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Abstract
Critical behaviour in D-dimensional matrix models is considered within the field theory approach to critical phenomena

and e-expansion. For real (Hermitian) N X N matrix order parameter & the Landau-Ginzburg type Lagrangians are
constructed and all the critical points are found. The relevant critical point is a saddle point existing when the potential
is essentially V' ~ (Tr<i>2)2. At the critical point the model is equivalent to the n-vector one with an appropriate number

of parameters. In the latter case, the critical exponents can be calculated with high accuracy. Empirical relation for the

correlation length exponent v for arbitrary n and D is presented. Large N limit admits an exact solution coinciding

with that of the spherical model.
1 Introduction

There are two main motivations to study matrix
models. The first one is the existence of real physical
objects such as liquid crystals [1] or liquid Helium-3
[2], which can be described within the models with a
3 X 3 matrix order parameter. In both cases, differ-
ent phases could exist and a phase transition occurs.
Though its nature is not yet clear, several character-
istics have a singular behaviour which presumably
can be described by the standard renormalization
group approach.

The second motivation is connected with lattice
quantum gravity. In the
discrete approach based on dynamically triangu-
lated random surfaces the theory can be regarded
as N x N matrix field theory, where the sum over
various genuses is simply the large N expansion [3].
Continuum limit actually corresponds to the critical
point of the underlined field theory. For a number
of models corresponding to conformal field theories
with central charge ¢ < 1 the critical exponents have
been calculated from the discrete approach (3], while
for the string theory ¢ > 1, and in this regime cal-
culations have so far failed.

formulation of 2-dim.

In the present paper we write down matrix mod-
els and treat them according to the standard field
theory approach and renormalization group method.
Critical behaviour in the infrared region is studied
and all the critical points are found. We show that
the critical point, if it exists, corresponds to an n-
vector model with an appropriate number of param-
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eters, where the critical exponents have been calcu-
lated already with great accuracy.

2 The Model. Relation to
Critical Phenomena

We consider the model with a single order parameter
(field) which is an N x N real (Hermitian) matrix &.
Symmetry properties are dictated by the form of this
matrix and could be different in different phases. We
concentrate below on three particular cases being
irreducible representations of SO(N) and SU(N).
Namely, we consider & to be real traceless symmet-
ric, antisymmetric and hermitian traceless matrices.

In the field theoretical approach to critical phe-
nomena a crucial role is played by a Lagrangian
rather than by free energy. To construct a La-
grangian, which is invariant under an appropriate
symmetry group, we consider all possible invari-
ants restricted by the renormalizability requirement.
Having in mind e-expansion, where dimension is
D = 4 — 2¢, we are left with quadratic and quar-
tic terms. Thus, we come to the Landau-Ginzburg
type Lagrangian for a traceless field & :
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Three different choices of the matrix & are distin-
guished by the form of the propagator. We have



respectively :
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Hermitian $a@ed ~ (§°46% — %/,—5“”6”’1),
where a,b,c,d =1,2,...,N.

Critical phenomena are associated with the in-
frared properties of the model. Scaling behaviour
in the vicinity of the critical point caused by the ap-
pearance of a long-range order can be described in
terms of Euclidean quantum field theory possessing
an infra-red stable fixed point [4].

A systematic approach to the description of infra-
red asymptotics is based on the renormalization
group. In the presence of infra-red stable fixed
points defined by the vanishing of RG S-functions
the dimensionless Green functions obey the scaling
laws for small p?
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with the powers 7 equal to the anomalous dimen-
sions at h = h*. There exist direct relations be-
tween the anomalous dimensions and critical expo-
nents, which characterize the scaling behaviour of
various quantities in the neighbourhood of a second
order phase transition. For example, the critical ex-
ponents n (correlation function) and v (correlation
length) can be expressed through the anomalous di-
mension of the field and mass, respectively [5,6]
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All other critical exponents are not independent
and can be evaluated via the scaling laws

n=2v(h"), v (2)

gl _D+2-1q
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1= (2-n)v, a=2-vD, B= ;

Critical point k* is the infra-red stable fixed point of
the renormalization group equation. Within the e-
expansion method it is a power series of € calculated
in perturbation theory.

3 Renormalization Group
Equations. Fixed Points

In this section we consider RG equations for the
effective couplings of the model at hand in 4 — 2¢
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dimensions. Remind that in the MS-scheme the §-
functions in 4 — 2¢ dimensions are connected with
those in 4 dimensions by the equation [7]

Ba-2e(h) = —eh + By(h).

Fixed points correspond to the r.h.s equal to zero.
They are all the power series of ¢ :

1, 2.2
h =eu; +eul +---,

where the coefficients u¥ are determined in k-th or-
der of perturbation theory.

Having this in mind we get the following RG equa-
tions written to one-loop order (we consider below
the Hermitian case for definiteness).

: -9
hl = —Ehl + ""—"—‘3N h% + 2hlh27 (3)

: N%+3 2N? -3 N2 +7

hy = —ehy + by + = hahy + ——h3.

According to the general analysis [4, Sect XI]
there are four types of fixed points of eq.(3):

1. u1=u2=0;

— _6 .
2. U1:0,UZ—W,

6/121 N =2

3.up=1{ —~1/4 N=3
absent N >3

63/121 N =2

uy; =< 1/2 N=3
absent N > 3

~6/11 N =2

4. Uy = -1 N=3
absent N >3

3/11 N =2

Ug = 1/2 N =3
absent N >3

Before analysing the stability properties of these
fixed points it is useful to note that Hermitian trace-
less N x N matrices for N = 2 and 3 obey the fol-
lowing equation:

Hence for N = 2,3 there exists only one indepen-
dent coupling in eq.(1) equal to (k; + 2hy)(Tr 2)2.
Looking for the value of the coupling hy + 2k, at the
critical points (1 - 4) we find out that it is the same



for the points 1 and 4 as well as for 2 and 3, respec-
tively. Thus, the presence of four different points for
N = 2,3 is just an artefact, and there are only two
relevant fixed points for any value of N.

Stability properties of the fixed points can be in-
vestigated in a standard way. The fixed point 1 is
absolutely infra-red unstable and the fixed point 2 is
a saddle point. The phase portrait of the trajectories
is shown in Fig.1. One can see that the fixed point
2 can be reached only when the coupling 2; = 0. In
this case, the fixed point is infra-red stable and ac-
cording to a general belief corresponds to a second
order phase transition one. Otherwise, there is no
fixed point solution of eq.(3).

So far, we have considered the leading approxima-
tion. However, the obtained results are stable with
respect to higher order corrections. In any loop or-
der the infra-red fixed point will lie on the h, axis
being the power series of

hi =0, hy=upEetule’+---.
It is a saddle point in the coupling constant space.

It should be stressed that the conclusion is valid
for any value of ¢ , i.e. for any value of D. The
problem arises when one tryes to sum the series.
Here we come to the problem of validity of the ¢
-expansion.

The situation is qualitatively the same for the
other cases mentioned above. In case of complex
matrices the potential is more complicated, however
even here nothing is changed. The only fixed point

is a saddle point with only T'r? interaction surviving.

4 Critical Exponents

To find the critical exponents one has to calcu-
late the anomalous dimensions at the infra-red fixed
point. The results will be expressed via the power
series of €. However, there is no necessity to perform
any new calculation. Indeed, if one looks at the La-
grangian, eq.(1), at the fixed point, one finds out
that the only coupling which survives is (Tr &?)2,
Then, expanding the matrix field & over the irre-
ducible set of matrices in an appropriate represen-
tation & = ST ¢, we get

(Tr @)% ~ (¢'6°)%,

where we have taken into account that Tr T°TY ~

X
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Thus, what we finally get is the n-vector model
with the number of components equal to that of the
original matrix. For the three cases of interest we
have respectively

M)i(l—v—"'—zl symmetric SO(N)
N-1jN

NZ-1

n = antisymmetric SO(N)

Hermitian SU(N)

Critical exponents in the n-vector model have
been calculated with high accuracy. Recent most
accurate estimates have been achieved in the frame-
work of e-expansion, where the calculations are done
up two five loop order [9,8].

The coefficients of e-expansion grow very fast
which is a manifestation of asymptotical character
of this expansion. This means that to get a numer-
ical result for D = 2 or 3 (i.e. € = 1 or 1/2) one
needs a special summation procedure. The latter
was proposed in a number of papers {5,6,8]. The re-
sults obtained for small values of n are in very good
agreement with experiment as well as with other ap-
proaches. The procedure can be repeated for any
value of n.

In a recent paper [10] we have proposed an em-
pirical expression for the correlation length critical
exponent v. It is valid for arbitrary n and D and
fits all known exact and numerical values. Even if
it is not an exact solution, the advocated result can
serve as a very accurate approximation to the true
value. It has the following form:

_ (D-2)3+22)—=
Y AD-2)3+22)—20-(4_D)(z 1 2)’

(5)

where the parameter z is connected with n by the
equation
r= {

For D = 3 eq.(5) gives a smooth curve

n—6
7 for even n

f—_—[-;ﬂ——s for odd n

(6)

3+ =z
v= .
44z

(7)

Thus, to get the values of the critical exponents
for the matrix model one has to substitute an ap-
propriate value of n = n(N) into - expansion or
directly into egs.(5),(6) and (7).

Special attention is paid to the N = oo case. For
the matrix model, eq.(1), it corresponds to taking
into account of planar diagrams in all orders of per-
turbation theory. However, at the critical point due



to the absence of the Tr &* term the situation is
drastically simplified. For the (Tr &?)? interaction
(or equivalently for the n-vector model) in the large
N limit only one-loop diagrams survive. As can be
seen e.g. from ref.[6] the results for n = oo are

1

V= —_—-

=0 .
Yl ) D_2

(8)
This corresponds to the so called spherical model
which admits an exact solution [11]. Strictly speak-
ing, eq.(8) is valid only for D = 3 or 4 as far as for
D < 2 the phase transition for large n > 2 disap-
pears. For D = 3 weget n =0, v =1 in accordance
with eq.(7).

5 Conclusion

We have shown above that the critical behaviour in
matrix models of eq.(1) is determined by the pres-
ence of nontrivial infra-red fixed point. Our conclu-
sion is true in all orders of perturbation theory for
any value of € and N. This fixed point is believed
to be associated with the second order phase tran-
sition with the matrix order parameter. As we have
seen, it exists only when the interaction is essen-
tially (Tr &%), Addition of arbitrary small amount
of Tr ¢* destroys a phase transition.

At this point, our conclusion contradicts that of
ref.[12] where in D = 0 matrix model in N — oo
limit different phases were obtained with critical ex-
ponents having negative values. From our point of
view the negative values of exponents mean that the
formulas are out of the range of applicability. This
really happens in the vector model, where for some
values of parameters a phase transition disappears,
while formally the critical exponent may take a neg-
ative value (see Fig. 2). A way out of this descrep-
ancy is probably in different meaning attached to
a phase transition and connection between the field
theory model and statistical system. Strictly speak-
ing it is not obvious, what kind of a phase transition
occurs in D = 0 case and what is an order param-
eter. It would be interesting to find a relation be-
tween the two approaches and to understand better
the nature of different phases.
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Figure 1: Phase portrait of solutions for N > 3. The
arrows show the direction of decreasing argument ¢
corresponding to the infra-red limit.
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Figure 2: Structure of vector model in the space of
parameters.
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