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Abstract 

Critical behaviour in JD-dimensional matrix models is considered within the field theory approach to critical phenomena 

and e-expansion. For real (Hermitian) N x N matrix order parameter $ the Landau-Ginzburg type Lagrangians are 

constructed and all the critical points are found. The relevant critical point is a saddle point existing when the potential 

is essentially V ~ ( T r $ 2 ) 2 . At the critical point the model is equivalent to the n-vector one with an appropriate number 

of parameters. In the latter case, the critical exponents can be calculated with high accuracy. Empirical relation for the 

correlation length exponent v for arbitrary n and D is presented. Large N limit admits an exact solution coinciding 

with that of the spherical model. 

1 Introduction 

There are two main motivations to study matrix 

models. The first one is the existence of real physical 

objects such as liquid crystals [l] or liquid Helium-3 

[2], which can be described within the models with a 

3 x 3 matrix order parameter. In both cases, differ­

ent phases could exist and a phase transition occurs. 

Though its nature is not yet clear, several character­

istics have a singular behaviour which presumably 

can be described by the standard renormalization 

group approach. 

The second motivation is connected with lattice 

formulation of 2-dim. quantum gravity. In the 

discrete approach based on dynamically triangu­

lated random surfaces the theory can be regarded 

as N x TV matrix field theory, where the sum over 

various genuses is simply the large N expansion [3]. 

Continuum limit actually corresponds to the critical 

point of the underlined field theory. For a number 

of models corresponding to conformai field theories 

with central charge c < 1 the critical exponents have 

been calculated from the discrete approach [3], while 

for the string theory c > 1, and in this regime cal­

culations have so far failed. 

In the present paper we write down matrix mod­

els and treat them according to the standard field 

theory approach and renormalization group method. 

Critical behaviour in the infrared region is studied 

and all the critical points are found. We show that 

the critical point, if it exists, corresponds to an n-

vector model with an appropriate number of param­

eters, where the critical exponents have been calcu­

lated already with great accuracy. 

2 The Model. Relation to 
Critical Phenomena 

We consider the model with a single order parameter 

(field) which is an N x N real (Hermitian) matrix $ . 

Symmetry properties are dictated by the form of this 

matrix and could be different in different phases. We 

concentrate below on three particular cases being 

irreducible representations of SO(N) and SU(N). 

Namely, we consider $ to be real traceless symmet­

ric, antisymmetric and hermitian traceless matrices. 

In the field theoretical approach to critical phe­

nomena a crucial role is played by a Lagrangian 

rather than by free energy. To construct a La­

grangian, which is invariant under an appropriate 

symmetry group, we consider all possible invari­

ants restricted by the renormalizability requirement. 

Having in mind gr-expansion, where dimension is 

D = 4 - 2s, we are left with quadratic and quar-

tic terms. Thus, we come to the Landau-Ginzburg 

type Lagrangian for a traceless field $ : 

£ = 1 Tr(d$)2 - ^ Trè2 - ^ T r ê 4 - *± (Trê 2 ) 2 -

Three different choices of the matrix $ are distin­

guished by the form of the propagator. We have 
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respectively : 

symmetric 

antisymm 

Hermitian 

dimensions. Remind that in the MS-scheme the /?-
functions in 4 — 2e dimensions are connected with 
those in 4 dimensions by the equation [7] 

Fixed points correspond to the r.h.s equal to zero. 
They are all the power series of e : 

where the coefficients uf are determined in &-th or­
der of perturbation theory. 

Having this in mind we get the following RG equa­
tions written to one-loop order (we consider below 
the Hermitian case for definiteness). 

According to the general analysis [4, Sect XI] 
there are four types of fixed points of eq.(3): 

Before analysing the stability properties of these 
fixed points it is useful to note that Hermitian trace-
less N x N matrices for N = 2 and 3 obey the fol­
lowing equation: 

Hence for N = 2,3 there exists only one indepen­
dent coupling in eq.( l ) equal to (h± + 2h2)(Tr Ô 2 ) 2 . 
Looking for the value of the coupling hi + 2h2 at the 
critical points (1 - 4) we find out that it is the same 

3 Renormalization Group 
Equations. Fixed Points 

In this section we consider RG equations for the 
effective couplings of the model at hand in 4 — 2e 

Critical point h is the infra-red stable fixed point of 
the renormalization group equation. Within the e-
expansion method it is a power series of e calculated 
in perturbation theory. 

All other critical exponents are not independent 
and can be evaluated via the scaling laws 

with the powers 7r equal to the anomalous dimen­
sions at h = h*. There exist direct relations be­
tween the anomalous dimensions and critical expo­
nents, which characterize the scaling behaviour of 
various quantities in the neighbourhood of a second 
order phase transition. For example, the critical ex­
ponents T) (correlation function) and v (correlation 
length) can be expressed through the anomalous di­
mension of the field and mass, respectively [5,6] 

where a, b, c, d = 1 ,2 , . . . , N. 
Critical phenomena are associated with the in­

frared properties of the model. Scaling behaviour 
in the vicinity of the critical point caused by the ap­
pearance of a long-range order can be described in 
terms of Euclidean quantum field theory possessing 
an infra-red stable fixed point [4]. 

A systematic approach to the description of infra­
red asymptotics is based on the renormalization 
group. In the presence of infra-red stable fixed 
points defined by the vanishing of RG /^-functions 
the dimensionless Green functions obey the scaling 
laws for small p2 



for the points 1 and 4 as well as for 2 and 3, respec­

tively. Thus, the presence of four different points for 

N — 2,3 is just an artefact, and there are only two 

relevant fixed points for any value of N. 

Stability properties of the fixed points can be in­

vestigated in a standard way. The fixed point 1 is 

absolutely infra-red unstable and the fixed point 2 is 

a saddle point. The phase portrait of the trajectories 

is shown in Fig.l. One can see that the fixed point 

2 can be reached only when the coupling h\ = 0. In 

this case, the fixed point is infra-red stable and ac­

cording to a general belief corresponds to a second 

order phase transition one. Otherwise, there is no 

fixed point solution of eq.(3). 

So far, we have considered the leading approxima­

tion. However, the obtained results are stable with 

respect to higher order corrections. In any loop or­

der the infra-red fixed point will lie on the h2 axis 

being the power series of s 

It is a saddle point in the coupling constant space. 

It should be stressed that the conclusion is valid 

for any value of s , i.e. for any value of D. The 

problem arises when one tryes to sum the series. 

Here we come to the problem of validity of the e 

-expansion. 

The situation is qualitatively the same for the 

other cases mentioned above. In case of complex 

matrices the potential is more complicated, however 

even here nothing is changed. The only fixed point 

is a saddle point with only Tr2 interaction surviving. 

4 Critical Exponents 

To find the critical exponents one has to calcu­

late the anomalous dimensions at the infra-red fixed 

point. The results will be expressed via the power 

series of e. However, there is no necessity to perform 

any new calculation. Indeed, if one looks at the La-

grangian, eq.(l), at the fixed point, one finds out 

that the only coupling which survives is (Tr $ 2 ) 2 . 

Then, expanding the matrix field $ over the irre­

ducible set of matrices in an appropriate represen­

tation ê = £ . r > \ we get 

where we have taken into account that Tr TXT* ~ 

Thus, what we finally get is the n-vector model 

with the number of components equal to that of the 

original matrix. For the three cases of interest we 

have respectively 

Critical exponents in the rc-vector model have 

been calculated with high accuracy. Recent most 

accurate estimates have been achieved in the frame­

work of ^-expansion, where the calculations are done 

up two five loop order [9,8]. 

The coefficients of ^-expansion grow very fast 

which is a manifestation of asymptotical character 

of this expansion. This means that to get a numer­

ical result for D = 2 or 3 (i.e. e = 1 or 1/2) one 

needs a special summation procedure. The latter 

was proposed in a number of papers [5,6,8], The re­

sults obtained for small values of n are in very good 

agreement with experiment as well as with other ap­

proaches. The procedure can be repeated for any 

value of n. 

In a recent paper [10] we have proposed an em­

pirical expression for the correlation length critical 

exponent iv. It is valid for arbitrary n and D and 

fits all known exact and numerical values. Even if 

it is not an exact solution, the advocated result can 

serve as a very accurate approximation to the true 

value. It has the following form: 

where the parameter x is connected with n by the 

equation 

For D = 3 eq.(5) gives a smooth curve 

Thus, to get the values of the critical exponents 

for the matrix model one has to substitute an ap­

propriate value of n — n(N) into e- expansion or 

directly into eqs.(5),(6) and (7). 

Special attention is paid to the N = oo case. For 

the matrix model, eq.(l), it corresponds to taking 

into account of planar diagrams in all orders of per­

turbation theory. However, at the critical point due 
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to the absence of the Tr $ 4 term the situation is 
drastically simplified. For the (TV $ 2 ) 2 interaction 
(or equivalently for the n-vector model) in the large 
N limit only one-loop diagrams survive. As can be 
seen e.g. from ref.[6] the results for n — oo are 

O.V.Tarasov, V.B.Priezzhev and V.A.Zagrebnov for 
numerous useful discussions. 
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This corresponds to the so called spherical model 
which admits an exact solution [11]. Strictly speak­
ing, eq.(8) is valid only for D — 3 or 4 as far as for 
D < 2 the phase transition for large n > 2 disap­
pears. For D = 3 we get rj = 0, v = 1 in accordance 
with eq.(7). 

5 Conclusion 

We have shown above that the critical behaviour in 
matrix models of eq . ( l ) is determined by the pres­
ence of nontrivial infra-red fixed point. Our conclu­
sion is true in all orders of perturbation theory for 
any value of e and N. This fixed point is believed 
to be associated with the second order phase tran­
sition with the matrix order parameter. As we have 
seen, it exists only when the interaction is essen­
tially (Tr Ô 2 ) 2 . Addition of arbitrary small amount 
of Tr $ 4 destroys a phase transition. 

At this point, our conclusion contradicts that of 
ref.[l2] where in D = 0 matrix model in N —• oo 
limit different phases were obtained with critical ex­
ponents having negative values. From our point of 
view the negative values of exponents mean that the 
formulas are out of the range of applicability. This 
really happens in the vector model, where for some 
values of parameters a phase transition disappears, 
while formally the critical exponent may take a neg­
ative value (see Fig. 2) . A way out of this descrep-
ancy is probably in different meaning attached to 
a phase transition and connection between the field 
theory model and statistical system. Strictly speak­
ing it is not obvious, what kind of a phase transition 
occurs in D — 0 case and what is an order param­
eter. It would be interesting to find a relation be­
tween the two approaches and to understand better 
the nature of different phases. 



Figure 1: Phase portrait of solutions for N > 3. The 
arrows show the direction of decreasing argument t 
corresponding to the infra-red limit. 

Figure 2: Structure of vector model in the space of 
parameters. 
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