of this section.

Proposition 5.3.4. Let X be a complex manifold endowed with a holomorphic principal G-
bundle P. Assume that (w,h) solves (5.3.11) and (5.3.12). Consider the holomorphic vector
bundle Qpa;a, ar endowed with the (possibly) indefinite Hermitian metric G in Lemma 5.1.2.
Then, G solves the Hermitian-Einstein equation (5.3.1).

Proof. The proof is straightforward from (5.3.12) with Lemma 5.3.2 and Lemma 5.3.3. [

5.3.2 Relation to the Hull-Strominger system

We study next the relation between coupled Hermite-Einstein metrics on Bott-Chern alge-
broids (see Definition 5.3.1) and the Hull-Strominger system (3.1.11). We recall that the
construction in the previous Section requires the ansatz (3.1.12) for the connection V, and
hence in our discussion we will always assume this condition. In this Section, first we will
embrace an abstract definition of the Hull-Strominger system, as considered in (3.1.14), and
then particularize to the more familiar situation of (3.1.11).

Let (X, Q) be a compact Calabi-Yau manifold of dimension n, and let P be a holomorphic
principal G-bundle, for complex Lie group G with quadratic Lie algebra (g, (-, -)), saitsfying:

m(P)=0¢ HyA(X,R), (5.3.13)

where its Chern-Weyl representative is taken with respect to the pairing (-,-) induced in
ad P. The next result yields the fundamental relation between the Hull-Strominger system
and coupled Hermite-Einstein metrics (5.3.1).
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Proposition 5.3.5. Let (w,h) be a hermitian metric on X and a hermitian reduction of P
satisfying the Hull-Strominger system (3.1.14). Then, (w,h) solve (5.3.12).

Proof. By the first equation of (3.1.14), it is clear that S, = 0, hence also the first equation of
(5.3.12) holds. Moreover, by Lemma 5.3.2 with z = 0, the second equation of (5.3.12) holds
too. Therefore, to conclude, it is enough to show that the conformally balanced equation:

a()|2|w" ) = 0 (5.3.14)

implies that pp = 0. To see this, we first use (6.1.8), which implies (see [62, Proposition
3.6])

VE(1Q|5'Q) = 0. (5.3.15)

In particular, the connection induced by V? in the (anti)-canonical bundle is flat. Then,
since pp is proportional to the curvature of this connection, it vanishes. O]

Corollary 5.3.6. Let (w,h) be a hermitian metric on X and a hermitian reduction of P
satisfying the Hull-Strominger system (3.1.14). Then, the generalized hermitian metric G
given by Lemma 5.1.2 on Qpoa, an 15 a coupled Hermite-Einstein metric.

Proof. This is a direct consequence of Propositions 5.3.5 and 5.3.4. O

The previous results apply to the Hull-Strominger system (3.1.11) straightforwardly in
the following manner. Let Vy and V; denote holomorphic vector bundles over X, where Vj
is a holomorphic structure on T%°, and satisfying

cha(Vo) = chy(Vi) € Hyz (X, R). (5.3.16)
Let P be the holomorphic principal bundle with structure group given by:
P=FrVyxxFrVy, G=GL(ry) x GL(r1), (5.3.17)
for r; = rk V;. Its Lie algebra is endowed with the quadratic structure:

() gl(ro) x gl(r1) — C

((s0,51), (to,t1)) — —atre(sete) + atri(sity) (5.3.18)

depending on the parameter o € R. Then, Corollary 5.3.6 reads:

Theorem 5.3.7. Let (X,Q) be a compact Calabi-Yau manifold and Vy, Vi holomorphic
vector bundles. Assume that Vi has as underlying smooth vector bundle T*°. Moreover, let
(w, h) be a hermitian metric on X and a hermitian metric on Vi solving the Hull-Strominger
system (3.1.11) for V the Chern connection on Vy of a hermitian metric hy satisfying

Fiy Aw? =0. (5.3.19)

Then, on the Bott-Chern algebroid Qpsg, anon, the generalized hermitian metric G of
Lemma 5.1.2 is coupled Hermite-Einstein, where P is as in (5.3.17), and A" is the product
Chern connection of (ho,h) on P.
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As we discussed in Section 3.1.1, solutions to the Hull-Strominger system (3.1.11) with
the Hermite-Yang-Mills ansatz (3.1.12) for V are not equivalent to solutions with the choice
of V being the Chern connection of g on the holomorphic tangent bundle 7%°. However,
these ansatze are related if one frees the holomorphic structure of T%°, as we observe in the
following Remark.

Remark 5.3.8. Any solution of (3.1.11) with the Hermite- Yang-Mills ansatz (3.1.12) deter-
mines a solution to (3.1.11) with Vo = (T, Vo). Hence V = D™ where hy is a hermitian
metric on Vy. Moreover, by pulling-back the Chern connection D™ wvia a complex gauge
transformation on T™C taking hy to g, we obtain a solution to (3.1.11) for V the Chern
connection of w on a vector bundle isomorphic to V. Observe that the equations (3.1.11)
are invariant under this change.

Remark 5.3.9. Lemma 5.3.3 and Theorem 5.3.7 shall be compared with the original result by
De la Ossa, Larfors, and Svanes in [36, Corollary 1], who observed that the Hull-Strominger
system is equivalent to (5.3.1) to all orders in perturbation theory.

5.4 Futaki invariants for the Hull-Strominger system

In this Section, we prove a moment map interpretation for the coupled Hermite-Einstein
metric equation (5.3.1). Since the case of (possibly) indefinite signature of the metric is not
completely standard in the literature, we will give here the details. Then, we will exploit this
to provide families of non-Kéahler Futaki invariants for the Hull-Strominger system. These
are potentially non-trivial further obstructions to the existence of solutions to the system
beyond balanced metrics and slope-stability of the bundles.

5.4.1 Finite-dimensional picture

The construction of our Futaki invariants stems from a general formalism that associates an
invariant to any equation with a moment map interpretation, which we call Futaki invariant
by analogy with the classical invariant obstructing the existence of Kahler-Einstein metrics
on a Kahler manifold [60]. To draw parallels with the picture here, we give the following
finite-dimensional abstraction of the Futaki invariant.

Lemma 5.4.1. Let (M, J,w) be a compact Kihler manifold, and let K — Aut(M, J,w) be
a hamiltonian action, for a real, connected, compact Lie group K with infinitesimal action:

t—T(TM), s— X° (5.4.1)
and moment map:
e M — €. (5.4.2)

Let G = K¢ be the complezification of K. Then, for any x € M and £ € Lie G, the isotropy
group of x, the map:

Foe :G—=C, g (u(g-x),Ady(£)) (5.4.3)

18 constant.

111



Proof. First, observe that the K-action can be regarded, in particular, as a map:
K — Aut(M, J), (5.4.4)

where the group of biholomorphisms is a (finite-dimensional) complex Lie group ([20]). We
now use the universal property of the complexification of Lie groups. Namely, given any real
Lie group map:

K — C, (5.4.5)
where C' is a complex Lie group, there exists a complex Lie group map:
G=K'=C (5.4.6)

that restricts to the previous real map on K C KC. Then, the universal property of G
extends (5.4.4) to a complex Lie group map:

G — Aut(M, J), (5.4.7)

extending the previous action, though G does not act symplectically on (M,w). Now, fix
x € X. The complexification of the moment map p satisfies:

do(p, o) (XP) = w(XReo XP) piw(X™e XP) a,8cg. (5.4.8)

Let s € Lie G = Lie K ® C, and ¢ € Lie G,. We write s = sg + is7 and £ = & + i&; with
si,& € €. Then, using (5.4.7), (5.4.8), and the K-equivariance of p:

Tt (") 6 (e (X°),8) + (), I, €

= w(X%, X*) +iw(X®, X*) — (u(x), [, s] + il&1, s])

= W(X®, X5 4 JX5) 4w X X0 4+ JX5) 4 dy(u, 8) (X0 4+ i X
= w(X%, X 4+ JX) 4 iw(X X + JX*)+

+ w(X* 4+ i X5, X0) 4 iw(X* 4 X, X)

—w(JX® X)) +iw( X, X4 =0,

the last step following from the hypothesis ¢ € Lie G,. Now, it follows that:

G Feele) g T (5, () 6 0 (5.49)

where the last step follows from the above computation substituting x by e!® - x and £ by
Ad, &, using that indeed Ad.ts& € Lie Gtps,.. Therefore, F(+, ) is constant along the curve
t— e’ for any s € Lie G.

Now by standard theory of Lie groups, the exponential map Lie G 2% G is a local
diffeomorphism around 0. Moreover, using that G is connected, since K is, any open set
around 1 € G generates G. Combining these facts with the above result that F(-, ) is
constant in exponential curves, the Lemma follows. O]

Remark 5.4.2. The interpretation of the Futaki invariant in [60] along the lines of the
above Lemma follows from realizing the scalar curvature as a moment map [41, 59] (see also
[128, Section 6.1]). However, in this infinite-dimensional situation, technical problems arise
and one should think of Lemma 5.4.1 rather formally.
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5.4.2 Aeppli classes and Futaki invariants

In this Section we introduce a family of characters which obstructs the existence of solutions
to the Hull-Strominger system in the form of (3.1.14). The construction of our Futaki
invariants can be regarded as a formal infinite-dimensional analogous of the picture described
in the previous Section. To see this, let X be a compact complex manifold and fix a balanced
class b € H"!"~1(X R). Moreover, let (Q, H) be a hermitian vector bundle, and let:

G(Q,H) C G(Q) (5.4.10)

be its unitary and complex gauge groups. Consider the space:
Apt = {V is H — unitary , Fy € Q"1(Q,H)}, (5.4.11)
where [w""!] € b, carrying the Atiyah-Bott symplectic structure [14], and consider the

moment map :
(1Y), ) = / tr(sFo) A, s € Lie G(Q, H) (5.4.12)
X

for the action of G(Q,H) by conjugation (see [41, Section 1.1] for details). The space of
connections Ah’l admits a complex structure induced by the natural complex structure on
the space of integrable Dolbeault operators on () via Chern correspondence. Moreover, the
action is extended to a complex action of G(Q) on A}l Explicitly, on the Chern connection
associated to a holomorphic structure Q@ = (Q, do), the action is:

g-D(0g,H) = Dg-0o,H). (5.4.13)

Therefore, the isotropy Lie algebra at this connection is naturally identified with H°(End Q).
Now, applying formally Lemma 5.4.1 to this infite-dimensional situation, we obtain:

[ w0Fw nw = [ n(Ad Foegagm) nu
— /X tr(Adyd Ady Fpe gy o) AW
:/ tr(¢pF ) Aw" .
X

For the applications in this Thesis, we will use a stronger version of this result with the
novelty that we allow (non-degenerate) hermitian metrics G on ) with arbitrary signature.
Since this is not completely standard in the literature, and passing from the finite-dimensional
picture to our situation is not completely straightforward, we give now the details that apply
in our setting.
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Lemma 5.4.3. Let X be a compact complex manifold, Q a holomorphic vector bundle over
X, and b e Hgal’”_l(X, R) a Bott-Chern class. Then, the map

Fo: H'(X,End Q) — C

s /Xtr(SOFG) . (5.4.14)

defines a character of the Lie algebra H°(X,End Q), which does not depend on the repre-
sentative v of b = [v] and neither on the choice of a pseudo-Hermitian metric G on Q.
In particular, F, = 0 if there exists a pseudo-Hermitian metric G on Q and a balanced
Hermitian metric w on X, with b = [w"™Y], solving the Hermitian-Einstein equation

FG N w"_l = 0.
Proof. Let v,v € Q" 1"~! be d-closed forms on X, such that
v —v =00«

Qn—Q,n—2

for some a € . Then, by type decomposition and the Bianchi identity for D&, we

have
/ tr(pFg) A 00a = / d(tr(pFg) A 0a) — / tr(0pFg) A da = 0,
X b b

where the two summands vanish independently by hypothesis. Now, let G and G’ be arbi-
trary pseudo-Hermitian metrics on Q. Since G and G’ are both non-degenerate, there exists
a smooth complex gauge transformation g on Q such that G'(-,-) = G(g-,-). Then, their
Chern curvatures are related by

For = Fe +0(g7'0%)
and it follows that, again by type decomposition and the holomorphicity of ¢,
| wtotFer = Fa)y nv = [ tedla™ %) Av
/ dlex(plg™'0%0) no) = [ w(@on (g710%)) Ao

>

S

0.

Finally, for ¢, ¢ € H°(X,End Q), using that [Fg, ¢'] = 00%¢', one has

/Xtr([go, O'Fg) N\v=— /X tr(pddC ) Av = — /X d(tr(pdG¢’)) Av = 0.
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Remark 5.4.4. Lemma 5.4.3 can be regarded as a formal infinite-dimensional of the Futaki
wmvariant as described in Lemma 5.4.1, where the complex gauge group of Q acts on the
space of connections with curvature of bidegree (1,1) (see [40] for details). Accordingly, the
isotropy Lie subalgebra at D is precisely End(Q).

Using the duality isomorphism Hp"" ' (X)* = H ' (X), the Futaki invariants in Lemma
5.4.3, with b varying along Hp "' (X), can be written more elegantly as a H ' (X)-valued
character

F:H(X,End Q) — Hy' (X): ¢ — [tr(¢Fg)].

In order to apply Lemma 5.4.3 to the Hull-Strominger system (3.1.14), we assume that the
compact complex manifold X is endowed with a holomorphic volume form €2. Let P be a
holomorphic principal bundle for a complex reductive Lie group G with quadratic Lie algebra
(g, (-,-)). Moreover, we assume:

m(P)=0¢ Hy2(X,R), (5.4.15)

with respect to the pairing (-,-). By Proposition 2.2.19, the set of equivalence classes of
Bott-Chern algebroids over X with principal bundle P and bundle of quadratic Lie algebras
(ad P, (-,-)) is a non-empty affine space & modelled on the image of

d: HY'(X,R) — HY(Q). (5.4.16)

Our aim is to construct families of Futaki invariants indexed by isomorphism classes of
Bott-Chern algebroids, as prescribed by (5.4.16). For this, we consider the family of finite-
dimensional complex Lie algebras:

H -6, (5.4.17)

where the fibre over s € & is given by the Lie algebra of the group of holomorphic gauge
transformations of the vector bundle Q,

9, == H°(X,EndQ,). (5.4.18)
Then, by application of Lemma 5.4.3, there is a family of Hil’l(X )-valued characters
Fo: $Hs — HY'(X). (5.4.19)

Theorem 5.4.5. Assume that (X,Q, P) admits a solution (w,h) of the Hull-Strominger
system (3.1.14) and balanced class

b=[|Qll.w""] € Hie"" (X, R). (5.4.20)
Then, there ezists s € & such that (Fs,b) = 0.

Proof. Consider the Bott-Chern algebroid Qp ;. an associated to the solution (w, h), defined
as in Example 2.2.6. Denote by s = [Qpas, ar] € © its isomorphism class. Then, by
Proposition 5.3.5, the (possibly) indefinite Hermitian metric G in Lemma 5.1.2 solves the

Hermitian-Einstein equation (5.3.1), and hence (F;, b) = 0 by application of Lemma 5.4.3.
[
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Remark 5.4.6. Following [70], we expect that the family of Lie algebras $ depends holomor-
phically on parameters, upon restriction to any locus S, C &% with fixed real string class o
(see [115] and [69, Proposition 3.11]).

Observe from Lemma 5.4.3, that the algebroid structure of Q is superfluous to the Futaki
invariant. Rather, only the holomorphic bundle underlying O determines the value of F.
These are classified by the image of the composition:

HYN (X R) -2 HY(QY) — H2'(X). (5.4.21)

Hence, Lemma 5.4.3 implies F is constant in the fibres of the second map of (5.4.21). This
is the main motivation to introduce the more flexible anchored endomorphisms in Section
5.4.3 to compute Futaki invariants. It is an open question whether it is possible to refine
Lemma 5.4.3 to produce a genuine Bott-Chern algebroid invariant.

As a direct application of Theorem 5.4.5, we obtain:

Theorem 5.4.7. Let (X,Q) be a Calabi-Yau threefold endowed with a pair of holomorphic
vector bundles Vi and V', where the underlying smooth bundle of Vy is isomorphic to T1°
and satisfying (3.2.5). Assume that (X, Q, V) admits a solution (w, h) of the Hull-Strominger
system (3.1.14) with balanced class b € Hoa(X,R), such that V is the Chern connection on
Vo of a Hermite-FEinstein metric hg satisfying:

Fp, Aw™ 1 =0. (5.4.22)
Then, there ezists s € & such that (Fs,b) = 0.

In the case that the holomorphic tangent bundle 71 (with the standard holomorphic
structure) is polystable with respect to some balanced class b € Hé’é(X ,R), we expect that
Theorem 5.4.5 provides also an obstruction to the existence of solutions to (3.1.11) with
V =D"I.

As a consequence of Theorem 5.4.5, in order to disprove the strong version of Yau'’s
Conjecture in Question 4.3.1 for the case of Calabi-Yau threefolds, it suffices to find a tuple
(X,Q, V), o € R and a balanced class b € Hé’g(X, R), such that V' is b-polystable and

(Fob) #0, Vs €80,

where $° denotes the restriction of the relative family of string algebroid extensions over a
dense open subset of the moduli space for Vj.

When the Calabi-Yau manifold X satisfies the 90-Lemma the space & reduces to a
point (see Proposition 2.2.19). In this case we obtain a unique invariant Fq obstructing the
existence of solutions, which can be regarded as a stringy version of the classical Futaki
invariant for the holomorphic bundle P. Based on this, we expect that Fy provides a useful
tool to address Question 4.3.1 in the case of Calabi-Yau manifolds obtained via conifold
transitions and flops.
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Remark 5.4.8. As a consequence of Proposition 5.3.4 and Lemma 5.4.3, we obtain a
stronger version of Theorem 5.4.5. For instance, let P be a holomorphic principal bun-
dle over a compact complex manifold X which admits a solution (g, h) of (5.3.12). Let g be
a Gauduchon metric in the conformal class of g. Then, if g is balanced, then F, = 0 where
b= [0 Y.

Remark 5.4.9. While Theorem 5.4.5 provides a new method to tackle Question 4.5.1, as
discussed in this Section, it may also be regarded as a tool to study canonical geometry on
string algebroids. This question was addressed in [68]. In the light of the results of this
Section, can be rephrased as the possibility of constructing a conjectural map:

Yo(R) DU — {b € Hpz"""(X,R) | (F,b) =0} (5.4.23)

that associates to an Aeppli class o in Q (see [68, Definition 3.20]), the balanced class of
the solution to the Hull-Strominger system (3.1.14) in o.

5.4.3 Anchored endomorphisms of Bott-Chern algebroids

Our first goal is to define a new family of holomorphic endomorphisms of Bott-Chern al-
gebroids. This notion, much wider than Definition 2.1.12, is actually enough to define the
Futaki invariants in this setting, and allows to test a larger number of obstructions.

Let (X, ) a compact Calabi-Yau manfiold and we fix P a holomorphic principal bundle,
for a complex Lie group G, with quadratic Lie algebra (g, (-,-)) as in the previous Sec-
tions. Consider the Bott-Chern algebroid Q = Qpa;g, an (see Example 2.2.6) associated to
a solution of

dd°w + (Fy, A Fy) = 0. (5.4.24)

Let End Q be the bundle of endomorphisms of the holomorphic vector bundle underlying
Q, that is, a priori no compatibility is required with the algebroid structure. We will denote
by A2Q C End Q the bundle of orthogonal endomorphisms of Q with respect to the ambient
pairing (-, -)o, that is, of sections satisfying

(e o+ (900 =0. (5.4.25)

Definition 5.4.10. An clement ¢ € T'(A?Q) is called an anchored endomorphism of Q if
there exists ¢ € I'(End T'°) such that:

Top=¢on. (5.4.26)

In our next result we provide an explicit characterization of anchored endomorphisms, via
the identification of the smooth complex vector bundle underlying Q with 7"° @ adP & T},
(see Example 2.2.6).

Lemma 5.4.11. Let Q = Qpoig, an be the Bott-Chern algebroid associated to a solu-
tion of (5.4.24). Let ¢ be a smooth anchored endomorphism of Q. Then, there ezists
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¢ € T(EndT'?), b € Q*° o € I'(A*adP) skew-orthogonal, and o € Q'¥(ad P), uniquely
determined by o, such that

0] 0 0
=9, a,0,b) = | « o 0 : (5.4.27)
b —2<Oé, > —¢"

Conversely, any tuple (¢,b, 0, ) as above defines a smooth anchored endomorphism ¢ of Q
via formula (5.4.27).

Proof. The proof follows directly from [61, Section 3.1]. O

In our next result we characterize the holomorphicity condition 0oy = 0, for pin (5.4.27),
where dg denotes the Dolbeault operator in Example 2.2.6.

Lemma 5.4.12. Let Q = Qpoig, an be the Bott-Chern algebroid associated to a solution
of (5.4.24). Let o = p(p,a,0,b) be a smooth anchored endomorphism of Q. Then ¢ is
holomorphic if and only if the following conditions are satisfied

06 =0

0o =0
_ (5.4.28)

da+o(Fy) — ¢aF, =0

0b + ¢1(2i0w) — 2{a A F},) =0

where:

iX1,0(¢JFh) == id)(Xl»O)Fh (5429)
1y1,00x1,0 (¢J(228w)) = iy1,0i¢(X1,0)(2iaw) + i¢(y1,0)iX1,o (226&]) (5430)

Proof. With the notation in Lemma 5.4.11, the proof follows from
(Do) (X +€+71) = Da(p(X +&+7)) — p(Do(X + € +1))

using the expression for Jg given by (2.2.17). Imposing that this expression vanishes for
any X, ¢ and r, a lengthy but straightforward computation shows it is equivalent to the
equations above. ]

The system of holomorphicity equations (5.4.28) can be, in general, difficult to solve
completely. However, we now observe there exist natural families of solutions.

Remark 5.4.13. The subspace of solutions to (5.4.28) with ¢ = o = 0 is given by

So={(b,a) | Ob—2(a N F},) =0,bec Q*° ac H'(X,Q"(ad P))}. (5.4.31)
If we define (cf. [70, Proposition 4.6])
op : HO(X, Q" (ad P)) — H2'(X): a > [2(a A F))], (5.4.32)

the space Sy fits in the short exact sequence
0— H2°(X) — Sy — ker dp — 0 (5.4.33)

In particular if h%O(X) > 0 or if B°(QY0(ad P)) > h%’l(X), then Q has a holomorphic
anchored endomorphism.
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Remark 5.4.14. Suppose that X satisfies the 00-Lemma. Then, for any s € H°(X, ad P),
we can construct holomorphic anchored endomorphisms ¢ = p(¢, «, 0,b), defined by (5.4.27),
as follows: set

p=0, a=0d"s, oc=]s,] (5.4.34)
Then, the first three equations of (5.4.28) hold. Now, we have:
0(0"s N Fy) = (00"s \ Fy) = ([Fy,s] N Fy) = —(s A[Fp A Fp]) =0, (5.4.35)
and hence, by the 00-Lemma, there exists b € Q>0 such that
0b = 2(0"s N\ I,), (5.4.36)
since the right hand side is 0-exact and d-closed.

Next, we address the computation of the Futaki invariants in Theorem 5.4.5 for holomor-

phic anchored endomorphism of Q. For this, given a pair of Hermitian metrics g and gy on
X,yeT(End T ® C), and 7 € Q?, we denote

1 1
trg007 = 5903J€f€5), AT = 57(€j, Jej), (5.4.37)
for any choice of go-orthonormal basis €9, ... €3 of T, where we use Einstein’s convention

to sum over repeated indices.

Proposition 5.4.15. Consider the Bott-Chern algebroid Q = Qpaia, an associated to a
solution (w, h) of (5.4.24), with w positive. Let ¢ = p(¢,,0,b) be a holomorphic anchored
endomorphism of Q and let b = [wi™'] € Hps"" (X, R) be a balanced class. Then, the
evaluation of the Futaki character in Lemma 5.4.3 is given by

n
“o

<F<90)7 b) = - /X(trg,goRVB + <AWOFh7 Fh>)<€k> ¢*ge%1 - ¢€’1€,0> n

0,2 wy
_/<trg,gonBvb>g_0
x n

o (5.4.38)
+/ (tl”ad p(O’[AwOFh, ]) + <O'Fh(€?, ek), Fh(Jeg, ek)>) 70
X
+ 2/ (a(ex), AWOVZ];’F;L + Fh(Je?, g’ldcw(eg, ks ))}C%O
X
for any choices of g-orthonormal basis ey, .. ., es, and go-orthonormal basis €Y, ...,€S, of T.

Proof. Consider the isomorphism 9: Qpgg, a» — 1T ® C @ ad P defined by Lemma 5.1.2,
that is,

VX 4+r+8)=X—-1g¢+r
Then ¢ =1 oo™t is given by

PX +7) =d(X") — g™ (X)) = Lg7hixob+ g o, r) + o(r) + ixr00
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where ¢*(X%!) = g71g(X%! ¢). By Lemma 5.4.3 and formula (5.2.11), it suffices to com-
pute:

N 1
tr(pSa) = 5“(90FG(6§‘)7 Je)).

For this, using that ¢ = (¢, o, 0,b) depends linearly on ¢, «, o, and b, we can decompose
uniquely

Q= Py + Py + Pa + Po,
so that ¢, only depends on ¢, and similarly for the rest. Now, denoting my0: T ® C — TH°
the natural projection, by Lemma 5.2.1 we have

tr(gb(ng(eg, Je?)) = tryge(¢ o mo(Ry- (62, Je?) —Ff A ]F(e?, Je?)))
— trrec(@™ o mo1 (Ry- (6’?’ Je?) —F' A ]F(6?7 Je?)))
= g(By- (¢, J))er, "7ey’ — ey’
— (Fy(Jel, ¢ oept — dey”), Fu(ed. ex))
+ (Fy(el, ¢ eyt — dey”), Fu(Jed, er))
= %ddcw(eg, Je?, Ches gzﬁ*ge%l — gbe,lc’o)
+ g(Ryz(eg, qb*ge%l — gbe,lg’o)e?, Je?)
— (Fu(Je), ¢™1ept — dey), Fule), ex))
+ (Fn(ed, ¢ eyt — gey”), Fu(Jed. er))
= — 2tr, 4, (Rys(e, oroelt — gey"))
— 2(Auo Py Fulew, ¢0ep" — de)),

where in the third and fourth equalities we have used (1.2.8) and (5.4.24), respectively.
Similarly,

tr(@pFa (e}, Jeb)) = — stroec(g—'bo mo(Ry-(€), Je)) — Ff A F(e), JeY)))
= — Lb(Ry-(¢%, JeQ)er, ex) + Lb(g H(En(Jel, ), Ful(el, er)), ex)
— 3b(g (Fu(e), ), Fu(Je), ex)), ex)
= — 19(Rys(ex, em)eg, Je;-))b(em, ex)
+ %b(g_l(Fh(e?, ), Fh(eg, er)), Jex)
— %b(g_1<Fh(eg, ), Fh(Je?, ex)), ex)

0,2
= = 2<trg,gonB’ b>9’

and, using the notation in Lemma 5.2.1,

tr@aFg(eg, Je?) (a(er), H(eg, Je?)ek)

2
4{afey), AwOVZ;_FH + 4(a(es), Fh(Je?, g_ldcw(eg, ek, )))
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Finally, taking basis {r} and {7} of ad P such that (r, ;) = d3;, we have:

tr(@UFg(eg, Je?)) = traq p(oo ([Fh(e?, Je?), J=FA FT<€?, Je?)))

= (7, o ([Fh(ej, J€j), mil))
— (Fry 0 Fu(J€), g7 (Fu(€], ), m)))
+ (fk,th(eg,g’1<Fh(Je?, ), 7k)))

= 2trag p(0([Awy Fhs )
— (fk,UFh(Je?7ek))<Fh(€2, ex), k)
+ (fk,th(e?,ek)MFh(Je?, k), Tk

= 2traq p(0([Awy Fh, *]) + 2<0Fh(€?, ek), Fh(Je?, ex))-

5.4.4 Computations of Futaki invariants

In this Section we give an account of several computations of the Futaki invariant on families
of Bott-Chern algebroids (5.4.19). While for the moment being our results are not conclusive
to give an answer to the Question 4.3.1, they rule out some families of manifolds and hint
towards some others where potential non-trivial obstructions may appear.

We begin by giving the details of a slight generalization to of a comment that was anticipated
in 28, Introduction].

Proposition 5.4.16. Let (X,Q) be a compact Kdihler Calabi-Yau threefold, and let Vi and
Vi be holomorphic vector bundles satisfying (3.2.3), (3.2.5). We assume Vy is diffeomorphic
to TYO. Moreover, suppose there exists a Kdihler class k € HY(X) such that Vy and Vy are
k-stable. Then:

1. There exists a unique Bott-Chern algebroid (Q, P, p), up to isomorphism, where P =
Fr Vo xx Fr Vi with Lie algebra pairing given by:

((ro,71), (80, 51)) = —atry(roso) + atry, (r151), o €R. (5.4.39)

2. For any balanced class b € H**(X), the Futaki invariant:
(F,b): End(Q) — C (5.4.40)
given by pairing (5.4.19) against b vanishes.

Proof. Given that (3.2.5) holds, by assumption for any h; hermitian metrics on V;, there
exists 7 € QY (X, R) such that:

dd°t — atry, Fp, A Fy, + atry, Fp, A Fp, =0, (5.4.41)

which defines a Bott-Chern algebroid Q = Qpgiar, Ang i) (see Definition 2.2.13). Since X

is Kahler, in particular it satisfies the d0-Lemma, hence the deformation map (2.2.38) is
constant. Then, the first item follows by Proposition 2.2.19.
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For the second item, first recall that the stability condition for V; is open in the Kahler
cone of X. Therefore there exists an open set U® C H™'(X) within the stability locus
of Vo and Vi. Let ' € U". Then, by the existence result in [28, Proposition 3.2], there
exists a solution to the Hull-Strominger system (3.1.11) with the condition (3.1.12) and
Vo = (T, V%) and with balanced class Ax?, for A\ >> 0. Therefore, by Theorem 5.4.7,
the Futaki invariant (F, Ax’?) = 0. Using the linearity of F, we see that it vanishes on any
balanced class given by the square of a Kahler class in U”. Now, we claim this is actually
an open set in the balanced cone of X. Hence the Futaki invariant vanishes identically on
all the balanced cone, using again that it is linear in the balanced class. Finally, to prove
the claim, we just use that the map (see [56]):

b: H"(X) — H**(X), o> 0° (5.4.42)
has invertible differential at Kéahler classes, as a consequence of Hard Lefschetz Theorem. [

Our next aim is to exhibit non-trivial Futaki invariants that capture slope unstability of
the bundles. Observe that, in general, for a holomorphic string algebroid (Q, P, p), the set
H°(End(ad P)) does not embed in H°(End Q), hence (5.4.19) does not accomodate in a
straightforward manner the classical Futaki invariant of Lemma 5.4.14 for the bundle ad P.
Therefore, in the following Example we consider a particular situation:

Example 5.4.17. Let X be a compact complexr manifold of dimension n, and let Vy, V; be
holomorphic vector bundles. Moreover, assume Vo = U @& W is a split sum. Let (w, hg,h1) a
solution to the Bianchi identity:

dd‘w — atr Fyy N\ Fp, + atr Fj,, A Fy,, o € R\{0}, (5.4.43)

where hg is a split sum (hy,hy). Consider the Bott-Chern algebroid Q = QP72i@W7A(h07hl>,
where P = Fr Vi x Fr V. Then:

ad P =2 End Vy @ End V;

(5.4.44)
=~ End U @ End W @ Hom(U, W) @ Hom(W, U) @ End V;.
Then, we define a section o € I'(End(ad P)) given by:
g = idHom(U,W) - idHom(VV,U)a (5445)

extending by zero on the rest of components of End(ad P). and vanishes on traceless endo-
morphisms of U, W, and has zero component in the rest of the terms of End(ad P). Next,
check that o is orthogonal as a section of (Q,(-,-)), where the pairing is the same as in
(5.4.39). For this, we write for a section r € I'(ad P):

r=ry+rw+row +rwu +7n1 (5.4.46)

to denote each of the terms in the decomposition (5.4.44), with obvious notations. Then, for
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any two sections r,s € ad P we have:

(o(r),s) + (r,0(s)) = (row — rwu, s) + (r, suw — swu)
() (Yo

S o atr(ry - 0)
row Tw Suw 0

= — (—tI‘ TWUSUW) + tr(rUWSWU)) — X (tI‘(’T‘WUSUw) — tr(rUWSWU))
=0.

Moreover, by Lemma 5.4.12, oo = 0 if and only if:

5End(ad PO = 0,

5.4.47
U(F(ho,hl)) = O. ( )

The first of this equations holds clearly by the expression of o. For the second one, we use
that o has vanishing components in End(End(U)), End(End(W)) and End(End(V})), while,
by assumption on hgy, Fn,n,) has non-trivial components precisely in these terms. Then, we
can evaluate the Futaki invariant on o for a balanced class by = [wi™'] € Hpe"" (X, R).
By (5.4.38), and using the second equation in (5.4.47):

(F(0),bo) = 2 / o £(0 0 [ Flr oy, )
X

n

_» / 050 16 (0 0 [Ausg Fhg, ) 6
X

To compute this, first note that if r € I'(End Vp), then:

(Ao Fho, 7] = ( 0 (Ao Fhiy) 0 Twi — rwur © (Ao Py ) )
won o (AWOFhW)OTUW_TUWO(AWOFhU) 0
. O _(AwthU)OTWU+TWUO(AwthW)
UO[AwthoaT] - ( (AwthW)OTUW—TUWO(AwthU) 0
from where we obtain:
trEnd Vo (O' e} [AnghO; ]) = 2trw<AwOFhW) — 2trU(Aw0FhU). (5448)

Therefore, we can finish computing the Futaki invariant:

(F(),bo) = 4 /X (11 (Ao Py ) = 10 (A Py )5

= —8mi(n — DIk W upg, W —rk U - pp,U).

If a solution to the Hull-Strominger (3.1.14) exists in by implies, in particular that py, Vo = 0,
we conclude that (F(o),bg) measures whether the splitting Vo = U @ W destabilizes Vi with
respect to bg.
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Now, we give some Examples about the computation of Futaki invariants for the Hull-
Strominger system on complex homogeneous manifolds. Next, we exhibit a situation in
which one can abstractly argue the vanishing of the Futaki invariant, while at the same time
we show that it is computationally very involved, even for homogeneous manifolds.

Example 5.4.18. Let X = (I'\G, J) be the one-parameter family of complex locally homo-
genenous threefolds determined by the structure relations:

dw; = dwy =0, dws = wis + wig + bwyg — Weg, (5.4.49)

in a suitable invariant frame {w;} of Tt ,, corresponding to the real Lie algebras Lie G' = by,
b, or bs depending on whether the parameter b € Q satisfies b* < 1, b* = 1 or v* > 1
respectively (see Section 5.4.28), and let o« < 0 be a fized constant. Then, we obtain a family
of solutions to the Bianchi identity:

dd‘w — atr Fy, N\ Fp, + atr Fy, A F,, (5.4.50)

by Proposition 4.2.10 setting vk Vi = 1. Here, the parameter s3 of w as in (4.2.13) is
determined by « and Fy,. In particular, we also obtain a family of balanced classes {o(w)}
indexed by w.

Let Qp,giaw,A(hoyhl) be the associated family of Bott-Chern algebroids, where P = Fr Vi X x
Fr Vi, and the pairing (-,-) is as in (5.4.39). In the manifold X, the cohomology group
Hi’l((Lie G,J),R) computes Hi"l(X, R) as a direct application of Theorems 4.1.5 ,4.1.6
and Remark 4.1.7. It is then straightforward to check that the map (2.2.38) is constant.
Therefore, by Proposition (2.2.19), every Bott-Chern algebroid in the family Qp,giaw,A(hMl)
shares the same isomorphism class, that we denote by Q.

Now, again by Proposition 4.2.10, Q admits solutions to the Hull-Strominger system in
any of the balanced classes o(w) in the above family. Then, by Theorem 5.4.5 the Futaki
imvariants for Q:

(F,o(w)) =0. (5.4.51)
Since F is linear in the balanced class, then even:
(F,b) =0, (5.4.52)

where b is any balanced class represented by an invariant metric. Therefore, we do not find
non-trivial invariants for this Fxample. Even though, for completeness we now give some
details on how an explicit computation of (5.4.52) is performed exploiting the invariant
ansatz. This can be extrapolated to other locally homogenenous Fxamples, where an abstract
argument to determine F may not be available.

The computation of the Futaki invariant requires first knowing the holomorphic sections
of End Q. While determining all of them may not be feasible, a distinguished family is given
by anchored endomorphisms (see Section 5.4.3). Recall that an anchored endomorphism is a
tuple (¢, a, 0,b) as in Lemma (5.4.11), where ¢ € T'(End T*?), a = (ag, 1) € QY(End Vp &
End Vi), o € T(End(ad P)) and b € Q%°. To obtain manageable formulae, we will restrict
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here to Vo = O, o € I'(End(End Vp)) and F,, = F(0,n,p,0) (see Proposition 4.2.10).
Then, using the global invariant frame {X;} for T'Y and dual frame {w;} for 17, each of
these tensors admit a natural invariant ansatz. Therefore, we can write them in the following
form:

o= (@-j), ¢i; €C, 1,7 =1,2,3.
ap =30 wi(adr), ah €C, Jk=1,2,3.
ar =30 wal, ol eC. (5.4.53)
o= (oij), oijm€C, 4,5,k 1=1,23.

b= Zﬁi<j§3 wijbij, bij e C.

With the aid of a mathematical software, one can check that the invariant solutions to the

holomorphicity equations (5.4.28) for the presentation Q = QP,2i8w0,A(hO’hl), where:
wo = (w1 + wyg + ws3), (5.4.54)
and coupling constant o as in (4.2.40), are given by:
0 0 0
o= 0 0 0
2) (imaat —mia?
gy 21 X m2§ 1m0 oy + bps1 0
oy free, (5.4.55)

1 2
o] = W1 + Woxy,

o € End(End Vg, (-,-)) free,
7 2) 2
b = biawia + <M bbaz — ¢31> 13 + bazwas.

mo -
We give now the result of evaluating each of the terms of the expression (5.4.38). Although
our computations are general, here because of limitations of space, we have restricted to the

family of balanced classes b = [w?], where (cf. (4.2.13)):
w = i(wﬁ + Solos + 83W3g) + 84(0)15 — OJQT) + Sg (wlg — OJ:q) + ng(O)g + OJ3§). (5456)

Then, we compute separately each of the integrals in the expression for the Futaki invariant
of Proposition 5.4.15 associated to each of the classical tensors for anchored endomorphisms.
We provide here the explicit expressions:

Y

I¢(b) _ 24(2(34+b%)seal+(ma+ims)(isebaz+sod31)) /X%?’

- (ma—+ims)(s3—s2)

I (b) _ 4(3+b2)(—i56a}(mg—im3)+59a%(m2+im3) w_3
o (m3+m3)(ss—s7)) P (5.4.57)

[0(6) = 07
Ib(b) _ 256b23(ma—ims)—2s9(2(3+b2)a?+i(ma—ims)¢s1) / W’
X

(ma—ims)(s3—s2) 3
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We stress that each of the terms g4, @, @b is not holomorphic and only the sum of these
Futaki terms is a sensible invariant. One can readily check that this sum indeed vanishes,
as expected. However, these computations show that the Futaki invariant constructed can be
computationally very involved.

A number of issues from the above Example should be avoided to find non-trivial in-
variants for the Hull-Strominger system. In the first place, we can test Futaki invariants
for families of Bott-Chern algebroids modelled on the image of the map (2.2.38), which was
trivial in Example 5.4.18. Moreover, from Section 5.4.2, it is clear that only the holomorphic
structure of Bott-Chern algebroids is used to define Futaki invariants, hence the restriction
to evaluating on anchored endomorphisms is not necessary. In the following Example, we
embrace this more general setting to compute invariants.

Example 5.4.19. Let X = (I'\G, J) be the complex homogeneous manifold with underlying
real Lie algebra Lie G = big. We refer to Section 4.2.2 and Ezxample 4.3.6 for details.
We have not been able to find solutions to the Hull-Strominger system with the instanton
condition (3.1.12) on X, hence it is reasonable to look for obstructions on this manifold.

Recall that T}, has global frame {w;} satisfying the structure equations:
dwl = 0, dwg = W13 + W13, dwg = @'(w1§ — COQT). (5458)

For simplicity, we will consider the Hull-Strominger system (3.1.14), where the principal
bundle is P = Fr Ly X x FrL{, where Ly and L, are the holomorphic line bundles admitting
hermitian metrics hg, hy respectively satisfying:

Fy, =imj(wz — wyp), my € R. (5.4.59)
Then, a solution to the Bianchi identity with coupling constant o € R:
ddy — aFp, A Fry + aFp, A Fpy, =0 (5.4.60)
s given by:

(mg — m?)wsz. (5.4.61)

®©|Q

’}/:

This determines a Bott-Chern algebroid Qpaisy,a (see Example 2.2.6), where we denote
A = A(pg ) for the Chern connection of of (ho, hy) on P.

On X, by Theorems 4.1.5, 4.1.6 and Remark 4.1.7, the Chevalley-Filenberg cohomology
group Hy' ((b1g, J),R) computes the group Hy' (X,R). Therefore, it is easy to check that
the image of the map (2.2.38) parametrizing isomorphism classes of Bott-Chern algebroids
extending P is parametrized by:

determining an associated one-parameter family Q. = Qpaia(v+r),4 of Bott-Chern algebroids.
Moreover, using the composition map (5.4.21), one can see the holomorphic vector bundles
underlying the algebroids Q. and Q. are also non-isomorphic if T # 7'. The holomorphic
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bundle Q, has by construction a natural smooth splitting Q, = (T*° @ ad P & Tio,gQT).
Moreover, here ad P = O%*. Therefore, using the smooth global frames {X;} for T** and
{wi} for T{y, we have a fibre-preserving bundle diffeomorphism Q. — X X C8. Ezplicitly:

Xi — €, idEnde = €14, Wi > €545, 1= 1, 2, 3, j = O, 1, (5463)
where e; are the constant sections induced by the standard basis of C8. With respect to this
= = 0,1y - .
frame, we compute the Dolbeault operator of Q,, g, = 0+, where d € Ms«s(S2y ) is given
by:
0 0 0 0 0 0 0 0
wy 0 0 0 0 0 0 0
iy —iwy 0 0 0 0 0 0
iMmows —imowt 0 0 0 0 0 0
§ = imiwsy —imiwy 0 0 0 0 o0 0 .
. 2 2
0 0 4twj — %u@ 2iamowy  —2iamiwy 0 —wg —iwg
0 0 Wu@ —2iomowy  2iamiwy 0 0 Wy
. 2 2 - 2 2
—dtwy 4 me—mi) o Zielmaomi) 0 0 0 0 0 0
(5.4.64

Moreover, with respect to this frame, invariant endomorphisms are identified with constant
sections with values in Mgys(C). Moreover, they are holomorphic if they commute with §,
that is, it commutes with iy]d for j =1,2.3. For generict € R, there are 12 independent
holomorphic endomorphisms. For illustration, we give here one of them:

¢ = (i), Pa1=mi, P51 = my, (5.4.65)
and the rest of components vanish.

We endow Q, with the hermitian metric Hy induced by the standard hermitian inner
product on C®. Then, the Futaki invariants with values in H}l’l(X,R) with respect to the
above holomorphic endomorphisms are given by [trg.(pFg,)]. For instance, for ¢ in (5.4.65)
we obtain:

tro. (9Fu, )] = 2imoma|wyz] = 2imemy[0w,] = 0 € Hy (X, C). (5.4.66)

For the other elements in the basis of holomorphic endomorphisms of Q., we also ob-
tain the zero Aeppli class. Therefore, we do not find non-trivial Futaki invariants for this
Ezxample.

The computations in Example 5.4.19 can be performed analogously on other complex
homogeneous manifolds, with several choices for bundles (including higher rank), and for
metrics solving the Bianchi identity. Using the ICMAT cluster, we have performed a large
amount of computations applying the above method of Examples 5.4.18 and 5.4.19 systemat-
ically on every complex manifold described in Section 4.2, and also on the rest of homogenous
manifolds in [51], with bundles Vj and V] of ranks 1 to 5, and obtained Futaki invariants sym-
bolically whenever possible or recurring to random sampling when the set of free parameters
is too large. However, despite our efforts, we have not been able to find non-vanishing Futaki
invariants with the property that the bundles are polystable with respect to the balanced
class. It is highly unlikely that there is a non-trivial invariant on these manifolds using an
invariant ansatz. Nevertheless, it is still completely plausible that there are non-vanishing
Futaki invariants in higher cohomogeneity or outside the homogeneous realm.
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Chapter 6

The coupled Hermite-Einstein system

The aim of this Chapter is to introduce a new system of differential equations in hermitian
geometry called the coupled Hermite-Fistein system, first appearing in [65] as the set of
conditions to construct a coupled Hermite-Einstein metric, in the sense of Chapter 4. Here,
we retake the study of the geometry of this system, construct explicit solutions and discuss
some interesting relations to other systems of equations in hermitian geometry and heterotic
supergravity.

6.1 Introduction

Let X = (M, J) be a complex manifold of complex dimension n, and let P be a holomorphic
principal bundle with structure group G. We will assume that G is a complex reductive Lie
group, with X' C G maximal compact subgroup. Moreover, we will assume (g, (-,-)) is a
quadratic Lie algebra, with the pairing restricting to real values on £ = Lie K.

Definition 6.1.1 ([65]). Let (w, h) be a pair of a hermitian metric on X and a reduction of
structure of P to K, and let z € Lie Z(K). Then (w,h) solves the coupled Hermite-Einstein
system with degree z in (X, P) if:
Fy Aw"™t = Ew”,

n
pB+<Zth> :07 (611>

dd‘w + (F, \ Fy) = 0.
From the last equation, the Bianchi identity, a solution to the coupled Hermite-Einstein
system determines a positive Bott-Chern algebroid Q = Qp;g,, 4» as described in Example

2.2.6 (see also Definition 2.2.13). In fact, the coupled Hermite-Einstein system is closely
related to the existence of coupled Hermite-Einstein metrics on Q, as the next result shows:

Proposition 6.1.2. Let (w,h) be a solution to the Bianchi identity:
dd‘w + (Fy, \ Fy,) = 0. (6.1.2)

Moreover, assume that (w,h) solves the coupled Hermite-Einstein system (6.1.1) on (X, P)
with degree z. Then, the generalized hermitian metric G in Lemma 5.1.2 is a coupled
Hermite-Einstein metric in Q. The converse holds if K is connected.

128



Proof. Let (w, h) solve the coupled Hermite-Einstein system. Then, by Lemma 5.3.3, it is
enough to show that the system (5.3.12) holds. By the first equation of (6.1.1), it follows
that:

Sh = Ath =z (613)

is central, hence [Sy, ] = 0. Moreover, combining the first equation of (6.1.1) with Lemma
5.3.2, we get that the second equation of (5.3.12) holds too, hence (5.3.12) is satisfied.

Conversely, assume (w, h) satisfies the Bianchi identity and (5.3.12), and K is connected.
By the first equation of (5.3.12), A, F}, is a section of P, X 3(¢) C ad P,. Using that K is
connected, the adjoint action of K on 3(&) is trivial, hence the bundle P, x i 3(¢) admits a
global trivialization by a basis of 3(¢). Therefore, we obtain that:

ALF, € T(X x 3(8)). (6.1.4)
By the computation in the proof of Lemma 5.3.2, it follows that:
A" Fy + g Fy — %(Fy A xd‘w) = —Jd" (A, F), (6.1.5)

which vanishes by the first equation of (5.3.12). But then, combined with (6.1.4), we conclude
that d" restricted to the trivial subbundle X x 3(¢) C ad P, is the trivial connection and
A, F}, is constant. Therefore, we obtain that:

AF, = 2, (6.1.6)

for some central element z. Using the last equation of (5.3.12) and the Bianchi identity, we
conclude that the coupled Hermite-Einstein system (6.1.1) holds with degree z. ]

Remark 6.1.3. The condition of K being connected does not suppose a strong loss of gener-
ality as the principal application of the results in this Thesis is the study of Hull-Strominger
system (3.1.11) with the ansatz (3.1.12), for which K = SU(3) x SU(r) is indeed a con-
nected Lie group. Therefore, in the sequel, we will implicitly assume this and identify cou-
pled Hermite-Finstein metrics as in Definition 5.3.1 with equivalently solutions to (5.3.12)
or (6.1.1).

As suggested in the previous Remark, the coupled Hermite-Einstein system is related to
the Hull-Strominger system via the following result, which should be regarded as a slight
strengthening of Proposition 5.3.5, in the light of Proposition 6.1.2 above.

Proposition 6.1.4. Let (X, Q) be a Calabi- Yau manifold. Let P a holomorphic principal G-
bundle as stated in this Section. Assume (w, h) solves the Hull-Strominger system (3.1.14).
Then (w, h) is a solution to the coupled Hermite-FEinstein system on (X, ), P) with z = 0.

Proof. The Hermite-Einstein equation of the Hull-Strominger system (3.1.14) forces z = 0.
Now, by the argument of the proof of Proposition 5.3.5, we obtain that:

hence the coupled Hermite-Einstein system (6.1.1) holds with z = 0. O]
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Observe that in contrast to the Hull-Strominger system (3.1.14), the more flexible cou-
pled Hermite-Einstein system can be, in principle, posed for any complex manifold with no
topological or holomorphic requirements. However, if X satisfies some additional conditions,
one has the next partial converse to Proposition 6.1.4:

Proposition 6.1.5. Let (X, Q) be a compact, simply-connected Calabi-Yau manifold and P
a holomorphic principal G-bundle as in this Section. Then a solution (w,h) to the coupled
Hermite-Einstein system (6.1.1) with z = 0 solves the Hull-Strominger system (3.1.14).

Proof. 1t is enough to prove that under the assumptions, pg = 0 actually implies the con-
formally balanced condition:

d(||Q].w™ ) = 0. (6.1.8)

To see this, observe that by Proposition 1.2.1(1) and the fact that X is simply connected,
then the global holonomy of V¥ induced in Ky is trivial. Then, since X is compact, by [62,
Proposition 3.6], the equation (6.1.8) holds.

O

We finish this Section with a discussion about the quantity z appearing in the coupled
Hermite-Einstein system. To give an interpretation of z as a degree, we need to regard:

FuAwt=Zun (6.1.9)
n

as the Hermite-Einstein equation with respect to a hermitian metric on X defining a coho-
mology class. For this, let @ = e/w be the Gauduchon representative of the conformal class
of w (see Theorem 1.1.2). Recall that f is unique up to an additive constant, which for the
moment we do not fix. Then, (6.1.9) is equivalent to:
ey ze
A" = —aom. (6.1.10)
n

Where now [©0] € HZ_I’”_l(X ,R). To recover a Hermite-Einstein equation, we now describe
a conformal change in h.

Using the polar decomposition of a complex reductive group, we have that G = exp(i¢) K.
Hence, a reduction to a maximal compact subgroup K given by h € I'(P/K) is equivalent
to an equivariant map:

h: P — exp(it). (6.1.11)

Then, we set h/ = e¢™h, for a section v with central values. Under the hypothesis that K is
connected, u is identified with a section of the trivial bundle u € I'(X X &) (see the proof of
Proposition 6.1.2. Then, one can prove that (see e.g. the proof of [68, Lemma 3.23]):

Fyy = Fy, + 2i00u. (6.1.12)
Therefore, the Hermite-Einstein equation for A’

Fu Aot = Zgm (6.1.13)
n
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is equivalent to the scalar Poisson equation:
Apu = z(1 — e ). (6.1.14)

Then, the normalization of f may be chosen such that (6.1.14) admits a solution. The
upshot is that (6.1.9) is actually equivalent to a Hermite-Einstein equation that measures a
topological degree, and therefore links directly to the GIT theory of stability for principal
bundles (see [7], in a Ké&hler setting). Of course, if in the previous discussion the structure
group is taken to be G = GL(r,C) acting on the frames of a vector bundle P = Fr V| then,
the conformal rescaling described above is equivalent to the rescaling of a hermitian metric
on V.

Once the interpretation of z as a degree is justified, one can ask about its uniqueness.
In the vector bundle case, it is well-known the degree is determined by its topological type.
For principal bundles, this result carries over with minor assumptions:

Proposition 6.1.6. Let (X, P) be a compact complex manifold and a holomorphic principal
bundle as in this Section. Moreover, assume that:

[9.9] N 3(t) = {0}. (6.1.15)
Moreover, let w be a Gauduchon metric and h a hermitian metric on P solving the Hermite-
FEinstein equation with degree z € ¢:

Fy Aw" ! = iw", (6.1.16)
n

then z 1s uniquely determined.

Proof. The characters of the Lie algebra g are one-to-one with elements in (g/[g, g])*. There-
fore, under condition (6.1.15), there are no non-trivial central elements in the kernel of every
character. Now, let x be a character. Observe that by definition, it induces a well-defined
map:

x : I'(ad P) — C&. (6.1.17)
Hence, by evaluation of (6.1.16), we obtain complex numbers:
a(Px) = / X(Fn) AWt (6.1.18)
X

which may be regarded as an abstract first Chern class for P. We claim that these are
invariants of P: indeed, for a different metric 4’ on P, given the polar decomposition of G,
we can write h' = e™h, where u € T'(ad P,). Then, we consider the path h; = €'/ joining
h and h'. Using the formulae in the proof of [68, Lemma 3.23]:

d P - Y —
E\t:t0X<th) - X<_286ht((%H:toht)htol)) - _QGaX(%‘t:toht)hml)?
hence, we obtain:

’ ) d -1 n—1
E‘t=t0C1(P7 X) - _Q/XaaX(EtZtoht)hto ) A w — 07

since w is Gauduchon. Finally, by the first argument in this proof, if any two solutions of
(6.1.16) exist on (X, P), they share the same degree z, as it is uniquely determined by P
using all characters. O
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6.2 Obstructions the existence of solutions

6.2.1 Topological obstructions

In this Section, we exploit the cohomological features of the coupled Hermite-Einstein system
6.1.1 to produce obstructions depending on the complex topology of X and the signature of
the pairing on g. Throughout this Section, we make the same assumptions on X and P as
in the previous Section. First, we need the following definition:

Definition 6.2.1. Let X be a compact complex manifold of complex dimension n and o €
H55(X,R). Then o is called:

1. Bott-Chern numerically positive (negative) if for any cohomology class a € HX_L”_I(X, R)
represented by a Gauduchon metric,

o-a>0 (resp. <0) (6.2.1)

2. Bott-Chern numerically semipositive (seminegative) if for any cohomology class a €
Hz_l’”_l(X, R) represented by a Gauduchon metric,

og-a>0 (resp. <0) (6.2.2)

Observe that any class represented by a pointwise (semi)positive (1,1)-form is Bott-
Chern numerically (semi)positive, and analogously in the (semi)negative case. Moreover,
if X is Kéhler, then any positive (negative) class is Bott-Chern numerically positive (resp.
negative) in this sense too. However, the converse is not true, even if X is Kéhler. In that
case, integral Bott-Chern numerically semipositive classes are naturally identified with nef
line bundles, for which hermitian metrics with positive curvature need not exist (see e.g. [39,
Example 1.7]).

Before introducing the topological obstructions, we recall that for a smooth vector bundle,
while E — X, ¢;(E) is well-defined in H35(X,R), to define a class in Bott-Chern cohomology,
a holomorphic structure £ on E is needed (see Section 1.3.1), so that:

c1(€) = [er(E, D")]

(£ Fpr] € Hye(X,R) (6.2.3)

where D" is the Chern connection of any hermitian metric 4 on E. In what follows, we
reserve the notation ¢ (T'°) € Hpyh(X,R) for the first Chern class of the holomorphic
tangent bundle of X. This discussion motivates the introduction of the vector space:

Kpo(X) =ker(Hpo(X,R) — H3ip(X,R)), (6.2.4)

where we denote:

ker(d : Q% — Q%)
im(dde : Q% — Q%)

H3o(X) = (6.2.5)
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Note that:
H% (X)) > HX (X))o HEL (X)) @ HY2 (X 2
Bo(X) B0 (X) po(X) Bo(X), (6.2.6)

but they are not equal, in general. Here, H3~(X,R) C Hz.(X) is the set of fixed classes
under conjugation. Then:

c1(F) € Hyo(X,R)/Kpe (6.2.7)
is well-defined, irrespective of holomorphic structures. We also denote:

Ko (X, R) = Kpo(X) N Hyb(X,R). (6.2.8)

In the sequel we will use the following observation connecting the topology and hermitian
geometry of complex manifolds, which is interesting on its own.

Proposition 6.2.2. Let X be a compact complex manifold, and assume Kpc(X) = {0}.

Then, any Gauduchon metric is balanced. Conversely, if any Gauduchon metric is balanced,
then K55(X) = 0.

Proof. Suppose Kpc(X) = {0} and let w be a Gauduchon metric. We denote a = [w"!] €
H 7P H(X,R). Since [dd*w] = 0 € H35(X, R), using the hypothesis, we have that [dd*w] =
0 € H3.(X,R). Therefore, we may write dd*w = dd°f, for some smooth function f. Then :

/ dd*w A w" ! = / ddf ANw" ! = —/ fddw™ ! = 0.
X X X

Using this result, integrating by parts we obtain:

0 :/ dd*w A w" ™ = / dd*w AN (n—1)xw=(n— 1)!/ d*w A d(*w)
b X X
= (n — DY|d*w|[72 ()

which holds if and only if d*w = 0, that is, w is balanced.
Conversely, let b € K55 (X). Then, using the duality pairing Hpyo(X) = HY "7 H(X)*,
the class b vanishes on the Gauduchon cone, since b is represented by a d-exact form and

any Gauduchon metric is balanced, hence d-closed. Given that the Gauduchon cone is a
non-empty open set inside H3 " ~(X), it follows that b = 0. O

Remark 6.2.3. Observe that the condition Kpc(X) = {0} is equivalent to the condition that
the 90-Lemma holds on 2-forms. Hence Proposition 6.2.2 can be regarded as a strengthening
of the fact that Gauduchon metrics are balanced on 00-manifolds.

Now, building on Proposition 6.2.2, we obtain topological obstructions to solving the
coupled Hermite-Einstein system (6.1.1). Interestingly, these restrictions depend on the
signature of the pairing in the quadratic Lie algebra (&, (-,)).

Proposition 6.2.4. Let X be a compact complex manifold, P a principal G-bundle as in
this Section. Consider the coupled Hermite-Finstein system on (X, P) with degree z. Then:
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1. If (-,-) is negative definite and c,(T*°) is Bott-Chern seminegative, then for any solu-
tion (w, h), w is Kdhler and h is flat.

2. If (-, -} is seminegative definite and c1(T*Y) is Bott-Chern negative, then there exist no
solutions.

Moreover, if Kpo(X) = {0}:

3. If (-,-) is positive definite and c;(T'P) is Bott-Chern semipositive, then any solution is
conformally balanced and has degree z = 0.

4. If (-, ) is semipositive definite and c,(T*°) is Bott-Chern positive, then there exist no
solutions.

Proof. Suppose (w, h) is a solution to the coupled Hermite-Einstein system with degree z,
and let @ = e“w be the Gauduchon metric in the conformal class of w, for some smooth real
function u, and let a = [©"~!]. Then, by the transformation rule for conformal rescaling (see

e.g. [17]):
p5(@) = pp(w) + (& — 1)dd°u (6.2.9)
and the relation to the Chern-Ricci form ([3]):
pB = pc — dd*(w) (6.2.10)
which is valid for any hermitian metric. Then,

0=ppw) A"+ (2, F A &™)
= (po(@) — dd*® — (& — 1)dd°u) A" + (2, z)emDues

where we have used the above formulas and the Hermite-Einstein equation for h with respect
to w.

Then, integrating on X the above equation:
2mey (THY) - a — ||d*@|| p2(z) + |z|2/ e _ (6.2.11)
x n

In the hypothesis of (1), since e(®V* is a positive function, all the terms in (6.2.11) are

non-positive. Therefore any solution must be, in particular, conformally balanced and with
degree z = 0. Hence, in particular:

Fy A"t =0 (6.2.12)
da™t = 0. (6.2.13)

Using these conditions, it follows from a computation that:

/XAw(ddcw B A FD) A2 = 2(n — DI(((e~"d0, d0))o — ||FWl2)  (6.2.14)
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related to already existing formulas in the literature with no bundle term [52, Formula
(18)], [64, Lemma 5.3] (see also [101]). Since the left hand side vanishes and the pairing is
negative-definite, h is flat. It follows that w is pluriclosed and conformally balanced. Then,
by Theorem 1.1.3 it is a Kéhler metric. In the hypothesis of (2), the first term in (6.2.11) is
negative and the rest are non-positive, reaching a contradiction.

If Kpe(X) = {0}, by Proposition 6.2.2, the second term vanishes hence w is confor-
mally balanced. Moreover, in the hypothesis of (3), the remaining terms are non-negative.
Therefore, z = 0. In the case of (4) any solution yields a contradiction. O

Remark 6.2.5. We observe that combining Proposition 6.1.4 (see also [65, Section 5.2]) and
Proposition 6.2.4(1), we recover in particular the no-go result in [24] for solutions on a (a
priori non-Kdhler) Calabi- Yau manifold (X, ) endowed with a holomorphic vector bundle,
to the system

F, A1 =0
d(||Q[|w" ") =0
dd‘w + atr Fj, N Fj, =0

where € is a holomorphic volume form, and with coupling constant o > 0, which corresponds
to the Hull-Strominger system 3.1.11 dropping the V connection on the tangent bundle.

Remark 6.2.6. As a by-product of Proposition 6.2.4, observe in particular that taking the
principal bundle P to be trivial, (2) and (4) provide topological obstructions to existence of
hermitian metrics satisfying:

dd‘w =10, pp=0. (6.2.15)
We will return to the study of these metrics in Chapter 7.

The rest of this Section is devoted to illustrate in explicit Examples applications of the
topological obstructions of Proposition 6.2.4 in a variety of contexts.

Example 6.2.7. Let X C CPY be a projective manifold defined by the vanishing of homo-

genenous polinomials
X={P=..=P =0}

and let d; = deg P,. In particular, X is Kdhler and therefore Kpo(X) = {0}. By the
adjunction formula, ¢i(T*?) is positive, negative or vanishing if > if  d; is less, greater or
equal to N + 1 respectively.

Let P — X be a principal G-bundle with the assumptions of this Section, and suppose
(w,h) is a solution to the coupled Hermite-Einstein with degree z. By Proposition 6.2.4,
in case Y fd; < N+ 1, X is Fano and no solutions exist for semipositive-definite pairing.
Analogously, in case Y l; > N + 1, no solutions exist for seminegative-definite pairing.

In the case Y d; = N + 1, X is a projective Calabi-Yau manifold and only solutions of
degree z = 0 can ¢zist when (-,-) has a sign. Observe that these do in fact exist e.g. for w

Kahler Calabi- Yaurand h flat.
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Example 6.2.8. Let X =I'\H be the Iwasawa manifold (see Example 4.2.1), where Hc is
the complex Heisenberg group:

1 Z9 23
0 0 1

and T is the lattice of matrices with entries in Gaussian integers Z[i]. Recall the left-invariant
(1,0)-forms that descend to global frame of T{, X

w1 = le, Wy = dZQ, w3 = ng — ZQle (6217)
and the real Lie algebra of X is determined by the structure equations:
dwl = dWQ = O, dwg = W12. (6218)

Then, it is straightforward that 2 = wyss is a holomorphic volume form, hence cy(T*°) =
0e hﬁg’é(X, R). Moreover, the d-ezact form dws € Q%Y is not dd®-exact, X does not satisfy
the 00-lemma. In particular X does not admit Kdhler metrics.

Let P — X be a principal G-bundle as in this Section and consider the coupled Hermite-
FEinstein system on (X, P) with negative-definite pairing. By Proposition 6.2.4, supposing a
solution (w, h) ezists, in particular w is a Kdhler metric. Since X does not support Kdhler
structures, we reach a contradiction.

The following is an interesing Example where we illustrate how Proposition 6.2.4 car-
ries over to complex manifolds which do not admit a Kahler structure and neither carry a
holomorphic volume form.

Example 6.2.9. Consider the non-Kdhler family of Inoue surfaces Sy ([87]), which we
briefly describe here for the benefit of the reader. Let M = (m;;) € SL(Z,3) with real
eigenvalue r > 1 and complex eigenvalues w,w, and consider the action

7 — AUt(Zg), n- (k?l, k?g, k)g) — (kl, ]{?2, ]{?3)Mn (6219)

We denote (ri,r9,73) € R and (wy,wy, ws) € C3 its r and w-eigenvectors respectively.
Then, {(rs,w;)};_, is an R-basis of R x C. Consider the group action I' = Z x Z* on
S =H x C, where H denotes the complex upper-half plane, given by the biholomorphisms:

Stk ko ks) (21, 22) = (21 + X5 kit 22 + 55 kwy), (b, ko, k3) € A

6.2.20
fa(z1,22) = (r"z1,w"29), n € Z. ( )

which s free and properly discontinuous due to the relations:
leinij(rj,wj) = (rr;, ww;). (6.2.21)
The Inoue surface is Sy = I\S. Now, following [130], the (1,1)-forms on S

. Zdzl VAN dgl
N Re(21)2 ’

(071 Qg = ’iRe(zl)sz A dZQ (6222)
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are I'-invariant and hence they descend to Sy;. Moreover,

Q

polon + o) = _Zl (6.2.23)
so we conclude c;(T*°Sy) € H}S’é(SM,R) is Bott-Chern numerically seminegative in the
sense of Definition 6.2.1.

Now, let P — Sy be a principal G-bundle as in this Section. Then the coupled Hermite-
FEinstein system on (Sy, P) with negative-definite pairing admits no solutions. Indeed, by
Proposition 6.2.4, any such solution is Kahler on Sy, reaching a contradiction.

6.2.2 Algebraic obstructions

There is another source of obstructions to the coupled Hermite-Einstein system 6.1.1 related
to slope-stability in the sense of Mumford-Takemoto. This theory has been recently studied
in [67] to produce algebraic obstructions with no bundle P. We now generalize this picture
to accomodate the gauge bundle.

Next, we apply this theory to the coupled Hermite-Einstein system. As usual, we denote
by X a compact complex manifold of complex dimension n, and P a holomorphic principal
bundle for a complex reductive Lie group G. The Lie algebra of G is quadratic with pairing
(-, -) restricting to real values on Lie K, where K C G is a fixed maximal compact subgroup.
First, as a consequence of the above result we obtain the following:

Proposition 6.2.10. Let X be a compact complex manifold and P a principal bundle as
above. Assume the pairing (-, -) is negative definite. Moreover, assume (w, h) is a solution to
the coupled Hermite-FEinstein system (6.1.1) on (X, P) for some degree z. Then, the Bott-
Chern algebroid Qp o9, an in Example 2.2.6 is polystable with respect to the Gauduchon class
(0" Y, with & in the conformal class of w.

Proof. As a consequence of Proposition 6.1.2, the generalized hermitian metric G of Lemma
5.1.2 in Q = Qpyjg, an is positive-definite, as (-, -) is negative-definite, by assumption, and
moreover satisfies:

Fg Aw™ 1t =0. (6.2.24)
Then, Theorem 1.3.6 applies with h = G and o = [@" 1], hence Q is o-polystable. ]

As a consequence of this result, we extract algebraic obstructions to the existence of
solutions to the coupled Hermite-Einstein system in the case the pairing (-,-) is negative-
definite, that go beyond the topological obstructions of Section 6.2.2. In particular, when
the bundle P is trivial these obstructions recover the ones introduced in [67, Section 4.3].

Corollary 6.2.11. Let X be a compact complex manifold and P a principal bundle as above,
such that the structure group G is unimodular. Assume the pairing (-,-) is negative definite,
and consider the coupled Hermite-Einstein system (6.1.1) on (X, P):

1. If ¢, (T*?) is Bott-Chern numerically seminegative, then for any solution (w,h), w is

Kahler and h s flat.
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2. If there exists a subsheaf F C T, with ¢i(F) Bott-Chern numerically positive, then
there exist no solutions.

Proof. Let (w, h) be a solution to the coupled Hermite-Einstein system under the hypothesis.
Using Proposition 6.2.10, the bundle Q = Qpg;s, an is o-polystable, for o the Gauduchon
class determined by the solution. Now, observe that by construction of Q:

c1(Q) = ai(T7) + ar(Ap)
= c1(T1y) + r(TH) + cr(ad P) = 0,

where we have used ¢,(T7) = —c1(T"?), and ¢;(ad P) = 0, as its curvature form [Fly, -]
for A a principal connection on P, is traceless, since by assumption GG is unimodular. Now

consider 17, £y Qasa holomorphic subbundle. In the hypothesis of (1):
degoTl*,O = _degUTLO Z 07

but by polystability of Q it must actually vanish and Q splits. Since G is a Hermite-Einstein
metric for Q, it provides a holomorphic and metric splitting:

Q= Tl*,o ® Ap. (6.2.25)
la

However, then by the expression of Jg in Example 2.2.6, this means that:
Ow =0, (Fp,-)=0. (6.2.26)

It follows that w is Kéhler, and since (-, -) is non-degenerate, that h is flat, and the first item
follows. For the second, the existence of a solution to the coupled Hermite-Einstein system
implies the polystability of Q as before, but then, by assumption:

deg,F > 0 = deg, Q,
reaching a contradiction. O

Example 6.2.12. Let X 2 Z be a generically holomorphic submersion, where Z is Kdhler
manifold with ¢,(Z) < 0, and let P — X as in this Section, with unimodular structure
group and negative-definite pairing. Then, the coupled Hermite-Einstein system (6.1.1) does
not admit solutions on (X, P). Indeed, by the Aubin-Yau theorem [15, 137], there exists a
hermitian metric wy in Z such that:

plwz) = —wyz. (6.2.27)
Then:
a(p'TiZ) = —c1(p*TH7) = 27 [p*wy]

is Bott-Chern numerically positive, as for any Gauduchon class [w)']:

w?’L
/ prwyz /\w(’}_1 = / plfwz /\wg_1 = / (Awop|*wZ)_0 > 0,
X X\Y X\Y n

where we have restricted to the locus X\Y where p is submersive. Then, Corollary 6.2.11(2)
applies for the subsheaf p*1T,Z C T X
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6.3 Exact solutions

The Hull-Strominger system (3.1.14) is a natural source of solutions to the coupled Hermite-
Einstein system. However, the latter is more flexible and does not require any extra topolog-
ical or holomorphic condition. In particular, it admits solutions on complex manifolds that
do not support a holomorphic volume form or balanced metrics. The purpose of this Section
is to describe some solutions of the coupled Hermite-Einstein system on these manifolds.

6.3.1 Solutions in low dimensions

In this Section, we construct solutions to the coupled Hermite-Einstein system in low dimen-
sions. Throughout, we denote by C a Riemann surface, S a compact complex surface, and
in either case P is a holomorphic principal bundle with the same assumptions as in previous
Sections. In the case of Riemann surfaces, the solutions are completely classified.

Proposition 6.3.1. Let C' be a compact Riemann surface of genus g, and let P be a holo-
morphic principal bundle as in this Section. Let (w, h) be a solution to the coupled Hermite-
Finstein system (6.1.1) on (C, P) with degree z. Then, w is a constant scalar curvature
metric and h is Hermite-Finstein with respect to w. Moreover:

1. g =1 if and only if |z|*> = 0.
2. If g # 1, then the volume of C' is fixed by:

27(2g — 2)
|2?

vol(C,w) = (6.3.1)

Proof. Let (w, h) be a solution. Then, combining the first and second equations of (6.1.1),
we obtain:

F, = zw

p= _|Z|2w7 (6 :

hence the first part of the result follows. Now, recall that:

/ p=2mx(C) = 21(2 — 29). (6.3.4)
c
Therefore, integrating (6.3.3):

21(2 — 2g) + |z|*vol(C,w) = 0. (6.3.5)
Therefore (1) and (2) follow. O

From complex dimension 2 onwards, the situation is richer and more subtle. This shall
be compared with the case of the Hull-Strominger system, for which solutions in surfaces
are completely classified (see e.g. [62]). This is due to the fact that there, in dimension 2
solutions are still (conformally) Ké&hler, while this is not the case for the coupled Hermite-
Einstein system. For the case of trivial principal bundle, the system reduces to finding
hermitian metrics satisfying the following conditions:
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Definition 6.3.2. [71] Let X be a complex manifold. Then a hermitian metric w is Bismut-
Hermite-Einstein if:

dd‘w =0, pp=0. (6.3.6)
In dimension 2, solutions are already classified by the following result.

Proposition 6.3.3 ([71]). Let S be a compact complex surface. Let w be a Bismut-Hermite-
FEinstein metric on S. Then either:

1. w is Kahler Calabi-Yau and S is biholomorphic to a complex torus or a K3 surface.
2. S is a finite quotient of a diagonal Hopf surface, which is given by
(C\{0,0})/Z, n-(21,2) = (t1z1,t522), |ta] = |t2| > 1.
with hermitian metric induced on S by

ile VAN dfl + ZdZQ VAN dEQ

|21 + |22]?

w =

on C*\{0,0}.

In the following results, we give sufficient conditions under which a similar rigidity result
holds. Note that we do not claim that these exhaust the solutions of the coupled Hermite-
Einstein system in complex dimension 2.

Proposition 6.3.4. Let (S, P) be a compact complex surface and a holomorphic principal
bundle as in this Section. Moreover, assume the pairing (-, ) has definite signature. Consider
the coupled Hermite-Einstein system on (S, P). If (w, h) is a solution with degree z = 0, then
w 18 Bismut-Hermite-Finstein and h is flat.

Proof. Let (w,h) be a solution to (6.1.1). Then, (w,h) solves in particular the Bianchi
identity:

dd‘w + (Fy A Fy) = 0. (6.3.7)

Now, using that h satisfies the Hermite-Eistein equation with respect to w, integrating
(6.3.7) over S we obtain:

S S

Since the pairing has definite-signature, we conclude that h is flat, and in consequence,
that w is Bismut-Hermite-Einstein. O]

Corollary 6.3.5. Let S be a compact Kdhler surface with ¢1(S) = 0, and let P be a holo-
morphic principal bundle as in this Section. Moreover, assume the pairing (-,-) has a definite

signature. Consider the coupled Hermite-FEinstein system on (S, P). If (w,h) is a solution,
then w 1s Kahler Calabi-Yau and h is flat.
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Proof. Since (-, -) is positive-definite or negative definite, by Proposition 6.2.4, in either case
we have (w,h) solves the coupled Hermite-Einstein system with degree z = 0. Then by
Proposition 6.3.4, h is flat and w is Bismut-Hermite-Einstein. Then by Proposition 6.3.3 we
conclude that w is in fact Kéahler Calabi-Yau. m

Remark 6.3.6. The conditions of S being of dimension 2 in Propositions 6.3.3, 6.3.4, and
S being Kdhler in dim. 2 in Corollary 6.3.5 are necessary. Otherwise, in Section 6.3.2 we
construct solutions to the coupled Hermaite-Finstein system which escape these results.

6.3.2 Examples in higher dimension

The purpose of this section is to construct families of solutions to the coupled Hermite-
Einstein system (6.1.1) in any dimension. The construction in this Section follows closely
the torus bundle geometries described in [75, 76]. We briefly recall their fundamentals here.

Throughout, let (Z,wy) be a compact Kahler manifold of complex dimension n, and let
L;, for 1 = 1,...,2k be holomorphic line bundles. We denote by h; the Hermite-Einstein
metric on L; with respect to wz, and P; C Fr L; the hermitian reduction with respect to h;.
Hence, P; are naturally U(1)-principal bundles endowed with a Chern connection A; = A™
such that:

F AW = 2w}, (6.3.9)
where z; are the degrees of L;.
Now, consider the fibered product:
T < X =P Xz xz Py 22, A=@F pA, (6.3.10)

where p; : P, — Z are the canonical projections. Using the horizontal lift given by A, we
define the complex structure on X given by

J=A T, + Jpro A (6.3.11)

where J7 is the complex structure of Z, and Jr is an invariant complex structure on the fibre.
The integrability of J follows from the integrability of J, and Jp, together with Fio’2 =0
(see Lemma 7.1.6). Moreover, we endow X with the 2-form:

b 2k
wx =plwz + 2; <Ai A A, (6.3.12)

This form is of bidegree (1,1) with respect to J and gx = wx(-,J-) is positive-definite if
b > 0, hence defines a hermitian metric. Similarly we denote gz = wy(+, Jz+). Then, building
on the results of [76] we have:

Lemma 6.3.7. The following formulas hold.

p(wx) = p'p(wz) + L Doz + (Ao deAy)de A, (6.3.13)
ddwx = gzj(Fj A Fj+\eA; N deA,; (6.3.14)
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Proof. For the first item, first we compute d*wy. For this, let N = dim¢ X, n = dim¢ Z,
and let {e;}}*; be a gx-orthonormal frame, where {e;}7_, is p*gz-orthonormal restricted to
the horizontal lift of T'Z with respect to the connection A. Then:

dwx (V) = =300 (V& wx)(e;, V) = dwx (e;, Jej, JV)

where the first step is standard in riemannian geometry and for the second we use the identity
valid for any hermitian manifold:

(VI50)(V, W) = %(de(U, VW) — dwy (U, JV, JIV)). (6.3.15)

Next, we observe that dA; is basic, and since JA; € (A, ..., Aoy )g, then so is d(JA;). Tt
follows that:

dwyx € Ann A’ker dp (6.3.16)

Therefore, we have:

Fwx(V) =850 ST (dT A A Ap — T AL A Fy)(ej, Jeg, JV)
= 2370 (M deAp) T Ay, — 2,A5) (V).

2

Now, recall the formula relating the Ricci forms of the canonical connections in the
Gauduchon line {V'},cr (see Section 1.2.1) for which ¢ = —1 is the Bismut connection and
t = +1 is Chern:

pr(w) — ps(w) = S2dd*w. (6.3.17)
Using this together with po(wx) = p*p(wz) ([76, Lemma 3]), we compute:
pelwx) = p'plwy) — dd*wx. (6.3.18)
Finally, A; are Hermitian-Yang-Mills connections over Z with respect to wy, so we have
d(A,,dA;) = d(Ay,d°A;) =0, i=1,2. (6.3.19)

Combining this with the above formula for d*wyx we obtain the result. The second item
follows using wy Kahler and:

ddS(JA; A A;) = dA; A dA; + d°A; A dEA;. (6.3.20)
0

Calabi-Eckmann threefolds

With the previous computations at hand, now we specify to the first case of our interest.
In order to obtain infinite families of solutions to the coupled Hermite-Einstein system, we
introduce several real and complex parameters to be determined. Let Z = Z; X Z where
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Z; are compact complex manifolds of dimension n, carrying Kéhler-Einstein metrics wy, of
positive scalar curvature, with the normalization

plwz,) = wz,. (6.3.21)

In the sequel, pullback through the canonical projections Z — Z; is implicitly understood,
and we omit it in the formulae. Then we define the Kahler metric:

Wy = a1Wyz, + GaWz,. (6.3.22)

for positive constants a; € R. Moreover, consider the holomorphic line bundles L; = K Z”,
where k; € Z, i = 1,2. These are naturally endowed with hermitian metrics h; satisfying:

ith = k?ij]. (6323)
In particular, a simple computation shows they are Hermite-Einstein with respect to wy:

ni+no— —in;k; ni+n
Fh]. /\(A)ZlJr 21— mwzl+ 2 (6324)
Let P; be the U(1)-principal bundle determined by the hermitian reduction of (L;, h;), and
X = P, x; P,. Then X is a T?principal bundle over Z and denote by 9; the infinitesimal
generators of the action of P sitting inside X. We consider a family of T2-invariant complex
structures Jg on the fibre F' of X — Z via the isomorphism:

TF > FxC, 811, 0,5, BeC\R. (6.3.25)

Alternatively, T? = (F, Jr) = C/Z(1, B) is an elliptic curve with complex structure parametrized
by B. Tt will be useful for computations to express Jr in the basis {0y, 05 }:

_Rep _< 6+—(R65’2)
_ Im g Im 8
Jp= @ '(“ s (6.3.26)

Im B Im B

By the discussion above, we get a family of hermitian manifolds (X,wx) depending on
complex parameter § and real parameters aq, as, b.

To construct solutions to the coupled Hermite-Einstein system, we consider P = Fr £
where & — X is a holomorphic line bundle of the family:

E=K;"®K;" (6.3.27)
for integers ¢; € Z. We endow P with the hermitian metric with Chern curvature:
iFy, = lwg, + lwyz,, (6.3.28)
and further endow the bundle P with the bi-invariant pairing

(r,s) =—ar-s, r,seu(l), a eR. (6.3.29)
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Then, we consider the coupled Hermite-Einstein system on (X, P) with degree z € u(1):

N-1_ =z, N
Fp Nwy ™ = Fwy

p(wx) —azF, =0
ddeX — CYFh VAN Fh =0.

5

(6.3.30)

in the variables ay, as, b, 8, k1, ko, 1, {5, z and . To avoid cumbersome notation, we denote
x=Re 3, y=1Im 8 # 0, and we will omit pullback notation when the map is understood.

Proposition 6.3.8. Let (X, P) as constructed in this Section. Then, the solutions of the
coupled Hermite-Einstein system (6.3.30) are given, up to complex and hermitian isometry,

by
1. Zy ={x}, Zo 2 CP', and:

_ RS+ 1817)[8?
A9 = 2y2

2
- 0562,

(6.3.31)

where b, B, ko, by and o are subject to as > 0. Furthermore, the degree is given by:

A
= =, 6.3.32
1z 2 ( )
2. 71,7y =2 CP', and either:
(a) alily =0, kikex =0, and:
bkE(1 + |8[%) bk3 (1 + |81%) |81
a; = 12—y2 —al? ay = 2 2 — al; (6.3.33)
where b, B, ki, ko, l1,05 and o are moreover subject to ay,as > 0.
(b) a, 61627 kla k?a T 7é 07 and:
K1ty 20116 201 Lry?
=al | — -/ =al —/ b= 6.3.34
mmen <k233 1> T (Z kix ? kikax (1 +|B[?) ( )
where B, ky, ko, 01, > and o are moreover subject to ai,as,b > 0.
Further, in either (2)(a), (2)(b), the degree is given by:
l l
iz=—+ = (6.3.35)
ay a9

Remark 6.3.9. The above solutions provide infinite families of Hopf surfaces and Calabi-
Eckmann threefolds [22] supporting solutions to the coupled Hermite-Einstein system. In the
case of threefolds, these manifolds do not support either a holomorphic volume form, nor

balanced metrics.

Before proving this result, we will need some preliminary computations.

144



Lemma 6.3.10. The system of equations (6.3.30) is equivalent to:

(”il 4 ”2_62) iz (6.3.36)
aq Q9
. bki (1 + |B°) (1fik, naky _
(<+ josty — = (ﬁ e ) 7 =0 (6.3.37)
‘ bka(1+18]?) niks 2 kamo _
(<+ ZO{ZEQ — 2y2 <l’ a1 + |B| ?> Wz, = 0 (6338)
bk (1 + |8[%)
(12—y2 - aﬁ) ég —0 (6.3.39)
2
<bk1k2x(1 +181%) _ 045162) (121 Awz, =0 (6.3.40)
242
Ok3|B1*(1 +18[°)
( 5 o _ a@) 6; —0 (6.3.41)

Proof. The Hermite-Einstein equation (6.3.30) is rewritten as:

Fh /\(,dg_1 = (£1WZ1 =+ fngz /\ n1 + ng)g<z A A A )al CL2 ZA
1+ ng — 1 1+ ng — 1 w
ni—1 n 1 Z
ho ne ((( Ve ()=
_ —i(ni+n2) (n1+717;2 1 by w@ N
T ni+ng+l ("1+"2) ar (n1+n2) as X
_ =i [ nil nal N
= (e e) @

from which we can read (6.3.36). To rewrite in terms of the variables the second equation
n (6.3.30), we first observe that:

po(wz) = wz, +wz,. (6.3.42)
Moreover, using the matrix expression for Jg (6.3.26), we obtain the following formulas.
id°A; = — %k‘lwzl (y+ )k2w22
id°Ay = iklel + Thowz,
(Au,idA;)idA, = M2y,

al
(AuyidA)idAy = B2,
(Augid Aoy = (452 + (o + 7)) f
NGRS

2’62”2)6
Yy az 2
(szdeA2)ZdCA2 = <L k%nl + £k1k2n2) 7

y? a y? a2
x kikan z2 k3ng
O
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Then, we use Lemma 6.3.7 combined with the above formulae to express the left hand
side of the second equation in system (6.3.30) in terms of wy,, which must vanish. Hence we
get (6.3.37), (6.3.38). Finally, using Lemma 6.3.7 together with the above formulas, we can
rewrite the components of the Bianchi identity in the terms w3 , wz, Awz, and wy, . These
result in the equations (6.3.39), (6.3.40), (6.3.41). O

Proof of Proposition 6.3.8. By exchanging the role of Z; and Z if necessary, we will assume
dim. Z; < dim. Z;. If dim. Z; = 0, then the only equations of Lemma 6.3.10 that are
non-trivial are (6.3.36) and (6.3.38), and also (6.3.41) if dim. Z; > 2. In this case, it is easy
to see that there are no solutions. Indeed, by plugging the value of z given by (6.3.36) in
equation (6.3.38), the resulting equation is in contradiction with (6.3.41). On the contrary,
if dim. Z, = 1, then Z, = CP!, as we have assumed Z; admit a positive curvature Kahler-
Einstein metric. The two relevant equations combined give us
2512(1 2
SN LR

from which ay is determined from the rest of the parameters. The degree z of the solution
is given by (6.3.36) with ny =0, ny = 1.

Now, we move on to the case dim. Z; > 1. Then dim. Z, > 1 too. Here every equation
in Lemma 6.3.10 is non-trivial, except (6.3.37) if dim. Z; = 1, and (6.3.41) if dim. Z, = 1.
Using (6.3.36) and (6.3.40) in equations (6.3.37) and (6.3.38), we obtain

e (M)
GPW4M%+WWW_M®

22
which are assumed to be positive. Observe the terms in brackets match the ones in equations
(6.3.39) and (6.3.41). Therefore, there is no solution to the system (6.3.36)-(6.3.41) unless
dim. Z; = dim. Z, = 1. Finally, we focus on this case. We must have Z;, Z, = CP! by
the assumption that Z; are positive curvature Kahler-Einstein manifolds. We have already
observed that ai, as must be given by the formulas above. Further, equation (6.3.40) must
be satisfied. Then, either both terms vanish, in which case we obtain (2)(a), or they do not,
in which case ki, ko, z, 01, {5, # 0, from where

B 2a€1€2y2
Fikox(1+[8[7)

Substituting this in the expressions for a; we obtain (2)(b). In either case (2)(a) or (2)(b)
the degree z of the solution is then given by (6.3.36) with n; = ny = 1. O

Torus bundles over Calabi-Yau manifolds

Here, we construct solutions to the coupled Hermite-Einstein system in every dimension.
Let Z be a Kahler Calabi-Yau manifold of complex dimension n, and let L;, 1,...,2k be
holomorphic line bundles on Z, and let:

P=Fr L1 Xy Xy Fr Lgk (6343)
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the principal fibered product. Then, P is a (C*)?*-principal bundle, with a natural family
of Lie algebra pairings given by:

((ro), (51)) = —a X2 -85, (1), (s5) € CE2, (6.3.44)
where « is a real constant.

Proposition 6.3.11. Let 0 € Kz be a Kdhler class, and wy € o be its Kahler Ricci flat met-
ric. Let h; be Hermite-Finstein metrics on L; with respect to wz, A; their Chern connections
and P; the associated U(1) reductions. Moreover, define:

M:P1XZ"'XZp2]€. (6345)
Then:

1. The complex structure on M given by:
J = AJ'JZ + JQ oA (6346)

is integrable, where A = (A;) is the connection on the bundle M 2 Z induced by A; in
each factor, and Jy is the standard fibre complex structure given by:

JoO2i—1 = 0o, JoOoi = =01, 1=1,.. k. (6.3.47)
We denote X = (M, J).
2. Let:
wy =wyz + 2 TAN AL (6.3.48)

Then, if o > 0, wx is a hermitian metric and (wx, (p*h;)) solves the coupled Hermite-
FEinstein system on (X, p*P), where P is given by (6.3.43).

Remark 6.3.12. In the cases a < 0, the tuple (wx, (p*h;)) formally solve the coupled
Hermite-Einstein equations too. However, wx s not a hermitian metric anymore, since
it becomes degenerate o = 0 or indefinite o < 0 in the bundle directions.

Proof. The first item is already known in the literature (see e.g. [76], or Lemma 7.1.6). Note
moreover that with this choice of Jy, we have:

JAQi_l = AQi, JAgl = _AQi_l, 1= ]., caey k. (6349)
and the formulas in Lemma 6.3.7 simplify to:

pp(wy) = plwz) + a3 4 F, (6.3.50)
dd'wx = a2 F, A F, (6.3.51)

using that h; are Hermite-Einstein with respect to wz, where we have denoted F; = dA; and
Zi = szF’i-
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Now, to check that (wx, (p*h;)) solve the coupled Hermite-Einstein system, we first check
that h; are Hermite-Einstein with respect to wx with the same degree as h;:

Fi AW =nF; A wg_l A %Z?ﬁl JA; N\ A;
= 2wE ASSR JANA; = it

Moreover, since wy is Kéhler Ricci flat, p(wz) = 0. Thus, using the above formulas (6.3.50),
(6.3.51), we obtain:

pelwx) — « Zfﬁl 2 F;, =0 (6.3.52)
dd°wx — a2 F; A F, =0, (6.3.53)
and the result follows. O

Remark 6.3.13. We stress that (p*h;) are a solution to the Hermite-FEinstein equation for
P on X, even if the line bundles L; have different slopes, as the structure group is the abelian
split group (C*)?* rather than GL(2k, C), hence the tuple of degrees (2;) is a central element.

6.4 Relation with Heterotic Supergravity and Vertex
algebras

The purpose of this Section is to discuss the position of the coupled Hermite-Einstein system
in relation to some other systems of equations or constructions relevant to Hermitian and
Generalized Geometry, and Physics.

In the next Chapter, we will investigate the geometry determined by the coupled Hermite-
Einstein system via a systematic study of the equivariant geometry of suitable total spaces
of principal bundles, yielding a non-abelian generalization of some aspects that have already
implicitly appeared in the solutions provided in Section 6.3.2. The coupled Hermite-Einstein
system will then be regarded as a reduction of natural geometry for these manifolds.

For the time being, here we provide a riemannian characterization of the coupled Hermitian-
Einstein system. In particular, we will see that the solutions of (6.1.1) correspond to a natural
class of generalized Ricci flat metrics on string algebroids and exhibit an interesting relation
to heterotic supergravity, giving further motivation for their study.

Proposition 6.4.1. Let X be a complex manifold endowed with a holomorphic principal
G-bundle P. Assume that (w,h) solves (5.3.12) and the Bianchi identity:

ddw + (Fy, A Fy) = 0. (6.4.1)
Then, (g,h) solves the equations
Ric, — 1H* + F3 4+ $L9 =0,
d*H —dp +isH =0, (6.4.2)
A4 Fa + i Fa+ +(Fa AxH) =0,

where Ric, is the Riemannian Ricci tensor, F3 =" {ic, Fa,ic,Fa) and
H = —d, A= A" ©=20,. (6.4.3)
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Proof. We have already seen that (5.3.12) implies the last equation in (6.4.2) (see Lemma
5.3.2). Therefore, it is enough to prove that (5.3.12) implies:
pp (- J+) = Ricy — YH? + (i, Fyie, Fy) + (S, Fu(J,)) + 3L, (6.4.4)
pp (T = = Nd*H — dp + i H). (6.4.5)
To check this, we will use the following formulae, valid on any Hermitian manifold (see [90,
Proposition 3.1]):

Ricy(X,Y) = Ricg(X,Y) — 3d*d°w(X,Y) + 19(dw(X, &), dw(Y, e;)), (6.4.6)
pp(X,Y) = —Rics(X, JY) — (VE0,)JY + Ldd°w(X, Y, e;, Je,), (6.4.7)

where Ricp denotes the Ricci tensor of VZ, and {e;} is g-orthonormal frame. To prove the
first identity in (6.4.4), we now compute:

= (Ricp(X,Y) + Ricp(JX, JY) + (VR0.)Y + (VI0,)]Y
+ ;llddcw(X, JY e;, Je;) — iddcw(JX, Y, e, Je;))

= L(2Ricy(X,Y) — Lg(dw(X, e;, ), dw(Y, e;,))
- %<Fh A\ Fh>(X, JK €;, Jel) + LQ&Q(X, Y))

- ((icg — LH? 4+ (ie By e, ) + (S, FulJ-,) + 3£,1.9) (X Y),
where we denote:

H2 = Zij H(ei,ej,-)H(ei,ej,-) (648)
and for the third equality we have used\the identity (see [90, Equation 3.23]):
Ricp(Y, JX) = —Ricg(X, JY) — (VE0,)JY — (VE4,)JX (6.4.9)

combined with:
(VE0,)Y + (V80X = (V5%0,)Y + (Vi0,)X
g(V4OLY) + g(V305, X)
(V49, X + X, 64, V) + g(V4, Y + [V, 6], X)
05(9(X,Y)) = g(Ly X, Y) = g(X, Ly Y)
= (L 9)(X,Y).
Similarly, the second identity (6.4.5) follows from:
P OH(X,JY) = $(pp(X, JY) + pp(JX,Y))
(Ricp(X,Y) + (VR0,)Y + Ldd‘w(X, JY, e;, Je;)
— Ricg(JX, JY) — (VI 0,)JY + 2ddw(J X, Y, e;, Je;))
(Ricp(X,Y) — Ricp(Y, X) + (VE0,)Y — (V¥0,)X)
= Ld"dw(X,Y) +dO (X,Y) +0,(¢g ' dw(X,Y)))
= —3(d"H —df, + iy H)(X,Y).

1
2
1
2

=1
2
1
2
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Remark 6.4.2. Consider the smooth string algebroid in Ezample 2.1.13. Applying [63,
Lemma 7.1], equations (6.4.2) correspond to the vanishing of the generalized Ricci tensor
Rict of the generalized metric V. (see (5.1.2)), for a suitable choice of divergence operator
determined by . Thus, by the previous result, any solution to (5.3.12) is generalized Ricci
flat. This applies in particular to solutions to the coupled Hermite-Einstein system (6.1.1),
by Proposition 6.1.2 and Lemma 5.3.3.

In the next result, we make the connection between the Generalized Ricci flat equations
(6.4.2) and the equations of motion of the heterotic supergravity in the mathematical physics
literature (3.1.5) (see e.g. [47]).

Proposition 6.4.3. Let M be a smooth manifold, and let P — M be a principal K-bundle.
Let (g, A, H, ¢) be a tuple consisting of a riemannian metric, a principal connection on P,
a real 3-form and a smooth function, satisfying (6.4.2), where ¢ = 2d¢. Then, the following
system holds:
Ric? + 2VI(dg) — }1H2 +Fi=0
d*(e™*H) =0 (6.4.10)
A (e72PFy) + e« (Fa ANxH) = 0.
Proof. To obtain the first equation of (6.4.10), we combine the first equation of (6.4.2) with

the computations of the symmetric and skew components of the term V9(d¢). These are
well-known in riemannian geometry, but we provide them for the benefit of the reader:

A*V9(dg) = 5(V(do)(Y) — V5 (dg) (X))
= 3(X(do(Y)) = Y(dp(X)) — dp(V4Y — VX))

— 16(X,Y)
—0,
SPVI(dp)(X,Y) = 5(V(do)(Y) + Vi (dp) (X))
=3 (X (9(Ve,Y)) + Y (9(Vo, X)) — g(Vo, VLY) — g(V, VEY))
=5 (9(V&(V9),Y) + g(V§(V), ))
3 (9(VE9,X +[X, V4], Y) + g(X,VE,Y + Y, Vg]))
=5 (Vo(9(X,Y)) — g([Vo, X], )—9( , [V, Y1) (

= 3(Lvsg)(X,Y)
= 1(Lug)(X,Y).

Therefore, we obtain: 2V9(d¢) = 1L,:g, and consequently, the first equation in (6.4.10)
holds. Now, for the second equation in (6.4.10), we compute:

d*(e™H) = —xd* (e 7> H)
= e 2Pd*H + 2% % (dp N «H)
= e 2d*H + 2¢ iy, H
= e *(d*H + i H)
= 0,
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where in the last step we have used the second equation in (6.4.2) combined with dp =
2d?¢ = 0. Similarly, for the third equation in (6.4.10):
d’A(e‘Q‘z’FA) = —%dy* (6_2¢FA)
= e2d Fy + 2e72 % (dp A xFy)
= 672¢df4FA + 2672¢iv¢FA.

Then:
A5 (€72 F ) + e x (Fa AxH) = e 2 (d5 Fa + 2igyFa +x(Fa AxH))
= e (5 Fa+igFa+*(FaANxH))
=0,
where in the last step we have used the last equation in (6.4.2). O

The system (6.4.10) matches the equations of motion of heterotic supergravity (3.1.5)
(with the choices outlined in that Section) except for the last equation of the system, the
dilaton equation. We now prove that, under natural assumptions, it holds up to a constant,
generalizing the already known result in the case of trivial principal bundle [71, Proposition
4.33]. For this, we will need some technical computations.

Lemma 6.4.4. Let M be a smooth manifold, and let P — M be a principal K -bundle, where
K has a quadratic Lie algebra (¢, (-,-)). Let (9, A, H) be a tuple consisting of a riemannian
metric, a principal connection on P and a real 3-form. Moreover, let X, € T,M at a point
p e M. Then:

1. There exists a smooth vector field X extending X, such that (V9X), = 0.

2. The following formulas hold at p:

X (divY) = div(V%Y) — Ric/(X,Y) (6.4.11)

d*(ixRic?) = — 3 X (scal?) (6.4.12)
d*(ixH?) = — §X([H*) + 5 32,5 dH(X, €5, ¢, e) H ei, ¢, €1,)+

+ 2 i & H (e, ex) X €5, €x) (6.4.13)

d*(ixF3) = — 3 X(1Fal”) + Z@-(idﬁFA(ei),FA(X, €)), (6.4.14)

where X is any vector field extending X, such that (V9X), =0, Y is any vector field

and {e;} is a g-orthonormal basis.

Proof. For the first item, we work in normal coordinates around p € M. In particular, there
is a basis of vector fields {e;} such that:

(Vgei)p = 0, gp(ei, 6j) = (Sz] (6415)
Then, we choose:

X =) .(0(Xp, €)e. (6.4.16)
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Now, let Y be any vector field and X as above. Then, at p:

X(divY) =326V VEY, e) + g(VLY, Vie)
(RI(X, &) + VEVE + Vi )Y €)
ic?(X,Y) + div(V4Y).

For (6.4.12), using the normal coordinates conditions and the assumption for X, we compute
at p:
d*(ixRic?) = — 3. (Y2 ixRic?) fe;)

= — Zz €; (Rng(X, €; ) + Zz ng(X, Vgiei)

= — ;i (9(R9(ej, X)ei, e5))

= 2 i AV (ej, X)ei, e5)
Y. g((ng RQ(X7 €i) + Vg(Rg(Gi, ej))ei, Gj)
; ~9(V§jRg(€i; X)ej,€:) + g(Vi (e, €:)ei €;)

Z@(V&Rg(ej, ei)ei, €;)

= —3 if)Rg(ej,ei)ei,ej))<
= — 1 X(scaly),

where we have used throughout the symmetries and the Bianchi identity for the Riemann
curvature tensor 9.

The third formula follows from the same computation as in [71, Lemma 3.19]. Note
however the extra term in (6.4.13) since we are not assuming H is closed. The last formula
(6.4.14) follows again from analogous computations, using here that d4F4 = 0. [

Proposition 6.4.5. Let M be a smooth manifold, and let P — M be a principal K-bundle,
where K has a quadratic Lie algebra (8, (-,-)). Let (g, A, H,¢) be a tuple consisting of a rie-
mannian metric, a principal connection on P, a real 3-form and a smooth function, satisfying
(6.4.2), where ¢ = 2d¢ and the Bianchi identity:

dH — (Fy N Fy) = 0. (6.4.17)
Then:
d (scal? — 40y — 4]do|* — 5| H|* + 5|Fal?) £ 0. (6.4.18)
Proof. First, taking the trace of the first equation in (6.4.10), we Cet:
scal? — L H|* + |F4> — 28,0 = 0, (6.4.19)

where Ao = d*d¢ is the Hodge Laplacian of ¢. In the sequel, let X be a vector field such
that (V9X), = 0 for some p € M. Then, using (6.4.19), at the point p we have:

X(scal?) = X(3|H> = |Fal?) + 2X (div(V))
= X(L|H|* — |Fa|*) — 2Ric?(X, V) + 2div(V Vo)
= X(L|H|* — |F4]?) — 2Ric/ (X, Vo) — d* (z‘<<(Ricg —1H*+ F})) (
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where in the last step we have used again the first equation in (6.4.10). Then, using the
formulae in Lemma 6.4.4, we continue the above computation to get:

X(scal’) = X (H|> — |Fal?) £ 2Ric?(X, V) + 1 X (scal?) + d* (LH* — F})
=X (3|HP = 2|Fal’\f 4Ric?(X, V) + d* (L1 H? — 2F}) (
= X (3HI" = 2|Fal”) £ 4Ric?(X, V) — 5 X (|H[")
+ i AH(X €5, %5 en) H(eiyej,ex) + 55 d*H(ej, ex) H(X €5, 1)
+ 3 X(\Fal?) = 22 (A5 Fales), Fa(X, ) (
= X (GH* = 3IFal?) - 4Ric?(X, Vo) + 3 H(V o, ej, ex) H(X, ¢, ex)+
+ é Zi,j,k<FA A F@(Q, e, ej, er)H (e, e, ekg — 2% Ad5 Fa(e;), Fa(X, e;))
= X (HIH — 3|FaP) — 4 (Ric? — 1K) (X, V) (
—20(d3Fa+*(Fa AN*xH))(e;), Fa(X, e)
= X (H|H? — 2|Fal?) £ A(Ric? — 1H? + F3)(X,V9)
= X ({H? = 5I1FaP) ¥ 8(Vdo)(Vo)
= X (FIH? = 3[FaP) £ 4X(do]),
where, in the seconE line we have cqllected the terms in X (scal?), and from the sixth line

onwards, we use the equations in (6.4.2) with ¢ = 2d¢ and the Bianchi identity (6.4.17).
Since the above computation is tensorial in X, it follows that:

d (scal’ — S|H|* + 3|Fal” + 4|do|*) £ 0. (6.4.20)
Finally, the result follows substracting (6.4.20) from twice the xpression obtained by taking
exterior derivative in (6.4.19). O

Corollary 6.4.6. Let X = (M, J) be a complex manifold, and let P — X be a holomorphic
principal G-bundle. Assume (w,h) is a solution to the coupled Hermite-FEinstein system
(6.1.1), and assume the Lee form is exact, 6, = 2d¢. Moreover, let:

g=w(-,J), A= A" H = —dw. (6.4.21)
Then (g, A, H, ¢) solve (6.4.10).
Proof. This is a straightforward consequence of Propositions 6.4.1, 6.4.3. O

We finish this Section mentioning a further motivation for the study of the coupled
Hermite-Einstein system. Recently, the system has also appeared remarkably in the context
of SUSY vertex algebras. There, the existence of coupled Hermite-Einstein metrics on Bott-
Chern algebroids (see Definition 5.3.1) is a fundamental structure to regard the chiral de
Rham complex - of central interest in the study of superconformal field theory in the physics
literature - as a representation of certain N = 2 superconformal vertex algebras [6, Theorem
4.18]. This proposal is then used to study certain aspects of (0, 2)-mirror symmetry, recasted
as an involution of suitable vertex algebras on mirror spaces [5, 34]. While this theory is
already well-known in the Kahler and Generalized Kéhler case, the coupled Hermite-Einstein
system seems to stand out as consistency conditions for such phenomena to be realised in
the non-Kéhler setting.
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Chapter 7

Dimensional reduction of canonical
pluriclosed metrics

In this Chapter, we revisit the coupled Hermite-Einstein system introduced in Chapter 5
from the point of view of hermitian reduction. The underlying principle, which was already
implicit in Section 6.3.2, is to build on the results of [75, 76] to show that suitable invariant
geometry on the total space of principal bundle fibrations induces the coupled Hermite-
Einstein system on the base upon reduction. We make this precise in Theorem 7.2.3. Here
we generalize this picture to non-abelian symmetries and find correspondences between both
spaces. This Chapter is based on ongoing work jointly with M. Garcia-Fernandez and J.
Streets (see Chapter 9).

7.1 Equivariant geometry of principal bundle fibrations

7.1.1 Riemannian curvatures of equivariant metrics

Let M be a compact smooth manifold and let K be a real, compact Lie group. We assume
K has a quadratic Lie algebra (K, (-,-)). Moreover, we fix a smooth principal bundle:

K— P2 M (7.1.1)
We will assume that P satisfies:
pi(P) =0¢€ Hjp(M). (7.1.2)

Next, we introduce the equivariant geometry of P. Let (gas, Hys) be a riemannian metric
and a 3-form on M, and let A € (QL)X be a principal connection. Then, we consider the
total space symmetric tensor and 3-form given by:

g=p'gu—(A® A) (7.1.3)

where C'S(A) stands for the Chern-Simons 3-form of A (1.3.17). Observe that when (-, -) is
negative definite, g is a riemannian metric on P. In the sequel, if this is case, we will denote:

gre () = =) (7.1.5)
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Moreover, the restriction of H to the fibres of P, identified with the Lie group K is the
Cartan 3-form of K, given by the extension of:

Hy (& p,y) =& ul )y &y €F, (7.1.6)
by left translations. This form satisfies the following key property:

Lemma 7.1.1. Let (K, gk, Hi) as in this Section, and let D be the Levi-Civita connection
of gi. Then:

DHyg = 0. (7.1.7)
In particular:
dHx = d*Hg = 0. (7.1.8)

Proof. We compute DHy evaluating at left-invariant vector fields. For clarity in notation,
only in this proof we denote them by A, B, C' and E. First, we note that:

DAB = Y[A, B] (7.1.9)

as a straightforward consequence of the Koszul formula for D (1.2.4), using bi-invariance of
gr. Then, we have:

(DaHy)(B,C,E) = A(Hx(B,C, E)) — sHy([A, B|,C, E) — LHy(B,[A,C], E)
— 3Hk (B, C,[A, E])
= %(HB7A]7C]7E> - %<[B7 [A>CH7E> - %([B,C], [Av E]>
=0,

where in the last step we use the Jacobi indentity combined with the fact that (-,-) is
adjoint-invariant. The second part of the statement follows inmediately using that dH g
is the complete skew-symmetrization of DHy, and the standard formula in Riemannian
Geometry:

d*Hy = — Z](DUJ.HK)(U]-, L), (7.1.10)

where {U;} is an orthonormal basis for gk-. O

We now compute the Levi-Civita and Bismut curvatures of the Ricci tensors of g (resp. of
(9,H)) in (7.1.3),(7.1.4), in the case it is riemannian. While these results seem to be known
by experts, we have not been able to find the proofs, hence we give some details about the
former and fully spell out the latter. For efficiency in the next computations, we adopt the
following notation and use it sistematically: we will denote by X, Y, Z (and possibly primed
or with some other decoration) for horizontal lifts with respect to A of basic vector fields, and
abusing of notation, we will identify them with their basic projections. Similarly, U, V, W, ...
will denote vertical vector fields. Whenever they are canonical (see (1.3.6)) and we want to
make explicit reference to the Lie algebra generator, we will prefer the notation X¢ for £ € &.
Furthermore, {X;} will denote an orthonormal frame of p*T'X (resp. {U,} of the vertical
distribution VP = ker dp C T'P).

To obtain the Ricci tensor of g on P, we adapt the general computations for riemannian
submersions in [18, Chapter 9] to the case of interest.
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Definition 7.1.2. [18, Definition 9.25] Assume g in (7.1.3) is a riemannian metric, and let
D be the Levi-Civita connection of g. Consider the tensors T, B € I'(End T'P) given by:

T = puDy,pv + pvDp,pu (7.1.11)
B =puDy,pv + pv Dy, pu. (7.1.12)

Equivalently, D is decomposed as:

DyV = DIEV + T,V (7.1.13)
DyX =TyX + pyDyX (7.1.14)
DxU = pyDxU + BxU (7.1.15)
DxY = BxY + pyDxY, (7.1.16)

where DI% s the Levi-Civita connection of gx, and py, py are the projections (1.3.10).

Now, we make some preliminary observations that will be applied to the case of principal
bundle fibrations (7.1.1) throughout without further mention.

Lemma 7.1.3. With the previous notations, the following hold:
1. [U V] eVP.

2. [X5,R] =0, for R a K-invariant vector field. In particular, for R lifted horizontal, or
induced by a section of ad P.

3. BxY = pv([X,Y]) = =L F4(X,Y) under the identification VP = P x .
4. The tensor T in (7.1.11) vanishes.
5. pyDx X =0, for any lifted horizontal X, and canonical X¢.

Proof. The first item follows from the involutivity of V P. The second follows from the fact
that the flow for canonical fields is given by right translations. The third item follows from
[18, Proposition 9.24] and the definition of F4. For the fourth, we prove that:

TV =TyX =0 (7.1.17)

for any choice of vertical fields U,V and horizontal X. First, we show that g(DyV, X)
vanishes. Using the Koszul formula for D (1.2.4), we write it in terms of:

X(g(U, V), g(X,[U,V]), (7.1.18)

and their cyclic permutations. Since T' is a tensor, this computation is pointwise and ex-
tensions of U,V are irrelevant, hence we may use canonical fields, and we choose X to be
a lifted horizontal field, similarly. Then, it is straightforward to check that all these terms
vanish by our elections of fields combined with [18, Proposition 9.18]. Ty X = 0 is similar.
For the last item, g(DxX¢, V) = 0 similarly, but note however that it is not tensorial in
X¢. O
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Proposition 7.1.4. [18, Proposition 9.536] With the previous notations, the following for-
mulas hold:

Ricy (U, V') = Ricy, (U, V) + § 3 1, 95 (Fa(X;, Xi), U)gr (Fa(X;, Xi), V), (7.1.19)
Ricy(U, X) = 19k (d3Fa(X),U), (7.1.20)
Ricy(X,Y) = (Ric,,, — 1F3) (X, Y), (7.1.21)

where the notation F3 stands for:

Fi(X,Y) = nggK(FA(Xj,X), Fa(X;,Y)). (7.1.22)

Proof. These formulas follow combining\ [18, Proposition 9.36] in the case the riemannian
submersion is as in this Section and Lemma 7.1.3. The explicit computations are straight-
forward and hence ommited. O

Now, we move on to compute the Ricci tensor of the Bismut connection of the pair (g, H)
as in (7.1.3),(7.1.4). By this, we mean the connection given by:

D" =D+ 1g7'H, (7.1.23)

where D is the Levi-Civita connection of g, and H is given by (7.1.4). The dimensional
reduction of Bismut curvature quantities on torus bundles has already appeared in the lit-
erature with a view towards relating different geometric flows [124, 125] and Generalized
Geometry and T-duality [123]. Here, we provide the formulae for the Bismut-Ricci tensor of
a general principal bundle fibration as in (7.1.1), which will be used in the sequel:

Proposition 7.1.5. The Ricci tensor of D9 satisfies:

Ric, (X, Y) = (Ricy, — LHE — F3 — 1d"Hy) (X, Y),

Ricy u(U, X) = gx (U, ix(d3 Fa +*(Fa A *HM”’( (7.1.24)
Ricy g (X,U) = 0,

Ric, y(U,V) =0,

where we use the notation (6.4.8) for Hi,.

Proof. The proof is a combination of Proposition 7.1.4 and the relation between Bismut and
Levi-Civita Ricci tensor (e.g. [89, Proposition 3.1]):

. _ . o l % . l 2
Ricy gy = Ric, — 3d"H — ; H7,

that holds on any smooth manifold. Now, using the notations of this section, we compute
explicitly the components of each of these extra terms for (P, g, H). The vertical fields
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involved are assumed to be canonical throughout the computations.

P H(U,V) == 5. (Dx, H)(X;,U, V) = ¥ Dy, H)(Uy, U, V)

=2~ X;(H(X;,U.V))+ H(D, X;, U, V)
+ K (X;, Dx, U, V) + H(X;,U,Dy,V) + d*x Hg (U, V)

— &K Hie(U, V) + ¥ (H(X;, Bx,U,V) + H(X;, U, Bx,V)

— & Hy (U, V) = SN H(X;, X, V)gie(Bx, X, U)
=i H(X;, U, X hgwe (V. Bx; Xy)

= A"k N (U, V) + 5 2 9 (Fa(X5, Xi), U) g (Fa(X;, X), V)
—%ZfQK(FA(Xp ), Vg (Fa(X;, Xy),U)

= d*x H(U,V) = 0.

where in the last step we apply (7.1.8). The next component of this term is:
FHU,X) = ¥ (~X;,(H(X;,U, X)) + H(Dx,X;,U, X )+
£ DX U, X)+ H(X;,U Dy, X)+
+ S ~Us(H(Uy, U, X)) + H(Dy, Uy, U, X )+
+3) (Uk, Dy U, X) + H(Uy, U, Dy, X)
= 2 A\ (9x (Fa(X;, X),U)) = gr(Fa(DY X, X),U)
Q(FA(Xj,D%IX),U) — Hy (X5, X, BXjU)
= 29 (ix;da(Fa(X;, X)), U) — gx (Fa(DY' X5, X), U)+
.o —gr (Fa(X;, D%X), U) — Hu(X;, X, Bx,U)
(CIZFA(X% U)+3 Zj(g Hy (X, X, X)gr (Fa(X;, X3), U)

where, in the last computation, we have used thkoughout Lemma 7.1.3 combined with:

:—gK

p.DxY' = D21y, (7.1.25)

which can be easily proved combining the Koszul formulas (1.2.4) for g and gj;. Turning to
the horizontal component of this term, we have:

Each of these two terms require attention.
—(Dx,H)(X;,X)Y) = — X;(H(X;,X,)Y)) + H(Dx,X;, X,Y)+
+ H(X;,Dx,X,Y)+ H(X;, X, Dx,Y)
=d""mHy(X,Y)+ Zj H(X;, Bx,X,Y)+ H(X;, X, Bx,Y)
= dHy(X,Y) + 5 34 9x (Fa(X;,Y), Fa(X;, X))

—%ijgK(FA(Xja ),FA(XJ'?Y))
= v H (X, Y)
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Furthermore, we compute the second term in (7.1.26):

—(Dy H)(Up, X,Y) => (U (H(U, X, Y)) + H(Dy, Uy, X, Y)+
+ H (U, Dy, X,Y)+ H(U, X, Dy, Y)
=>4~ Uklgr (Fa(X,Y),Ux)) + g (Fa(X,Y), DUy
+ X ife HUk, X;,Y)g(Du, X, X;) + H(Uy, X, X;)9(Dv, Y, X;)

=>4~ K([Uk,FA( Y[, Uk)
ijgK(FA( 7+ Y), Ur)gr (Fa(X;, X), Ug)
+ 5 2K 9k (Fa(X5, X), Up)gr (Fa(X;,Y), Uy)
)],

Then, we move to the components of the remaining term.

HY U, V) =3 H(X;, Xy, U)H (X, X, V) + H(U;, Uy, UYH(U;, Uy, V)
=i 9 (Fa(X;, Xi), U)gr (Fa(X;, Xi), V)+
+ ﬁ([Uijk]aU)([Uijk]av)
HY (U, X) =Y H(X;, X, UYH (X, X, X)
=>4 Hu (X, X, X) g (Fa(X;, Xi), U)
H*(X,Y) =YX H(X;, X3, X)H (X, Xi,Y) + 2H(X;, Uy, X)H (X, Uy, Y)
(X,Y) 4+ 23 9k (Fa(X;, X), U) gk (Fa(X;,Y), Us)
= (Hy +2F3)(X,

Finally, combining all the previous computations and taking into account that d*H is
skew and H? is symmetric yields the result. The second formula uses also the fact that:

D il Fa( Xy, Xi) Har (X5, Xy, X) = =2 (Fa AxHp)(X). (7.1.27)
For the last formula,(we get:

Ricy g (U, V) = Ricg, u, (U, V) =0, (7.1.28)
where the last step follows from the fact that the ansatz we are using for the fibre metric

and for Hy is actually Bismut-flat ([71, Proposition 3.53]). O

7.1.2 Equivariant hermitian geometry of principal bundles

Next, we introduce the complex structure in the picture of the previous Section. Let X =
(M, Jx) be a compact complex manifold of complex dimension n. Let (K, Jx) be a compact,
real Lie group of even dimension endowed with a left-invariant, integrable complex structure.
We will assume K has a quadratic Lie algebra (¢, (-,-)) and that Jg is orthogonal for this
structure, that is, (Jx-, Jx-) = (-, -). Moreover, we fix a smooth principal bundle:

K—P-%X (7.1.29)
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We will assume that P satisfies:
pi(P) =0 ¢€ Hj(X,R). (7.1.30)

Furthermore, we will assume that P supports holomorphic complexifications. These are
given by principal connections A € (L)% such that:

Fy? =0, (7.1.31)

In such case, indeed P® = P xj; K¢ endowed with the Dolbeault operator 04 = dg’l is
naturally a holomorphic principal bundle over X, where K¢ is the complexification of the
real group K, inducing a canonical complex structure on P°.

In the sequel, we adopt the notation of Section 1.3.1 to denote the canonical vector
fields (1.3.6), and we identify basic vector fields XY, ... € I'(T'X) with the lifted horizontal
fields on P when the connection A used is implicit. The following result yields a wealth of
integrable complex structures on the total space of P:

Lemma 7.1.6. Let A be a principal connection on P satisfying (7.1.31), then:
J=AtJx + Jgo A (7.1.32)
is an integrable complex structure on P, where A+ denotes the horizontal lift induced by X .

Proof. This result is well-known, but we give a sketch of the proof here. The integrability of
J is equivalent to T%! P being involutive. Then, the result follows from these computations:
(P, (X0 = AN, (XS, X#)H0 =0,
X0, (XM = ([, X + X, X + X JX] = X, JXE)H0 =0,
[XO,l’ Yo,l]é,o — (dp|kcr A);l([XO,l’ Yo’l] ,0 ) o FA<X0’1, YO,l)l,O = 0.

1
p(q)

For the first item, we use the integrability of Jx. For the second, we use that J as in (7.1.32)
preserves the families of canonical and lifted horizontal fields, combined with the fact that
lifted horizontal fields are K-invariant, hence invariant under the flow of canonical fields.
For the last one we use integrability of Jx together with (7.1.31). O

By the previous result, given a principal connection A, the manifold (P,.J) where J is
as in (7.1.32) is complex. Hence, we may study its hermitian geometry. We consider the
hermitian metric given by:

w=g(J, ) =pwx + 3(JANA), (7.1.33)

where g is as in (7.1.3). Moreover, in the hermitian case, there is a distinguished choice for
the 3-form Hx given by:

HX = —deX. (7134)

Then, we get the following compatibility result for the torsion of w on the total space of

(P, J):
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Lemma 7.1.7. Let Hx be as in (7.1.34). Then:

H = —dw, (7.1.35)
where H and w are given by (7.1.4) and (7.1.33).

Proof. We compute:
—d‘w = p*(—d‘w) + L Jd(Jk 0 AN A)
=p Hx + J(Jx o (Fa—i[ANA]) A A)
=p Hx + 35([Jk 0 AN Jg 0 A] N A) — (Fs N A)
=p Hx + ;(AN[ANA]) — (FaA AN A)
=p"Hx — CS(A)
=H

Y

where we use throughout that N, = 0, combined with the identity:
JA=—JgoA. (7.1.36)

]

We now provide a formula for the Lee 1-form 6, in terms of basic data, which will be
useful in the sequel.

Lemma 7.1.8. With the notations of this Section, the following formula holds:

O, = P00y — Moy Fu, JA) — (0F

WK’

A). (7.1.37)
Proof. We first obtain an equality that will be used in the main computation:
%Aw<[A NANJA) = }lzj([A NA] N JA)Y(U;, JU;)
= 5 2,(U;, JU;), JA)
= Y (DU, JA)
:_% Y gl_(ldwK(UjaJUjv‘]')aJA>
— 8,
= _<6£K7 A>7

where we have used the standard identity in a hermitian manifold (M, g, J):
g(D% )Y, Z) = 2dw(X,Y, Z) — 3dw(X, JY, J Z). (7.1.38)

Now, to compute the Lee form 6, we apply the general formula that holds in any Hermitian
manifold (X, w):

0, = A, dw. (7.1.39)
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Then, combining (7.1.33) with the above formulae, we have:

0. = Au(dwx + 2(d(JA) N A) — 3(JA N dA)
= Nuydwx — 1A, ((Jx o dA N A) + (JANdA))
= Oy — No(Jx 0 (Fa — L[ANA]) A A)
=0y — (N Fa, JA) + (Jxb:, , JA)
=0y — (N Fa, JA) — (67 | A).

WK ?

]

Next, to prove that the situation described in this Section is not trivial, we provide a
large family of real Lie groups endowed with integrable complex structures for which the
construction of this Section applies.

Definition 7.1.9. A tuple (P, K, Jk, (-,-)) is of split type if:
1. K = K' x K', where K' is a compact, real Lie group.
2. P= P xx P, where P; are (possibly non-isomorphic) principal K'-bundles.

3. One has:
JdP =00 Je0® = o, i=1, .. dim K’ (7.1.40)

where {Gl(j)} runs over a basis of canonical vector fields on each P;, j =1,2.
4. The inner product (-,-) splits:
<'7 > = <‘7 '>1 + <'7 '>27 (7141)

where each (-,-); is a (possibly different) pairing in the j™-factor K', and this splitting
15 respected by the adjoint action of K.

When the structure is implicit, we will just say that P is of split type. It is obvious from
(7.1.40) and (7.1.41) that split-type complex structures are orthogonal. The following result
proves that they are moreover integrable.

Lemma 7.1.10. The split-type almost complex structure Ji of (7.1.40) is integrable.

Proof. 1t is enough to show that N, vanishes on left-invariant vector fields at a point. We
denote by X%+ X7 the left invariant vector field which at the identity element of K = K’ x K’
is the Lie algebra element (£, 7). We first compute:

Ny (X5, XT) = (X7, XT) + T (e X5, XT) + [X5, T XV)) — [T X5, Je X7). (7.1.42)
Observe that in a fixed coordinate chart:

[Tk X5, X7 = Je XT (X)) = XT (T X5) = = X7 (T X7) = =T (X7(XT))
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where, in the second equality, the first term vanishes given that .J KXlE only differentiates
along the second K’ x K’ factor. Similarly, we also get:

(X7, T XT) = Jr(X1(XT)), [JxXT, T X]) = 0.
Therefore, we conclude:
Ny (X5, XT) = [XF, XT] + (XP(XT) — XF(X])) = [XT, XJ] + [X], X7] = 0.
Now, this result does not depend on coordinates as N, is tensorial. Reasoning similarly,
N (X1, X3) = [XT, X9] + ([T X5, XJ] + (XY, T XJ1) = [T XT, Jie X))
= Ji(Jx X5(X3) — Tk XJ(X7)) — [Jx X7, Jic X3)
= Jk X3 (T X3) = I X3 (T XT) = [Tk X3, T X3] = 0,

The vanishing of N, (X5, X}) and X5, X7, are analogous. Hence extending by bilinearity,
Ny, = 0. O

Observe that among split-type examples, there is the principal bundle involved in the
Hull-Strominger system 3.1.11, for which the structure group is G = SU(3) x SU(3), if the
gauge bundle has rank 3.

In general, in [111] there is a systematic study of the moduli space of complex structures
orthogonal with respect to a fixed bi-invariant pairing in real compact Lie groups. The cases

of low rank are explicit and classified. These are described in detail in [17] for the groups
SU(3), Spin(5) and Gs.

7.2 Hermitian metrics with non-abelian symmetries

The aim of this Section is to prove a correspondence result for Bismut-Hermite-Einstein
metrics (6.3.2) and solutions to the coupled Hermite-Einstein system (6.1.1). To do this,
we study the hermitian reduction of invariant hermitian metrics satisfying special metric
properties. In this Section, we use the same notations and conventions as in the previous
Section.

Proposition 7.2.1. Let H be as in (7.1.4). Then:
dH = dHy — (Fy A Fy). (7.2.1)
In particular, if (X,wx) is a hermitian manifold and Hyx is given by (7.1.34), then:
dd‘w = dd‘wx + (Fa N Fy). (7.2.2)

Proof. The proof of (7.2.1) follows from (1.3.18). For the benefit of the reader, we give here
computation. We use throughout the following expressions in the total space of P:

Fa=dA+3[ANA], daFa=dA+[ANF4]=0. (7.2.3)
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Moreover, the pairing (-, -) is ad-invariant. In particular, we have:

Then, in the total space of P,

dCS(A) = — Zd([ANA]ANA) +d(Fa N A)

= — H([dANAIANA) = ([ANFa] N A) + (Fa N dA)

= — H((Fa— SANAYAALAA) -+ {[Ex A A A A) +{Fa A (Fx = AN AD)

= ([[ANATNA] A A) + (Fa A Fa)

= <FA N FA>.
where the last step follows from elementary manipulations using (7.2.4) combined with the
Jacobi identity for [-,-]. The last part of the statement is consequence of (7.2.1) and Lemma
7.1.7. O

The other piece of information we are interested in is the reduction of the Bismut-Ricci
form pp (see Section 1.2.2). We will also use the notation D?, Ricp, etc. for the Bismut
connection whenever the hermitian metric involved is implicit.

Proposition 7.2.2. Let w be as in (7.1.33). Then:
pB(w) = ,OB((,UX) —+ <AwXFA7 FA> + <dA<AwXFA) A A> + %<[AwXFA7 A] VAN A> (725)

Proof. We use throughout Propositions 7.1.5, 7.2.1 and Lemma 7.1.8. Recall [89, Formula
(3.16)] that on any hermitian manifold (M, J, g):

pB(w)(El, EQ) = — RiCB(W)(El, JEQ) - (Dglew)<(]E2) + i Zi(ldCW(El, EQ, €, Jei), (726)

where {e;} is a g-orthonormal frame. To prove (7.2.5), we pay attention to the number of
vertical components on each term in the equation. First, we compute the purely horizontal
part of pp(w). We examine separately each of the terms in (7.2.6) for the hermitian manifold
(P, J,g) where J and g are given by (7.1.32), (7.1.3), and F; = X and Ey = Y are lifted
horizontal vectors with respect to A:

Ricp(X, JY) = Ricyy (X, JY) — £ 1 Hy (X, Xp, X)Hx(X;, Xy, JY)
— Zj 9k (Fa(X;,X), Fa(X;,JY)) — %d*gXHX(X, JY)
= Ricg \uy (X, JY) — Zj(gK(FA(Xj7X)7 Fa(Xj, JY)).
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Next we have:
DEOL(IY) = DG, (JY) + DS (gic (Mg Fa, JA) + gic(6F,_, A))(JY)
- DgéHewx(JY) — (9 (Auy Fa, JA) + QK(QL%]K, A))(pVDg(’HJY)
= D%"0u, (JY) = (g5 (Muy Fa, JA)

+ (6%, ,A)(BxJY + 2F4(X, JY))

= D%M4, (JY)

= X (0 (JY)) = O, (DG TY)

= X(0uy (JY)) — b (DxJY + g7 H(X, JY, "))

= X(0uy (JY)) = oy (D JTY + 293" Hx (X, Y, )
= DItxg, (JY).

Finally:
Yo ddw(X,Y, X, JX;) = > fddwx — g (Fa AN Fa))(X,Y, X, JX;)
= > \ddwx(X,Y, X;, JX;) — 4> fgx (Fa(X;, X), Fa(X;, JY))
— 49 (Ao Fa, FA(X,Y)). (
Plugging in these expressions in the above computation, we first get:
pp(W)(X,Y) = — Ricgy my (X, JY) = DTG, (JY) + 13 Adowx (X, Y, X5, J X))
— g (Awy Fa, Fa(X,Y)) <
= (pB(wx) = g (Auy Fa, Fa))(X,Y),

which indeed corresponds to the expected horizontal terms with the substitution gx = —(-, -).
Next we compute:

p(W)(X,U) = — Ricyx(X,JU) — D" 0,(JU)+
+ i Yofddwx — g (Fa N Fa))(X, U, X;, JX;)
= — X(00(JU)) + 0,(D%" JU)
= — X(g9x(Auy Fa, U) = gi (JibE, . U)) + 0,(Dx JU + 597 H(X, JU, )
= — g ([X, Aoy Fal, U) + 0,(Bx JU = 597 (g (ix Fa, JU)))
= — g (ixda(Auy Fa), U) + 0u(59 (9x (ix Fa, JU)) = 597 (gx (ix Fa, JU)))
= —gr(da(Au  Fa) NA)(X,U),
as claimed. Finally we have:
p(W)(U, V) = = Ricyu(U, JV) — DE0,(JV)+
+ 1 3 fddewx — g (Fa A Fa))(U, V, Xy, JX;)
= — U(&ﬁ(JV)) +0,(DETIV)
= — U(gr(Auy Fa, V) + g (05,
= — g (Nuy Fa, [U,V])
= — 59k ([Auy Fa, AJ N A)(U, V),
which finishes the proof replacing g = —(-, ). O

JV))

165



We are now in position to prove the main result of this Section:

Theorem 7.2.3. Assume the structure group K is connected and the pairing (-,-) on Lie K
1s negative definite. Then, with the notations of this Section:

1. The hermitian metric w on P given by (7.1.33) is pluriclosed if and only if:

ddwx + <FA VAN FA> =0. (727)

2. The hermitian metric w on P given by (7.1.33) is Bismut-Hermite-Finstein if and only

if:

n—1 _ z n 0,2 __

pp(wx) + (2, Fa) = 0, (7.2.8)
ddwx + <FA/\FA> =0,

for a central element z € €.

Proof. The first part of the result follows inmediately from Proposition 7.2.1. For the second
part, by Proposition 7.2.2 and using the filtration by the number of basic components of 2%,
the vanishing of pp is equivalent to:

p(wx) + (Auy Fa, Fa) =0, (7.2.9)
da(Auy Fa) =0, (7.2.10)
[Auy Fa, -] = 0. (7.2.11)

Then, by the proof of Proposition 6.1.2, the equations (7.2.10),(7.2.11), are actually equiva-
lent to:

Fahwh = 2wk, (7.2.12)

for some degree z € ¢, and consequently A,, F4 = z. Hence, the result follows under the
assumption (7.1.31) and the connectedness of K. O

Remark 7.2.4. Observe that the system (7.2.8) is completely equivalent to the coupled
Hermite-FEinstein system using the one-to-one correspondence of Hermite-Einstein metrics
on P¢ and Hermite-Yang-Mills connections on P. Therefore, we call (7.2.8) the coupled
Hermite-Yang-Mills system.

Theorem 7.2.3 provides a further motivation to study the coupled Hermite-Einstein sys-
tem (6.1.1), as it then prescribes a method to construct Bismut-Hermite-Einstein metrics
(6.3.2), for which the only known non-Kéahler examples are (up to finite quotients) given by
local Samelson spaces [119, 135].
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Chapter 8

Harmonic metrics for the
Hull-Strominger system and stability

As explained in Chapter 4, the Hull-Strominger system is reinterpreted in the context of
Hermite-Einstein metrics for Courant algebroids, and a moment map picture has been put
forward. Guided by the general principles of Kempf-Ness and its extensions to infinite
dimension, in this Chapter, we study the existence of an algebraic counterpart of this picture
in the sense of Geometric Invariant Theory. However, a fundamental feature intrinsic to this
theory is the indefiniteness of generalized hermitian metrics. This will be a recurrent issue
leading to the introduction in this Chapter of harmonic metrics and Higgs fields, tailored
to the needs of the Hull-Strominger system. We then propose a new notion of stability
for holomorphic Courant algebroids reminiscent of GIT, which is sensible to study in this
context. This Chapter is based on the article [66], which we follow closely.

8.1 The Hull-Strominger system and slope stability

In this Section we investigate the Mumford-Takemoto slope stability of holomorphic orthog-
onal bundles (Q, (-, -)). Of special interest will be those that arise in relation to solutions to
the Hull-Strominger system, with a focus on the Kahler property of the solution. In particu-
lar, we will recover a no-go result for the Hull-Strominger system, back to the seminal work
of Candelas, Horowitz, Strominger, and Witten [24].

Let X be a compact complex manifold of dimension n. We assume that X admits a
balanced hermitian metric wy. We denote by:

bo = [wi™!] € Hpg"" H(X,R) (8.1.1)

the associated balanced class in Bott-Chern cohomology. Let (Q, (-,-)) be a holomorphic
orthogonal bundle over X. A positive definite hermitian metric H on Q is said to be com-
patible with the orthogonal structure (-, -) if there exists a C-antilinear orthogonal involution
o: Q — Q, that is, (0-,0-) = (-,-) and 2 = id, and such that:

H=(,o0). (8.1.2)



Given such a metric H, we will denote by D™ and Fy := Fpu its Chern connection and
Chern curvature, respectively.

Remark 8.1.1. Observe that the (possibly indefinite) hermitian metric G in Lemma 5.1.2 is
precisely of this form, for o(s) = —s. Here, the conjugation is obtained via the isomorphism
Q= (TX@&ad P,)®C induced by Lemma 5.1.2 composed with (5.2.1), where Py, denotes the
bundle of unitary frames of P. In the sequel, we will reserve the notation H for hermitian
metrics which are positive definite.

The existence of a compatible hermitian metric H on (Q, (-,-)) satisfying the Hermite-
Einstein equation
FaAwy™ ' =0 (8.1.3)

can be characterized in terms of a slope stability criteria as in the Donaldson-Uhlenbeck-Yau
Theorem [40, 134] and its extensions to hermitian manifolds (see [98]). Here, to accomodate
the fact that Q is endowed with an orthogonal structure, we slightly refine the theory. Given
a torsion-free coherent sheaf F of Ox-modules over X, we say that a subsheaf F C Q is
isotropic if (F,F) =0 (see e.g. [11, 12]).

Definition 8.1.2. Let X be a compact complex manifold endowed with a balanced class
bo € Hp"" '(X,R). A holomorphic orthogonal bundle (Q, (-,-)) over X is:

1. slope bg-semistable if for any isotropic coherent subsheaf F C Q one has:

fioe (F) < 0, (8.1.4)

2. slope bg-stable if for any proper isotropic coherent subsheaf F C Q one has:

fioo (F) < 0, (8.1.5)

3. slope bg-polystable if it is slope bg-semistable and whenever F C Q 1is an isotropic
coherent subsheaf with py,(F) = 0, there is a coisotropic coherent subsheaf W C Q
such that:

Q=WaF. (8.1.6)

The relation between slope stability and the Hermite-Einstein equation (8.1.3) for com-
patible hermitian metrics is provided by the following version of the Donaldson-Uhlenbeck-
Yau Theorem (see e.g. [12, 99]):

Theorem 8.1.3. Let X be a compact complex manifold. Let wy be a balanced hermitian
metric on X with balanced class by = [wi™'] € Hpg'" ™. A holomorphic orthogonal bun-
dle (Q, (-,-)) over X admits a compatible hermitian metric H solving the Hermite-Einstein

equation (8.1.3) if and only if it is slope bo-polystable.
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Let us turn next to the relation with the Hull-Strominger system. For the purposes of
this Chapter, we will adopt the formalism of vector bundles, much more transparent for
the aspects we will cover here. Moreover, we stress that the connection V in this Thesis
is assumed to be an instanton (3.1.12). In precise terms, we assume that X admits a
holomorphic volume form 2. We fix a pair of holomorphic vector bundles V; and V; over our
compact complex manifold X satisfying (5.3.16). Although it will not be necessary in our
methods, one can assume that V; has T' as its underlying smooth vector bundle. Then,
we will assume throughout P is the holomorphic principal bundle of split frames of Vi & V4,
and accordingly ad P = End V{, & End V; equipped with the pairing:

((ro, 1), (S0, 81)) = atry; (roso) — atry; (ris1), (8.1.7)

where o € R. Then, the formulation of the Hull-Strominger system (3.1.14) with the above
choices translates to the following definition.

Definition 8.1.4. Let (X, Q, Vi, V1) be a compact Calabi- Yau manifold of complex dimension
n endowed with a pair of holomorphic vector bundles satisfying (5.3.16). Then, a triple
(w, ho, h1) of a hermitian metric on X and hermitian metrics h; on V; is a solution to the
Hull-Strominger in (X, 2, Vo, V1) with coupling constant « if:

Fp, Aw" =0

Fy, Aw™ =0

d(|Qflw" ) =0

dd‘w — atry, Fp, N\ Fp, + atry, Fp, A Fp, = 0.

(8.1.8)

We stress that Definition 8.1.4 is a particular case of Definition 3.1.3, hence the theory
developed in previous Chapter applies to this case. In the sequel, we will avoid confusion
between both definitions by making explicit that a solution to the Hull-Strominger system
is considered for the tuple (X, Q, Vg, Vi) or by making reference to Definition 8.1.4.

Let (w, ho, h1) be a solution of the Hull-Strominger system (8.1.8). Consider the associ-
ated holomorphic orthogonal bundle (Q, (-,)) as in Example 2.2.6. In our next results we
investigate the relationship between the slope polystable of (Q, (-, -)), in the sense of Defini-
tion 8.1.2, and the Kéhler property of the solution. The key to our argument is the existence
of a canonical isotropic subsheaf given by the holomorphic cotangent bundle

Tre S Q. (8.1.9)

Lemma 8.1.5. Let X be a compact Kdhler manifold endowed with a holomorphic volume
form Q. Let Vo and Vi be holomorphic vector bundles over X satisfying (5.3.16). Let
(w, ho, h1) be a solution of the Hull-Strominger system (8.1.8) with o € R and consider
the associated holomorphic orthogonal bundle (Q, (-,-)). Suppose that X admits a balanced
class by € H" M"Y X R) such that (Q,(-,-)) is slope by-polystable, and Kdihler classes
lwi] € HYY(X,R) such that V; is [w;]-polystable. Then g is a Kdhler metric and hy and hy
are flat.
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Proof. Assume first that o # 0. We will prove that (w, hg, hy) is also a solution of (8.1.8) with
a = 0. Consider the canonical isotropic subsheaf (8.1.9). The existence of a holomorphic
volume form €) implies that:

160 (T70) = 0, (8.1.10)

for any given balanced class by € H" " 1(X R). Hence, assuming that Q is slope bo-
polystable, we have that:

Q=WaTj, (8.1.11)

for a holomorphic coisotropic subbundle W C Q. Note further that there are canonical
isomorphisms of holomorphic vector bundles:

W = Q/Tfy0 =~ Ap, (8.1.12)
and therefore the class of the extension:
0— Ty =+ Q"+ Ap — 0 (8.1.13)

vanishes. Note that there is a biholomorphism Ap = (T'° @ End V, @ End V4, 0) where the
Dolbeault operator on the right hand-side is:

oV +ro+71) =0V +iyFyy +ivFhy +0 1o +0 'y (8.1.14)
and the class of (8.1.13) is represented by v € Q%' (Hom (Ap, T7)), defined by:
iwy(V + 1o +11) = —iwiy(2i0w) — 2atry, (iw Fryro) + 2atry, (iw Fpyr1) (8.1.15)
forany V +rg+r; € T @ End Vy @ End V;, and W € T%!. Therefore, the condition:
[v] =0 € H'(Hom (Ap, T7,)) (8.1.16)
jointly with o # 0 implies, in particular, the existence of a; € Q"°(End V;) such that:
9%y = Fy, 0 'a1=F,. (8.1.17)

By hypothesis, there exists Kahler classes [w;] € H"'(X,R) such that V; is [w;]-polystable.
Let h; be a Hermite-Einstein metric on V; with respect to w;. Then, we can use the standard
identity in Kéahler geometry:

872 _ )
T (n— 2)!Ch2(‘/j) o] = HFEjHL% (8.1.18)

where the L?-norm of the curvature Fﬁj is calculated with respect to the metrics ﬁj and w;

using the volume form w? /nl. Using that 9" aj = Fy,, the left hand side of this expression
vanishes by Chern-Weyl theory, and therefore ko and by are flat. In particular,

Fi Aw"t =0 (8.1.19)
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and hence, since h; must be related to ﬁj by a holomorphic gauge transformation, h; are
also flat. Therefore, (w, hg, h1) solves (8.1.8) with o = 0, and the Bianchi identity reads

dd‘w = 0. (8.1.20)
By [98], the conformally balanced equation is equivalent to
d“(log||||,) — d*w =10 (8.1.21)
and, by 5.3.5, this implies
VE(1Q|5'Q) = 0. (8.1.22)

Then, since —ipp(w) is the induced curvature of V2 on the anti-canonical bundle K, it
follows that pp(w) = 0. Thus, applying [67, Theorem 4.7] it follows from the existence of a
holomorphic volume form 2 that g is Kéahler.

O

Remark 8.1.6. Notice that the proof of [67, Theorem 4.7], which we have used to conclude
that g s Kdhler, uses a slope stability argument via exact holomorphic Courant algebroids.
Therefore, our proof of Lemma 8.1.5 reduces to Geometric Invariant Theory.

Our next result provides an obstruction to the existence of non-Kéahler solutions of the
Hull-Strominger system (8.1.8). It is a direct consequence of Lemma 8.1.5.

Proposition 8.1.7. Let X be a compact Kahler manifold endowed with a holomorphic vol-
ume form Q. Let Vi and Vi be holomorphic vector bundles over X satisfying (5.3.16). Let
(w, ho, h1) be a solution of the Hull-Strominger system (8.1.8) with o € R and consider the
associated holomorphic orthogonal bundle (Q, (-, -)). Suppose that (Q, (-, -)) is slope polystable
with respect to b := [||Q|,w" "] and furthermore that b is the (n — 1)"M-power of a Kdihler
class, then g is Kdhler and hg and h, are flat.

Remark 8.1.8. Our previous result applies, in particular, to the solutions of the Hull-
Strominger system found recently by Collins, Picard, and Yau in [28, Section 3.2]. These
solutions are on a Kdhler Calabi-Yau threefold, have Vi isomorphic to T*°, and are con-
structed such that b can be prescribed to be the square of any given Kahler class. Given
that T*° has non-trivial Chern classes (e.g., when X is simply connected), Proposition 8.1.7
proves that the associated (Q, (-, -)) is not slope b-polystable in this case.

Remark 8.1.9. Observe that the proof of Proposition 8.1.7 via Lemma 8.1.5 uses crucially
the Kahler hypothesis of the manifold. This poses the question of whether on a a prior:
general compact complex manifold, a solution to the Hull-Strominger system with b-polystable
orthogonal bundle (Q,(-,-)) must be Kdhler.

In virtue of this result, one is lead to think that although the generalized hermitian
metric G constructed in Lemma 5.1.2 on Q is coupled Hermite-Einstein (see Definition
5.3.1, Corollary 5.3.6), its indefinite signature does not tie in properly with the notion of
slope stability. To make future reference, we include here the explicit matrix expression of
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G with respect to the (smooth) splitting @ = T'® C & End V; & End V;. This follows
inmediately from complexifying (5.2.2) and (8.1.7):

g<'77) 0 0
G = 0 atry(,7) 0 , (8.1.23)
(a() 0 —atry, (+,7)
where conjugation in End V; is taken with respect to the hermitian metrics h;. Now, we

show that even in the definite signature case, a similar rigidity result holds. We consider
next the special case that the Hermite-Einstein metric G on Q associated to our solution is
positive definite. Without loss of generality, we can assume that o > 0. Thus, by looking at
the expression of G in (8.1.23), the metric G is positive definite precisely when rk V4 = 0.
Specifying to the case of complex dimension three, we recover a no-go result for the original
Hull-Strominger system back to the seminal work of Candelas, Horowitz, Strominger, and
Witten [24]. This shows the necessity of introducing the connection V for the existence of
non-Kahler solutions.

Proposition 8.1.10. Let X be compact complex manifold endowed with a holomorphic
volume form Q. Let V' be holomorphic vector bundle over X satisfying cho(V) = 0 €
H72(X,R). Let (w,h) be a solution of the system

FyAhwv =0,
d([Q|w™ ") =0, (8.1.24)
dd‘w + atr Fy, A Fy, = 0,

with o > 0. Then, w is Kdhler and h is flat.

Proof. Consider the holomorphic orthogonal bundle (Q,(-,-)) with the Hermite-Einstein
metric G associated to the solution (w, k) as in Corollary 5.3.6. Via the identification

Q=2TXRC@EndV (8.1.25)
we have the explicit formula (cf. (8.1.23)):

G:(<g 0 )( (5.1.26)

—atry

and therefore G is defines a compatible, positive definite, Hermite-Einstein metric on (Q, (-, -))
with respect to the balanced metric:

_1
W =195 w. (8.1.27)

From Theorem 8.1.3, (Q, (-,-)) is b-polystable for b = [||Q|[,w""!]. Hence, puy(T7,) =
pe(Q) = 0 implies that Q@ = Ty, © Ap holomorphically and metrically with respect to
the metric G. This means that the second fundamental form of the extension:

0Ty —>Q—Ap =0 (8.1.28)
given by v € Q%' (Hom(Ap, T},)) as:
Zw’)/(v + T') = —ZwZv(228W) + 20(tfv<Fh7”) (8129)

must vanish identically. Therefore, the result follows. O
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8.2 Harmonic metrics, Higgs fields and stability

8.2.1 HyperKahler moment maps

Let (X,w) be a compact complex manifold of dimension n endowed with a balanced metric
w, that is, satisfies dw™™! = 0. We fix a smooth complex vector bundle @) over X of degree
ZEro:

Q) - W] =0, (8.2.1)

where the product is considered in de Rham cohomology. We are interested in the geometry
of the space of complex connections on (), which we denote by Ag. In the application
to Section 8.2.2, ) is a complex orthogonal bundle and Ag is replaced by the space of
orthogonal complex connections. Nonetheless, the setup discussed here applies with minor
modifications and hence we stick to the simpler situation stated above.

The infinite-dimensional space of complex connections A is affine, modelled on the
complex vector space:

Q' (End Q). (8.2.2)

It is endowed with a natural complex symplectic structure, defined by:

Qc(as, as) = —/ tr af A aj A (8.2.3)

x (n—1)1

The group of complex gauge transformations G(Q) of @) acts on Ay by symplectomorphisms
and, similarly as in the Atiyah-Bott-Donaldson picture, there is a complex moment map.

Lemma 8.2.1. The G(Q)-action on (Ag,Sdc) is Hamiltonian with moment map:

wnfl

(uc(D), s) = — /Xtr(sCFD) A RSk (8.2.4)

where s € I'(End Q) = Lie G(Q) and Fp denotes the curvature of D.
Proof. The action of G(@Q) on the space of connections is given by conjugation:
g-D=goDog™t, g¢gegQ). (8.2.5)

Now, consider the one-parameter family of gauge transformations g, € G(Q) such that
%I o9t = s Then, by standard theory, we have:

d

- .D) = — ¢ 2.
dt|t:0(gt ) dps (8 6)
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Applying this, we compute:

dlpc(D), 5°)(a") = & _ (D + ta), )

c wn—1
_ %‘tZO <</};tr(s FD+tac> /\ —(n1)|> (
— —/ tr(s°dpa) A (‘;’L:;,
X

n—1

= / tr(dps® A a®) A ;
; .

d c w1

= Q((:(XS ,CLC).

Therefore, the result follows. O]

Observe that the zeros of the complex moment map are given by connections D € Ag
satisfying:

FpAw" 1 =0. (8.2.7)

One can restrict the Hamiltonian G(Q)-action to the complex subspace Agl C Ag given by

connections with Fg’2 =F 127’0 = 0, obtaining a complex analogue of the Hermite-Yang-Mills
equations (see [91]).

To introduce the hyperKahler structure on Ag of our interest, following [83] we fix a
positive definite hermitian metric H on ). Then, given D € A there is a unique decompo-
sition:

D=V"4+ U, (8.2.8)

where V¥ is an H-unitary connection and ¥ € iQ!(End gQ), where:
Q' (End Q) := {a € Q(End Q) | a*® = —a}. (8.2.9)

This induces an identification:

Ao = An x iQ'(End 5Q) (8.2.10)
and a decomposition:
Qc = Q1 + 1€y (8.2.11)
where:
n—1 wn—l
Ql(al,aQ) = —/th" ai VAN Qo VAN m — /Xtr 1/J1 A wg A (n _ 1)‘ (8212)
n—1 n—1
Qj(af,a3) = i/Xtr U1 A as A =1 —i—i/Xtr ay N\ Py A =1 (8.2.13)
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c __

$ = a; + ;. From this, using the fact that the base manifold has a complex structure
J, one can infer a hyperKahler structure with metric:

for a

g(a‘,a®) = — / tra A x,a + / tr v A x,1) (8.2.14)
be b'e

and complex structures I, J, K, satisfying IJK = I? = J? = K? = —Id, defined by:
Ia® = Ja — J, Ja® = —iJyY +iJa, Ka® = 1) + 1a. (8.2.15)

We are interested in the Hamiltonian action of the unitary gauge group Gg C G(Q) for the
triple of symplectic structures Qy, 3, Qk, where Qg = g(K-,-) is given by:

n—1

(n—1)"

n—1

QK(af,ag)——i/trzﬁl/\Jag/\——i-i/tral/\Jwg/\
X (n—1)! X

(8.2.16)

Proposition 8.2.2. Assume that w is balanced. Then, the Gu-action on Ag is Hamiltonian
for the three symplectic structures 1,3, Qk, and there is a hyperKahler moment map:

= (pr, 13, i) (8.2.17)
where:
(u(D), s) = —/Xtr s(Pon + LU A W)) A (:i_;!, (8.2.18)
(13(D), 5) = i/Xtr VA :)!, (8.2.19)
(i (D), s) = i /X tr sVH(JW) A (:i)!, (8.2.20)
and s € QY(End Q) = Lie Gg.
Proof. Equation (8.2.8) implies that
Fg = Fyn + VU + [U A U], (8.2.21)

Then, the formula for uy and py follow from Lemma 8.2.1 by taking real and imaginary parts
in the formula for uc. The fact that pux is a moment map follows easily from the explicit
expression for Ok above. O

To finish this section, we give a characterization of the hyperKéhler moment map equa-
tions (D) = 0 for a complex connection D = VH + ¥, given by
(Fyu + [T AT Aw™ ! =0,
(VHO) Aw™ ™t =0, (8.2.22)
(VHJU) Aw™™t = 0.
To link with the definition of a harmonic metric in Section 8.2.2, it is convenient to remove

our assumption that the hermitian metric w is balanced (in our applications, the hermitian
metric is conformally balanced).
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Lemma 8.2.3. Let w be an arbitrary hermitian form on X. Then, a complex connection
D = VH + U satisfies (8.2.22) if and only if

(Fyu 4+ 3[TAT]) Aw™ =0,
(VY (JE) =iy ¥ = 0, (8.2.23)
(V)W + iy U = 0.
where 0, = Jd*w is the Lee form of w and (VB)* denotes the adjoint operator with respect

to the metric g = w(-, J-).

Proof. The statement follows easily from the formula

(VI () = L+ (VIU) AW i U (8.2.24)

(n—1)!
[l

The third equation in (8.2.23), corresponding to the condition k(D) = 0 when w is
conformally balanced, will be taken in Section 8.2.2 as the defining equation for our notion
of harmonic metric for the Hull-Strominger system.

8.2.2 Harmonic metrics

We introduce next our notion of harmonic metric for the Hull-Strominger system, motivated
by the hyperKéhler moment map construction in the previous Section. We fix (X, ) and
Vo, V1 as in Section 8.1. Let (w, ho, h1) be a solution of the Hull-Strominger system (8.1.8) and
consider the associated holomorphic orthogonal bundle (Q, (-,-)). We are mainly interested
in non-Kéhler solutions, and therefore we will assume that o > 0 and rk V5 > 0 (see Corollary
8.1.10). Consequently, the generalized hermitian metric G associated to our solution will be
indefinite (see (8.1.23)).

The fundamental object in our development is the orthogonal connection D€ on (Q, (-, -))
in Proposition 5.1.1. Explicitly, in matrix notation in terms of the identification:

Q=TX ®Ca®EndVy® End Vi, (8.2.25)
for any vector field X the operator D§ is given by:
Vy g tatr (ixFh,) —g tatr (ixFy, )
D = Fry (X, ) dhe 0 : (8.2.26)
— 3, (X, 0) 0 dy

where V™~ denotes the C-linear extension of the g-compatible connection with totally skew-
symmetric torsion d°w, that is,

Vo =V/+1¢dw (8.2.27)
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for V9 the Levi-Civita connection of g, which we called Hull connection in Section 1.2.1.
Given a compatible (positive definite) hermitian metric H on the holomorphic orthogonal
bundle (Q, (-,-)) there exists a unique decomposition:

D¢ =VH 1y, (8.2.28)
where VH is an H-unitary connection and ¥ € Q!(End Q) satisfies:
= (8.2.29)
Lemma 8.2.4. The pair (VB V) in (8.2.28) satisfies the equations
(Fgu + 3T AT Aw™ ! =0,
(V) (JW) =i W =0, (8.2.30)
Fog + (Vo0 4 L[g0t A 00 = 0.
where (VH)* denotes the adjoint operator with respect to the metric g.

Proof. By Corollary 5.3.6, G is Hermite-Einstein. Decomposing Fg into its hermitian and
skew-hermitian components with respect to H as in the proof of Proposition 8.2.2, the proof
follows easily from Equation (8.2.21) and the proof of Lemma 8.2.3. ]

Given that the hermitian form w is conformally balanced, the first and second equations
in (8.2.30) correspond to the zeros of an infinite-dimensional complex moment map in the
space of complex orthogonal connections on (Q, (-, -)) (see Section 8.2.1). Similarly as in the
theory of Higgs bundles [83], it is therefore very natural to supplement these conditions with
an additional equation arising from a hyperKéahler moment map (see Proposition 8.2.2 and
Lemma 8.2.3).

Definition 8.2.5. Let (Q,(-,-), D) be a holomorphic orthogonal bundle over a hermitian
manifold (X,w) endowed with an orthogonal connection D. We say that a compatible her-
mitian metric H on (Q, (-,-)) is harmonic if:

(V)W + iy U = 0, (8.2.31)
where we use the decomposition (8.2.28).

Remark 8.2.6. The notion of harmonicity for H we propose is well-known in the Kdhler
case. Indeed, for (X,w) a Kdihler manifold, by [31], H is harmonic in the sense of Definition
8.2.5 if and only if it is a critical point of the functional:

E(H) = /X K2k (8.2.32)

Adapting the proof to the case w has torsion, the Euler-Lagrange equation of this functional
is precisely (8.2.31).
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We are interested in studying the existence of harmonic metrics under the hypothesis:
FpAw™ =0, FF=0. (8.2.33)

Notice this connection D is, in particular, a non-Hermite- Yang-Mills connection in the sense
of Kaledin and Verbitsky [91]. It would be interesting to find further relations between our
picture and the theory proposed in this reference.

Our stability condition for the Hull-Strominger system is related to the existence of a
harmonic metric on (Q, (-, -), D¥). We postpone its study to Section 8.2.3. Here, we propose
to address the following problem:

Question. Let (w, hg, h1) be a solution of the Hull-Strominger system (8.1.8) and consider
the associated holomorphic orthogonal bundle (Q, (-,-)) and orthogonal connection D€ as in
Proposition 5.1.1. Does (Q, (-,-), D) admit a harmonic metric H?

In order to provide a non-trivial example of harmonic metric for (Q, (-,-), D€) in Section
8.3.2, next we compute the equation (8.2.31) for a particular choice of hermitian metric. Via
the identification (8.2.25), we define (compare with (8.1.23)):

g 0 0
H=| 0 —atry 0 . (8.2.34)
0 0 —atry,

It is not difficult to see that (8.2.34) defines a compatible hermitian metric on (Q, (-, -)). In
our next result we compute the decomposition (8.2.28) for this particular choice of hermitian
metric.

Lemma 8.2.7. Let (VE W) be the pair in (8.2.28) associated to the compatible hermitian
metric (8.2.34). Then, in matriz notation in terms of the identification (8.2.25), one has:

V- 0 F} 0 Fj, 0
vH = 0 dw 0 |, U = F,, 0 0 |. (8.2.35)
—F,, 0 dn 0 0 O

where Fy, € Q'(Hom (TX ® C,End V})) are the Hom (I'X ® C,End Vj)-valued 1-forms
defined by
(ivFy, ) (W) := F, (V,IV) (8.2.36)

and F/L denote the corresponding adjoints with respect to G, that is,
iVIF;QO (ro) = g tatr (iy Fy,ro), ivIFLl(rl) = —g tatr (iy F,m) (8.2.37)

Proof. Tt is not difficult to see that V¥, as defined above, is H-unitary and furthermore that
U*H = U, The statement follows from formula (8.2.26). O

The desired characterization of the harmonicity of (8.2.34) is as follows:
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Lemma 8.2.8. Let (VH W) be the pair in (8.2.28) associated to the compatible hermitian
metric H defined by (8.2.34). Then,

0 -U" o0
(VI +igW=| U 0 =V (8.2.38)
\Y% 0
where
U(V) = —iy d"*F,, + bgt Lho + *(Fpy A *d%u)) ,( (8.2.39)
V(ro) = aFj, (e, e;)tr (Fhy(€s, €5)r0) (8.2.40)
for any choice of g-orthonormal frame ey, ..., es, of T, and UT and V' denote the corre-

sponding adjoints with respect to G. Consequently, H is harmonic if and only if the following
conditions are satisfied

Fpy A xd‘w =0, aly, (e, e;)tr (Fp, (e, e5)-) = 0. (8.2.41)
Proof. By the identity ¥*H = W it suffices to calculate U and V. For this, we compute

(VI W(V) = —ic, (Ve BW)(V)
= —(VE(ie, ¥(V)) —ie, U(VEV) — i, o, ¥(V))
= dl* (Fyo(e:, V) = Fio (€, Vo V) — Fio (Ve V)
= —iyd"*F,, — §Fh0 (€5, g Viyie,dw)
= —iy (d"* Fyy + *(Fpy A *dw)),
(VYW (r)) = iei\I/(Vgrl) = aly, (e, e)tr (Fp, (i, €)11).

Formula (8.2.38) follows now from the explicit formula for ¥ in Lemma 8.2.7. The last part

of the statement follows from Lemma 5.3.2, which proves that the Hermite-Einstein equation
for hg:

Fpy Aw™ 1 =0 (8.2.42)

implies, in particular,
d"* Fyy + g Fry — *(Fpy A %d‘w) = 0. (8.2.43)
O

Remark 8.2.9. Geometrically, the condition (8.2.41) means that the two-form components
of Fy, are orthogonal to the two-form components of the torsion g 'd‘w and also to the
two-form components of the curvature Fy, .
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8.2.3 Stability and Higgs fields

The moment map constructions in [13, 70] suggest that the Hull-Strominger system is related
to a stability condition in the sense of Geometric Invariant Theory. As we have seen in
Proposition 8.1.7, the naive guess of considering slope polystability of the orthogonal bundle
(Q,(,+)) with respect to the balanced class of the solution does not work. We propose
next a refined stability condition based on the existence of harmonic metrics for the Hull-
Strominger system. Even though our picture is mostly conjectural, we expect that this
stability condition will lead us to new obstructions to the existence of solutions in future
studies.

In order to relate the existence of a harmonic metric in the sense of Definition 8.2.5 with
a numerical stability condition, we introduce the following technical definition.

Definition 8.2.10. Let X be a complex manifold, @ a holomorphic vector bundle over X,
and F C Q a coherent subsheaf of Ox-modules with singularity set S C X, i.e. S is minimal
such that F|x\g is locally free. Then, given a (smooth complex) connection D on Q, we say
that F s preserved by D if:

D(F|x\s) C Q1 (X\S, Flx\s)- (8.2.44)

Remark 8.2.11. Observe that any coherent subsheaf of a wvector bundle is in particular
torsion-free, so the notions of degree and slope introduced in Section 6.2.2 apply.

The stability condition of our interest, is for tuples (Q,(,-), D), where (Q,(-,-)) is a
holomorphic orthogonal bundle and D is a (smooth) orthogonal connection such that DO =
Jo, as follows (cf. [91, Definition 8.3]).

Definition 8.2.12. Let (X,w) be a compact complex manifold X endowed with a balanced
hermitian metric w with balanced class b € Hpn " "(X,R). Let (Q,(-,-),D) be a holo-
morphic orthogonal bundle over X endowed with an orthogonal connection D such that
D% = 9g. We say that (Q, (-,-), D) is:

1. slope b-semistable if for any isotropic coherent subsheaf F C Q that is preserved by D
one has:

1e(F) <0, (8.2.45)

2. slope b-stable if for any proper isotropic coherent subsheaf F C Q that is preserved by
D one has:

e(F) < 0, (8.2.46)

3. slope b-polystable if it is slope b-semistable and whenever F C Q is a isotropic coherent
subsheaf that is preserved by D with puy(F) = 0, there is a coisotropic subsheaf W C Q
that is D-preserved and:

Q=WaF. (8.2.47)
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Remark 8.2.13. The analogous notions of b-semistability (resp. stability, polystability) can
be defined for pairs (Q, D) with no preferred orthogonal structure as in Definition 8.2.12, by
ommiting the requirement that F and VW be isotropic and coisotropic, respectively.

The relation between the existence of harmonic metrics, in the sense of Definition 8.2.5,
and slope stability is given in our next result.

Proposition 8.2.14. Let (X,w) be a compact complex manifold X endowed with a balanced
hermitian metric w with balanced class b € Hyg" (X, R). Let (Q, (-,-), D) be a holomor-
phic orthogonal bundle over X endowed with an orthogonal connection D such that D' = 0¢
and satisfying:

FpAw™t=0. (8.2.48)

Assume that (Q,(-,-), D) admits a harmonic metric H. Then, (Q,(-,-), D) is slope b-
polystable..

Before proving Proposition 8.2.14, we make some observations.

Remark 8.2.15. The analogous result of Proposition 8.2.14 holds also if (Q, D) does not
have a preferred orthogonal structure, using the notion of slope stability given by Remark
8.2.15.

Remark 8.2.16. Proposition 8.2.14 shall be compared with the main result of [106], where
the authors show, in a Kdahler setting, that the existence of harmonic metrics on Q s equiv-
alent to Q being semisimple. Moreover, the methods used in both results can be combined in
the following result, which we expect to carry over to non-Kdhler manifolds.

Theorem 8.2.17. Let (X,w) a compact Kdhler manifold and (Q, D) a holomorphic vector
bundle endowed with a connection such that:

FpAhw™t=0, D"'=0o. (8.2.49)

Assume that (Q, D) admits a harmonic metric H, and let F C Q be a D-preserved subbundle.
Then:

The analogous result holds for orthogonal bundles (Q, (-,-), D) and isotropic subbundles F C
Q.

Proof. Let F be a D-preserved subbundle of Q. Then, by the main result of [106]:
Q=FaFH (8.2.51)

where F1# is D-preserved. Then, combining (8.2.51) with Proposition 8.2.14 (ignoring the
orthogonal structure, see Remark 8.2.15), we obtain:

If moreover Q has an orthogonal structure, the result of [106] also applies, as if F is
isotropic, an elementary linear algebra argument shows F1H is coisotropic, whenever H is
compatible with (-,-). Then, the argument follows in this refined case too. O]
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In order to prove Proposition 8.2.14, we consider the following decomposition of our
connection D. Given a compatible hermitian metric H on (Q, (-, -)) we can uniquely write:

D = D" 4 ¢, (8.2.53)
where DH denotes the Chern connection of H and ¢ is a Higgs field:
¢ € Q"(End Q). (8.2.54)

Lemma 8.2.18. Let (Q, (-,-), D) be a holomorphic orthogonal bundle over X endowed with
an orthogonal connection D such that D%' = 0g and satisfying:

FpAw™ ! =0. (8.2.55)
Then, the pair (DY, ¢) in (8.2.53) satisfies the equations

(Fa + 3000 — 30" ¢™) AW =0,
(0o + O™ ) Aw™! =0, (8.2.56)
%9+ (o A ] =0,

where Fyg denotes the Chern curvature of H. Futhermore, H is harmonic if and only if:
(Fa+ 3o A g™ Aw™ ! =0. (8.2.57)
Proof. Taking the H-unitary part in the expression (8.2.53), one can easily see that:
VA =D 4 L(gp—¢™), U =1Lp+¢m). (8.2.58)

The first part of the statement follows from Lemma 8.2.4. As for the second part, we combine
(8.2.24) with:

(VEJU) Aw™™ = L(=0gp + O™ + [ A ¢*™]) Aw™ (8.2.59)
O

We give next the proof of Proposition 8.2.14.

Proof of Proposition 8.2.14. Let H be a harmonic metric for D. Let F C Q be an isotropic

subsheaf preserved by D. By [93, Ch. V, Proposition 7.6], there exists a reflexive subsheaf
F1 C Q such that F C F;, Fi/F is a torsion sheaf, and:

,ubo(]:) < :ubo(]:l)' (826())

Since the singular (analytic) set S C X of F has codim S > 2, it follows by a density
argument that F; is also preserved by D. Hence, it suffices to assume that F is reflexive.

In that case, there exists an analytic set S C X of codim S > 3 and a holomorphic vector
bundle F defined on X\ S such that F|x\s = O(F'). Denote by E = Q|x\s/F. Using H we
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can make a smooth identification of E and F*# on X\S. In the splitting Q|x\g = F @& F'1

we have:
DH o]
DH|X\S = ( —5€H Dg ) ( (8.2.61)

for DB DY the restricted Chern connections of F' and E and some 3 € Q% (Hom(E, F)).
Similarly, for the (restricted) Higgs field we have:

_ [ or 0 w_ [ F B
¢_ ( B*H ¢E ) ’ ¢ - <<95H ¢EH >< (8'2'62>

since we assumed that F is D-preserved. Now, by Lemma 8.2.18,

(Fa + 30 A ¢™]) Cwn—l =0. (8.2.63)

and therefore:
0= (Fu+ 3o A ¢*H])|< AW = (Fpu — 3B A B + 3[or A ] + 30 AGT) AW

Note that tr Fpu is the restriction to X\S of a (smooth) representative of —27ic;(detF)).
Then, taking traces in the previous expression and integrating over X we get:

ci(F) b+ /X Lrp(B A (xB)™) + Ltrp(6 A (x0)™) = 0, (8.2.64)

where we used that trr[pr A @3] = 0. Note that the integral in the previous expression is
nonnegative, since for any ¢ € Hom(E, F')

(0 ™) =t (( 0w ) ((00 0 )) é 0. (5.2.65)

Thus, it follows that py(F) < us(Q) = 0 and hence Q is semistable. In case of equality,
one has 3,0 = 0 and we get a holomorphic splitting Q|x\s = F|x\s ® Q/F|x\s which is
furthermore preserved by D. Then, since F is reflexive, so are Hom (Q, F) and Hom (F, F);
in particular they are normal. Then we can extend uniquely the projection map r : Q|x\s —
Flx\s to X. Moreover, the composition with j : 7 — Q is the unique extension to X of
IdF, s and hence r is a retraction for the exact sequence:

0—-F—-Q—Q/F —=0. (8.2.66)

We conclude that the sequence is split. Then, F and Q/F are locally free. Therefore,
we identify Q/F = F1# extending the identification over X\S, and F1# is D-preserved.
Finally, it is a linear algebra exercise that FH is a coisotropic vector bundle. Hence, the
result follows.

m

We are ready to prove the main result of this Section.
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Theorem 8.2.19. Let (w, ho, h1) be a solution of the Hull-Strominger system (8.1.8) with
balanced class b := [|Q|,w™t]. Consider the associated triple (Q, (-,-), D€) as in Proposi-
tion 5.1.1 and assume that (Q, {-,-)) admits a harmonic metric H. Then, (Q, (-,-), D®) is
slope b-polystable.

1

Proof. Observe that the H is also harmonic for v’ = HQHF w (see Lemma 8.2.3), which is
balanced dw™ ! = 0. Consequently, the result follows as a direct consequence of Proposition
5.1.1 and Proposition 8.2.14. O

8.2.4 Non-holomorphic Higgs fields

We establish next a comparison between the equations in Lemma 8.2.18 and the Hitchin’s
Equations in the theory of Higgs bundles [83]. The main qualitative difference between these
quations is that the Higgs field ¢ in our picture is very often not holomorphic, as we can see
from the following result.

Lemma 8.2.20. Let X be a compact Kahler manifold endowed with a holomorphic vol-
ume form Q. Let Vi and Vi be holomorphic vector bundles over X satisfying (5.3.16). Let
(w, ho, h1) be a solution of the Hull-Strominger system (8.1.8) and consider the associated
triple (Q, (-,+), D®) as in Proposition 5.1.1. Let H be a compatible hermitian metric on
(Q, (-,-)) such that the associated Higgs field in (8.2.53) satisfies

gg(b Aw" 1 =0.

Assume that b := [||Q]|,w" ] is a (n — 1)"-power of a Kdhler class. Then, g is Kihler and
ho and hy are flat.

Proof. By (8.2.53), we have that
FG A w”_l = (FH +59¢) A w”_l = O

By Theorem 8.1.3, 0g¢ A w™ ! = 0 implies that (Q, (-,-)) is slope b-polystable and hence
the statement follows from Proposition 8.1.7. m

Remark 8.2.21. In order to relate our stability condition to a practical obstruction to the
ezistence of solutions to (8.1.8), it seems necessary to establish a more clear relation between
the Dorfman bracket [,] on Q (see Example 2.2.6) and the orthogonal connection DS, in a
way that the slope inequality is formulated more naturally in terms of the triple (Q, (-, -),[,]).

In Section 8.3, we will see an explicit family of Examples over homogeneous manifolds
where the Higgs field ¢ as in this picture is not holomorphic in these non-Kéahler backgrounds
as well.

8.3 Examples

8.3.1 A family of solutions on the Iwasawa manifold

In Section 8.2.3 we have proved that triples (Q, (-, -}, D¥) associated to solutions of the Hull-
Strominger system are polystable in the sense of Definition 8.2.12, provided that they admit
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a harmonic metric (see Definition 8.2.5). The aim of this section is to give some examples
where one has a positive answer to Question 8.2.2.

Consider the Iwasawa manifold X = I'\H (see Example 4.2.1), given by the quotient of
the complex Heisenberg Lie group:

1 Z9 23
H= 1 z | |z€C (8.3.1)
0 0 1

by the lattice I' C H of matrices with entries in Gaussian Z[i|. Note that there is a holo-
morphic projection to the standard complex torus:

p: X = T*=C*/Z]i]?, (8.3.2)
which makes X a holomorphic torus fibration. Recall that the 1-forms:
wi =dz; , wy=dzy , w3 =dzz— 20dz; (8.3.3)
are [-invariant and descend to X, defining a global frame of 77 satisfying:
dwi =dws =0 , dws = wia. (8.3.4)
For any choice of:
(m,n,p) € Z*\{0} (8.3.5)
we consider the following purely imaginary (1, 1)-form on the base T
Fr=m(m(wit — waz) + n(wiz + wor) + ip(wiz — war)). (8.3.6)

Note that #F has integral periods and hence, by general theory, this is the curvature form
of the Chern connection of a holomorphic hermitian line bundle (L, h) — T%. In the sequel,
we will identify (L, h) and F' = F}, with their corresponding pull-backs to X via p.

Fix (mg,ng, po), (m1,n1,p1) € Z*\{0} and consider the associated holomorphic hermitian
bundles (L;, h;j) = X, for j =0, 1. Consider the SU(3) structure on X defined by:

Q=wi3 , wo= %(Wﬁ + wy3 + wg). (8.3.7)
Note that wy is a balanced hermitian metric and €2 is a holomorphic volume form.

Proposition 8.3.1. With the notation above, the triple (wq, ho, h1) is a solution of the Hull-
Strominger system (8.1.8) on (X,Q, Lo, L1) if and only if:

«

1
_ . 8.3.8
2m2(mi +ng + pg — mi —ni — pi) .
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Proof. The first two equations of the system follow from the fact that Ly and L; have degree
zero combined with the fact that Fj, and £}, are induced by left-invariant forms. The
conformally balanced equation follows from dw? = 0 and the fact that ||€2]|., is constant.
Finally,

C
dd wy = w13,
2 .2/ 2 2 2y,
Fy, = 2m7(mi + ni + p1)wioms,

F}i = 272(”13 + n; + P%)Wuﬁ-

and hence the Bianchi identity, given by the last equation in (8.1.8), is equivalent to (8.3.8).
O

8.3.2 Existence of harmonic metrics

Recall that there is a fibration structure p: X — T* and that L; are pull-back from the
base. Let P be the smooth complex principal bundle underlying the bundle of split frames
of Ly @ Ly. We consider the set of holomorphic structures on P given by the torsor for the
abelian group:

B = Pic% x Pic%, (8.3.9)

which is a complex 4-dimensional Abelian variety, since Hg’l(X ) = C? (see [10]). We will
denote by P, the holomorphic bundle associated to x € B. More precisely, we will identify
P, with the holomorphic bundle of split frames of a direct sum of line bundles L§ & LY,
where LY & LY = Ly & L.

To state the main result of this section, for each x € B we need to consider holomorphic
orthogonal bundles (Q,, (-, -)) which may arise from solutions of the Hull-Strominger system
(see Corollary 5.3.6 and Remark 8.3.3). As discussed in Section 5.4.2 around (5.4.21), these
are parametrized by the image of the natural map

0: Hy'(X,R) = H2'(X). (8.3.10)

The holomorphic deformations of Q, given by the map above correspond to the observation
here that the construction of the Dolbeault operator in Example 2.2.6 can be modified in the
following way: given [r] € Hy' (X, R) we can change 2i0w — 2i0(w + 7), which still defines
an integrable Dolbeault operator. Observe furthermore that this induces a new holomorphic
orthogonal bundle structure on Q with the same pairing.

Proposition 8.3.2. Let (m;,n;, p;) € Z*\{0}, i = 0,1 such that
c1(Lo) - e1(Ly) = 0 € Hyp(TH R). (8.3.11)

We fix the coupling constant « as in (8.3.8). Then, for any x € B there exists a holomor-
phic orthogonal bundle (Q°, (-,-)) induced by a solution of the Hull-Strominger system on
(X,Q, LE, LY) which admits a harmonic metric. Furthermore, for any small deformation
(Qu, (-,)) of (9%, (-,-)) parametrized by an element in the image of (8.3.10), there exists a
solution to the Hull-Strominger system inducing (Q, (-,-)) and a harmonic metric for this
solution.
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Proof. We proceed in steps. Firstly, we prove the result for a single holomorphic orthogonal
bundle as in the statement. Then, we check that this construction is stable with respect to
deformations. The holomorphic pairing will remain constant along the family.

Step 1. Let x = (zo,21) € B and choose lifts #; € Hg’l(X). We denote by L) the
holomorphic line bundle corresponding to ;. The Chern connections of h; on L; and L) are
related by:

where a"' € Q%' is an invariant form representative of #;. Observe that:

since Fj, I, € Qy' and da; € Q3 @05 for a; invariant. From this, (wy, Aj, A}) is a solution
of the Bianchi identity:

ddw — OéFA{J N FA6 + OzFAfl A FA/1 =0, (8.3.14)

and we consider the associated Bott-Chern algebroid Q2. Then, QY admits a solution to the
Hull-Strominger system (wy, ho, h1). Furthermore, we obtain a harmonic metric on Q%:

go 0 0
Ho=| {0 —a 0 (8.3.15)
0 —«

under the topological constraints (8.3.11) in the statement. To see this, by Lemma 8.2.8, it
is equivalent to:

Fpy N *dwo =0, ZZ( Fpy (€, e?)Fhl(eg, e?-) =0. (8.3.16)
for any wg-orthonormal basis {e?}. Using the expression (8.3.6) for the curvature Fj, com-

bined with:

we get that the first of these equations holds for any value of the integers (mg,ng,po) €
Z3\{0}. Using that Fj, are Hermite-Yang-Mills, the second equation may be rewritten as:

Fho VAN Fh1 VAN Wy = 0 (8318)
or, in terms of the parameters,
momy + NgNy + Pop1 = 0. (8319)

Finally, using that Fj,, are pull-back from the base torus 7%, one can easily see that this
condition is equivalent to (8.3.11).
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Step 2. It is easy to check that in this manifold, a basis of Hy'(X,R)/kerd is given by
the classes of the real (1, 1)-forms:

T = w3 — wyy, T2 = (w3 + Wsy), T3 = Wog — Wy, T1 = i(Wyg + wyp). (8.3.20)

Then, any holomorphic orthogonal bundle in the deformation family of (Q%, (-,-)) (as in the
statement) is isomorphic to (QZ, (-, -)) where 7 = Z?:l t;1;, t; € R, Q7 is the holomorphic
vector bundle with Dolbeault operator as in Example (2.2.6) with 2i0w replaced by 2i0(w+7),
and (-,-) is constant given by (8.1.7). Now, one can readily check that, for any small
7, (wo + 7, hy, h}) is a solution to the Hull-Strominger system which induces (QZ, (-,-)).
Furthermore, applying Lemma 8.2.8 the harmonicity conditions for the metric:

go+7(,J) 0 0
H, = 0 —a 0 (8.3.21)
0 0 —«
follow again from a straightforward calculation which implies:
Fho VAN *wO+TdC(WQ + T) = O, (8322)
combined with condition (8.3.11). O

Remark 8.3.3. More invariantly, in the formalism of Bott-Chern algebroids introduced in
Chapter 2, the previous result can be stated as follows: for any x € B there exists a Bott-
Chern algebroid with underlying bundle P, and fived Lie algebra bundle determined by the
pairing (8.1.7) such that any small Bott-Chern algebroid deformation admits a solution to
the Hull-Strominger system and a harmonic metric for this solution.

As an immediate consequence of the previous result and Theorem 8.2.19, we obtain fam-
ilies of examples of holomorphic orthogonal bundles with connection associated to solutions
of the Hull-Strominger system which satisfy the stability condition in Definition 8.2.12.

Corollary 8.3.4. The orthogonal vector bundles with connection
(Qx; <'7 '>7 DG)

giwven by Proposition 8.3.2 are b-polystable in the sense of Definition 8.2.12, where b is the
balanced class of the solution which induces (Q,, ().

Proof. This is immediate from Proposition 8.2.14 and Proposition 8.3.2. [

8.3.3 Higgs fields on the Iwasawa manifold

As we discussed in Section 8.2.4, we cannot expect the Higgs field defined by a harmonic
metric H for the Hull-Strominger system to be holomorphic. Motivated by Lemma 8.2.20,
the aim of this section is to provide a non-Kéhler example which illustrates this phenomenon.
The failure of the Higgs field ¢ to be holomorphic was computed in general in [66, Lemma
3.19]. Here, we avoid this somewhat involved expression by means of a direct computation
building on the results of the previous Section.

We shall focus on the family of examples constructed in Proposition 8.3.2, with harmonic
metrics H, defined in (8.3.21).
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Proposition 8.3.5. Let (wg + 7, ho, h1) be the solution of the Hull-Strominger system in
(X,Q, LE, LY) constructed in Proposition 8.3.2, for « given by (8.3.8). Let H, be the har-
monic metric for this solution constructed in the proof of Proposition 8.3.2. Then, for any
small T, the Higgs field ¢ of H, satisfies

Do # 0.

Proof. By continuity on the parameter 7, it is enough to check that dg¢ # 0 for 7 = 0. Notice
that in our examples both Vy and V; are line bundles, and therefore End V; = C canonically.
The general expression for the Higgs field ¢ is obtained from (8.2.35) and (8.2.58). Using
the identification of Q@ = Tr & C @ C (see (8.2.25)), we obtain:

0 2(F )% 0

¢o=| —2F,” 0 0], (8.3.23)
0 0 0
where IF,ll’OO € QY9 (Hom(T¢, C)) and (IF;QO)LO € QY1) are givin by the formulas:
ix10Fy = ix10F, (8.3.24)
ixo(F} )0 = 2ag5 (ix10F,). (8.3.25)

We can write dg¢ in matrix form corresponding to this splitting:

_ @Q¢)11 @Qﬁb)lz 0
Oop = | (9aP)a1 (Dod)aa (Dap)as | - (8.3.26)
0 (009)32 0

whose components are (1, 1)-forms with values in End Tt for (Do), in Tt for (0g¢)12, in
T¢ for (0g¢)ar, and are scalar for the rest. Now, we compute the term (0g¢)23 above. Let
s =(0,0,1) € T'(Q) corresponding to the constant section 1 in End V; = Ox. By the matrix
expression above (8.3.26), it follows that:

(009)2s = (Dad)(s) = Da(d(s)) + ¢ A (Da(s)) = ¢ A (Do(s)).
Then, using the expression for Fj,, given by (8.3.6) and the Dolbeault operator given by the
(0, 1)-component of (8.2.26), we obtain:

9o(s) = —agy Ty + Fmnavi (1)
= 271a(w; ® (M X1 — (N1 —ip1) X2) + wa(—my X1 — (ng +ip1)X2))
It then follows that:
(5Q¢)23 = - gb@g(s))
= —4ra((memi + (ng + ipo) (n1 — ip1))w g+
+ (mo(ny + ip1) — ma(ng + ipo) )wiz+
+ (=mo(n1 — ip1) + ma(no — ipo) Jwor+
+ (moma + (no — ipo) (11 + ip1) )wss)-

Finally, subject to the condition (8.3.11) together with (m;,n;, p;) € Z*\{0}, it is easy to
check that (0g¢)23 # 0.
[l
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Chapter 9
Outlook

Higher gauge theory

A promising approach for studying the geometry of Courant algebroids and constructing
moduli of gauge-like equations is provided by higher gauge theory, in the sense of [16].

Roughly, in this context, one regards the space of sections of a Courant algebroid as
infinitesimal symmetries of a higher gauge group [122]. Morally, this picture is equivalent to
interpreting sections of the Atiyah bundle Ap of a principal bundle P over a smooth manifold
M as the differential version of the extended gauge group of P:

1 — G(P) — G(P) — Diff(M) — 1.

The ongoing work of R. Téllez-Dominguez in his PhD Thesis, under the supervision of L.
Alvarez-Cénsul and M. Garcfa-Ferndndez make precise this correspondence. Furthermore,
Téllez obtains a higher Chern correspondence in [129], recovering the Chern correspondence
for string algebroids of [70]. Moreover, jointly with the above cited supervisors, they con-
struct the space of connections for higher principal bundles up to gauge equivalence in the
language of higher stacks, where gauge or holomorphicity equations can be studied.

This point of view provides a convenient mathematical framework to study stability con-
ditions for holomorphic higher principal bundles, whose classical interpretation for Courant
algebroids could clarify some aspects of the stability notions put forward in Chapter 8, par-
ticularly its (in)dependence on metric data. If such a program is successful, potentially there
are higher analogous of a GIT theory that allow to consider a less singular space of stable
objects. Then, one can speculate with the possibility of a higher Donaldson-Uhlenbeck-Yau
result that regards this space as a symplectic reduction for suitable moment map equations
e.g. the Hull-Strominger system, or else, as a higher analog of the moduli construction in
[70].

Heterotic geometry of G5 and Spin(7) manifolds

The Hull-Strominger system has natural analogs in dimension 7 and 8, called the heterotic
Go system and heterotic Spin(7) system, respectively. These were first studied in physics as
consistency conditions for the inner spaces of compactifications of the heterotic string with
minimal supersymmetry to spacetimes with a different number of dimensions, hence the

190



different dimensions, and later introduced in the mathematical literature in [48]. A solution
to these systems determines, in particular, a Gy or Spin(7) structure with torsion on the
manifold, respectively, and share further formal features with the Hull-Strominger system.
It is therefore reasonable to expect that the results obtained in this Thesis can be exported
to dimension 7 and 8.

In this direction, prior to this Thesis, in the physical literature [35, 36] obtain results
analogous to the Hull-Strominger case regarding instanton connections and moduli of solu-
tions. As a matter of fact, the perturbative result in [36, Corollary 1] inspired our Corollary
5.3.6. Recently, A. A. da Silva Junior has shown [33] that a solution to the heterotic G
system determines a Go-instanton connection on a real Courant algebroid. Moreover, he
obtains the precise Gy-instanton conditions analogous to the system (5.3.12).

On the other hand, in the Gy and Spin(7) cases, generalizing other aspects covered in
this Thesis, such as the Futaki invariants in Chapter 5 or algebraic obstructions for real
Courant algebroids related to GIT remain mysterious, mainly due to the lack of rigidity of
complex manifolds.

New flows for the Hull-Strominger system

The dimensional reduction approach of Chapter 7 is based on ongoing work jointly with
Mario Garcia-Fernandez and Jeffrey Streets. In a nutshell, Theorem 7.2.3 suggests a strong
relation between the coupled Hermite-Einstein system and pluriclosed geometry on manifolds
with non-abelian symmetries.

In this context, running pluriclosed flow [126], is a promising tool to look for canonical
geometry. Moreover, under suitable invariant initial conditions, the flow preserves the sym-
metry and hence admits a natural reduction, leading to a new family of coupled flows worth
exploring. These serve, at the same time, as a motivation and as a tool to study the coupled
Hermite-Einstein system beyond the basic properties and solutions established in Chapter

6.

The analysis of these flows poses new challenges. For instance, when one regards them as
instances of Generalized Ricci flow [71], typically, the indefinite signature of the Lie algebra
(Lie K, (-, -)) associated to the bundle means the techniques based on the flow of monotone
quantities, which is at the core of a good number of results on Generalized Ricci flow, should
now be handled very carefully. Nevertheless, we expect that studying the behaviour of these
flows on non-Kahler Calabi-Yau threefolds provides new insights on the geometrization of
Reid’s fantasy [115].
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Conclusion

El objetivo inicial marcado para esta Tesis ha sido estudiar la existencia de soluciones al
sistema de Hull-Strominger [86, 127], y més concretamente, una versién refinada de la Con-
jetura de Yau propuesta en [139] (ver también Capitulo 3). Para este sistema de ecuaciones,
cuya comprension es ain muy incompleta, son conocidas algunas familias de soluciones (ver
Seccién 4.2) pero las herramientas tedricas que sirvan para abordar sistematicamente este
problema estan ahora solamente empezando a ser construidas en la literatura matematica.
Este trabajo propone enfoques novedosos que, segin esperamos, puedan ser utilizados para
progresar en el problema de existencia de soluciones y de sus posibles implicaciones en la
construccién de un espacio de moduli de variedades Calabi-Yau proyectivas [115, 27, 55], y
en teoria heterética de cuerdas. A continuacién se resumen las aportaciones originales que
han sido desarrolladas en esta Tesis.

En los ultimos anos, la geometria generalizada se ha demostrado clave en la comprension
del sistema de Hull-Strominger [36, 61, 68, 70]. En este trabajo, siguiendo este principio
como guia, en el Capitulo 5 hemos reinterpretado el sistema de Hull-Strominger, fijando los
datos holomorfos de los fibrados, y cohomoldgicos de la clase balanceada en términos de un
algebroide de Courant holomorfo Q provisto de una métrica generalizada G que satisface
una ecuacion de tipo Hermite-Einstein (Seccién 5.3):

Fe Aw™™ 1 =0,

donde w es la métrica hermitica dada por la solucion al sistema. Este resultado es una con-
traparte en la literatura matematica que hace preciso el obtenido en teoria de perturbaciones
en fisica [36]. Ademds generaliza para un tipo concreto algebroides de Courant transitivos,
llamados de cuerdas [64], el resultado obtenido para algebroides de Courant holomorfos
exactos en [67]. Mads atn la interpretacion de la ecuacién Hermite-Einstein para G como
aplicacién momento nos permite construir invariantes de Futaki (ver Seccién 5.4.2) en forma
de caracteres holomorfos:
F:H(End Q) — HY',

que proporcionan un nuevo criterio de obstruccién para el sistema de Hull-Strominger mas
alla de la existencia de métricas balanceadas y estabilidad de pendiente para los fibrados.
Esperamos que el cdlculo de estos invariantes constituya, en futuros estudios, una técnica que
permita decidir eficazmente sobre la posibilidad de resolver el sistema de Hull-Strominger en
variedades Calabi-Yau no Kahler. De esta manera, obtenemos importante evidencia de que
la pregunta que motiva esta Tesis (ver Seccién 4.3) tiene una respuesta negativa.

Como resultado derivado de esta construccién, en los Capitulos 6 y 7 hemos estudiado las
condiciones en geometria hermitica correspondientes a la existencia de métricas generalizadas
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G Hermite-Einstein en el sentido anterior. Este nuevo sistema de ecuaciones, que llamamos
sistema Hermite-Einstein acoplado (Definicién 6.1.1) es mas flexible que Hull-Strominger,
y segun hemos visto, tiene interesantes propiedades en Geometria Generalizada, y relacion
con las ecuaciones del movimiento de supergravedad heterdtica y la teoria de algebras de
vértices (Seccién 6.4, ver también [6]). Mads ain, en el Capitulo 7 hemos visto que, via
reduccion dimensional, el sistema Hermite-Einstein acoplado esta también relacionado con
la bisqueda de geometria candnica en variedades pluricerradas, dada por métricas hermiticas
que satisfacen:
dd‘w =10, pg=0.

La segunda aportacion principal en esta Tesis estd relacionada con describir algunos as-
pectos de una conjetural correspondencia de Hitchin-Kobayashi [40, 99, 134] para algebroides
de Courant que admiten soluciones al sistema de Hull-Strominger. En el Capitulo 8 hemos
discutido la rigidez de la nocién clasica de estabilidad de Mumford-Takemoto en este con-
texto y hemos propuesto una nocion refinada de estabilidad inspirados por la construccion de
Hitchin [83], y damos una definicién de métrica armonica basada en una aplicacién momento
hyperKéhler en dimensién infinita. Asimismo, demostramos su relaciéon con una condicion
numérica de estabilidad. Este estudio es un paso importante para obtener, en el futuro,
condiciones algebraicas para la existencia de soluciones de Hull-Strominger y para la con-
struccion de espacios de moduli de algebroides de Courant holomorfos.

Ademas de los avances conceptuales descritos, una buena comprension del problema de
existencia pasa por estudiar ejemplos concretos. Asi, en esta Tesis, nos hemos centrado en
la geometria dada por variedades complejas localmente homogéneas (ver Capitulo 4), en la
que los calculos son particularmente explicitos, y hemos dado un procedimiento sistematico
para la bisqueda de soluciones del sistema de Hull-Strominger con un ansatz de tipo invari-
ante, recuperando muchas de las soluciones que se hayan ya en la literatura [25, 47, 105] y
anadiendo nuevas familias. Estas geometrias también nos han servido para ilustrar discu-
siones sobre aspectos métricos del espacio de moduli de soluciones a Hull-Strominger (Seccién
4.4), el calculo de invariantes de Futaki explicitos (Seccién 5.4.4), y una familia de métricas
armonicas para algebroides de Courant (Seccién 8.3.2).
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