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Abstract

Simulating quantum systems is believed to be one of the first applications for which quantum
computers may demonstrate a useful advantage. For many problems in physics, we are interested
in studying the evolution of the electron—phonon Hamiltonian, for which efficient digital
quantum computing schemes exist. Yet to date, no accurate simulation of this system has been
produced on real quantum hardware. In this work, we consider the absolute resource cost for
gate-based quantum simulation of small electron—phonon systems as dictated by the number of
Trotter steps and bosonic energy levels necessary for the convergence of dynamics. We then apply
these findings to perform experiments on IBM quantum hardware for both weak and strong
electron—phonon coupling. Despite significant device noise, through the use of approximate
circuit recompilation we obtain electron—phonon dynamics on current quantum computers
comparable to exact diagonalisation. Our results represent a significant step in utilising near term
quantum computers for simulation of quantum dynamics and highlight the novelty of
approximate circuit recompilation as a tool for reducing noise.

1. Introduction

Since its inception, the number of potential applications for quantum computers has grown tremendously,
including at present, computational chemistry and energy minimisation [1—4], pattern finding [5, 6] and
optimisation [7, 8]. Yet the number of algorithms with provable speedup over their classical counterparts is
small [9-11] and further still when discounting those which are not useful [12]. Of the applications
remaining, simulating the evolution of quantum systems is perhaps the most promising, with its
exponential advantage [13] in memory and time over classical simulation and broad range of use cases. For
quantum computers built on two-level qubits, the simulation of purely fermionic systems has been explored
widely due to their naturally equivalent degrees of freedom. However, it is the inclusion of vibrational
modes that gives rise to specific important phenomena such as phonon-mediated superconductivity [14].
Thus, the ability to accurately simulate systems with both electronic and vibrational modes on a quantum
computer could result in significant technological advances.

One approach to simulating electron—phonon systems is through the use of analogue quantum devices
[15—24]. This can be achieved by representing the electronic components of the system with qubits, whilst
the phonon modes are represented by a physical system with the desired vibrational interactions, such as
inductor—resistor—capacitor oscillators [25], standing light waves [18] or Rydberg atoms [26], depending on
the type of qubit. Whilst analog quantum simulators continue to produce impressive results and address
interesting problems in physics and chemistry, their application is nevertheless limited by their inflexibility
and non-universality. By contrast, a digital quantum computing approach could modify the coupling
strength, topology, system size and even introduce additional interactions with no cost.

© 2022 The Author(s). Published by IOP Publishing Ltd
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Implementing d-level systems (e.g., phonons and other bosons) on a quantum computer can be
achieved in a number of ways, including a hybrid quantum-—classical approach discussed in [27] or both
first [28—30] and second quantisation mappings [31] of the wavefunction. In this work we focus on the
latter, for which schemes were recently demonstrated requiring an efficient number of qubits and circuit
operations [32]. Such considerations are important if simulations are going to be run on near-term
quantum computers, which are limited in both their size and number of operations that can applied before
the qubits decohere. Nevertheless, despite efficient scaling, accurate evolution of the electron—phonon
Hamiltonian has not been demonstrated on real quantum hardware to date, owing to the large number of
gates required for even one Trotter step.

In this work we study the dynamics of electron—phonon systems through experiments on the Qiskit [33]
statevector simulator (SV) and real quantum hardware and consider the limits required to obtain accurate
results in each case. In section 2 we introduce the electron—phonon Hamiltonian and detail the circuit
implementation of its time propagator, including initialisation and measurement of the electronic excitation
population. In section 3 we present our results, starting in section 3.1 with establishing the qubit and
Trotter step requirements for small systems to obtain accurate dynamics. Following this, in section 3.2 we
apply these findings to simulate systems with up to three electronic sites on real quantum computers.
Through the use of incremental structural learning (ISL) [34], an approximate circuit recompilation
method, we maximise the performance of current quantum hardware to achieve results that match exact
diagonalisation (ED) in the strong and weak coupling regimes. Finally, in section 4 we summarise our
findings.

2. Method

2.1. Model

The electron—phonon model is used to describe many systems with electronic and vibrational degrees of
freedom, such as molecular aggregates [35] including natural and artificial light harvesting systems [36]. In
this model we consider N sites, where each site consists of an electronic two-level system. The electronic
part of the Hamiltonian describing this model is given by

Ha = 3" @l i+ 32 3 Vil + 1, M

=1 i<j

where €; is the electronic transition energy for site i and Vj; is the dipole—dipole coupling between sites i and
j. Here we focus on the case of a single electronic excitation, such that [i) = |g, ... ¢ ... gy) denotes the
state where all sites are in the electronic ground state, except site i which is populated by an excitation. In
this framework, we can also consider Vj; as the hopping amplitude of the excitation between sites. The
vibrational modes of the system can be described under the harmonic approximation by a finite set of
quantum harmonic oscillators (QHOs) [29, 37]. In this case, the phonon Hamiltonian can be written as

Hyn = > > hwal@haq +1/2), (2)
=1 1

where lel (air) is the bosonic creation (annihilation) operator for the vibrational excitation of the /th phonon
mode of site 7 and wy; is the frequency of oscillation.
The interactions between the electronic excitations and phonons is given by

Hep = Z|l><l‘ ZXil(ajl—'_&il) ) ®)
; I

=1

where x; is the interaction strength between electronic site 7 and it is Ith phonon mode and has dimension
of energy. Finally, the total electron—phonon Hamiltonian can be expressed as the sum of these three
components

H = Ho + Hpp + Hep. (4)

The interactions described in the electron—phonon Hamiltonian and their corresponding parameters can be
seen in figure 1. We note that for this Hamiltonian each QHO is local to a single site, which models the
internal vibrational modes of molecular aggregates, and as such extensions would be required to simulate
systems with shared modes. We further note that within this model there is no restriction on the number of
vibrational quanta. However, the number of electronic excitations is conserved, as is evident from the
Hamiltonian in equation (1). In real molecules the electronic excitation would decay radiatively or




10P Publishing

New J. Phys. 24 (2022) 093017 B Jaderberg et al

(@ (@ >>>

(@

N
N
SN

Aji

W
D)

(@ @«
@s- @ao

Figure 1. Diagram of the model considered in this work. A lattice site i can be occupied by an electronic excitation with
transition energy &;, which can hop to connected sites with transition amplitude Vj;. Each site is also connected to [ phonon
modes, approximated by QHOs with frequency w;;, which interact with the excitation via the electron—phonon coupling
constant ;.
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non-radiatively to the ground state, yet this decay is usually much slower than the transfer of excitation
between sites. Interaction with laser pulses could also increase the number of electronic excitations. For
more information on the model we refer readers to references [38, 39].

2.2. Circuit implementation

To study the dynamics of electron—phonon systems we need to simulate the action of the time evolution
operator U(7) = exp(—iHr/h) on some initial state |¢/;;, ). This can be implemented on a quantum
computer by considering the logic gates that implement the exponential of each term in equation (4), the
products of which approximates the time evolution operator via a first order Suzuki—Trotter decomposition

(40]
“ 4}[517' *inhT 7iHepT n
U(r) = (e o) e P e hn ) (5)

to within error O(6%) where § = % and 7 is the number of steps the evolved time is discretised into, often
called the Trotter steps.

The electronic part of the Hamiltonian H can be implemented on a quantum computer by rewriting it
in terms of Pauli matrices. Substituting the site operators for qubit operators through the relations found in
appendix A we obtain

1 - . YA
Ha =3 Z &07 4 Vg( +6]6)), (6)
1=

where ¢ is the Pauli operator « € {x, y, z} acting on qubit i. Exponentiating equation (6), each term of the
first summation can be implemented by a single qubit rotation R?(f) = exp —if57 /2, where substituting the
general rotation parameter § = &7 /1 gives us the desired evolution for one Trotter step. For the second
summation in equation (6), the exponential of each term can be implemented by the circuit shown in
figure 2 [41]. Here simulating one Trotter step of evolution requires the ZZ rotation § = V7 /1.

To implement Hyp, and Hep, we first require a representation of the QHO in the qubit basis. This is
achieved using the standard binary mapping, a method which although established in previous works
[37, 42—44], we briefly describe here for completeness. Considering a QHO in the second quantisation
formalism, we represent each of its d energy levels by binary strings (e.g., |0), [1), |2), |3) — |00), |01), |10),
|11)), which can subsequently be encoded into the computational basis states of n, = log,(d) qubits. Since
the QHO has infinite bosonic degrees of freedom, any value of d will introduce truncation errors.
Therefore, it is important to find the number of levels required for the dynamics to converge, as we do later.

In the second quantisation, any operator acting across the QHO energy levels can be expressed in terms
of the ladder operators a', a. In turn, these can be written as binary operators and subsequently converted
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Figure2. Circuit diagram implementing the operator XY = exp = (676 T+ 6]5)).

to Pauli matrices, as shown in appendix B. Overall, using this method allows the transformation of either
ladder operator to O(d?) Pauli strings [37], which we define as pP= ' ,6¢. For our time evolution
algorithm, we implement the exponential exp(—ifP) in a quantum circuit using the well-known CNOT
staircase method [32, 45, 46].

Using the qubit representations of the QHO described above, we can decompose the time evolution of
the remaining Hamiltonians Hy, and He, into quantum circuits. For Hpp, the bosonic number operator
lel&iz is a diagonal evenly-spaced operator which has the known decomposition [32]

Nx
&ITI&” = sz&i+l =2%5+2'65+- -+, (7)
k=0

where the index k spans specifically the qubit register representing the /th phonon mode of site i. Thus

exp(—ifajay) = [ ] exp (—izzk“(}i +1> (8a)
k=0

= [ Ri(—i62"), (8b)
k=1

implements the desired Trotterised phonon evolution for each term in equation (2) given 6 = hw;7 /7.

Finally, the time evolution circuit for He, is generated first by following the decomposition of &jl + a;j in
equation (B.1) through (B.3), continuing to generate Pauli strings Py for all the binary operators.
Combining these with the prepended site operator, the terms 7 ® P; build up the Trotter step circuit
exp(—iHep) = [[,] [, exp(—if57 ® Py), where each term in the product is implemented using the previously
cited CNOT staircase method. This implements the Trotterised evolution of He,, given 6 = ;7 /7.

2.3. Calculation of population

In section 2.2 we outlined the circuits required to implement one Trotter step of the electron—phonon
Hamiltonian. Simulating the time dynamics of a system which evolves under this Hamiltonian requires the
application of multiple Trotter steps on an initial state |1;,;, ), which in this work we consider to be the
electronic and vibrational ground state apart from a single electronic excitation. This is achieved by
initialising all of the qubits in the |0) state and then performing a bit flip on the one site where the
excitation is localised to, requiring only one gate in total. We note that this is an advantage compared to first
quantisation schemes [29], in which the vibrational ground state requires the preparation of a Gaussian
across the amplitudes of the phonon qubits. The overall circuit for state initialisation followed by a single
Trotter step can be seen in figure 3.

Once the desired time evolution has been reached by repeated Trotter steps, the qubits are measured to
retrieve the desired time-dependent observable under study. Here we use a single measurement of each site
in the 6% basis, which results in the qubits collapsing to the binary |0) or |1) state depending on the absence
or presence of the excitation respectively. Through repeated sampling of the circuit we obtain the average
electronic excitation population on each site at the given time. From here we refer to this simply as the
population.

3. Results

In this section we present experiments simulating the time evolution of electron—phonon systems on both
classically emulated and real quantum computers.




10P Publishing

New J. Phys. 24 (2022) 093017 B Jaderberg et al

i Ho H o HO
0) —{R:] L Ho°
H.,
|0 —
|0y <R, 1 HHeyp—
0) —[R, 2 U -

[} 2

Figure 3. Circuit diagram showing state initialisation and a single time evolution step. First, one of the site qubits are flipped to
initialise the system with a single excitation, in this case site 0. The dashed box shows the application of H,j, with phase rotation
gates to encode the electronic transition energies and XY gates encoding the electronic excitation hopping. Note that in this case,
the sites are not fully connected and instead represent a model with a chain topology. The dotted boxes shows the application of
Hyyp to each oscillator, each of which consist of a n, = 2 qubit register for a total of d = 4 energy levels. Afterwards, the
interaction H, between each site and its corresponding phonon mode is applied, the decomposition of which is too large to
show. In the diagram, H,, includes explicit internal indices of the site (0) and the two qubits that make up the phonon register
(1, 2) to indicate that the other qubit wires that pass underneath are not acted on. Finally, the site qubits are measured to obtain
observables such as population.

3.1. Simulator results with comparison to ED

We first apply our algorithm to small systems of only two electronic sites and one phonon mode per site.
This serves two purposes. Foremost, this allows us to verify our gate-based quantum computing
implementation of the time evolution propagator and compare the results obtained to ED methods.
Secondly, this allows us to check the convergence of dynamics with respect to errors caused by our mapping
of the Hamiltonian into a qubit basis, namely Trotterisation error and truncation from representing infinite
bosonic degrees of freedom with a finite number of qubits. In this section, for simplicity we only consider
the case whereby site dependent parameters are equal (e.g., Vj; = Viy = V), and subsequently set € = 0 since
it only contributes a global phase. Furthermore, we set our unit of energy to be /w. Proof of the algorithms
performance for larger simulations with non-uniform parameters can be found in appendix D.

3.1.1. Weak electronic coupling

Figure 4 shows the population for the case of weak electronic coupling V = 0.05/w with non-zero
electron—phonon coupling. Starting with x = 0.3/w on the upper panels, the ED results show that overall,
the dynamics look very similar to the purely electronic case (see appendix C) except that the crossing where
the populations are equal occurs slightly later. This is caused by excitation of the vibrational modes of the
system, leading to an effective re-scaling of the electronic coupling [47]. However, the results as calculated
using quantum circuits on the SV simulator are different to the purely electronic case in terms of
convergence with number of Trotter steps. With the electron—phonon interactions now switched on, the
non-commuting terms of the Hamiltonian lead to an error in the observed population when using a small
number of Trotter steps. As we increase the number of Trotter steps, we see that this error reduces, reaching
convergence with the ED solution at = 48.

Next we consider the strong electron—phonon coupling case xy = 1.0/w, shown on the lower panels of
figure 4. Here the dynamics evolve differently to x = 0.3/w. Firstly, the time taken for the excitation to
transfer between electronic sites is further extended, to the point where the crossing does not occur within
the simulated time. Furthermore, we also observe a second mode of population transfer, visible as rapid
oscillations. Looking across at the Trotter step convergence, we find that 7 = 144 Trotter steps are required
to produce these more complicated dynamics with accuracy equal to ED.

After finding the number of Trotter steps required to accurately simulate the dynamics for V = 0.05/w,
we next consider convergence with respect to the truncation of the QHO. In the furthest right graph of
figure 4, the blue bar shows the average occupation of each energy level of the oscillator coupled to site 0
during the converged experiments on the left. This is then repeated with increasing numbers of QHO
energy levels d = 2" up to n, = 4. Looking at the results of all the bars, for x = 0.3/w we find that only the
ground state d = 0 and first excited state d = 1 are occupied to any observable level. This implies that
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Figure4. (Left) Population over time at electronic sites 0 (blue) and 1 (orange), as calculated by ED (dashed line) or quantum
circuits run on the Qiskit Aer statevector simulator (SV, crossed marker). The Hamiltonian is simulated with system parameters
N =2,V =0.05/w, x = 0.3w (upper panels), x = 1.0hw (lower panels) and n, = 1. Moving across the panels left to right, for
the quantum circuit approach, time evolution is discretised by 10, 24, 36 and 48 Trotter steps for y = 0.3/w and 24, 48, 72 and
144 Trotter steps for x = 1.0hw. (Right) Average energy level occupation of the oscillator coupled to site 0 during time evolution.
The blue bar corresponds to the experiment shown on the left, whilst the other bars represent subsequent experiments with
increasing n,. These experiments were run with the number of Trotter steps required for convergence (e.g., 7 = 48 for

X = 0.3/w and 1) = 144 for x = 1.0hw).

simulation of this system is indeed converged with only n, = 1 qubit per phonon mode. For strong
electron—phonon coupling however, the truncation when choosing #, = 1 is clear, since for larger values of
n, there is a non-zero occupation of the d = 2 and d = 3 excited states. Furthermore, whilst the d = 4 level
has a very small average occupation of 0.003 and is barely visible, we can conclude that its inclusion is
necessary for convergence of the dynamics. This can be seen in the 1, = 2 case, whereby not being able to
access the d = 4 excited state leads to an overestimation of the occupancy at d = 1 and underestimation at
d = 3. Thus, for a two-site V = 0.05/w, x = 1.0Aw system, each phonon mode needs to be represented by
at least n, = 3 qubits for full convergence.

3.1.2. Strong electronic coupling

Next we consider our two-site system in the strong electronic coupling regime V = 1.0/ww, repeating the
experiments to determine convergence with respect to 1 and #,. These results can be seen in figure 5.
Notably, although the larger value of V leads to the excitation hopping between sites at a much faster rate,
this is factored out by plotting time in units of /i/2V. With this accounted for, looking at the results for

X = 0.3hw on the upper panels, we see that the population looks quite similar to its equivalent in figure 4,
albeit with a slight damping of the oscillation. However, there is a large difference when comparing
convergence with respect to Trotter steps, which occurs here for as few as 7 = 6 as shown in the second
panel. Unlike the other regimes studied in this work, such few Trotter steps are required for an accurate
solution because it is the closest to the purely electronic case based on the ratio V/x. Thus, whilst this
regime may be the first that can be simulated accurately on near term quantum computers, due to its low n
requirements, it also has one of the most trivial dynamics. This is further demonstrated by the average
oscillator energy level occupancy, as shown in the rightmost graph. Here we see the state of the oscillator
can be represented without truncation by only n, = 1 qubit, with only the ground and first excited state
being occupied.

Finally we examine the case of both strong electronic coupling V = 1.0hw and strong electron—phonon
coupling x = 1.0Aw, shown in the lower panels of figure 5. Here, unlike the weak regime, the populations
do not cross and we instead see an inflection at 7 = 2. Simulation over a longer time would be required to
see whether this is in fact a secondary higher frequency mode of oscillation, or is a reflection of the primary
excitation wave. Looking across the panels, we see that 77 = 48 Trotter steps are required for convergence.
Considering the average QHO energy level occupancy, the rightmost graph demonstrates again that in the
strong electron—phonon regime the oscillators are excited to higher energy levels than the weak regime.
Similar to the V = 0.05hw case, whilst the scarcely visible d = 4 occupation may suggest that n, = 2 is
sufficient, the average occupancy across all levels only converges for n, = 3 qubits.

3.2. Real device results

Up until this point, all results have been obtained by executing the quantum circuits that make up the time
evolution operator on a classically emulated quantum computer. This was done to factor out the noise
generated by real quantum computers, which for current generation devices is prohibitively large to
accurately simulate the time evolution circuits required. However, in this section we show that with
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Figure 5. (Left) Population over time at electronic sites 0 (blue) and 1 (orange), as calculated by ED (dashed line) or quantum
circuits run on the SV (crossed marker). The Hamiltonian is simulated with system parameters N = 2, V = 1.0/w, x = 0.3hw
(upper panels), x = 1.0fw (lower panels) and n, = 1 with increasing Trotter steps 7 = 3, 6, 12 and 24 Trotter steps for

X = 0.3hw and n = 6, 12, 24 and 48 for y = 1.0/w. (Right) Average energy level occupation of the oscillator coupled to site 0
during time evolution.

approximate circuit recompilation, it is in fact possible to obtain accurate results which capture the
dynamics of the electron—phonon Hamiltonian on a real quantum computer.

Given a unitary U, quantum circuit compilation describes the process of finding an implementation of
U on a quantum computer using a series of m gate operations. On the other hand, quantum circuit
recompilation is the process of trying to improve an existing circuit by replacing it with a circuit that
generates the same unitary but takes less time to run. This is important for current quantum computers,
whose short-lived qubits rapidly undergo decoherence, creating noise, and as such quantum circuit
recompilation can be viewed as a method of reducing noise. Furthermore, if we recompile a circuit without
knowledge of individual gate times, we can reformulate the problem generally as finding a circuit which
implements U in o < m gate operations. Solutions to this range from duplicate gate cancellation [48] to
two-qubit block re-synthesis [49] involving the KAK decomposition [50].

In this work we utilise recent advances in approximate circuit recompilation. Here, rather than find an
exact alternative implementation of U, the goal is to find a shallower quantum circuit V which has
approximately the same action on some initial state U|¢)) ~ V|¢)). Reformulating this as (1)|VIU|¢) ~ 1,

we notice that the problem can be viewed as finding the set of gates V1 that inverses the action of U as
measured by the overlap between the initial and final state. If the initial state is |0)®”, as is convention for
quantum algorithms, then the problem can be solved with ISL [34]. In ISL, the structure of V' is informed
by incrementally adding gates that work to disentangle the original circuit back to the |0)®" state, leading to
significant gate count reductions [51] particularly for Trotterised time evolution circuits [52]. More details
of ISL can be found in [34]. Despite being a quantum algorithm, in this work ISL can be viewed as a
classical method, since we sample the state U[0)®" on classically simulated quantum hardware for better
performance. Overall, ISL can be considered as a method for substituting circuit depth for increased circuit
evaluations, such that obtaining the population at a given time requires O(kn,) rather than O(k)
evaluations, where k is the number of shots and 7. is the number of evaluations required for convergence of
ISL. Analysis of how the value of n. changes for different systems is an ongoing effort [52], yet ultimately its
scaling is unknown, a limitation shared with other variational quantum algorithms including the variational
quantum eigensolver [53]. Numerically, across this work the value of 1, ranges from ~10! to ~10*
depending on the complexity and depth of the circuit.

To see what simulations are achievable on a real quantum computer, we first try the regime from
section 3.1 which achieves convergence with the fewest quantum resources. For this we consider a two-site
system with couplings V = 1.0hw, x = 0.3hw, which produces accurate results with as few as n, = 1 qubit
per oscillator (four qubits total) and n = 12 Trotter steps. The left panel of figure 6 shows the population,
obtained through experiments on the seven qubit, 32 QV (quantum volume) ibm_lagos quantum computer
with k = 8192 shots per circuit. For all the experiments on real hardware, a measurement calibration
scheme was performed to correct for readout errors. The triangle markers indicate the results obtained
when implementing the Trotterised time evolution operator without approximate circuit recompilation.
Due to the small size of the system, only six CNOT and 12 single-qubit gates are required per Trotter step,
producing accurate results for up to six Trotter steps of evolution. For this simple problem, that corresponds
to half the evolved time due to its low total Trotter step requirements. Yet the number of gate operations still
grows linearly with the number of Trotter steps, such that simulating seven through 12 Trotter steps of
evolution, requiring 42 to 72 CNOT gates respectively, leads to a sharp decrease in accuracy. Here we focus
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Figure 6. Population over time as calculated by ED (dashed line) or quantum circuits executed on an IBM quantum computer
directly (triangle marker) or first recompiled with ISL (crossed marker). All experiments are in the strong electronic coupling
regime V = 1.0hw. (Left) System parameters N = 2, y = 0.3/w,n = 12 and n, = 1 run on ibm_lagos. (Middle) Same as the left
panel, but with N = 3 electronic sites, run on ibmq_mumbai. (Right) N = 2, x = 1.0/w,n = 48 and n, = 2 run on
ibmq_mumbai. The bottom panel shows the absolute difference A between experiments and the analytic solution for each site.

on the number of two-qubit gates, as opposed to single-qubit gates, because their error rate is an order of
magnitude higher on the devices used.

By contrast, the crossed markers show the results obtained running on the same device but first
recompiling the circuits with ISL. Here, for any number of Trotter steps, ISL finds an equivalent circuit
producing the same state to 99% overlap with on average 3.4 CNOT gates and 8.8 single-qubit gates. An
example walk-through of the steps ISL takes to reach this solution for one of the time evolution circuits can
be found in appendix F. Here we give an average number of operations across all the 12 different time
evolution circuits, since the use of ISL decouples the scaling of the number of gates with Trotter steps from
the previous linear relationship. Instead, in many cases the ISL solution can have constant or even reduced
depth when adding Trotter steps and it is not obvious that later-time states should always be more difficult
to recompile. A good example of this would be the recompilation of periodic systems, which may return at
later time to less entangled states. Excitingly, the low average number of operations produced by the ISL
solution enables the results obtained on the real device to accurately reproduce those calculated via ED,
even in the region 7 > 1.5.

Following this, we simulate a larger system to further test what is possible on a real quantum computer.
We repeat the previous simulation but with N = 3 electronic sites, giving a total of six qubits required.
Whilst the inclusion of extra qubits itself incurs no error, the additional gates required to simulate a larger
chain and another oscillator mode leads to more noise. The middle panel of figure 6 shows results obtained
on the 27 qubit, 128 QV ibmq_mumbai device with k = 8192 shots per circuit. Here, a direct
implementation of the time evolution requires 10 CNOT gates and 20 single-qubit gates per Trotter step,
the results of which are shown by the triangle marker. Despite running on a higher fidelity quantum
computer, the increased number of gates per Trotter step are such that the population obtained at each site
is only accurate for the first few Trotter steps. Beyond this the accuracy decreases, such that for the
12 Trotter step circuit used to calculate the population at 7 = 3.0, requiring 120 CNOT gates, the qubit
measurement statistics are random. We note that a random qubit state translates to a measured population
of 0.5, which in this graph is deceivingly close to the real dynamics at later time steps.

When recompiling this larger system, ISL finds for any number of Trotter steps an equivalent circuit
producing the same state to 95% overlap with on average 10.0 CNOT gates and 18.7 single-qubit gates.
Although this is more operations than the two site case, it is sufficiently shallow so that the noisy device can
produce dynamics similar to that of ED for all but two of the observed points. The increased error at
7 = 2.5 and 3.0 can be explained by the observation that the recompiled solutions at these times contained
more operations than average, with 21 and 16 CNOT gates respectively.

As mentioned in section 3.1, although the low Trotter step and #n, requirements of the small x regime
make it appealing for quantum simulation, it is unlikely one would require non-classical methods for such
simple dynamics. Therefore, in this final experiment we test what can be simulated on a real quantum
computer for the nontrivial strongly coupled case V = 1.0/w, x = 1.0Aw. Here we use ) = 48 Trotter steps
as required for convergence and n, = 2, which suffers from very minimal truncation at the benefit of less
qubits and gates. In this case the limitation of the direct implementation becomes apparent, with each
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Trotter step requiring 42 CNOT and 66 single-qubit gates. Furthermore, because this regime requires

n, > 1 qubits per oscillator for convergence, the graph of connected qubits in the circuit no longer matches
the honeycomb structure of the hardware used in this work. Mapping between the topologies requires
SWAP operations which dramatically increases the number of CNOT gates per Trotter step to 133. The
result of executing these circuits on ibmq_mumbai is shown by the triangle markers in the right panel of
figure 6. Here, it is not possible to obtain an accurate population after even one Trotter step of evolution,
and the signal rapidly decays to random noise. Conversely, the populations obtained using ISL match the
ED results well up to 7 = 1.5 and follow the correct trend after. This is possible because the recompiled
circuits allow us to obtain the dynamics for any point in time up to 7 = 3.0 with on average 15.6 CNOT
gates and 26.9 single-qubit gates. Furthermore, the use of SWAP gates can be avoided by restricting the
qubit connections allowed during ISL to only those which are connected on the physical device.

4. Conclusion

In this work we demonstrate the first simulation of electron—phonon dynamics on a real quantum
computer. To achieve this, we first establish the previously unknown Trotter step and qubit requirements for
accurate simulation of systems described by the electron—phonon Hamiltonian, which we find grows with
the ratio of the electron—phonon to dipole—dipole couplings x/V. We then run the converged time
evolution circuits on real quantum computers and demonstrate that, despite the resource efficiency of the
scheme, accurate results cannot be obtained even for small systems. To remedy this, we use ISL to find
approximately equivalent circuits for each time step in the simulation, leading to a significant reduction in
the number of gates required. Executing the recompiled circuits on a real quantum computer, we obtain
highly accurate dynamics for small systems with weak electron—phonon coupling and partially accurate
results for the more complicated case of strong coupling.

Evolving electron—phonon systems on a quantum computer is not only beneficial for the direct study of
dynamics, but also for optimisation routines whose cost functions contain time dependent observables of
such systems. Important example of this include studying the conditions required for optimal energy
transfer [54] and fitting values to unknown system parameters based on experimental data [55]. Notably,
solving such problems can be done in the presence of noise [8, 56], making it an appealing application for
near-term quantum computers. Thus, using real quantum hardware to solve optimisation problems
involving electron—phonon systems would represent an interesting extension of the results presented in this
work.

In the long term, the study of electron—phonon dynamics will benefit greatly from simulation on
error-corrected quantum computers and its associated exponential speedup. However, the ongoing
development of quantum hardware demonstrates that the ability to execute deep circuits will remain a
longstanding problem to obtain accurate results for interesting physical systems. In this way, our work
provides a significant first step to address this, and our novel approach illustrates that electron—phonon
Hamiltonians can be simulated on near-term quantum computers when using approximate circuit
recompilation. Looking forward, the question remains as to whether sufficiently large systems could be
simulated as to achieve a quantum advantage using our method. This would require the execution of the
ISL routine itself on quantum hardware, which in turn involves evaluating quantum circuits with depth
beyond the capabilities of current devices. Nevertheless, the rapid rate of hardware progress may soon
change this, and as such attempting to scale the methods put forward in this paper is an imperative and
exciting avenue of future work.
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Appendix A. Conversion of qubit operators to Pauli matrices

Given a set of operators acting on qubit computational basis states, they can be mapped to Pauli matrices
via the relations

0)(0] = 51+ %) (A1a)
0)(1] = (6" +i0”) (A1b)
(0] = 5(6% ~ ") (A10
[l = %(ﬂ — 6. (A.1d)

Appendix B. Conversion of ladder operators to qubit operators

Here we demonstrate how to express the ladder operators of the QHO in terms of qubit operators. For
example, the term a' + @ in equation (3) can be expanded as

2Mx -2 2 —1

al+a= > V@d+Dld+1)d+ > Vdld-1)(d], (B.1)
=0 d=1

where |d) is the eigenstate of the dth excited state. Considering the specific example of n, = 2(d = 4), we
obtain
a' +a=101)(00] + 00)(01] + v/2(]10)(01] 4 [01)(10]) + v/3(|11)(10] + [10)(11]). (B.2)

Subsequently, the action on each qubit can be mapped to Pauli operators as shown in appendix A. As an
example in the context of ladder operators, the first two terms of equation (B.2) would then become

|01)(00] + |00) (01| = %(&T + 6567) (B.3)

after cancellations.

Appendix C. Population with no phonon coupling

Figure C1 shows the site populations over time for the case of weak electronic coupling V' = 0.05Aw and no
phonon coupling. Here, as expected for the purely electronic case, the ED results (dashed line) demonstrate
a simple pattern of the excitation transferring from its initial placement on site 0 to site 1. The different
markers represent obtaining the population using the quantum circuit method described in the main text,
repeated with increasing numbers of Trotter steps. Here the lack of electron—phonon coupling simplifies
things, since the system effectively evolves under the Hamiltonian H = H,. Therefore, without any
non-commuting terms in the Hamiltonian, the Trotter error is zero and adding more Trotter steps does not
improve the accuracy of the solution with respect to the ED results.

Appendix D. Simulator results of larger real world system

In the main text, we presented results using a SV for systems with two electronic sites, one phonon mode
per site and up to n, = 4 for a maximum of ten qubits. This allowed us to study different coupling regimes
and by keeping the Hilbert space small, compare them easily to ED results. In this section however, we
demonstrate the flexibility of the quantum circuit approach to scale to much larger systems. Unlike
analogue simulation of the electron—phonon Hamiltonian, our method requires no redesigning of the
algorithm or hardware to scale up, since the circuits are created using the general rules laid out in

section 2.2. Furthermore, whilst our previous simulations had uniform couplings, here we can consider
systems with non-uniform couplings with no additional cost.

Figure D1 shows the result of our larger scale simulation, run on the qasm simulator with k = 10 000
shots. Here we have N = 7 electronic sites, I = 1 phonon mode per site and #n, = 3 qubits per oscillator for
a total of 28 qubsits. The couplings V and ¥ are randomly generated from a uniform distribution in the
range [0.8, 1.2]/w and can be found in appendix E. We choose this range such that the mean value still
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Figure C1. Population over time at electronic sites 0 (blue) and 1 (orange), as calculated by ED (dashed line) or quantum
circuits run on the Qiskit Aer SV (markers) with 6 (cross), 12 (square), 24 (circle) or 48 (triangle) Trotter steps. The Hamiltonian
is simulated with parameters V = 0.05/w, x = 0.0/w. In this case there is no coupling to the phonon modes, so the system
evolves under just H = H,. Since there are no non-commuting terms, the quantum circuit method incurs zero Trotter error and
thus achieves equal accuracy to ED for any number of Trotter steps. Note that consequentially the dashed line is partially
obscured by the symbols.
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Figure D1. Population over time with non-uniform couplings and phonon frequencies, 7 = 96 and n, = 3. All results were
calculated using the quantum circuit implementation described in the main body of this work, run on the Qiskit gasm simulator
with 10000 shots. The couplings V, ¥ and frequencies were randomly generated from the uniform interval [0.8, 1.2] and can be
found in appendix E.

represents the strong coupling regime, which we found in section 3.1 to have interesting and non-trivial
dynamics.

Looking at figure D1 up to 7 = 3, we see a pattern whereby the excitation originally localised to site 0
distributes down the chain. This is the primary excitation wave, causing visible peaks on sites 1, 2 and 3 on
this short time scale. However, beyond this point the dynamics become much more complex, with many
oscillations and peaks of different scales. This is caused first by the reflection of the primary wave off each
site, and subsequently by the complex interference between counterpropogating wavepackets. By the end of
our simulation, the net transfer across the sites begins to slow, such that the dynamics appear to begin
reaching an equilibrium.

Appendix E. Figure D1 parameters

Here we present the random couplings used to generate figure D1. Note that the structure of the V matrix
corresponds to electronic sites connected in a chain topology. One could translate this to a ring topology by
adding non-zero values in the lower-left and upper-right corners of the matrix, or a fully connected
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topology by filling all elements with non-zero values.

0 0981 0 0 0 0 0
0981 0 1.024 0 0 0 0
0 1.024 0 1170 0 0 0
V=1 o0 0 1.170 0 098 0 0 |hw (E.1)
0 0 0 0986 0 1.003 0
0 0 0 0 1.003 0 1.035
L0 0 0 0 0 1.035 0 |
[1.149]
1.002
1.192
Y= |1.079] hw (E.2)
1.089
0.963
1.024]

Appendix E.  Stepping through ISL recompilation

In the main text, approximate circuit recompilation is a crucial tool that allows the substitution of
time-evolution circuits with significantly shallower alternatives. Whilst the original scheme is defined in
[34], here we provide an explicit example of the steps of the ISL algorithm when solving a target circuit that
generates the dynamics studied in the left panel of figure 6. In this particular model we have system
parameters N = 2, x = 0.3hw, n, = 1 and the overall time is divided up into 1 = 12 Trotter steps. Given we
wish to obtain the population at each time step, our simulation algorithm in the main text requires
evaluating 13 different circuits each with a different integer ¢ < 7 repetitions of the Trotter step circuit
before measurement. For the demonstration of ISL, we will consider a recompilation target circuit
evaluating the dynamics at ¢ = 4 time slices into the evolution.

Figure F1 demonstrates the overall process. At the top of the figure the target circuit to recompile is
defined. This matches the structure of the general time evolution circuit laid out in figure 3, but with
higher-level gates decomposed into standard quantum computing operations with explicit rotation angles
including the single-qubit unitaries U,, U, and Uj; defined as [33]

- [ cos(6/2) —et sin(6/2)
Us(6:2) = (eio sin(0/2) ™9 cos(0/2) )’ (E1)
N A 1 1 —e?
Us(¢, A) = U3(7r/2, ¢) A) = ﬁ (ei¢ RICEDY ) > (E2)
- A 1 0
UI(A) - U3(0) 0, A) - (0 ei)\> . (F3)

The circuit diagram at the top of figure F1 shows the gates required for one Trotter step. In this example
we will choose our target circuit to be one that simulates the population after four Trotter steps of evolution
and as such we repeat the circuit four times. Additionally, we note the first qubit starts in the |1) state,
reflecting the physical system under study from section 3.2 with an electronic excitation localised on the
first site. Since ISL assumes the initial state |1),) = |0)®", this state preparation is incorporated into the
recompiled solution. This means that recompilation would need to be repeated if studying systems with
different initial states.

Moving downwards across the figure, the ISL procedure begins and layers of gates are incrementally
appended to the target circuit with the goal of inversing the action of the time evolution circuit. Each layer
consists of a CNOT gate surrounded by single single-qubit rotation gates with parameterised rotation axis
and angles, initialised as R.(0). First, a layer is added between the two qubits with the highest pairwise
entanglement, for which we use negativity [57] as our measure. Subsequently the axes and angles of
rotation of the layer are optimised using the Rotoselect algorithm [58] with respect to minimising the cost

2

C=1—|(who|V'U[o)]| (E.4)

where U is the target circuit, V1 is the current best guess of the inverse and [1/,) = |0)®" is the initial state
of the circuit. Once optimising the layer has converged the cost function is evaluated once again. If the cost
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Figure F1. A step-by-step walk-through of the usage of ISL in this work. (a) In this example, the target circuit corresponds to
four Trotter steps of evolution of the electron—phonon Hamiltonian with system parameters N = 2, x = 0.3/w,n = 12and
n, = 1. (b) The ISL procedure begins by appending a layer of gates to the target circuit that is as a trial solution of the inverse V.
The rotation axes and angles of this layer are then then optimised with respect to producing a final state which maximally
overlaps the input state as given in equation (F.4). After three layers the cost is below the threshold value of 0.01 and this process
is finished. (c) The circuit at termination of the previous step is then recursively inverted to produce the solution to the
recompilation problem V. (d) The value of the cost function at each ISL iteration, defined as either an optimisation iteration or
adding a layer. The crossed markers in orange correspond to the cost evaluated for the circuits visualised in (b).

is now below the threshold C < C,, this part of the algorithm is completed. If not, then another layer is
added and the optimisation procedure is repeated for the new layer. In this particular example, it takes three
layers before the cost threshold C;, = 0.01 is reached. At this point, the ISL algorithm is terminated and the
circuit that represents the best guess of V1 is recursively inverted gate-by-gate to produce the final
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recompilation solution V. Some simple non-approximate techniques are also applied to improve the final
solution, including the merging of adjacent rotation gates in the same basis, removing two-qubit gate blocks
that form an identity (e.g., consecutive CNOT gates) and removing of any gates for which the rotation angle
is below 0.001.

The bottom of the figure shows the value of the cost at each iteration in the ISL procedure, with the
orange markers corresponding to the visualised circuits above. The process starts with the first orange
marker, corresponding to the first layer added with initial rotations R,(0). Next, a series of eight blue
markers, corresponding to iterations of the Rotoselect algorithm, sees an immediate drop in the cost
followed by several steps of small refinement. The convergence of the first layer is then given by the second
orange marker, which corresponds to the second circuit diagram of the trial solutions. This process of
adding a layer, a large jump on the first optimiser iteration and then subsequent refinement is repeated two
more times until the cost threshold of 0.01 is met.

In this appendix we have stepped through recompilation of the circuit corresponding to four Trotter
steps of evolution of the electron—phonon system studied in the main text with system parameters
N =2,x = 0.3hw, n, = 1 and n = 12. Evaluating the target circuit and the recompiled solution gives the
population at just one point in time corresponding to the fourth triangle and crossed marker of figure 6
respectively. To obtain the population at each point and produce the whole figure, recompilation needs to
be repeated for 0 through 12 Trotter steps of evolution. We note that there are two ways to achieve this. The
first is the simplest and involves recompilation from scratch for every point in time. The second is so called
ladder-ISL, in which each Trotter step in the circuit is sequentially recompiled, with the recompiled solution
to the previous Trotter step used as an approximation of the evolution up to the next Trotter step. More
details of this approach can be found in [34]. Whilst ladder-ISL is more amenable to near-term quantum
computers, since the evaluated circuits are shallower, this approach introduces an additional error term,
since the approximation at each Trotter step accumulates. Therefore, in this proof-of-principle work on
smaller systems, we choose to recompile each time step from scratch for maximum accuracy.
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