
Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

AMITANS-2024
Journal of Physics: Conference Series 2910 (2024) 012011

IOP Publishing
doi:10.1088/1742-6596/2910/1/012011

1

ϕ4 model under Dirichlet-Neumann boundary

conditions

Daniel Dantchev1,2, Vassil Vassilev1

1 Institute of Mechanics, Bulgarian Academy of Sciences, Academic Georgy Bonchev St.
building 4, 1113 Sofia, Bulgaria
2 Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart,
Germany

E-mail: danieldantchev@gmail.com, vasilvas53@gmail.com

Abstract. The minimization of the Ginsburg-Landau ϕ4 functional is at core of the so-called
ϕ4 model, which is one of the basic models of statistical mechanics. The minimization leads
to a second order nonlinear differential equation that has to be solved under specific boundary
conditions. In the current article we consider a system with a film geometry with thickness L
under Dirichlet-Neumann boundary conditions applied along the finite-direction. We study the
modifications of the bulk phase diagram for the finite system, as well as the field-temperature
behavior of the characterizing the system order parameter profile, as well as the connected to
it corresponding response functions (local and total susceptibilities).

1. Introduction
Currently, there is a substantial interest in the behavior of low-dimensional systems undergoing
phase transitions. This is both due to the internal needs of theory to be developed for such
systems, but also due to the experimental interest of scaled down systems. One considers
systems with finite geometry like fully finite systems, chains, films, etc.

In the current article we consider a system with a film geometry of width L at temperature T
and exposed to some external ordering field h. In statistical mechanics the systems are described
via some order parameter, which can be scalar, vector, tensor, etc. We specifically envisage a
system described by scalar, i.e., Ising type mean-field order parameter under Dirichlet-Neumann
boundary conditions. Let us assume that along the finite direction of length L the corresponding
Cartesian coordinate is z. For such a system in the grand canonical ensemble the finite-size
scaling theory [1–3] predicts:

• For the order parameter ϕ (e.g., magnetization) profile

ϕ(z|T, h, L) ≃ ahL
−β/νXm (z|L, xt, xh) (1)

where
xt = atτL

1/ν , xh = ahhL
∆/ν . (2)

Here τ = (T − Tc)/Tc is the dimensionless distance from the bulk critical point Tc of the
infinite system. Under Dirichlet-Neumann boundary conditions in the current article we
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mean that

ϕ(z = 0|T, h, L) = 0 and
∂

∂z
ϕ(z|T, h, L)∣∣

z=1

= 0. (3)

Obviously, this is a specific case of mixed boundary conditions problem in which the solution
of a given differential equation is required to satisfy different boundary conditions on disjoint
parts B1 and B2 of the boundary ∂Ω = B1

⋃
B2 of the domain Ω where the condition is

stated

ϕ|B1
= f1 and

∂

∂n
ϕ|B2

= f2. (4)

Here ∂n means a derivative in a direction normal to the boundary B2. In the current
article the case f1 = f2 = 0 has been chosen and, because of the film geometry, the normal
derivative is along the z axis.

A basic characteristic of the order parameter profile is its response to the external
influence on the system described in the form of some external filed h, say a magnetic one.
Thus, one defines the local and total response functions (susceptibilities). For them the
finite-size scaling theory predicts:

• For the local (layer) susceptibility profile

kBT χl(z|T, h, L) ≡
∂

∂h
ϕ(z|T, h, L) ≃ a2hL

γ/νXχ (z|L, xt, xh) (5)

with

Xχ (z|L, xt, xh) =
∂

∂xh
Xm (z|L, xt, xh) ; (6)

• For the total susceptibility χ(T, h, L) ≡ L−1
∫ L
0 χl(z|T, h, L)dz one has

kBT χ(T, h, L) ≃ a2hL
γ/νX (xt, xh) . (7)

In the above equations (1) – (7), kB is the Boltzmann constant, β and γ are the critical exponents
for the order parameter and the susceptibility (compressibility), the quantities at and ah are
nonuniversal metric factors that can be fixed, for a given system, by taking them to be, e.g.,

at = 1/
[
ξ+0

]1/ν
, and ah = 1/ [ξ0,h]

∆/ν , where ξ+0 and ξ0,h are the respective amplitudes of the
correlation length along the τ and h axes. In addition, ν is a critical exponent characterizing
the behavior of the correlation length, while ∆ is another exponent related to the behavior of,
say, order parameter as a function of the external field h.

Let us recall that the Ising system with a film geometry ∞2 × L possesses a critical point

Tc,L of its own with coordinates (x
(c)
t , x

(c)
h ). The scaling functions Xm, Xχ and X will exhibit

singularities near this point. For example

X(xt, x
(c)
h ) ≃ Xc,t

(
xt − x

(c)
t

)−γ2
, xt → x

(c)
t , (8)

where the subscript in γ2 reminds that γ2 is the critical exponent of the two-dimensional infinite
system that is to be distinguished from the corresponding exponent γ for the three dimensional
bulk system.

In the current article we will derive new exact analytical results for the scaling functions
Xm, Xχ and X for the Ginzburg-Landau Ising type mean-field model under Dirichlet-Neumann
boundary conditions. Let us recall that in the mean-field approximation β = ν = 1/2, ∆ = 3/2
and γ = γ2 = 1. For the version of the model considered here τ = (T −Tc)/Tc (ξ

+
0 )

−2, z ∈ [0, L],

ξ+0 = 1, ξ0,h = 1/ 3
√
3, at = 1 and ah = 3 [4–6].
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2. The Ginzburg-Landau functional
In the present work we consider the standard ϕ4 Ginzburg–Landau functional

F [ϕ|τ, h, L] =
∫ L

0
L(ϕ, ϕ′|τ, h) dz (9)

with

L(ϕ, ϕ′|τ, h) = 1

2
ϕ′2 +

1

2
τϕ2 +

1

4
gϕ4 − hϕ. (10)

Here L, g ∈ R+, while τ, h ∈ R, z ∈ (0, L) and ϕ = ϕ(z) are the independent and dependent
variables, respectively, and the prime indicates differentiation with respect to the variable z.

This functional describes a critical system of Ising type in a film geometry ∞2 × L, where
the film thickness L is supposed to be along the z axis. In Eq. (9), ϕ(z; τ, h, L) is the order
parameter of the system, g is the bare coupling constant, and, as before, τ is the bare reduced
temperature and h is the external ordering field.

The physical state of the regarded system is described by the minimizers of the Ginzburg–
Landau functional F [ϕ; τ, h, L] given above whose extremals are determined by the solutions of
the corresponding Euler-Lagrange equation

d

dz

∂L
∂ϕ′ −

∂L
∂ϕ

= 0, (11)

which, on account of Eq. (10), reads

ϕ′′ − ϕ
[
τ + g ϕ2

]
+ h = 0. (12)

Multiplying equation (12) by ϕ′ and integrating once over z one obtains the following first
integral of the system

1

2
ϕ′2 − 1

2
τϕ2 − 1

4
gϕ4 + hϕ = c, (13)

where c is the constant of integration. Another quantities of interest are the local χl(z, T, h, L)
and total χ(z, T, h, L) susceptibilities

χl(z|T, h, L) ≡
∂

∂h
ϕ(z|T, h, L) and L−1χl(z|T, h, L) =

∫ L

0
χl(z|T, h, L)dz. (14)

From Eq. (12) for χl one has
−χ′′

l + χl

[
τ + 3g ϕ2

]
= 1. (15)

It is convenient to introduce the following notations

ζ = z/L, xt = τL1/ν , x̄h =
√
2ghL∆/ν , ν = 1/2, ∆ = 3/2 (16)

and

ϕ(z) =

√
2

g
L−β/νXm(ζ|xt, x̄h). (17)

In terms of the above variables the energy functional Eq. (9) and its Lagrangian density Eq. (10)
read

F [Xm|xt, x̄h] =
1

gL4

∫ 1

0
L[Xm, X ′

m|xt, x̄h]dζ, (18)

with
L[Xm, X ′

m|xt, x̄h] = X ′2
m(ζ) +X4

m(ζ) + xtX
2
m(ζ)− x̄hXm(ζ). (19)
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The primes here and hereafter indicate differentiation with respect to the variable ζ ∈ [0, 1].
Accordingly, Eq. (12) and its first integral (13) become

X ′′
m(ζ) = Xm(ζ)

[
xt + 2X2

m(ζ)
]
− x̄h

2
. (20)

and
X ′2

m(ζ) = P [Xm], with P [Xm] = X4
m(ζ) + xtX

2
m(ζ)− x̄hXm(ζ) + ε, (21)

respectively, where ε denotes the respective constant of integration.
We are looking for such a solution of Eq. (19) that

Xm(ζ = 0|xt, x̄h) = 0 and X ′
m(ζ = 1|xt, x̄h) = 0, (22)

i.e., we are looking for a solution of the problem under Dirichlet-Neumann boundary conditions.

3. Expression for the order parameter profile
Below we derive the corresponding result within two different approaches.

3.1. Results for the order parameter profiles in the case of zero field
In this case the expression for the order parameter profiles can be expressed in terms of Jacobi
elliptic functions.

Let us look for a solution of Eq. (20) with x̄h = 0 of the type

Xm(ζ|a, b, k) = a sn (b ζ |k ) , (23)

where sn(.|k) is the corresponding Jacobi elliptic function with 0 ≤ k ≤ 1. Here a, b and k
are parameters that are to be determined. Let us first check what restrictions the boundary
conditions Eq. (22) impose on these parameters. First, it is clear that Xm(ζ = 0|a, b, k) = 0
by the very form in which we have chosen to look for a solution. Next, the condition
X ′

m(ζ = 1|a, b, k) = 0 leads to
ab cn (b |k ) dn (b |k ) = 0. (24)

Solving for b, renouncing the trivial solution b = 0, we obtain

b = K (k) . (25)

Plugging a sn (b ζ |K (k)) into Eq. (20) (with x̄h = 0) and solving for xt, we derive

xt =
(
k2 − 1

)
K (k)2 − 2a2 sn (ζ K (k) |k)2 . (26)

The above shall be valid for any ζ. Thus, from ζ = 0 we conclude that

xt(k) = −
(
k2 + 1

)
K (k)2 , (27)

while from ζ = 1, with xt given by Eq. (27), it follows that

a = ±kK (k) . (28)

Summarizing, we conclude that

Xm(ζ) = ± kK (k) sn
(
ζK (k)

∣∣k) , with xt = −
(
k2 + 1

)
K (k)2 , 0 ≤ k ≤ 1. (29)

The phase diagram of the considered system follows from the above relations and its details are
given in Figure 1 - on the left panel for the bulk system and for the finite film with Dirichlet-
Neumann boundary conditions - on the right panel. From Eq. (27) it follows that the critical
temperature of the finite system, below which the order parameter profile is nonzero, is

xt, crit = xt(k = 0) = −π2

4
. (30)

The last means that for xt ≥ −π2/4 one has Xm = 0 and Xm ̸= 0 for xt < −π2/4 ≃ −2.4674.
Several order parameter profiles for different values of xt are shown in Fig. 2.
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Figure 1. Left panel: The phase diagram of the bulk system (i.e., of the system in which
the limit L → ∞ has been performed, keeping all other parameters, T and h, fixed). Right
panel: The phase diagram of the finite system with Dirichlet-Neumann boundary conditions.
In the bulk system a phase transition of first order happens when crossing the phase coexistence
line that is at x̄h = 0 and spans for T ∈ (0, T = Tc). At T = Tc the system exhibits a second
order phase transition. In the finite system the coexistence line is at x̄h = 0 and spans for
T ∈ (0, T = Tc,L). The second order phase transition happens again at x̄h = 0 but at, see
Eq. (30), T = Tc,L ≡ Tc(1 − xt,critL

−2) = Tc(1 − (π2/4)L−2). Note the change with Dirichlet-
Dirichlet boundary conditions where the critical point is at Tc,L = Tc(1−π2L−2). We emphasize
that in the finite system the second order phase transition does not happen at T = Tc but at
some other, L-dependent temperature Tc,L, such that Tc,L → ∞ = Tc.
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Figure 2. The behavior of the order parameter profile for xt = −6.529,−4.169,−3.120,−2.619,
and xt = −π2/4.
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3.2. Results for the order parameter profile in the case of nonzero field
3.2.1. Approach I: Using the first integral. Let Xm(ζ = 1) = Xm,r. Then, from Eq. (21) and
Eq. (22) we obtain P [Xm,r] = 0, and thus

P [Xm] = X4
m(ζ)−X4

m,r + xt
[
X2

m(ζ)−X2
m,r

]
− x̄h [Xm(ζ)−Xm,r] . (31)

In addition Eq. (21) delivers

ζ =

∫ Xm(ζ)

0

dXm√
X4

m −X4
m,r + xt

[
X2

m −X2
m,r

]
− x̄h [Xm −Xm,r]

, (32)

and

1 =

∫ Xm,r

0

dXm√
X4

m −X4
m,r + xt

[
X2

m −X2
m,r

]
− x̄h [Xm −Xm,r]

, (33)

The algorithm for solving numerically the problem for finding the order parameter profile
under Dirichlet-Neumann boundary conditions is now clear. From Eq. (33) one can determine
Xm,r as a function of xt and x̄h. Then, from Eq. (32) one determines ζ as a function of Xm.
Inverting this dependence, one shall arrive at the desired function Xm(ζ). If there is more than
one solution obtained under the procedure described above, one shall choose this profile Xm(ζ)
that provides the minimum of the free energy F , see Eq. (18).

For x̄h = 0 one has P [Xm] = P [−Xm]. Thus, in this case there are two equally probable
possibilities X ′

m(ζ) > 0 and X ′
m(ζ) < 0 which will lead to two order parameter profiles with the

same free energy. If h > 0 since the physical solution has to minimize the functional Eq. (18) it
is clear that x̄hXm(ζ) > 0, when h > 0. Next, the problem is symmetric under the simultaneous
change of the signs of Xm and h. Therefore, it is enough to study the case h ≥ 0 with Xm(ζ) ≥ 0.

Let us assume that X ′
m(ζ) > 0, where Xm(ζ) starts from Xm(ζ = 0) = 0 and reaches its

maximum at Xm(ζ = 1) = Xm,r. Then, from Eq. (32) one obtains

ζ = X−1
m,r

∫ Xm(ζ)/Xm,r

0

dy√
y4 − 1 + xt,r [y2 − 1]− x̄h,r [y − 1]

, (34)

and

Xm,r =

∫ 1

0

dy√
y4 − 1 + xt,r [y2 − 1]− x̄h,r [y − 1]

, (35)

where
y = Xm/Xm,r, xt,r = xt/X

2
m,r and x̄h,r = x̄h/X

3
m,r. (36)

Eqs. (34) - (36) provide an even simpler, than the described above, numerical algorithm for
solving the problem about the determination of the order parameter profile. First, for any given
set of values {xt,r, x̄h,r ≥ 0} ∈ R2, Eq. (35) delivers a single value of Xm,r ∈ Z. Of course, we
are only interested in Xm,r ≥ 0. When this is the case, Eq. (34) delivers numerically Xm(ζ).
Actually, we have shown that if for a given set of values {xt, x̄h ≥ 0} the order parameter for the
Dirichlet-Neumann boundary conditions exist, it is only one. Thus, we can prove the following:

Proposition If the external magnetic field is nonzero, i.e., x̄h ̸= 0, in the case when for given
xt and x̄h the order parameter profile Xm(ζ) which minimizes the free energy exist under the
Dirichlet-Neumann boundary conditions Xm(0) = 0, X ′

m(1) = 0, it is a single one, monotonic
on the interval (0, 1), and for it x̄hXm(ζ) ≥ 0.

Several order parameter profiles for different values of xt are shown in Fig. 2.
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Figure 3. The behavior of the order parameter profile for {xt = 0.56, xh =
56.75}, {xt = 0.22, xh = 38.84}, {xt = −0.61, xh = 2.30}, {xt = −2.22, xh = 9.89},
{xt = −2.77, xh = 1.77}, {xt = −3.05, xh = 3.77}.

Let us demonstrate how from above expressions one can obtain the ones for the specific case
of x̄h = 0. Then the integrals Eq. (34) and Eq. (35) can be calculated explicitly in terms of
elliptic functions. From Eq. (35) one obtains

Xm,r =
K

[(
−xt/X

2
m,r − 1

)−1/2
]

√
−xt/X2

m,r − 1
(37)

while Eq. (34) delivers

ζXm,r =
F
[
sin−1 (Xm(ζ)/Xm,r)

∣∣∣ (−xt/X
2
m,r − 1

)−1/2
]

√
−xt/X2

m,r − 1
, (38)

or, reverting the last result

Xm(ζ)/Xm,r = sn
(
ζ Xm,r

√
−xt/X2

m,r − 1
∣∣∣ (−xt/X

2
m,r − 1

)−1/2
)
, (39)

where K(z) is the complete elliptic integral of the first kind, F (z|m) gives the elliptic integral
of the first kind, and sn(z|m) — the Jacobi elliptic function.

From Eq. (37) and Eq. (39) one derives

Xm(ζ) = Xm,r sn
{
ζ K

[(
−xt/X

2
m,r − 1

)−1/2
] ∣∣∣ (−xt/X

2
m,r − 1

)−1/2
}
. (40)

Setting

k =
(
−xt/X

2
m,r − 1

)−1/2
(41)

from Eq. (40) one arrives at
Xm(ζ) = Xm,r sn(ζ K(k)

∣∣k), (42)
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and from Eq. (37) it follows
Xm,r = kK(k). (43)

Eq. (41) then delivers Eq. (27) from the previous approach. The inspection of the equations of
the two approaches ensures as that they lead to the same result for the order parameter profile,
as it shall be expected.

3.2.2. Approach II: Exact explicit results for the order parameter profile in the case of nonzero
field via Weierstrass function. Following [7, p. 454] one obtains that the order parameter for
given values of the temperature and the field reads

Xm (ζ|xt, x̄h, Xm,r) = Xm,r +
6Xm,r

(
xt + 2X2

m,r

)
− 3x̄h

12℘ (ζ − 1; g2, g3)−
(
xt + 6X2

m,r

) , (44)

where Xm,r = Xm,r(xt, xh) is the value of the order parameter profile at the right end of the
system. Note that Xm,r is to be determined by the boundary conditions. Here ℘ (v; g2, g3) is
the Weierstrass elliptic function whose invariants g2 and g3 read

g2 =
1

12
x2t −Xm,r

(
X3

m,r + xtXm,r − x̄h
)
,

g3 = − 1

432

[
27x̄2h + 2x3t + 72xtXm,r

(
X3

m,r + xtXm,r − x̄h
)]

. (45)

The procedure for the explicit numerical determination of Xm (ζ|xt, x̄h, Xm,r) is now
clear. First, using that (see, e.g., [8]) ℘(ζ → 0) ≃ ζ−2, we immediately conclude
that Xm (1|xt, x̄h, Xm,r) = Xm,r, as it ought to be. It is also easy to show that
X ′

m (ζ → 1|xt, x̄h, Xm,r) = 0. The only remaining requirement that Xm (ζ → 0|xt, x̄h, Xm,r) = 0
leads to an transcendental equation from where we have to determine Xm,r. Normally, one
obtains more than one solution of this equation. The one, that corresponds to the physical
reality is the one which minimizes the energy given by Eq. (19).

4. Expression for the susceptibility
In terms of the notations of Eq. (16), for the local susceptibility (6) in the model under
consideration (with ν = 1/2, γ = 1 ) one derives

Xχ(ζ|xt, x̄h) = 2
∂

∂x̄h
Xm(ζ|xt, x̄h). (46)

From Eq. (20) one derives
−X ′′

χ + (xt + 6X2
m)Xχ = 1. (47)

This equation does not depend explicitly on xh. It is possible to obtain its solution for xh = 0
in terms of Jacobi elliptic functions.

Below we show that if one knows Xm (ζ|xt, x̄h, Xm,r) one can determine the scaling function
of the total susceptibility. Indeed, for a fixed xt Eq. (46) implies

1

2
Xχ (ζ|xt, x̄h, Xm,r) =

∂

∂x̄h
Xm (ζ|xt, x̄h, Xm,r)+

∂

∂x̄h
Xm,r(x̄h)

∂

∂Xm,r
Xm (ζ|xt, x̄h, Xm,r) . (48)

Since for the local susceptibility at the end of the system one has

Xχ(0|xt, x̄h, , Xm,r) = 0, (49)
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Figure 4. The behavior of the local susceptibility for {xt = −4, xh = 0.5}, {xt = −5, xh = 1},
{xt = −1, xh = 5}. Please note that for strong field and low temperatures the profile is not a
monotonic function of ζ but becomes such for higher xt and smaller xh.

one derives
∂

∂x̄h
Xm,r(x̄h) = −

∂
∂x̄h

Xm (0|xt, x̄h, Xm,r)

∂
∂Xm,r

Xm (0|xt, x̄h, Xm,r)
. (50)

Thus, the total susceptibility

X(xt, x̄h, Xm,r) =

∫ 1

0
Xχ (ζ|xt, x̄h, Xm,r) dζ, (51)

is determined by Eqs. (48) and (50) in terms of the scaling function of the order parameter
profile Xm(ζ|xt, x̄h, Xm,r), given in analytic form by Eq. (44), and its partial derivatives with
respect to x̄h and Xm,r.

Using the procedure described above can determine the behavior of the local and total
susceptibilities for given values of xt and xh The behavior of Xχ(ζ|xt, xh) is shown in Fig.
4, while the behavior of the total susceptibility X(xt, xh) is demonstrated in Fig. 5 One clearly
observes the divergence of X for xh = 0 when xt → −π2/4.

4.1. On the analytical solution for the susceptibility in zero external field
In the current section we solve Eq. (47) for Xχ(ζ|xt) ≡ Xχ(ζ|xt, x̄h = 0). When x̄h = 0 the
order parameter profile Xm is given by Eq. (29) (see also Eq. (42)). Eq. (47) is a second order
differential equation. According to the general theory [9] of the differential equations of the
second order, the solution of such an equation is given by

Xχ(ζ|xt) = c1y1(ζ|xt) + c2y2(ζ|xt) + ciyi(ζ|xt), (52)

where y1(ζ|xt) and y2(ζ|xt) are linearly independent solutions of the homogeneous equation

−X ′′
χ + (xt + 6X2

m)Xχ = 0, (53)
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Figure 5. The behavior of the total susceptibility for {xh = 0}, {xh = 0.5}, and {xh = 1}.
Note that, as expected, larger the field, smaller the total susceptibility. It diverges near the
critical point {xt = −π2/4, 0} of the finite system.

while yi(ζ|xt) is a particular solution of the inhomogeneous Eq. (47); c1, c2 and ci are constants.
We start with the determination of y1. One can check that

y1(ζ|xt) =
d

dζ
Xm(ζ|xt) (54)

is a solution of Eq. (53). Performing the calculations, one obtains the explicit form for y1(ζ|xt)

y1(ζ|xt) = kK (k)2 cn [ζK (k) |k] dn [ζK (k) |k] . (55)

The behavior of y1(ζ|xt) for several values of k (i.e., of xt) is shown in Fig. 6. Knowing y1 one
finds y2 via [9] the construction:

y2(ζ|xt) = y1(ζ|xt)
∫

dζ

[y1(ζ|xt)]2
. (56)

From Eq. (56) it follows that

y′′2(ζ|xt) = y′′1(ζ|xt)
∫

dζ

[y1(ζ|xt)]2
. (57)

Thus, since y1(ζ|xt) is a solution of Eq. (53), it follows that y2(ζ|xt) is also a solution of Eq. (53).
Having y1(ζ|xt) and y2(ζ|xt), one can determine the corresponding Wronskian

W = y1(ζ|xt)y′2(ζ|xt)− y2(ζ, xt)y
′
1(ζ, xt). (58)
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Figure 6. The behavior of y1(ζ|xt) as a function of ζ for xt = −6.53,−3.55, and xt = −2.50.
We observe that it is a monotonically decreasing function equal to zero for ζ = 1.
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Figure 7. The behavior of y2(ζ|xt) as a function of ζ for xt = −6.53,−3.55, and xt = −2.50.
We observe that it is a monotonically increasing function equal to zero for ζ = 0.



AMITANS-2024
Journal of Physics: Conference Series 2910 (2024) 012011

IOP Publishing
doi:10.1088/1742-6596/2910/1/012011

12

0.0 0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

ζ

y i
(ζ
|x
t) xt

-6.53

-3.55

-2.50

Figure 8. The behavior of yi(ζ|xt) as a function of ζ for xt = −6.53,−3.55, and xt = −2.50.
We observe that it is a negative and monotonically increasing function of ζ = 0.

From Eq. (56) it immediately follows that W = 1, which means that y1 and y2 are linearly
independent solutions. The standard behavior of y2(ζ) for several selected values of xt is shown
in Fig. 7.

According to the general recipe [9], for the particular solution of the homogeneous equation
one has

yi(ζ|xt) = y1(ζ|xt)
∫

y2(ζ|xt)dζ − y2(ζ|xt)
∫

y1(ζ|xt)dζ. (59)

Having in mind Eq. (54) the above expression simplifies to

yi(ζ|xt) = −y1(ζ|xt)
∫

Xm(ζ|xt)
[y1(ζ|xt)]2

dζ. (60)

Performing the integration one obtains the explicit expression

yi(ζ|xt) =
1− k2 − 2dn

(
ζK

(
k2
)
|k2

)2
(k2 − 1)2K (k2)2

. (61)

The behavior of yi(ζ) for selected values of xt is shown in Fig. 8.
It is easy to check that ciyi(ζ|xt) with ci = 1 is a solution of Eq. (47). Requiring the the

solution for Xχ preserves the symmetru due to the Dirichlet - Neumann boundary conditions
we obtain that

c1(k) =
k2 + 1

k (k2 − 1)2K (k2)4
(62)

and

c2(k) =
k
(
k2 + 1

)
K

(
k2
)

(k2 − 1)K (k2) + (k2 + 1)E (k2)
. (63)

The behavior of Xχ(ζ|xt) (shown in logarithmic scale) as a function of ζ for several values of xt
is shown in Fig. 9. The behavior of the total susceptibility is given in Fig. 10.
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Figure 9. The behavior of Xχ(ζ|xt) (in logarithmic scale) as a function of ζ for xt =
−6.53,−3.55, and xt = −2.50. We observe that the function sharply increases on approaching
the critical point.
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Figure 10. The behavior of the total susceptibilityX(xt) as a function of xt. We observe that
the function dramatically increases upon approaching the critical point. The red vertical dashed
line marks the position of the critical temperature Tc,L = −π2/4.
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5. Concluding Comments and Discussion
In the current article we study a system with a film geometry describing a critical fluid under
Dirichlet-Neumann boundary conditions. We determine the order parameter profile, local and
total susceptibilities as a function both of temperature T and the external ordering field h. As
a result we obtained the phase diagram of the finite system shown in Fig. 1. We observe that
the finite system possesses a critical point of its own at a temperature Tc,L = −π2/4 below
the bulk critical temperature Tc. The last implies that, for a zero field, the order parameter is
zero for T > Tc,L. Its behavior is explicitly given, in terms of the Jacobi elliptic functions, in
Eq. (29) (see also Eq. (42)). The behavior of the order parameter for several selected values of
the scaled temperature xt is shown in Fig. 2. The behavior of the order parameter profiles for
non-zero external field h is determined in two independent ways - i) using the first integral of
the system - see Eq. (34) — Eq. (36), and ii) via the via Weierstrass function - see Eq. (44) —
Eq. (45). A visualization of the order parameter profile for the case of nonzero field for specific
values of xt and xh is shown in Fig. 3. The response of the order parameter profile to the
change of the xternal influence on the system, i.e., the external field, is reflected by the local and
total susceptibilities. General analytic expression for the susceptibilities are given in Eq. (48)
and Eq. (51). From these expressions it is clear, that if one knows analytically the behavior
of the order parameter as a function of xt and xh, one, in principle, can also determine the
behavior of the local Xχ(ζ|xt, xh) and total X(xt, xh) susceptibilities. The behavior of the local
susceptibility is derived in Sec. 4.1. It is given as a linear combination of three components
y1, y2 and yi — see Eq. (55), Eq. (56) and Eq. (61), correspondingly. The coefficients of the
linear combinations c1 and c2 are given in Eq. (62) and Eq. (63), while ci = 1. The behavior
of Xχ(ζ|xt, xh = 0) as a function of ζ for several selected values of xt i shown in Fig. 9. We
observe that the function sharply increases on approaching the critical point. The behavior of
X(xt, xh = 0) as a function of xt is given in Fig. 10. This function has a singularity at the
critical temperature Tc,L and tends to infinity upon approaching this point from below.

From the above it is clear that mathematically the problem for finding the order parameter
profile and the susceptibilities reduces itself to a problem for solving a system of two nonlinear
differential equations of second order in which the second equation involves the solution of the
first one as an input. In the current article we have demonstrated how one can tackle this
problem and obtain analytical solutions for these two equations.
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Appendix A. Some details for derivation of the expression with Weierstrass
function
Let us explain some details of the derivation of Eq. (44).

In Ref. [7, 20.6] one considered integrals of the type

z =

∫ x

a

1√
f(t)

dt, (A.1)

with f(t) a quartic polynomial with no repeated factors

f(t) = a0t
4 + 4a1t

3 + 6a2t
2 + 4a3t+ a4. (A.2)

Then it is shown that the integral Eq. (A.1) can be inverted to represent x as a function of z.
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The corresponding result is [7, 20.6, Example 2, p. 454]

x(z) = a+

√
f(a)℘′[z] + 1

2f
′(a)

[
℘(z)− 1

24f
′′(a)

]
+ 1

24f(a)f
′′′(a)

2
[
℘(z)− 1

24f
′′(a)

]2 − 1
48f(a)f

iv(a)
. (A.3)

Here, a is an arbitrary constant and ℘(z) = ℘(z; g2, g3) is the Weierstrass elliptic function with
invariants

g2 = a0a4 − 4a1a3 + 3a22,

g3 = a0a2a4 + 2a1a2a3 − a32 − a0a
2
3 − a21a4. (A.4)

If a is a root of the polynomial f(t), then (A.3) simplifies and reads

x(z) = a+
f ′(a)

4
[
℘(z)− 1

24f
′′(a)

] · (A.5)

Thus, when a = Xm,r and f = P [Xm], (A.5) leads to the expression (44) since Xm,r is a zero of
the polynomial P [Xm], while the invariants (A.4) take the form (45).
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