
Classical and Quantum Gravity

Class. Quantum Grav. 40 (2023) 165001 (36pp) https://doi.org/10.1088/1361-6382/ace232

A new approach and code for spinning
black holes in modified gravity

Pedro G S Fernandes1,2,∗ and David J Mulryne2

1 School of Physics and Astronomy, University of Nottingham, University Park,
Nottingham NG7 2RD, United Kingdom
2 School of Physics and Astronomy, Queen Mary University of London, Mile End
Road, London E1 4NS, United Kingdom

E-mail: pedro.fernandes@nottingham.ac.uk

Received 15 December 2022; revised 6 June 2023
Accepted for publication 27 June 2023
Published 11 July 2023

Abstract
We discuss and implement a spectral method approach to computing stationary
and axisymmetric black hole solutions and their properties in modified theories
of gravity. The resulting code is written in the Julia language and is transparent
and easily adapted to new settings. We test the code on both general relativity
and on Einstein-scalar-Gauss–Bonnet gravity. It is accurate and fast, conver-
ging on a spinning solution in these theories with tiny errors (∼O

(
10−13

)
in

most cases) in a matter of seconds.
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1. Introduction

In the last decade, with the observation of gravitational wave events by the LIGO Scientific
Collaboration [1–6], and interferometry measurements of the centre of M87 and the Milky
Way by the Event Horizon Telescope Collaboration [7–9], we have entered a new era of testing
gravity, probing the nature of black holes and Einstein’s theory of general relativity (GR) in
the previously inaccessible strong field regime.

In GR, mathematical theorems guarantee that in (electro-)vacuum the gravitational field of
stationary black holes is described uniquely by the Kerr(-Newman) metric [10]. As eloquently
put by Subrahmanijan Chandrasekhar, the uniqueness theorems alongwith a set of other results
dubbed no-hair theorems (see [11] for a review) assert that the Kerr metric provides ‘the abso-
lute exact representation of untold numbers of massive black holes that populate the Universe’.
While all strong regime observations are so far compatible with this ‘Kerr hypothesis’, any
eventual deviation would provide a much sought after smoking-gun for new physics.

Indeed, once we go beyond GR and delve onto the realm of modified theories of gravity,
stationary vacuum spacetimes need not to be described by the Kerr metric. Popular examples of
black hole spacetimes defying the Kerr hypothesis include gravity coupled with new (complex)
bosonic degrees of freedom [12–15], scalar-Gauss–Bonnet gravity [16–28], 4D-Einstein–
Gauss–Bonnet gravity [29–38], and dynamical Chern–Simons gravity [39–43].

Modification of the field equations describing gravity, however, naturally leads to an
increase in their complexity such that analytic analysis becomes intractable. With closed-form
solutions not available, one is forced to resort either to perturbation theory or numerical meth-
ods. In the strong-field regime, perturbative approximations may not be well-justified, leaving
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numerical studies as the most promising way forward. In this arena, the ever-increasing preci-
sion of our observations and measurements necessitates increasingly accurate solutions.

In this paper, we will describe a numerical method capable of solving with high accuracy
a system of non-linear elliptic partial differential equations (PDEs), such as those that appear
when analysing stationary and axially symmetric spacetimes, and implement this in a publicly
available code. A first version of our numerical implementation is available in the GitHub
repository in [44]. The code is written in Julia and can be run with ease on laptop-class com-
puters, with solutions being found in a matter of seconds. The Julia language is fast, memory
efficient, and easy to manipulate, ensuring that implementing different modified gravity the-
ories is not a difficult task.

Our code follows similar previous numerical solvers for these spacetimes, in particular the
non-publicly-available FIDISOL/CADSOL solver [45–47] (which has been extensively used
in the literature, see e.g. [13–15, 21, 23, 24, 26, 28, 48]) and a recent publicly available solver
developed in [49, 50]. We have several motivations for writing another code. First, in this
work we show that pseudospectral methods (see reference [51] for a review in the context of
gravitational solutions) are ideally suited to solving the type of equations at hand. In our tailor-
made implementation we therefore make use of suchmethods3, while both former codes utilise
finite difference methods. In contrast to the first code mentioned above, our implementation is
also open source, and moreover in our bench-marking we find our code to be far more accurate
as detailed further below. The code of [49, 50] is also significantly more accurate than that of
the FIDISOL/CADSOL solver (though the documented accuracy is still less than our own
when bench-marked on the Kerr solution) and is publicly available. This code is, however,
written in C, and our use of Julia leads to simple code that can easily be adapted. Our code
is also considerably faster. Our overall aim is a publicly available, accurate, well documented
code that is transparent and easy to use code. Furthermore, our code provides a toolbox to
explore several properties of the obtained black hole solutions, rather than being only a PDE
solver.

This paper is organised as follows. In section 2 we introduce the reader to pseudospectral
methods and the technical machinery that will be necessary to apply them in the context of
black hole physics. Next, in section 3 we will describe how we can use the aforementioned
methods to solve the stationary and axisymmetric field equations for gravity, discussing the
boundary conditions, coordinate compactifications, and our numerical approach. We further
discuss many of the properties that can be extracted from a spinning black hole solution.
Finally, in section 4 we start by validating our methods and code against the Kerr black hole,
which is known in closed form, and later use our machinery to obtain stationary and axisym-
metric black holes in Einstein-scalar-Gauss–Bonnet (EsGB) gravity for linear and exponential
couplings. We also discuss the accuracy of our code, and further compare with results from
other codes in published literature. We work with units such that G= c= 1.

2. Spectral methods

The idea behind spectral methods is to approximate a smooth solution to a system of differ-
ential or integral equations by a sum over a finite number of basis functions. In this section,
we review how this works. Given that our aim is a clear and adaptable code, the presentation
is relatively complete, and summarises that given in John P. Boyd’s book on spectral methods
[53], to which the reader can turn for full details (see also reference [51]).

3 See also Kadath [52], which implements a spectral methods library for theoretical physics in C++.
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For simplicity, we begin with the one dimensional case and illustrate how the method finds
an approximation to the smooth solution to a differential equation, u(x), with the differential
equation written in the form

R(x,u) = 0, (1)

where R is called the residual of the system. The solution, u(x), can be approximated by a
finite truncated series solution uN(x) such that

u(x)≈ uN(x) =
N−1∑
n=0

αnϕn(x), (2)

where {ϕn(x)}∞n=0 is a set of global and orthogonal basis functions, {αn}∞n=0 is the set of spec-
tral coefficients, and N is the resolution. In this setup, uN(x) can be said to be a numerical
solution of the system (1) if spectral coefficients are found such that the residual is below a
certain prescribed tolerance. The method is therefore global rather than local, with an expo-
nential convergence with N for problems with smooth solutions. Since black hole solutions
are smooth, we expect exponential convergence when come to find such solutions using spec-
tral methods. This is in contrast to the polynomial convergence rate of most other numerical
methods, such as finite element or finite difference schemes. Furthermore, numerical solu-
tions obtained via a spectral method provide an analytical approximation to the problem at
hand (rather than a set of approximate numerical values at a discrete number of points).

As noted the basis functions must be orthogonal, which implies that

(ϕn,ϕm) = cnδmn, (3)

where the brackets represent the inner product of two functions f (x) and g(x) with respect to
the weight function, ω(x)> 0, on the interval [a,b] as

( f,g)≡
ˆ b

a
f(x)g(x)ω(x)dx. (4)

The set of basis functions used should have a number of further properties: (i) they should be
easy to compute (e.g. trigonometric functions or polynomials); (ii) the approximations built
out of the basis functions should converge rapidly to the true solution as the resolution is
increased; (iii) they should be complete, which means that any solution can be represented to
arbitrarily high accuracy by taking the resolution to be sufficiently high. Two commonly used
sets of basis functions that obey these requirements are sines and cosines, as used in a Fourier
series, and a special class of polynomials dubbed Chebyshev polynomials.

2.1. Chebyshev polynomials

For non-periodic problems, Chebyshev polynomials are the most natural choice as the spectral
series is guaranteed to converge exponentially fast (provided our domain is restricted to the
interval x ∈ [−1,1]). The nth Chebyshev polynomial (of the first kind) is defined as

Tn (x) = cos(nθ) , θ = arccosx, (5)

or equivalently by the three-term recurrence relation

T0(x)≡ 1, T1(x)≡ x,

Tn(x) = 2xTn−1(x)−Tn−2(x), n⩾ 2.
(6)

The first six Chebyshev polynomials are shown in figure 1 in the domain x ∈ [−1,1].
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Figure 1. First six Chebyshev polynomials in the domain x ∈ [−1,1].

Chebyshev polynomials obey the orthogonality relation in the domain x ∈ [−1,1]ˆ 1

−1

Tm(x)Tn(x)√
1− x2

dx=
π

2
(1+ δ0n)δmn, (7)

and hence form an orthogonal basis. Their derivatives are given by

d
dx
Tn(x) = nUn−1(x), (8)

where Un(x) denotes the nth Chebyshev polynomial of the second kind, defined by the recur-
rence relation

U0(x)≡ 1, U1(x)≡ 2x,

Un(x) = 2xUn−1(x)−Un−2(x), n⩾ 2,
(9)

and with derivative

d
dx
Un(x) =

(n+ 1)Tn+1(x)− xUn(x)
x2 − 1

. (10)

Note that some derivatives require special care at the boundaries x=±1, and must be com-
puted as a well-defined limit, namely

d2Tn
dx2

∣∣∣∣
x=−1

= (−1)n
n4 − n2

3
,

d2Tn
dx2

∣∣∣∣
x=1

=
n4 − n2

3
. (11)

2.2. Interpolation

Interpolation is the process by which a function is approximated by a finite sum of suitable
basis functions. The idea is that the sum is constructed such that the approximation agrees
with the true function at the chosen set of interpolation points (also called collocation points).
The objective is that the interpolant provides a good approximation to the true function also
between those points. By virtue of the minimal amplitude theorem [53], Chebyshev polyno-
mials are widely used in interpolations. The reason is twofold. First, when using the so called
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Figure 2. Interpolation of the function u(x) = x2e−2x on a Gauss–Chebyshev grid, for
resolutions ranging from N= 1 to N= 6. Using equations (13) and (15) we find that
for N= 6 the spectral coefficients of the approximation u6(x) are α0 ≈ 1.48427, α1 ≈
−2.49232, α2 ≈ 1.85409, α3 ≈−1.01286, α4 ≈ 0.395175, and α5 ≈−0.111169.

Chebyshev nodes (or Gauss–Chebyshev points), xn, as collocation points, the effect of the
Runge phenomenon (numerical instabilities near the boundaries in the form of uncontrolled
oscillations) is minimised. These points are the roots of the Nth Chebyshev polynomial, and
are given by

xn = cos

(
(2n+ 1)π

2N

)
, n= 0, . . . ,N− 1. (12)

Secondly, when Chebyshev polynomials are used as the basis for the interpolation, the inter-
polation error is distributed uniformly over the whole range.

The algorithm to interpolate a smooth function u(x) using a truncated Chebyshev series
written as4

uN(x) =
1
2
α0 +

N−1∑
n=1

αnTn(x)≡
N−1∑
n=0

′
αnTn(x), (13)

relies on finding the optimal spectral coefficients {αn}, and uses the discrete orthogonality
relation of Chebyshev polynomials:

N−1∑
j=0

Tn(xj)Tm(xj) =
N
2
(1+ δ0n)δmn, (14)

where the xj are the points given in equation (12). These discrete relations imply that

αn =
2
N

N−1∑
j=0

u(xj)Tn(xj). (15)

We present in figure 2 an illustrative example of a Chebyshev interpolation performed for
several resolutions using the above expressions.

4 The prime in the sum denotes that the first coefficient is halved. We chose to halve the first coefficient in the sum in
order to simplify some relations below, such as equation (15).
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Table 1. Properties of the elements of a Fourier series of a function u(θ), depending on
the parity symmetries, along with a scheme of its boundary values. Here, n ∈ N0. The
entries on this table for θ = π would be equivalent to those of θ= 0.

Fourier series Parity w.r.t. θ= 0 Parity w.r.t. θ = π/2 u(0) u(π2 ) ∂θu(0) ∂θu(π2 )

cos([2n]θ) Even Even ̸= 0 ̸= 0 = 0 = 0
cos([2n+ 1]θ) Even Odd ̸= 0 = 0 = 0 ̸= 0
sin([2n]θ) Odd Odd = 0 = 0 ̸= 0 ̸= 0
sin([2n+ 1]θ) Odd Even = 0 ̸= 0 ̸= 0 = 0

2.3. Trigonometric functions

For periodic problems, sines and cosines are the most suitable basis functions for a spectral
series. These obey well known orthogonality relations, and form the basis for the Fourier series
representation of a periodic function. As we will see, a finite sum of these functions can be
used to generate a trigonometric interpolation to a periodic function. Moreover, we can often
simplify further by taking into account symmetries. For example, considering the core problem
considered in this paper, we note that stationary and axisymmetric black holes are solutions to
a system of two-dimensional elliptic PDEs that depend on the radial coordinate and the zenith
angle θ ∈ [0,π]. These solutions also often possess definite parity with respect to θ = π/2
(i.e. in most cases they are symmetric about θ = π/2), and therefore we need only to consider
the range θ ∈ [0,π/2]. In this range, the following discrete orthogonality relations hold

N−1∑
j=0

cos(2nθj)cos(2mθj) =
N
2
(1+ δ0n)δmn,

N−1∑
j=0

cos([2n+ 1]θj)cos([2m+ 1]θj) =
N
2
δmn,

N−1∑
j=0

sin(2nθj)sin(2mθj) =
N
2
(1− δ0n)δmn,

N−1∑
j=0

sin([2n+ 1]θj)sin([2m+ 1]θj) =
N
2
δmn,

(16)

where

θn =
(2n+ 1)π

4N
, n= 0, . . . ,N− 1. (17)

Table 1 summarises the parity properties of the functions appearing in the relations above,
and together with these orthogonality relations we see that a function, u(θ), symmetric about
θ = 0,π/2 can be interpolated using only even cosines such that

uN(x) =
N−1∑
n=0

′
αn cos(2nθ), (18)

with the spectral coefficients

αn =
2
N

N−1∑
j=0

u(θj)cos(2nθj). (19)
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2.4. Solving an ordinary differential equation (ODE) with a spectral method—a first example

So far we have seen how a known function can be approximated by a finite sum of suitable
basis functions using interpolation. Nowwe turn to the problem of how to find such an approx-
imation to an unknown function that is the solution to a given differential equation.

To understand how to solve differential equations using a spectral method, we will first
consider a simple ODE example. Consider the one dimensional non-linear boundary value
problem

R= uxx− u2x = 0, u(−1)− 2= 0, u(1)− 1= 0. (20)

We will find an approximate solution to this boundary value problem in the form of a
Chebyshev spectral series, and later compare our results with the known exact solution,
given by

u(x) = log

(
2e2

(e− 1)x+ e+ 1

)
. (21)

To illustrate the calculations analytically, we will first consider a (very) low resolution approx-
imate solution with N= 3, where

u≈ u3 =
α0

2
T0(x)+α1T1(x)+α2T2(x) =

α0

2
+α1x+α2

(
2x2 − 1

)
. (22)

Here there are N= 3 unknowns (α0, α1, and α2), and NBC = 2 boundary conditions. Once we
substitute our ansatz of equation (22) onto the residual given in equation (20) we obtain

R≈ 4α2 − (4α2x+α1)
2 = 0, (23)

together with the boundary conditions
α0

2
−α1 +α2 − 2= 0,

α0

2
+α1 +α2 − 1= 0. (24)

To find the approximate solution we simply need to determine values for the three
unknowns. Given that we have only N= 3 degrees of freedom, and the two boundary con-
ditions provide two constraints, we need only one further equation to find the values. To
get this constraint the idea is to evaluate the residual at the N−NBC = 1 collocation point
given by equation (12) (with the N in that expression given by 1), which gives the point x= 0.
With our resolution of N= 3, finding an approximate solution to the boundary value problem
then reduces to solving three non-linear coupled algebraic equations for the spectral coeffi-
cients, given by the two boundary conditions of equation (24) together with the residual of
equation (23) evaluated at x= 0. The solution to the system is

α0 =
23
8
, α1 =−1

2
, α2 =

1
16
.

By construction this is an interpolation to the exact solution (21).
We note that had we chosen the resolution N= 4, the number of collocation points where

we would have to evaluate the residual would be N−NBC = 2, and would be given by
equation (12) as x=±sinπ/8≈±0.382683. This would give N= 4 coupled equations to
find the four unknowns in this case. This then generalises to arbitrary N.

On figure 3 we plot the exact solution against the approximation obtained with N= 3,
together with the absolute error, |1− uN/u|, whose maximum can be seen to be O

(
10−2

)
already for a very low resolution N= 3. We also plot the approximation to the solution of the
boundary value problem, but for a resolution N= 24, where we observe that errors become of
order machine precision (O

(
10−16

)
). In figure 4 we plot the behaviour of the maximum abso-

lute error as a function of the resolution, where exponential convergence is observed. As a rule
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Figure 3. Approximations to the solution of the boundary value problem given in
equation (20) (top) together with their absolute errors with respect to the exact solu-
tion (bottom) for resolutions N= 3 (left) and N= 24 (right).

Figure 4. Logarithmic plot of the maximum absolute error in the approximation to the
solution of the boundary value problem as a function of the resolution. Spectral conver-
gence is observed, together with a roundoff plateau.
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of thumb, the truncation error is typically the same order-of-magnitude as the last coefficient
retained in the truncation series.

An important point to make here is that even though for N= 3 the approximation system
has a closed-form analytical solution for the spectral coefficients, once higher resolutions are
considered, a numerical root-finding method (such as Newton–Raphson) has to be employed.
To successfully employ a Newton–Raphson method, a good initial guess for the spectral coef-
ficients is of the utmost importance. We will come back to this in the next section.

To conclude, spectral collocation methods, also known as pseudospectral methods, are
powerful tools that can be used to find high accuracy numerical solutions to differential
equations. They provide global analytical approximations for the solution, and handling any
kind of boundary condition is straightforward.

2.5. Root-finding methods—Newton–Raphson

To numerically solve the system of algebraic equations for the spectral coefficients a root-
finding method must, in general, be employed. In particular, we will utilise the well-known
Newton–Raphson method. In the one-dimensional case, the method attempts to solve the
equation f(x) = 0 iteratively, starting with an initial guess, x0. Successive values of x are then
generated until a value, x∗, is reached at which the equation is approximately solved to a certain
prescribed tolerance. The series of iterations takes the form

xn+1 = xn−
f(xn)
f ′(xn)

. (25)

For example, assume we want to find the root of the function f(x) = x3 + x− 1, known to
be x∗ ≈ 0.6823278 to eight decimal places. Starting with x0 = 1 as our initial guess, using
equation (25) we obtain

x1 = 0.75, x2 = 0.68604651, x3 = 0.68233958, x4 = 0.6823278,

thus converging to x∗ in four iterations to the prescribed tolerance of eight decimal places.
Convergence, is however, not guaranteed, and particularly in more complicated settings an
appropriate choice of starting point is extremely important, and must be chosen carefully.

The generalisation of the method to N variables with N equations finds the root of a vector-
valued function F : RN → RN, and amounts to solving the linear system

J (xn)(xn+1 − xn) =−F(xn) , (26)

at each iteration for the unknown xn+1 − xn, where J is the N×N Jacobian matrix of the
system, defined as

Jij =
∂Fi
∂xj

. (27)

Constructing the Jacobian matrix of a given system is not always an easy task, but is relat-
ively straightforward for the system of equations that arises when using the spectral method to
solve an ODE. Another advantage of this method. As described, in this case, the system to be
solved, F, will be composed of the residualR evaluated at the Gauss–Chebyshev points (12),
and the boundary conditions, and will in general involve u, ux and uxx. Our unknowns are the
spectral coefficients αj. Thus, to facilitate the computation of the Jacobian, we may use the
chain rule

Jij =
∂Fi
∂αj

=
∂Fi
∂u

∂u
∂αj

+
∂Fi
∂ux

∂ux
∂αj

+
∂Fi
∂uxx

∂uxx
∂αj

, (28)

10
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and only then substitute the spectral expansions for the function u. This process is easily gen-
eralizable to a system of differential ODEs/PDEs (rather than a single one)5.

As previously stated, when using a Newton–Raphson method, the choice of initial guess to
the spectral coefficients is extremely important, because a non-appropriate choice will likely
result in non-convergence of the algorithm. A good initial guess can sometimes be difficult
to obtain, especially when dealing with systems of PDEs, where the number of coefficients is
large (for our specific black holes problem, typically of O

(
103
)
coefficients). A good way of

tackling this issue stems from a good understanding of the problem in question. For example,
from an effective field theory point of view, a Kerr black hole is probably a good approx-
imation to a black hole solution in modified theories. Therefore, since we have a closed-form
expression for a Kerr black hole, an interpolation of this solution can used to generate an initial
guess for the spectral coefficients in modified theories.

3. Black holes—metric ansatz, the Kerr solution, boundary conditions,
and connection with the numerical approach

We will now apply the methods described in the previous sections to black hole physics and
approximately solve the coupled PDEs that arise when obtaining stationary solutions in a given
theory of gravity.

We will focus on a particular ansatz for the black hole spacetime written in quasi-isotropic
coordinates with line-element

ds2 =−fN 2dt2 +
g
f

[
h
(
dr2 + r2dθ2

)
+ r2 sin2 θ

(
dφ − W

r
(1−N )dt

)2
]
, (29)

which is stationary, axisymmetric, and circular. Here f, g, h andW are dimensionless functions
of the radial and angular coordinates r and θ, and

N ≡N (r) = 1− rH
r
,

where rH is the (coordinate) location of the event horizon. The spatial coordinates range over
the intervals

r ∈ [rH,∞], θ ∈ [0,π], φ ∈ [0,2π]. (30)

In order for the line-element to be a solution to the theory of gravity at hand, the functions, f,
g, h and W must satisfy a set of PDEs that result from the field equations of the theory.

The spacetime presented possesses two Killing vector fields, k= ∂t and Φ = ∂φ, and the
linear combination

ξ = ∂t+ΩH∂φ, (31)

whereΩH is the angular velocity of the horizon (to be defined below), is orthogonal to and null
on the event horizon. This Lewis–Papapetrou form for themetric is motivated by the discussion
of [54], which asserts that the above metric ansatz is consistent for a generic theory of gravity
provided that its solutions can be obtained perturbatively from a solution in the GR limit. Note
that our form of the metric functions on the line element of equation (29) differ somewhat from
the standard form used in other works (see e.g. [13–15, 21, 23, 24, 26, 28, 48]). The reasons

5 One must be careful when labelling the spectral coefficients of the different functions as it might be a source of
errors.
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for this will become clearer once we make a connection to our numerical approach, and are
related to numerical accuracy issues.

3.1. GR—the Kerr black hole

To begin, let us consider the known Kerr black hole, which is the solution to the stationary
and axisymmetric field equations of GR in vacuum. For completeness, we present its charged
generalisation, the Kerr–Newman solution of electrovacuum in appendix. The Kerr black hole
solves the field equations

Gµν = 0, (32)

where Gµν is the Einstein tensor, which follow from the Einstein–Hilbert action

S =
1

16π

ˆ
d4x

√
−gR, (33)

where R is the Ricci scalar of the metric gµν . With the ansatz of equation (29) the Kerr black
hole solution reads

f =
(
1+

rH
r

)2 A
B
,

g=
(
1+

rH
r

)2
,

h=
A2

B
,

W=
2M
(
Mr+ r2 + r2H

)
rHr3B

√
M2 − 4r2H

(34)

where

A=
2Mr

(
Mr+

(
r2 + r2H

))
+
(
r2 − r2H

)2
r4

−
(
M2 − 4r2H

)
r2

sin2 θ,

B =

(
A+

(
M2 − 4r2H

)
r2

sin2 θ

)2

−
(
r2 − r2H

)2 (
M2 − 4r2H

)
r6

sin2 θ,

(35)

and M is the ADM mass of the black hole. The total angular momentum per unit mass, a, of
the solution is related to M and rH via

rH =

√
M2 − a2

2
≡ M

2

√
1−χ2, (36)

where we have defined the dimensionless spin

χ ≡ a/M= J/M2. (37)

The mass M and total angular momentum J can be read off from the metric components as
r→∞, where

gtt =−fN 2 +
g(1−N )

2W2

f
sin2 θ =−1+

2M
r

+O
(
r−2
)
,

gtφ =−gr(1−N )W
f

sin2 θ =−2J
r
sin2 θ+O

(
r−2
)
,

(38)
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leading to

f = 1− 2(M− rH)
r

+O
(
r−2
)
,

W=
2J
rHr

+O
(
r−2
)
.

(39)

Note that the Kerr black hole in the quasi-isotropic coordinate system presented in
equation (29) can be obtained from the standard textbook Boyer–Lindquist coordinates solu-
tion with the radial coordinate transformation

rBL = r+M+
M2 − a2

4r
= r

(
1+

M
r
+
r2H
r2

)
. (40)

The inverse transformation is given by

r=
1
2

(
rBL −M+

√
(rBL −M)

2 − 4r2H

)
. (41)

3.2. Boundary conditions

To solve the set of PDEs that result from the field equations in a particular theory of gravity,
suitable boundary conditions should be imposed. These are obvious if an exact solution, such
as the Kerr solution, is known by a trivial examination of the metric functions. However, in
more intricate cases inmodified gravity lacking an exact solution the boundary conditionsmust
be found with a careful examination of the field equations and employing suitable expansions
of the involved functions near the domain boundaries. For example if theories possess a GR
limit when some parameter tends to zero, an expansion about the Kerr solution is possible.
With this process, we find that in all cases to be discussed in this work within modified gravity
theories, the metric functions must obey the same boundary conditions as the Kerr solution
does. These conditions are summarised next.

(i) Axis boundary conditions: Axial symmetry and regularity of the solutions on the
symmetry axis θ = 0,π, imply the following boundary conditions

∂θf = ∂θg= ∂θh= ∂θW= 0, for θ = 0,π. (42)

Moreover, the absence of conical singularities further imposes that on the symmetry axis

h= 1, for θ = 0,π. (43)

All solutions to be discussed in this work are also symmetric with respect to a reflection on
the equatorial plane θ = π/2. Therefore, as was discussed above, it is enough to consider the
range θ ∈ [0,π/2] and one of the boundary conditions becomes

∂θf = ∂θg= ∂θh= ∂θW= 0, for θ = π/2. (44)

(ii) Event horizon boundary conditions: The black hole solutions discussed here possess an
event horizon located at a surfacewith constant radial variable r= rH. The boundary conditions
that the metric functions f, g and h obey at r= rH are

f− rH∂rf = 0

g+ rH∂rg= 0,

∂rh= 0.

(45)
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The reason for the Robin-type boundary conditions that the functions f and g obey comes
from the inclusion of the N 2 factor in front of f in the coefficient that multiplies dt2 in the
metric ansatz, equation (29). This factor is chosen such that these functions do not contain a
double-zero in a near-horizon expansion, allowing for more accurate solutions in this region,
and therefore, a more accurate extraction of horizon physical quantities such as the area and
temperature of the event horizon.We find that there are (at least) two possibilities for the condi-
tion that the functionW should obey at the horizon, one of which must be chosen appropriately
such that the number of input parameters is kept at two6

W= rHΩH (46)

or

W− rH
2
∂rW= 0, (47)

where ΩH is a constant interpreted as the angular velocity of the event horizon, which in the
case of a Kerr black hole is given by

ΩKerr
H =

√
M2 − 4r2H

2M(M+ 2rH)
=
χ2 − 1+

√
1−χ2

4rHχ
. (48)

(iii) Asymptotic boundary conditions: Requiring asymptotic flatness (i.e. that as r→∞, our
solution approaches the Minkowski spacetime), the functions f, g, and h obey

lim
r→∞

f = lim
r→∞

g= lim
r→∞

h= 1. (49)

Similarly to the boundary conditions at the event horizon, we find (at least) two suitable con-
ditions for the function W

lim
r→∞

W= 0, (50)

or, from the asymptotic expansion of equation (39)

lim
r→∞

rHr
2∂rW+ 2M2χ = 0⇔ lim

r→∞

r2

2rH
∂rW+

(
1+

r2

2rH
∂rf

)2

χ = 0. (51)

3.3. Connection with the numerical approach

To recap, the field equations of a gravitational theory once applied to the line element of
equation (29) will result in a set of non-linear coupled elliptic PDEs in r and θ subject to the
boundary conditions described above. Our objective is to solve this system of PDEs numeric-
ally using a spectral method. For this we introduce the compactified radial coordinate

x= 1− 2rH
r
, (52)

mapping the range r ∈ [rH,∞] to

x ∈ [−1,1]. (53)

With the compactified coordinate, the radial boundary conditions change, and we proceed to
give the new conditions next.

6 The ‘input parameters’ are the parameters needed to uniquely define a solution, this is discussed fully below in
section 3.3.
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Event horizon boundary conditions: The boundary conditions that the metric functions f, g
and h now obey are

f− 2∂x f = 0,

g+ 2∂xg= 0,

∂xh= 0,

(54)

for x=−1. For the function W, the first possibility (equation (46)) remains unchanged
(W|x=1 = rHΩH), whereas the second becomes

W− ∂xW= 0, (55)

at x=−1.

Asymptotic boundary conditions: The asymptotic boundary conditions the functions f, g,
and h are now

f = g= h= 1, for x= 1. (56)

Asymptotically, function W now obeys either

W= 0, (57)

or

∂xW+(1+ ∂x f)
2
χ = 0, (58)

at x= 1.
With our compactified radial coordinate, and given the symmetries of our problem7, a

suitable spectral expansion for the black hole metric functions (collectively denoted by F =
{f,g,h,W}) is given by

F (k) =

Nx−1∑
i=0

′ Nθ−1∑
j=0

′
α
(k)
ij Ti(x)cos(2jθ) , (59)

where Nx and Nθ are the resolutions in the radial and angular coordinates. Note that, as dis-
cussed above, the angular boundary conditions are automatically satisfied by this expansion
(c.f. table 1).

As mentioned previously, we will usually use the Kerr metric itself to set our initial guess
when working with modified theories of gravity, and to do so we will need the expression
for the spectral coefficients that follow from an interpolation of a two-dimensional function
u(x,θ), which is given by

αij =
4

NxNθ

Nx−1∑
k=0

Nθ−1∑
l=0

u(xk,θl)Ti(xk)cos(2jθl) , (60)

where xk and θl are given in equations (12) and (17) respectively.
Each Kerr black hole is uniquely described by two input parameters. For example, in the

presentation given in equation (34), these are the location of the event horizon rH and the
ADM mass M. We have seen, however, in expressions (36) and (48) that they are related to
the dimensionless spin χ and the horizon angular velocity ΩH. Therefore, using the correct
parametrisation, the Kerr solution can be described by any input pair chosen from rH, ΩH, χ,

7 From now on we consider only the cases with even parity with respect to θ = π/2.
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Figure 5. Choosing (rH,ΩH) as input parameters, for fixed rH, two branches exist.

andM. In the numerical approach, in a theory agnostic setting, one input parameter that must
be used is rH because it enters directly the metric ansatz and the definition of our compactified
coordinate x. We have, however, freedom in the choice of the other input parameter in the
numerics. To the best of our knowledge, so far in the literature for similar problems [13–
15, 21, 23, 24, 26, 28, 48], the other input parameter has always been chosen as the event
horizon angular velocity ΩH. Using this input pair (rH,ΩH), we find compatibility with the
boundary conditions for the function W if we choose equations (46) and (57) at the horizon
and infinity, respectively. Then, in the case of a Kerr black hole, one finds that for a fixed value
of rH, two branches of solutions exist, as shown in figure 5. This follows from inverting the
relation (48).

The first branch of solutions starts at a vanishing value of ΩH (for fixed rH) and exists until

rHΩH =

√
5
√
5− 11

4
√
2

≈ 0.0750708, (61)

at which point

χ =

√√
5− 1
2

≈ 0.786151. (62)

Then, a second branch appears, and ΩH tends backwards towards zero. As ΩH → 0 on this
second branch, extremal solutions are approached. The existence of two branches of solutions
is not unique to Kerr, and is observed as well in the modified theories of gravity to be dis-
cussed in this work. We note that the numerical procedure gets rather difficult as near-extremal
solutions are approached, as our metric ansatz with the described boundary conditions is not
compatible with extremal solutions.

A novel approach that we can also adopt is to choose the pair (rH,χ) as the input pair.
This input pair is compatible with theW boundary conditions of equations (55) and (58) while
maintaining the number of input parameters at two. We often find it very convenient to use the
dimensionless spin as an input parameter, for example when exploring domains of existence,
or simply when working on a single solution where a certain χ is wanted. Our numerical
spectral method is not only powerful because high accuracy solutions are produced, but also
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Figure 6. Fiducial grid with Nx×Nθ = 11× 5, highlighted in blue. The field equations
(residuals) are evaluated in the blue region, with the boundary conditions imposed
on the red region. The yellow highlight concerns the imposition of the condition of
equation (43).

because highly non-linear boundary conditions can be handled with ease (which is the case of
the boundary condition of equation (58)).

To solve the system of field equations subject to the discussed boundary conditions we must
construct a suitable grid. This is done as follows.We assume a resolutionNx×Nθ. The discrete
grid points in the x direction are chosen according to equation (12), where we take N= Nx− 2,
together with the boundary points x=−1 and x= 1, such that the total number of points in the
x direction is Nx8. In θ, our points are chosen as in equation (17), where we take N= Nθ. The
x and θ points together form the schematically shown in figure 6, in blue. Assuming there are
a total number, Nfuncs, of functions to solve for, there are Nfuncs ×Nx×Nθ degrees of freedom
(spectral coefficients) in the problem, as seen in the spectral expansion of equation (59). For
each value of θ in the grid at the x boundaries we impose for each function the horizon and
asymptotic boundary conditions as discussed before. This gives us a total of Nfuncs × 2×Nθ

equations (figure 6, in red). The remainingNfuncs × (Nx− 2)×Nθ equations come from impos-
ing theNfuncs residuals resulting from the field equations at each non-boundary x value, for each
θ. The number of degrees of freedom is then equal to the number of equations to solve, as it
should. A small caveat—the absence of conical singularities imposes that equation (43) must
be obeyed (i.e. for our coordinate range, h= 1 at θ= 0). While we could leave this condition
outside the numerical scheme and use it as another test to the code, we find that imposing
it allows obtaining solutions with (much) higher accuracy. In our particular implementation,
therefore, we have swapped the evaluation of one of the residuals at θ= 0 (for all interior
values of x)9 with the condition of equation (43), see figure 6 in yellow.

3.3.1. Numerical approach: a summary. Here we summarise our numerical approach for
clarity. To solve the field equations, some preliminary work must be done. First, we employ
the metric ansatz of equation (29) which contains four unknown functions, f, g, h, and W.
Plugging this metric ansatz onto the field equations of the theory, leads to a set of non-
linear coupled PDEs that depend on the functions and their first and second derivatives(
F ,∂rF ,∂2rF ,∂θF ,∂2θF ,∂rθF

)
. The set of field equations is then expressed in terms of the

compactified coordinate x defined in equation (52) and put in residual form (i.e.R(x,θ,∂F) =
0). The same is done for the appropriate boundary conditions as discussed. This part of the

8 This approach is also called boundary-bordering in the spectral methods’ literature.
9 We empirically found that any of the field equations should equally valid to remove for this process, resulting in
similar outcomes.
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process is usually done resorting to a computer algebra system such as Mathematica, Maple
or SageMath10. Our code, which can be found at [44], includes detailed examples demonstrat-
ing how to derive the elliptic field equations for the two theories we will discuss: GR and
EsGB gravity. These examples are implemented using Mathematica. They serve as a valu-
able reference and can be easily adapted to different contexts. Due to their complexity, these
elliptic equations can consist of hundreds or even thousands of independent terms, hence we
will not present them here. The residuals (and appropriate Jacobian) are then exported to a
Julia coding file in order to solve the problem using the developed numerical infrastructure.
Each function is expanded in a spectral series given by equation (59) and the input paramet-
ers are then specified (depending on the chosen boundary conditions for the function W). To
successfully solve the field equations, a good initial guess must be provided to our Newton
solver. For this, we interpolate the functions of the known Kerr solution using equation (60),
obtaining appropriate spectral coefficients to be provided as a good initial guess. If new fields
are present, as is the case with modified theories, we typically take advantage of perturbative
solutions and interpolate them as a guess. Convergence is assumed once the norm difference
between the spectral coefficients of two successive iterations is less than a certain prescribed
tolerance.

To speed up the solver, the values of our basis functions and their first and second derivatives
are calculated at all the grid points and stored, such that no repeated evaluations are performed.
Another optimisation that we found particularly impactful was to store the values on the grid
of the trigonometric functions that typically appear in the residuals, sinθ and cosθ.

Once a solution is obtained, physical quantities can be extracted from it as we discuss in
the next section, and the solution can be used for numerous investigations.

3.4. Physical properties of stationary and axisymmetric black holes

Once a numerical stationary and axisymmetric black hole solution has been found using our
code, we can extract important quantities of physical relevance. In this section, we review
many of the quantities that one can extract from a solution, some of which can be used to test
the accuracy of our code. We have implemented additional code to extract all these quantities
from a numerical solution.

3.4.1. Quantities of interest. Starting with the asymptotic quantities, we have seen that
the mass M and angular momentum J can be extracted from the asymptotic expansion of
equations (38) or (39). In terms of the coordinate x these are given by

M= rH (1+ ∂xf) |x=1, J=−r2H∂xW|x=1. (63)

We remark that such a simple expression for the extraction of J is the reason why we have
defined the function W in this way—such that its decay is of the form ∼1/r, allowing for
more accurate results. In a circular spacetime, the zeroth law of black hole mechanics holds,
whichmeans that the surface gravity is constant on the horizon of the stationary black hole. The
surface gravity is defined as κ2 =−1/2(∇µξν)(∇µξ ν), where ξ was defined in equation (31).
The Hawking temperature [56] can then be obtained from the surface gravity as

TH =
κ

2π
=

1
2π rH

f√
gh

∣∣∣∣
x=−1

. (64)

10 In this work we have usedMathematica along with the OGRe package [55] to obtain the explicit field equations of
many theories.
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The induced metric on the horizon is

dΣ2 = hijdx
i dxj = r2H

g
f

[
hdθ2 + sin2 θdφ2

]∣∣∣∣
x=−1

, (65)

and from it we can compute several quantities of interest, the most important being the event
horizon area

AH =

ˆ
H

√
hdθdφ = 2π r2H

ˆ π

0
dθ sinθ

g
√
h
f

∣∣∣∣∣
x=−1

. (66)

Also of importance is the entropy, which is given in the Iyer–Wald formalism by [57]

S= −2π
ˆ
H

δL
δRµναβ

ϵµνϵαβdA

∣∣∣∣
on−shell

, (67)

where ϵµν is the binormal vector to the event horizon surface. In the case of a Kerr black
hole the above expression reduces to the simple form S= AH/4. The horizon and asymptotic
quantities are connected via the Smarr type relation [57–60]

M= 2THS+ 2ΩHJ− 2
ˆ
Σ

d3x
√
−gL

∣∣∣∣
on−shell

. (68)

The Smarr relation is extremely important when studying numerical solutions as it provides a
test to the code that relates physical quantities obtained on the horizon and asymptotic regions,
allowing us to estimate the accuracy of the numerical method. Also of interest is the perimetral
radiusRwhich is a geometrically significant radial coordinate such that a circumference along
the equatorial plane has perimeter 2πR. It is related to the coordinate r by

R=
√
gϕϕ

∣∣
θ=π/2

=

√
g
f
r

∣∣∣∣
θ=π/2

. (69)

To explore the horizon geometry, it is useful to define the horizon circumference along the
equator

Le = 2πRH, (70)

and along the poles

Lp = 2
ˆ π

0

√
gθθ|x=−1dθ = 2rH

ˆ π

0

√
gh
f

∣∣∣∣∣
x=−1

dθ. (71)

With these two quantities, we can define the sphericity

s=
Le
Lp
. (72)

For a Kerr black hole s⩾ 1, with s increasing with spin. That means that spin deforms the
horizon towards oblateness. The linear velocity of the horizon quantifies how fast the null
geodesic generators of the horizon spin relative to a static observer at infinity, and is given by

vH =ΩHRH. (73)
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For a Kerr black hole we have in terms of M and rH

J=M2

√
1−

(
2rH
M

)2

,

TH =
1

4πM
(
1+ M

2rH

) ,
AH = 8πM2

(
1+

2rH
M

)
Le = 4πM,

Lp = 4M

√
2

(
1+

2rH
M

)
EllipticE

(
1
2

[
1− 2rH

M

])
,

RH = 2M,

(74)

where EllipticE denotes the complete elliptic integral of the second kind, and we also note that
2rH/M=

√
1−χ2. The Kerr solution is Ricci flat, and thus the Lagrangian of GR vanishes

on-shell and therefore so does the last term in equation (68).

3.4.2. Ergoregion. The ergoregion is defined as the domain outside the event horizon
wherein the norm of the asymptotically timelike Killing vector k= ∂t becomes positive,
gµνkµkν > 0. It is bounded by the event horizon and by the surface where

gtt =−fN 2 +
g(1−N )

2W2

f
sin2 θ = 0. (75)

Within the ergoregion, an object cannot appear stationary with respect to a distant observer due
to the intense frame-dragging11. Furthermore, ergoregions raise the possibility of extracting
energy from a black hole via the Penrose process, or superradiant scattering [61]. Starting from
the well-known result for the ergosphere of a Kerr black hole in Boyer–Lindquist coordinates
and inverting the relation of equation (40) we obtain that in quasi-isotropic coordinates the
ergosphere of a Kerr black hole is located at

rKerrE =
rH√
1−χ2

(√
1−χ2 cos2 θ+χ sinθ

)
, (76)

where the subscript ‘E’ refers to ‘ergoregion’. Due to the symmetries of our problem, we need
only consider the range θ ∈ [0,π/2]. To visualise the ergoregion, we introduce the coordinates

X=
r
rH

sinθ, Z=
r
rH

cosθ. (77)

In figure 7 we observe the ergoregion of a Kerr black holes in the X−Z plane for several values
of dimensionless spin.

3.4.3. Petrov type. The Petrov classification allows for a kinematic characterisation of the
gravitational field in a coordinate independent manner using algebraic properties of the Weyl

11 This immediately follows from the fact that the 4-velocity of a massive particle must be timelike, gµνuµuν < 0.
Indeed, the worldline of an object standing still at a fixed point implies that u= ∂t, and if gtt ⩾ 0, then gµνuµuν ⩾ 0.
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Figure 7. Ergoregion of a Kerr black hole with χ= 0.3 (orange), χ= 0.6 (green), and
χ= 0.8 (red) visualised on the X−Z plane. The event horizon is shown in blue.

tensor Cµναβ , namely its number of distinct principal null directions. This classification is
useful, for example, when searching for exact solutions, or for a Carter-like constant [62].
Using the Newman–Penrose formalism, the information is contained in five complex scalars
known as the Weyl scalars. With the null tetrad {lµ,nµ,mµ,mµ}, where lµ and nµ are real, and
mµ,mµ are complex conjugate satisfying the orthonormality conditions lµnµ = 1,mµmµ =−1
and all other products zero, the Weyl scalars are defined as

ψ0 =−Cµναβ l
µmν lαmβ ,

ψ1 =−Cµναβ l
µnν lαmβ ,

ψ2 =−Cµναβ l
µmνmαnβ ,

ψ3 =−Cµναβ l
µnνmαnβ ,

ψ4 =−Cµναβn
µmνnαmβ .

(78)

With the above scalars, the following Lorentz invariant quantities can be constructed

I= ψ0ψ4 − 4ψ1ψ3 + 3ψ2
2 ,

J=−ψ3
2 +ψ0ψ2ψ4 + 2ψ1ψ2ψ3 −ψ4ψ

2
1 −ψ0ψ

2
3 ,

D= I3 − 27J2,

K= ψ2
4ψ1 − 3ψ4ψ3ψ2 + 2ψ3

3 ,

L= ψ4ψ2 −ψ2
3 ,

N= 12L2 −ψ2
4I.

(79)

Given the above quantities, it is possible to determine the Petrov type of a given spacetime. The
classification is summarised in table 2 [63]. In particular, a spacetime is said to be algebraically
special ifD= 0. The Kerr(-Newman) spacetime is Petrov type D. In a numerical setup, we also
find useful to introduce the speciality index defined as [64]

S=
27J2

I3
. (80)
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Table 2. Summary of Petrov classification.

Type Conditions

O ψ0 = ψ1 = ψ2 = ψ3 = ψ4 = 0
I D ̸= 0
II D= 0, I ̸= 0,J ̸= 0,K ̸= 0,N ̸= 0
III D= 0, I= J= 0,K ̸= 0,L ̸= 0
N D= 0, I= J= K= L= 0
D D= 0, I ̸= 0,J ̸= 0,K= N= 0

With an appropriate choice of tetrad, following [64], it is possible to gauge away ψ1 and
ψ3 to zero. Such a tetrad would be for example

lµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1,0,0,−

gtφ +
√
g2tφ − gttgφφ

gφφ

 ,
nµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1,0,0,−

gtφ −
√
g2tφ − gttgφφ

gφφ

 ,
mµ =

1√
2

(
0,

i
√
grr
,

1
√
gθθ

,0

)
.

(81)

3.4.4. Marginal stable circular orbits: light rings and ISCO. The study of marginal stable
circular orbits is highly relevant for the observational properties of black holes. The innermost
stable circular orbit (ISCO) of massive particles is the smallest possible radius for a stable
circular orbit and is often taken to mark the inner edge of an accretion disk around a black
hole. Accelerated charged particles orbiting the black hole emit synchroton radiation whose
physical properties are connected with the frequency of geodesics at the ISCO. Therefore,
physical properties of an astrophysical black hole can be inferred via measurements of the
ISCO through accretion disks.

Light rings are circular null geodesics, typically unstable, allowing light to encircle a black
hole before being scattered to infinity or falling into the event horizon. From an observational
point of view, they are important for observations made with the Event Horizon Telescope as
they are intimately connected with the shadow of the black hole [65].

To compute the ISCO and light rings we follow [50]. We start by considering the line ele-
ment of equation (29) in the form

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdtdφ. (82)

The two independent killing vectors of the spacetime, kµ = ∂t and Φµ = ∂φ, have the associ-
ated conserved reduced energy E and angular momentum L

E=−kµ
dxµ

dλ
=−gtt ṫ− gtφφ̇,

L=Φµ
dxµ

dλ
= gtφ ṫ+ gφφφ̇,

(83)
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where ≡̇d/dλ. The above expressions can be rearranged in terms of ṫ and φ̇

ṫ=
Egφφ +Lgtφ
g2tφ − gttgφφ

,

φ̇ =− Egtφ +Lgtt
g2tφ − gttgφφ

.

(84)

Considering orbits restricted to the equatorial plane, θ = π/2, the condition associated with
the normalisation of the four-velocity of the particles becomes

−ϵ= gtt ṫ
2 + grrṙ

2 + gφφφ
2 + 2gtφ ṫφ̇, (85)

with ϵ= {0,1,−1} for a massless, massive and tachyon particle, respectively. We disregard
ϵ=−1 from now on. Substituting the expressions of equation (84) in the above condition, and
solving for ṙ2, we can define the effective potential

Ueff =
1
grr

(
−ϵ+ E2gφφ + 2ELgtφ +L2gtt

g2tφ − gttgφφ

)
, (86)

such that

ṙ2 = Ueff. (87)

The conditions for a circular orbit are ṙ= 0 and r̈= 0, from which follows that

Ueff = 0,
dUeff

dr
≡ U ′

eff = 0, (88)

at the location of orbit. The dash denotes a derivative with respect to r. These conditions can
further be rearranged into algebraic equations that must be satisfied simultaneously

E2gφφ + 2ELgtφ +L2gtt− ϵ
(
g2tφ − gttgφφ

)
= 0,

E2g ′
φφ + 2ELg ′

tφ +L2g ′
tt− ϵ

(
g2tφ − gttgφφ

) ′
= 0.

(89)

Light rings
For a light particle, ϵ= 0. In this case, calculations are simpler than in themassive case. Solving
the first equation for L in (89) and substituting in the second we obtain

g ′
φφ + 2g ′

tφ

gtφ ±
√
g2tφ − gttgφφ

gtt

+ g ′
tt

gtφ ±
√
g2tφ − gttgφφ

gtt

2

= 0, (90)

which is to be evaluated on a radius r. The smallest root of the above equation is the location
of the light ring.

In Boyer–Lindquist coordinates the location of the circular photon orbits of a Kerr black
hole are given by [66]

rLR±BL = 2M

(
1+ cos

(
2
3
arccos(∓χ)

))
, (91)

where the plus sign refers to co-rotating photons, and the minus sign to counter-rotating
photons. In quasi-isotropic coordinates the location of the circular photon orbits can be
obtained using the inverse transformation in equation (41).
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ISCO
For a massive particle, ϵ= 1. The ISCO is located at a saddle point of the effective potential,
such that the condition U ′ ′

eff = 0 should be imposed. This is equivalent to imposing

E2g ′ ′
φφ + 2ELg ′ ′

tφ +L2g ′ ′
tt − ϵ

(
g2tφ − gttgφφ

) ′ ′
= 0, (92)

in addition to equation (89). To find the location of the ISCO, we first solve equation (89) for E
and L as functions of the metric functions and their first derivatives, and later substitute these
onto equation (92). Similarly to the light-ring case, we obtain a second order equation to be
solved for r, the smallest root of which corresponds to the location of the ISCO.

In Boyer–Lindquist coordinates the location of the circular massive particle orbits of a Kerr
black hole are given by [66]

rISCO±BL =M
(
3+Z2 ∓

√
(3−Z1)(3+Z1 + 2Z2)

)
, (93)

where

Z1 = 1+
(
1−χ2

)1/3 [
(1+χ)1/3 +(1−χ)1/3

]
,

Z2 =
√

3χ2 +Z21,

and the plus sign refers to co-rotating particles, and theminus sign to counter-rotating particles.
In quasi-isotropic coordinates the location of the circular orbits can be obtained using the
inverse transformation in equation (41).

Orbital frequencies at the ISCO and light ring
The orbital angular frequency of particles both at the ISCO and light ring is given by

ω± =
φ̇

ṫ
=

−g ′
tφ ±

√
g ′2
tφ − g ′

ttg ′
φφ

g ′
φφ

, (94)

where the above expression is to be evaluated at the location of the ISCO/light ring, ω+ is the
angular frequency of co-rotating particles and ω− is the angular frequency of counter-rotating
particles. In the case of a Kerr black hole we have

Mω± =± 1√
48cos4

(
1
3 arccos(∓χ)

)
+χ2

, (95)

at the light ring, and

Mω± =± 1(
rISCO±BL /M

)3/2 ±χ
, (96)

at the ISCO. The orbital frequency at the ISCO is associated with the cut-off frequency of
the emitted synchrotron radiation generated from accelerated charges in accretion disks, and
the angular frequency at the light ring is related to the time-scale of the response of the
black hole when it is perturbed (real part of the frequency of the black hole quasi-normal
modes) [67].

4. Numerical spinning black hole solutions

In this section we first validate our numerical infrastructure against well-known results, namely
the Kerr black hole, and then proceed to use it to obtain spinning black holes in a modified
gravity theory, the EsGB theory.
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Figure 8. Comparison between the numerical and analytical results for a Kerr black
hole with χ= 0.6, using Nx = 42, Nθ = 8. The maximum observed error is of order
O
(
10−13) for the function h, with all other functions being obtained to machine preci-

sion. A Schwarzschild black hole was used as an initial guess, and we have used rH = 1.

4.1. Validating the code against the Kerr black hole

To validate our numerical infrastructure we will solve the axisymmetric vacuum Einstein
equations to numerically obtain the Kerr solution, and compare with analytical results. We
choose to solve the following combination of the field equations which diagonalise the Einstein
tensor with respect to the operator ∂2r + r−2∂2θ:

−Eµ
µ + 2E tt+

2WrH
r2

Eφ
t = 0,

Eφ
t = 0,

E rr+ Eθ
θ = 0,

Eφ
φ − WrH

r2
Eφ

t−E rr−Eθ
θ = 0.

(97)

In figure 8 we present the results for the comparison of the metric functions obtained numer-
ically with the analytically known ones for a Kerr black hole with χ= 0.6. Given that in this
case the initial guess cannot be the Kerr metric itself, to obtain the results in figure 8 we used a
Schwarzschild black hole with comparable rH12. The maximum observed error is ofO

(
10−13

)
for themetric function h, with all othermetric functions being successfully obtained tomachine
precision. We also explored the whole domain of existence of Kerr black holes, comparing
numerically obtained physically relevant quantities with analytical ones, see figure 9 below.
These include themassM, angular momentum J, horizon areaAH andHawking temperature TH

12 We find the code to be robust against initial guesses, converging quickly even when these are somewhat (but not
extremely) bad.

25



Class. Quantum Grav. 40 (2023) 165001 P G S Fernandes and D J Mulryne

Figure 9. Comparison of numerical results for M, J, AH and TH with analytical ones,
throughout the domain of existence of Kerr black holes. Each point represents a differ-
ent black hole solution. Numerical results were obtained using Nx = 50, Nθ = 12. We
observe remarkable agreement and small errors overall.

of the black holes. Furthermore, we computed the (normalised) Smarr relation in equation (68).
Overall, in all quantities we have found remarkable agreement between numerical and analyt-
ical results, with the Smarr relation providing accurate maximum error estimates. We also
observe that errors are higher when the black holes approach the extremal case (χ → 1). This
is because in the extremal limit, our setup is not valid and another metric änsatz is needed (see
e.g. [14]).

4.2. EsGB gravity

EsGB theories of gravity are a popular set of scalar tensor theories of gravity that have been
extensively studied [16–28], and which admit black hole solutions different to those of GR.
Here we use this set of theories to test our methods and code in a non-trivial, but previously
studied setting. EsGB theories are described by the action

S =
1

16π

ˆ
d4x

√
−g
(
R− (∇ϕ)2 + α

4
ξ (ϕ)G

)
, (98)

26



Class. Quantum Grav. 40 (2023) 165001 P G S Fernandes and D J Mulryne

where ϕ is a real scalar field that couples non-minimally to the Gauss–Bonnet term via the
coupling function ξ(ϕ), and where α is a coupling constant with dimensions of length squared.
No closed-form black hole solutions are known in these models, even in the static case. One
is therefore forced to resort to numerical methods to study black holes in these theories.

The field equations of the action (98) are

Eµν ≡ Gµν −Tµν = 0, (99)

where

Tµν =∇µϕ∇νϕ − 1
2
gµν (∇ϕ)2 +αPµανβ∇α∇βξ (ϕ) ,

and

Pαβµν ≡ 1
4
ϵαβγδR

ρσγδϵρσµν = 2gα[µGν]β + 2gβ[νRµ]α −Rαβµν ,

is the double-dual Riemann tensor (the square brackets denote anti-symmetrisation). The scalar
field equation is

Eϕ ≡□ϕ +
α

8
ξ̇(ϕ)G = 0, (100)

where the dot denotes differentiation with respect to the scalar field ϕ. In the stationary
and axisymmetric setting, we find that the scalar field is subject to the boundary conditions
[49, 50]

∂xϕ = 0, x=−1,

ϕ = 0, x= 1,

∂θϕ = 0, θ = 0,π/2,

(101)

while the boundary conditions for the metric functions remain those given above. We therefore
choose the same spectral expansion for the scalar field as we did for the metric functions.

Black holes in the EsGB theory should obey the Smarr formula (68), which becomes

M+Ms = 2THS+ 2ΩHJ, (102)

where13

Ms =− 1
4π

ˆ
d3x

√
−g ξ(ϕ)

ξ ′(ϕ)
□ϕ, (103)

and the entropy is given by equation (67) that in the EsGB case becomes

S=
AH
4

+
α

8

ˆ
H
d2x
√
hξ(ϕ)R(2), (104)

where R(2) is the Ricci scalar of the induced metric on the horizon. We will focus on two
coupling examples, the linear coupling

ξ(ϕ) = ϕ, (105)

13 This relation can also be written as

Ms =
1

4π

ˆ
d3x

√
−g(∇ϕ)2

∂

∂ϕ

(
ξ(ϕ)

ξ′(ϕ)

)
,

provided the coupling does not obey ξ(ϕ)∝ ξ ′(ϕ) and the scalar field asymptotically vanishes. This is advantageous
from a numerical point of view because no second derivatives of the scalar field are required, increasing the accuracy
in computing Ms.
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and the exponential coupling

ξ(ϕ) = eγϕ. (106)

We find that for the exponential coupling the Smarr relation takes a rather simple form

M+Qs/γ = 2THS+ 2ΩHJ, (107)

where Qs is the scalar charge of the solution, appearing in the asymptotic expansion of the
scalar field

ϕ ≈ Qs

r
+O

(
r−2
)
.

It can also be proved that for the linear coupling the following relation holds [68]

Qs = 2παTH. (108)

In what follows we use the relations in equations (107) and (108) to address the accuracy of
our numerical solutions for the exponential and linear couplings respectively. This is necessary
as closed-form solutions are unknown. We use the same combination of field equations as in
the Kerr case (equation (97)), along with the scalar field equation (100) to solve the system.
To solve the system we use a comparable Kerr black hole as an initial guess for the metric
functions, and for the scalar field we use the perturbative solution [49, 50]

ϕ ≈ α

r2H

415− 1047x+ 942x2 − 358x3 + 51x4 − 3x5

12(−3+ x)6
. (109)

We present the accuracy estimate results (in a part of the domain of existence) using the Smarr
relation for the exponential coupling and the relation in equation (108) for the linear coupling
in figure 10. We observe that errors, as measured by the relations (107) and (108), are small
and similar to those presented for the Kerr black hole in figure 9, despite a dramatic increase in
the complexity and number of terms in the field equations. Our results also agree remarkably
well with perturbative solutions, such as the ones obtained in [50].

As another test to the code, in figure 11 we plot the accuracy as estimated by the Smarr rela-
tion (107) as a function of both resolutions Nx and Nθ. We observe exponential convergence,
similarly to the toy model presented in figure 4. Note that the Smarr relation provides only an
estimate of maximum error—recall the Kerr case, where most metric functions were actually
obtained to a precision of ∼O

(
10−16

)
but the Smarr relation attained errors on the order of

∼O
(
10−13

)
.

To further demonstrate the capabilities of our code, in the following we present some results
for the physical properties of EsGB black holes. A plot of the ergoregion for a dilaton black
hole with γ= 1, χ= 0.1 and α/M2 = 1.15 can be found in figure 12. In figure 13 we plot
|1− S| as a function of x and θ, where S is the speciality index defined in equation (80), for the
same EsGB black hole as before, where we can observe that the spacetime is not algebraically
special, being Petrov type I. Spinning EsGB black holes were always observed to be Petrov
type I14.

The perimetral location and angular frequencies at the ISCO and light rings of EsGB dilaton
black holes (γ= 1) are compared with those of a Kerr black hole (with the same χ and M) in
figure 14. Note that we have neglected any couplings between the dilaton and matter (see e.g.
[48, 69]). We have compared our results in the static and slowly rotating cases with those in
[69], observing remarkable agreement (in the appropriate setup). From figure 14 we observe

14 With our numerical setup, a Kerr black hole typically yields values of |1− S| on the order of 10−15 everywhere, in
good agreement with the fact that it is Petrov type D.
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Figure 10. Smarr relation (top) and relation in equation (108) (bottom) for numerical
solutions in a part of the domain of existence for the theorywith the exponential coupling
with γ= 1 and linear coupling, respectively, for different values of α/r2H. Each point
represents a different black hole solution. Numerical results were obtained using Nx =
50, Nθ = 12. We observe small errors, similarly to the Kerr case.

Figure 11. Smarr relation for numerical solutions with a dilaton coupling (γ= 1) as a
function of the resolution in x (left) and θ (right). We observe exponential convergence
to as the resolution is increased.
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Figure 12. Ergosphere for a EsGB dilaton black hole with γ= 1, χ= 0.1 and α/M2 =
1.15 (red), together with the ergosphere of a Kerr black hole with the same χ (blue).
The event horizon for both is presented in black.

Figure 13. |1− S| plotted as a function of x and θ, where S is the speciality index defined
in equation (80), for a EsGB dilaton black hole with γ= 1, χ= 0.1 and α/M2 = 1.15.
The non-vanishing value of |1− S| demonstrates that the spacetime is Petrov type I.

differences of a few per cent in most cases, with the most drastic differences occurring for
the location of the co-rotating light ring due to its proximity to the horizon. The qualitative
behaviour is as follows: the perimetral radius of both the ISCO and the light ring decreases
withα/M2, and the opposite happens for the angular frequencies15. Co-rotating orbits are most

15 We note that, similarly to [49, 50], positive coordinate shifts in the location of the ISCO/light ring were observed.
These are, however, not physically relevant and the perimetral radius should be used, where negative shifts are
observed.
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Figure 14. Comparison between EsGB dilaton (γ= 1) and Kerr black holes with the
same χ (and M) regarding the perimetral radius and angular frequencies at the ISCO
(top) and light ring (bottom) as a function of α/M2, in a part of the domain of existence
of solutions.

affected, and black hole spin enhances the differences of co-rotating orbits with respect to the
Kerr case.

4.3. Comparison with other codes

Similar codes to the one we have developed in this chapter are scarce. Indeed, most of the
numerical studies of spinning black holes in modified theories of gravity make use of the
non-publicly-available FIDISOL/CADSOL solver [45–47], which implements a finite differ-
ence method together with the root finding Newton–Raphson method. The solver is written in
Fortran and was first developed in the eighties. Works that use the FIDISOL/CADSOL solver
can be found e.g. in [13–15, 21, 23, 24, 26, 28, 48]. Some of these works have applied the
FIDISOL/CADSOL solver in studies of EsGB gravity, much like we did here. However, they
report an error of orderO

(
10−3

)
, as estimated by the Smarr relation. In the appendix of [70],

the author gives a comprehensive overview of the FIDISOL/CADSOL solver, benchmarking it
against the Kerr solution, with results again showing errors several orders of magnitude higher
than those presented in figure 9.

More recently, in [50] the authors developed the eXtreme PDEs Solver (XPDES) code
which is publicly available, to address similar problems. The code is written in C language,
and implements a finite difference method to solve the field equations, similarly to the
FIDISOL/CADSOL package. It makes use of the softwareMaple to export the field equations
to many large C programming files. Sullivan et al [50] does not discuss errors as estimated
by Smarr relations, instead, they (also) benchmark their code against the Kerr solution, and
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compare their EsGB results to perturbative solutions, finding good agreement. They report
typical maximum errors on obtaining the Kerr solution of O

(
10−6

)
, which represents a good

improvement when compared with the FIDISOL/CADSOL package, especially given that the
XPDES code is open-source and publicly available.

Our code is written in the Julia programming language, which when compared with com-
plied languages such as C code makes it logistically easier to use and adapt, and to implement
new models. In our implementation the field equations and boundary conditions are written in
a very simple way. For example, the boundary condition

f− 2∂x f = 0,

is written as a residual in code language as

f − 2 ∗ dfdx.

The code is memory efficient and fast, making use of pseudospectral methods as explained
above, with solutions to the field equations being obtained in the order of a few seconds in
laptop-class computers. In our (limited) comparisons with the XPDES code, we found that
where our code took only a few seconds the XPDES code would take minutes to achieve a
lower accuracy.

The results of this section, for example in figures 9 and 10, show that the accuracy
of our code is many orders of magnitude better than the accuracy presented by either the
FIDISOL/CADSOL package or even the XPDES code.

Once a solution to the field equations has been obtained, our code has built-in functions
to compute all the physical properties of the black holes discussed in section 3.4, therefore
allowing for a simple and comprehensive study of different models.

5. Conclusions

In this paper we have reviewed the spectral method for solving differential equations and sub-
sequently argued that such methods are ideal for finding stationary and axisymmetric black
hole solutions in modified theories of gravity. In particular, they allow complicated field
equations and boundary conditions to be implemented in a straightforwardmanner.We showed
how this can be done, and have implemented the method in a new code. To show it in action,
and to benchmark its performance against other codes, we applied the code in the GR setting,
and verified that the solution found is extremely close to the known Kerr black hole. We then
applied it to a popular set of modified theories of gravity, EsGB gravity, where it is known that
black hole solutions different from Kerr exist. In this latter setting we verified the accuracy
using analytical expressions that should hold identically. We found that even in the Gauss–
Bonnet setting our code took just seconds to find accurate spinning black hole solutions.

Within the code we have also implemented many built in functions to calculate black hole
properties of physical interest. In the future, obtained solutions together with these functions
could be used to study a huge range of phenomena observational interest. Other possible stud-
ies include the quasi-normal modes of black hole mergers (hence permitting realistic data
analysis with Bayesian methods), the electromagnetic emission from accretion disks, black
hole shadows, and our code’s solutions could also be used as seed solutions for numerical
evolutions. Given that the code has been completed only recently, we have, however, not yet
applied it widely. Although a first application in research work to EsGB theories is contained
in [71]. In the future we hope to apply the code to other theories, such as the so called regular-
ised 4D-Einstein–Gauss–Bonnet gravity theory [29–37] where thus far spinning black holes
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have not been found, and use it to further understand and constrain such theories using the
physical properties described.
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Appendix. The Kerr–Newman black hole

The Kerr–Newman solution solves the Einstein–Maxwell field equations

Gµν = 2

(
F α
µ Fνα − 1

4
gµνFαβF

αβ

)
. (110)

The Einstein–Maxwell field equations can be obtained with the following action principle

S =
1

16π

ˆ
d4x

√
−g(R−FµνF

µν) , (111)

where Fµν =∇µAν −∇νAµ is the Maxwell tensor. With the ansatz of equation (29) the
Kerr–Newman black hole solution reads (in terms of rH, M and Q)

fKN =
(
1+

rH
r

)2 A
B
,

gKN =
(
1+

rH
r

)2
,

hKN =
A2

B
,

WKN =
r
(
2M2 −Q2

)
+ 2M

(
r2 + r2H

)
rHr3B

√
M2 −Q2 − 4r2H

(112)

where

A=
r2
(
2M2 −Q2

)
+ 2Mr

(
r2 + r2H

)
+
(
r2 − r2H

)2
r4

−
(
M2 −Q2 − 4r2H

)
r2

sin2 θ,

B =

(
A+

(
M2 −Q2 − 4r2H

)
r2

sin2 θ

)2

−
(
r2 − r2H

)2 (
M2 −Q2 − 4r2H

)
r6

sin2 θ,

(113)

together with the four-potential

Aµdx
µ =

(
Ãt−

WKN

r
(1−N ) Ãφ sin2 θ

)
dt+ Ãφ sin2 θdφ, (114)

where

Ãφ =
Qr
(
1+ M

r +
r2H
r2

)√
M2 −Q2 − 4r2H

r2
(
1+ M

r +
r2H
r2

)2
+
(
M2 −Q2 − 4r2H

)
cos2 θ

, (115)
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and

Ãt =Φ −
Qr
(
1+ M

r +
r2H
r2

)
r2
(
1+ M

r +
r2H
r2

)2
+
(
M2 −Q2 − 4r2H

)
cos2 θ

+
WKN

r
(1−N ) Ãφ sin2 θ, (116)

where Q the electric charge and Φ the electrostatic potential (which can be chosen such that
Ãt|rH = 0). This particular choice of functions Ãt and Ãφ for the vector potential is such that
they are optimised for a numerical setup such as ours.

The total angular momentum (per unit mass), a, of the solution is related to M, Q and
rH via

rH =

√
M2 − a2 −Q2

2
≡ M

2

√
1−χ2 − q2, (117)

where we have defined the dimensionless charge

q≡ Q/M. (118)

The electric charge can be read off the asymptotic decay of the temporal part of the four
potential

Ãt =Φ − Q
r
+O

(
r−2
)
. (119)

The Kerr–Newman black hole obeys the well-known Smarr relation

M= 2TS+ 2ΩHJ+ΦQ. (120)

Note that the Kerr–Newman black hole in the quasi-isotropic coordinate system presented
in equation (29) can be obtained from the standard textbook Boyer–Lindquist coordinates
solution with the radial coordinate transformation

rBL = r+M+
M2 − a2 −Q2

4r
= r

(
1+

M
r
+
r2H
r2

)
. (121)

Details about marginal stable circular orbits in the Kerr–Newman case can be found in
[72, 73].
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