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Abstract. The minimization of the Ginsburg-Landau ¢ functional is at core of the so-called
¢* model, which is one of the basic models of statistical mechanics. The minimization leads
to a second order nonlinear differential equation that has to be solved under specific boundary
conditions. In the current article we consider a system with a film geometry with thickness L
under Dirichlet-Neumann boundary conditions applied along the finite-direction. We study the
modifications of the bulk phase diagram for the finite system, as well as the field-temperature
behavior of the characterizing the system order parameter profile, as well as the connected to
it corresponding response functions (local and total susceptibilities).

1. Introduction

Currently, there is a substantial interest in the behavior of low-dimensional systems undergoing
phase transitions. This is both due to the internal needs of theory to be developed for such
systems, but also due to the experimental interest of scaled down systems. One considers
systems with finite geometry like fully finite systems, chains, films, etc.

In the current article we consider a system with a film geometry of width L at temperature T
and exposed to some external ordering field h. In statistical mechanics the systems are described
via some order parameter, which can be scalar, vector, tensor, etc. We specifically envisage a
system described by scalar, i.e., Ising type mean-field order parameter under Dirichlet-Neumann
boundary conditions. Let us assume that along the finite direction of length L the corresponding
Cartesian coordinate is z. For such a system in the grand canonical ensemble the finite-size
scaling theory [1-3] predicts:

e For the order parameter ¢ (e.g., magnetization) profile
¢(2|T, h, L) ~ ap L™ PV X, (2| L, 24, 1) (1)
where
zy = ayr LYY, zp = aph LAY (2)

Here 7 = (T — T¢.)/T¢ is the dimensionless distance from the bulk critical point T¢. of the
infinite system. Under Dirichlet-Neumann boundary conditions in the current article we
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mean that

¢(z=0|T,h,L) =0 and i(b(z\T, h,L), =0. (3)

z=1

Obviously, this is a specific case of mixed boundary conditions problem in which the solution
of a given differential equation is required to satisfy different boundary conditions on disjoint
parts By and By of the boundary 092 = By B2 of the domain  where the condition is
stated

¢lp, = /1 and 3(1@32 = fa. (4)

Here On means a derivative in a direction normal to the boundary Bs. In the current
article the case fi = fo = 0 has been chosen and, because of the film geometry, the normal
derivative is along the z axis.

A basic characteristic of the order parameter profile is its response to the external
influence on the system described in the form of some external filed h, say a magnetic one.
Thus, one defines the local and total response functions (susceptibilities). For them the
finite-size scaling theory predicts:

e For the local (layer) susceptibility profile

d
kpT Xa(2|T, h, L) = 2o $(2|T, b, L) 2= ah L7 X (2| Ly, p) (5)
with 9
Xy (2|L,x¢, xp) = —Xom (2|L, 24, 1) ; (6)
a.fCh

e For the total susceptibility x(T,h, L) = L1 fOL X1(z|T, h, L)dz one has
kpT (T, h, L) ~ a? L' X (x;,xp) . (7)

In the above equations (1) — (7), kp is the Boltzmann constant, 5 and -y are the critical exponents
for the order parameter and the susceptibility (compressibility), the quantities a; and aj, are
nonuniversal metric factors that can be fixed, for a given system, by taking them to be, e.g.,
ap =1/ [Qﬂl/y, and ap, = 1/ [§0,h]A/”, where &5 and &5, are the respective amplitudes of the
correlation length along the 7 and h axes. In addition, v is a critical exponent characterizing
the behavior of the correlation length, while A is another exponent related to the behavior of,
say, order parameter as a function of the external field h.

Let us recall that the Ising system with a film geometry oo? x L possesses a critical point
Tc 1, of its own with coordinates (:Uﬁc),mgf)). The scaling functions X,,, X, and X will exhibit
singularities near this point. For example

c)\ 72 c
X(xt,x,(f)) ~ Xy (wt — xg )> , T — xg ), (8)

where the subscript in «9 reminds that o is the critical exponent of the two-dimensional infinite
system that is to be distinguished from the corresponding exponent  for the three dimensional
bulk system.

In the current article we will derive new exact analytical results for the scaling functions
Xm, X, and X for the Ginzburg-Landau Ising type mean-field model under Dirichlet-Neumann
boundary conditions. Let us recall that in the mean-field approximation f§ =v =1/2, A = 3/2
and v = 7, = 1. For the version of the model considered here 7 = (T —1T.)/T. (¢5)72, 2z € [0, L],
& =1,6n=1/V3,a: =1 and a), = 3 [4-6].
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2. The Ginzburg-Landau functional
In the present work we consider the standard ¢* Ginzburg-Landau functional

L
Flolr.h, L) = /O (6, &'|r. ) dz (9)

with 1 ] 1
L(¢,¢'|T,h) = §¢/2 + §T¢2 + ZQ¢4 — ho. (10)

Here L, g € RT, while 7,h € R, 2z € (0,L) and ¢ = ¢(z) are the independent and dependent
variables, respectively, and the prime indicates differentiation with respect to the variable z.

This functional describes a critical system of Ising type in a film geometry co? x L, where
the film thickness L is supposed to be along the z axis. In Eq. (9), ¢(z;7,h, L) is the order
parameter of the system, g is the bare coupling constant, and, as before, 7 is the bare reduced
temperature and h is the external ordering field.

The physical state of the regarded system is described by the minimizers of the Ginzburg—
Landau functional F[¢; T, h, L] given above whose extremals are determined by the solutions of
the corresponding Euler-Lagrange equation

d oL oL

@@—%—0, (11)

which, on account of Eq. (10), reads

" —d[r+g¢*] +h=0. (12)

Multiplying equation (12) by ¢’ and integrating once over z one obtains the following first
integral of the system

12 1 2 1 4

ZHc = _Z h 13

59 —3T¢ 199 The=c (13)
where ¢ is the constant of integration. Another quantities of interest are the local x;(z, T, h, L)

and total x(z, T, h, L) susceptibilities

0

xi(z|T,h,L) =

L
=5 (2|T,h,L) and L1Xl(z|T,h,L):/0 xi(2|T, h, L)dz. (14)

From Eq. (12) for y; one has
X/ +xi [ +39¢°] = 1. (15)
It is convenient to introduce the following notations
C=z/L, x=7LY", z,=+/2ghL?", v=1/2, A=3/2 (16)
and

62) = 2 1 X Gl ). (17)

In terms of the above variables the energy functional Eq. (9) and its Lagrangian density Eq. (10)
read

1 1
FlXomle, 7] = / L1 X, X, 0, Z1]dC, (18)
gL* Jo

with
L[ X, Xpolar, Zn] = X72(C) + X0 (C) + 2 X7, (C) — Zn X (C)- (19)
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The primes here and hereafter indicate differentiation with respect to the variable ¢ € [0, 1].
Accordingly, Eq. (12) and its first integral (13) become

Xp(0) = Xon(€) [+ 2X3,(0)] — 2. (20)
and
X2(Q) =PlXp),  with  PlXp]=X,(0) + X5 (0) — 2 Xm(Q) +6, (21)

respectively, where € denotes the respective constant of integration.
We are looking for such a solution of Eq. (19) that

Xm (¢ =0z, zp) =0 and X! (¢ = 1|z, Tp) =0, (22)

i.e., we are looking for a solution of the problem under Dirichlet-Neumann boundary conditions.

3. Expression for the order parameter profile
Below we derive the corresponding result within two different approaches.

3.1. Results for the order parameter profiles in the case of zero field
In this case the expression for the order parameter profiles can be expressed in terms of Jacobi
elliptic functions.

Let us look for a solution of Eq. (20) with Zj = 0 of the type

Xm(a% b, k) = asn <b<|k)7 (23)

where sn(.|k) is the corresponding Jacobi elliptic function with 0 < k& < 1. Here a,b and k
are parameters that are to be determined. Let us first check what restrictions the boundary
conditions Eq. (22) impose on these parameters. First, it is clear that X,,(¢ = 0la,b,k) = 0
by the very form in which we have chosen to look for a solution. Next, the condition
X!, (¢ =1la,b, k) = 0 leads to

aben (b|k)dn(b|k) = 0. (24)
Solving for b, renouncing the trivial solution b = 0, we obtain
b=K (k). (25)
Plugging asn (b(¢ |K (k)) into Eq. (20) (with &, = 0) and solving for z;, we derive
zp = (k* — 1) K (k)* — 2a®sn (C K (k) |k)?. (26)
The above shall be valid for any (. Thus, from ¢ = 0 we conclude that
a(k) = — (K> +1) K (k)?, (27)
while from ¢ = 1, with x; given by Eq. (27), it follows that
a=+kK (k). (28)

Summarizing, we conclude that
Xn(¢Q) =+kK (k)sn (CK (k) |k), with z,=— (k¥ +1)K (k)*, 0<k<L (29)

The phase diagram of the considered system follows from the above relations and its details are
given in Figure 1 - on the left panel for the bulk system and for the finite film with Dirichlet-
Neumann boundary conditions - on the right panel. From Eq. (27) it follows that the critical
temperature of the finite system, below which the order parameter profile is nonzero, is

2

Lt, crit = CUt(k? = 0) = _Z' (30)

The last means that for x; > —7T2/4 one has X,, =0 and X,, # 0 for x; < —7T2/4 ~ —2.4674.
Several order parameter profiles for different values of x; are shown in Fig. 2.
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Figure 1. Left panel: The phase diagram of the bulk system (i.e., of the system in which
the limit L — oo has been performed, keeping all other parameters, T and h, fixed). Right
panel: The phase diagram of the finite system with Dirichlet-Neumann boundary conditions.
In the bulk system a phase transition of first order happens when crossing the phase coexistence
line that is at &, = 0 and spans for T' € (0,7 = T,). At T' = T, the system exhibits a second
order phase transition. In the finite system the coexistence line is at z;, = 0 and spans for
T € (0,7 = Tr). The second order phase transition happens again at z;, = 0 but at, see
Eq. (30), T =T. 1 = Te(1 — 24 eritL2) = To(1 — (7%/4)L=2). Note the change with Dirichlet-
Dirichlet boundary conditions where the critical point is at T¢ 1, = T¢(1 —7T2L_2). We emphasize
that in the finite system the second order phase transition does not happen at T' = T, but at
some other, L-dependent temperature T, 1, such that T, ;, — oo = T...
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Figure 2. The behavior of the order parameter profile for z; = —6.529, —4.169, —3.120, —2.619,
and x; = —72/4.
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3.2. Results for the order parameter profile in the case of nonzero field
3.2.1. Approach I: Using the first integral. Let X,,(¢ = 1) = Xy, . Then, from Eq. (21) and
Eq. (22) we obtain P[X,, ] =0, and thus

PXom] = X5 (C) = X+ 20 [X0(Q) = X ] = 2 [Xin(Q) = Xom, ] (31)

In addition Eq. (21) delivers

(= / = : (32)
0 X = X [XE - X2, ] — B0 (X — X
and .
mr dX
1 :/ m 7 (33)
0 X = X e [X2 = X2, ] — 30 X — X

The algorithm for solving numerically the problem for finding the order parameter profile
under Dirichlet-Neumann boundary conditions is now clear. From Eq. (33) one can determine
Xmr as a function of z; and Zp. Then, from Eq. (32) one determines ¢ as a function of X,,.
Inverting this dependence, one shall arrive at the desired function X,,(¢). If there is more than
one solution obtained under the procedure described above, one shall choose this profile X,,(¢)
that provides the minimum of the free energy F, see Eq. (18).

For Zj, = 0 one has P[X,,] = P[—X,,]. Thus, in this case there are two equally probable
possibilities X/, (¢) > 0 and X/, (¢) < 0 which will lead to two order parameter profiles with the
same free energy. If h > 0 since the physical solution has to minimize the functional Eq. (18) it
is clear that Zp X,,(¢) > 0, when h > 0. Next, the problem is symmetric under the simultaneous
change of the signs of X,,, and h. Therefore, it is enough to study the case h > 0 with X,,,(¢) > 0.

Let us assume that X],(¢) > 0, where X,,(¢) starts from X,,,(¢ = 0) = 0 and reaches its
maximum at X,,(¢ =1) = X,;,,. Then, from Eq. (32) one obtains

Xm Xm,r
C= XL / R @y , (34)
" Jo VP =1+, [y2 — 1] — Tpy [y — 1]

and )
dy
X = / , (35)
"o V=Tt W =1 = 3 [y — 1]
where
Y= Xm/Xmr, T =x/X0, and T, =Tn/X) . (36)

Egs. (34) - (36) provide an even simpler, than the described above, numerical algorithm for
solving the problem about the determination of the order parameter profile. First, for any given
set of values {z¢,, %y, > 0} € R Eq. (35) delivers a single value of X,,, € Z. Of course, we
are only interested in X,,, > 0. When this is the case, Eq. (34) delivers numerically X,,(¢).
Actually, we have shown that if for a given set of values {x, Z;, > 0} the order parameter for the
Dirichlet-Neumann boundary conditions exist, it is only one. Thus, we can prove the following:

Proposition If the external magnetic field is nonzero, i.e., Tp # 0, in the case when for given
xy and Ty the order parameter profile X,,(C) which minimizes the free energy exist under the
Dirichlet-Neumann boundary conditions X, (0) = 0, X/ (1) = 0, it is a single one, monotonic
on the interval (0,1), and for it T, X, (¢) > 0.

Several order parameter profiles for different values of z; are shown in Fig. 2.
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Figure 3. The behavior of the order parameter profile for {x; = 0.56,2, =

56.75},  {w; =022,z = 3884},  {a;=—061,2, =230},  {x; =—2.22,z), = 9.89},
{x; = —2.77, 2, = 1.77}, {xy = —3.05,2), = 3.77}.

Let us demonstrate how from above expressions one can obtain the ones for the specific case
of z;, = 0. Then the integrals Eq. (34) and Eq. (35) can be calculated explicitly in terms of
elliptic functions. From Eq. (35) one obtains

2 \—L/2
XW:K[( /X2~ 1) .

’ e/ X2, 1

while Eq. (34) delivers

F [sirt1 (Xm(Q)/ Xma) | (=24/ X7, = 1)_1/2]
S , (38)

\/ _xt/XTZn,r -1

or, reverting the last result
_ 9 2 —-1/2
XenlQ)/ Xmgr =0 (¢ Xm0/ X = 1| (=2/ X2, = 1)), (39)
where K (z) is the complete elliptic integral of the first kind, F'(z|m) gives the elliptic integral

of the first kind, and sn(z|m) — the Jacobi elliptic function.
From Eq. (37) and Eq. (39) one derives

Xinl€) = Xm0 {C K [(=a/ X2, = )] | (mau/x2, = 1) 72 (40)
Setting
k= (—a/X2, - 1) (41)
from Eq. (40) one arrives at
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and from Eq. (37) it follows
Xy =k K(k). (43)

Eq. (41) then delivers Eq. (27) from the previous approach. The inspection of the equations of
the two approaches ensures as that they lead to the same result for the order parameter profile,
as it shall be expected.

3.2.2. Approach II: Exact explicit results for the order parameter profile in the case of nonzero
field via Weierstrass function. Following [7, p. 454] one obtains that the order parameter for
given values of the temperature and the field reads

6 X, (20 +2X3,,) — 3T
120 (¢ — 1392, 93) — (ze +6X2,,)’

Xm (C|xt7 ZTh, Xm,?") = Xmﬂ’ + (44)

where X, = Xy (2, 2) is the value of the order parameter profile at the right end of the
system. Note that X, , is to be determined by the boundary conditions. Here p (v;g2,g3) is
the Weierstrass elliptic function whose invariants g and g3 read

1
2%

1

gs = — Xm77' (Xrgmr + -TtXm,'r' - -fh) )

The procedure for the explicit numerical determination of X,, ((|zt,Zp, Xpm ) is now
clear.  First, using that (see, e.g., [8]) @(¢ — 0) =~ (72, we immediately conclude
that X, (1|xt, Zh, Ximy) = Xmyr, as it ought to be. It is also easy to show that
X/ (¢ — 1|xt, Tp, Xmy) = 0. The only remaining requirement that X,, (¢ — 0|z, T, Xpm ) =0
leads to an transcendental equation from where we have to determine X,,,. Normally, one
obtains more than one solution of this equation. The one, that corresponds to the physical
reality is the one which minimizes the energy given by Eq. (19).

4. Expression for the susceptibility
In terms of the notations of Eq. (16), for the local susceptibility (6) in the model under
consideration (with v =1/2, v =1 ) one derives

_ 0 _
XX(C’wta fL'h) = 28— Xm(C’l't, l‘h). <46)
Th
From Eq. (20) one derives
XU+ (w +6X7) X, = 1. (47)

This equation does not depend explicitly on xp. It is possible to obtain its solution for z; = 0
in terms of Jacobi elliptic functions.

Below we show that if one knows X, ((|x¢, Zp, Xim,») one can determine the scaling function
of the total susceptibility. Indeed, for a fixed z; Eq. (46) implies

0 0

mer(j'h)aTXm (C‘xta Zh, Xm,’f‘) . <48)

0 _
— X (o, Ty Xon ) + Tm
m,r

1 _
§XX (C‘xhxthm,r) - al’h

Since for the local susceptibility at the end of the system one has

XX(O"xt:thXm,r) = 07 (49)
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Figure 4. The behavior of the local susceptibility for {x; = —4,z, = 0.5}, {z; = =5,z = 1},
{zy = —1, 2, = 5}. Please note that for strong field and low temperatures the profile is not a
monotonic function of ¢ but becomes such for higher x; and smaller zy,.

one derives

o _
o a2—Xm (0|2¢, Tn, X,
me,r(jh):_ 8gh m( | t " mr) ‘ (50)
axh me (O|$ta$h7Xm,r)
Thus, the total susceptibility

1

X(xta «fh, Xm,r) - / XX (C’xta fiha Xm,r) dCa (51)

0

is determined by Eqgs. (48) and (50) in terms of the scaling function of the order parameter
profile X, ({|x¢, Zp, Ximr), given in analytic form by Eq. (44), and its partial derivatives with
respect to Ty and X, .

Using the procedure described above can determine the behavior of the local and total
susceptibilities for given values of z; and x; The behavior of X, ((|x¢,xp) is shown in Fig.
4, while the behavior of the total susceptibility X (z, ;) is demonstrated in Fig. 5 One clearly
observes the divergence of X for xj, = 0 when x; — —72/4.

4.1. On the analytical solution for the susceptibility in zero external field

In the current section we solve Eq. (47) for X, ((|zt) = X, (C|z¢, Zp, = 0). When Zj = 0 the
order parameter profile X,, is given by Eq. (29) (see also Eq. (42)). Eq. (47) is a second order
differential equation. According to the general theory [9] of the differential equations of the
second order, the solution of such an equation is given by

X (Clzt) = cryr(Clme) + caya(Clae) + ciyi(Cloe), (52)

where y1(C|z¢) and y2(C|z;) are linearly independent solutions of the homogeneous equation

— XU+ (z + 6X2)X, =0, (53)
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Figure 5. The behavior of the total susceptibility for {z;, = 0}, {z, = 0.5}, and {z), = 1}.

Note that, as expected, larger the field, smaller the total susceptibility. It diverges near the
critical point {z; = —72/4,0} of the finite system.

while y;((|x¢) is a particular solution of the inhomogeneous Eq. (47); ¢1, c2 and ¢; are constants.
We start with the determination of y;. One can check that

d
y1(Clae) = ICXm(C’xt) (54)
is a solution of Eq. (53). Performing the calculations, one obtains the explicit form for y; ({|z;)
y1(Clae) = KK (k)*en [CK (k) [k] dn [CK (k) [k]. (55)

The behavior of y;({|xt) for several values of k (i.e., of a4) is shown in Fig. 6. Knowing y; one
finds yo via [9] the construction:

v (Clae) = w1 () / W?’im? (56)
From Eq. (56) it follows that
i (Clar) = i Gl [ [y(z_lf)] (57)

Thus, since y;(¢|x;) is a solution of Eq. (53), it follows that y2({|x¢) is also a solution of Eq. (53).
Having y1(¢|z:) and y2((|x¢), one can determine the corresponding Wronskian

W = y1(Clee)ya(Clae) — ya (¢ 2)y (€ e (58)

10
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Figure 6. The behavior of y;({|x¢) as a function of ¢ for ; = —6.53,—3.55, and z; = —2.50.
We observe that it is a monotonically decreasing function equal to zero for { = 1.
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Figure 7. The behavior of y2((|x;) as a function of ¢ for z; = —6.53, —3.55, and z; = —2.50.
We observe that it is a monotonically increasing function equal to zero for { = 0.
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Figure 8. The behavior of y;({|x¢) as a function of ¢ for x; = —6.53, —3.55, and z; = —2.50.
We observe that it is a negative and monotonically increasing function of ¢ = 0.

From Eq. (56) it immediately follows that W = 1, which means that y; and yy are linearly
independent solutions. The standard behavior of y2(() for several selected values of x; is shown
in Fig. 7.

According to the general recipe [9], for the particular solution of the homogeneous equation
one has

wi(Clon) = Che) [ vo(Clon)dC = va(Clan) [ (Clanydc. (59)
Having in mind Eq. (54) the above expression simplifies to
X (Cl2t)
; = dac. 60
wlClr) = —(Cle) [ e (60)

Performing the integration one obtains the explicit expression

| 1 k2 —2dn (CK (k) [k?)°
Zh(dwt) - (/{2 _ 1)2 K (k2)2 . (61)

The behavior of y;(¢) for selected values of z; is shown in Fig. 8.
It is easy to check that c¢;y;(C|x¢) with ¢; = 1 is a solution of Eq. (47). Requiring the the
solution for X, preserves the symmetru due to the Dirichlet - Neumann boundary conditions

we obtain that 12
+1
Cl(k) = 5 D) ond (62)
kE(k? —1)" K (k?)

and

k(k*+1) K (k)
(k2 —1)K (k%) + (k2 + 1) E (k?)
The behavior of X, ((|z;) (shown in logarithmic scale) as a function of ¢ for several values of x;
is shown in Fig. 9. The behavior of the total susceptibility is given in Fig. 10.

CQ(]{Z) =

(63)

12
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5. Concluding Comments and Discussion

In the current article we study a system with a film geometry describing a critical fluid under
Dirichlet-Neumann boundary conditions. We determine the order parameter profile, local and
total susceptibilities as a function both of temperature 1" and the external ordering field h. As
a result we obtained the phase diagram of the finite system shown in Fig. 1. We observe that
the finite system possesses a critical point of its own at a temperature 7. ; = —72/4 below
the bulk critical temperature T.. The last implies that, for a zero field, the order parameter is
zero for T' > T, ;. Its behavior is explicitly given, in terms of the Jacobi elliptic functions, in
Eq. (29) (see also Eq. (42)). The behavior of the order parameter for several selected values of
the scaled temperature z; is shown in Fig. 2. The behavior of the order parameter profiles for
non-zero external field h is determined in two independent ways - i) using the first integral of
the system - see Eq. (34) — Eq. (36), and i¢) via the via Weierstrass function - see Eq. (44) —
Eq. (45). A visualization of the order parameter profile for the case of nonzero field for specific
values of z; and zp is shown in Fig. 3. The response of the order parameter profile to the
change of the xternal influence on the system, i.e., the external field, is reflected by the local and
total susceptibilities. General analytic expression for the susceptibilities are given in Eq. (48)
and Eq. (51). From these expressions it is clear, that if one knows analytically the behavior
of the order parameter as a function of z; and xp, one, in principle, can also determine the
behavior of the local X, (¢|x¢, ) and total X (x,xp) susceptibilities. The behavior of the local
susceptibility is derived in Sec. 4.1. It is given as a linear combination of three components
y1,y2 and y; — see Eq. (55), Eq. (56) and Eq. (61), correspondingly. The coefficients of the
linear combinations ¢; and ¢y are given in Eq. (62) and Eq. (63), while ¢; = 1. The behavior
of X, (Clat,xp, = 0) as a function of ¢ for several selected values of z; i shown in Fig. 9. We
observe that the function sharply increases on approaching the critical point. The behavior of
X(z¢,xp, = 0) as a function of z; is given in Fig. 10. This function has a singularity at the
critical temperature Tt ;, and tends to infinity upon approaching this point from below.

From the above it is clear that mathematically the problem for finding the order parameter
profile and the susceptibilities reduces itself to a problem for solving a system of two nonlinear
differential equations of second order in which the second equation involves the solution of the
first one as an input. In the current article we have demonstrated how one can tackle this
problem and obtain analytical solutions for these two equations.
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Appendix A. Some details for derivation of the expression with Weierstrass
function
Let us explain some details of the derivation of Eq. (44).

In Ref. [7, 20.6] one considered integrals of the type

|
z= / —dt, (A1)
a \/f(t)
with f(t) a quartic polynomial with no repeated factors
f(t) = CLot4 + 4a1t3 + 6a2t2 + 4ast + ay. <A2)

Then it is shown that the integral Eq. (A.1) can be inverted to represent x as a function of z.
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The corresponding result is [7, 20.6, Example 2, p. 454]
s V@) @'z + 31'(a) [p(2) = 511" (a)] + Q%f(a)f”/(a).
2[p(z) = 51/"(@)]" ~ f /(@) [ (a)

Here, a is an arbitrary constant and (z) = p(z; g2, g3) is the Weierstrass elliptic function with
invariants

(A.3)

go = agpaq —4ajaz + 3a§,
2 2
g3 = agaa4 + 2a1a0a3 — ag — apaz — ajay. (A.4)

If a is a root of the polynomial f(¢), then (A.3) simplifies and reads

o flao)
B =t o) - &F(@)] (A.5)

Thus, when a = X,,,, and f = P[X,,], (A.5) leads to the expression (44) since X, , is a zero of
the polynomial P[X,,], while the invariants (A.4) take the form (45).
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