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Abstract

QCD-based models predict many N* states that decay through modes that have yet to be
measured or precisely identified. These decay mechanisms give insight into the
underlying symmetries of the excited-baryon states. There are competing models for
the quark symmetries and dynamics ranging from preferentially paired-quark
distributions to hybrid gluonic excitations. Measurement of the differential cross
section and single- and double-polarization observables provide strong constraints on
identifying the N* excitation spectrum. In this paper, we report preliminary differential
cross-section measurements of the yD — KsA(p) reaction employing a circularly-
polarized photon beam onto unpolarized LD,. The energy of the photon beam ranged
from 1.3 to 2.65 GeV, which spans from threshold to the resonance regimes. The final-
state particles were used to reconstruct the missing mass of the spectator proton. The
yield of this missing mass was then used for the determination of the differential cross
section. We observe an increase of cross section in the central cms region for photon
energies of 1.9 to 2.2 GeV. We regard this work on the KsA energy-dependent
differential cross section as the first necessary step in identifying the underlying physics
in the resonance regime. The work will form the foundation for further studies in
extracting the polarization observables for circularly- and linearly-polarized photons
from our analyzed dataset, which was taken by the CLAS detector in Hall B of Jefferson

Lab in 2006 and 2007.
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Figure 1.3: The resonances from baryon excitation with at least 3-star PDG ratingll. The
labels first indicate the total angular moment, Z, with subnumbers indicating
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Figure 3.11: Illustration of a particle trajectory through a segment of the drift chamber.
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Figure 3.12: Diagram of the assembly of the drift chambers on the torus cryostat(s],............ 36
Figure 3.13: Cross-sectional view of one of the electromagnetic calorimeter modules(18],
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Figure 4.1: (a) Beta vs. momentum plots for the measured © and (b) delta beta vs.
momentum plots for the measured . Both follow a loose mass cut and |AB]| <
0.2 QUL oottt rseessesses s ss e bbb RS RER R aEEEREReERnERes 49
Figure 4.2: Plot of the invariant mass of the Lambda particle, M(p,n") vs the invariant
mass of the kaon, M(n"n") in GeV. The peak indicates the events were both a
lambda and a kaon were reCoONStIUCLEd. ... essssssssssssssssssssssssssssssssssesans 51
Figure 4.3: Mass of the Ks and A particles. (a) Mass distribution of the n+ and n~
combinations, (b) zoomed in view of the hadron mass peaks, (c) background
reduced by placing the cut 1.108 < M(p, ©) < 1.122 GeV for the n*+ and n~
combinations, (d) mass distribution of the proton and n~ combinations, (e)
zoomed in view of the proton and ©~ combinations, (f) background reduced by
using the cut 0485 < M(nt,n) < 0.51 GeV for the proton and m~

[616) 01 011 0 = 151 (0 ) 4 K- 51


file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223322
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223322
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223323
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223324
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223324
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223324
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223325
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223325
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223325
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223327
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223327
file:///C:/Users/William/Desktop/Chuck_Taylor_v1.11.docx%23_Toc346223327

Figure 4.4: The invariant mass cuts on both the kaon and Lambda mass peaks almost
completely remove the events where both combinations of mnt pairing
survive. The top figure shows the invariant mass of pn- verses the invariant
mass of the n . For the invariant mass of the Ks, three-sigma cuts were
placed on the A peak. The same cuts were made for the K invariant mass................

Figure 4.5: The fits to the kaon and Lambda peaks. The fits were used to determine the
ratio of the resonant region to the non-resonant background. .........coeneenseeessecenna.

Figure 4.6: The path of the original decay particles seen on the right are not well
represented by the tracks reproduction in the data banks. The scales are
exaggerated for clarity. The final state particle paths are 2 orders of magnitude
BTeater iN IENGEN. oot s s

Figure 4.7: The distance of closest approach (DOCA) method. Two tracks are compared
to find the path of shortest difference between them. A point is chosen
somewhere on this line as the DOCA point, based on the importance weighted
L0 T == Tl o 0= o) PPN

Figure 4.8: The reconstruction of the Ks decay vertex. The first histogram shows the
DOCA lengths while the other three are the xy, xz and yz planes. Most of the
short kaons do not make it out of the target. ... eneeeeeeesseeesseeeseseens

Figure 4.9: The reconstruction of the A decay vertex. The first histogram shows the
DOCA lengths while the other three are the xy, xzand yzplanes. Most of the As
do not make it OUt Of the LArGEL. ... eeerrrereee s sesesssesees

Figure 4.10: The reconstructed production vertex using method 1. The first histogram
shows the DOCA lengths while the other three are the xy;, xz and yz planes.

Essentially all of the events occur within the radius of the beam. .....cccocooneerneerreeennecnn.
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Figure 4.11: The reconstructed production vertex using method 2. The first histogram
shows the DOCA lengths while the other three are the xy, xz and yz planes.
Essentially all of the events occur within the radius of the beam. .....ccccomenmenneeerneeen.

Figure 4.12: The two methods used to determine the production vertex. Both methods
use the distance of closest approach method (DOCA) for each vertex position.
In the first method the two reconstructed tracks are compared together for the
production vertex, while the second method compares them to the beam line
and then takes their AVerage. ... ssssssssesesans

Figure 4.13: The reconstruction of the simulated Ks decay vertex. The first histogram
shows the DOCA lengths while the other three are the xy, xz and yz planes. The
distribution closely matches that of the data seen in figure 4.8........coorenmeeenmeeersnecens

Figure 4.14: The reconstruction of the simulated A decay vertex. The first histogram
shows the DOCA lengths while the other three are the xy; xz and yzplanes. The
distribution closely matches that of the data seen in Fig. 4.9.....cnrcvnnreenneeennnenens

Figure 4.15: The reconstructed production vertex using method one for the simulated
data. The first histogram shows the DOCA lengths while the other three are the
xy, xz and yz planes. The distribution is in good agreement with the real data
(Fig. 4.10), though not as well as Method 2. ........eeeeeeeesseseessssseses

Figure 4.16: The reconstructed production vertex using method two for the simulated
data. The first histogram shows the DOCA lengths while the other three are the
xy, xz and yz planes. The distribution is in very good agreement with the real
LA (FIZ. 4.1 1), corererreeereeersereessseesseessssesesssessssssesesssesssss e ss R RS RS

Figure 4.17: Difference between the reconstructed vertex and the “real” vertex on the
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Figure 4.18: The top (a) and (b) distribution show the decay length for the Lambda and
kaon, respectively, for the g13 experiment. The bottom (c) and (d) show the
measured values for the g10 experiment. As can be seen in the g13 plots, both
methods yield the same decay length distributions. These distributions for the
g13a dataset are consistent with similar g10 measurements or the Ks and A
PATEICIES. ettt et eees s s es e ss b bR RS RER RS R R R 66

Figure 4.19: Comparison of the production vertex for both methods. The total decay
length is determined by taking the difference between the primary and
secondary decay vertices. The difference between method 1 and 2 are then
plotted with respect to the momentum of the particles...... . 67

Figure 4.20: Lifetime distributions of the reconstructed Ks and A particles. The fit was

made between 0.18 and 0.5 ns to avoid inefficiencies at the shorter and longer

Figure 4.21: Smaller angles can introduce larger uncertainty in the z position of the
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Figure 4.24: Distribution of the photon times associated with the electrons measured in
the tagger for a single T-counter, with respect to the center of the target. The
peak corresponds to a physical trigger, while the flat region is the accidental
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Figure 5.4: The angle of the missing momentum is used to check how many events are
from quasi-free neutrons. The top left histogram shows the projection of the
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Figure 5.5: The missing mass of the yD — KgA(p) reaction, is used to determine the
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Figure 5.6: Beta histograms for the m". For the particle identification, the mass was taken
to be between —0.1 and 0.1 GeV. The difference of the measured beta and the
calculated are shown in top right plot. The bottom left and right show the 3
and AP vs. the momentum of each particle, respectively.......c.ccoccviviiniceiniiennn 93
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Chapter 1

Introduction

From the earliest experiments, excited nucleons (baryons) have been observed to have
significantly varying masses and charges, hinting at a large complex theory to catalogue
them. Fortunately using the quantum numbers offered by the standard model, it is
possible to treat all the varying nucleons as the same particle but in different resonant
states (see Fig. 1.1). Similar to the theories detailing atomic and nuclear excited states,
the individual nucleons themselves can be treated as excited particles (implying that the
particles which make them up are energized into higher ‘orbits’ and ‘spins’). Figure 1.2
shows the classification of particles (or baryon states) as the baryon octet (left) and
decuplet (right). The quantum numbers charge, spin, and isospin of the nucleon can be
derived from the charge, spin, and isospin of its constituent quarks.

The baryon positions in these triangular grids emphasize the symmetry of states
using the quantum numbers I, Q and S along the different axes. Nucleons with nearly
like mass (like the proton and neutron) can be treated as an underlying state having
isospin (I = 1/2), but with opposite isospin projections (I3 = +1/2 and -1/2
respectively). Similarly, the top row of decuplet can be treated as a family of particles, A,
with different charges (Q = -1, 0, +1, +2). The strangeness of a particle determines
which row the baryon falls into. The A resonances do not have any strangeness, while
the rest (called hyperons) have at least one strange quark. Each baryon has a similar
mass to the other baryons within the same row. The two diagrams in Fig. 1.2 differ by

their total angular momentum, which is the sum of the particle’s spin and orbital
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angular momentum. Meaning that while the neutron the A” are both made of up and
down quarks and have no charge, they differ by their total angular momentum and

isospin, | = 1/2 and 3/2, respectively.

Mass

(MeV?) =172 =32
1600 S11(1650) $31(1620)
- Su(1539) P33(1600)
D13(1520)
1400 | P11(1440)
Y
1200 P33(1232)
1000
YYVY VY VY
P11(939)

Figure 1.1: A diagram similar to nuclear excited states. This cartoon illustrates the first few levels of the
excited states of a nucleon. The left side represents the 1/2-isospin, while the right is the 3/2-isospin. The
green lines represent the emission of a pion, while the blue and red are the n and p mesons, respectively.

Figure 1.2: Diagram of the baryon (a)Decuplet and (b)Octet, illustrating the three different quantum values
that can be used to define the symmetry the elementary particles are both made of up and down quarks and
have no charge, they differ by their angular momentum and isospin, I = 1/2 and 3/2, respectively.
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1.1 The Standard Model

Initially it was believed that neutrons and protons were the most elementary particles
within the nucleus and the © mesons (pions) were the exchange particles of the strong
nuclear force between them. But each new experiment revealed more new baryons and
mesons (collectively called hadrons). By the 1950s several dozen hadrons were
experimentally found. Adding to the confusion, some of these new particles had
lifetimes many orders of magnitude longer than what was predicted by the strong
interaction for the particle’s mass. It seemed evident that these nucleons where more
complex than initially perceived and a new model was needed. From this need, the
standard model/was developed.

In the standard model, the baryon is defined as being made up of three quarks
(gqqq) and the meson is a quark and antiquark pair (qq). The combined quantum
numbers of the quarks define the quantum numbers of the hadrons they make. Quarks
are categorized first by their charge and then by their generation (relating to their
mass), collectively referred to as a quark’s flavor. Ordered with respect to increasing
generation, the quarks with charge +2/3 are up, charmed, and top; while the —1/3 are
down, strange, and bottom. The quarks making up the hadrons must sum to a balanced
integer charge. The total charges of some of the possible configurations of quarks are
illustrated in Table 1.1.1. Each quark has its corresponding antiquark. Likewise, the
mesons have their own antiparticle. The meson of opposite charge is usually the
antiparticle of a charged meson, while neutral mesons tend to be their own antiparticle.
The quarks of heavier generations will decay to the lower flavors though the process,

called the weak decay, which is the generation “switching” mechanism. The much
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smaller probability for this decay process allows for hadrons with these heavier quarks

to live longer than expected with the strong decay process.

Table 1.1: An example of how the quantum values of quarks combine to give hadrons their quantum
numbers. This shows the calculation of charge for a hadron given the quarks it is made up of, where Q is the
charge and npos and nneg are the number of positive and negative quarks (pos = {u,c,t} and neg = {d,s,b}).
The pos and neg correspond to the antiquarks.

Particle Quarks Charge
Q =2/3 (Npos — Npos) — 1/3(Nney — Nireg)
n+ ud 1=2/3(1-0)-1/3(0-1)
0 (uii — dd)/V2 0=2/3(1-1)-1/3(1-1)
proton uud 1=2/3(2-0)-1/3(1-0)
A ddd -1=2/3(0-0)-1/3(3-0)
A0 uds 0=2/3(1-0)-1/3(2-0)

1.2 Baryon Spectroscopy

A spectrum can be produced with the assortment of measured baryons, similar in
concept to the spectrum produced by atomic resonances. Both in atomic and nuclear
physics, the Heisenberg uncertainty principle broadens the spectral lines because of the
particle’s short lifetimes with respect to the energy’s measurement. The significantly
shorter lifetimes (typically ~10-2* s) of the baryons make their energies much broader,
significantly complicating their identification. The ‘spectral lines’ begin to overlap as
their peaks broaden, creating a flat distribution. Only the strongest resonances are

distinguishable within the summation of energies.
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Until recently, the largest majority of baryon spectroscopy measurements were
made with pion beams. Figure 1.3 shows the nucleon resonances for well-established
baryon resonances for the energetic collision of a pion with a proton. After the strong
low-lying resonances, the broad peaks become too overlapping for clear identification.
With some difficulty, various partial wave analysis (PWA) techniques can be applied to
isolate these resonances. The quantum numbers of each baryon resonance can be used
determine the angular distribution of their decay products. The CLAS detector system
(detailed in chapter 3) was designed to take advantage of this. Many of the
experiments use a polarized beam (and sometimes a polarized target) to enable clear

measurement of these preferential angles.

1.3 Missing Baryon Resonances

The theories based on the standard modelhave been very successful in predicting many
of the lower-lying baryon resonances, but they also predict resonances at higher
energies that have yet to be seen. There are a few possibilities for the “missing”
resonances. Until recently, the N coupling has been the dominant source of the
empirical datalt}2L3l. Most of the missing resonances exist in higher energy range (W >
1800 MeV/c?), where photon beams onto nucleons (yN) are expected to have a higher
coupling (probability of interaction) than that of nN. Another problem is the wide-
overlapping peaks of the previous unpolarized photoproduction experiments. The use
of single- or double-polarization observables will tighten the coupled-channel partial
wave analysis (PWA), making resonances easier to distinguish. The problem could also
be due to the models being used. These models may be missing some fundamental
factors, such as the tight bonding of two of the three quarks within the baryon (as

proposed by the di-quark modell2}31,
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Figure 1.3: The resonances from baryon excitation with at least 3-star PDG rating(4l. The labels first indicate
the total angular moment, Z, with subnumbers indicating 1/2 for the isospin, I and spin, ], of the baryon. The
parenthetical values indicate the mass of the particle (in MeV)[51.

As a part of a series of experiments, the work of this thesis is focused on aiding
in the exploration and establishing the existence of the “missing” resonances through
analyzing the yn — KsA reaction. While strangeness photo and electroproduction has
been studied in the K+ channel, there has been little research on the neutral kaon

channel. The KsA channel is predicted to have sensitivity to the D13(1900) resonancel],

whose existence is still contested based on the K+A data results(71[8],
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1.4 The Diquark Model and their Decay Widths

Many theories predicted on the standard model that baryons have three constituent
quarks. However, Koniukl?], and Capstick and Isgurl3! proposed a different configuration
of the quarks where two are tightly bound and orbited by the third. This produces the
requirement that the paired quarks be in anti-symmetric, unexcited states to form
colorless baryons. Such a requirement reduces the number of degrees of freedom for
the excited nucleon states, thereby accounting for some of the missing resonances.
Capstick and Roberts performed calculations for the coupling amplitude of
several strangeness channels to the N* and A* statesl®l. They present their results for the
Ny, Nm, and AK amplitudes in Fig. 2.2. The states with significant amplitudes for both

the Ny and AK are expected to have the best likelihood of empirical verification.

I {2 - .
31f}ﬁ° N to Ny, Nmt, and AK model amplitudes
2200 = [ — | seen in Nrt
| e | e
weak or missing
2100 ; 2 = RN .
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N1/3" N3/2" N5/2" N7/ N1/2 N3/2 N5/2 N7/2

N baryon model states

Figure 1.4: The coupling amplitudes as predicted by Capstick and Roberts[! for the N* model states with
mass less than 2.2 GeV/c? into the Ny, Nn, and AK channels. The amplitudes are represented by the length of
the bars at each respective spin-parity designation and mass. This model is based on 3 constituent quarks.
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Although the Nm always has higher amplitudes, it has been shown that the Ny channel
offers a significantly improvement on helicity amplitude of the neutron over the proton
interactionsBBl. The gluon fields from the pion interactions with the proton prove to be
significantly more difficult to model than that of a photon probe as QED is very well

understood.



Chapter 2
Theory

In modern physics, there have been traditionally two key theories outside of the realm
of classical physics, relativity and quantum mechanics. Special relativity is a theory that
describes systems at velocities near the speed of light (where frames of reference that
respect that the speed of light is constant are required), while quantum mechanics
evaluates the interactions of tiny systems (where measurements become a distribution
of probabilities). Relativistic quantum field theory merges the two theories for systems
that are both small and fast. Fields are used to describe the forces between the particles,
where the force exchange particles (gauge bosons) are the quanta of those fields. In
quantum field theory only three of the four fundamental forces are considered:
electromagnetic, weak, and strong interactions. The gravitational force is far too weak
to play a significant role.

Consequently, three related theories are used for each of the interactions of
particles. The theory of the electromagnetic interactions is given by quantum
electrodynamics (QED). The photon, v, is the only gauge particle in QED, yielding a
corresponding U(1) symmetry group. Photons do not interact with each other. Next, the
weak interaction is the force by which quarks change from one type to another.
Combined with QED, the theory of the weak interactions is called the electroweak
theory (EWT). Three generators form the symmetry group of SU(2) for the weak
interaction. These generators correspond to the three gauge bosons; W+, W™, and Z

bosons. Therefore, the electroweak theory is defined by the SU(2)@U(1) gauge group.
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The strong interaction is the nuclear force that holds nucleons together and the means
by which they quickly decay (on the order of magnitude 10-24). Its fields are mediated
by eight types of gluons, which relate to the eight generators used with the SU(3) group.
These gluons are described by their color and are the primary motive behind the theory
of Quantum Chromodynamics. QED and QCD are discussed in more detail in the section
2.1, while the electroweak is discussed in section 2.2.

Experimentally quarks have never been observed alone. This leads to the
principle of quark confinement. The force between quarks does not weaken with
distance; therefore it would not be possible to completely free a quark from its
neighboring quarks. However at higher energies, it is possible to separate quarks
enough to produce a new quark/antiquark pair between them. The new quarks then
create new particles with the original quarks, breaking the initial confinement between
them. At high enough energies this process can happen multiple times from the original
quark pair. This is most commonly observed when the quarks from projectile hadron
interact with that of a target hadron. For example, consider a pion beam incident upon
a proton target. A negative pion’s anti-up quark can interact with one of the up quarks

in the proton, creating a new neutral pion.

2.1 Quantum Electrodynamics and Chromodynamics

All of the models in field theory are based on the oldest of the field theories- the
quantum electrodynamics theory. In QED all possible electromagnetic interactions can
be expressed by a Feynman diagram (see Fig. 2.1). The vertices represent the coupling
of the particle (represented by straight lines) with the photon (represented by a
squiggly line). An arrow on particle line that is pointing against the defined direction of

time indicates it is the antiparticle. Every way a diagram can be turned or reconfigured

10
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Time

(b)

Space

v

Figure 2.1: Feynman diagram comparing QED and QCD with one rotation of the diagram. (a) two scattering
electrons, (b) electron-positron annihilation and pair production, (c) quarks scattering, and (d) quark
annihilation and creation.
represents another topology of the original reaction. If you turn the Feynman diagram
depicting the scatter of two elections on its side, it then describes an electron-position
annihilation and subsequent production. A/l of these reactions can ultimately be
reduced to e — e + y. That is for any vertex, the charge particle (electron) either emits
or absorbs a photon, y

Here “e“ could be either an electron or a positron. Conceptually, the electron
could be replaced with any charge-carrying particle (quark or lepton). QED does not
apply with non-charge carrying particles such as the neutrinos. Though photons are the

force-carrying particle of charged particles, they themselves have no charge. This is in

agreement with the lack of interaction between photons.

11
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Similar to QED, the quantum chromodynamics reactions can be portrayed both
by Feynman diagrams and formulas, except the single electric charge carrying 7y is
replaced by the color-charged gluons g (with the basic reaction q = q + g). Gluons
carry a dual charge of a color and anti-color pair. With SU(3), thereare N2-1=32-1=
8 combinations of color charge. Quarks have a single color charge. When a quark
undergoes a strong interaction, the gluon carries away the quarks original color with
the antiparticle of the quarks new color. Looking at Fig. 2.1 again, we see how the
Feynman diagrams of QCD appear to have a similarity to those of QED. However, unlike
photons, gluons can interact with each other. So these are the color charge carried by
one gluon can influence the color charge of another.

Only partons (quarks and gluons) have color— namely red, green, and blue (r-g-
b), which is in agreement with the confinement principle. Since color cannot be
observed, all other particles must have no color charge or have neutral color. Hadrons
are made up of quarks that sum up to a color neutral charge. With three quarks, a
baron’s final state after a reaction must remain color neutral, meaning a balance of r-g-b
(the color singlet). A prime example of this is the A++ resonance, which has three up
quarks. This resonance was the initial motivator for the development of the color
degree of freedom. Mesons have just two quarks, so they must have a color paired with
its anti-color so their color cancels out. Leptons have no color at all and are not affected

by the strong force.

2.1.1 Determining Probability Amplitudes with Feynman Diagrams

The interaction between any given set of particles can be described by probability
amplitudes. The calculations of these amplitudes include complicated integrals which

often possess many variables. Fortunately these difficult mathematical problems have a

12
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strong structure. The formulas can be broken into individual terms for each propagator
and interaction, which can be defined by a specific rule set. This allows the particle
interaction to be representation by a Feynman diagram (as seen in Fig. 2.1). The

structures are defined by the Lagrangian-dependent Feynman’s rules:

1. The 4-momenta of the incoming and outgoing particle are represented by a solid
line with an arrow to indicate whether it is a particle or antiparticle.

2. Each vertex represents the coupling constant for the interaction

3. The propagators are represented by a solid line (fermion), curvy line (boson) or

spiral line (gluon) between two points.

We can therefore define the probability amplitude for the transition of the initial

state into the final state by the interaction matrix (S-matrix) as:

Sri = {@rlSle:) . (2.1)

The S-matrix is defined by the perturbation series:

l-n

S = Yoo [ 1 d* 5T I, Lo(%) = XieS™, 22)

where T is the time-ordered product of the operators and L, is the Lagrangian of the
interaction. The time-order product is used when the order of two operators in a
product depends on their space-time location. The Lagrangian can be rewritten as

—gpy*eA,, where ¢ the state of particle, g is the coupling constant, y# is gamma

13
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matrix, and A4, is the bosinic field. Using the Feynman diagram and the associate

rules. The S-matrix for two body reactions can then be rewritten asf0l:

F 5\ 2
5@ = L [ atdtay TE(OY o)A, A, ) e()A, &), (23)

2.1.2 Baryon Resonances in the Standard Model

Experimentally, there are four categories of couplings for the production of excited
baryons: meson-baryon, baryon-baryon, lepton-baryon, and photon-baryon
interactions. Most of the current measurements of baryon states were made using pion
beams('1l. This meson-baryon model has several supporting models[*2l. Proton colliders
can be used for baryon-baryon coupling, though their energies are orders of magnitude
greater than the low-lying baryon resonance region. For this reason, these colliders are
not used directly for the measurement of the baryon resonances. The CLAS detector
can collect data for both lepton-baryon and photon-baryon interactions within the low-

lying states region.

2.2 The Weak Interaction

As mentioned in the introduction, all baryons can be thought of as the same particle in
different excited states. From this viewpoint, the proton is considered the ground state.
It is well known from beta decay that a neutron can decay into a proton. However
despite having similar masses and having the same spin, a down quark changes into an
up quark for the neutron to decay. It was also noticed that parity and conjugation were

broken in flavor-changing decays. QCD does not offer a solution to this problem.

14
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Furthermore, many of the baryons being discovered had lifetime orders of magnitude
longer than predicted by QCD.

In 1979, Glashow-Weinberg-Salam established a theory to explain this process-
the weak interaction. However particles can and will through the mediation of the W
and Z bosons. Not everyone chooses to use the term “weak isospin” defined by EWT, yet
all particles have whatever property it is that allows for the weak process to occur.
Quarks and leptons both can interact and decay by this process. Unlike the photon and
gluon, the charged W and neutral Z bosons have large masses (almost two orders of
magnitude greater than the proton mass). They are also short lived, with lifetimes
below 3x10°25 seconds. Because of this, the coupling constant of the weak process is
very small. The weak interaction has a short range of influence of 1017 meters. These
factors allow heavy quarks to hold the state of their parent particle longer than what is
predicted by QCD. These particles have a remarkable range of lifetimes (between 10-26
to 103 seconds).

So for the beta decay, the down quark’s transformation into an up quark can be

expressed by:

d »u+W-

—>ut+e + v, 2.4

where v, is the electron anti-neutrino. The W and Z bosons themselves decay rapidly.
It was more recently discovered that the neutral Z bosons decay into a fermion along

with its antiparticle.
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2.2.1 Weak Isospin and Weak Hypercharge

In EWT (occasionally called quantum flavordynamics— QFD), two new quantum
numbers are defined to describe the weak interaction- the weak isospin T3 and the weak
hypercharge Yw. The weak isospin is defined as the fundamental property of all
particles for the weak interaction. Both quark and leptons have a weak isopin of +%.
Combined with the electromagnetic force, the weak hypercharge is also considered a
fundamental property of all particles; however its form changes between charged and
neutral particles. Without charge, just the weak isospin exists. The weak hypercharge is

defined as:

Yo =2(Q —Ts), (2.5)

where Q is the electrical charge. The weak hypercharge is the generator of the U(1)

group in electroweak theory.

2.2.2 CP Violation

Traditionally the laws of physics do not depend on parity. That is, if all of the spatial
axes are reversed within an experiment, the measurement should mirror the original
system’s measurement. For the most part, parity in nature is observed. However Chen
Ning Yang and Tsung-Dao Leel3] were able to show parity is not invariant in the weak
interaction.

To address this problem, Richard Feynman and Murray Gell-Mann developed
the left-handed theory. The mirror reflection of a left-handed particle yields a right-
handed antiparticle, offering the concept of charge conjugation. The term “charge” is

misleading since charge conjugation also can be applied to neutral particles. What it
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really represents is the transformation of a particle into its corresponding antiparticle,

which may or may not include a charge. Precisely:

Clp)=Flp)=|p), (2.6)

where the charge conjugation operator C when applied two times on the particle state
|¢ ) returns the original particle state, or ¢Z = L The neutral mesons and the photon
have no charge and are their own antiparticles, making them eigenstates of operator C.

It was believed that the symmetry of the charge conjugation and parity
combined could bring invariance within all intermediating forces. Though this method
did significantly decrease the violations in parity (such as the decay of charge pions to a
muon/neutrino pair), there were still some of instances where symmetry was broken.
The most notable of these violations was the transitions of the neutral kaons to its
antiparticle and back again. In 1964 Gell-Mann and Pais discovered by that the
probabilities of the transitions from K° (with S= 1) to K° (with S = —1) and from K° to
K° were not equal.

The unmeasured state |K; ) of a neutral kaon must contain both the kaon and

anti-kaon states, however by CP symmetry:

CPIK?)=—|K°) (2.7)

CPIK°) = —|K°). (2.8)
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So assuming symmetry is conserved, state of a neutral kaon with CP equal to 1 or -1
must remain in the same state after the interaction. From this we get the normalized

eigenstates:

CPIK; ) = 1/V2(IK°) +|K°)) (2.9)

CPIK; ) = 1/V2(IK°) - K°)). (2.10)

The linear combination of these two eigenstates can be used to define the state of a

neutral kaon. That is:

IK®) = 1/V2 (K1) + |K7)) - (2.11)

Since the eigenstates |K; ) is positive and |K, ) is negative, conservation of CP requires
that the |K; ) decay into two pions and the |K, ) into three pions. The decay to two
pions is a straightforward decay, while the decay to three pions reduces phase space
significantly thereby increasing the lifetime of the Ks. For this reason the Kj is called the
short-lived kaon, Ks and the K; the long-lived Kaon, K.

At this point, it seems that symmetry has been conserved. However, it has been
discovered that the long-lived kaons contain a small mixture of the eigenstates |K; )

and the short-lived with |K, ) [13]. With the measured divergence from the expected

CP symmetry, e = 2.266 + 0.017 X 1073, the state of the kaons can be written as:

|Ks) =1/31—[el* (1K1 ) + €lK2 ), (2.8)

1K, ) = 1/1— |el? (K3 ) +€lKy ). (2.9)

18
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This leads to the violation of CP invariance, since this would imply that the long-lived
kaon could be in the positive CP state and the short-lived in a negative.

The neutral kaon can transition in out of its anti-particle state. That is, each
quark is replaced with the other’s antiparticle. However, the probability of this
transition is not equal in both directions. This is called indirect CP violation and was
believed to be isolated to the kaons. Recently experiments at Fermilab and CERN have
shown evidence of a direct CP violation, by studying the decay instead of the mixing of

neutral kaons[41l,

2.3 The Strangeness of Ks, A, and X°

Everyday matter is made up of only up and down quarks. High-energy interactions are
required to create matter with heavier quarks. The most easily observed of these are
the strange quarks produced with kaon production. A cursory glance at Fig. 1.2 will
show all but the top rows of baryons in the decuplet and octet have at least one strange
quark, collectively called hyperons. Similar diagrams can be found for the strangeness
of the mesons. At the center of the octet, we can see the neutral hyperons, A and 2’.
Both have the quark configuration up, down, and strange (uds). The up and down
quarks in the A both are in a spin-singlet state, while they are in the spin triplet state for
the =°. The A has an isospin of 0 restricting this channel to the %+ N* resonances, while
the X° has isospin 1 allowing both N* and A states. The neutral kaon has a down and
strange antiquark (ds).

The study of how the strange hadrons couple with non-strange hadrons will
help illuminate the processes involved in the baryon resonances. The photoproduction

of the Ks is of particular interest in the study of missing resonances. Previously, most
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strangeness studies have been on the K*A and K+X0 channels since the charged kaons
are easier to detect than the neutral kaon. However, K+ mesons found in the ¢channel
will tend to be forwardly diffracted, which will complicate the measurement of the
angular distributions from the resonance contribution. Due to the lack of interaction
between the incident photons and the neutral mesons, the #channel Ks intermediate
states are small. This allows for the enhancement of the nucleon resonance
contribution and creates a clear delineation of the angular distribution of the predicted
observables.

Since a pure neutron target does not exist in nature, fewer studies have been
made of strangeness photoproduction from the neutron. With the use of a deuterium
target (a nucleus with a proton-neutron pair), the Ks decay channels was the clear
choice for the cross section for quasi-free neutrons- specifically for the yD — KsA(p) and
the yD — KsX’(p) reactions. These two channels offer clear separation from most of
background phase space. The total cross section of the KsA is predicted to be twice that

of the K'A channel41,

2.4 Decay Processes for the n(y,Ks)Y Reactions

In the two-body process different invariant kinematic quantities can be well described
by the Mandelstam variables, which are kinematic invariants. These variables carry the
information of the energy, momentum, and angles that is preserved regardless of the
reference frame. In a system with two incoming momenta of p; and pzand an outgoing

of pzand py these variables are defined as:
s= (p1 +p2)* = (p3 +pa)?,
— 2 _ 2
t= (p1—p3)* = (P2 +Pa)*,

u= (p1 —p)? = (p2 +p3)?%, (2.10)
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were s, t, and uare constrained by the property:

s+t+u=m?+ms+mi+ms. (2.11)
The s channel gives the squared center of mass energy. In the CLAS system, it closely
relates to the resonant states of nucleons generated. These states then rapidly decay.
The ¢ channel is from the 4-momentum transfer squared and represents the non-
resonant scattering of the photon off the nucleon. The uchannel has no simple physical
description. There is no Lorentz frame where it reduces to anything straightforward.
However, at times it can be thought of as a scattering-like process similar to the ¢
channel, except with the exchange of virtual particles.

From this we can examine channels that contribute the yn — KsA total cross
section, as can be seen in Fig. 2.2. The first Feynman diagram illustrates the excitation
of the neutron by the photon and subsequent decay. Both the u channel and #channel
seen in b and c, respectively, show the scatter of the photon off the neutron. The u
channel has an exchange of a virtual photon, while the #channel exchanges kaons. The
final Feynman diagram shows one of the top competing background channels for the
KsA total cross section, yn — Ks=’. Though the s-channel is predicted to be dominate
and is the only process of interested for baryon resonance, all channels need to be
considered for measuring the differential and total cross sections.

In section 4.1 the treatment of the competing reactions is discussed. As will be
shown, most of the competing channels can be reduced from the KsA signal with mass
and momentum cuts. However, the KsX’ (shown in Fig. 2.2 (d)) overlaps with the
missing mass peak corresponding to the KsA reaction. Fits to both peaks can be used to

extract the yields for either reaction.
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Figure 2.2: The Feynman diagrams for the possible n(y,K%)Y reactions found in this analysis where time
passes vertically. (a) corresponds to the s channel with the baryon resonance, (b) the scatter uz channel
with a gamma exchanged, (c) the ¢channel with an exchange K*, and (d) the main competing channel

in this analysis, yD = K02°(p) = KOAy(p)

2.5 Differential Cross Sections

The cross section o is the measure of a specific event happening with the interaction of
particles and is measured in units of cm2 Some of these possible interactions were
discussed in the previous section. These interactions can be represented by a particle’s
absorption and subsequent decay. Others are described as scattering by the exchange

of different force carrying particles or mesons. Therefore, by definition the total cross
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section is defined as the probability of any interaction happening, properly normalized

by the beam flux. For a photon beam this can be written as:

Probability of interaction __ Ns Atarget (2.12)

" number of photons per unit Area - N; pfNy'’

where /N is the number of scattered particles and A is the number of incident particles
for the given interaction area within the target. The area is given by the target density p,
length £, atomic weight Aarger, and Avogadro’s number.

With an isotropic phi distribution dQ = 2n d(cosf), where the 2n comes from
the isotropic phi angle. The scattered events were reduced to just the kaon’s track by
taking the derivative with respect to the Ks's theta (or polar angle). We can therefore

write the differential cross section as:

do _ Atarget 1 d
Ks — K
dcosHCIfd pEtN4 Ni(\/g) d(cosQCIf,,

)NS(JE, 05, (2.13)

where the number of scattered events is taken as a function of the center-of-mass event
energy Vs and the angle Hé",&with respect to the kaon angle.

Due to the limitations of measurement, we can approximate the differential
cross section by binning by discrete energy v/s and angle ranges. Each of these bins has
an associated acceptance, T(\/E, 6513,) The channels used for the reconstruction limit
each measurement. In the case of this study only the decay of the Ksto n+ and n and the

A to the proton and 7 are used, though other decay modes are possible. Using their
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associated branching ratios (the ratio of decay rates for each channel, I'i/T"w) to correct

the scattering values, we can write the differential cross section as:

Ks
do _ Atarget 1 NS(\/E’QCM) Neorr l—‘KS T'a
- K 0 .
PENA  AcosB Ni(Vs) T(\/E,HgM) Tkgomtn— TA-pr=

(2.3)

Kgs
dcosBCM

Since the X0 always decays to Ay, a close variation to equation 2.3 will be used to model
and extract the differential cross section of the yn - K°% reaction. The branching ratio

of the X°will replace that of A.
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Experimental Design and Method

The dataset for this study was collected at the Thomas Jefferson National Accelerator
Facility (TJNAF or JLab) in Newport News, Virginia. This is primarily a research center
which focuses on investigating the internal structure of the nucleon. The lab has a
unique racetrack-type accelerator which provides up to 6 GeV polarized electrons to
three different user halls. The analysis for this dissertation was made on the gl3a
dataset, which was taken within Hall B using the CLAS detector system. The target for
these experiments was a deuterium target. This allows the use of neutrons (in addition
to the protons) for the study of the interactions of circularly- and linearly-polarized

photons with nucleons.

3.1 Continuous Electron Beam Accelerator Facility (CEBAF)

Jefferson Lab’s accelerator has a unique design, departing from the more commonly
used colliders rings of CERN and Fermilab. It was designed to produce a nearly
continuous stream of electrons which can be distributed among three user halls. The
accelerator beam line is primarily made up of four regions: two resonant frequency
linear accelerators sections and two magnetic recirculation arcs. After the 67 MeV
electrons are injected into the beam line, they are accelerated by the first LINAC
accelerator for approximately 1400 meters. Magnets then steer the electrons through
one of the five recirculation arcs into the next linear accelerator. Each accelerator
boosts the energy by 600 MeV for every pass. Finally the electron beam is steered

through one of the final four recirculation arcs back to its starting point. On the final
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Fig. 1. Schematic layout of the CEBAF accelerator.

Figure 3.1: Diagram of the Continuous Electron Figure 3.2: Arial photo of CEBAF- the center grassy
Beam Accelerator Facility (CEBAF) mound at the bottom of the picture is Hall B

pass, the beam only travels the first set of recirculation arcs and is delivered to the halls
as seen Fig. 3.1.

Electrons are accelerated through this circuit up to five times until it may reach
a top energy of 6 GeV. Lower- and higher-energy electrons continue through the loop
sharing the same beam lines through the accelerators. However, each discrete energy
group is curved through its own recirculation arc, where the higher energy electrons are
channeled through the lower loops. During any of the cycles, the electrons can be
diverted into one or more of the Halls at the desired current and energy.

Each of the LINAC accelerator consists of 168 superconducting RF Niobium
cavities. The cavities are cooled to —271°¢ with liquid Helium. The standing waves in the
cavities are kept in phase with the electron bunches. This enables the use of a nearly

continuous beam, with a full bunch length of 1 picosecond, separated by 2 ns.
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3.2 CEBAF Large Acceptance Spectrometer (CLAS)

Each of the user halls for the Continuous Electron Beam Accelerator Facility (CEBAF)
has their own detector configurations depending on the focus of their studies. The
research in Hall B is interested in a broad range of experiments that require a full profile
of the angular distributions of particle decay. These experiments include comprehensive
studies of missing baryon resonances, form factors of the resonances as well as the spin
structure of nucleons and nucleon correlations inside nuclei. With this in mind, the
CEBAF Large Acceptance Spectrometer (CLAS) in Hall B was designed to have
approximately 47 detector acceptance. It was later enhanced to have a highly polarized
photon beam!!51116l, Its design can be grouped into two sections- the photon production
section and the detector section (see Fig. 3.3).

The photon production section produces polarized photons using variations in
the configuration of diamond radiators through rotations in a goniometer. It can make
linearly-polarized photons in both the parallel and perpendicular directions. After the
photon beam is produced, a magnetic field within the tagger deflects the post
bremsstrahlung electrons off the beam axis and measures them to determine the
photon bremsstrahlung energies. The photon then passes through the collimator and
pair spectrometer before it enters the detector section.

The detector section consists of the target, start counter, drift-chambers,
Cerenkov counters, time-of-flight (TOF) paddles, and electromagnetic calorimeter.
Once the nucleon is excited within the target, it rapidly decays and the decay products
strike and pass through the start counter. The charged daughter particles’ paths are
curved as they pass through the toroidal magnetic field. The trajectories are recorded as
they pass through the drift-chamber contained between the coils. When the particle

hits the outside TOF paddles, the time of flight can be calculated with a comparison to
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the start counter. Further, data are collected from the particles as they interact with

Cerenkov counters, and electromagnetic calorimeter.

/—( Photon Production Section H /—[ Detector Section h
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Figure 3.3: An illustration of a simplification of two different sections of the CLAS system, separated into a
polarized photon production beamline and the detector section

3.3 Polarized Photon Production

There are two methods of polarization for the photons used in Hall B, circular and
linear. When polarized electrons are incident upon an amorphous radiator,
bremsstrahlung radiation is produced in the form of circularly-polarized photons. If an
unpolarized electron beam is incident upon a thin diamond radiator, then /linearly-
polarized photons are produced through coherent bremsstrahlung (CB). Tight
collimation will further eliminate unpolarized photons from the coherently-produced
photons. The g13a used circularly-polarized photons and g13b used linearly polarized
photons.

Photons (bremsstrahlung radiation) are produced when electrons are
decelerated by the positive charge of a nucleus it is passing. Only an insignificant
proportion of energy is transferred to the nucleon, making the determination of photon

energy simple. With known incident electron energy, E,, it is only necessary to measure
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the remaining electron energy after the scattering event, E. to determine the photon

energy, E,.

EY = Ee - Ee' (31)

Each recorded event can be then associated with up to 63 photons recorded by the

electron energy in the tagger databanks.

3.3.1 Circular Polarization

Circularly polarized photons are produced when the longitudinally polarized electron
beam interacts with thin metal radiator foils. The foils are held in a long tray assembly,
ordered by material type and thickness. The tray can be shifted to adjust the radiator
foil used for photon production. Gold is the most common metal used, because it can be
made very thin for minimizing multiple scattering. The amorphous structure of the gold
allows the polarization of the electron to be translated as it produces bremsstrahlung

radiation. A more detailed description of g13 specific settings is given in section 3.5.

3.3.2 Diamond Radiators and Goniometer

A linearly-polarized photon beam can be produced from an unpolarized electron beam
incident upon a diamond radiator. The lattice structure of the diamond allows for the
electrons to scatter off a periodic array of aligned scattering centers, created a preferred
direction of bremsstrahlung. A goniometer controls the alignment of the diamond (see

Fig. 3.4)[17]. A more detailed description of g13 specific settings is given in section 3.5.
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Figure 3.4: Image of the Goniometer use to align the diamond radiator

3.3.3 Photon Tagger

As previously discussed, in determining the energy of the photon, it is sufficient to take
the difference between the measured electron energy and the known incident energy.
With this in mind, the photon tagger was designed with dual purpose; it removes the
electrons from the beam axis of incidence and measures their energy. The concept of
photon tagging is well understood'7l. The JLab photon tagger was uniquely engineered
to operate within the GeV range and has a tagging range between 20 to 95% of the
incident energyf!8l.

Figures 3.5 and 3.6 illustrate the internal structure and function of the photon

tagger. After the electron beam strikes the radiator, the photons and electrons enter the
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magnetic field of the two poles within the tagger. Only the charged electrons are
affected by the field as photons pass through unscattered. The post-bremsstrahlung
electrons are deflected into the hodoscope plane (where the energy and timing
measurements are made), while the full energy electrons are guided into the beam
dump.

The hodoscope has the key role in the determination of the photon energy being
produced. The system measures the energy of the deflected electron, which is in turn
used for the calculation of the photon energy. It must be able to accurately measure
both the electron energy and the time of the event. To gather reliable electron energy
resolution, it was necessary to use many small scintillators across the focal plane. Due
to the large size of the focal plane (9 meters), the energy plane is made up of 384
overlapping E-counters. However for reliable timing, the scintillators must be thicker to
allow for sufficient light for the output pulse.

The timing plane is made up of 61 T-counters. The scintillators detectors are
laid out in a venetian-blind-style configuration; that is, within each plane the detectors
have a 10% overlap between them. This produces 121 timing bins for the
electrons/photons. All of the detectors within the two separate focal planes are aligned
so that their active region is facing in the direction of the incident electrons. This
significantly reduces the number of events from scattered electrons. The background is
further cut down with the use of geometric constraints derived from the events between

the two different detector planes.
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Figure 3.5: Design of the photon tagger(!8l. The electron and photon beams enter from the left side, where a

magnetic field bends the electrons down into the counters, and the photon beam continues along the beam
line
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Figure 3.6: Illustration of how the elections are bent into different counters depending on their
energyl18l. There are two rows of counters: one row for determining the energy of the electrons, and a
second row for the time the electron arrives.
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Figure 3.7: Illustration of the CEBAF large acceptance spectrometer (CLAS) from the side and front

3.4 CLAS Detector Assembly

The CLAS detector assembly is composed of multiple layers of detection systems, with
six toroidal magnets segmenting the body into six separate sectors['8l. The large
toroidal magnets bend the trajectories of the charged decay particles so that it is
possible to determine their momentum. The outer detectors enable further

classification of the particle detected.

3.4.1 Target

A liquid deuterium target was used for in the g13 experiment. It was contained within a
40 cm cylindrical cell, see Fig. 3.8. The cell was made from Kapton because it has high
structural and thermal stability while having low impedance to particles passing
through it. Kapton is reasonably resistant to radiation damage. This allows the
experiment to yield a high rate of events with an adequate rate of photons in the tagger.

To maximize acceptance, the deuterium target was positioned 20 cm upstream from the
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center of CLAS. The liquid-deuterium in the target had a density of approximately

0.1625 g,/cm3 [19],

b

Figure 3.8: Kapton container for the liquid deuterium target(21]

3.4.2 Start Counter

The start counter surrounds the deuterium target chamber and is used to measure the
start time of the decay particles flight through the following drift chambers. It was built
to accommodate the full acceptance design of the CLAS detector and the high intensity
photon runsl20. The body has six sectors; each composed of four EJ-200 scintillators
paddles with acrylic light guides. The paddle for each scintillator has a “leg” length of
502 mm and a “nose” region of 93 mm. They were 2.15 mm thick and 29 mm wide. The
start counter can contain a target up to 40 cm long and spans the entire azimuth. The
timing resolution of 260 ps on the start counter is sufficiently accurate to synchronize
information with the tagger.

For calibration, the time recorded is compared with the time recorded by the

tagger upstream of the target and with the RF time from the accelerator. The time-delay
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correction for each paddle is made from several different factors. The time of event is

given by:

t=co+ T +ty — tyos

where ty is the time-walk parameter, t;o, is the correction for the time it takes the pulse
to hit the photomultiplier from this incident point along the paddle, and c, and c; are
fitting parameters. The time-walk parameter corrections for the variation of time in
leading-edge discriminators due to differing pulse heights.

The start time of the particle event in is calculated by taking the difference of the
times from the two beam bunches in the accelerator and the time the particle is first
detected by the start counter. After the event start time is discovered, the photon can be
matched to the detected event by taking the difference of the time of the photons

measured in the tagger and the particle times measured in CLAS.

Figure 3.9: Design of the start counter used in the g13 runs, 3-D rendering of detector design,
which illustrates the 6 separate sectors of the CLAS design
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Figure 3.10: the start counter used in the g13 runs, cross-sectional view of the start counter(22l.
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Figure 3.12: Diagram of the assembly of
the drift chambers on the torus
cryostatl18],

Figure 3.11: Illustration of a particle
trajectory through a segment of the drift
chamber. Each hexagon has field wires at
its vertices and the sense wire at its
centerl(18],
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3.4.3 Drift Chamber

The drift chamber region was designed to track charge particle trajectories as they pass
through the magnetic field produced by the toroidal magnetic coils[!8l. The layout of the
chambers allow for a large acceptance of decay angles. The detector has a polar angle
range from 8¢ to 142°, and covers nearly 80% of the azimuth angles. To reduce the loss
of acceptance, all the non-active components were built to reside within the shadow of
the magnetic coils. The magnet bends charged particles away from or towards the beam
line, but has little effect upon the azimuthal angle.

The drift chamber system is composed of six sectors separated by
superconducting toroidal magnetic coils(*8l. There are three layers of drift chambers
within each sector, giving a total of 18 drift chambers. The interior of the drift chambers
are partitioned into thousands of thin and long hexagonal drift cells. The field wires are
at the vertices of each hexagonal cell, with a sense wire at its center. The sense wires
are made of tungsten plated with gold, with a diameter of 20.1 um. This choice allows
for the smallest possible diameter to maintain the required tension. The field wires are
made of gold-plated aluminum (5056 alloy) and have a diameter of 140 pum.

Each of the drift chambers are filled with a 9:1 mixture of argon and carbon
dioxide. Charged particles ionize the gas molecules as they traverse the chamber. The
freed electrons are then collected by the sense wires. The time it takes for the electrons
to arrive on the sense wire is measured to determine the drift distance of the particle to
the sense wire. The hexagon design of the cells allows for drift time to drift distance
relation to be reasonably independent of angle of entry to the cell. This process is

applied to all three regions to determine the particle’s trajectory.
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Independently and together the three separate layers of the drift chambers can
yield significant information about a charged particles trajectory. The central (second)
layer experiences the greatest strength of the magnetic field. At this point the particle
momentum could be evaluated at the point of maximal curvature. The inner and outer
layers experience the lowest magnetic field effects and can be used to determine the

initial and final direction of a charged particles path.

3.4.4 Time of Flight Paddles

As the name implies, the time-of-flight system’s primary purpose is the measurement of
the particles flight time. However, in some situations, the system is also used to for
energy-loss measurements and velocity determination(!8l. It can also be used for the
CLAS Level 1 trigger. The multiple functionalities of the TOF system impose a number
of requirements on this system design. It must have excellent timing resolution for
particle identification, as well as strong segmentation for variable triggering and pre-
scaling. The system must also be capable of operation in a high-rate environment.

To meet these requirements, several factors in the TOF system design were
considered. The size of the paddles had to be configured for optimization of the time
resolution and needed to cover most of the angular distribution within each sector. For
the forward angles, the scintillators were made 15 cm wide with 2 inch PMTs, due to
space constraints. At the large angles the scintillators were 22 cm wide with 3 inch
PMTs. The PMTs had to be properly shielded from the magnetic fields of the toroidal
magnets. Since the regions behind the coils are inactive, the PMTs were located there
with extra shielding. The light from adjacent TOF paddles must be summed for
separation of intersecting events. The LeCroy 4413 leading-edge discriminator was

chosen instead of the constant-fraction discriminators. Despite the constant-fraction
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discriminator’s, better timing, the offline time-walk corrections from the leading-edge
discriminators proved superior. The system must be able to record rates up to 1500 Hz
to achieve time resolutions between 100 and 200 ps. The LeCroy 1872A Mod 100 time-
to-digital converter (TDC) was selected for this requirement.

The ionized radiation from a charged particle passing through a scintillator will
excite the material, which then radiates the photons. A portion of radiated photons are
internally reflected down the length of the scintillator’s light guides, then into the PMTs
at each end. The arrangement of these scintillators and PMTs provide a timing
resolution between 150 ps and 250 ps. The resolution varies based on the length of the
scintillators. The neutral particle’s hadronic interactions produce significantly less

radiation which makes them difficult to detect with the TOF paddle.

3.4.5 Electromagnetic Calorimeter

The forward electromagnetic calorimeter (EC) has three primary purposes/?ll. It can be
used to distinguish the electron events from the pion. Many of the pion events can be
eliminated if their momentum is less than 3 GeV/c. For greater momentum, the energy
of the particle deposited must be compared to its trajectories within the drift chambers.
Secondly, the EC can be used to separate the neutron events and photon based on
timing. The photon information can be used for the reconstruction of the n° and n
decays, while the neutron is key information for a number of experiments. With the use
of the TOF system, it is possible to distinguish between the neutrons and photons. For
this research study, the detection of neutrons is the primary interest.

There are six EC modules that correspond with the six sectors of the CLAS
detector. The 39-layer lead-scintillator stack has a triangular shape, with a ‘projective’

geometry (that is, the area of each subsequent layer is increased). Each scintillator
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layer is 10 mm thick and is made up of 36 strips parallel to one side of the triangle. The
lead strip has a thickness of 2.2 mm. As can be seen in Fig. 3.16, the orientations of the
strips are rotated by 120° for each layer. This gives three different orientation planes,
which are labeled U, V' and W. A fiber optic light readout is used to transfer the
scintillators light on to the PMTs at the base of the stack.

After a particle enters the EC, the high Z of the lead offers a high probability for
the charged particle to interact electromagnetically. The position of the hit can then be
measured within each layer by the comparison of their three strips (U, V, and W). This
can be done straightforwardly by observing overlap of the hit channels of each strip. It
can also be done for each strip independently by finding the hit distance from the
readout edge. Software is then used to reconstruct the energy of each particle event by
summing up the energies of each layer. The events are then sorted by their respective

energies.
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Figure 3.13: Cross-sectional view of one of the electromagnetic calorimeter modules!18], (a) The three
strips of a single layer layer and (b) the reconstruction of position using the three layers with their
varying alignments
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Figure 3.14: Sketch of the EC light readout system, with the light guide (LG), scintillators (SC), lead

sheets (Pb), inner plate (IP), fiber optic bundle inner (FOBIN) and fiber optic bundle outer
(FOBOU)I18]

3.5 g13 Experiment Overview
The g13 experiment was split into two parts called g13a and g13b. The gl3a portion

used a circularly polarized photon beam, while the g13b portion used a linearly
polarized photon beam. A 40-cm unpolarized liquid-deuterium target was used for both
portions of the experiment, and a —1500 A current was used in the torus magnet to
bend negatively charged particles away from the beam line. This maximizes the
acceptance of low-momentum 7~ resulting from the decays of hyperons. Of all the data
collected in the g13 experiment, only data from the g13a portion of the experiment were

used for this analysis[21l
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3.5.1 Circularly Polarized Photons

The gl13a experiment ran at two electron energy beam levels (1.99 and 2.655 GeV) for
approximately an equal amount of time. The majority of the g13a experiment started in
late October of 2006 and lasted through December of the same year. An additional week
of runs occurred in March of 2007. CEBAF supplied a longitudinally-polarized electron
beam at currents between 33 and 45 nA, which resulted in narrow beam brunches of
between 412 and 562 electrons every 2 ns. A two-section tagger was used to select
events to record. Approximately 20 billion events were recorded in the two-month
experiment. The gl3a provides the ideal data for the cross section measurements are
restricted to that data.

Figure 3.18 shows the incident of the longitudinally-polarized electron beam on
a 104 radiation-length gold-foil radiator. It produced a circularly polarized photon
beaml22l. The photon energy magnitude directly affected the amount of polarization
transferred from the photon beam(23l. The 1.99 GeV and 2.655 GeV beam energies were
chosen for this reason to maximize the photon beam’s polarization in these N*
production regions. The electron beam polarization was approximately 84% for the
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Figure 3.18: Polarization transfer from longitudinally polarized electrons to circularly polarized
photons in bremsstrahlung radiation(241.
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1.990 GeV data and 78% for the 2.655 GeV data. A 6.4 mm tungsten collimator allowed
approximately 90% of the photon beam to pass on to the target. This resulted in a

photon flux rate at the target on the order of 107 Hz.

3.5.2 Linearly Polarized Photons

The g13b experiment started mid-March 2007 and continued through to June of the
same year. These runs used eight different electron beams energies between 3.3 GeV
and 5.16 GeV. The beam currents ranged between 5 to 12 nA. The electrons arrived in
bunches ranging from 62 to 150 electrons every 2 ns. Approximately 30 billion event
triggers were recorded with a single sector event trigger.

This diamond radiator produced a linearly polarized photon with approximately
200 MeV coherent peaks between 1.1 GeV and 2.3 GeV[8l. As seen in Fig. 3.19, the
radiated photon energy distribution forms a large coherent peak in the results. Smaller
peaks at higher photon energies can also be observed in the results. These smaller

peaks are caused by scattering on higher-order planes(2sl.
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Figure 3.19: Collected data with the Monte-Carlo simulated photon energy distributions produced
from an electron beam incident on a diamond radiator(26l.
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3.5.3 Event Triggering

The data acquisition (DAQ) system is used for event triggering in the CLAS detector.
This system receives singles from the other detector subsystems to find and select
desired events for recording. While the DAQ system is recording events, it cannot accept
signals from other subsystems. Signals sent during this period are lost. This period is
called the dead time. The g13 recorded events at a rate of approximately 10 kHz, with a
dead time of approximately 15%. Approximately 20 billion events were recorded for
g13a and 30 billion events were recorded for g13b(25].

There are two levels to the trigger systeml2’], for two different degrees of
discrimination from background events. The level 1 trigger was designed with no dead
time. This allows it to quickly process signals from the other components of the
detector system. All the prompt PMT signals are processed within 90 ns, which are then
sent to a trigger supervisor (TS) module. The level 2 trigger was set up to look for
events that do not match trajectories from within the drift chamber (such as cosmic-ray
events). The dual g13 experiments both exclusively used the level 1 trigger. The g13a
used at least two of the six CLAS sectors to record events with coincidence between the
start counter (ST) and TOF scintillators. The g13b required only one of the sectors to
record a coincidence between the ST and TOF. By using the level 1 trigger and recording
multiple sectors, the background accidental detector hits were minimized, and the DAQ
rate for charged-particle physics events was maximized.

A 28 ns pulse signal is sent to the Level 1 trigger in a sector when a signal is
detected in a scintillator paddle of the ST that is greater than the pre-trigger voltage
threshold. A 120 ns pulse signal is sent for the TOF scintillators. The DAQ receives

events when the strobe in the level 1 trigger found a coincidence between the ST and
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TOF that satisfies the triggering conditions. The sectors that were in coincidence are
then saved by a 20 ns latch. This includes those that had an ST and TOF coincidence
15 ns later in the next sampling. The trigger losses due to missed coincidences were

negligible due to the lengths of these pulse signals.
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Chapter 4
Extraction of the Experimental Yield

The gl3a dataset was used to extract the yn — KgA cross section. This dataset was
collected with a circularly polarized photon beam incident upon an unpolarized
deuterium target. Before analysis, the data was “cooked”; meaning the data from all the
sub-detector systems are matched together into new database files. The database sorts
the information by “events” into multiple banks, using correction constants from a
calibration database. These events correspond to multiple detected particles that can
be associated with a single photon event within the target. The cooking is an iterative
process where the constants in the calibration database are modified until the timing
between the sub-systems is consistent and are working in concert. Once the cooked data
has been properly calibrated, the analysis can begin.

The analysis can be described in three primary stages: yield extraction, flux
determination, and acceptance studies. The yield extraction is determined from the
selection of events from the data and the reconstruction of the representative KgA
missing mass. The photon flux determination is used to determine how many photons
were needed to produce the measured KsA events. Finally, the acceptance is
determined by performing a Monte Carlo simulation. All three stages require special
corrections for events and the tracks within them, based on the CLAS systems
limitations. These corrections were discussed at the end of each section. This chapter
will focus on the first stage, yield extraction. Specifically, the extraction of the yn — KgA

reaction yields. At the end this chapter we will show the photon flux determination. The
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next chapter addresses the systematics studies to include the cuts and corrections

made. Chapter 6 is focused on the detector acceptance.

4.1 Event Reconstruction

For both the yn - KgA and yn — KgX° reactions the intermediate kaon and hyperons (A
and X°) being neutral and short lived makes their direct detection essentially
impossible. Therefore they are reconstructed through their primary decays: Kg —
ntn™, A - pn~ and X° - Ay - pr~(y). Having no particles directly measured from the
production vertex requires a more vigorous analysis, particularly with vertex
reconstruction. The pre-skimmed files require an event to have at least two positive

and two negative tracks for events consistent with m*tn™np.

4.1.1 Particle Sorting and Selection

Since the final-state particles of this analysis are all pions and protons, the identification
of the measured particles is relatively straightforward. Because of this ease of
identification, a matrix sorting approach was used during the initial screening of events.
The particle’s charge and mass were used for loose cuts for the initial particle
identification. Each particle track within an event was then sorted into a matrix. The
rows are defined by the possible detected particles, while the columns correspond to
the ordered instances for each particle. Each column entry is the track number stored
in the banks. The last column with an entry indicates how many particles were detected
of a specific type (e.g. a row with its last entry in the 3 column would indicate three
particles of that type were found). Table 4.1.1 illustrates a case were the event has the
follow ordered tracks ™, p,n~, ", and p. To improve the initial particle identification,

timing and track velocity cuts were applied.
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Table 4.1: Particle identification (PID) matrix for an event with tracks
in the following order: *,p, ™, ™, and p

1stinstance | 2Minstance 34 instance | 4t instance

proton 2 5 0 0
Pi plus 1 0 0 0
Pi minus 3 4 0 0

Timing cuts were made to ensure that all the tracks being examined came from
the same photon event. The time, tyerex, for each track was determined by taking the
difference of time, o, measured by the time-of-flight (tof) paddles and the calculated

time of flight:

£\Jm2ct+p2c?

tvertex = ttof — E = Liof — e ) (4.1)

where ¢ is the decay length of the track, m is the mass of the particle, p is the

momentum measured by the drift chambers, and g is the velocity of the particle (8 =
v/c). Since there are at least four tracks in final state, instead of taking a time difference
for each pairing of tracks, the average was taken for all tracks. Tracks that were more
than 6 nanoseconds away from the median were not put into the matrix.

Further evaluation of a particle’s identity can be made by looking at its

characteristic A vs. momentum distribution. With A is defined as:

pc £

AB = - = - _
18 Bcalculated Bmeasured \/m c(trof—tstart)

(4.2)
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the particle’s speed (f) and momentum are functions of the particles mass. This Af- p
correlation allows for selective cuts on the distributions for each track. Since a pre-
selection has already been made based on charge and mass, the AS vs. p plots were
made for each potential particle type. Figure 4.1 shows the distribution of possible n~
tracks. The left plot is the £ vs. p while the right is the A vs. p. To limit how many
misidentified kaons are in these distributions, a cut was made to maximum and
minimum value functions. The functions are defined by taking the 3¢ from a fit to
projections with momentum binning.

Once the matrix for an event has been made, the surviving tracks will used to
determine if this event has the minimum particle requirements. It was important to
measure the missing mass of the spectator proton, so when selecting the events it is
necessary require that all the final-state particles will have been detected. Initially the
skims were designed to take exactly two n's, one n+ and one proton. With simulated
data, this does not count any lost events since the simulation does not produce all the

background channels and phase space. However, the empirical data do have a
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Figure 4.1: (a) Beta vs. momentum plots for the measured n~ and (b) delta beta vs. momentum plots for the
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significant number of events with more than one proton or n*. To regain some lost
events, the particle identification (PID) was modified to accept events with two protons
and two nts. This accepts events that have an extra proton and/or pion mismatched
from another event. Both protons were checked to see if their tracks reconstruct to A
when matched with either of the ©~ tracks. If both did or did not, the event is rejected;
otherwise the single acceptable proton is passed on. A similar method is applied with
events having the two n*s to see if either could reconstruct a Ks. Roughly 2% of events

were recovered when two protons were present and 1% with two 7wtts.

4.1.2 Reconstruction of the [ntermediate Particles

Once the candidate events with all the required particles are identified, their tracks are
paired to reconstruct the possible Ks and A particles. The Ks will decay 69% of the time
into a ©'n pair, while the A has a 64% branching ratio to the pn~ channel. It cannot be
certain which of the two n"s belong to the proton or n+, so both combinations are
introduced into the data. Mass and momentum cuts will remove most of the
combinatorial background as discussed above. Figure 4.2 shows the reconstructed
masses of the proton with the n~ vs. the masses of the nt and n~ for each event.
Distributions can be seen along the x- and y-axis corresponding to the masses of the
Lambda and kaon. The peak at the crossing of the two mass distributions indicates the
reactions that produce both the Lambda and kaon together.

From Fig. 4.3 we can see the effects of the cuts on the mass to reduce
background. The leftmost column shows the full invariant mass distributions, and the
middle column zooms in on the two visible peaks. Looking at the previous histogram,

we can see the trailing distributions outside the peak, which correspond to events that
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Figure 4.2: Plot of the invariant mass of the Lambda particle, M(p,n") vs the invariant mass of the
kaon, M(n"n") in GeV. The peak indicates the events were both a lambda and a kaon were

reconstructed.
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contain one of the required reconstructed particles, but not the other. By cutting on 3o
of the peak for the Ks mass, the unwanted pnt combinations outside of the peak were
removed. Similar cuts were made with the A mass for the Ks. The background was
reduced further by adjustment of all the preceding cuts. The rightmost column in Fig.

4.3 shows the Ks and A mass peaks after the cuts were made.

4.1.3 Combinatorial and Phase Space Backgrounds

Up to this point all of the events are effectively being double counted because the
primary decay particles (Ks and A) both have a ™ in their final state. In the process of
event selection, 3¢ cuts were placed on the invariant mass distributions for the kaon
and Lambda. Events where both combinations of the proton and nt with the negative
pions surviving contribute to the combinatorial background. However, this background
was shown to be less than 0.1% of the peak events after the invariant mass cuts. As can
be seen in Fig. 4.4, the combinatorial background is significantly smaller than the phase
space background. From this it was determined that contributions from events in the
combinatorial background can be ignored.

The phase space background represents events with the final-state particles
pn m wt, but do not belong to the resonance. These events would mostly be reactions
with no intermediate kaons or hyperons. This flat region could also include events with
misidentified positive kaons. The ratio of the resonant to non-resonant events (or the
phase space ratio) was determined using a double Gaussian fit to the resonant peak and
a linear fit to the non-resonant (see Fig. 4.5). A Monte Carlo simulation was used to

determine the number of real KsA events that end up in the non-resonant region (see
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chapter 6). This fraction was then used to correct phase space ratio. The phase space

ratio is then used to correct the total yields.

4.1.4 Vertex Reconstruction

Two key steps are needed before we can build a reliable missing mass for the yn - KgA
reaction. The energy of the photon must be determined so the total energy of the
reaction can be used. However, each event on average has 6 different possible
originating photons. The photons are stored in the tagger bank based on their vertex
time, which is determined by the photon’s separation from the center of the 40-cm
target. Therefore to choose the correct photon (along with its time), we must first know
where the production vertex is.

As mentioned in the first chapter, the vertex reconstruction is somewhat more
complicated in this analysis because none of the original decay particles were measured
directly. The vertex positions and times (with their associated photons) are stored for
each particle independently. This can introduce a problem as can be seen in Fig. 4.6.
The decay of the kaon and the Lambda mask their original trajectory. This can lead to
the occasional disagreement between the times recorded for each of the detected
particles on which photon produced the reaction. The vertex position is also directly
related to decay length of each decay particle. The decay length can be used to
determine the lifetime of the track. Therefore a check of the lifetime could be used to

verify the vertex reconstruction and the particle identification.
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Figure 4.6: The path of the original decay particles seen on the right are not well represented by the tracks
reproduction in the data banks. The scales are exaggerated for clarity. The final state particle paths are 2
orders of magnitude greater in length.

The distance of closest approach (DOCA) method was used to determine the
vertex points of the Ks and A particles. This method assumes that both paired particles
measured in CLAS came from the same production vertex. The difference in the
databank would be due to measurement uncertainty. In the case of secondary decays, it
would also be due to the miscalculation of the decay vertex. To find the correct value,
the tracks of both particles are compared to find the two points at which the distance
between them is the smallest (see Fig. 4.7). At these points, the line between them
would be completely orthogonal. This is usually not the case, and a correction needs to
be made.

To make this correction, we take the normal of each track at the vertex point
from the banks and then compare them. If we define the tracks by p: and p2, we can
define n1 and 7 as the unit vectors of their normals at points 7, and 7 respectively. By
using the difference between points we can then define the normals from each track and

correct their positions. We define:

n1=APﬁ1=(P1+ Pz)ﬁl (4‘3)
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nZZAP'ﬁZZ(Pl‘l‘Pz)'ﬁZ (44)

R = ﬁl ) ﬁz , (4‘5)

where n; are the normals to each track path at points P, and R = cos6, which is the
cosine of the angle between the two normals. The points are then corrected by their

relations to center of the target:

N{—RN A

Pi_corr = Py + ( ;z_lz) ‘ny (4.6)
RN;—N ~

Py _corr =P1+ ( R;_lz) ‘n, (4.7)

When the two normal unit vectors are parallel, R goes to zero and equations 4.8 and 4.9
reduce to the simple addition or subtraction of vectors with respect to the origin.

The vertex of the event (decay or production) is then determined by taking the
DOCA point. The DOCA point is generally determined by taking the midway point of the
DOCA vector. If one particle has better statistics than the other track, the DOCA point
can be chosen closer to its track by applying a weighting factor.

Figures 4.10 and 4.11 show the results of the vertex reconstruction for the Ks
(top) and A (bottom) decays. The first plot in each group shows the DOCA lengths. The
other three plots show the decay vertices for each event in the xy-plane, xz-plane, and
yz-planes. The target was 40 cm long with a 4 cm diameter. The beam spread was less
than 3 mm. From the figures, it is clear that most of the secondary decays occur within

the target. The A is significantly more likely to decay outside the target than the Ks. This
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is in agreement with the expectations since both strange hadrons have short lifetimes,

where the Ks has a shorter lifetime than the A.

DOCA

Figure 4.7: The distance of closest approach (DOCA) method. Two tracks are compared to find the path of
shortest difference between them. A point is chosen somewhere on this line as the DOCA point, based on
the importance weighted to each track.
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After the Ks and A vertices were reconstructed, it was necessary to use their
newly constructed tracks, in turn, to reconstruct the production vertex. Each vertex
reconstruction has an uncertainty. If it were applied a second time, the uncertainty
could significantly increase with the newly constructed paths. To understand this effect,
two methods were developed for the reconstruction of the event vertex (see Fig. 4.12).
The first method directly compares the paths of the Ks and A tracks. It is expected that
the interaction would occur within the photon beam; therefore the second method uses
the assumption that the production vertex is the same as the recorded beam position.
In most cases the beam the xand y positions were very near zero. The DOCA point was
calculated for both the Ks and A tracks with respect to the beam path. The average of
their positions was used to determine the production vertex.

From Figs. 4.10 and 4.11, it can be seen that both methods show the production
vertex occurs within the beam. However, the distributions produced by the first
method are more dispersed than the second method. This was expected since the

second method ties both neutral tracks directly to the beam line.

DOCA point 1 DOCA point 1

DOCA point 3
DOCA point 4

DOCA point 3

DOCA point 2 DOCA point 2

Figure 4.12: The two methods used to determine the production vertex. Both methods use the distance of
closest approach method (DOCA) for each vertex position. In the first method the two reconstructed tracks
are compared together for the production vertex, while the second method compares them to the beam line
and then takes their average.
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4.1.5 Vertex Verification

The reconstruction of the vertex was verified through the Monte Carlo simulation. The
phase space generator (fsgen) begins at the hadronization stage. User defined
parameters were used to produce the position, momentum, and primary decay modes
for the initial decay particles. The generated particles were then propagated through
the simulated CLAS detector using the GSIM packagel?7l. GSIM is built from the GEANT
particle simulation code from CERN. The data is then processed through the GPP code
to correct the tracks for detector inefficiencies and dead paddles or wires. The final-
state particles are then recorded in the same banks as the real data (such as EVNT and
TAGR). The original particle information is stored in simulation-independent banks
MCTK and MCVX. The simulation process will be explained in more detail in Chapter 6
on acceptance and flux determination.

The simulated data is then treated the same as real data. After the files are
cooked, they are processed through the skimming and analysis codes. The
reconstructed vertex can now be compared to the “real” vertex position from the
simulation banks. Figures 4.13 and 4.14 show the reconstructed vertex positions for
the simulated data. Similar to the real data, most of the Ks and A decay vertices are
within the target. The range difference between the kaon and Lambda particles reflect
the data as well. In the next two figures (4.15 and 4.16), we see even less difference
between the two methods. The first method is closer to the beam center in the
simulation than in the experimental data. This is not surprising since the MC simulation
does not perfectly take into account all the system’s imperfections. However, similar to
the real data, method one’s distribution does show a little more deviation from the

beam line than that of method two’s.
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Figure 4.13: The reconstruction of the simulated Ks decay vertex. The first histogram shows the DOCA
lengths while the other three are the xy, xz, and yz planes. The distribution closely matches that of the data

seen in figure 4.8.
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Finally, in Fig. 4.17 the difference between the reconstructed vertex and original
vertex position in the simulated data is reasonably small. This validates the
reconstruction method used in the code and allows us to conclude the reconstructed

positions in the real data are accurate to at least 5 mm.

4.1.6 Ks and A Decay Lengths and Lifetimes

With accurate vertex positioning, it is now possible to determine the proper decay
length and lifetime of the particle. The proper decay length is simply the difference
between the primary and secondary decay vertex corrected relativistically. Dividing this
length by the particle’s velocity and we have the lifetime of the particle. From a

distribution of lifetimes we can determine the mean lifetime of the possible Ks and A
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particles. The mean life is given by the inverse exponential slope of a fit to the time

distributions. This corresponds to the probability of decay for an unstable particle:

N(t) = Nye~t/* (4.8)

where t = 1/A = T1,2/In2, and A is the decay constant and Ty, is the half life of the
particle.

By looking at Fig. 4.18, we can see that the decay lengths very closely matched
the Ks and A particles identified in the g10 dataset. The top histograms show that the
decay lengths using vertex reconstruction method 1 and 2 very closely match in the
gl3a measurement. Figure 4.19 is the distribution of the difference of decay length
between method 1 and method 2 for each particle. As can be seen, both vertex
reconstructions produce some difference (most less than 3 mm) when looking at the
total decay length of each particle. With respect to the total decay length, these
differences would yield approximately 4% uncertainty in particle position. However as
we have seen from the distribution, these differences become significantly reduced
when taking the whole dataset.

From Fig. 4.20, the lifetime distributions are now plotted and fit to find the
decay rate (the inverse of the mean lifetime). The data is fit between 0.18 and 0.5 ns.
The lower range is cut out due to lower probabilities of measurement and the higher
decay times were not included because of statistical uncertainties. The fits were made
independently for each vertex reconstruction method, though the plots in Fig. 4.20 only
show the fit for method 2. The results from the fit for method 2 are shown in Table 4.1

along with the particle data group (PDG) decay constants for the Ks and A particles.
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Figure 4.18: The top (a) and (b) distribution show the decay length for the Lambda and kaon,

respectively, for the g13 experiment. The bottom (c) and (d) show the measured

values for the g10

experiment. As can be seen in the g13 plots, both methods yield the same decay length distributions.
These distributions for the g13a dataset are consistent with similar g10 measurements or the Ks and A

particles.

With a fixed beam width (6.4 mm), most of the uncertainty in the vertex

determination is along the length of the beam line. Smaller angles can introduce

larger uncertainty in the z position of the event vertex (see Fig. 4.21). Therefore

by removing the lower angle events, the mean lifetime can be further improved.

There is a clear decrease in lifetimes as the lower angles are excluded. Mean

lifetimes above 30 degrees are closer to the PDG values; currently their statistics

are too low. Current values are taken after dropping events where either decay

path is less than 25 degrees. The measured lifetimes verifies that

the correct

particles have indeed been identified. Current results are within approximately

5% and 8% of the PDG values for the Ks and A decay constants, respectively.
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Figure 4.19: Comparison of the production vertex for both methods. The total decay length is determined by
taking the difference between the primary and secondary decay vertices. The difference between method 1
and 2 are then plotted with respect to the momentum of the particles.

Table 4.2: Measured mean lifetime of the fit to the time distribution of the data.

Measured Mean PDG Measured Mean
Particle Lifetime (ns) Lifetime (ns)

Ks 0.095 + 0.006 0.0895 +0.0003

A 0.286 + 0.006 0.263 £ 0.002
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Figure 4.20: Lifetime distributions of the reconstructed Ks and A particles. The fit was made between 0.18
and 0.5 ns to avoid inefficiencies at the shorter and longer times.
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Table 4.3: Measured mean lifetimes of the fit to the time distribution of the data, with various cuts on
minimum allowable angle. Though the cut of everything below 300 was closer to the PDG, its statistics were

Ay

l

i Beam line

Large angle Path

Small angle Path

£

=

Figure 4.21: Smaller angles can introduce larger uncertainty in the z position of the
event vertex. There is a clear decrease in lifetimes as the lower angles are excluded.
Though lifetimes above 30 degrees are closer to the PDG values, currently their

statistics are too low. Current values are taken after dropping events where either decay
path is less than 25 degrees

low. Therefore the 259 cut was used for the production of histograms.

K Measured A Measured K¢ Ratio A Ratio
Min Mean Lifetime Mean Lifetime | (Measured/PDG) | (Measured/PDG)
Angle (ns) (ns)

0° 0.113+0.005 0.307+ 0.005 1.157 0.796

5° 0.113+0.005 0.307+ 0.005 1.157 0.797
10° 0.113+ 0.005 0.306+ 0.005 1.153 0.799
15° 0.111+ 0.005 0.303+ 0.005 1.139 0.809
20° 0.105% 0.005 0.296+ 0.005 1.113 0.858
25° 0.096+ 0.005 0.285+ 0.005 1.074 0.942
30° 0.090+ 0.005 0.271+ 0.006 1.02 1.000
35° 0.220% 0.005 0.593# 0.010 2.232 0.409
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4.1.7 Photon Selection

Before the missing mass is determined, the photon for the event is selected. Choosing
the correct photon is essential in obtaining the correct total energy of this photo-
initiated event. Initially, the skim code used the photon that was selected when the data
was cooked. Later it was refined to iterate over the various photons so as to find the
best candidates. This was done by using the reconstructed event vertex to calculate the
correct time of the event, with respect to the center of the target. The closest photon to
this time was used for the event. Later it became necessary to examine the timing
windows of the particles and look for cases where there exist multiple candidate
photons. Since this reaction requires at least four detected particles, an accurate vertex
reconstruction allowed for a better selection of the event photon than would be offered

by other channels.

4.1.8 Exclusive KsA Event Selection

With the data reduced to events containing both Ks and A particles, it now becomes
necessary to conserve the four-momentum to determine the momentum of the parent
particles. With the energy of the photon, it is possible to look for the missing mass and
missing momentum of the reaction. If the missing mass gives the mass of the spectator
proton, we know we have found these events arising from the neutron. However, there
are other competing background channels- namely: yD — Ks2’(p) — KsAy(p) and yD —
Ks2(p) = KsAn’(p)(28l. These reactions will produce additional peaks and background
within the mass distribution. They can more clearly be seen by plotting the missing
mass of KsA with the missing mass of just the Ks (see Fig. 4.22). Removing the

background from the peak of the spectator proton can be evaluated either by fitting the
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peaks and doing a subtraction or by cutting out the upper half of the peak. Each of these

methods was evaluated in this study.
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Figure 4.22: Missing mass of the KsA channel. (a) The sharp peak corresponds to the mass of the spectator
proton, while the secondary peak relates to the y from the competing channel yn — K0£°= K0Ay. The tail is
the contribution from the yn — K02**= K0An® channel. (b) The MM(Ks,A) vs. MM (K?) offers a clear picture
of the 2° signal.
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4.1.9 Quasi-Free Event Selection

Additional information can be gained by making a histogram with the missing
momentum verses the missing mass of the KsA or verses the cos® angle (Fig. 4.23).
From the first histogram, the vertical distribution corresponds to the mass of a proton
at approximately 0.938 GeV (the PDG is 0.93827 GeV). The offset from zero momentum
illustrates the Fermi momentum within the nucleus. The smear above it corresponds to
rescattering events. The other distributions with excessive momentum and mass
indicate that an extra particle exists within the reaction. The right histogram shows
angular distribution of the events, after placing a cut on the missing mass of the KsA.
The quasi-free neutrons should have no preferred direction. However both in and
above the flat distribution, it can be seen that some events have a forward preference.
These events are removed by placing a cut on the missing mass of the neutral kaon
alone.

With a cut on the missing mass temporarily applied, we can now review all the
previous cuts to see if there are any clear areas where events that do not contribute to
the final distributions could be cut. By reversing the cut on the missing mass of the KsA,
it is possible to examine the beta, momentum, and mass distributions again. With the
absence of the resonance it is possible to more clearly see the effects of the background
phase space. Once the mass and momentum peaks have been optimized to their ideal
widths and amplitudes, we can remove the missing mass cuts and use a fit to its peak to
extract the yield of the channel. This analysis further gives insight into the overall

systematic variation of our cuts and whether the cuts are order dependent.
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Figure 4.23: (a) The missing mass of the K9, A vs. its missing momentum, the proton can be seen by the vertical
distribution, while the diagonal distribution implies events where a extra particle exists within the reaction. (b)
The cosine angle vs. the missing momentum of the K¢, A. The band along the bottom of the plot shows the

quasi-free neutrons, while the rest shows the forward bias of the interaction.

4.3 Flux Determination

Before extracting the cross section, it is necessary to first measure the photon flux
incident on the target. The gffux method was used for the g13 dataset. This method
counts the number of “good” electrons in the tagger and compares them with the
number of photons measured with the total absorption counter (TAC), which has a well-
known efficiency. From these normalization runs, a tagging ratio is produced. This
ratio is then applied when the data is cooked to normalize the photon flux. A
normalization run was made every few hundred runs. A normalization run uses a
thinner bremsstrahlung radiator and operates at 10% of the production beam current,
since the TAC cannot handle a higher flux. The tagging ratio is independent of the

photon flux intensity 291,
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4.3.1 Photon Flux Code

The gflux softwarel3ll was used for the calibration and correction to the photon flux for
each run. For the calibration the code counts the number of “good” electrons measured
in the tagger and compares them to the TAC values, and returns the tagging ratio. The
term “good” electrons correspond to “out-of-time” electron measurements within the
tagger that could not be involved in a physics event trigger. The “good” electrons can be
seen in Fig. 4.24 by the t window to the right of the trigger peak. When an event is
triggered in the T-counter, the signal is split into two signals. When the right trigger
conditions are met with the first signal, the T-counter TDCs begin counting. The
counting continues for a short duration while the second signal passes through very
long cables (which provide sufficient time for the trigger to decide if the event is worth
recording). Once the second signal reaches the TDCs, the counting is stopped. The “out-
of-time” electrons are assumed to follow a Poisson distribution. Therefore the t

window is defined by the user to only include flat accidental background events.

Counts

10°F

iy %
it i
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[
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Figure 4.24: Distribution of the photon times associated with the
electrons measured in the tagger for a single T-counter, with
respect to the center of the target. The peak corresponds to a
physical trigger, while the flat region is the accidental background.
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The number of “good” electrons can be determined by summing the rates over

each time interval, or:

NeT_ = ZiRTS " tscalar * Llive » (4.9)

where R'S is the rate of “good” electron hits, fcalar is the time scalar interval and 4ive is
the live-time during the scalar interval. The live-time calculated from predefined
fractions of the number of triggers that were needed by the data acquisition software to
start recording the event. The rate, R™S, was take to be the Poisson distribution of
“good” electron hits within the first-hit T-counter within the time interval .

The tagging ratio is defined by the total number of “good” tagged electrons in
coincidence with total number of photons measured by the TAC:

r _ NT-TAC

€= —— . (4.10)

The tagging ratio is shown per timing counter in Fig. 4.25. The number of tagged
photons per T-counter can now be calculated by multiplying NeT— by the tagging ratio, €T,

and dividing by the correction of the TAC to g13 target dimensions:

(4.11)
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The o factor is determined by the fraction of photons lost from the physics target to the

the TAC. This factor is typically between 3.6% and 4.4%. The development of this factor

can be found in the CLAS Note 01-010124],

g13 a
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Figure 4.25: The tagging ratios for gl3a. The run numbers correspond to normalization gflux runs, which
require the use of the total absorption counter (TAC) for real photon flux determination. Fluctuations can
be seen in various T-counters.
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| Tagger Counter Matching |

| Entries  8.718059e+07

™
[2] 60 ‘\f
E . !
3 r ..__a' = 10°
U C —
Ro50— 1 5
5 o ]
- - = 10
|L° 40 wl® =
- | —
I T — 10°
.g 30 ; L1 I‘II.. %
L Z - " " :
= . i 5
20 : e 0
10— 10
T ! ! | L ! ! | L ! L | L ! ! 1
100 200 300 400 500 600 700
Tagger E-Bin

Figure 4.26: Tagger counter matching. The relationship between the energy bins and the timing bins of the
electron/photon tagging system.
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Figure 4.27: The corresponding photon energy factor for the 736 energy bins (corresponding to the 368
overlapping E-counters). The linear fit was determined by the max and min photon energies.
The gflux code produces a two-dimensional occupancy matrix (called the ET

matrix) of the T-counter with respect to the binning of “good” electrons in the tagger.

The occupancy of the E-counters vs T-counters is illustrated in Fig. 4.26 for each
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element in the ET matrix. The gffux code calculates the probability of a hit in each E-bin
for each T-counter.

Figure 4.27 gives the conversion of E-bins to its corresponding energy. This
histogram has to be independently calculated. The minimum bin is set to the maximum
photon energy while the maximum bin is set to the minimum energy. Dead paddles

were set to zero energy, of which there were only four.

4.3.2 Photon Flux Measurements

After the normalization runs are completed, gf/ux can be run on the productions runs.
This is usually done in the regular cooking process. A bundle of histograms are
produced for each run, giving the conversion factors as well as the total flux. The
histograms have already been corrected by the tagging ratio. Figures 4.28 and 4.29
show the photon flux for the three-pass (Ec = 1.99 GeV) and the four-pass (E. = 2.65
GeV) runs, respectively. The dips correspond to counters with poor efficiency or ones

that are completely dead. When the analysis is being performed, the data is integrated

into the same bins used in the yield partitions.

photonFluxEnergy
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Phaton Flux
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Figure 4.28: Photon flux for the three-pass (Ee = 1.99 GeV) runs.
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Figure 4.29: Photon flux for the four-pass (Ee = 2.65 GeV) runs

4.4 Yield Extraction

The distributions in Fig. 4.30 illustrate the clean distributions of the missing mass
corresponding to the yn — KsA and yn - Ks2" reactions. The cuts on momentum and the
missing mass of the Ks remove events that would require the associated production of a
pion— such as in the case of the higher-mass hyperons ~* and A*. The yields for both of
these reactions can be determined by fitting the two missing mass peaks surviving all
the cuts. Both the proton peak (corresponding to the missing mass of the KsA) and the
proton plus photon peak (KsZ°) are fit with a single Gaussian. Integration of each fit is
used to remove contributions from the other missing mass peak.

For full development of the differential cross sections, the data will be binned in
terms of both photon energy and cos(@,?’s"’) and their values will then be normalized to
the photon flux. The yields will then need to be acceptance-corrected from the results

of the Monte Carlo simulation, which will be discussed in the Chapter 6. First, the yield
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correction factor will need to be calculated by studying how many good events are lost
as functions of varying the cuts. This will give measure of the systematics. Similarly, the
acceptance needs to be calculated using a realistic representation of the CLAS detector
in the GEANT simulation.

The final yield is determined after several iterations of corrections to the cuts on
the AP vs. momentum, track timing, invariant mass, missing mass of the Ks, and missing
momentum. Fiducial cuts of the CLAS detector and corrections to the photon beam
energy and track momentum must also be made. These steps are discussed in detail in

the next chapter on systematic studies.

| MM(KO, Lambda) | missing_mass

Entries 10046
Mean 0.9634
RMS 0.05097

Events

fobedorlation, g,

i
I AT I it

i e g
09 0.95 1 1.05 1.1 1.15 1.2
MM(K , A) (GeV)

of
Bk

Figure 4.30: Missing mass distribution of the proton
from KsA and with the distribution from the proton plus
photon associated with the KsX0. Because of the cuts

used in the code, events with £* do not survive.
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Systematic Studies and Corrections

Before the final yield could be extracted from the dataset, several particle track
corrections must be applied and cuts checked for their effects on the final results.
Inefficiencies, tagger sag, and “blind” spots required corrections for both the momentum
and energy of the final-state particles. Additionally, due to the yield’s sensitivity to the
cuts made, it was necessary to justify the choice for each cut by their impact on both the
yield and other essential particle properties. There effects were recorded and are
presented in this chapter.

Whenever possible, fits are preferential to cuts to reduce the loss of events.
However, cuts are always needed in a rich data set such as the g13 collection. Initial
cuts were made during the actual cooking of the dataset. Scripts were run to create new
data files which required specific final states— such as events with two positive/one
negative tracks or two positive/two negative. Timing cuts are made on particles with
times unique enough to question their involvement with the current event. Events are
also cut if any of their tracks occur within inefficient time-of-flight (TOF) paddles. As
part of particle identification, the analysis code separates particles first into positive,
negative, and neutral tracks and then makes loose cuts on mass. After the track
momentum and energy corrections are made, cuts are made on the invariant mass of
the reconstructed intermediate particles (the candidate Ks and A particles). The final
two related cuts are on the hyperons in the missing mass of the Ks distribution and on

the missing mass of the KsA channel.
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Before the reconstruction of the neutral-decay particles, it was necessary to
correct the energy of the photon and the momentum of the final-state particles. The
gravitational sag in the tagger system creates a small offset of the binning for electron
(hence photon) energies. The T-counter and E-counters inefficiencies are fixed in the
same energy correction method used for the tagger sag. The momentum needs to be
corrected for both the energy lost in the target and the start counter before it reaches
the drift chambers and the inefficiencies of the drift chambers. The standard eloss
packagel34l and Mattione’s35] drift chamber correction methods were used for this

analysis.

5.1 Standards of the Systematic Studies

When choosing the cuts for any analysis, we must keep in mind what the criteria will be
for maximizing the yield while maintaining quality data. For the yn — KgA reaction,
there are three primary factors to be observed as cuts are applied— are the events
exclusive, are they mostly from quasi-free neutrons, and will the cut exclude too many
events? The percentage of exclusive events can be determined by fitting the peak
(resonant) and background (non-resonant) for the distributions of the Ks and A masses.
Changes in the ratio between the resonant to non-resonant integrals can be observed as
various cuts are made. Since the target neutron is not truly free, the selection of events
includes only events with the expected Fermi momentum from the deuteron nucleus.
Events with extra momentum from rescattering can produce inaccurate missing mass
and widen the proton peak. The effects of these cuts were also observed in the
simulated data.

The calculated errors are a combination of statistical and data-range variation.

The 4-pass (four passes through the accelerator loop) data was partitioned into four
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sequential data ranges to study the systematic variation within the dataset. The errors
are then propagated to the complete 3- and 4-pass datasets. These segments are then

used to observe variation in the effects from the cuts.

5.1.1 Exclusive Event Selection

After events have been reduced to those with the required final state, it is still necessary
to determine which events come from a resonant (KsA, KsX? or Ksx*) or a non-resonant
(pr ' or pnw K") event. In the case of the missing mass, there are only two clear
signals after placing a cut on the missing mass of the neutral kaon (see Fig. 5.1). These
two peaks can be clearly identified as the KsA and KsZ0 channels. The cut is below the
threshold of pion production, so it is unlikely other resonant channels are present. Both
the A and X° yields can be independently extracted. There are, however, cases were
non-resonant events are present; that is events which go straight to the pr nn" or
pr n K final states. These states are more visible if we go back a step and review the
invariant masses of the neutral particles.

From the mass of the neutral decay particles (see Fig. 5.2) we can see a
pronounced resonant peak on top of the non-resonant background. With a fit to the
background and peak, the signal-to-noise ratio can be determined. Ideally these peaks
come from the same resonance on top of the same non-resonant background and both
should have the same ratio. As a quality check the fluctuation of these ratios and
possibly overall decrease can be used to determine the quality of a cut or correction on

the data. With good statistics there should be little variation in this ratio.
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Figure 5.1: Missing mass of the KsA vs the missing mass of the Ks alone. The
distributions are the mass of the proton (representing the A), the mass of the
proton plus a photon (£9), and the proton plus a pion (£*). From the
distributions we see that the X* can be mostly removed with a cut on the
MM(KS) = 1.3 GeV. However, the X0 cannot be removed due to the strong

overlap with the Lambda.
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Figure 5.2: The fits to the kaon and Lambda peaks. The fits were used to determine the ratio of the resonant
region to the non-resonant background. A double Gaussian was used to fit the peaks, corresponding to the
energy resolution of the detector system and the uncertainty associated with the longer lifetimes of the
particles. The background was locally fit with a linear function.



CHAPTER 5. SYSTEMATIC STUDIES AND CORRECTIONS

5.1.2 Quasi-Free Event Selection

The quasi-free events are primarily selected by the cut on the missing mass of the Ks,
selecting mostly just the A and X9 hyperons. A cut is also placed on the missing
momentum of the spectator to remove many of the remaining events due to
rescattering. Arguably, the order of these cuts can be reversed because of the direct
relationship between the events with the heavier hyperons and the resultant excessive
missing momentum. By plotting the missing mass vs. the missing momentum of the
KsA channel (Fig. 5.3), we again see the hyperon distributions and their momentum
dependence. Most of the protons reside withint the Fermi momentum (~50 MeV)
uncertianty, with the vertical tail from rescattering. The X hyperons both have a linear
relationship between their missing mass and missing momentum due to the extra

particles not being exclusively measured (a y or w, respectively).
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Figure 5.3: The missing mass of the KO, A vs. its missing momentum, the proton can be seen by
the vertical distribution, while the diagonal distribution implies events where an extra particle
exists within the reaction.

85



CHAPTER 5. SYSTEMATIC STUDIES AND CORRECTIONS

The quality of cuts can then be determined by examining the slope of the
missing particles’ cosine theta verses its momentum. The slope is normalized to the
yield for each run range, with the same cuts and corrections. Figure 5.4 illustrates how
the angle of the missing momentum is used to check how many events are from quasi-
free neutrons. The missing mass of the Ks cut has already been made in the right

histogram. The top left histogram shows the projection of the cosine theta of the
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Figure 5.4: The angle of the missing momentum is used to check how many events are from quasi-free
neutrons. The top left histogram shows the projection of the cosine theta of the missing particle (in the lab
frame) verses its missing momentum with various cuts on the missing momentum. The bottom histogram
shows the same projections but with cuts on the missing mass of the Ks.
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missing particle verses its missing momentum with various cuts on the missing
momentum. The spectator is expected to have no preferential direction (i.e. it should be
isotropic). With wide cuts on the missing momentum (<6 GeV), there is strong
evidence of events with extra momentum. This means that the neutron or one of its
daughters scattered or there was an extra particle besides the proton in the missing
mass. The bottom histogram shows the same projections but with cuts on the missing
mass of the Ks. As can be seen in Fig. 5.5, there is little change with missing momentum

cuts.

5.1.3 Yield Loss

The yield’s decrease (and in some cases increase) must be evaluated as cuts and track
corrections are applied. The absolute knowledge of the differential cross section relies

entirely on our clear understanding of the systematics.
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Figure 5.5: The missing mass of the yD — KgA(p) reaction, is used to determine the differential cross
section of the reaction. This peak is one of the key checks when making corrections to the data.
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5.2 Data Quality

The gl3a dataset had approximately 202 billion triggers; yet a significant faction of
these triggers could not be used. The largest portions of lost events were lost due to
detector inefficiencies or unstable beam, though some were lost to corrupted or missing
data tables. Table 5.1 shows the general run ranges for gl3a. The first and last sets of
runs were dropped because of their use of a hydrogen target, which is not applicable for
this analysis. The run range 53095-53326 had significant loss of photon flux
information and was not used in the reconstruction of the yn = KgA cross section. The
full list of acceptable runs is given in Appendix B.1. Runs taken during the installation
and calibration of various subsystems were also excluded, as were runs with failing
systems. Runs with unstable beam were further excluded. Some additional runs are cut
because of bad tagger counters or malfunctioning time-of-flight paddles. Most of these

ranges were determined by studies performed by Mattionel35l.

Table 5.1: General run ranges for gl3a. The first and last ranges were not used due to difficulties in either
photon flux reconstruction or to simulation difficulties.

Run Range Target Beam Energy (GeV)
53095-53163* LH> 1.99018
53164-53326* LD, 1.99018
53333-53429 LD; 1.99018
53430-53537 LD; 1.99018
53538-53862 LD, 2.65458
53863-54041* LH> 2.00014

* not used in the reconstruction of the yn — KgA cross sections
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5.2.1 Skim Files and Missing Banks

As the data is sorted into the data banks of the BOS files (databanks with CLAS table
format) during the cooking process, additional skim files are produced accepting only
events with the minimum number of charged tracks. For this analysis the skim file
datasets with at least two positive and two negative tracks were used. Skim files are
much smaller than the BOS files and allow for much faster analysis jobs on the batch
farms. They also introduce a new possible source of data loss if not all the qualifying
events are correctly copied to the skims. To examine this possibility several runs were
used to compare both the initial BOS files and the skim files. Checks were made to
ensured files lost on the batch farms during processing or copying to the work disks
were excluded from both the BOS and skims. Final results showed absolutely no
difference between the skimmed and BOS files. Therefore, the skimmed files were used
for the analysis instead of the BOS files.

It is also necessary to track how many events are lost from empty banks and
from channel-specific skimming. There were many reasons an event was rejected
during the selection process. Before they were processed through particle identification
checks, the data was checked for integrity. While the data is catalogued, rejected events
are tallied into three areas— EPICs drops, EVNT or TAGR drops and too few tracks, as
tabulated in Table 5.2. The percentage of loss from the first two columns also applies to
the second two columns (corresponding to the skim files). These percentages were not
applied in the skim lost percentages; the events lost from the skim files are measured
independently. The EPICS bank contains all the channels of the various detector

systems and scalars. EVNT has the basic information for each track in an event, to
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Table 5.2: Events lost from the analysis before and during the analysis process from initial event and track
requirements. The first two columns’ percentage of loss also applies to the second two columns of the skim
file losses. However, they are not applied. The events lost from the skim files are independently tallied.

BOS Files Skim Files Simulated
Reason Event Standard Standard Standard
was Dropped Average Deviation | Average  Deviation Average  Deviation
EPICS event
missing 0.0081% 0.0002% 1.25% 0.0423% 0.0% 0.0%
EVNT missing 16.58% 0.0090% 1.28% 0.09% 37.10% 1.26%
TAGR missing 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Too Few Tracks | 62.59% 0.0742% 0.0% 0.0% 55.96% 1.88%
Too Few Final
State 20.62% 0.0833% 64.82% 0.22% 5.10% 0.17%

Table 5.3: Events lost from the analysis before and during the analysis process due to secondary
requirements on the tracks. The first two columns’ percentage of loss also applies to the second two
columns of the skim file losses. However, they are not applied. The events lost from the skim files are

independently tallied.
3+ 7 0.0005% 0.0% 0.0780%  0.0059% 0.0003%  0.0002%
3+ 7 0.0% 0.0% 0.0042%  0.0030% 0.0% 0.0%
3+ proton 0.0004% 0.0001% 0.0635%  0.0102% 0.0001%  0.0001%
both protons
rejected 0.0143% 0.0004% 2.25% 0.0843% 0.0013%  0.0004%
both protons
qualified 0.0009% 0.0% 0.1302%  0.0035% 0.0027%  0.0005%
both 7’ rejected | 0.0035% 0.0004% 0.5291%  0.0391% 0.0024%  0.0004%
both 7" qualified | 0.0001%  0.00003% | 0.0142%  0.0039% 0.0008%  0.0002%
extra A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
extra K 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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include momentum, mass, charge, beta, and position. It also records the status of the
primary subdetectors of CLAS during this event (e.g. drift chamber, start counter,
etc). The TAGR bank stores the information of each photon in the vicinity of the target
length during the event. As can be seen in Table 5.2, few events are lost from EPICS.
However, in the BOS files, nearly 17% is lost from the EVNT bank. When the EVNT bank
existed for an event, the TAGR bank was always present. For the simulated events, 37%
are lost as the generated particles are propagated through the modeled CLAS system
and cooked into the standard BOS format. Both real data and simulated lose around
60% of the events due to having too few tracks. Since the skimmed files follow from the
BOS files, it is expected that very few losses occur at this point. Filtering by the required
final-states particles in the skim files reveals that only about 35% of the particles are
real candidates. Approximately 26% of the BOS events and 49% of the simulated
qualified for KsA reconstruction. The bookkeeping shows very few events have more
than two s, n” or protons in the final state.

Proportionately, the percentage of events lost from too many qualifying protons
and pions (only one each is desired) are nearly the same with all three trials (see Table
5.3). The percentage of these lost events is clearly higher in the pre-skimmed files
because they exclude events with less than four tracks. For this same reason, the
percentage of events with both protons (or ©") failing or passing the missing mass cuts
increases in the pre-skims. None of the skims showed significant combinatoric

background events.

5.3 Particle Identification Studies

Before possible events were selected, each particle in the event were catalogued by

their charge, mass, momentum, and timing. By the deflection (bending inward or
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outward) of each particle in CLAS, the charge of the particle is identified. The mass is
only used as a very loose separation of the pions and protons. This leaves the
momentum and the timing as the primary tools for particle identification. Since there is
no clear error associated with the values in the data banks, the variation due to the
selection of beta and time cuts is used to determine the uncertainty.

As was discussed in section 4.1, a loose mass cut is put on the Af vs. momentum
as can be seen in Figs. 5.4, 5.5, and 5.6. Initial skimming incudes a 0.2-Af cut and a 6-ns
track timing cut. The initial loss of events was determined by looking at the percentage
of lost A and Ks candidates (as can be seen in Table 5.3). Due to the losses from both
neutral hadron candidates, roughly 6% of the events are lost from the missing mass of
the reaction. Studies were performed to see if tighter cuts improve the yield extraction,

resonant mass extraction, and percentage of quasi-free neutrons reactions.

Table 5.4: Initial loss of events from the pre-PID cuts on the beta and track time.

Lambda Mass Lambda Loss | Kaon Mass Kaon Loss
Mean Sigma (%) Mean Sigma (%)
No cut 1.116 0.00187 0 0.4977 0.00477 0

Beta cut 1.116 0.001942 1.03 0.4978 0.004726 0.86
Beta and

.. 1.116 0.00194 2.72 0.4978 0.004894 3.65
timing cut

5.3.1 Beta Cuts

Figures 5.6 through 5.8, illustrate the development of distributions for the =, ©', and
proton respectively. The isolation of each track distribution in the histograms
illustrates the initial loose mass cuts. The 0.2-GeV cuts on each AP has already been

applied. The top left histogram shows the beta distribution for each track and the top
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right shows the difference between the measured and calculated B (the AB). The
bottom left shows the momentum versus the beta and the bottom right the momentum
verses beta difference. The calculated 3 uses the fixed PDG values for the particle mass,
forcing tracks with the correct mass (and therefore similar ) to have a Ap near zero.

To refine these cuts on AP, the events were binned into 0.1-GeV momentum
bins. The peaks were then fit with a Gaussian. The sigma of peak was then used to
determine cuts for each momentum bin. The o, 20, and 30 cuts were compared to
evaluate the changes in the event selection. Figure 5.9 shows the mean with its 3¢ for

each momentum bin for both pions and the proton.
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Figure 5.6: Beta histograms for the 1". For the particle identification, the mass was taken to be between —0.1
and 0.1 GeV. The difference of the measured beta and the calculated are shown in top right plot. The bottom
left and right show the  and AP vs. the momentum of each particle, respectively.
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z eta_proton_1 000 5 eta_beta_proton_1
2 2 E
w Entries 212982 20000 — Entries 212982
18000 —
18000 F—
14000 F—
12000 F—
10000 F—
8000 —
8000 F—
4000 —
2000 —
L L L L E L | L L
02 04 06 08 1 12 %2 015 0.1 0.05 ) 005 0.1 015 02
Beta Delta Beta
- bela_p_proton . 02 |
3 Enirles 212062 :E Entrles 212962
& E
FERH =
a T E
01—
opsf—
==
005
01—
045
02 0z 0.4 [ [ 1 12

Momentum

Figure 5.8: Beta histograms for the proton. For PID, the mass was assumed to be at least 0.5 GeV. The
measured beta of the particle is shown in the first histogram. The difference of the measured beta and the
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each particle, respectively.
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Figure 5.9: The AB was binned by momentum and fit with a Gaussian. The 3c give the limits to use for
cutting events from the analysis. The plots show the mean and high and low 36 values for each momentum
bin.
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Figure 5.10: The top left histogram shows that the 3o cuts on the A binned by momentum, which only has
a minor effect on the yield. The top right plot shows the resonant to non-resonant ratio for the invariant
mass peaks. The 3o has the greatest difference with 0.006, which is too small to be concerned with. In the
yield-normalized slope of the missing mass angle, the 3c has the greatest slope, though still small.

The results of the cuts can be seen in Fig. 5.10. As one would full expect, the
tightening of cuts on the AP distribution has a notable effect on the distribution of the
cosine theta of the missing momentum. The tighter cuts would remove poorly identified
particles as well as events with poorly-reconstructed momentum values from inefficient
detectors. The 3o and tighter cuts do show a significant improvement in the invariant

mass ratios with respect to each other, while 4 has a quick fractional loss to the A

particle ratio. To minimize the loss of yield, the cut was kept at 3.

5.3.2 Timing Cuts

During the initial particle section of the skim code, a cut was placed to exclude any track
that was greater than six nanoseconds from the average time of all tracks in the events.

Tracks were usually within 1 ns of each other. However, to reduce the likelihood of

4.5
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extraneous particles contributing to the event, further refinement to the cuts were made
to evaluate their effects on event selection and the final yield.

Using the corrected event time, the events with any final-state tracks outside of
a variable timing window were excluded. As can be seen in Fig. 5.11, the most
significant change is due to the loss in the upon total yield. The mass ratios and missing
mass’s cosine theta distributions remained relatively unchanged. This is reasonable
since the reconstruction of the Ks and A masses would remove most of the out-of-time
events. Since little benefit was gained from tightening the track timing window, it was

decided to leave the window at 6 nanoseconds to maximize the yield.
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Figure 5.11: The top-left histogram shows the loss in total yield with decreasing track timing window. The
top-right and bottom-left show the nearly constant resonant mass ratio and normalized slope, respectively.
Since there is little improvement in the exclusive selection of events and the percentage of quasi-free
events, it was decided to keep the timing window to six nanoseconds.
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5.4 Yield Extraction Studies

There are three important checks to make in coding the analysis process when finding
the total and differential yields. First, the quality of the cuts on the invariant masses of
the neutral decay particles was examined, as well as the cut made on the missing mass
of the Ks. If the cuts are not robust (i.e. highly sensitive) appropriate adjustments would
be necessary. It was also important to test the fits to the missing mass of the yn = KgA

and yn - KgX° reactions.

5.4.1 Invariant Mass Cuts

After particle identification and track pairing, the key cut is the invariant mass cut. It is
clear that unduly tightening the cut would reduce the yield. Less clear is that the
resonant to non-resonant ratio remains essentially constant (as was observed in the
data seen in Fig. 5.12). This behavior is most likely expected with a linear phase-space,
and reaffirms the choice of the fit used for the non-resonant background. Since the ratio
does not change and the invariant mass cut is not selective on particle momenta, it is not
unexpected that changes with the slope or the anisotropicity of the spectator proton’s
angle appear to only fluctuate within expected statistical uncertainties and do not
appear to follow any systematic errors. Due to the larger uncertainty of the yield and
slope using the 46 cut (due to the excessive quantity of non-resonant events), the 3o

was used for the invariant mass cuts.

5.4.2 Missing Mass of the Ks Cuts

Figure 5.13 shows the hyperon distributions by plotting the missing mass of the KsA
reaction against just the missing mass of the Ks. While it is clear that the majority of X*

can be removed from the A distribution, the X0 has significant overlap requiring fits to
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Figure 5.12: Changes in the yield, resonant to non-resonant ratio and slope of the spectator proton’s angular
distribution with changes to the invariant mass cuts. The x-axis shows the number of sigmas used for each
evaulation. For each point, the 4-pass data was divided into four ranges of data.
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Figure 5.13: The hyperon distributions can be seen with the plot of the missing
mass of the KsA reaction against just the missing mass of the Ks.
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Figure 5.14: Changes in the yield, the resonant to non-resonant ratio, and slope of the spectator proton’s
anglular distribution with changes to the Ks missing mass cuts. The x-axis shows the number of sigma used
for each evaulation. For each point, the 4-pass data was divided into four ranges of data.
separate the two peaks. However, cutting the Z* out does remove some of the As. This
loss can be seen in Fig. 5.14 with the decreased sigma in the first histogram.

With the missing momentum cuts in place, most of the contributions from the
>*s have been removed. From the bottom plot in Fig. 5.14, it can be seen that with a
missing momentum cut of 200 MeV, the slope of the spectator proton’s angular
distribution remains constant until the cut nears the center of the A peak.

With these momentum cuts, we can also go back and check the ratio of resonant
to non-resonant with the invariant mass. The choice of cutting on the missing mass of
the Ks does not affect the signal-to-noise ratio. Once the ~* has been essentially removed
(momenta > 1.3 GeV), only the X0 overlaps with the A distribution. As can be seen in
Fig. 5.3, both distributions share similar momentum. Therefore, the lower the cut on the

missing mass of the Kscannot distinguish between the two channels.
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5.5 Track Corrections and Cuts

With a Gaussian fit to the peak of the missing proton mass, we can find a preliminary
yield of the KsA channel. However, before this yield can be final, several corrections
must still be applied to account for various systematic uncertianties. First, the standard
energy-loss corrections must be investigated. While the particles pass through the start
counter, they lose information on the 4-momentum from dE/dx losses and multiple
scattering. This loss can be approximated by the Bethe-Bloch equation[30, which can be
corrected with the e/oss software packagel3ll. The e/oss correction was applied during
the reconstruction of the neutral Lambda and kaon particles from the charged daughter
products. It will also be necessary to apply a momentum correction for the particle’s
track through the drift chambers. This correction makes use of a kinematic fit of the yD
—ppn reactionl32],

Energy corrections were also needed. The beam delivered to Hall B does not
exactly match the requested or recorded beam energy. Again, the yD —ppn™ reaction
was used as a method of applying corrections. The energy was also corrected for the
systematic uncertainties in the binning of electron energy in the tagger hodoscope due
to gravitational sag to the E-counters.

In addition to these corrections, it was also necessary to cut events. Events were
removed when they involved an inefficient tagger counter, dead SC paddle, or enter
regions of the detector where the toroidal coils block detection (fiducial cuts). Paul
Mattione performed the initial studies on the efficiencies for the tagger, time-of-flight,
beam energy corrections, and the detector fiducial cuts for gl3a. He wrote C++
libraries that apply the corrections from his studies. His methods are being used by

several studies on the g13 dataset[33l.
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5.5.1 Tagger Corrections and Cuts

Due to the distortion of the tagger’s focal plane from the weight of the system, electrons
are potentially arriving at the wrong energy bins[34.. This effect can shift the knowledge
of the photon energy by as much as 0.2%. This correction factor is not large, but can
have some impact on the differential cross section. The correction is E-counter
dependent, as can be seen in Fig. 5.15.

As described in section 3.2, the photon tagger system has 61 T-counters (with a
non-uniform distribution) and 384 E-counters with a 1/3 overlap. Inefficient or dead
overlapping counters can lead to the incorrect binning of the photon’s energy.
Therefore, the skim code and simulation were set up to reject events from inefficient T-

and E-counters.
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Figure 5.15: The photon correction multiplier for the energyl(36l. This correction is due to the sag in the
tagger under its own weight, which will shift the position of the counters from the “true” position.
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Figure 5.16: (a) The T-counter first-hit vs. the photon flux and (b) the E-counter first-hit vs. the photon flux.
The holes are due to the dead or inefficient counters. The images were taken from Paul Mattione’s
dissertation [32]. The highest bin corresponds to the lowest E,.

In Fig. 5.16, the efficiencies of the counters can be seen by looking at the photon
flux and particle yields as a function of the counters. Counters were considered
inefficient if they had less than half the flux of the neighboring counters. From the
photon flux per first-hit T-counter it is clear that the counters 30, 39, 45, 48, and 55 had

weak counts, while counter 61 was completely dead. The flux distributions for the E-

counters reveal the dead or low count E-counters 60, 225, 240, 257, 281, and 364.
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5.5.2 Time-of-Flight Paddle Cuts

The time-of-flight scintillator (SC) paddles surrounding the body of the CLAS system, in
conjunction with the start counter, were used for the stop time of the particle tracks.
This time can also be constructed using the start counter time and the momentum

determined from the track deflection in the drift chambers. Specifically:

£ /m2c*+p2c? (5.1)

teale = tsr + bz
Where tgr is the start counter time, and ¢ is the path length of the particle. The
difference between the calculated and measured SC paddle time was used to determine
which paddles were dead or inefficient, as shown in fig 5.17. Scintillator paddles with
low or no counts can be seen as vertical disruptions in the distributions of Atg;. Some of
the paddles show poor alignment or double peaking. Most of these uncalibrated
paddles are in the backward region.

Table 5.5 lists the paddles per sector removed from both the experimental and
simulated data. Paddle 8 in sector 1 was dead for a larger portion of the g13a data set,
while the other dead counters remained that way for the duration of the experiment. It
was not possible to replace some of the dead photomultiplier tubes (PMTs) because of
their position behind the electromagnetic calorimeter and hence were completely
inaccessible.

To ensure few events were lost, CLAS was designed with a large overlap of the
two TOF planes. Despite the effectiveness of this configuration, it was not precisely
modeled in the GSIM code. Because of this, paddle 23 for all sectors was excluded from

all analysis.

104



CHAPTER 5. SYSTEMATIC STUDIES AND CORRECTIONS

', Sector 1 Entriee 1.1327850+07
=
@

Ertries 1.0984250+07
D

= = 1
10°
<= 0. =
10°
b ) i -
- 10
. = : 1
35 40 45

45
SC Paddle

40 45

0
10°
107
10
1
SC Paddle SC Paddle

Entries 1.08718Te+07 Entries 1.104954e+07
10°

10°

10

10° T
10
1 -

8C Paddle

Entries 1.07855%+07 | [x.
=

Sector 4|
10° 2

-
(5]

eesured = Liateutates {NS

a5 1

, Sector 5

.

=2 -
I ]
I
Lo

=)
tmessurea = Leateuratea (VENF

tmessured ~ Leateuiatea (7
=]

Y
R Lo

10°
10°
10
1

40 45
SC Paddle

SC Paddle

Figure 5.17: The difference between the calculated and measured stop times for different SC paddles, from
the systematic studies of Mattionel32l. The dead, inefficient, and dead paddles can be seen in the otherwise

symmetric distribution. Events with tracks on these SC paddles were cut from both the empirical data and
the simulated studies.

Table 5.5: Dead, inefficient and uncalibrated paddles per sector. Both experimental and simulated events
with tracks entering these paddles are removed from the analysis

Sector Dead Paddles Inefficient Paddles  Uncalibrated Paddles
1 6 10, 24 23,40 -48
2 8 23,40 -48
3 11 23,40 -48
4 - 23,40 -48
5 - 24,29, 30, 31, 37 23,40 -48
6 24, 25,31 24, 25,31 23,40 -48
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5.5.3 Fiducial Cuts

As with most detector systems, the efficiency of particle detection for the CLAS drift
chamber decrease at the boundary regions. These regions are defined by the six sectors
segmented by the toridial magnets and the support frames for the chambers. The GSIM
simulation poorly models the loss of events within these regions. Therefore, it becomes
necessary to apply angular fiducial cuts in both azimuth and polar distributions for both
the measured and simulated data. For this study, Paul Mattione’s methods and routines
were used[32].

From Fig. 5.18, we can see the distribution of events within the drift chambers.
The edges correspond to the areas of transition between chambers azimuthally, as well
as the theta angle acceptance. The figures shown were made for both negative (left)
and positive (right) pions at all theta and phi angles, but for the just the first few
centimeters of the target. The 10-centimeter bins were necessary because of the change
in cuts needed for the backward angles. From Fig. 5.18 it can be seen that the positive
tracks have some momentum dependence at the small theta angles. This is due to the
positive tracks being bent into the beamline and while the negative are bent away.

For the fit to the distribution, the code uses a function of the form:

¢ _ {Cl(l _ eC19+C2)’ C; <6 (52)

(Cy+ Cs0 + C46?), C; >0

where the C; are the parameters of the function fit. A high and low cut were also placed
on the theta angles. Two different equations can be used, depending on 0, (defined by
parameter C3). The function form is not a direct function C3, but does depend on it for

choice of which curve to use. The negative phi angles were assumed be symmetric with
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Figure 5.18: Illustration from Mattione’s thesis of the distributions of reconstructed for all six sectors of the
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distribution to adjust the fiducial cuts of the positive pion tracksI35l.

the positive. Mattione manually adjusted all the constants used in his method until
most of the inefficient reconstruction regions at the edges of the drift chambers were
removed. The theta was shifted manually to observer the changes in momentum. The
momentum dependence Osnir vs. momentum for the positively charged tracks are
illustrated in Fig. 5.19. The fit to this distribution is used for determining the shift for

the fiducial cut to the positive pions- namely:

Oshite = Do + D1/(p + D), (5.3)

The one-dimensional plots seen in Fig. 5.20 where produced by Mattione to check the
cuts applied in the methods. These plots show the slices of the 2-dimentional 7~

histograms seen in Fig. 5.20.
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5.5.4 Momentum Corrections

During the g13 experiment there were several sources of systematic uncertainties.
There were differences between the calculated field map used for track reconstruction
and the actual toroidal magnetic field. There were also drift chamber misalignments
and energy losses in the drift chambers. To account for these additional momentum
corrections, Mattione’s code uses kinematic fits for the yD — ppm~- reaction on runs
53630 through 53650; the electron beam was stable during this period3sl. The
reconstruction was checked by requiring the conservation of the 4-momentum. The
least-squares error of the measurement is minimized. The magnitudes of the track

momenta were treated as unknown. The constraint of the 4-momentum was defined as;

E, +Ep —E, — E, — E,
Px, + Px, + Py
Py, t Dy, + Py,_

pzy - pzp - pzp — Pz,

Y

_\l =0, (5.1)
)

where E; is the energy and px are the momentum components of of the individual
particles.

The missing energy of the yD — ppm~ reaction was centered on zero, as shown
in Fig. 5.21. A histogram of this distribution was generated after placing the cuts
detailed in Section 5.2 to isolate the yD — ppm— events. The track momentum
measurement errors were fit for the protons and the m—. The adjustments to the fit were
determined by using the mean difference between the kinematic fit and measured
momentum of the particles. The paths of particles are dependent on their charge and
momentum within any particular magnetic field, and had to be treated separately

depending on their charge. The drift chamber misalignments and other errors in the
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magnetic field map were applied to all particles of the same charge. These momentum
corrections for the proton were applied to K*+s and m*s as well. However, the energy
losses in the drift chambers were dependent on the particle’s velocity. The polarity of
the magnetic field is set to bend negative particles outward, while the positive are
deflected inward. This means that positive tracks have a higher chance of entering the
uncovered forward region. Therefore, the mts used the m— energy. Similarly, the m—
corrections were assigned to the K+ are as well since K*s have a similar momentum-

dependent behavior as pions.
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Figure 5.21: The missing momentum of the yD — ppr-reaction. The red lines indicate the +0.06 GeV /c missing-
momentum z cuts34l.
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Figure 5.22: Initial missing energy distribution of the yD — ppm-reaction for runs 53630 through 53650 of g13a. The
Gaussian fit to the peak is centered around zero, indicating a suitable run range for determining momentum
corrections(34.

The measurements were assumed to have a Gaussian distribution about their
true value. The confidence level is determined by how well the parameters of the
measurement fit to the constraints (Eq. 5.1). The CL represents the probability of
obtaining a larger » for the system and is defined by taking it as the integral of the

probability function A y2 N)B34:

CL = f; f(x, N)dx, (5.2)

where N is the number of degrees of freedom. With large enough sampling range, the
confidence level exhibits a flat distribution between 0.2 and 1.0 (see Fig. 5.23).

The “pull” distributions were used to check the effect of each individual track
parameters used in momentum correction code. The pull was defined as the deviation
between its fit and the measured values. Their distributions can be determined with a
Gaussian distribution of known true events (see Fig. 5.24). Using a single standard

deviation, if the pull for an event was less or greater than the normal distribution
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background events.
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then the event is determined to be overestimated or underestimated. Poorly estimated
events required track corrections.

The yD — ppn— reaction required four-momentum conservation with the
magnitudes of the track momenta of the protons and 7 treated as unknown to make a
kinematic fit. Ap was analyzed for each particle in each sector of the detector. The
protons and the 7 uncertainties on the track momentum measurements were fit
independently.

Figure 5.25 shows Ap vs. p, ¢, and 6 for Sector 1 of the CLAS detector for the
proton and 7 after the eloss corrections. The ¢ is the azimuthal angle from the middle
of Sector 1, and @ is the polar angle from the beamline within the lab coordinate system.
These skewed charged particle momentum can reach 10 MeV/c. These peaks can be
attributed to energy losses not taken into account by the eloss package, misalignments
of the drift chambers, and differences between the actual and calculated magnetic fields.
The error in the results of the track momentum was largest for low-momentum protons.

The path of the track traversing the drift chambers was used for calculating the
momentum of the charged particles. The length of a charged particle’s path within a

magnetic field is proportional to:

Bxd?
__lrxan)

- (5:2)

The uncertainties in the momentum scale as the reciprocal of the momentum. This is
difference between the inverse of the fit momentum and the inverse of the detected
momentum after e/oss corrections. The p, ¢, and 8 were used for the corrections to the

track paths. Each were fit in different stages to isolate their contributions. Several
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iterations were performed until the momentum corrections converged to a mean Ap of

zero. Figure 5.26 shows the mean difference between the fit and corrected momentum

binned by p, ¢, and 0 for Sector. After the corrections most of the distributions show a

nearly flat distribution.
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Figure 5.25: Sector 1 fits from Mattione’s momentum correction3s]. Each shows the difference between the fit and
detected momentum after e/oss corrections as a function of (a) momentum, p, (b) azimuthal angle, ¢, and (c) polar angle,
6 for for the proton(left) and 7—(right). In (c), the inefficient drift chambers and TOF scintillator paddles caused several
“hole” regions. These are seen in each of the sectors.
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Figure 5.26: Sector 1 fits from Mattione’s momentum correction[35]. Each shows the difference between
the fit and detected momentum after the momentum corrections have been applied. They are plotted as
functions of (a) momentum, p, (b) azimuthal angle, ¢, and (c) polar angle, for the positive(left) and negative
(right) pions.

The plots in Fig. 5.26 show the effects on the momentum after the eloss and drift
chamber corrections for the . When looking at the distribution of momentum for each
final-state track with its corrected momentum, little difference is seen. However, when

the change is plotted per momentum interval, the effects of the corrections become
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more visible. With just the eloss correction, an exclusively positive corrections is found
with stronger corrections at the lower momenta. However, when the drift chamber

corrections are applied, an unbiased smearing is seen.
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Figure 5.27: Corrections to the positive pion’s momentum. In (a) little difference is seen between the
distributions of original track momentum and the two corrected. However (b) when the difference of the
eloss correction is plotted per momentum interval, a positive skewing in momentum can be seen. (c¢) With
both eloss and drift chamber corrections applied, an unbiased smearing is seen in the change of momentum.
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Because of the poor resolution and larger uncertainties at lower track
momentum (as can be seen in a plot of the track momenta, as is evident in Fig. 5.27),
events with protons below 400 MeV and pions below 100 MeV are not used in this

study.

5.5.5 Beam Energy Corrections

The energy of the electron beam has no direct measurement in the CLAS detector
system. Instead the electron energy is assumed to be the reported energy from the
CEBAF accelerator, which should be near the requested energy (1.990 and 2.655 GeV).
Initial checks were made on the fluctuation of the beam energy with that requested, by
comparing with energies measured in simultaneous experiments made in Hall A and C.
Drifts in energy were typically around 2 MeV. Their cause could be due to beam
steering, beam dispersion, and variation in the cryogenic cooling.

For Mattione’s beam correction code, the yD — ppm~ reaction was again used.
The energies were corrected by individual runs based on their mean missing energies
per event. A correction factor (CF) was developed to apply to the BOS bank values and

was defined as:

CF = (Ey—EMissing)/E ] (53)

where Ewissing is the average missing energy in the yD — ppm— reaction.
Figure 5.28 shows the calculated multiplicative energy corrections used in
Mattion’s code for both energy ranges in the gl3a dataset. An average 1 MeV variation

is seen with the corrections.
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5.6 Photon Selection Studies

For this analysis, three methods where employed for the photon selection. The first
method simply took the event photon from the banks, which was determined during the
cooking process. The next two methods both used a voting scheme. The vertex time for
each track is used to vote for a specific photon. The photon voting is weighted to favor
the pions (particularly the negative pion), to avoid tied votes. The first method uses the
vertex position for each track as the correction to the vertex time. The second uses the
corrected production vertex position to calculate a new vertex time for each track.
Though there is an intermediate decay for these tracks, the vertex time will not
experience a significant change. It is, however, sensitive to the z position within the

target.

5.6.1 Method Comparisons

The different methods were compared by looking at the photons chosen for each event.
In cases where the photons chosen are not in agreement, a value of 50 is assigned. This
allowed for visual representation of the disagreement with the photon selection. When
comparing the photon selection from the vertex corrected method with the photon
selected in the cooking process, we see approximately a 10.5% difference. This clearly
indicates that the bank vertex values cannot be trusted in events without any measured
tracks from the production. Likely, reliable values could be taken from the bank in
similar reactions if a photon or an extra pion is in the final state with the KsA. This extra
particle would originate from the event vertex. If the vertex corrected method is then
compared to the method using the initial track vertices, a difference of 3.6% is seen.
This further illustrates the necessity of vertex reconstruction of the intermediate and

event particles.
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Chapter 6

CLAS Acceptance

In principle the CLAS detector provides 47 acceptance, but in reality, the detector has
several “blind” spots and low regions of efficiency. Monte Carlo simulation was used to
model these inefficiencies. The simulation can be used to study the limitations in the
analytical code use for the channel reconstruction. The simulation only generates KsA or
Ks2" events. This fact can be used to examine cuts to see how many “real” events are
being lost by some of the chosen cuts. The GSIM code used for GEANT already has the
details of the CLAS detector system encoded. Some modifications were made to adjust
the data to the specifics of the g13 experiment— namely gpp and the code created for

this analysis.

6.1 Monte Carlo Simulation

How one simulates the hadronization process is of fundamental importance. When the
parton (collectively quarks and gluons) shower is finished, low momentum transfers
dominate. Currently there are concrete theories on this process; however, there are
several empirical models. PYTHIA is the most notable code for processing parton
showers. For this study, fsgen (a FORTRAN code which uses the PYTHIA framework)
was used for the event generator. For practical reasons, fsgen uses pre-generated
“Lund” tables to begin the event generation. These tables hold the decay tables for
many of the hadrons. The generated events are then passed to the GSIM GEANT
package where their tracks are traced through the simulated CLAS detector. The

distribution of the tracks is then corrected by the gpp software to account for inefficient
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or dead detectors not modeled in GSIM (mostly in the drift chambers and the time-of-
flight systems). Finally, the simulated data is cooked the same way as the empirical data
and processed by the same analysis code. Some final cuts are made to account for dead

and inefficient detectors and to correct for event triggering.

6.2.1 Event Generation

The decay or scatter of the excited nucleon is not performed with fsgen. Instead, the
event generation begins with the section of photon energy. With this energy, the Fermi
momentum is determined using the Bonn distribution and the center-of-mass energy
and momentum is determined. The Bonn potential is based on the exchange of mesons
between the nucleonsf3¢l. In its simplest form (before the Fourier transform), the

potential can be written as;

! g7 (91:k)(02°K)
RO = — R e, (61)

where g is the coupling constant for the p/Ninteraction, M is the mass of the nucleon, o
are the Pauli spin matrices, and k is the difference of the relative 4-momenta in their
initial and final states. The code then uses two factors to calculate the angular
distribution of the decay/scatter hadron— a user defined function for the cosine theta

and a defined #slope value, where the ¢slope is £in the differential cross section:

do _ —bt
o = o€ - (6.2)

Here oy is the amplitude of the cross section and ¢is the squared 4-momentum transfer

as discussed in section 2.5. The ¢slope can be varied to a user defined method.
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Initially the distribution of angles for the neutral kaon and Lambda decay
particles cannot be known. This determination has to be done through an iterative
process. For the first iteration of the simulation, a phase space (isotropic in ¢ and cos0)
distribution is used. The acceptance is calculated by the number of events extracted
from the missing mass peak of the spectator proton divided by the total number of
events generated. It is known that the two hadrons decay back to back, so when
reporting the differential cross sections, only the kaon center-of-mass angle is used. The

resulting cross section of each iteration is then used to correct the next.
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Figure 6.1: The fsgen input distributions for the cosine theta of the Ks track. The standard #slope
distribution (a) the phase space distribution (b) and the input cross sections without (c) and with (d) a
10% phase space are each input into the fsgen event generator for 200,000 events for each run submission.
512 runs were submitted for each iteration. The phase space (b) is presented in absolute value by the
inspection code when checking before submission. The fsgen histogram reports the full distribution for the
sum of particles.
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With every iteration, the new cross section is submitted into fsgen. This is done
by assigning each event a number between 0 and 1 and checking it with the normalized
distribution. If its random number is less than the normalized cross section value for its
Obin, it is rejected and a new event takes its place. The total number of desired events is
then produced with the shape of the angular cross section. However, it is important to
make sure each normalized value does not approach zero when using the cross section
to produce the new distribution of Ks in cosine theta. Small values tend to induce wild
fluctuations with each iteration. This is easily avoided by assuming each angle has at
least 10% chance of having a Ks, while the remaining 90% conform to the cross section
(see Fig. 6.1). Bins with strong slope also have stronger uncertainty associated with the
slope function.

The fsgen code can perform secondary decays of the particles into specified
channels. However for this study, the decay options were turned off and the decay was
performed by the GSIM as the particles are being translated through the simulated CLAS
system. This allows for more realistic vertex reconstruction within the simulated data.

It is important to note that when boosting tracks in the generated event BOS
files, the neutron is treated as the only target. [ts momentum, however, is not treated as
zero. The neutron is calculated to have the Fermi momentum it shares with the proton
while in the deuteron. The simulation BOS files only store the Fermi momentum of the
proton; however the neutron’s Fermi momentum is equal and opposite to that of the

proton and is easily derived.



CHAPTER 6. CLAS ACCEPTANCE 126

6.2.2 Event Processing

Once the quality of the generated events has been verified, they are passed to the GSIM
code, which propagates them through a simulated CLAS system. The short-lived Ks and
A particles are decayed during this stage of the simulation. Most of the neutral particles
decay before they reach the start counter. Their decay products are then propagated
through the rest of the system. The trajectories and energies of the final-state particles
are recorded into the data banks as individual measurements of subdetector systems.
The simulated BOS files have the same structure as the real BOS files, but have
additional MC banks. The MCTK bank stores the track information for the neutral
particles in addition to the final state tracks. The originating vertices for each track are
stored in the MCVX bank. Before these files are cooked and analyzed it is important to
first correct for the detector inefficiencies by running the gpp package.

The gpp code serves two primary purposes— it modifies the tracks to represent
the inefficiencies in the current CLAS detector system and it can smear the track’s path
through the drift chambers to better model the uncertainty of detectors as seen in the
experimental data. It also smears the time of the event photon. Initially, the smear
values are all set to the maximum unit value of 1. In later simulations, the photon time
smearing was adjusted to test the analysis codes selection of event photon.

When the analysis code is run on simulated data, extra steps are made during
the cataloguing of track values. The MC banks are used to compare the original
generated event values to the reconstructed values. This method was described in some
detail in section 5.1.5, when examining the reliability of the vertex reconstruction. The
use of the banks is very important when evaluating the analysis codes accuracy. With

the original event information, it is possible to determine how many good events are
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rejected during the particle identification, photon selection, and invariant mass cuts.
These factors are considered when generating the yield correction factor for the final

development of the cross sections.

6.2.3 Simulation Results

With the absence of background channels in the simulated data, we expect to see clear
distributions of the final-state and intermediate particles. In Fig. 6.2 the reconstructed
masses of the neutral kaon and Lambda are shown. Their form closely resembles that of
the experimental data with a much lower background. That there is any background at
all in the simulated data indicates uncertainty in the reconstruction of the analysis code
and/or effects of the CLAS detector’s simulated efficiency. The yield correction factor
accounts for this discrepancy.

Similar to Fig. 4.22, the missing mass of the proton is shown in Fig. 6.3. The first
histogram shows the missing mass of the KsA vs. the missing mass of the Ks alone. This
gives the missing mass of the proton vs. that of missing mass of the hyperon. In the case

of simulated data, the only hyperon is that of the Lambda.

6.2.4 Simulation Start Counter Cuts

The triggering from the start counter introduces subtle loss of events that is present in
the real data, but not in the simulated set. The simulated CLAS system does not account
for the relative long life of the A (and to a lesser degree, the Ks). The A has a proper
decay length of 7.9 cm. Though it is not usual, the A particle can decay outside the start
counter. Because it is a neutral particle, it is unlikely to generate a hit if it decays outside

of the start counter. The level 1 trigger used in gl3a required 2 sector hits to record an
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event. Even if the Ks (or the A if the Ks decayed outside) registers a hit the start counter

an event would not be recorded.
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Figure 6.2: The invariant mass distributions of the simulated Ks and A particles. Since only “real” KsA events
were generated, the slope in the ntn™ invariant mass indicates that some KsA events are being poorly
reconstructed. This could be due to distorted data during the tracks path through the GSIM simulated CLAS

detector or efficiency corrections in gpp.
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Figure 6.3: Missing mass of the simulated data, from the reconstructed Ks and A particles

The Monte Carlo simulation does not account for hits in the start counter, but
instead assumes all particles were registered. The analysis code accounts for this with
cuts on the decay vertex position. The GSIMS code decays both the A and Ks during its
propagation through the CLAS detector system, with the probability of decay being in its

proper frame;

P = e7t", (6.3)

where 7 is the mean lifetime and ¢is the random track lifetime. It records the start
positions of all the initial, intermediate, and final-state particles. If the either of the

particles decayed outside of the target, the event is rejected.

6.2.5 Evaluation of Competing Channels

Before the final cross sections were determined, a comparison of channels was made as
a simple study of acceptances. Equal number of events were generated for the KsA
channel and the two lowest energy competing background channels— the Ksz’ and

K(892)*A channels. Phase space was used for the event generation. The final results
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show a very familiar missing mass distribution. The near absence of the K(892)*A
channel reflects the low total cross section for the reaction, and the events that do occur
have a low very low acceptance. It is unlikely the experimental data has many K(892)*A
events. Since both the KsA and KsX° channels have a distribution ratio very similar to
that of the empirical results, it would be reasonable to expect the total cross sections of
the KsA and KsX° channels to be within one order of magnitude. However, to truly
understand the relation between the two reactions, the cross section for both channels

must be extracted simultaneously.
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Figure 6.4: Comparison of acceptances for different reactions. Two hundred and fifty thousand events were
generated for each. The green distribution is the K*A channel, and shows very little contribution.



CHAPTER 6. CLAS ACCEPTANCE 131

6.3 Yield Correction Factor

The simulation of the CLAS detector allows for the correction of lost events in the CLAS
system. It also allows the evaluation of the analysis code itself with the development of
the yield correction factor. This correction factor is determined by taking the ratio how
many events are lost in the particle identification and invariant mass cuts in the
experimental data vs. the simulated events. For this analysis, the yield correction factor

was determined by:

(1-CimE) (1—ChAss) (1—=C3¢)
Yop = : 5.4
CF ™ (1-cEmp) (1—Ciiass) (1—CEo) 5-4)

where C3;y is the faction of cut events from poor timing, Ciass is the percentage of lost
events from the invariant mass cut to the simulated data, and C{ is the fraction of
events where both track combinations survive the cuts. The variables C§p, Cyg, and
Ciass correspond to the same fractions for the experimental data. We find the

correction factor to be 1.003.

6.4 Acceptance

The acceptances for the KsA and KsZ9 channels were calculated by taking the original
number of events generated and comparing them with the number events that survived
after they were passed thought the simulated CLAS detector and reassembled through
the same code as the real data. Originally the events are generated in a flat phase space.
That is to say isotropically with d(cos®) and d¢ being uniform in the center of mass
frame. With small enough bin size this is a reasonable assumption. However, when bin
sizes get larger, the slopes within each bin can cause poor representation of the true

functional form of the values within each bin. To reduce the effect from large binning,
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the cross section produced after the first iteration is used to generate the events for the

next.

6.4.1 The yn — KsA Acceptance

Figure 6.5 shows the acceptances for the KsA channel, binned by cosine theta of the
kaon and the energy of the interaction. The cosine theta distributions all exhibit the
typical form seen in the experimental data, with a mostly forward bias. It is difficult to
be certain on what the real contributions are for the simulated acceptances; however,
there appears to be a forward and central distribution. The forward distribution
remains strong at each of the measured energies; however, the middle distribution loses
its prominence after 2.0 GeV. At this point, only the statistical errors are shown. The

systematic errors are presented independently in section 6.5.1.
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Figure 6.5: Acceptance of the CLAS detector system for the yn — KgA reaction, binned by energy and cosine
theta.

6.5 Acceptance Uncertainties

Two methods were applied to determine the uncertainties of the acceptance. For the
statistical, | used Yordanka Ilieva’s method for the time-of-flight uncertainty. This
technique does a comparison of the number of generated events verses the number of
events measured. Michael McCracken’s method of acceptance-corrected yields was
used for the systematic uncertainties. His method matches the simulated acceptance

with the experimental yield for each sector to estimate the variation.
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6.5.1 Systematic Uncertainties

The CLAS detector was designed for 4n acceptance in the boosted reference frame. That
is to say, it was built to have the same coverage over nearly all azimuthal and polar
angles. With a large enough data sample, it could be expected that each of the six
azimuthal sectors would have roughly the same yield. Yet in reality each sector has
systematic losses in detector efficiency (due to lost TOF paddles, dead DC wires, etc).
The simulated CLAS in GSIM was modeled to try to account for these weak or dead
detectors. The clearest way to check this is to normalize the yields for each sector by
the simulated acceptance. Lost systems are not symmetric and become visible when
comparing the each sector to the average of the acceptance-normalized yield.

Figures 6.6 and 6.7 show the yields by sector and acceptance-normalized yields
by sector, respectively. With a perfect model, the acceptance-normalized yields per
sectors would mostly line up. However no model is perfect and experimental detector
efficiencies are not constant. Therefore, significant variance can be seen between the
sectors. Figure 6.8 shows the ratio of the acceptance-normalized yields per sector
verses the mean. These deviations were used in the calculation of the systematic

uncertainty of the acceptance.
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Yield by sector
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Figure 6.6: The sector-dependent yield for each sector. The 2.64 GeV gl3a data set was used for this
uncertainty measurement. The design for 4w acceptance implies that each sector should have nearly the
same yield; however, some fluctuation can be seen. Most variance is due to the failed detectors within the
CLAS system.
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Figure 6.7: The acceptance-normalized yield for each sector can be used to see the variation in the
simulated model from the experimental efficiency of the CLAS system. Each sector’s value can be compared
to the mean value for its uncertainty.
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Figure 6.8: The ratio of each sector’s yield to the mean of all sector yields can be used for determining the
final systematic uncertainty of the acceptance.

6.5.2 Statistical Uncertainties

The statistical uncertainties were determined using the same method applied to the
original TOF studies for CLAS. This method employs a straightforward comparison of
total measured events with those actually generated[37l. The efficiency of a simulated
event can be determined by:

A A

= (6:5)

Ks\) —
E(E, cosOcy) = = T
where A is the number of simulated events in the final reconstruction, B is the number
of events which did not make it into the reconstruction and C = A + B is the total

number of events. The inefficiency is found in a similar manner:
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&'(E, cos85;) = % = A%. (6.6)

The efficiency and inefficiency together account for all events, therefore their sum must
equal one. This means that their change must also equal, and that AA = AB. The value of

C has treated as a fixed number and has no statistical uncertainty, so:

?: — and — = — (67)

By summing both terms in eq. 6.5, we can express A¢ as:

he = &' (0A). (6.8)

The change in the accepted events, A4, is expressed by:

M= 2 (6.9)

and

Ae = & (6.10)

Equations 6.9 and 6.10 are used in the final determination of the statistical uncertainty

of the acceptance.



Chapter 7

Differential Cross Section

In this chapter we discuss our results of extracting the differential cross section for the
KsA channel as functions of center-of-mass angle and as functions of the center-of-mass
energy. With the reconstruction of the KsA channel from the final-state particles
pr  w', only the Ks2° survives the cuts, which in turn decays to the KsA plus a y. Non-
resonance phase space is negligible. In identifying the photoproduction of hyperons off
neutrons, we take the missing mass of the total reaction; the peaks of the proton and the
proton plus gamma overlap some.

The Ks2' is background for this work, but in future studies, we shall make use of
our KsA-channel identification tools for extracting the X’s. The method of yield
extraction for the Ks2° channel is similar; only the acceptance simulation will require an
extra decay step in the event generation. The cross section for the Ks>° channel will be
developed at a later time. These future studies will allow us to perform an independent
coupled-channel analysis of the KsA and KsX’ reactions for cross checking the

systematic uncertainties inherent in neutral-hyperon identification.

7.1 Cross Section Uncertainties
7.1.1 Systematic Uncertainties

In Chapter 5 we discussed in detail our systematic studies for extracting the yn = KgA
cross section. Each cut and correction on the data was evaluated by systematically

studying the effects on the exclusive selection of events, on identifying quasi-free
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neutrons, and on the total yield. The systematic uncertainties were determined both
from varying the ratio of the invariant mass peak to the phase-space background as well
as observing the momentum dependence of the angular distribution of the missing
particle and its subsequent effect on the total yield itself.

Cuts were made on beta and time selections, the background of related invariant
mass peaks, the heavy hyperon seen with the missing mass of the Ks, and on events
having excessive momentum. Due to the gravitational sag in the tagger hodoscope, it
was necessary to correct the energy of the photon and the momentum of the final-state
particles. The momentum corrections are required to account for the energy lost in the
target and in the start counter before the particle is measured in the drift chambers with
the attendant systematic inefficiencies in various regions of the drift chambers.

The quality of the Monte Carlo simulation was also considered. This leads to
more cuts on events with tracks entering bad T- and E-counters or SC paddles. The
inefficiencies at the boundaries of the CLAS detector also required fiducial cuts for both
the experimental and simulated data.

The overall uncertainty of the cross section varies significantly for each point.
The range of uncertainties for the systematic studies is presented in Table 7.1. The
minimum uncertainty has been calculated to be 7.30% with the worst points being
57.15%. The largest source of error comes from the acceptance uncertainty and yields
fits. This is predominately due to low-count bins in energy and cosine theta that result

in poor data fits.

7.1.2 Statistical Uncertainties

The statistical uncertainty of the acceptance was discussed in section 6.5.2. As can be

seen in Fig. 7.1, the systematic uncertainties tend to dominate over the statistical.
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However, the statistical contribution is significant in each energy bin and is therefore

always factored into the total uncertainty. The difference in uncertainties in last two

energy bins (2.0-2.2 GeV and 2.2-2.4 GeV) is particularly small.

The statistical uncertainty of the yields was determined from the fit to the

missing-mass peak. The uncertainty of the yield shows a similar dominance of the

systematic uncertainty. Yet the statistical uncertainty still has a significant presence and

is considered for all of the total uncertainty calculations.

Table 7.1: The assorted uncertainties associated with data cuts, corrections, and individual system
measurement limits. Chapter 5 covers the development of most of these values. Others were taken from
reference indicated. The largest source of error is from the acceptance uncertainty and yields fits.

Category System Source Uncertainty
Final-State PID Cuts Beta cut checks 0.30% — 22.00%
Identification Time Difference Cuts Timing cut checks 2.48% — 4.28%
Yield Ks Invariant Mass cuts Mass cut checks 2.48% — 7.46%
Extraction L Invariant Mass cuts Mass cut checks 249% _ 7.48%
Missing Momentum Cuts Missing momentum fits 3.79% 6.76%
Correction factor yn = KgA >0.1%
KsA fits yn - KgA >0.1% 32.1%
Ksx fits yn = KA >0.1% 16.5%
CLAS Fiducial Cuts Mattione % 1.70% — 6.20%
Acceptance Acceptance Uncertainty yn - KgA 3.02% — 32.29%
Trigger Simulation yn - KgA 2.11
Miscellaneous Target Length Christo et al. 8 0.03%
Target Density Williams © 0.11%
BR(Ks, m" + ) Nakamura et al. ¥ 0.05%
BR(A, p+1) Nakamura et al. B 0.05%
Photon Flux Williams 1.80%
Overall Systematics Total of above uncertainties | 7.10% — 55.18%
Statistical Taken from yield 1.67% — 14.88%
Total 7.30% — 57.15%
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Figure 7.1: The statistical and systematic uncertainties for the acceptance of the yn = KgA reaction. For
cos(Hé(;,), the systematic uncertainties tend to dominate over the statistical. The uncertainties in last two
energy bins (2.0-2.2 and 2.2-2.4 GeV) have similar magnitudes. The statistical contribution is significant in
each energy bin and is always factored into the total uncertainty.
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Figure 7.2: The statistical and systematic uncertainties for the yield of the yn = KgA reaction. For cos (9{-(13,),
the systematic uncertainties tend to dominate over the statistical. Though the statistical contribution
remains significant in each energy bin and is therefore always factored into the total uncertainty.

142



CHAPTER 7. DIFFERENTIAL CROSS SECTIONS 143

7.2 The yn — KgA Differential Cross Section

As discussed in section 2.6, the differential cross section for the yn - KgA — pn~n

reaction can be rewritten as:

Ks
do _ Atarget 1 Y(\/E'GCM) Ycr Tks Ta
Ks — K K
dcoseaa PEN 4 AcosGCIfl ¢i(Vs) a(\/E,HCIa) Tk gomtn= Ta-sprn=

s GRY)

where Asige is the atomic weight of the target, p is the density of the target, ¢ is the
length of the target, Na is Avogadro’s number, Acos(@é(,;) is the bin width of the cosine

theta, Y(Vs,05y) is the yield, ¢;(v/5) is the photon flux, Yz is the yield correction

[N

oy . I'go .
factor, a(v/s,0§,) is the acceptance used, and —*— and are the inverse

KO-mtm— A-pm™
branching ratios of the decay channels for the neutral hadrons.

After the final yield has been determined, several iterations are made in the
development of the acceptance. The first step assumes that the Ks is projected into any
angle, with the A hyperon being oppositely directed in the center-of-mass frame. The
resultant cross section is then normalized and fed back into the event generator. Six
iterations were performed for the final cross section. All but the first and last iterations
used the previous iteration’s cross section with a 0.1 phase space (at least a 10% chance
that a Ks generated in a given angle will be kept). Without the requisite background
phase space, certain bin values could approach zero and thereby produce highly
uncertain and suspect values from the sloping function in the fsgen code. The phase
space was reduced to 0.05 for the last iteration.

As can be seen in Fig. 7.3, the distributions are, more or less, consistent. They

differ mostly for forward angles and energies above 2.2 GeV. These errors typically
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arise in bins with significant slope. After the first iteration using phase space, the
distribution in the 2.2-2.4 GeV bin remain nearly the same. However, when the
background is changed to 0.05 phase space, the peak magnifies. The fourth iteration
was used for the development of the final cross section.

Figure 7.4 shows the flux-normalized yields for g13a, while Fig. 7.5 is the final
differential cross section. In the two lower energy bins (0.8-1.0 and 1.0-1.2 GeV) for the
KsA channel, the cross section is relatively flat. However, after 1.2 GeV, the cross section

begins to resemble the standard #slope distribution, implying that diffractive scattering

Energy: 0.8 < Eg < 1.0 GeV Energy: 1.0 <Eg < 1.2 GeV Energy: 1.2 <Eg < 1.4 GeV
0.80 1.80 2.00
W 070 Z . 160 F 180
5 £ S 160
& 0.60 5 140 5
< 050 w A IE 3 1) 2 i';g £
5 ) & = 13 N = 1L
S 040 : R é-gg TR . £ 100
P A -
E 0.30 N * o ;:*:"'a QQQQZQQQ g 080 . [
a &5 060 SefbhE = ) LY | Rppamfrs
@ 0.20 . k2 3 ikﬁgi . v » * ’ wraefeptinAn
© 010 (IR 1 redE 2 040 4 040 p i
50 4 # 5 020 S o020 !
000 —w 0.00 | 0.00
-1 -0.5 0 0.5 1 1 05 0 0.5 1 -1 -0.5 0 05 1
cos(8 &) Cos(8%,) Cos(8K,)
Energy: 1.4 <Eg < 1.6 GeV Energy: 1.6 < Eg < 1.8 GeV Energy: 1.8 < Eg < 2.0 GeV
— 500 350 & 250
2 450 @ Z
5 400 E 300 & 200
3 350 e 2 250 . =
£ 3.00 “ 2 200 T 5 180
£ 250 2 150 g ®
2 200 gL | & 100
oy 150 . “;5* Y 1.00 !z P B
& 1.00 58, @ & 5 % 050 &
S 050 *Hananpyues LEJ 050 ru&u!ﬂﬂmh@*km S e lcuuwr“*ﬂai
0.00 | 0.00 |euf — . 0.00 o BT
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Cos(8 Ky) cos(6 K,) Cos(8 &,)
Energy: 2.0<Eg < 2.2 GeV Energy:2.2 < Eg < 2.4 GeV
- 100 - 080
E 0.90 E 0.70 # Phase Space
3 080 r 2 060
2 070 ] A Step 2
= 0.60 s 050
2 o050 2 040 . ® Step 3
S 040 ¥ 3 030 o . * Step 4
@ 030 B . it
m [ @ . a ; Step 6 (Lower PS)
8 gfg w9 s g 010 AL IO 9"
Y 000 MLAME.LILITL . “ noo ron tene
-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
Cos(8%,) Cos(@%,)

Figure 7.3: The evolution of the differential cross section with each iteration of the event generation. The
distributions are mostly consistent, except at the most forward angles and above 2.2 GeV photon energy.
Errors mostly arise in bins with significant slope. After the first iteration (using phase space), the
distribution in the 2.2-2.4 GeV bin remain consistent. However, when the background is changed on the 6t
iteration, the peak magnifies, due to the method used to generate the sloping function from the bin values.
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dominates the reaction. By the energy range 2.2 to 2.4 GeV, there is a clear increase in

cross section around cos(Gé(,\(,),) = 0. In the flux-normalized yield for the same energy

bin, there is a clear opposite effect on the same region about zero. The effect of the peak

clearly comes from the acceptance determination (see Fig. 6.5), which in turn is

dependent on the results from the final yield. The increase in error bars in this region

is due to the variation measured from the six iterations in the development of the

acceptance; the error bars reflect the statistical and systematic uncertainties added in

quadrature.
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Figure 7.4: The normalized yields binned by both energy and cosine theta of the Ks track in the center of
mass frame. The distribution has a clear forward bias in direction. Both the 2.0-2.2 and 2.2-2.4 GeV ranges

show a decrease of events between 0 and 0.5 cos(@é{,s,).
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Figure 7.5: Differential cross section for the yn — KgA reaction, binned by energy and cosine theta. The first

two energy bins show mostly an even cross section per cos(@é",&) bin. However, the higher /s energy bins
exhibit a standard t-slope form, implying that scattering dominates in this reaction. Excess cross section can
be seen about cos(@é(;,) =0 in the 1.8-2.2 GeV range, which is consistent with results seen in similar
channels (e.g. K*A, and K**A). The error bars include both statistical and systematic uncertainties. The gray
bar represents the variation in cross section from all the iterations of simulation before the cross section
stabilized.

With the cross section plotted as a function of the center-of-mass energy (seen
in Fig. 7.6), it is possible to further examine the trends of these energy-dependent
distributions. The general distribution is similar with what is seen in the KA
channel#0li42, However, the K'A has one peak at ~1.8 GeV and, in this study, the KsA
channel shows two peaks, at 1.7 and 1.9 GeV. The cross section quickly lowers with
increased energy. Around 2.3 GeV, some uncertain structure manifests around cosine

theta of zero.
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Figure 7.6: Differential cross section for the yn — KgA reaction, binned by cosine theta as a function of the
center-of-mass energy. There is clearly a smooth increase at the lower and mid cosine theta angles as the
energy bins are increased. The development of these structures can be seen with cm energy as low as
1.7 GeV and becomes more clearly pronounced by 1.9 GeV.
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We have chosen to show the data “as is” as there are no prior measurements of
this channel to form a direct comparison. We are also not aware of any specific

predictions for this channel.

7.3 Summary
QCD-based theories predict a plethora of N* states. Although many of these low-lying

states have been measured, we expect as new decay modes become kinematically
accessible, more excited baryon will be identified. In the past, most of resonances were
measured with pion beams. It is most likely that many of these yet unmeasured missing
resonances will have a stronger coupling to photons than through interacting with
pions. Specifically, the yn — KgA reaction is predicted to be sensitive to the contested
“missing” D13(1900) resonancelll. Some modified theories suggest alternate quark
configurations. There are competing models for the quark symmetries and dynamics
ranging from preferentially paired-quark distributions to hybrid gluonic excitations.
The diquark model, for example, recalculates these resonances assuming that two of the
quarks are tightly bound, the third in orbit about them. Identifying missing resonances
will ultimately give measure of the underlying dynamics.

In this study, we measured the energy-dependent differential cross section for
the yn - KgA reaction from the gl3a dataset, which was collected in 2006 with the
CLAS detector system at Jefferson Laboratory using a circularly-polarized photon beam
between 1.3 to 2.3 GeV on a deuterium target. This cross section has not been
previously measured. At the time of this study, we are unaware of any theories for the
yn — KgA cross section. Even though the 13a experiment uniquely offers a circularly

polarized beam onto a deuterium target, we chose to first extract the differential cross
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section, which we view as the necessary first step in understanding KsA production off
neutrons.

Extracting the differential cross section is difficult, as one must have an
extremely good understanding of the systematic uncertainties. The development of the
differential cross section requires thorough tracking of the rejected events, as well as
careful reproduction of the g13 experimental environment in the simulation. Flaws in
the detector performance must be reflected in the simulation, and conversely, the
limitations in the simulation must limit what is accepted in the empirical data. This
channel is further complicated by the difficulty of reconstruction of the neutral Ks and A
tracks. None of the detected final-state particles come from the production vertex. This
required the reconstruction of the neutral decay vertices and, in turn, the event vertex.
Additionally, the selection of the event photon needed special attention. Despite these
challenges, we have solid results for the differential cross section.

We regard this work on the KsA energy-dependent differential cross section as
the necessary first step in identifying the underlying physics in the resonance regime.
The work will lay the foundation for further studies in extracting the polarization
observables for circularly- and linearly-polarized photons from our analyzed dataset.
Measurement of the differential cross section coupled with single- and double-
polarization observables provide strong constraints on identifying the N* excitation
spectrum. In the inestimable words of Lao-Tzu, the longest journey begins with a single

step. We have made that crucial first step.
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Appendix A

Cross Section Tables

A.1 The yn - KgA Acceptance and Differential Cross Section

The table below gives the acceptance and differential cross sections discussed in
chapter 6 for the yn = KgA reaction. The data is binned by energy and the cosine theta
in the center of mass frame. The acceptance statistical errors were determined using the
same method used by Ilieval37l in the time-of-flight statistical uncertainty for coherent
pion production. The systematic errors were determined using similar methods to

McCracken’s[*0l detailed in chapter 7.

Table A.1: Tabulated differential cross sections for the yn — KgA reaction. Values are binned by both energy
and cos0 in the center of mass frame

. Cross Cross
Energy Cosine Acceptance Yield Section Section
Vs | Theta | ACceptance Total Yield  Systematic _do Total
(GeV) Uncertainty Uncertainty €os B’ Uncertainty
1.74 -0.9 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
1.74 -0.8 2.118E-06  2.118E-06 0.00 0.00 0.00000000 0.00000000
1.74 -0.7 3.572E-06  2.526E-06 1.00 0.00 0.16889678 0.00000000
1.74 -0.6 9.195E-06  3.754E-06 5.00 2.24 0.32808862 0.13394320
1.74 -0.5 2.189E-05 5.651E-06 4.00 2.00 0.11026043 0.02846995
1.74 -0.4 3.094E-05 6.595E-06 9.00 3.00 0.17553133 0.03742498
1.74 -0.3 3.273E-05 6.682E-06 8.00 2.83 0.14745325 0.03010013
1.74 -0.2 7.483E-05 1.018E-05 23.00 4.80 0.18545209 0.02523942
1.74 -0.1 1.150E-04  1.240E-05 28.00 5.29 0.14689050 0.01584216
1.74 0 1.886E-04 1.612E-05 51.19 13.29 0.16372587 0.01399167
1.74 0.1 2.299E-04  1.690E-05 60.21 7.95 0.19681399 0.01447494
1.74 0.2 2.937E-04  1.795E-05 78.99 11.48 0.20204817 0.01234785
1.74 0.3 3.408E-04  1.903E-05 92.69 13.37 0.20434183 0.01141160
1.74 0.4 4.689E-04  2.254E-05  116.05 22.59 0.18595329 0.00894310
1.74 0.5 5.894E-04  2.482E-05 127.18 24.25 0.16213199 0.00683364
1.74 0.6 6.486E-04 2.507E-05 125.91 27.34 0.14585920 0.00564141
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1.74 0.7 4.928E-04 2.057E-05  102.60 22.74 0.15643083 0.00653542
1.74 0.8 1.700E-04  1.391E-05 82.02 10.63 0.36256507 0.02967803
1.74 0.9 7.789E-05  4.888E-06 49.85 22.29 0.48082272 0.03017991
1.94 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
1.94 -0.9 4.214E-06 2.107E-06 0.00 0.00 0.00000000 0.00000000
1.94 -0.8 8.578E-06  3.033E-06 7.00 2.65 0.76480729 0.27040398
1.94 -0.7 2.326E-05  4.850E-06 16.00 4.00 0.64476529 0.13444815
1.94 -0.6 4.851E-05 6.793E-06 45.13 10.81 0.87205836 0.12212306
1.94 -0.5 9.881E-05  9.465E-06 75.07 13.46 0.71201486 0.06821098
1.94 -0.4 2.026E-04  1.339E-05 128.96 20.73 0.59664900 0.03944255
1.94 -0.3 3.004E-04 1.597E-05  209.50 40.08 0.65359701 0.03475832
1.94 -0.2 4.920E-04 2.052E-05  315.34 35.22 0.60066908 0.02507314
1.94 -0.1 7.194E-04 2.453E-05 48191 35.84 0.62780632 0.02142546
1.94 0 1.006E-03  2.825E-05  732.91 49.62 0.68301662 0.01921238
1.94 0.1 1.379E-03  3.307E-05  975.09 43.93 0.75143036 0.01805396
1.94 0.2 1.767E-03  3.689E-05 1152.66 49.61 0.69342044 0.01451785
1.94 0.3 2.209E-03  4.068E-05 1464.98 44.48 0.70495291 0.01302643
1.94 0.4 2.582E-03  4.432E-05 1736.55 70.24 0.71482743 0.01231789
1.94 0.5 2.875E-03  4.612E-05 1800.52 47.02 0.66584405 0.01073409
1.94 0.6 2.695E-03  4.336E-05 1885.80 46.65 0.74387620 0.01202468
1.94 0.7 2.183E-03  3.805E-05 1507.71 57.26 0.73406046 0.01284296
1.94 0.8 6.840E-04  1.534E-05 821.54 48.05 1.27681173 0.02870034
1.94 0.9 1.026E-04  3.852E-06  188.28 21.23 1.95149441 0.07335626
2.14 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
2.14 -0.9 3.699E-06  2.616E-06 1.00 1.00 0.32387646 0.22901622
2.14 -0.8 1.822E-05 5.762E-06 4.00 2.00 0.00000000 0.08317818
2.14 -0.7 9.301E-05  1.290E-05 22.00 4.69 0.28339190 0.03930368
2.14 -0.6 1.794E-04  1.785E-05 83.71 11.16 0.55897063 0.05563141
2.14 -0.5 3.698E-04 2.505E-05 162.57 31.56 0.52673930 0.03569125
2.14 -0.4 7.061E-04 3.467E-05 327.32 40.88 0.55540078 0.02728680
214 -0.3 1.224E-03  4.538E-05 535.41 56.82 0.52421637 0.01945766
214 -0.2 1.946E-03  5.733E-05  815.05 57.72 0.50190435 0.01480956
2.14 -0.1 2.630E-03  6.637E-05 1161.60 70.84 0.52918972 0.01338133
214 0 3.536E-03  7.555E-05 1563.12 138.99 0.52955337 0.01134247
2.14 0.1 4.559E-03  8.396E-05 2043.13 73.75 0.58937755 0.01089247
2.14 0.2 5.620E-03  9.354E-05 2389.25 108.74 0.55906580 0.00934561
214 0.3 6.864E-03  1.045E-04 2819.75 95.58 0.54027015 0.00826512
214 0.4 7.676E-03  1.091E-04 3235.79 130.12 0.55439598 0.00792592
214 0.5 7.677E-03  1.072E-04 3523.46 83.49 0.60354789 0.00848048
214 0.6 7.420E-03  1.056E-04 3516.84 73.66 0.62329658 0.00892399
2.14 0.7 5.091E-03  8.169E-05 2974.11 63.72 0.76832747 0.01238718
2.14 0.8 1.435E-03  3.131E-05 1536.00 78.93 1.40754524 0.03078561
214 0.9 1.646E-04 6.544E-06 211.61 16.43 1.69043700 0.06724560
2.34 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
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2.34 -0.9 5.475E-06  3.871E-06 0.00 0.00 0.00000000 0.00000000
2.34 -0.8 1.908E-05  7.212E-06 6.00 2.45 0.82578015 0.31212117
2.34 -0.7 5.552E-05  1.184E-05 24.00 4.90 1.13533638 0.24206767
2.34 -0.6 2.317E-04  2.443E-05 70.40 17.23 0.79775807 0.08410995
2.34 -0.5 5.858E-04  3.924E-05 14281 143.31 0.64023422 0.04289733
2.34 -0.4 1.055E-03  5.206E-05  261.10 85.50 0.65004324 0.03209704
2.34 -0.3 1.784E-03  6.576E-05  442.64 52.34 0.65169896 0.02404833
2.34 -0.2 2.805E-03  8.363E-05  724.26 85.12 0.67814834 0.02024726
2.34 -0.1 4.271E-03  1.029E-04  957.52 78.76 0.58870164 0.01420929
2.34 0 5.639E-03  1.187E-04 1259.65 130.72 0.58660928 0.01238585
2.34 0.1 6.137E-03  1.211E-04 1502.87 120.01 0.72991219 0.01444195
2.34 0.2 7.510E-03  1.370E-04 1814.28 109.21 0.72009407 0.01318699
2.34 0.3 8.107E-03  1.404E-04 2161.75 93.85 0.79480573 0.01382236
2.34 0.4 8.951E-03  1.456E-04 2649.06 139.33 0.88211726 0.01441441
2.34 0.5 8.938E-03  1.452E-04 3133.24 83.32 1.04491770 0.01705685
2.34 0.6 7.893E-03  1.318E-04 3575.38 74.10 1.35012846 0.02263488
2.34 0.7 6.438E-03 1.173E-04 3151.83 97.02 1.45917205 0.02668564
2.34 0.8 1.653E-03  4.092E-05 1937.62 49.75 3.49443238 0.08668846
2.34 0.9 1.282E-04 6.964E-06  159.15 32.31 3.70007265 0.20105532
2.54 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
2.54 -0.9 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
2.54 -0.8 7.174E-06  5.073E-06 0.00 0.00 0.00000000 0.00000000
2.54 -0.7 6.373E-05  1.546E-05 3.00 1.73 0.15353662 0.03724005
2.54 -0.6 4.006E-04  3.769E-05 53.74 340.12 0.43762878 0.04118250
2.54 -0.5 1.019E-03  6.101E-05 93.08 9.65 0.29804876 0.01785879
2.54 -0.4 2.213E-03  8.737E-05  149.50 54.41 0.22034591 0.00870593
2.54 -0.3 3.508E-03  1.094E-04  299.15 57.54 0.27812914 0.00868790
2.54 -0.2 5.130E-03  1.309E-04  442.59 106.36 0.28141322 0.00719572
2.54 -0.1 6.987E-03  1.543E-04  558.47 112.49 0.26071786 0.00577295
2.54 0 9.056E-03  1.794E-04  704.44 118.25 0.25371324 0.00504172
2.54 0.1 9.917E-03  1.794E-04  815.01 815.51 0.26806063 0.00486633
2.54 0.2 1.081E-02  1.850E-04 1107.87 109.31 0.33425862 0.00574413
2.54 0.3 1.204E-02 1.963E-04 1414.47 162.24 0.38303967 0.00627027
2.54 0.4 1.334E-02 2.086E-04 1828.25 122.79 0.44688016 0.00701995
2.54 0.5 1.329E-02  2.039E-04  2471.39 110.28 0.60650085 0.00935350
2.54 0.6 1.233E-02  1.951E-04 2900.00 131.80 0.76702127 0.01219394
2.54 0.7 9.451E-03  1.649E-04 2959.40 96.79 1.02133221 0.01788751
2.54 0.8 2.741E-03  6.253E-05 2020.08 129.87 2.40358088 0.05495608
2.54 0.9 2.160E-04 1.042E-05  201.67 25.19 3.04473972 0.14692231
2.74 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
2.74 -0.9 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
2.74 -0.8 4.035E-06  4.035E-06 0.00 0.00 0.00000000 0.00000000
2.74 -0.7 6.263E-05  1.566E-05 1.00 1.00 0.05208138 0.01302100
2.74 -0.6 2.929E-04  3.476E-05 10.00 3.16 0.11136881 0.01322011
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2.74 -0.5 8.503E-04  5.912E-05 56.96 73.88 0.21851425 0.01519803
2.74 -0.4 1.836E-03  8.413E-05 77.26 61.95 0.13727082 0.00629457
2.74 -0.3 3.195E-03  1.107E-04  144.28 28.37 0.14727642 0.00510691
2.74 -0.2 5.101E-03  1.396E-04  231.56 30.18 0.14807183 0.00406032
2.74 -0.1 7.471E-03  1.728E-04  296.57 111.65 0.12946510 0.00300058
2.74 0 9.555E-03  1.950E-04  384.40 63.69 0.13121739 0.00268561
2.74 0.1 1.212E-02  2.296E-04  473.05 67.08 0.12731800 0.00242011
2.74 0.2 1.311E-02  2.316E-04  597.06 121.45 0.14848362 0.00263171
2.74 0.3 1.267E-02  2.246E-04  726.28 261.04 0.18690888 0.00332476
2.74 0.4 1.292E-02  2.206E-04 1011.46 87.62 0.25540445 0.00438038
2.74 0.5 1.487E-02  2.491E-04 1372.11 198.39 0.30099232 0.00506411
2.74 0.6 1.258E-02  2.144E-04 1777.36 105.69 0.46078594 0.00788354
2.74 0.7 9.734E-03  1.771E-04 1818.24 121.12 0.60926181 0.01112584
2.74 0.8 3.127E-03  7.228E-05 1212.17 83.91 1.26448176 0.02929783
2.74 0.9 2.204E-04  1.137E-05 65.75 10.72 0.97293359 0.05020348
2.94 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
2.94 -0.9 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
2.94 -0.8 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
2.94 -0.7 3.251E-05 1.327E-05 0.00 0.00 0.00000000 0.00000000
2.94 -0.6 1.602E-04  2.976E-05 4.00 2.00 0.08142417 0.01512183
2.94 -0.5 4.466E-04  4.789E-05 14.00 3.74 0.10225048 0.01096600
2.94 -0.4 1.275E-03  8.356E-05 50.96 51.46 0.13039006 0.00854998
2.94 -0.3 2.036E-03  9.718E-05 49.73 50.23 0.07964827 0.00380296
2.94 -0.2 3.367E-03  1.248E-04 71.09 71.59 0.06886970 0.00255551
2.94 -0.1 4.483E-03  1.307E-04 93.82 43.72 0.06825707 0.00199346
2.94 0 5.780E-03  1.464E-04 166.03 129.42 0.09368590 0.00237796
2.94 0.1 8.347E-03  1.793E-04  165.21 165.71 0.06455696 0.00139013
2.94 0.2 1.332E-02  2.449E-04  206.73 207.23 0.05062761 0.00093424
2.94 0.3 1.884E-02  3.157E-04  297.73 296.26 0.05155690 0.00086792
2.94 0.4 1.654E-02  2.903E-04  436.16 70.50 0.08602048 0.00151611
2.94 0.5 1.426E-02  2.623E-04  663.34 88.52 0.15172703 0.00280114
2.94 0.6 1.146E-02  2.204E-04  906.60 72.97 0.25804951 0.00497953
2.94 0.7 0.789E-03  1.967E-04 1048.67 132.72 0.34940417 0.00704172
2.94 0.8 3.056E-03  7.602E-05 678.39 138.89 0.72403428 0.01804573
2.94 0.9 2.290E-04 1.320E-05  125.25 14.80 1.78379196 0.10286512
3.14 -1 0.000E+00  0.000E+00 0.00 0.00 0.00000000 0.00000000
3.14 -0.9 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
3.14 -0.8 | 0.000E+00 0.000E+00 0.00 0.00 0.00000000 0.00000000
3.14 -0.7 2.232E-05  2.232E-05 0.00 0.00 0.00000000 0.00000000
3.14 -0.6 1.371E-04  5.596E-05 0.00 0.00 0.00000000 0.00000000
3.14 -0.5 2.226E-04  6.713E-05 5.00 2.24 0.07324982 0.02208840
3.14 -0.4 7.311E-04  1.236E-04 13.00 3.61 0.05799477 0.00980690
3.14 -0.3 0.973E-04 1.288E-04 29.00 5.39 0.09483891 0.01225064
3.14 -0.2 1.054E-03  1.010E-04 53.21 109.53 0.16466159 0.01578210
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3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14

-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

6.805E-04
7.427E-04
2.000E-03
8.425E-03
1.552E-02
1.506E-02
1.229E-02
1.135E-02
8.332E-03
4.335E-03
3.954E-04

5.005E-05
4.084E-05
7.053E-05
1.574E-04
2.188E-04
2.183E-04
1.877E-04
1.789E-04
1.387E-04
9.278E-05
2.818E-05

59.66
77.33
72.60
94.33
148.41
239.21
481.95
602.47
698.40
395.29
0.00

60.15
26.37
73.10
74.51
44.98
109.58
73.79
420.63
112.99
166.40
0.00

0.28593972
0.33963141
0.11838699
0.03651750
0.03119812
0.05179358
0.12792327
0.17320508
0.27338223
0.29739951
0.00000000

0.02103454
0.01868220
0.00417822
0.00068473
0.00044255
0.00075498
0.00196421
0.00274386
0.00457048
0.00638117
0.00000000
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Appendix B

Data Cuts and Counting

This appendix offers some of the finer details of the cuts and fits made for the analysis.
First the run ranges used for the analysis are listed. Next details are given on the beta
development along with the cuts made to the final state particle’s distributions. The
final section shows the fit to the missing mass peaks used for each of the cross sections

binned by photon energy and kaon angle.

B.1 Run ranges

The g13a dataset was taken over several run ranges. Table B.1 lists all of these runs
with some description of their stand and end times, beam energy, target, and if the data
was good. The first two ranges used a liquid hydrogen target, while the remaining used

the liquid deuterium discussed in the target section in chapter 3.

Table B.1 List of run ranges and their associated information. The initial tabulation was made by Paul
Mattionel32]

Run Range Date Date Beam Target/ Golden Run
Started Finished Energy Quality
(MeV)

*53095- 53139  10/28/06 10/28/06 1.99018 LH2 / Data 53121
*53140- 53148  10/29/06  10/29/06 1.99018 LH2 / Data 53144
*53149 - 53163 10/30/06 10/30/06 n/a Junk 53144
*53164 - 53326  10/30/06 11/06/06 1.99018 LD2 / Data 53220

*53327-53409 11/06/06 11/11/06 1.99018 LD2 / Data 53333
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53410-53459 11/11/06 11/15/06 1.99018 LD2 / Data 53410
53460 -53532 11/15/06 11/21/06 1.99018 LD2 / Data 53460
53533-53537 11/22/06 11/27/06 n/a Junk 53460
53538-53569 11/28/06 11/30/06 2.65458 LD2 / Data 53554
53570 -53767 11/30/06 12/15/06 2.65458 LD2 / Data 53570
53768-53862 12/15/06 12/22/06 2.65458 LD2 / Data 53768
53863 -53969 12/22/06 03/09/07 n/a Junk 53768
53970 -53994 03/09/07 03/12/07 2.00014 LH2 / Data 53987
53995 -53997 03/12/07 03/12/07 n/a Junk 53987
53998 - 54035 03/12/07 03/15/07 2.00014 LH2 / Data 54023
54036 - 54041 03/15/07 03/16/07 n/a Junk 54023
* Run ranges below 53333 are missing an important histogram needed for generating

the conversions for calculating the photon flux. Otherwise the data is fine.

B.2 Beta Fits

The initial beta cuts only had loose charge and mass cuts as basic particle identification.
To refine these cuts on the AP the events were binned into 0.1 GeV momentum bins. The
peaks were then fit with a Gaussian. The sigma of peak was then used to determine cuts
for each momentum bin. The o, 20 and 3o cuts were compared to evaluate the changes
in the event selection. Figure B.1 through B.3 show the fits to the beta peaks in various

momentum bins.
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B.3 Missing Mass Fits

0
A routine was used to fit the missing mass peak for each COSHgMand energy bin. The
routine at times would not fit the peak correctly, and a visual check was required to

ensure the quality of the fit. When the fit was found to be unsound, the missing mass

peak was then individually fit for specific COSHé(ISIand energy.

B.3.1 Fits for the Experimental Data

The plots in the following plots show the fits to the low. Some energy and cosine theta
bins did not fit properly while the routines were running. Sometimes the fit to the KsA
channel peak worked, while the KsX0 did not. In such cases, they were fit independently
to get a reliable yield. Bins with low counts, were counted instead of attempting to fit
their peak. If they had significant counts in both the KsA and KsZ? channel regions, their
error was estimated by the number of counts both peaks shared. Few counts were

observed in the last energy bin 2.4 GeV. This bin range was left out of this report.
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B.3.2 Fits for the Simulated Data for the Ks/A Channel

The plots in the following plots show the fits to the low. Some energy and cosine theta
bins did not fit properly while the routines were running. In such cases, they were fit
independently to get a reliable yield. Bins with low counts, were counted instead of
attempting to fit their peak. The KsA channel had fewer problems with fitting than the
empirical data. The dataset still required quite a bit of refitting. Very few events were

observed in the 2.4 GeV energy bin. There plots have been left out.
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Appendix C

Analysis Code

The data analysis was performed with two different sets of code: a “skimming” code and
“plotter” code. The skimmer code is a standalone binary. It was designed to read the
data from the BOS files and sort them into data trees for event selection. Once the events
were selected, they were then converted into hbook and root trees for the plotter
routines. The plotter code were run as macros within a root interpreter. The plotter
macros made some of the later data cuts and fit the peaks for phase space ratios and the

final yields.

C.1 The Skimmer: Photonuclear Reaction Assembler

The pnr_assembler was designed to perform the initial sorting through events for a
specified reaction. The resultant root trees must be further analyzed for overlapping
resonances and competing channels. The code was adapted for potentially more general
use by other grad students. It drops all hbook usage for root libraries and promotes
more modern coding practice. The new code incorporates several methods developed
by Paul Mattione32l, All methods, objects and variables are pulled into classes to reduces
potential memory leak issues. Root objects are the primary exception to this, since the

pointer locations are not well preserved within another class.
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Table C.1 Current input format

Usage: pnr_ assembler [options] text.cfg [filel] file2 etc...
Options:
-a analyze MC only
-d data directory
-g tagger correction file
-h print this message
=3l interactive mode
-m Monte Carlo input
-n# write only # events
-o<outfile> root file name

C.2 The Code Architecture

While retaining the sequential structure used by most analytic binaries, the new code
format follows more current coding practices. Almost all the methods and structures
have been pulled into classes. This encapsulation of data and logic significantly reduces
the chances of lost (overwritten) data, and greatly improves the code’s readability. This
code uses Hungarian notation, which is commonly used in Java coding and occasionally
in C++.

Figure one presents a flowchart of the current structure of the pnr_assembler
code. The main method passes the input arguments to argumentParser.Parser() to sort
the arguments and create a return object for the rest of the code to utilize. Next root
object tree is created. Main then instantiates and calls even.Fill(), which handles the rest

of the work. It then finishes by writing the root structures to file and closes them.
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The event.Fill() method calls all the necessary routines for the processing of data. It also
calls decayUtil methods written by Paul Mattionel32l. These decay utilities will soon be

pulled into a single class as well.



APPENDIX C. ANALYSIS CODE 178
(7 N N
e N )
pnrMain.cpp: Shell console app argParser.cpp: Argument Parser Doca.cpp: Distance of Closest Approach
ctriCHandle — InitializeParsed - Set initial Doca -Mathematical method for orthogonal relationships
main — Entry point for analysis: values Distance - Closest distance between the two tracks
Calls PhotoEvent::Fill Parser— Store the values Point - The point between the two tracks used for the
PrintUsage - Displays console vertex
help text Z - The positions along the beam line
(& J
( )
\_ \_ /) ExitChannel.cpp: Method for reading FORTRAN BOS
files
ExitChannel - Structure for storing BOS data
p N Init - Init BOS banks
pnrEvent.cpp: Main source for defining methods to use el Qisinalphoton
PhotoEvent — Instantiate the PhotoEvent Class Qg Gl e Jaatpholons
: > z losePhoton - Check for closest photons in alternate
Fill — Process the data and fill them into the class trees: Calls the other ¢ P
method
methods - <
L ) (" )
- N DecayFiducialCuts.cpp: Mattioni’s Decay fiducial cuts
pnrBooking.cpp: Book keeping Get_dfcNegativeTrackDirectionCutArray -
Booking — Tracking of lost events Get dfcNegativeTrackMomentumShiftFunc -
Get dfcPositiveTrackDirectionCutArray -
» J Get dfcPositive TrackMomentumShiftFunc -
( e T ™ D Get _dfcTrackDirection -
pnr .cpp: Copy Data T _
FillBOSData — Get event information from database get diclrackDirectiontut
FilIMCBanks — Get simulated event information from database
(. J
4 T\
pnrPartID.cpp: Identify particles in an event
isProton — Check if proton L )
isPiMinus — Check if Pi minus P S
:2?&:?}3 g Egﬁzléklﬁfp :1 Egljztsive Kaon DecayTrackCorrections.cpp: . Mattioni’s Beam,
isKPlus — Check if positive Kaon I N enersy cor'rectlons
isNegative — Check is particle is negative R e VTR
isNeutral — Check if particle is neutral foee s llnisas ,
isPositive — Check if particle is positive Correct dtcPhotonEnergy. TaggerCalib -
isProtonNew — Check if proton and within time and beta cuts Correct dtcTrackAngles -
isPiMinusNew — Check if pi minus and within time and beta cuts Correct dtcTrackLocation -
isPiPlusNew — Check if pi plus and within time and beta cuts Correct dtcTrackMomentum -
VertexTime — Calculate a rough vertex time
sortEVNT — Sort events into matrix of like particles \_ )
ParticallD — Process all the events with the above methods - N
DecayTrackFunctions.cpp: Mattioni’s correction Code
\ < Calc_dtfAlpha -
e A o
pnrPartRecon.cpp: Reconstruct originated particles from final state EZZ_EZZDII??DO CA -
SetupVectors — build the 4-momentum vectors Cale difSector -
FillEvntData — fill in specific reconstructed event information Cale difSectorNormLabPhi-
FillinEvntExtra — boost vectors into the CM frame Convert difBosdan toLLa bCoords -
ParticalRecon — Process all the events with the above methods - 1
Convert dtfLabtoBogdanCoords -
> < Convert dtfLabtoSectorCoords -
pnrVertRecon.cpp: Reconstruct originated particles from final state ggzgfriiftgi?ggiﬁﬁifﬁgDrds_
doca_work — Call doca routines to calculate doca for the secondary decays . - .
baryon_doca_work — Calculate the original decay vertex Lezapienididne
baryon_doca_back_calc — Calculate forward to check decay vertices
L J/
4 1\
pnrPhoton.cpp: Choose the photon for the event
FillTagger — Get tagger info form the database
InitTaggerCorrections — Initiate the tagger corrections \\ J)
PhotonSelection — Compare the photon chosen from the bank wi/calculated
. /
pnrMissingMass.cpp: Reconstruct the missing mass of the proton
baryonRecon — Using the photon energy, conserve 4-momentum
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C.3 Classes

There are four main class structures: argumentParse, eventStructure, decayUtilities

(written by Paul Mattoine) and EventChannel.

argumentParse:
InitializeParsed()

PrintUsage ()

eventStructure:
Init ()
Open ()
Fill ()
Booking ()
// Data structure filling
FillTagger ()
FillBOSdata ()
FillEvntData ()
FillinEvntExtra ()
Fil1MCBanks ()
// Particle Identifica tion
SOrtEVNT ()
ParticlelID()
isPhoton ()

isProton ()
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isPiMinus ()
isPiPlus ()
isKminus ()
isKplus ()
isPositive ()
isNegative ()
isNeutral ()
// New Particle Identification (using new cuts from the delta
beta
vs momentum plots
isProtonNew ()
isPiMinusNew ()
isPiPlusNew ()
// Time tests- This method sets the vertex time into the array
and
incriments the number of particles in the event
vertexTime ()
// Photon work
InitTaggerCorrections ()

PhotonSelection ()

// Particle track work
SetupVectors ()
ParticleRecon ()
VertexRecon ()
BaryonRecon ()

// Vertex reconstruction
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doca_work()

baryon doca work()

baryon doca back calc()

decayUtilities:
Get dfcPositiveTrackDirectionCutArray ()
Get dfcNegativeTrackDirectionCutArray ()
Get dfcPositiveTrackMomentumShiftFunc ()
Get dfcNegativeTrackMomentumShiftFunc ()
Set dfcTrackDirectionCuts ()
Cut_dfcTrackDirection ()
Create dtcCorrectionFunctions();
Correct dtcTrackMomentum() ;
Correct dtcTrackMomentum() ;
Correct dtcTrackAngles () ;
Correct dtcTrackLocation();
Correct dtcPhotonEnergy();

Correct dtcPhotonEnergy TaggerCalib ()

Exitchannel:
Init ()
Photon ()

NextPhoton ()
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closePhoton ()

The root objects cannot be contained within structures without their pointers being

broken. Until I figure this out, they will be left in the main routine.
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