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Abstract

The main research field of the Large Hadron Collider beauty (LHCb) experiment

at Large Hadron Collider (LHC) is the study of CP violation and rare decays of

beauty and charm hadrons. Measurement of the B0
s mixing parameters ∆Γs, Γs,

∆ms and ϕs provide a precise test of the Standard Model (SM). New particles,

as predicted in models of physics beyond the SM may alter the measured values

of B0
s mixing parameters compared to the SM. In this thesis, a measurement of

∆Γs is made by comparing the lifetimes in the B0
s → J/ψη′ and B0

s → J/ψf0

decay modes.

This work uses the full data set recorded by the LHCb detector between 2011

and 2018. The value of ∆Γs is determined by measuring the yields of the two

channels in bins of decay time, computing the ratio between the two channels

in each bin and performing a χ2 minimization. This technique, combined with

the choice of two decay channels with similar topology, reduces the impact of the

time acceptance introduced by the detector.

The measured value of ∆Γs is

∆Γs = (0.081± 0.011± 0.009) ps−1

where the first uncertainty is statistical and the second is systematic.

At the end of 2018 the LHC started a major upgrade to deliver better

performance. During this period, most of the LHCb sub-detectors were upgraded

as well as the data acquisition system. After the upgrade, the new software

infrastructure will need to be more robust and scalable to face the higher

luminosity delivered by the LHC. With this new configuration, monitoring the

status of the detector and the data collected will be crucial to assure the best

performance of the detector. For this reason, a prototype for the High Level
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Trigger (HLT) monitoring system was designed, implemented and tested. The

goal of this system was to check the feasibility of having a monitoring system

running on off-the-shelf software instead of developing everything from scratch.
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avermi accolto e, in particolare, Franz, Victoria e ancora Matt per aver riposto
la loro fiducia in me durante la fase di selezione.

Ringrazio Anthony, Max e Ozlem per i preziosi suggerimenti e l’aiuto dall’inizio
alla fine dell’analisi.

Un grande ringraziamento va anche ad alcune persone al CERN, Conor per
avermi presentato al gruppo dell’HLT, Rosen per avermi aiutato e guidato
mentre progettavo il prototipo del sistema di monitoring dell’HLT, Roel per aver
condiviso la sua profonda conoscenza del sistema di monitoring dell’HLT e Flavio
e Hristo per il loro aiuto con l’infrastruttura dell’Online e per le discussioni e i
suggerimenti sul mio lavoro. Vorrei infine ringraziare HFLAV per avermi dato
accesso al loro software per creare alcuni grafici di questa tesi.

Non avrei mai iniziato questo dottorato se non fosse stato per l’aiuto di Flavio
e Pilloni, senza di voi non avrei avuto l’opportunità di lavorare al CERN e di
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Chapter 1

Introduction

A key question yet to be answered by modern cosmology is to understand the

origin of the asymmetry between matter and anti-matter in our universe. During

the Big Bang equal amounts of matter and anti-matter were created but now

the universe is dominated by matter. One possibility to create this asymmetry

is baryogenesis [2] which requires the Sakharov conditions [3] to be met: the

non-conservation of baryon number, the violation of the CP -symmetry and

interactions happening outside the thermal equilibrium.

The main research field of the Large Hadron Collider beauty (LHCb) detector

at Conseil Européen pour la Recherche Nucléaire (CERN) is the study of CP

violation and rare decays of beauty and charm hadrons. This thesis studies the

lifetime of the B0
s meson performing a relative measurement, ∆Γs, between the

B0
s → J/ψη′ and B0

s → J/ψf0 decays.

The LHCb detector started a scheduled upgrade in December 2018. During this

period most of LHCb sub-detectors were changed as well as the data acquisition

system. A part of the work presented in this thesis is related to the design and

prototyping of a new monitoring system for the upgraded detector.

The thesis is split into six chapters covering all the aspects of the work done during

the PhD. Chapter 2 presents the current ∆Γs results both from the theoretical

and experimental perspective. In this chapter, the theoretical background is

discussed along with the methodology used to measure ∆Γs from the chosen

decays. Chapter 3 describes the LHCb detector at CERN with focus on the

sub-detectors and the data acquisition chain. Chapter 4 covers the steps of
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the offline analysis and the simulation production. An in depth description of

particle identification and track classification at LHCb is given. The Monte Carlo

production and the offline analysis tools are described as well. Chapter 5 describes

a prototype of the High Level Trigger (HLT) monitoring system developed for

future upgrade purposes. The work in this chapter was carried out by the author

with the support of the HLT and online teams. The main goal of the prototype

was to demonstrate the feasibility of using off the shelf software to run the LHCb

HLT monitoring system. Some preparation work was done by benchmarking the

Run 2 HLT infrastructure and studying the Run 2 HLT monitoring system. The

results from this work were presented at CHEP 2019 and are published in [1].

Chapter 6 describes the signal selection and the background studies done for

the ∆Γs analysis. The work in this chapter and the following ones was carried

out in collaboration with a small group from the University of Edinburgh and

LAPP (Annecy). In this chapter, a more detailed view of the data used as

well as selection cuts and background studies is presented. The last part of the

chapter describes the MultiVariate Analysis (MVA) which is used to extract the

signal from the very noisy background. Chapter 7 contains the core of the ∆Γs

analysis. It describes how ∆Γs is calculated showing the mass fit models used

and the binning scheme adopted. It also shows the validation studies performed

assuring the lowest bias possible. The last part of the chapter covers the time

acceptance study and the systematic uncertainties. Since ∆Γs is determined from

a relative measurement, it is important to fully understand all the components

that might introduce an acceptance verifying that they cancel when measuring

∆Γs.
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Chapter 2

Theory

In this chapter, an overview of the Standard Model (SM) of Particle Physics

and the theoretical tools used in the analysis are presented. Particular emphasis

is given to the B0
s meson system, focusing on the mixing mechanism and CP

violation. The last section of this chapter is dedicated to describing the decay

channels used in the analysis.

2.1 Standard Model

The SM describes all known fundamental particles and their interactions via the

electromagnetic, strong and weak forces. It was formulated and developed during

the second half of the twentieth century through the efforts of both the theoretical

and experimental communities. In 1964 Gell-Mann and Zweig independently

proposed the quark model [4]. The idea that hadrons were made of quarks

and antiquarks gained experimental support from the discovery of electron-

nucleon scattering at large angles (Deep Inelastic Scattering) at Stanford Linear

Accelerator Center (SLAC) [5]. This phenomenon was interpreted by Feynman

and Bjorken as proof that neutrons and protons were not point-like particles [4].

From the late 1950s and the 1970s, the community of theoretical physicists defined

the interactions in the SM as a SU (3) × SU (2) × U (1) gauge symmetry where

the SU (3) symmetry represents the strong interactions and the SU (2) × U (1)

the electroweak interactions. In addition to these gauge symmetries, the Higgs

mechanism is responsible for giving mass to the gauge bosons and the fermions
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via the mechanism of spontaneous symmetry breaking [6].

The SM is shown schematically in fig. 2.1. In detail, in purple are listed the three

families of quarks, in green the three families of leptons, in red the mediator of

the forces and in yellow the Higgs boson. The electroweak force is mediated by

the W±, Z0 and γ and the strong force by the gluons.
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Figure 2.1 Schematic representation of the SM. Fundamental particles are
grouped by family: quarks (purple), leptons (green), gauge bosons
(red) and scalar bosons (yellow). Quarks and leptons are divided
into three families in increasing order of mass [7].

The strong interaction is described by Quantum ChromoDynamics (QCD), which

defines the interactions between quarks and gluons, and how they form composite

particles such as protons and neutrons. The QCD charge is color and it can be

red (R), green (G) and blue (B) with its anti-colors for antiparticles. One of the

properties of QCD is color confinement : particles carrying color (e.g. gluons

and quarks) cannot be isolated but they group together to form a colorless

combination. For example, qq meson states have color (RR, GG, BB) whilst

baryons consisting of three quarks have color RGB (for qqq) and RGB (for qqq)

The Electroweak interaction describes the behavior of two different forces: the

electromagnetic and the weak. The electromagnetic force is propagated by the

photon while the weak force is propagated by the charged W± bosons and the
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neutral Z0 boson. In the SM, flavor and lepton number are only changed by the

charged current of the Weak interaction. Major contributions to unifying the

electromagnetic and weak theories were made by Glashow, Salam and Weinberg

[8, 9]. Experimentally, this picture was confirmed by the discovery of neutral

currents by the Gargamelle neutrino experiment [10] and the direct observation

of the W and Z bosons by the Underground Area 1 (UA1) and Underground

Area 2 (UA2) collaborations [11, 12].

2.2 CP violation in the Standard Model

The C operator changes a particle into its own anti-particle while the P operator

changes the handedness (x→ −x). Though the C and P symmetries are

conserved by the strong and electromagnetic interactions, they are maximally

violated by the weak interaction [13]. Experimentally, the combined operation

CP is found not to be conserved by the weak interaction. This corresponds to a

non-zero value of the phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix

(section 2.3). There are three ways to generate CP violation:

• CP violation in the decay amplitude: this occurs when there is a difference

in the decay rates of a particle to a final state and the corresponding decay

for the anti-particle. This is the only source of CP violation possible in

charged decays.

• CP violation in mixing: this occurs when the rate for meson - antimeson

oscillation and for antimeson - meson oscillation are different.

• Due to interference between the mixing and decay amplitudes.

2.3 The CKM picture

In the SM the masses and mixing of quarks both arise from the Yukawa interaction

with the Higgs field [14]

LY = −Y d
ijQ

I
Liϕd

I
Rj − Y u

ijQ
I
Liϵϕ

∗uIRj + h.c., (2.1)
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where i, j denote the quark generation, Y u,d are 3 × 3 matrices, ϕ is the Higgs

field, ϵ a 2 × 2 asymmetric tensor, h.c. implies the Hermitian conjugate, the QI
L

are the left-handed quark doublets and u/dIR the right-handed up/down quark

singlets. The interaction between the up and down quark families is then given

by

− g√
2

(
u, c, t

)
L
γµW+

µ VCKM

ds
b


L

+ h.c., (2.2)

and

VCKM ≡

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.3)

is a unitary matrix called the CKM matrix [15]. This matrix gives the probability

of a transition from an up-type quark to a down-type quark: P (qi → qj) ∝ |Vij|2.
Transitions closer to the diagonal are favored while transitions involving off-

diagonal elements are suppressed. The strength of the interaction is more easily

seen using the Wolfenstein parametrization [16],

VCKM ≈

 1− 1
2
λ2 λ Aλ3 (ρ− iη)

−λ (1 + iA2λ4η) 1− 1
2
λ2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O (λ)4 , (2.4)

where λ = 0.2257+0.0009
−0.0010, A = 0.814+0.021

−0.022, ρ = 0.135+0.031
−0.016 and η = 0.349+0.015

−0.017 [17].

The unitarity constraints of the CKM matrix can be written as

∑
k

|Vik|2 = 1, (2.5)

and

∑
k

VikV
∗
jk = 0. (2.6)

It is possible to visualize the properties of eq. (2.6) in the complex plane. If, for

6



example, the first and third columns of the CKM matrix are considered, eq. (2.6)

becomes VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 which is seen to be a triangle, the so called

unitarity triangle, in the complex plane (fig. 2.2).

3
1

2

Figure 2.2 Unitarity triangle for VudV
∗
ub+VcdV

∗
cb+VtdV

∗
tb = 0 represented in the

complex plane [18].

In the Wolfenstein parametrization the apex of the triangle is located at (ρ, η)

[18]:

ρ+ iη ≡ −VudV
∗
ub

VcdV ∗
cb

≡ 1 +
VtdV

∗
tb

VcdV ∗
cb

. (2.7)

The angles of the triangle are defined as:

α ≡ arg

(
− VtdV

∗
tb

VudV ∗
ub

)
(2.8)

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
(2.9)

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗
cb

)
. (2.10)

Experimentally, the three angles are well measured as shown in fig. 2.3. Their

values determined by the CKM fitter group, at the time of writing are α =(
91.98+0.82

−1.40

)◦
, β =

(
22.42+0.64

−0.37

)◦
and γ =

(
65.5+1.3

−1.2

)◦
[19].
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CKM
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Figure 2.3 Latest measurements of the CKM triangle [19].

A triangle relevant for the studies of the B0
s meson is the one obtained from the

second and third columns of the CKM matrix, fig. 2.4. The angle

βs ≡ arg

(
VtsV

∗
tb

VcsV ∗
cb

)
. (2.11)

is related to the phase difference between B0
s decays with and without mixing.

In the SM, βs is predicted to be small [20].
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VtbVub + VtsVus + VtdVud = 0

ρ0

η

ηλ2

(1−λ2/2+ρλ2)

δγ

γ′

Re

Im

∗
V

ub
λ

|V
cb

| 

(1−λ 2
/2)V

td

λ
|V

cb | 

Vts

|Vcb|

Figure 2.4 Unitarity triangle for eq. (2.11) [21].

2.3.1 Neutral meson oscillation

Neutral mesons have the ability to oscillate between their particle and their

antiparticle as a consequence of adding the weak interaction term to the strong

interaction Hamiltonian. In the SM there are four possible meson - anti-

meson systems: neutral kaons, D, B0 and B0
s . The phenomenology of particle-

antiparticle oscillation was first described by Gell-Mann and Pais [22] in 1954 for

the K0 −K
0
system and experimentally confirmed at Brookhaven [23] in 1956.

This thesis is focused on the b-meson therefore the formulae will be shown with a

b quark coupled with either a d or a s quark labelled q. Mixing in the B0 system

was first observed by the A Russian-German-United States-Swedish collaboration

(ARGUS) collaboration in 1987 [24]. In the B0
s system, mixing was first observed

by the Collider Detector at Fermilab (CDF) [25] and subsequently confirmed by

LHCb [26].

The formalism for meson oscillation is derived by solving the Schrödinger

equation for the meson-antimeson system. Starting from the strong interaction

Hamiltonian eq. (2.12), if the strong force was the only one interacting on the

system, the neutral Bq system would have two |Bq⟩ = |bq⟩ and |Bq⟩ = |bq⟩ states
where (q = d, s) with equal masses mq = mq ≡ m0,
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H0 =

(
m0 0

0 m0

)
. (2.12)

Adding the weak Hamiltonian HW to H0 introduces non-zero off-diagonal

elements:

H =

(
m0 + δE W12 + δE12

W ∗
12 + δE∗

12 m0 + δE

)
− i

2

(
Γ Γ12

Γ∗
12 Γ

)
. (2.13)

The expression in eq. (2.13) can be written as

H =
(
M − iΓ

2

)
(2.14)

where M is the mass matrix and Γ is the decay matrix.

The off-diagonal elements are responsible for the B0
q − B

0

q mixing which is

mediated by a box diagram (fig. 2.5). Due to these terms, neutral B0
q mesons

propagate as a superposition of two mass eigenstates called the heavy (BH) and

the light (BL) where

|BL
q ⟩ = p |B0

q ⟩+ q |B0

q⟩ ,

|BH
q ⟩ = p |B0

q ⟩ − q |B0

q⟩ .
(2.15)

The evolution of the Bq −Bq system follows the Schrödinger equation

i
d

dt

(
|Bq (t)⟩
|Bq (t)⟩

)
= H

(
|Bq (t)⟩
|Bq (t)⟩

)
(2.16)

with |p|2+ |q|2 = 1. For the B0
s , the ratio |q/p| is measured to be 1.0003± 0.0014

[27]. Equation (2.13) can be simplified assuming Γ12
q ≪ m12

q :
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∆mq ≡ mH
q −mL

q = 2|m12
q |,

∆Γq ≡ ΓLq − ΓHq = 2|Γ12
q | cos

(
ϕ12
q

)
,

mq ≡
1

2

(
mL
q +mH

q

)
,

Γq ≡
1

2

(
ΓLq + ΓHq

)
,

ϕ12
q ≡ arg

(
−
m12
q

Γ12
q

)
,

(2.17)

where, in the B0
s system, ϕ12

s = βs/2 is a CP violating phase that arises from the

interference of decays with and without mixing.

b

q b

q

t, c, ut, c, u

W

W

b

q b

q

WW

t, c, u

t, c, u

Figure 2.5 B0
q −B

0
q oscillation diagrams.

The SM predicts fast B0
s oscillations, ∆mpred

s = 18.77 ± 0.86 ps−1 [28].

Experimentally, ∆ms has been measured precisely by LHCb using the decay

B0
s → D+

s π
− (fig. 2.6) and found to be 17.7656± 0.0057 ps−1 [29], in agreement

with the SM expectation.
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Figure 2.6 B0
s −B

0
s oscillation measured by the LHCb collaboration [29].

The decay rate of the light and heavy eigenstates of the B0
s meson into a given

final state, f , can be written as:

⟨Γ
(
B0
s (t) → f

)
⟩ ≡ Γ

(
B0
s (t) → f

)
+ Γ

(
B

0

s (t) → f
)

= Rf
He

−Γ
(s)
H t +Rf

Le
−Γ

(s)
L t,

(2.18)

where L and H are the light and heavy eigenstates corresponding to the CP -even

and CP -odd eigenstates respectively. Equation (2.18) can be written as

Γ
(
B0
s (t) → f

)
∝ e−Γst

(
cosh

(
∆Γst

2

)
+Af

∆Γ sinh

(
∆Γst

2

))
, (2.19)

where
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Γs ≡
Γ
(s)
L + Γ

(s)
H

2
=

1

τB0
s

,

∆Γs ≡ Γ
(s)
L − Γ

(s)
H ,

Af
∆Γ ≡ Rf

H −Rf
L

Rf
H +Rf

L

.

(2.20)

Assuming CP is conserved, for a CP even eigenstate, Af
∆Γ = −1 while for a CP

odd eigenstate Af
∆Γ = 1.

The observable obtained by fitting eq. (2.18) with a single exponential is called

the effective lifetime. In [30] it is shown that

τf
τB0

s

=
1

1− y2

(
1 + 2Af

∆Γy + y2

1 +Af
∆Γy

)

= 1 +Af
∆Γy +

[
2−

(
Af

∆Γ

)2]
y2 +O

(
y3
) (2.21)

where 2y = ∆Γs/Γs.

Recent SM predictions for ∆Γs are listed in table 2.1. The central values are

in good agreement with each other but the renormalization scheme leads to a

∼ 10% uncertainty. To improve the prediction for ∆Γs, a full NNLO calculation

is required.

Value [×10−2ps−1] Renormalization scheme Method Reference

9.1± 1.3 MS QCD factorization Lenz et. al. [28]

9.2± 1.4 MS Lattice Davies et. al. [31]

8.8± 1.8 MS NLO + NNLO pQCD Asatrian et. al. [32]

7.7± 2.2 Pole mass NLO + NNLO pQCD Asatrian et. al. [32]

8.3+5.0
−1.2 Pole mass NLO + NNLO pQCD Gerlach et. al. [33]

9.0+0.2
−0.3 MS NLO + NNLO pQCD Gerlach et. al. [33]

Table 2.1 Recent SM predictions for ∆Γs.

fig. 2.7 summarizes the latest experimental measurements of ∆Γs and Γs from

the B0
s → J/ψϕ mode via a tagged time-dependent angular analysis. The

experimental measurements are not in the best of agreement, particularly for
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Γs, though the ∆Γs measurements also show poor agreement. To resolve the

tensions in the experimental data, new measurements are needed.

0.640 0.650 0.660 0.670 0.680
s[ps 1]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
s[p

s
1 ]

LHCb 4.9 fb 1

ATLAS 99.7 fb 1

CMS 116.1 fb 1

CDF 9.6 fb 1

D0 8 fb 1

Combined*
*

s errors scaled by 2.5
s errors scaled by 1.77

Theory

68% CL contours
(  log  = 1.15)

HFLAV
PDG 2021

Figure 2.7 Current status of Γs and ∆Γs measurement from Heavy Flavor
AVeraging (HFLAV) [20]. The gray band shows the SM prediction
while the blue, red and green circles represents the A Toroidal LHC
ApparatuS (ATLAS), Compact Muon Solenoid (CMS) and LHCb
measurements respectively. The black circle is the combination of
all measurements. To account for the poor agreement of the values
in the averaging, scale factor are applied by Heavy Flavor AVeraging
(HFLAV).

2.4 Method

In 2011 Fleischer and collaborators [30, 34] proposed to measure ϕs by combining

lifetime measurements from CP -even and CP -odd modes. This approach has

the advantage that neither an angular analysis nor flavor tagging are required.

However, for this approach to be meaningful, ϕs must be large. Since now ϕs

is measured to −0.050 ± 0.019 [20], in practice CP -even modes measure the

light mass eigenstate lifetime (τL) while CP -odd modes measure the heavy mass

eigenstate lifetime (τH) to high precision. Thus, measuring the difference in the

lifetimes between a CP odd and a CP even mode allows to determine ∆Γs.

The main goal of this work is to measure ∆Γs following a similar approach to that

used by the A Toroidal LHC ApparatuS (ATLAS) collaboration [35] to place a
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limit on the B0 mixing parameter, ∆Γd. If CP violation is negligible, eq. (2.19)

can be written as

Γ
(
B0
s (t) → f

)
∝ e−Γst

[
cosh

(
∆Γst

2

)
− sinh

(
∆Γst

2

)]
(2.22)

for the CP -even eigenstate and as

Γ
(
B0
s (t) → f

)
∝ e−Γst

[
cosh

(
∆Γst

2

)
+ sinh

(
∆Γst

2

)]
(2.23)

for the CP -odd eigenstate.

In a time interval [t1, t2], the yields for the light and heavy eigenstates can be

obtained by integrating eq. (2.22) and eq. (2.23). Giving

NL =

[
et(

−∆Γs
2

−Γs)

Γs +
∆Γs

2

]t2
t1

(2.24)

and

NH =

[
et(

∆Γs
2

−Γs)

Γs − ∆Γs

2

]t2
t1

. (2.25)

Writing 2y = ∆Γs/Γs and taking the ratio of eq. (2.24) and eq. (2.25) gives

NL

NH

=

[
e−Γst(1+y)

]t2
t1

[e−Γst(1−y)]
t2
t1

· 1− y

1 + y
. (2.26)

Thus, ∆Γs can be extracted from eq. (2.26), by comparing the yields of the light

and heavy states in time bins. The fit is performed in the time range 0.5− 10 ps

using eight time bins. A detailed description of the binning scheme optimization

is shown in section 7.1.1.

A similar approach can be used if the time acceptance is uniform within a lifetime

bin. In that case an additional factor taking into account the relative efficiencies

between the light and heavy states has to be included in eq. (2.26)

15



NL

NH

= Ar

[
e−Γst(1+y)

]t2
t1

[e−Γst(1−y)]
t2
t1

· 1− y

1 + y
(2.27)

where Ar = ϵH/ϵL.

Simulation studies show that such an approach is unbiased if Ar is evaluated at

either the bin barycenter or the position described in [36] using an exponential

with the mean lifetime 1
Γs

(see section 7.3.1).

In this analysis, the chosen CP even channel is B0
s → J/ψη′ with η′ → ρ0γ and

the chosen CP odd channel is B0
s → J/ψf0. Both decays are expected to be

dominated by the tree-level process shown in fig. 2.8. Experimentally, since the

two channels are topologically very similar the time acceptance will largely cancel

in the relative lifetime measurement.

/

Figure 2.8 B0
s → Jψη′ and B0

s → J/ψf0 (980) Feynman diagrams.

2.4.1 Impact of Hadronic phase shifts

In [34, 35, 37] the impact of the strong phase shifts on the determination of τL

and τH from the B0
s → J/ψη′ and B0

s → J/ψf0 decay modes is studied in-depth.

Allowing for strong phase shifts and considering the case of a CP eigenstate,

eq. (2.20) becomes

Af
∆Γ = ±

√
1− C2

f cos (ϕs +∆ϕf ) , (2.28)

where ∆ϕf is a hadronic phase shift, Cf is the direct CP asymmetry and the sign

is negative for a CP even state and positive for a CP odd state. In [34, 37] ranges

for these hadronic parameters are estimated,
∣∣CJ/ψf0∣∣ ≲ 0.05,

∣∣CJ/ψη′∣∣ ≲ 0.05,

−3° < ∆ϕf(J/ψη′) < 0° and −2.9° < ∆ϕf(J/ψf0) < 2.8°. In order to check the
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impact on ∆Γs, a simplified simulation was performed. In this simulation, ϕs was

sampled from a Gaussian distribution generated around the PDG value of ϕs:

−0.050± 0.019 [20]. The hadronic values are sampled uniformly using the ranges

given above. The values of the effective lifetimes calculated using eq. (2.21), which

assume CP conservation and that hadronic effects can be neglected. These are

then used to determine ∆Γs. The result of the simulation is shown in fig. 2.9.

The bias on ∆Γs introduced by ignoring CP violation, the hadronic phase shift

and the direct CP asymmetry is O (10−2) ns−1, which is a factor 103 smaller than

the statistical uncertainty of this analysis.

0.002− 0.0015− 0.001− 0.0005− 0 0.0005 0.001 0.0015 0.002
]-1 [pss

SMΓ∆ - s
SimΓ∆

0

100

200

300

400

500

E
nt

rie
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Figure 2.9 Difference between the input value of ∆Γs in the toy simulation
described in the text and the value calculated from the difference
between the effective lifetimes τH and τL
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Chapter 3

The LHCb detector at CERN

The CERN was founded in 1952 with the mandate of establishing a physics

research organization in Europe. At the end of June 1953 a convention

establishing the new organization was signed by the twelve founding Member

States [38]. The organization was ratified on the 29th September 1954 but the

name CERN was kept unchanged. At that time research on physics was focused

on studying the internal structure of the atom and for this reason the word

”nuclear” was used in the naming. Nowadays, our understanding of the internal

components of the atom is much deeper the main research field of CERN has

moved to high energy particle physics. To perform such studies accelerators are

built to collide particles.

3.1 The LHC at CERN

In fig. 3.1 the CERN accelerator complex is shown. The work in this thesis is

focused on data collected by the LHCb experiment [39] at the Large Hadron

Collider (LHC) [40]. Located in the 27 km long tunnel previously used for the

Large Electron–Positron (LEP) collider [41], the LHC is the largest collider in

the world and has a design energy of 7 TeV per beam (
√
s = 14 TeV). It was

built between 1998 and 2008 and is located hundred meters under the ground at

the border between France and Switzerland. Protons are obtained from stripping

electrons from gaseous hydrogen and accelerated by a series of machines. The first

step in the injector chain is the Linear accelerator 2 (Linac 2). Linac 2 increases
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the proton energy to 50 MeV. It is followed by the Proton Synchrotron Booster

(PSB), an accumulator ring, that groups protons into bunches and increases the

energy to 1.4 GeV. This is a crucial step since the final structure of the beam

is generated here. At this point, bunches of protons are sent into the Proton

Synchrotron (PS) and the Super Proton Synchrotron (SPS) finally reaching the

LHC injection energy of 450 GeV. Once the LHC is filled with the two beams,

the machine accelerates them up to nominal energy, it squeezes the bunches and

it makes them to collide at the four interaction points.

Each collision point hosts a detector: A Large Ion Collider Experiment (ALICE)

[42], dedicated to heavy-ion physics, ATLAS [43] and Compact Muon Solenoid

(CMS) [44], two general-purpose detectors studying a wide range of physics and

LHCb [39], a single-arm spectrometer focused on flavor physics.

North Area

ALICE LHCb
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ATLAS

LHC

SPS

TT20
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TT40 TT41

TI8

AWAKE
HiRadMat

2011 TT60
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p (proton) ion p (antiproton)neutrons electron proton/antiproton conversion

Figure 3.1 Accelerator complex at CERN. The orange dots highlight the four
collision points with their detectors in the LHC. In particular, the
LHCb detector is on the right side of the LHC accelerator [45].

Physics operation of the LHC began in 2010 when two proton beams collided

for the very first time with an energy of 3.5 TeV per beam. The LHC life cycle

is alternated between data taking and upgrades as shown in fig. 3.2. Run 1

refers to the data collected during 2011 and 2012; Long Shutdown 1 (LS1) is the

period between 2013 and 2015 where the LHC was upgraded and its energy was

increased to 6.5 TeV per beam; Run 2 is the last period of data taking from 2015
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to 2018. At the end of 2018, Long Shutdown 2 (LS2) started and lasted until the

beginning of 2022. The work on this thesis will always refer to the Run 1 and

Run 2 configuration unless explicitly written.

J F M JA J DS O NM A
2010

J F M JA J DS O NM A
2011

J F M JA J DS O NM A
2012

J F M JA J DS O NM A
2013
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2014
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2015
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2016
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2017

J F M JA J DS O NM A
2018

J F M JA J DS O NM A
2019

Run 1

Run 2

LS 1

LS 2

Shutdown/Technical stop

Proton physics

Ion physics

Commissioning

Beam energy = 3.5 TeV Beam energy = 3.5 TeV Beam energy = 4 TeV

Beam energy = 6.5 TeV Beam energy = 6.5 TeV Beam energy = 6.5 TeV

Figure 3.2 LHC schedule for the Run 1 and Run 2 period. In light green the
months when the machine was colliding protons.

The properties of the beam delivered by the LHC are adapted to satisfy the

requirements of each experiment. Since the LHCb physics program is focused on

precision measurements, it is desirable to have ∼ 1 visible interaction1 per bunch

crossing to easily allow association of a b−hadron to a primary vertex. For this

reason the machine’s optics is adapted to deliver an average pile-up (µ) ∼ 1.1

[46]. The integrated luminosity recorded by the detector is shown in fig. 3.3:

each line represents the luminosity delivered by the LHC every year. The average

instantaneous luminosity is 2− 4× 1032 cm−2s−1 [47].

1A sizeable fraction of collisions are soft and do not produce any particles within the
detector’s acceptance. Visible interactions refer to proton-proton interactions that can be
detected by the LHCb detector. This is defined as two or more tracks in the detector.

20



Figure 3.3 Integrated luminosity recorded by the LHCb detector [48]. During
Run 1 and Run 2. Each line represent a different year.

3.2 The LHCb detector

The LHCb detector [39] is a single-arm forward spectrometer optimized to detect

b- and c-hadrons. Its geometry is chosen by the fact that hadrons and anti-hadrons

are preferentially produced in the same forward or backward cone as shown in

fig. 3.4. A right-handed coordinate system is used with the z-axis aligned with

the beam direction, positive z pointing towards the calorimeters and the positive

y-axis vertically up as shown in fig. 3.5. The detector has an angular coverage

between 10 to 300 mrad in the bending plane x− z and between 10 to 250 mrad

in the non-bending plane y − z. This corresponds to the pseudorapidity range

1.8 < η < 4.9.
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Figure 3.4 Simulated bb pair production angle in respect to the beam. In red it
is highlighted the LHCb acceptance [49].

The detector is located at Point 8 inside the LHC tunnel. It consists of multiple

sub-detectors, each performing a different task:

• Tracking system: to record the trajectory of charged particles

• Rich Imaging Cherenkov detectors: to perform particle identification

• Calorimeters (hadronic and electromagnetic): to measure the energy of

hadrons and photons/electrons

• Muon system: tracking system located at the very end of the detector,

optimized to detect muons.

A side view of the detector placed into the cavern in Point 8 with its dimensions

and its sub-detectors is shown in fig. 3.5.
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Figure 3.5 The LHCb detector inside the cavern in Point 8. The names of each
sub-detector and are written on top [39].

3.2.1 Tracking systems

Determining the trajectory of charged particles is crucial to give precise infor-

mation about vertices and, with the help of a magnet, particle momentum and

charge. The tracking system consists of multiple tracking subsystems: the VErtex

LOcator (VELO) [39], around the interaction point, the Tracker Turicensis (TT)

[39], just before the magnet, and T1-T3 [39] stations, placed after the magnet.

A more detailed description of each sub-detector is provided in the following

subsection.

VELO

The main purpose of the VELO is to measure the trajectory of particles close

to the interaction point. This allows to determine the location of primary and

secondary vertices with high precision. Since the b-hadron flies a few centimeters

before decaying, positioning the detector as close as possible to the interaction

point is crucial. The VELO is made of 23 pairs of silicon strip modules providing

radial (r) and angular (ϕ) coordinates of each hit (fig. 3.6). It is kept in a

secondary vacuum, separated from the LHC primary vacuum and it is designed

to be placed at 5 mm from the nominal beam axis. This distance is smaller

23



than the maximum aperture allowed during the beam injection phase. For this

reason during injection and ramping of the LHC beam energies the VELO is

retracted from the beamline and only inserted when stable beams are declared.

The proximity to the interaction point allows the reconstruction of displaced

vertices, a signature of b- and c-hadrons. The VELO detects particles within the

range 1.6 < η < 4.9. [50].

Figure 3.6 VELO geometry. The top picture shows the position of the VELO
modules. The two bottom pictures show the shape of a single pair
of modules respectively in fully closed position (left) and in fully
retracted position (right) [39].

Magnet

In order to measure the momentum of charged particle, a warm dipole magnet [39]

is placed five meters downstream of the interaction point. The magnet is made of

two identical coils with a saddle shape and placed on top of each other as shown

in fig. 3.7a. The total weight of the yoke is around 1500 tons while the two coils

weight 54 tons. The magnetic field as a function of the z-coordinate is plotted in

fig. 3.7b.
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Figure 3.7 View of the LHCb magnet and its magnetic field. In fig. 3.7a the
view on the x-y plane of the LHCb magnet and in fig. 3.7b the
magnetic field as a function of the z position for both polarities [39].

The integral of the magnetic field between z = 0 m and z = 10 m is 4 Tm.

The measurement of the deflection of charged particles by the magnet allows to

determine the momentum with a precision better than 1% for momenta up to

200 GeV/c [51].

Silicon Tracker

The Silicon Tracker (ST) project consists of two sub-detectors: the TT and Inner

Tracker (IT) [39] that make use of silicon strip technology and are developed in

common. The TT is a 150 cm wide and 13 cm high tracker located right before

the LHCb magnet. The IT is placed inside the three tracking stations (T1-T3)

and it covers an area 120 cm wide and 40 cm high. Both detectors (fig. 3.8) use

silicon microstrip technology with a strip pitch of ∼ 200 µm giving a resolution

around 60 µm. Each station has four layers with a (x− u− v − x) configuration

of the strips where external strips are placed in vertical position and the central

ones are respectively tilted by −5◦ and 5◦ with respect to the vertical.
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Figure 3.8 The ST detectors: on the left the IT tracking station scheme; on
the right the TT tracking station scheme [39]. Both pictures have a
central hole corresponding to the beam pipe.

Outer Tracker

The Outer Tracker (OT) is a drift chamber detector [39] used to track charged

particles in the outer part of the T-stations. The detector is made of gas-tight

straw-tube modules arranged in three stations. In order to have a drift time

below 50 ns and a drift-coordinate resolution of 200 µm, a gas mixture of Argon

(70%) and CO2 (30%) is chosen. Each station has the same configuration used

for the ST (x−u− v−x) with x layers in vertical position and u− v layers tilted

by ±5◦ with respect to the vertical. The OT scheme is shown in fig. 3.9.

Figure 3.9 The OT system surrounding the beam pipe and the IT downstream
of the magnet [52].
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3.2.2 Particle identification

The Particle IDentification (PID) system is designed to identify different particles

travelling inside the LHCb detector. The main sub-detector used for this purpose

is the Ring Imaging CHerenkov (RICH) which is able to identify charged hadrons

(π,K, p). The RICH system consists of two RICH detectors: RICH1, downstream

of the VELO and RICH2, located after the magnet. The RICH1 detector covers

the medium-low momentum region (2− 40)GeV/c over the full LHCb acceptance

(25− 300) mrad. RICH2 covers the high momentum range (15− 100)GeV/c over

a smaller angular range (15− 120) mrad [53].

Both RICH systems detect Cherenkov radiation emitted by charged particles

travelling through the detector. When a charged particle travels inside a medium

with a speed greater than the speed of light in the same medium, it emits the

Cherenkov radiation [54] in a conical shape around its trajectory. The emission

angle, θ, between the direction of the particle and the emitted radiation is

cos (θ) =
1

nβ
, (3.1)

where n is the refractive index of the medium and β = v/c.

A series of mirrors is used to deflect the Cherenkov light on Hybrid Photo

Detectors (HPDs) located on the side of the detector, away from the detector’s

acceptance. The material used to generate Cherenkov radiation in Run 2 is

fluorocarbon gas: C4F10 for RICH1 and CF4 for RICH2 [53]. During Run 1

RICH1 had both fluorocarbon gas and aerogel radiators. With the Run 2

configuration, the material within the experimental acceptance is 8% radiation

length (X0) for RICH1 and 15% X0 for RICH2 [53]. In fig. 3.10 the layout of the

RICH detectors is shown.
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Figure 3.10 Scheme of RICH1 (fig. 3.10a) and RICH2 (fig. 3.10b) [39].

Combining the momentum computed by the tracking system with the Cherenkov

angle allows to compute the mass of the particle. In fig. 3.11 is shown the

reconstructed Cherenkov angle as a function of the momentum of the charged

particles. The plot shows good separation between different type of particles up

to 100 GeV/c.
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Figure 3.11 Cherenkov angle computed by RICH1 detector as a function of the
particle’s momentum computed by the tracking system [53].

3.2.3 Calorimeters

The calorimeters measure the energy of the hadronic and the electromagnetic

component of the incident particles using materials that emit light after absorbing

energy carried by particles. When interacting with a scintillator, particles lose

a fraction of their energy which is absorbed by the detector’s material and re-

emitted in the form of light. In order to precisely measure the shower energy, the

depth of a calorimeter needs to be sufficient to fully absorb the incoming particle

and the products of its interaction with the detector. Calorimeters are usually

classified into two main groups: hadronic calorimeters and electromagnetic

calorimeters. Since the radiation length (X0) is small compared to the hadronic

interaction length (Λ0), the electromagnetic calorimeter is placed before the

hadronic one. Electrons and photons will interact in the Electromagnetic

CALorimeter (ECAL) whilst hadrons tend to interact later in the Hadron

CALorimeter (HCAL).

The LHCb calorimeter system [39] is made of four sub-systems: ECAL, HCAL,

PreShower (PS), Scintillator Pad Detector (SPD). Since the hit density falls

rapidly as the distance to the beampipe increases, the calorimeters have variable
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lateral segmentation as shown in fig. 3.12. In particular, the ECAL is segmented

into three zones while the HCAL is segmented into two sections due to the bigger

size of hadronic showers.

Outer section :

Inner section :

121.2 mmcel ls

 2688 channels

40.4 mm cells

 1536 channels

 Middle section :

 60.6 mmcel ls

 1792 channels

Outer section :

Inner section :

262.6 mm cells

 608 channels

131.3 mm cells

 860 channels

Figure 3.12 Cross section of one quarter of the SPD, PS and ECAL on the
left and of the HCAL on the right [39]. The cell dimensions on the
right plot are given for the ECAL, the need to be reduced of ∼ 1.5%
for SPD and PS [55].

Each component of the calorimeter system works in the same way: particles

deposit energy in the scintillating material causing the emission of photons. These

photons are then transmitted to the Multi-anode Photo-Multiplier Tube (PMT)

(MaPMT) via a WaveLength-Shifting (WLS) fiber. To assure a good granularity,

the LHCb calorimeters have a sandwich structure alternating stopping plates (e.g.

iron, lead, etc.) with scintillating material fig. 3.13.

The ECAL is fundamental to the identification and selection of photons and

electrons. The geometric center of the ECAL is at z = 12.5 m and it covers the

acceptance of 25 mrad < θx < 300 mrad in x and 25 mrad < θy < 250 mrad. The

ECAL is made of several modules, each perpendicular to the beam direction and

it is built of alternating layers of 2 mm thick lead, 120 µm thick white reflecting

Tyvek and 4 mm thick scintillating plastic. The total length of a module is 42

cm corresponding to 25 X0.
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Figure 3.13 ECAL structure (left) and HCAL structure (right) [39].

The geometric center of the HCAL is at z = 13 m. It has a sampling design

and it is divided into modules each with size (4.04× 4.04) cm2 parallel in respect

to the beam direction. A module has a multi-layer structure alternating a 1 cm

thick tile of iron with 3 mm thick scintillating material. The total depth of the

HCAL correspond to 5.6 hadronic interaction lengths. The layout of the HCAL

is shown in fig. 3.13 (right).

3.2.4 Muon system

A displaced J/ψ → µ+µ− decay gives a clear signature for a charmonia decay.

Both decays used in this thesis strongly rely on muons: B0
s → J/ψ (µ+µ−) η′ and

B0
s → J/ψ (µ+µ−) f0 (980).
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Figure 3.14 LHCb muon system showing the transversal section (right side) and
the longitudinal section (left side) [39].

The muon system provides both fast signals for the Level-0 (L0) trigger and more

precise information for muon identification both at HLT level and offline. It is

composed of five stations as shown in the left figure in fig. 3.14. The last four

stations are placed after the HCAL and they are interleaved with 80 cm thick iron

plates. The first muon station (M1), is placed right before the calorimeters and is

used to improve the pT resolution for the L0 trigger. The absorbing power of the

full system is around 20 interaction lengths (Λ0) and the minimum momentum

for a muon to cross all five stations is around 6 GeV/c [39].

The full muon system is made of 1368 Multi-Wire Proportional Chambers

(MWPC) achieving a 5 ns resolution with a space of 2 mm between wires and

a gap of 5 mm between tracking planes. The gas mixture used is Ar/CO2/CF4

with 40% Ar and a variable concentration of CO2/CF4 [39]. In order to verify

the performance of the MWPC after irradiation, aging tests were made at the

ENEA-Casaccia research center in Rome [56]. The test simulated the different

radioactive dose absorbed in every part of the muon detector. Every region

except the innermost part of the M1 station (R1) satisfied the requirements to

host MWPC detectors. As the R1 region is more exposed to radiation, this part

of the muon system uses triple-Gas Electron Multiplier (GEM) detectors which

are able to absorb a higher radiation dose before having a decrease in performance

[56]. The triple-GEM consists of a sandwich of three GEM foils placed between

anode and cathode. This configuration allows the tracking of particles travelling

inside the detector. In fig. 3.15 the layout of a triple-GEM detector is shown with
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its dimensions and layer configuration.
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Figure 3.15 Schematic of the triple-GEM (fig. 3.15b) and exploded view of the
triple-GEM detector placed into the R1 region (fig. 3.15a) [39].

3.2.5 The online system

The LHCb online system is responsible for transporting data from the front-

end electronics to the permanent storage system [39]. This also includes

the configuration and monitoring of all the operational and environmental

parameters.

Each sub-detector has front-end electronics modules that records the signal from

each bunch crossing. On receipt of a L0 trigger decision, data collected by the

front-ends are transmitted via optical fibers to TELL1 [57] boards located off

detector. In the TELL1 board the data are processed by four pre-processing

Field-Programmable Gate Array (FPGA) modules and different operations such

as data compression are performed, depending on the sub-detector. The data

fragments outputted by these FPGA are then sent to a fifth FPGA which formats

them into a raw IP-packet. This is sent to the Data AcQuisition (DAQ) system

using an Ethernet board interfaced to the Experiment Control System (ECS).

Clock and timing signals are transmitted using separate interfaces. The ECS is

responsible to monitor the status of the entire LHCb detector including the DAQ

system and the Event Filter Farm (EFF). A scheme of the online architecture is

shown in fig. 3.16.
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Figure 3.16 LHCb online architecture. From top to bottom the sub-detectors’
readout systems, the front-end electronics, the event building and
the EFF [39].

3.2.6 Trigger system

The detector and the full acquisition chain has to deal with the 40 MHz bunch

crossing rate of the LHC. At an instantaneous luminosity of L = 2× 1032cm−2s−1,

the rate of visible proton-proton interactions containing either b- or c-hadrons is

around 100 kHz [39]. Therefore, an event selection system is needed to lower the

data rate coming from the detector. This procedure has to be performed during

data taking, because the storage system is not able to record every event on disk2.

For this reason, a two-stage trigger system is used to select candidates for physics

analysis. The first step of the trigger, the L0, is hardware based and uses custom

electronics modules. The subsequent trigger stage, the HLT, is software based

and uses commercial computers in the EFF.

Level-0

The main task of the L0 trigger is to reduce the event rate from 40 MHz to

1 MHz, the maximum rate the HLT can process. At this stage, only limited

information is available: the hadron with the highest transverse energy, electron

2The throughput is O (1 TB/s) for a bunch crossing rate of 40 MHz.
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and photon clusters in the calorimeters and the two muons with the highest

transverse momentum. As shown in fig. 3.17, the L0 trigger is subdivided into two

components: the L0 calorimeter trigger and the L0 muon trigger. Information

from those systems is combined by the L0 decision unit which collects all the

information computed by the muon trigger system and the calorimeter system to

evaluate the final decision.
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Figure 3.17 The L0 scheme with a detailed view of the calorimeter trigger
(left side): ECAL, HCAL and muon stations signals are sent to
a decision unit which takes care of selecting candidate events [39].

The calorimeter trigger system selects the electromagnetic and hadronic clusters

with the highest transverse energy. Each cluster is associated to a particle using

the information from the full calorimeter system (SPD, PS, ECAL and HCAL).

The muon trigger system selects the two muons with the highest transverse

momentum for each quadrant of the muon system by requiring at least three

hits in the muon pads [58].

High Level Trigger

The Run 2 HLT is divided into two stages: HLT1 and HLT2. Both HLT systems

are C++ applications running on the 2000 nodes of the EFF. All nodes run both

HLT1 and HLT2 instances using different computing power. During the data

taking, the HLT1 step runs with high priority writing its output on a disk buffer
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while the HLT2 runs with low priority. At this stage, the trigger has full access

to the entire detector and can perform a more complex analysis of the incoming

data. During periods with no beam, e.g. after beam dump or during filling, almost

all the computing power is dedicated to the HLT2 while HLT1 is automatically

switched off. Starting from Run 2, real time alignment was included into the

HLT as shown in fig. 3.18. During Run 1, the full HLT selection was run online,

without using the intermediate buffer.

High Level Trigger 1

Calibration 
and 

Detector data

Alignment

High Level Trigger 2

Offline Processing

Figure 3.18 Real time alignment information included between HLT1 and
HLT2, starting from Run 2.

The HLT1 step confirms the high-pT L0 candidate with the addition of

information from the tracking system, using only the regions around the candidate

direction, when possible. This allows particles to be selected according to

another property that characterize particles from b-hadron decays: their high

impact parameter to the proton-proton interaction vertex. If a candidate is not

confirmed, the event is rejected. The HLT1 output rate is 110 kHz [59]

At the rate HLT2 is executed, it is possible to run a complete event reconstruction

outputting data at 12.5 kHz. Displaced vertices separated from the interaction
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point, typical of a b-hadron decay, are searched for. Two types of selection

are made: inclusive and exclusive. Inclusive selections aim to collect decays of

resonances which are useful both for physics and calibration (D∗, J/ψ, etc.).

Exclusive selections are specifically designed to provide the highest possible

efficiency for fully-reconstructed b-hadron decays of interest, using all the available

information, including the mass, vertex quality and displacement [60]. In

this thesis, inclusive HLT1 and HLT2 trigger lines are used to select the J/ψ

candidates from the signal coming from the muon stations:

• The HLT1DiMuonHighMass [61] line selects a pair of opposite sign muons

that are consistent with a common vertex. The invariant mass of the pair

is required to be above 2.7 GeV/c2

• The Hlt2DiMuonDetachedJPsiDecision [61] line is designed to select

J/ψ from b-hadron decays. It confirms the HLT1DiMuonHighMass de-

cision and applies a small mass window around the J/ψ candidate,

| mcand −mJ/ψ | < 120 MeV/c2. As seen in fig. 3.20, this window is wide

enough to keep all J/ψ → µ+µ− decays. In addition, a cut is made on

the distance between the primary and secondary vertices divided by the

estimated uncertainty, the Decay Length Significance (DLS) at 3σ.

These lines are chosen as they are minimally time biasing.

An event can be selected by the trigger in several ways. First, the signal of

interest may be responsible for the event being selected. This is referred to as

Trigger On Signal (TOS). It is also possible some other feature will give a trigger.

This is referred to as Trigger Independent of Signal (TIS). In this analysis, only

HLT TOS triggers were used. Figure 3.19 shows the performance plots for the

HLT triggers.
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Figure 3.19 HLT1 (fig. 3.19a) and HLT2 (fig. 3.19b) performance as a function
of PT (B) [51]
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Figure 3.20 J/ψ mass distribution from the 2016 Monte Carlo after the
stripping selection. The vertical dashed line correspond to the J/ψ
mass value from PDG.
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Chapter 4

Data processing and simulation

The raw data acquired by the detector need to be processed before being used

for analyses. Figure 4.1 shows the data path from the detector to permanent

storage. The output of the trigger is read by the Brunel [62] application which

converts signals in the detector to higher level analysis objects such as tracks and

clusters. Further data reduction is achieved by filtering (”stripping”) interesting

events with the DaVinci application [63]. After this stage data are ready to be

processed by analysts. A similar path is followed in the simulation where proton-

proton collisions and the detector’s output are simulated and injected into the

data processing chain.

Figure 4.1 LHCb data flow [64]. On the left side the LHCb detector and the
Monte Carlo simulations generating raw data. On the right side the
entire reconstruction chain.
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4.1 Event reconstruction

Extracting the properties of the particles travelling inside the LHCb detector

using the available sub-detector information is referred to as reconstruction.

During Run 1, a simplified track reconstruction which used a first alignment

estimate was run in the trigger step. For Run 2, a new procedure referred to as

Real Time Alignment and Calibration that allowed full reconstruction with full

offline alignment at HLT2 level was introduced. This means that the output of

the trigger in Run 2 is already offline quality. Particular attention is focused on

track reconstruction and particle identification (hadron, muon, electron, photon

and neutral pion reconstruction).

4.1.1 Track reconstruction

Using the tracking system described in section 3.2.1 it is possible to determine the

trajectory of charged particles traversing the LHCb detector. Tracks are classified

according to which detector have deposited hits as illustrated in fig. 4.2 [51]:

• Long tracks have hits recorded in both VELO and T stations; TT hits are

added to the track if present. Since these tracks traverse the full length of

the spectrometer, the momentum calculation is the most accurate.

• Upstream tracks have hits recorded in VELO and TT stations. Their

momentum is usually below ∼ 3 GeV/c, too low to reach the T stations.

• Downstream tracks have hits recorded in TT and T stations. These

tracks are typically associated to long lived particles such as Ks or Λ

decaying outside the VELO acceptance.

• VELO tracks pass only through the VELO. They are typically large-angle

or backwards tracks.

• T tracks have hits recorded only in the T stations. They are usually

generated by secondary interactions.

In this study only long tracks are used.
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Figure 4.2 Track classification showing the different tracks and the tracking
devices [51].

The reconstruction starts with standalone reconstruction in the VELO. Tracks are

reconstructed in two stages. The first stage is a two dimensional reconstruction

using the r hits alone. After this step, three dimensional tracks are reconstructed

by adding the ϕ hits. In this step, due to CPU constraints, not all combinations

are considered. This leads to an efficiency dependence on the distance of the

track to the beamline and hence a decay time acceptance. This effect is largest

for Run 1 [65] and reduced in Run 2 due to improvements to the reconstruction

algorithm [46].

Long tracks are reconstructed from VELO seeds using an optical method to

extrapolate and match information in the T-stations [66]. Hits in the TT station

are used to confirm the track. The tracks found are then refitted with a Kalman

filter [67]. This takes into account both the energy loss by the particles interacting

with the matter and multiple scattering.

Due to the high density environment, mistakes are possible during the pattern

recognition phase, e.g. matching of VELO and T-segments from different

particles. To identify fake tracks or tracks not associated to any charged particle

(ghost tracks), a neural network is trained using the information from the track

fit and the track kinematics [68].
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Figure 4.3 Reconstructed tracks (red) starting from the hits recorded by the
trackers (blue). The top left part of the picture shows a x-y section
of the VELO [39].

Figure 4.3 shows the reconstructed tracks in a typical event. The displayed event

has 26 long tracks, 11 upstream tracks, 4 downstream tracks, 26 VELO tracks

and 5 T tracks [39].

4.1.2 Particle identification

Charged particles are identified combining the information collected by the two

RICH detectors, the two calorimeters and the muon system. Neutral particles

(γ, π0) are identified using the ECAL.

To have optimal particle identification, there are two main classes of tools to

identify particles: ProbNNpi / ProbNNk / ProbNNmu for charged particles and

isNotE / isNotH / isPhoton for neutral particles. These tools use multivariate

techniques combining information from simulations with the output of the PID

and tracking systems [69] to return the probability of the identity of a given

particle. In particular, isNotH uses the information from the energy deposited

in the PS detectors, the ratio of the energy in the HCAL in the trajectory

of the cluster in the ECAL and the energy of the cluster in the ECAL to

discriminate photons from non-electromagnetic deposits generated by hadrons.

A full description of isNotH and the training variables used in its classifier can

be found in [70].
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Hadron identification

Charged hadron identification is performed with the RICH detectors as discussed

in section 3.2.2. At this stage, information from the trackers are added and a log-

likelihood approach is used to match the reconstructed tracks with the patterns

recorded by the RICH detectors. Figure 3.11 shows how different particles are

grouped by type after reconstructing the signals from RICH detectors. The

likelihood is maximized by changing the particle hypothesis [39].

Muon identification

Only muons with momentum above 3 GeV/c reach the muon system. Muon

identification is performed by looking at hits inside a Field Of Interest (FOI)

created starting form track extrapolation for each tracking station. The boolean

identification variable isMuon requires a muon candidate to have hits recorded in

a minimum number of stations (two or four, depending on the momentum) within

the corresponding FOI. In order to improve the selection purity, information from

the tracking system is added as well as the average track-hit distance of the hits

contained into the FOI.

Electron identification

Electron identification is performed by associating the energy released in the

ECAL to the one computed from the corresponding track in the tracking system.

In fig. 4.4 the ratio of the uncorrected energy of the cluster in the ECAL and

the momentum of the corresponding track is shown for electrons and hadrons.

Another handle to identify electrons is to detect the Bremsstrahlung photons

radiated by the electron before the magnet. In fig. 4.5 is illustrated the topology

for the case where the photon is emitted before or after the magnet: the first case

would produce a cluster with energy E1 while the second case does not create

a separate cluster. The identification is the same in both cases: if the electron

radiated a photon, the E2 energy will be compared to the momentum, p, while

the energy E0 will be the sum of the energy of the two clusters (E0 = E1 + E2).
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Figure 4.4 Ratio between the uncorrected energy of the cluster in the ECAL and
the associated track momentum for electrons (transparent histogram)
and hadrons (solid histogram) [39].
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Figure 4.5 Scheme of the Bremsstrahlung effect with an electron (on the left)
radiating one photon before the magnet (yellow) and another one
right before the ECAL (green) [39].

Photon identification

Photons are identified by a cluster in the calorimeter without any corresponding

track in the tracking system. A high χ2 on track to ECAL cluster extrapolation

is a signature for a photon candidate. The χ2 distribution for electrons shows

a clear peak for small values of χ2 while a typical cut for photons is χ2
γ > 4

as shown in fig. 4.6 [39]. Photons are classified into three classes corresponding

to three different variables: PhotonID (single photons), MergedID (merged π0)

and PhotonFromMergedID (split-photons). Those variables are computed by

comparing the χ2 of the photon, the energy in the PS and the energy of the

seed with reference histograms and assigning a confidence level [71].
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Figure 4.6 χ2 distribution for reconstructed clusters (empty histogram), tracks
(dashed histogram) and MC electrons (crossed histogram) [72].

π0 reconstruction

Low energy π0 are reconstructed from well separated photons while for pions with

higher pT , most of the photon pairs cannot be resolved as a two separated clusters

within the ECAL granularity.

4.2 Monte Carlo simulation at LHCb

A detailed simulation is needed both to model the detector response and

acceptance, and to understand background processes. The LHCb Monte Carlo

software is split into Gauss and Boole [73] applications for simulation and

digitization respectively. Gauss is split in multiple phases: event generation and

tracking performed using Pythia [74], detector simulation using Geant4 [75] and

radiative corrections using PHOTOS [76]. During the generation phase, proton-

proton collisions are simulated reproducing the ”real life” conditions happening

in the LHC such as change of luminosity and the smearing of the interactions due

to the longitudinal and transverse dimensions of the bunches [77]. Following the
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generation phase, particles are tracked through the LHCb detector using Geant4.

In fig. 4.7 the simulation of particles travelling inside RICH1 and RICH2 is shown.

Figure 4.7 RICH simulation [77] simulating the particles (blue lines) interacting
with the detector and generating the Cherenkov photons (green).

Only the information required to generate the detector output are saved.

More detailed information such as Cherenkov photons (fig. 4.7) or the shower

information in the calorimeter can be stored for special studies but are not

included in the normal Monte Carlo production.

The Boole application simulates the detector and the readout electronics’s

response as well as the L0 output. It outputs data in the same format as that

coming from the detector.

4.3 Event reconstruction with Brunel

Brunel [62] is the software application dedicated to the event reconstruction. It

can process both collision data from the DAQ and simulation generated by Boole.

The reconstruction phase starts with clustering the hits in the trackers generating

the input for the tracking pattern recognition software which perform a first

estimate of the track trajectory without performing an accurate fit. After a

preliminary track fit, a full Kalman filter [67] is performed as well as a clone-

killing [78] step to remove duplicates where the hits from one particle are split

between two tracks. The output of this phase is used as input to the calorimeter,
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RICH and muon system reconstruction algorithms that provide PID information

[77]. After the full reconstruction is performed, data are stored on tape using a

custom file format, the Data Summary Tape (DST).

4.4 Offline analysis: stripping and DaVinci

The DST files generated by Brunel can be used for the analysis but they are

not accessible to normal users due to computing restrictions [64]. An additional

step of filtering called the stripping is performed before analysts access the data

produced by the LHCb detector. The stripping procedure is carried out using

DaVinci [63]. It outputs DST and µDST files in streams where events are grouped

together by selection type. For example, the dimuon stream contains events with

a muon pair.

The DaVinci application is used to read the DST and µDST and to generate the

data set for analysis. DaVinci provides access to physical variables such as four

vectors, vertices and PID information.

4.4.1 The Worldwide LHC Computing Grid

All the above steps need to be supported by a robust computing facility.

When LHC started delivering data, the computational resources required were

far beyond what was dedicated to the previous accelerators. Considering the

technology available at that time, having a computing farm at CERN was

impractical. For this reason a distributed solution adopting Grid technologies

has been put in place. The Worldwide LHC Computing Grid (WLCG) was built

on top of existing Grid infrastructures: OpenScience Grid (OSG) in USA and

Enabling Grid for E-sciencE (EGEE) in Europe [79].

The WLCG has a three level hierarchical structure where each level performs

different tasks:

• Tier 0: located at CERN. This is the place where data collected by the

experiment are stored and distributed to the Tier 1 sites. Tier 0 is also

responsible for the first reconstruction, the safe-keeping of raw data and

data reprocessing during the LHC down-times.
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• Tier 1: responsible to keep a fraction of raw and reconstructed data. There

are 13 Tier 1 sites and they are also responsible of reprocessing, saving and

distributing to Tier 2 large amount of data. Simulations are also produced.

• Tier 2: data analysis and simulation production and reconstruction. There

are around 155 Tier 2 sites around the world.

Figure 4.8 WLCG Tier scheme [80]

CERN and Tier 1 centers are responsible for processing the raw data with CERN

storing the full data set and distributing a copy of it to the Tier 1 sites. The Tier

2 centers are mainly dedicated to Monte Carlo production using both CERN and

Tier 1 sites as a repository for the simulated data [39]. The data set and Monte

Carlo samples used in this thesis were reconstructed using the WLCG resources.
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Chapter 5

HLT monitoring system

As described in section 3.2.6, the HLT is split in two stages, the first step runs

HLT1, synchronous to the collisions delivered by the LHC writing its output to a

local disk buffer. The second step, HLT2, asynchronously processes HLT1 output.

Efficient monitoring of the data being processed by the HLT applications is critical

to promptly diagnose detector or software problems. From Run 3, starting in

spring 2022, the LHCb experiment will run in a trigger-less configuration where

the detector will be read by the EFF at 30 MHz. The Run 3 HLT will have

the same two-level configuration as in Run 2. With a fully software trigger,

monitoring efficiently the data processed by the application is even more crucial

due to the higher event rate.

This chapter presents the multi-level hierarchical structure of the Run 2

monitoring infrastructure as well as a prototype of a high-level transport layer

based on commercial libraries emulating the HLT1 Run 3 workload.

5.1 The LHCb HLT monitoring infrastructure

Events rejected by the trigger are permanently lost. For this reason, detecting

problems during the data taking is crucial. To achieve this, a small fraction of

the HLT computing resources is assigned to generating monitoring histograms

and counters. Since HLT applications are distributed on every server of the EFF,

the monitoring information are scattered over the entire farm. This requires a

system to collect, merge and publish them. Due to the different tasks and time
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requirements of the HLT1 and HLT2, the Run 2 monitoring infrastructure has

two separate implementations, one for each HLT stage.

5.1.1 HLT1

The HLT1 is the selection stage before the storage buffer. Therefore, it has to

perform a fast decision to either accept an event and write it to disk or reject it.

For this reason, the number of monitoring histograms and counters produced is

limited. Monitoring information is generated on each HLT1 node by processing

a fraction of the data acquired. The output of the HLT1 monitoring application

is therefore scattered on the full EFF and it is in the form of ”full histograms”

containing all the metadata (axis, bin labels, titles, etc.). Those histograms and

counters are then collected, merged and published using the DIM framework

[81] as shown in fig. 5.2b. This is a well tested and widely used monitoring

infrastructure system. It is made of three components: Servers, Clients and Name

Server. Data are distributed as a service where the client has to register to the

required service. The DIM infrastructure has a central server, the Name Server,

where Servers register specifying the type of information to publish. Clients

check with the Name Server if the required service is available and which address

to look at. Once the Name Server delivers the information about the Server,

Client and Server start a one-to-one communication, keeping the Name Server

free, as shown in figs. 5.1 and 5.2a.

50



Client

Server

Delphi

Name Server

"Get Service Info"

"Get Service"

"Service
Info""Service"

1

2

3

0
"Register Services"

4

Figure 5.1 DIM communication scheme [81]. Once a server comes online, it
registers itself to the name server which makes it available to the
client. The client can now request the service it requires, receiving
the address of the server from the name server. After getting the
coordinates of the server, the client-server communication can start,
without involving the name server.

If a client wants to access a missing or unavailable service, the Name Server

takes care of it notifying the Client once the service is back online. In case

the Name Server fails, due to the one-to-one nature of the transfer protocol,

all the communications already started between Client and Server will not be

interrupted. All the new requests for a service will need to be sent again once

the Name Server comes back online.
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(a) Scheme of how DIM distributes

information from Servers to

Clients [81].

(b) Scheme of histograms are col-

lected, merged and published by

DIM collecting [82].

Figure 5.2 Scheme of the DIM infrastructure implementation. Figure 5.2b
shows how the histograms are processed and distributed while
Figure 5.2a shows how Servers and Clients communicate with each
other.

5.1.2 HLT2

The HLT2 monitoring infrastructure is different to HLT1 since the number of

histograms produced at this stage is much higher. It consists of around 50000

processes producing 4000 histograms each. This results in 200 million histograms

that need to be aggregated for each of up to a hundred data taking intervals that

are being processed simultaneously. Building the HLT2 monitoring infrastructure

using DIM is not ideal due to the high bandwidth required by the protocol:

moving full histograms with their metadata has a huge impact on the network.

For this reason, a new infrastructure was built for the HLT2 monitoring. There

are two main differences between the HLT1 and HLT2 monitoring infrastructures:

the HLT2 monitoring system implements a hierarchical structure of the farm and

it sends only the increments of the histograms. The structure of the farm is

shown in fig. 5.3: the HLT2 nodes are grouped into subfarms each of which

processes its part of the histograms sending the increments to a specific node in

charge of merging all the histograms’ fragments pushing them to the last layer of

aggregation. Once all the histograms are merged, they are written to permanent

storage.
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Figure 5.3 Hierarchical scheme of the EFF: nodes are grouped in subfarms
pushing the processed information to the next level of aggregation.
The top layer of aggregation takes care of collecting all the fragments
and to write the final histograms/counters to permanent storage [1].
The scheme shows the two different types of messages: deltas in blue
(the increment in respect to the previous message) and info in green
(metadata of the histograms/counters).

Network bandwidth is minimized by sending histogram increments and only ex-

changing metadata when necessary, using a custom lightweight protocol based on

boost::serialize [83]. The transport layer is implemented with ZeroMQ [84],

which supports Inter-Process Communication (IPC) and Transmission Control

Protocol (TCP) communication, queue handling, asynchronous request/response

and multipart messages. Ports and interconnections in distributed systems

such as the EFF are defined within ZeroMQ and then ZeroMQ takes care

of determining the optimal routing and handling the queues using additional

buffers. It adapts well to new hardware architecture supporting multithreaded

applications using native Operative System (OS) threads. ZeroMQ also allows

great flexibility offering a wide range of connection patterns as shown in

Figure 5.4.
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(a) (b) (c)

(d) (e)

Figure 5.4 ZeroMQ main connection patterns. Figure 5.4a shows a
synchronous request between client and server. Figure 5.4b shows
a publisher/subscriber scheme: the publisher sends information only
to the services already subscribed to its service. Figure 5.4c exclusive
pair: used in case of pairs of threads to coordinate them without
interfering. Figure 5.4d shows a classic push-pull scheme: push will
distribute the tasks to the clients while pull will queue the messages
from all the connected clients. Figure 5.4e shows a non-blocking
request-reply scheme where the router and the dealer take care of
addressing the messages.

In the HLT2 monitoring system, the subfarm nodes push the fragments and the

info messages to the subfarm adder which, after collecting and merging all the
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information, will push them to the top level adder. While ZeroMQ finds the

best path to deliver the messages, the queue parameters require fine tuning in

order to avoid dropping incoming messages due to a full queue. Finding the right

parameters is not a trivial process and software simulating the farm workload

was heavily used to optimize the queue parameters.

Performance measurements

Knowing the impact of the HLT2 monitoring system on the computing resource is

important both to understand the impact of the monitoring system on the overall

performance of the EFF and to provide a reference point for future developments.

Though important, this type of measurement was not done before. In order to

better measure the resources used by the HLT2 monitoring system, the test is

performed running only the HLT2 monitoring applications on the EFF nodes.

For 24 hours1, network load and CPU/ram load from the subfarm adder were

logged. Getting the load information from a subfarm adder gives a picture of the

worse case scenario since it has to receive and merge all the fragments coming

from all the nodes below it. Figure 5.5 shows the measurements highlighting that

the node itself was running under low stress and the network was not under a

high load. Demonstrating that the network load is low is a very important check

since with the purely software trigger in Run 3 there will be a huge increase in

network traffic.

1Due to some issue, RAM measurements were performed over 10 minutes only but it was
still possible to reach the plateau.
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Figure 5.5 Performance measurements for the HLT2 subfarm adder. Fig-
ure 5.5a shows the download bandwidth, Figure 5.5b shows the upload
bandwidth, Figure 5.5c shows the CPU usage and Figure 5.5d shows
the RAM usage.

5.2 Prototyping a monitoring system using Kafka

The need to prototype a new monitoring system starting from the HLT2 approach

came after a deep analysis of the ZeroMQ system and its limits. In particular, it

was decided to investigate using commercial streaming platforms taking care of

the distribution of the data, including queue optimization. In this way, the only

custom made part will be the messages. Among multiple streaming platforms,

Apache Kafka was chosen [85] since it is already in use within the LHCb online

team for logs and monitor [86]. Kafka is a distributed streaming platform that

allows to publish and subscribe to streams of records. Kafka processes streams

of records as they occur and stores records in a fault-tolerant way [85].

With Kafka, multiple clients are allowed to read from the same queue. This

feature is very powerful since it allows to share the workload between different
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machines. It also allows to quickly add additional instances, if needed.

5.2.1 Infrastructure and configuration

The prototype was hosted on the LHCb Online infrastructure Kubernetes’ [87]

pods and ConfluentKafka [88] was used to interact with it. This API allows very

easy access to the queue for both pushing and reading the messages. Kafka

has four core APIs, two of them are interesting for this project: producers,

publishing messages into the queue and consumers, reading the messages from the

queue. With a producer-consumer configuration, multiple producers were used

to emulate the HLT nodes pushing the monitoring information inside the queue

and a single consumer was used as a top level adder, collecting the monitoring

information, merging them and publishing them. This configuration with multiple

producers and a single consumer was chosen in order to test how many producers

are needed in order to saturate a single consumer. For this reason the three

level structure of the farm used for the Run 2 HLT2 monitoring system was not

implemented.

Producer

Producer

Producer

Producer

.

.

.

Consumer

Kafka
Pod

Figure 5.6 Scheme of the prototype implementation: multiple producers send
their messages to the Pod running Kafka, a single consumer reads
from it [1].
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Message configuration

The target for this test is to have around 400 producers resembling the HLT1 case

for Run3. Since the infrastructure was never tested before for this particular use,

a reduced workload configuration was chosen, emulating a HLT1 task instead of

HLT2. Each producer sends:

• 10 KB/s to emulate ∼ 1000 counters

• 100 KB/10s to emulate ∼ 100 1D histograms

• 10 MB/60s to emulate multiple 1D and 2D histograms

Due to the threshold Kafka puts on the message size, the 10 MB message was

split into 50 parts which were sent sequentially, one after the other.

5.2.2 Send and receive

The main focus of the prototype is to test the streaming platform, not

the messages, therefore synthetic messages are generated and sent. Future

implementations will deliver real histograms and counters instead of random

generated ones. Messages were generated by the senders, filled with a random

payload and sent using Kafka. From the receiver side, every time a message

is received, its content is decoded, the ID of the corresponding histogram is

calculated and the hash of the payload is performed in order to simulate the

histogram aggregation.

5.2.3 Tests

The prototype was first tested on a single machine running consumer, producer

and the Kafka instance. After that, the entire test was moved to multiple

machines connected to the same Kafka instance as shown in fig. 5.6.

The first test in this configuration was to check the integration with the instance

provided by LHCb Online performing a stress test with multiple producers fig. 5.7

shows a twelve hours stress test with the first six hours running a∼ 200 producers-

single consumer configuration and the last six hours with a∼ 400 producers-single

consumer configuration.
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The stress test demonstrates the system performs well under a heavy load. In

particular, a single consumer was able to handle a HLT1-like load (203 producers

configuration) without any problems. It also showed that it can handle an

even higher stress condition without intermediate aggregation level, with a 406

producers configuration. This particular configuration, increases the stress on the

network, with the output throughput hitting 220 MB/s. Future implementations

of the prototype will run with multiple consumers sharing the workload and a top-

level consumer reading the consumers’ output and merging it. This configuration

will benefit from Kafka as well. Another Kafka instance collecting the first level of

aggregation together with a top level consumer will perform the same operations

as the consumer used in this prototype.

203 producers 
1 consumer

406 producers 
1 consumer

Figure 5.7 Throughput measurement of the Kafka queue. In blue the incoming
messages, in orange the outgoing messages. Two configurations
were tested and the difference is clearly visible at ∼ 7:30 where
the throughput increases by a factor two. During the first part of
the test, the prototype was running with 203 producers and a single
consumer. In the second part, the number of producers was increased
to 406 keeping only a single consumer. The difference between input
and output throughput is due to protocol overhead and it is under
investigation [1].

After verifying that the system could handle a high load for a prolonged amount

of time, resilience to failures was tested. During data taking it is common to have

failures in the computing infrastructure (both hardware and software). Having a

queue system that quickly adapts to such issues it is a crucial part for a reliable

monitoring system. Due to the multiple producers-single consumer configuration,
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the test is performed switching off the consumer which is the single point of failure

of the entire system. In this way, the queue will start filling-up with messages

and, once back online, the consumer will need to catch-up with the not-processed

messages in the queue. This test was performed assuming a failure in the Kafka

instance is recovered within five minutes therefore the consumer was shut down

for five minutes. There are two major points to verify: if the Kafka instance

can handle non-consumed messages for five minutes and, once the consumer is

back, if the consumer can catch up with the producers, increasing the output

throughput.
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Figure 5.8 Throughput measurement of the Kafka queue. In blue the incoming
messages, in orange the outgoing messages. The producers input
messages for the entire test while the consumer was stopped for
5 minutes between ∼ 12:50 and ∼ 13:00. Once the consumer is
back, the throughput increases above the 100MB/s level in order to
empty the queue and catch-up with the producers. Once the queue is
emptied, the output throughput levels down to the initial value. This
test was performed with 105 producers and a single consumer. The
difference between the input and output throughput is due to protocol
overhead and it is under investigation [1].

In fig. 5.8 the failure of the consumer is simulated. The configuration used in this

test is with 105 producers and a single consumer. The system was left running

for a few minutes in order to achieve a steady state. After reaching a stable

configuration with the input and output throughput stable at ∼ 60 MB/s and

∼ 100 MB/s respectively, the consumer was shut down for five minutes. Once

the consumer was brought back online, it starts catching-up with the producers
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by increasing the output throughput. This is clearly seen in fig. 5.8. Between

12:55 and 13:00 the consumer was switched off and the output throughput drops

to zero. Then around 13:00 the consumer is brought back online and the output

throughput increases up to 200 MB/s in order to empty the queue. Once the

producer consumed all the unprocessed messages, the system goes back to a

steady state as before the failure test.

In fig. 5.8 is possible to see two additional features: periodical spikes due to the 10

MB/60s messages and slow changes in the output throughput when the consumer

is switched on and off due to averaged measurements.

Tests performed on the prototype showed that it is well integrated in the Kafka

instance provided by the LHCb Online infrastructure and it can handle a HLT1-

like workload with a single node reading all the monitoring information delivered

by the HLT1 machines. It also showed effective recovery in response to a failure.

This feature is fundamental because, in case of problems, it gives time either to

restart the consumer or to create a new one. Future implementations will resemble

the workload required by HLT2. In order to lower the input throughput on the

consumer, a configuration with multi level aggregation will be implemented and

tested.
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Chapter 6

Signal selection and background

study

This chapter describes how data collected by LHCb is processed to select events

that include B0
s → J/ψη′ and B0

s → J/ψf0 decays and to understand the

background of these decays. The development of a supervised classifier to

distinguish between the signal and the background is also discussed.

6.1 Data set and signal selection

In this analysis the full data set recorded by the LHCb detector between 2011

and 2018 is used. In table 6.1 the integrated luminosity and the beam energy for

each year of running is shown.

Year Integrated luminosity [fb−1] Energy [TeV]

2011 1.0 7

2012 2.0 8

2015 0.30 13

2016 1.6 13

2017 1.7 13

2018 2.1 13

Table 6.1 Integrated luminosity and beam energy for Run 1 and Run 2 [89].
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Candidates considered for this analysis must pass a set of trigger lines that are

chosen so as not to bias the lifetime. At the L0 trigger level, no explicit trigger

requirement is applied. However, the majority of events (∼ 83.6%) in Monte

Carlo samples are TOS on the L0Muon or DiMuon trigger.

At the HLT level, both the B0
s → J/ψη′ and the B0

s → J/ψf0 candidates are

selected by inclusive triggers, designed to identify the J/ψ → µ+µ− decay. The

list of triggers used is summarized in table 6.2 while a description of each trigger

line can be found in section 3.2.6.

Trigger stage Particle Name

L0 B0
s L0Global Dec

HLT1 J/ψ Hlt1DiMuonHighMassDecision TOS

HLT2 J/ψ Hlt2DiMuonDetachedJPsiDecision TOS

Table 6.2 List of triggers used in this analysis.

After passing the trigger selection, additional cuts are applied at the stripping

level using the FullDSTDiMuonJpsi2MuMuDetachedLine line. This line recon-

structs a J/ψ by selecting a pair of muons with high transverse momentum and

with invariant mass within 100 MeV/c2 of the nominal J/ψ mass. It also applies

loose requirements on the quality of the vertex and the decay length significance.

In table 6.3 the cuts applied at the stripping level are summarized. The only cut

that biases the reconstructed lifetime distribution is the DLS cut.

Cut Value

pT (µ
±) [MeV/c] 500

Decay Length Significance [σ] < −3 OR > 3

|m (µ+µ−)−m (J/ψ) | [MeV/c2] < 100

PID (µ) > 0.0

χ2
vx (µ

+µ−) < 20

Table 6.3 Cuts applied in the stripping selection.

In the next sections, the cut based pre-selection, vetoes against specific back-

grounds and MVA requirements are discussed. The same selection was applied

to the Monte Carlo sample used to model the background and as signal sample

for the multivariate analysis. In table 6.4 the Monte Carlo samples used in the

analysis are listed. The samples are split across the years of running.
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Decay Events generated Year

Bs → J/ψη′ 13× 106 Run 1 + Run 2

Bs → J/ψϕ (π+π−π0) 2× 106 2016

B0 → J/ψπ+π− 3× 106 2016

Bs → J/ψπ+π− 10× 106 2016

B0 → J/ψK+π− 1× 106 2016

B0 → J/ψX 10× 106 2016

Bs → J/ψη′ (ηπ+π−) 1× 106 2016

Bs → J/ψϕ (K+K−) 2× 106 2016

Bs → J/ψX 10× 106 2016

B+ → J/ψK+ 5× 106 2016

B+ → J/ψX 11× 106 2016

Table 6.4 Monte Carlo samples used in this analysis.

6.1.1 Pre-selection

After the trigger and stripping selection, additional cuts are applied to remove

combinatorial background and specific background from partially reconstructed

b-decays. Both decay channels have common requirements to select a B0
s decay

and good quality of tracks and vertices. Loose cuts on PID and ghost probability

variables are applied to reject misidentified particles and ghost tracks. Only

photons with pT (γ) > 500 MeV/c are selected in order to reduce combinatorial

background. A loose cut is also applied on the χ2
IP of the B0

s candidate and the B0
s

vertex χ2 (computed requiring mass constraints on the J/ψ and η′). To select a

B0
s decay, a mass window on the reconstructed candidate invariant mass is applied

as well as checks on the quality of the reconstructed vertex. Finally, a lower cut

on the B0
s decay time is made at 0.5 ps to reduce combinatorial background due

to particles produced in the proton-proton interaction and to select a time range

where the acceptance is flat (section 7.3.1). In fig. 6.1 mass distribution of the

reconstructed J/ψη′ decay after the pre-selection cuts is shown.
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Cut η′ f0 (980)

µ±
ghost < 0.2

µ±
PROBNNmu > 0.2

|m (µ+µ−)−m (J/ψ (1S)) | [MeV/c2] < 50

π±
ghost < 0.2

π±
PROBNNpi > 0.2

π±
PROBNNp < 0.7

π±
PROBNNk < 0.7

|m (ρ0γ)−m (η′) | [MeV/c2] < 50

pT (η
′) [MeV/c] > 2000

pT (γ) [MeV/c] > 500

CLγ > 0.2

τBs [ps] > 0.5

χ2
ip (Bs) < 25

χ2
vx (Bs) < 4

m (Bs) [MeV/c2] ∈ (4900, 5700)

mDTF (J/ψ η
′) [MeV/c2] ∈ (5150, 5650)

m (J/ψ η′) [MeV/c2] ∈ (5000, 6500)

χ2
DTF (J/ψ η

′) > 0

χ2
DTF (J/ψ η

′) < 4

m (π+ π−) [MeV/c2] ∈ (600, 900)

ADOCACHI2CUT (ρ0 → π+π−) < 30

χ2
vx (ρ

0) < 20

|m (π+ π−)−m (f0 (980)) | [MeV/c2] < 90

ADOCACHI2CUT (f0 (980) → π+π−) < 30

χ2
vx (f0 (980)) < 20

m (J/ψ f0 (980)) [MeV/c2] ∈ (5000, 6500)

mDTF (J/ψ f0 (980)) [MeV/c2] ∈ (5150, 5650)

χ2
DTF (J/ψ f0 (980)) > 0

χ2
DTF (J/ψ f0 (980)) < 5

pT (π
+) + pT (π

−) [MeV/c] > 1000

Table 6.5 Pre-selection cuts for signal and normalization modes. This selection
was applied after the stripping one. The ADOCACHI2CUT function
applies a χ2 cut on the tracks of the daughter particles [90].
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Year Events before pre-selection Events passing the pre-selection
2011 158301 18072
2011 390721 42267
2015 280141 22949
2016 1666742 161026
2017 1329703 136599
2018 1447902 143007

Table 6.6 Summary of the number of events passing the pre-selection for the
B0
s → J/ψη′ channel.
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Figure 6.1 Mass distribution for the 2016 B0
s → J/ψη′ after applying the pre-

selection cuts.

6.2 Backgrounds

Several sources of background are present in the data sample. Combinatorial

background is generated by selecting particles that do not originate from the

signal decay. This type of background is reduced by the cuts listed in table 6.5

and the subsequent multivariate analysis. It has a monotonic distribution in

mass. The other sources of background are peaking backgrounds. These are

generated when other b-decays are reconstructed as the signal decay mode due

to particle misidentification. The characteristic of these background components

is the presence of a peaking structure in the invariant mass distribution. In the

following sections, possible sources of peaking background are presented together

with the strategy to veto them.
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6.2.1 B0
s → J/ψη′ peaking background study

Various sources of peaking background are considered as described below.

B0/B0
s → J/ψπ+π−

Fully reconstructed B0 → J/ψπ+π− and B0
s → J/ψπ+π− decays will be mistaken

for signal if, once combined with a random photon, they match the η′ selection

criteria (fig. 6.2). To remove background from this source, if m (J/ψπ+π−) >

5249 MeV/c2 the candidate is rejected. This cut reduces this background by an

order of magnitude whilst retaining more than 99% of the signal (table 6.7). As

shown in fig. 6.3, the peaking structure in the J/ψπ+π− invariant mass is removed

by the veto.
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Figure 6.2 Reconstructed J/ψη′ mass from 2016 Monte Carlo background
samples: fig. 6.2a shows the B0 → J/ψπ+π− Monte Carlo, fig. 6.2b
shows the B0

s → J/ψπ+π− Monte Carlo. Only stripping and loose
selection cuts applied.
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Figure 6.3 Reconstructed J/ψπ+π− mass from 2016 data sample. The red
(hatched) area highlights the region removed by the veto.

B0
s → J/ψ (ϕ→ K+K−)

This decay is selected when both kaons are wrongly reconstructed as pions and a

random photon is added. This decay is greatly reduced by the PID cuts applied

at the selection level (see table 6.5). Since no peaking structure is seen in the

reconstructed J/ψK+K− mass (fig. 6.4), no veto is applied
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Figure 6.4 Reconstructed J/ψK+K− mass in 2016 data sample. The B0
s mass

is highlighted with the red dotted line: no evident peaking structure
is present around the B0

s mass.

B0 → J/ψ (K∗0 → K+π−)

This decay is selected if the kaon is misidentified as a pion and a random photon is

added. Since only one of the two particles is misidentified, there are two possible
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combinations. When building the veto for this decay, both combinations were

taken into account. To veto this component, both the K+π− and J/ψK+π−

invariant masses and the PID information are considered. If m (J/ψK+π−) is

within 35 MeV/c2 of the nominal B0 mass value and the K+π− mass is within

50 MeV/c2 of the K∗0 mass, no candidate is selected. If m (J/ψK+π−) is within

30 MeV/c2 of the PDG value of the B0 mass, a tighter PID cut is applied,

requiring ProbNNk for both pions to be smaller than 0.5 and ProbNNpi for both

pions to be greater than 0.4. This veto combined with the selection in table 6.5

removes ∼ 87% of the background from this source while keeping 98% of the

signal in the simulation. In fig. 6.5 the invariant mass of the J/ψK+π− system,

after applying the veto, is shown. No evident peaking structure is present.
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Figure 6.5 Reconstructed J/ψK+π− mass from 2016 data sample: before veto
(left) and after veto (right). The red dashed line shows the B0 mass
value from the PDG.

B+ → J/ψK+

This decay can be selected by misidentifying the kaon as a pion and adding a

random pion and photon. This background is strongly suppressed by the veto

described in section 6.2.1. Figure 6.6 shows the invariant mass of the J/ψK+

system after applying the vetoes. Around 95% of the B+ → J/ψK+ decay is

removed.
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Figure 6.6 Reconstructed J/ψK+ mass from 2016 data sample: before veto
(left) and after veto (right).

B0
s → J/ψ (ϕ→ π+π−π0)

This decay mode is selected when the two charged pions, combined with one of

the photons coming from the neutral pion, passes the η′ selection. The selection

cuts in table 6.5 remove ∼ 86% of the background component while keeping most

of the signal. In particular, the most effective cuts are the mass window around

the nominal value of the η′ mass, the pT (η
′) cut and by the pT (γ) cut. To

further reduce this background component, a similar approach to [91] is followed.

The η′ has helicity 0 since it is a pseudoscalar meson while the ρ0 can have

three helicity states (±1, 0). The photon has helicity ±1 since it is a massless

vector boson. Therefore, in the η′ → ρ0γ decay, the ρ0 meson must have non-

zero helicity. For this reason, the angular distribution of the pions coming from

the decay η′ → ρ0γ is different to the distribution for this background. After

comparing signal and background Monte Carlo distributions (fig. 6.7), a cut on

|cos (∠ (π+π−))| < 0.9 was applied to reduce the background from this source.

The |cos (∠ (π+π−))| variable is also used as training variable in the MVA. This

cut, removes an additional 12% of background from this source.
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Component Signal efficiency [%] Veto efficiency [%]

B0 → J/ψπ+π− 99.4 92.2

B0
s → J/ψπ+π− 99.4 90.6

B0 → J/ψK+π− 98.0 87.2

Table 6.7 Peaking background veto efficiencies. Signal efficiency is the amount
of signal remaining after the selection cuts and the given peaking
background veto. Background removal is the percentage of background
removed by the veto and selection cuts, tested on the background
Monte Carlo sample reconstructed as the B0

s → J/ψη′. In both cases,
the selection cuts are the ones listed in table 6.5.

1− 0.5− 0 0.5 1
))-π+π(∠cos(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
an

di
da

te
s/

0.
1

Figure 6.7 cos (∠ (π+, π−)) from 2016 Monte Carlo: the blue triangles are the
background Monte Carlo

(
B0
s → J/ψ

(
ϕ→ π+π−π0

))
while the red

dots are the η′ Monte Carlo sample.

6.2.2 B0
s → J/ψf0 background study

The peaking backgrounds considered in the B0
s → J/ψf0 mode are discussed

below.

B0 → J/ψK+π−

This decay is selected when the kaon is reconstructed as a pion. It is suppressed

by the PID requirements and a similar veto to that used for the η′ mode in
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section 6.2.1 is applied. This reduces background from this source by a further

factor of two. A component to model the remaining background from this source

is included in the fit (see section 7.2.1).

B+ → J/ψK+ and B+ → J/ψπ+

The B+ → J/ψK+ decay is selected when a kaon is reconstructed as a pion

and a random pion is added, satisfying the selection criteria for the f0. These

backgrounds are suppressed by rejecting any candidate where either of the two

possible J/ψK+ or J/ψπ+ mass combinations is within ±30 MeV/c2 of the

nominal B+ mass [92]. The K+ is reconstructed from the pion with the highest

ProbNNk while the π+ is the pion with the lowest ProbNNk. The efficiency of this

veto is tested on the inclusive Monte Carlo samples and found to remove ∼ 66%

of background events from these source. A component for these decay modes will

be added into the mass fit model (see section 7.2.2).

B0
s → J/ψ (η′ → π+π−γ)

This decay mode is selected if the photon is not reconstructed. No veto is applied

but it is modeled and included as background component in the mass fit (see

section 7.2.2).

6.2.3 Signal samples after vetoes

In fig. 6.8 the mass spectra for the η′ and f0 channels in the 2016 data set after

applying the pre-selection cuts and peaking background vetoes are shown.

72



5200 5300 5400 5500
]2c') [MeV/η(1S) ψm(J/

0

500

1000

1500

2000

2500

3000

3500)
2

c
C

an
di

da
te

s/
(6

 M
eV

/

(a) J/ψη′ mass, η′ channel

5200 5300 5400 5500
]2c) [MeV/-π +π(1S) ψm(J/

0

10000

20000

30000

40000

50000

60000

70000

80000)
2

c
C

an
di

da
te

s/
(6

 M
eV

/

(b) J/ψπ+π− mass, f0 channel

Figure 6.8 Mass spectrum from 2016 data for both channels after the pre-
selection cuts. All the selection cuts and peaking background vetoes
were applied.

Though peaks are seen at the B0
s mass, the combinatorial background remains

high. Therefore the last step of the selection is to reduce the combinatorial

background with a MVA.

6.3 MVA

To further reduce the combinatorial background, a multivariate classifier is used

for both modes. The TMVA [93] toolkit was chosen to perform the classification.

Several possible classifiers were considered and the Gradient Boosted Decision

Tree (BDTG) chosen as it gave good performance and excellent signal-background

separation (fig. 6.10). Separate classifiers were trained for the two channels in

order to profit from the information of the photon available in the η′ channel.

In both cases, signal Monte Carlo and the high mass side-band from data are

used for training. To reduce possible biases introduced by the different detector

configurations for each year, four MVAs are trained: Run 1, 2015 and 2016

combined, 2017 and 2018.

6.3.1 Training

Before training, several corrections were made to the simulation sample to better

match the data in terms of the kinematics and multiplicity. These are described

in appendix A and appendix B.
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Training samples

A supervised classifier needs a training sample for each category. In this case, a

sample for the signal and one for the background are needed. For this analysis, the

truth-matched Monte Carlo simulation sample is used as the signal sample and

the high-mass side-band (m (J/ψη′)η′ ; m (J/ψπ+π−)f0 ∈ (5500− 5650) MeV/c2)

is used as the background sample.

Training variables

In selecting variables to be included in the MVA, care was given to chose variables

that do not bias the lifetime distribution and that agree between data and Monte

Carlo. In table 6.8 and table 6.9 the training variables used for both channels are

listed. Since the work is focused on a relative measurement, the similar training

variables were used for both channels. Both MVA algorithms were trained on the

transverse momentum of the particles, the quality of the primary vertex fit, the

isolation of the B0
s (appendix D), number of clusters in the TT and pseudorapidity

of the B0
s . For the η′ MVA, photon information is also included in the training:

the transverse momentum and the confidence level of the photon. Comparisons

between data and Monte Carlo for the variables which are input to the MVA can

be found in appendix E.
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Variable name Description

η (B0
s ) B0

s pseudorapidity

χ2
DTF (B

0
s ) /nDOF Quality of the B0

s DTF fit

pT (B
0
s ) B0

s transverse momentum

min (pT (π1) , pT (π2)) Minimum of the pions transverse momentum

max
(
ghostµ1 , ghostµ2

)
Maximum of the muons ghost probability

min (pT (µ1) , pT (µ2)) Minimum of the muons transverse momentum

0.5 (Bs 1.80 cc deltaEta + Bs 1.80 nc deltaEta) Average of the B0
s - cone difference in eta

Bs 1.80 cc mult Number of objects in the cone

Bs 1.80 cc asy PZ Z components of the momentum asymmetry

Bs 1.80 cc vPT Vector-summed PT of the objects inside the cone

Bs 1.80 nc deltaPhi Difference in phi between the B0
s and the cone

CLγ Confidence level of the photon

pT (γ) Transverse momentum of the photon

cos (∠ (π1, π2)) Cosine of the helicity of the pions

pT (η
′) η′ transverse momentum

Bs IPCHI2 OWNPV Quality of the B0
s fit

TT occupancy TT occupancy

nPi0R π0 veto

Table 6.8 Training variables for the B0
s → J/ψη′ MVA.

Variable name Description

η (B0
s ) B0

s pseudorapidity

χ2
DTF (B

0
s ) /nDOF Quality of the B0

s DTF fit

pT (B
0
s ) B0

s transverse momentum

min (pT (π1) , pT (π2)) Minimum of the pions transverse momentum

max
(
ghostµ1 , ghostµ2

)
Maximum of the muons ghost probability

min (pT (µ1) , pT (µ2)) Minimum of the muons transverse momentum

0.5 (Bs 1.80 cc deltaEta + Bs 1.80 nc deltaEta) Average of the B0
s - cone difference in eta

Bs 1.80 cc mult Number of objects in the cone

Bs 1.80 cc asy PZ Z components of the momentum asymmetry

Bs 1.80 cc vPT Vector-summed PT of the objects inside the cone

Bs 1.80 nc deltaPhi Difference in phi between the B0
s and the cone

Bs IPCHI2 OWNPV Quality of the B0
s fit

TT occupancy TT occupancy

Table 6.9 Training variables for the B0
s → J/ψf0 MVA.

6.3.2 MVA training and performance

The TMVA [93] framework is used to build the multivariate classifier. It offers

a large variety of algorithms for classification like decision trees and neural

networks. Among these, in this case the BDTG shows good performance in
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terms of correctly classifying signal and rejecting most of the background (figs. 6.9

and 6.10 and appendix E). Hence, it was chosen for use in this analysis.
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Figure 6.9 2016 training, Receiver Operating Characteristic (ROC) curve for
both channels. Both distributions show very high background
rejection.
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Figure 6.10 2016 training, signal-background classification for both channels.
In both cases, BDTG showed optimal separation between signal and
background

In appendix E the signal and background plots for the training variables are

shown. The optimal BDTG cut for the B0
s → J/ψη′ mode is chosen by computing

the yields in time bins for different BDTG cut values. These yields are input to

toy studies that determine the cut which minimizes the error on ∆Γs (fig. 6.11).
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(a) 2011 - 2012 - B0
s → J/ψη′ (b) 2015 + 2016 - B0

s → J/ψη′

(c) 2017 - B0
s → J/ψη′ (d) 2018 - B0

s → J/ψη′

Figure 6.11 Fitted uncertainty as a function of the BDTG cut found in toy
studies for the full η′ data set. The black line is a quadratic fit, the
dotted blue line is the chosen cut.

The optimal BDTG cut for the B0
s → J/ψf0 channel is chosen by fitting the

Monte Carlo decay time distribution with an exponential, plotting the obtained

slope of the exponential as a function of the BDTG cut and looking for a plateau

as shown in fig. 6.12.
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Figure 6.12 Exponential slope from B0
s → J/ψf0 Monte Carlo as a function of

BDTG cut.

The BDTG cuts applied to both channels are summarized in table 6.10.

Year Channel BDTG value

2011 + 2012 η′ 0.20

f0 0.20

2015 + 2016 η′ 0.40

f0 0.25

2017 η′ 0.35

f0 0.25

2018 η′ 0.25

f0 0.25

Table 6.10 BDTG cuts for the four data sets. The BDTG output is required to
be larger than the values listed in the table.
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Chapter 7

Measurement of ∆Γs

In this chapter the tools used to measure ∆Γs will be described. The measurement

is performed using eq. (2.26) where the yields for each mode are extracted from

a simultaneous mass fit to the data in bins of lifetime. A χ2 minimization of

eq. (2.26) is used to extract ∆Γs.

7.1 Fit validation

The fit procedure is tested and validated using toy studies. Toys were

generated using the theoretical lifetime distribution for the CP -even and CP -

odd components and applying a Gaussian smearing with σ = 0.04 ps to simulate

the detector resolution. First, toys are generated with only the signal component

and are fitted by minimizing eq. (2.26). Figure 7.1 are shown the pull and bias

distributions obtained by generating 5000 toys with Nη′ = 9600, Nf0 = 60000,

Γs = 0.6628 ps−1 and ∆Γs = 0.077 ps−1. The number of events generated in the

toys is roughly the same as the number of events in the data. Two distributions

were taken into account: bias and pull. The bias is defined as the difference

between the measured value and the theoretical one while the pull for a Gaussian

distribution with mean µ and width σ is defined as g ≡ (x− µ) /σ. The fitted

pull, 0.97±0.01, is consistent with unity, indicating the uncertainties are correctly

estimated. The fitted bias, (0.05± 0.12) ns−1, is consistent with zero.
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(a) (b)

Figure 7.1 Toy studies: bias distribution (left) and pull distribution
(right). 5000 toys were generated using Nη′ = 9600, Nf0 = 60000,
Γs = 0.6628 ps−1 and ∆Γs = 0.077 ps−1.

The bias and the uncertainty on ∆Γs as a function of the input ∆Γs are also

studied (fig. 7.2). No dependence is seen.
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Figure 7.2 Toy studies: bias as a function of ∆Γs (left) and σ (∆Γs) as a
function of ∆Γs (right). 5000 toys were generated using Nη′ = 9600,
Nf0 = 60000, Γs = 0.6628 ps−1 and ∆Γs = 0.077 ps−1. The red
lines are a constant fit to guide the eye.

The effect of fitting eq. (2.26) using a different value of Γs to the value used in

generation was also studied. In fig. 7.3 the bias coming from using a different value

when fitting ∆Γs to the generated value is shown. There is a linear correlation

between the bias and the Γs shift. However the bias on the ∆Γs measurement is

small compared to the expected precision as the fit has limited sensitivity to Γs.

If Γfit
s −Γinput

s is considered to be within the current Γs uncertainty (the two blue

lines) in fig. 7.3, the bias on ∆Γs is 1% of the expected statistical uncertainty on
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∆Γs. This is considered as a systematic uncertainty.
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Figure 7.3 Bias as a function of the difference between the input value of ∆Γs in
the generation and fit of the toys. The toy parameters are the same
as the ones used before. The red line is there to help identifying
the value corresponding to Γfit

s − Γinput
s = 0. The blue lines are

the present uncertainty on Γs quoted from Heavy Flavor AVeraging
(HFLAV) [20].

7.1.1 Binning scheme

As described in section 2.4, the ∆Γs measurement is performed splitting the data

set into lifetime bins. The optimal number of bins is studied with toy simulations.

Both the bias and uncertainty on ∆Γs are studied and the two distributions in

fig. 7.4 show having a small number of bins reduces the sensitivity to ∆Γs. Based

on these plots, it seems reasonable to use eight bins. Adding more bins would

not improve the precision on ∆Γs but would make the simultaneous fit more

complicated.
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Figure 7.4 Toy studies to find the optimal number of bins. The left plot shows
the bias on ∆Γs as a function of the number of bins and the right
plot shows the error on ∆Γs as a function of the number of bins.

The binning scheme was chosen to have a roughly equal yields in each bin as

shown in appendix G. The resulting scheme is summarized in table 7.1.

Bin number Bin edges [ps]

1 0.5 - 0.7

2 0.7 - 0.9

3 0.9 - 1.2

4 1.2 - 1.5

5 1.5 - 2.0

6 2.0 - 2.5

7 2.5 - 3.5

8 3.5 - 10.0

Table 7.1 Binning scheme used in the analysis.

7.2 Mass fit

The two modes have different background components to take into account as

presented in section 6.2 therefore two fit models are built.
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7.2.1 B0
s → J/ψη′ fit model

The fit model for the J/ψη′ mass distribution consists of the four components

given in table 7.2.

Component PDF

B0
s → J/ψη′ Double sided crystal ball

B0 → J/ψη′ Double sided crystal ball

B0
s → J/ψ (ϕ→ π+π−π0) Bifurcated Gaussian

Combinatorial background Exponential

Table 7.2 B0
s → J/ψη′ mass fit components.

The B0
s → J/ψη′ component is found to be well modeled in the simulation by a

Double-Sided Crystal Ball (DSCB) function. This is a function with a Gaussian

core and power law tails as described in appendix F.1. A fit of this function to

the simulation is shown in fig. 7.5 and the results are listed in table 7.3.
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Figure 7.5 Fit of the J/ψη′ mass distribution to the 2016 simulation sample.
Pulls are shown below the plot.
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Parameter Value

µ 5366.56± 0.09 MeV/c2

αL −1.52± 0.05

αR 1.33± 0.04

nL 5.3± 0.5

nR 4.9± 0.4

σ 9.1± 0.1 MeV/c2

Table 7.3 B0
s → J/ψη′ fit parameters from the 2016 simulation.

When fitting the data, the tail parameters are fixed to the simulation result while

the mean and sigma are left floating.

To model the B0 → J/ψη′ component a DSCB shape is also used (appendix F.1).

The tail parameters are fixed to the B0
s fit. Typically, the mass resolution scales

with the square root of the energy release (Q-value). Consequently, the sigma for

the B0 component is Gaussian constrained to be αm ·σB0
s
where αm = 0.97±0.03.

The uncertainty is chosen to allow for possible linear scaling. The position

of the peak is Gaussian constrained by the known B0
s − B0 mass splitting,

mB0
s
−mB0 = 87.22± 0.16 MeV/c2, calculated using the values in [92]. The yield

for this mode is left free since the fraction of B0 to B0
s decays varies as a function

of decay time.

The background model for the B0
s → J/ψϕ (3π) component (see section 6.2.1)

is modeled using the exclusive simulation sample. The fit model includes

an exponential for the combinatorial background and a Bifurcated Gaussian

(appendix F.2) for the B0
s → J/ψϕ component (fig. 7.6). When including this

background component into the J/ψη′ mass fit, only the bifurcated Gaussian

component is considered as the exponential shape is absorbed in the combinatorial

background component. The yields for this mode are computed relative to the

signal mode as NB0
s→J/ψϕ = fϕ · NB0

s→J/ψη′ where fϕ = (4.6± 0.9) × 10−2 is

the relative selection efficiency computed using the simulation multiplied to the

branching fraction of the decays. In the fit to the data the shape of this component

is fixed to the simulation and fϕ to the value above.
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Figure 7.6 B0
s → J/ψ

(
ϕ→ π+π−π0

)
fit model for the f0 channel. Red dashed

lines correspond to the combinatorial background component, the
blue dashed line is the B0

s → J/ψϕ component and the blue solid
line is the full fit. Pulls are shown below the plot.

Parameter Value MeV/c2

µ 5274.4± 4.2

σL 63.7± 8.2

σR 62.1± 3.4

Table 7.4 B0
s → J/ψϕ

(
π+π−π0

)
fit results for the f0 channel.

As an example, in fig. 7.7 a fit of this model to 2016 B0
s → J/ψη′ data set is

shown. The quality of the fit judged from the pulls is good. The χ2/ndof for this

model is 0.97.
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Figure 7.7 Fit to the 2015-2016 B0
s → J/ψη′ data set of the model described in

the text. The pulls are shown below the plot.

7.2.2 B0
s → J/ψf0 fit model

The fit model for the B0
s → J/ψf0 decay mode has the six components listed in

table 7.5.

Component PDF

B0
s → J/ψf0 DSCB

B0 → J/ψf0 DSCB

B0 → J/ψK+π− Modeled with RapidSim [94]

B+ → J/ψK+ +B+ → J/ψπ+ Crystal ball + Gaussian

B0
s → J/ψ (η′ → ρ0γ) Modeled with RapidSim

Combinatorial background Exponential

Table 7.5 J/ψf0 mass fit components.

The B0
s peak is modeled with a DSCB function in the simulation (fig. 7.8). The

results of the fit are summarized in table 7.6. When fitting the data, the tail

parameters are fixed to the values obtained with the simulation while the mean

and sigma are left free.
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Figure 7.8 Fit of the B0
s → J/ψπ+π− to the 2016 simulation.

Parameter Value

µ 5367.0± 0.031 MeV/c2

αL −1.517± 0.027

αR 1.718± 0.035

nL 3.29± 0.21

nR 6.6± 0.66

σ 7.99± 0.037 MeV/c2

Table 7.6 B0
s peak fit parameters - f0 channel.

The B0 peak is modelled with a DSCB function. The tail parameters are fixed

using the values from the B0
s → J/ψf0 simulation sample while the sigma is

Gaussian constrained to the B0
s value and the mean is Gaussian constrained to

the known B0
s −B0 mass splitting value.

The shape of the B0 → J/ψK+π− component with a K → π swap is modeled

using the RapidSim [94] fast simulation package [94]. The histogram of the

J/ψπ+π− mass distribution from RapidSim is convolved with a Gaussian with

a 10 MeV/c2 width to simulate the detector resolution. This gives the shape

shown in fig. 7.9. The yields for this mode are computed relative to the signal

mode as NB0→J/ψK+π−
= f · NB0

s→J/ψf0 , where f = (6.5± 0.6) × 10−2 is the

relative selection efficiency computed using the simulation multiplied by the decay

branching fraction and the fs/fd factor and it is set to be constant.
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Figure 7.9 B0 → J/ψK+π− fit model for the B0
s → J/ψf0 decay mode.

The B+ → J/ψK+ and B+ → J/ψπ+ components are modeled using the

inclusive B+ Monte Carlo sample by the combination of a Crystal Ball function

and a Gaussian. In fig. 7.10 the fit model for the B+ → J/ψK+ and B+ → J/ψπ+

components are shown. Table 7.7 shows the fit output. These components are

included in the final fit fixing the fit parameters to the values in table 7.7 and

keeping the yields free.

m

0
20
40
60
80

100
120
140
160
180
200
220

)2 c
C

an
di

da
te

s/
(4

M
eV

/

5200 5300 5400 5500 5600
]2c)) [MeV/-π(+(1S) Kψm(J/

4−
2−
0
2
4

Figure 7.10 B+ → J/ψK+ and B+ → J/ψπ+ background fit model for the
B0
s → J/ψf0 decay mode.
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Parameter Value

µCB 5504± 3.0 MeV/c2

σCB 68± 1.3

nCB 0.052± 0.001

αCB 1.79± 0.040

µGauss 5438± 1.2 MeV/c2

σGauss 28± 2.0 MeV/c2

yields ratio 0.61± 0.02

Table 7.7 B+ → J/ψK+ and B+ → J/ψπ+ fit results from 2016 Monte Carlo.

Due to the limited size of the full Monte Carlo sample, the B0
s → J/ψη′

background component is also modeled with the RapidSim [94]. The true

J/ψπ+π− mass shape obtained with RapidSim is convolved with the detector

resolution. The resulting PDF is shown in fig. 7.11. The yields for this mode

are computed relative to the signal mode as NB0
s→J/ψη′ = f · NB0

s→J/ψf0 , where

f = (6.5± 1.0) × 10−2 is the relative selection efficiency computed using the

simulation multiplied by the decay branching fraction and it is set to be constant.
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Figure 7.11 B0
s → J/ψ

(
η′ → ρ0γ

)
background model for the B0

s → J/ψf0 decay
mode. The shape is obtained from simulated events with RapidSim.

The full mass fit for the 2015 and 2016 J/ψπ+π− channel including all background

components listed above is shown in fig. 7.12.
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Figure 7.12 J/ψπ+π− invariant mass fit for the 2015 and 2016 f0 data set.
The purple dashed line is the B0 → J/ψK∗ component, the
red dashed line is the B0 → J/ψπ+π− component, the green
dashed line is the B0

s → J/ψη′ component, the gray dashed line
is the B+ → J/ψ (K+/π+) component, the light blue line is the
combinatorial background and the dashed blue line is the signal
component.

7.2.3 Simultaneous fit

After testing the fit model on the full data set, the data set is split into the

eight time bins (table 7.1) and a simultaneous fit is performed across the bins

(fig. 7.13). The parameters of the fit are summarized in table 7.8 and table 7.9.

The shape and yield of the combinatorial background is allowed to vary between

bins. The shape of the B0 component is shared between bins whilst the B0 yield

is a separate parameter for each bin since it depends on the B0 lifetime. The fits

for each time bin are shown in appendix G
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Parameter Shared Status

µB0
s

Yes Free

σB0
s

Yes Free

∆m (B0
s , B

0) Yes Constrained

αm Yes Constrained

µϕ→3π Fixed

σL,ϕ→3π Fixed

σR,ϕ→3π Fixed

B0
s yield No Free

B0 yield No Free

Combinatorial background yield No Free

B0
s (3π) yield Free

nR,B0
(s)

Fixed

nL,B0
(s)

Fixed

αR,B0
(s)

Fixed

αL,B0
(s)

Fixed

τ background No Free

Table 7.8 B0
s → J/ψη′ simultaneous fit parameters: the central column shows

the parameters shared across all bins and the right column shows
the parameters left floating. µϕ→3π, σL,ϕ→3π and σR,ϕ→3π refer to
the Bifurcated Gaussian model used for the B0

s → J/ψϕ (3π) decay
and nR,B0

(s)
, nL,B0

(s)
, αR,B0

(s)
and αL,B0

(s)
are the Crystal Ball function

parameter for the signal model. αm is the σ scaling factor for the
B0 → J/ψη′ fit model.
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Parameter Shared Status

µB0
s

Yes Free

σB0
s

Yes Free

∆m (B0
s , B

0) Yes Constrained

αm Yes Constrained

B0
s yield No Free

B0 yield No Free

Combinatorial background yield No Free

nR,B0
(s)

Fixed

nL,B0
(s)

Fixed

αR,B0
(s)

Fixed

αL,B0
(s)

Fixed

τ background No Free

µB+→J/ψK+ Fixed

σB+→J/ψK+ Fixed

µB+→J/ψπ+ Fixed

σB+→J/ψπ+ Fixed

B+ → J/ψK+, B+J/ψπ+ tail Fixed

B+ → J/ψK+, B+J/ψπ+ yield No Free

µB0→J/ψK+π− Fixed

σB0→J/ψK+π− Fixed

B0 → J/ψK+π− yield Fixed

B0
s → J/ψη′ yield Fixed

Table 7.9 B0
s → Jψf0 simultaneous fit parameters: the central column shows

the parameters shared across all bins and the right column shows the
parameters left floating. nR,B0

(s)
, nL,B0

(s)
, αR,B0

(s)
and αL,B0

(s)
are the

Crystal Ball function parameter for the signal model. αm is the σ
scaling factor for the B0 → J/ψη′ fit model.
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(d) 2015 - 2016 f0
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(g) 2018 η′
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Figure 7.13 Simultaneous fit in lifetime bins for both channels. Right column
shows the η′ data set, left column the 2016 f0 data set. The red
line shows the fit result.
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7.3 Time acceptance

Since a relative measurement between the two channels is made, the time

acceptance largely cancels in the ratio. The validity of this assumption is probed

below and the residual acceptance correction quantified for the example of the

2015–2016 data set. The results for the other years are given in appendix J. The

time acceptance A (t) is defined as the ratio between the reconstructed lifetime

distribution in the simulation to the input distribution. For both channels the

Monte Carlo samples are generated with a lifetime of 1.543 ps.

There are four main contribution to the time acceptance: the candidate DLS,

the χ2
IP cut, the VELO tracking efficiency and the MVA. The overall acceptance,

Atot, is the product of these effects.

The DLS cut in trigger and stripping at 3 removes events at low decay time.

In fig. 7.14 the acceptance generated by the DLS cut is shown. The red line

highlights the decay time cut applied in the analysis and the horizontal blue line

is a fit to a constant to show the plateau region. It is clear that the choice of

lower time cut at 0.5 ps minimizes the impact of the DLS cut on the analysis.
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Figure 7.14 2016 DLS acceptance for both channels. Figure 7.14a is the
η′channel and fig. 7.14b is the f0 channel. The red line shows the
decay time cut at 0.5 ps and the blue line is a fit with a constant
helping identifying the plateau region.

The cut on the candidate χ2
IP removes candidates at large decay time. Figure 7.15

shows the acceptance due to the χ2
IP. The efficiency distribution is well described

by the form
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Aχ2
IP (t) ≡ (1− γt) . (7.1)

The results of fitting this distribution are listed in table 7.10. This component is

the largest source of acceptance for this analysis.

Channel γ [ps−1]

η′ (−2.4± 3.4)× 10−4

f0 (13.1± 6.5)× 10−4

Table 7.10 χ2
IP acceptance fit results from 2015-2016 Monte Carlo.
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Figure 7.15 χ2
IP acceptance. Figure 7.15a shows the acceptance for the B0

s →
J/ψη′ channel, fig. 7.15b shows the B0

s → J/ψf0 channel.

Due to the VELO track reconstruction algorithm (section 4.1.1), the efficiency for

track reconstruction in the VELO depends on the distance of closest approach of

the track to the beamline. This causes a decay time acceptance that is modeled

as

AVELO (t) ≡
(
1− βt2

)
(7.2)

Figure 7.16 shows the fit of this form to 2016 simulation. The fit results are listed

in table 7.11.
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Channel β [ps−2]

η′ (8.2± 1.9)× 10−4

f0 (5.9± 0.5)× 10−4

Table 7.11 Results of fits of eq. (7.2) to the simulation.

The results of acceptance between the channels agree within one sigma implying

this effect largely cancels in the ratio.
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Figure 7.16 2016 VELO β factor for both channels: fig. 7.16a is the
B0
s → J/ψη′ channel, fig. 7.16b is the B0

s → J/ψf0 channel.

Since this analysis relies on MVA for signal-background classification, the effect

of the MVA cut on the reconstructed lifetime distribution is checked. From the

choice of variables in the MVA this requirement should be lifetime unbiased. In

fig. 7.17 it can be seen that the efficiency of the MVA is indeed flat as a function

of time.
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Figure 7.17 2016 MVA acceptance for both channels: fig. 7.17a η′ channel,
fig. 7.17b f0 channel.

7.3.1 Time acceptance fit

After checking the individual sources of time acceptance, a combined acceptance

is calculated for each channel. Since the 2015 and 2016 data set, as well as

Run 1, will be treated as a single one, the time acceptance is studied merging

the 2015 and 2016, and the 2011 and 2012 Monte Carlo samples. The time

acceptance distribution is computed using the re-weighted simulation, fitting the

Monte Carlo sample for each mode with:

Afit (t) = (1− bt) e−t/τMC (7.3)

where the function (1− bt) corrects for the acceptance. Figures 7.18 and 7.19

show the fit of eq. (7.3) to the simulation samples while the results of the fit are

listed in table 7.12. The quality of the fit judged by from the residuals is good.

The larger size of the correction in the Run 1 data reflects the larger acceptance

correction from the VELO tracking.
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Year Channel b [ps−1] bη′ − bf0 [ps
−1]

2011 + 2012 η′ (1.23± 0.33)× 10−2

(3.8± 5.5)× 10−3

f0 (8.5± 4.4)× 10−3

2015 + 2016 η′ (0.023± 4.1)× 10−3

(−0.75± 4.5)× 10−3

f0 (0.78± 1.9)× 10−3

2017 η′ (2.2± 2.7)× 10−3

(−1.35± 3.57)× 10−3

f0 (3.5± 2.4)× 10−3

2018 η′ (0.54± 2.7)× 10−3

(−0.76± 3.6)× 10−3

f0 (1.3± 2.3)× 10−3

Table 7.12 Acceptance slope values for both channels.

(a) (b)

(c) (d)

Figure 7.18 Time acceptance fits for the B0
s → J/ψη′ channel from Monte

Carlo sample. Figure 7.18a is the 2012 fit, fig. 7.18b is the 2016
fit, fig. 7.18c is the 2017 fit and fig. 7.18d is the 2018 fit.
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(a) (b)

(c) (d)

Figure 7.19 Time acceptance fits for the B0
s → J/ψf0 channel from Monte

Carlo sample. Figure 7.19a is the 2012 fit, fig. 7.19b is the 2016
fit, fig. 7.19c is the 2017 fit and fig. 7.19d is the 2018 fit.

The ratio between B0
s → J/ψη′ and B0

s → J/ψf0 yields is corrected for the time

acceptance by evaluating the ratio of the acceptance functions (Aη′

fit (t) /A
f0
fit (t))

at the bin barycenter. The choice of the bin barycenter is motivated from toy

studies similar to those described in section 7.1 and by the discussion in [36].

The results of the toy studies are listed in tables 7.14, 7.15, 7.16 and 7.17. The

analytical formula of the acceptance correction is shown in eq. (7.4).

Aη′

fit (t)

Af0
fit (t)

=
1− bη′t

1− bf0t
≈ 1− (bη′ − bf0) t. (7.4)

7.4 ∆Γs fit

The value of ∆Γs is determined by a χ2 minimization of eq. (2.26) where the yields

for each channel are taken from the simultaneous fits described in section 7.2.3.

99



In table 7.13 the values of ∆Γs separated by data set and corrected for the

time acceptance are listed while fig. 7.20 compares the fit result (red line) to

the experimental data (dots). The fit quality for each data set, judged from the

probability of χ2, is good. Figure 7.21 shows the values for the four years together

with a weighted average. The results for the four years are consistent.

Year ∆Γs [ps−1] Normalization Prob χ2 ∆Γs [ps−1] no TA

2011 + 2012 0.043± 0.026 0.161± 0.006 0.75 0.047± 0.026

2015 + 2016 0.079± 0.022 0.154± 0.005 0.71 0.078± 0.022

2017 0.112± 0.023 0.153± 0.005 0.43 0.111± 0.023

2018 0.082± 0.020 0.161± 0.005 0.75 0.081± 0.020

Table 7.13 ∆Γs measurement split by year. Where TA is the time acceptance.
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Figure 7.20 ∆Γs fit results. The red line shows the fitted value while the points
show the data.
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Figure 7.21 ∆Γs measurements. From the top, each measure represent a period
of data taking. The bottom measure is the weighted average across
the Run 1 and Run 2 data set. The orange band is the 1 σ error
band. The probability of χ2 of the four measurements is 0.28.

The weighted average across the full Run 1 and Run 2 data set is

∆Γs = (0.081± 0.011) ps−1

where the uncertainty is statistical.

7.5 Systematic uncertainties

Most systematic uncertainties cancel in the ratio. The statistical uncertainty

due to the acceptance correction is obtained by computing ∆Γs changing the

acceptance correction values to ±1σ. The two values of ∆Γ are then averaged

and compared with the measured ∆Γs. This uncertainty is included in the

statistical error. The remaining sources of systematic uncertainty considered

are shown in table 7.18. The normalization channel is B0
s → J/ψπ+π− with

a cut within ±90 MeV/c2 of the nominal f0 mass. Since this mass window is

relatively broad other resonances decaying to the J/ψπ+π− final state may be

present. As discussed in section 2.4, this decay is dominated by CP -odd decays.

In [95] the CP -even component in this decay is limited to be less than 0.6% at

95% confidence level. Toy studies where the J/ψπ+π− final state is generated

including a 0.6% CP -even component which is then neglected in the fit show
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a bias < 0.1 ns−1 which is considered as systematic uncertainty. As shown in

section 7.1, the ∆Γs fit is relatively insensitive to the value of Γs used. Varying

the value of Γs by 0.0035 ps−1, the current uncertainty on the world average,

gives an uncertainty of 0.1 ns−1. The method used assumes ϕs to be zero but the

current Heavy Flavor AVeraging (HFLAV) average is ϕs = −0.05 ± 0.019 rad.

Toy studies using the central value of the HFLAV average and neglecting CP

violation give a bias of 0.1 ns−1 which is considered systematic uncertainty. The

z−scale of the VELO is known to a precision of 2× 10−4 [29]. Assuming a pure

exponential distribution, this will cancel when performing the ratio between the

two channels. This assumption was confirmed by toy studies. By default, the

acceptance is calculated at the barycenter of the bin. Since the bins are relatively

large, other possibilities are considered. There are different ways to evaluate the

time acceptance, in this work the three strategies described in [36] are considered:

the bin center, the bin barycenter and xlw.

Tables 7.14, 7.15, 7.16 and 7.17 show the results of toy studies run with three

methods to evaluate the time acceptance for each year.

Condition Bias [×10−4ps−1]

No correction 37.1± 0.8

Bin center 16.2± 0.8

Bin barycenter −1.6± 0.8

xlw −7.8± 0.8

Table 7.14 Toy studies calculating the bias on ∆Γs for the acceptance function
evaluated in different bin positions. The values are computed using
2011-2012 Monte Carlo and the corresponding values of b shown in
table 7.12.

Condition Bias [×10−4ps−1]

No correction −7.0± 0.8

Bin center 3.7± 0.8

Bin barycenter 0.5± 0.8

xlw 2.0± 0.8

Table 7.15 Toy studies calculating the bias on ∆Γs for the acceptance function
evaluated in different bin positions. The values are computed using
2015-2016 Monte Carlo and the corresponding values of b shown in
table 7.12.
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Condition Bias [×10−4ps−1]

No correction −14.8± 0.8

Bin center 3.1± 0.8

Bin barycenter −1.8± 0.8

xlw 0.3± 0.8

Table 7.16 Toy studies calculating the bias on ∆Γs for the acceptance function
evaluated in different bin positions. The values are computed using
2017 Monte Carlo and the corresponding values of b shown in
table 7.12.

Condition Bias [×10−4ps−1]

No correction −10.0± 0.8

Bin center −0.5± 0.8

Bin barycenter −3.0± 0.8

xlw −2.0± 0.8

Table 7.17 Toy studies calculating the bias on ∆Γs for the acceptance function
evaluated in different bin positions. The values are computed using
2018 Monte Carlo and the corresponding values of b shown in
table 7.12.

Based on the results shown in tables 7.14, 7.15, 7.16 and 7.17, a systematic

uncertainty of 0.3 ns−1 is assigned.

A linear dependence of the acceptance on the decay time is assumed. Fitting the

simulation with the form 1−btn gives n = 1.01±0.47, validating this assumption.

To evaluate a systematic uncertainty, acceptance functions with n = 0.5 and

n = 1.5 are considered. Two values of ∆Γs are computed using n = 0.5 and

n = 1.5, averaged and, the final value, compared with the one calculated with

the reference acceptance. This gives a systematic uncertainty of 0.5 ns−1.

To evaluate the systematic uncertainty due to the choice of signal model, the

double sided Crystal Ball function is replaced by the sum of a Gaussian plus a

Crystal Ball for both signal and normalization modes. The value of ∆Γs shifts by

2 ns−1 which is considered as the systematic uncertainty due to the signal mass

model. To assess the impact of the background model, three different tests are

performed: replacing exponential function by a first order Chebyshev polynomial

for both channels, leaving the fraction of the Crystal Ball and Gaussian in the

B+ → J/ψπ+ and B+ → J/ψK+ component floating in the B0
s → J/ψf0 fit
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model and varying the fϕ fraction within ±1σ of its uncertainty (section 7.2.1)

in the B0
s → J/ψη′ mass model. Among the three tests, keeping the fraction

of B+ → J/ψπ+ and B+ → J/ψK+ floating produced the biggest variation:

9.1 ns−1. This value is taken as the systematic uncertainty due to the background

mass model.

Table 7.18 summarizes the systematic uncertainties used in the analysis. The

total systematic uncertainty assigned is 9.3 ns−1.

Source Value [ns−1]

Fit bias 0.3

Time acceptance function 0.5

CP -even component 0.1

CP violation 0.1

Γs 0.1

Signal mass model 2.0

Background mass model 9.1

z-scale –

Quadrature sum 9.3

Table 7.18 Systematic uncertainties on the measurement of ∆Γs. Uncertainties
less than 0.1 ns−1 are given as ”–”.

104



Chapter 8

Conclusions

In this thesis, the full LHCb Run 1 and Run 2 data set, corresponding to an

integrated luminosity of 9.0 fb−1 of proton-proton collisions, was analyzed to

measure ∆Γs using the B0
s → J/ψη′ and B0

s → J/ψf0 decays.

Particular attention was dedicated at studying and modelling the time acceptance

as well as at using time unbiased selection. The fitting method was validated with

toy studies focused on understanding and minimizing the bias on ∆Γs.

The final result is

∆Γs = (0.081± 0.011± 0.009) ps−1

where the first uncertainty is statistical and the second is systematic. The

measured value of ∆Γs is in good agreement with the HFLAV world average,

∆Γs = 0.082 ± 0.005 ps−1, and theoretical predictions which are in the range

7.7 − 9.2 ns−1. In figs. 8.1 and 8.2 the HFLAV ∆Γs versus Γs plots with the

measured ∆Γs shown as the purple band. The analysis presented here does not

measure Γs as it has limited sensitivity to its value. However, the HFLAV plot

shows a wide range for Γs. Hence, ∆Γs is represented as a tilted horizontal band

where the inclination angle is obtained by fitting ∆Γs with the maximum and

minimum values of Γs shown in the plot.

The result obtained by analyzing Run 1 and Run 2 is dominated by the statistical

uncertainty. During Run 3 and Run 4 LHCb plans to collect an integrated
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luminosity of ∼ 50 fb−1 allowing the statistical uncertainty to be reduced by

a factor of two, matching the current world average precision.

The full software trigger for Run 3 makes real time monitoring critical. Perfor-

mance measurements of the Run 2 HLTmonitoring system were computed and are

shown in chapter 5. Due to the new configuration of the HLT, a new prototype of

the HLT monitoring system using commercial software was developed and tested

as a part of the PhD program.

Unofficial

Figure 8.1 ∆Γs versus Γs (ccs) plot
1updated with the measure presented in this

work (horizontal purple band)

1This is an unofficial plot generated using the software shared by HFLAV [20]
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Unofficial

Figure 8.2 ∆Γs versus Γs plot updated with the measure presented in this work
(horizontal purple band)
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Appendix A

pT re-weighting

In order to have a better agreement between data and Monte Carlo before the

MVA training, the pT spectra of the B0
s → J/ψη′ and B0

s → J/ψf0 pT decay

samples are re-weighted. The f0 channel was used to compute the weights since

it is a larger and cleaner sample than the B0
s → J/ψη′ decay. The weights are

computed by calculating the ratio between the s-weighted data and the Monte

Carlo. The effect of the re-weighting procedure can be seen on s-weighted data

and Monte Carlo distributions before re-weighting (fig. A.1a) and after (fig. A.1b)

for the f0 channel. Figure A.2 shows the B0
s pT distributions for 2016 η′ data and

Monte Carlo.
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Figure A.1 pT
(
B0
s

)
re-weighting for the f0 channel. Figure A.1a shows 2016

data (dots) compared to out of the box 2016 simulation (histogram);
fig. A.1b shows the same comparison with the re-weighted Monte
Carlo.
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re-weighting comparison for the 2016 η′ channel. The

dots represent the s-weighted data and the histogram the re-weighted
Monte Carlo.
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Appendix B

TT occupancy shifting

The TT occupancy is larger in data than in the Monte Carlo as shown in fig. B.1.

For this reason, the data and Monte Carlo samples were aligned by applying the

shift values listed in table B.1.
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Figure B.1 TT occupancy distribution comparison between 2016 f0 Monte Carlo
(in yellow) and 2016 f0 s-weighted data (black dots). Left plot
shows the two distributions before the shift, right plot shows the
distributions after the shift.

Year TT occupancy shift

2011 + 2012 +100

2015 + 2016 +120

2017 +120

2018 +120

Table B.1 TT occupancy shift values
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Appendix C

χ2IP scaling

The calibration of the χ2
IP is performed on the B0

s → J/ψf0 sample and applied

to both samples of the analysis. To find the best calibration factor, a scan across

multiple scaling factors was performed and a χ2 test between the s-weighted data

and the calibrated Monte Carlo sample is performed. The value minimizing the χ2

is taken as the scaling factor. Figures C.1, C.2 and C.3 show the χ2
IP distributions

before and after the calibration was applied. In table C.1 the scaling factors for

Run 1 and Run 2.
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Figure C.1 χ2
IP comparison for the 2016 f0 sample. Figure C.1a shows the

Monte Carlo distribution (histogram) compared with s-weighted data
(dots) before applying the scaling, fig. C.1b after.
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Figure C.2 χ2
IP comparison for the 2017 f0 sample. Figure C.2a shows the

Monte Carlo distribution (histogram) compared with s-weighted data
(dots) before applying the scaling, fig. C.2b after.
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Figure C.3 χ2
IP comparison for the 2018 f0 sample. Figure C.3a shows the

Monte Carlo distribution (histogram) compared with s-weighted data
(dots) before applying the scaling, fig. C.3b after.

Year Scaling factor

2011 + 2012 0.95

2015 + 2016 1.09

2017 1.11

2018 1.14

Table C.1 χ2
IP calibration factors
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Appendix D

Cone Isolation

In contrast to the particles of the underlying event, B mesons are produced with

higher energy and tend to be more efficiently reconstructed at lower detector

occupancy. These features can be exploited to discriminate signal against

background, based on the kinematic and the number of particles contained inside

a cone defined around the B flight direction. In the two-dimensional space of

azimuth angle ϕ and pseudorapidity η, the cone angle can be represented by a

circle with
√

∆ϕ2 +∆η2 radius. In this analysis followed the same approach

as [96], fixing the cone radius to be 1.8. This size was chosen to minimize the

occurrence of events where only the signal final-state particles are contained inside

the cone as they carry less information. Larger cones are avoided to retain a good

signal to background separation in the asymmetry variables. This tool considers

separately charged and neutral reconstructed objects, calculates the number of

each species and (after removing signal objects) their average p, pX , pY , pZ , pT

and η values. Asymmetries are then calculated using these latter values and the

signal ones. The transverse momentum asymmetry, for instance, is defined as

ApT =
BpT

BpT +
∑

i p
i
T

, (D.1)

where B pT is the transverse momentum of the signal candidate and the index

i runs over the other particles in the cone. As shown in tables 6.8 and 6.9, five

isolation cone variables are used to help signal-background classification in the

MVA.
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D.1 Data and Monte Carlo comparison

In this section, the comparison between data and Monte Carlo distributions of

cone variables is shown. This is performed using 2016 data samples from which

clean signal of abundant B+ → J/ψK+ decays are extracted. Given the small

background contamination in the signal region, no statistical subtraction of it is

performed and only events in a region around the signal peak are retained. Signal

peaks in data and Monte Carlo are shown in fig. D.1. Global event variables such

as number of SPD hits and number of reconstructed tracks, PVs, photons and

neutral pions are compared in fig. D.2. Cone variables relevant to this analysis

are shown in fig. D.3 and fig. D.4, for charged and neutral cones separately. The

agreement in cone variables is good and is expected to improve after re-weighting

the Monte Carlo events for global event variables discrepancies.
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Figure D.1 Invariant mass distribution of selected B+ → J/ψK+ candidates in
2016 MC (left) and data (right). The right plot shows distributions
before and after offline selections which are also applied to the MC
sample.
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Figure D.2 Global event variables for B+ → J/ψK+ candidates in data (red)
and MC (blue).
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Figure D.3 Charged cone variables for B+ → J/ψK+ candidates in data (red)
and MC (blue).
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Figure D.4 Neutral cone variables for B+ → J/ψK+ candidates in data (red)
and MC (blue).
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Appendix E

MVA

E.1 Classifiers

Among the classifiers supported by TMVA, the BDT, BDTG and MLP were

tested. In fig. E.1 the ROC curve of the three classifiers is shown. The integral

of the three curves is close to one highlighting the good performance of three

algorithms. Looking at the signal-background separation plots in fig. E.2, the

BDT shows worse performance. Therefore, only the MLP and BDTG classifiers

are considered further. Both classifiers show compatible performances in terms of

the ROC curve. However, the BDTG is much faster to train. This characteristic

is very helpful at the optimization stage where the classifier has to be trained

multiple times in order to tune its parameters and the training variables. For

this reason, the BDTG was chosen as default algorithm for both channels.
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Figure E.1 ROC curve for the three classifiers.
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Figure E.2 Signal-background separation between MLP (fig. E.2a), BDT
(fig. E.2b) and BDTG (fig. E.2c).

E.2 Input Variables

E.2.1 B0
s → J/ψη′

Table E.1 summarizes the MVA input variables and figs. E.3, E.4, E.5 and E.6

compare the variables between signal and background samples used for training.

An additional check on the agreement between data and Monte Carlo training

variables was performed using s-weighted data and it is shown in figs. E.7, E.8,

E.9 and E.10. The output of the classifier for each MVA and the ROC curves are

shown in figs. E.11, E.12, E.13 and E.14.

118



Variable name Description

bs rec eta B0
s pseudorapidity

bs rec chi2 Quality of the B0
s DTF fit

tmva bs pt B0
s transverse momentum

tmva min pion pt Minimum of the pions transverse momentum

tmva max mu ghost Maximum of the muons ghost probability

tmva min mu pt Minimum of the muons transverse momentum

tmva isolation cone Average of the B0
s - cone difference in eta

tmva bs cc mult Number of objects in the cone

tmva bs cc asy pz Z components of the momentum asymmetry

tmva bs cc vpt Vector-summed PT of the objects inside the cone

tmva bs cc delta phi Difference in phi between the B0
s and the cone

tmva gamma cl Confidence level of the photon

tmva gamma pt Transverse momentum of the photon

tmva cos hel pion Cosine of the helicity of the pions

tmva etap pt η′ transverse momentum

tmva bs ipchi2 ownpv Quality of the B0
s fit

tmva ntt clusters TT occupancy

tmva pi0 r π0 veto

Table E.1 Training variable names for the B0
s → J/ψη′ MVA.
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Figure E.3 MVA input variables to the η′ channel - 2012 data set.
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Figure E.4 MVA input variables to the η′ channel - 2016 data set.
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Figure E.5 MVA input variables to the η′ channel - 2017 data set.
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Figure E.6 MVA input variables to the η′ channel - 2018 data set.
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Figure E.7 2012 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the η′ channel.
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Figure E.8 2016 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the η′ channel.
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Figure E.9 2017 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the η′ channel.
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Figure E.10 2018 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the η′ channel.
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Figure E.11 Signal-background separation and ROC curve for the 2012 B0
s →

J/ψη′ MVA.
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Figure E.12 Signal-background separation and ROC curve for the 2016 B0
s →

J/ψη′ MVA.

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

BDTG response

0

2

4

6

8

10

12

14

d
x

 / 
(1

/N
) 

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.132 (0.959)

U
/O

-f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: BDTG

(a) Signal-background separation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
c
k
g

ro
u

n
d

 r
e
je

c
ti

o
n

MVA Method:

BDTG

Background rejection versus Signal efficiency

(b) ROC curve

Figure E.13 Signal-background separation and ROC curve for the 2017 B0
s →

J/ψη′ MVA.
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Figure E.14 Signal-background separation and ROC curve for the 2018 B0
s →

J/ψη′ MVA.

E.2.2 B0
s → J/ψf0

Table E.2 summarizes the MVA input variables and figs. E.15, E.16, E.17 and E.18

compare the variables between signal and background samples used for training.

An additional check on the agreement between data and Monte Carlo training

variables was performed using s-weighted data and it is shown in figs. E.19, E.20,

E.21 and E.22. The output of the classifier for each MVA and the ROC curves

are shown in figs. E.23, E.24, E.25 and E.26.
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Variable name Description

Bs eta B0
s pseudorapidity

Bs chi2ndof Quality of the B0
s DTF fit

Bs pt B0
s transverse momentum

minpi pt Minimum of the pions transverse momentum

max mu ghost Maximum of the muons ghost probability

minmu pt Minimum of the muons transverse momentum

cone Average of the B0
s - cone difference in eta

Bs 1 80 mult Number of objects in the cone

Bs 1 80 asy PZ Z components of the momentum asymmetry

Bs 1 80 vPT Vector-summed PT of the objects inside the cone

Bs 1 80 dphi Difference in phi between the B0
s and the cone

Bs 1 80 IT Transverse isolation of the B0
s in the cone

Bs IPCHI2 OWNPV Quality of the B0
s fit

TT TT occupancy

Table E.2 Training variable names for the B0
s → J/ψf0 MVA.
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Figure E.15 MVA input variables to the f0 channel - 2012 data set.
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Figure E.16 MVA input variables to the f0 channel - 2016 data set.
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Figure E.17 MVA input variables to the f0 channel - 2012 data set.
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Figure E.18 MVA input variables to the f0 channel - 2018 data set.
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Figure E.19 2012 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the f0 channel.
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Figure E.20 2016 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the f0 channel.
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Figure E.21 2017 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the f0 channel.
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Figure E.22 2018 s-weighted data (dots) and Monte Carlo (histogram) training
variable comparison for the f0 channel.
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(a) Signal-background separation (b) ROC curve

Figure E.23 Signal-background separation and ROC curve for the 2012 B0
s →

J/ψf0 MVA.

(a) Signal-background separation (b) ROC curve

Figure E.24 Signal-background separation and ROC curve for the 2016 B0
s →

J/ψf0 MVA.

(a) Signal-background separation (b) ROC curve

Figure E.25 Signal-background separation and ROC curve for the 2017 B0
s →

J/ψf0 MVA.

139



(a) Signal-background separation (b) ROC curve

Figure E.26 Signal-background separation and ROC curve for the 2018 B0
s →

J/ψf0 MVA.
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Appendix F

PDFs used in the analysis

F.1 Double-Sided Crystal Ball

The DSCB function is a Gaussian distribution with power law tails. Its shape is

controlled by 6 variables:

• µ: central value

• σ: width

• αL,R: defines the transition point from the Gaussian core to the power law

trail on the left and right sides.

• nL,R: exponential for the power law trail.

It has the functional form:

f(m) =


AL · (BL − m−µ

σ
)−nL , m−µ

σ
< −αL

exp(−1
2
· [m−µ

σ
]2), − αL <

m−µ
σ

< αR

AR · (BR + m−µ
σ

)−nR , otherwise

, (F.1)

where:
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Ai = (
ni
|αi|

)ni · exp(−|αi|2

2
),

Bi =
ni
|αi|

− |αi|.
(F.2)

F.2 Bifurcated Gaussian

The Bifurcated Gaussian function is a Gaussian with different sigmas left and

right of the peak. It is defined as:

f(x) =

A exp
(
− (x−µ)2

2σ2
1

)
x < µ

A exp
(
− (x−µ)2

2σ2
2

)
otherwise,

(F.3)

where

A =
√

2/π (σ1 + σ2)
−1 . (F.4)
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Appendix G

Binned fit

In the simultaneous fit, the σ of the B0
s is left free and it is shared across all decay

time bins assuming this parameter does not have any decay time dependence.

This hypothesis was checked on the 2016 B0
s → J/ψη′ simulation by checking the

value of σ in bins of lifetime. The binning scheme adopted is the one chosen for

the analysis (table 7.1).

Bin σ [MeV/c2]

1 9.06± 0.34

2 8.61± 0.56

3 8.31± 0.35

4 8.58± 0.53

5 9.44± 0.30

6 9.18± 0.33

7 9.21± 0.33

8 9.15± 0.38

Table G.1 Values of σ in bins of decay time for the 2016 η′ sample.

As shown in table G.1 and in fig. G.1, the value of σ agrees across all decay time

bins. The fit to a constant returned a χ2/ndof = 1.14 and the prob (χ2) = 0.33.
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Figure G.1 Values of σ in bins of decay time for the 2016 η′ sample with a fit
to a constant.

G.1 B0
s → J/ψη′

In tables G.2, G.3, G.4 and G.5 the simultaneous fit results are listed while in

figs. G.2, G.3, G.4 and G.5 the mass fit in each time bin for each year are shown.
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Figure G.2 Fit to the eight time bins described in table 7.1 for the 2011-2012
η′ data set. The fit to the model described in the text is shown in
red. The pull distributions are shown below the plot.
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Figure G.3 Fit to the eight time bins described in table 7.1 for the 2015-2016
η′ data set. The fit to the model described in the text is shown in
red. The pull distributions are shown below the plot.
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Figure G.4 Fit to the eight time bins described in table 7.1 for the 2017 η′ data
set. The fit to the model described in the text is shown in red. The
pull distributions are shown below the plot.
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Figure G.5 Fit to the eight time bins described in table 7.1 for the 2018 η′ data
set. The fit to the model described in the text is shown in red. The
pull distributions are shown below the plot.
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Parameter Value

α (9.79± 0.30)× 10−1

∆mB0
s−B0 (8.72± 0.16) MeV/c2

Comb-bkg yield1 (1.32± 0.04)× 103

Comb-bkg yield2 (1.16± 0.04)× 103

Comb-bkg yield3 (6.14± 0.35)× 102

Comb-bkg yield4 (3.44± 0.25)× 102

Comb-bkg yield5 (3.11± 0.24)× 102

Comb-bkg yield6 (1.59± 0.17)× 102

Comb-bkg yield7 (1.45± 0.17)× 102

Comb-bkg yield8 (9.93± 1.42)× 101

µB0
s

(5.36690± 0.00004)× 103 MeV/c2

σB0
s

(10.74± 0.043) MeV/c2

B0
s yield1 (1.71± 0.21)× 102

B0
s yield2 (1.67± 0.19)× 102

B0
s yield3 (2.17± 0.19)× 102

B0
s yield4 (1.53± 0.16)× 102

B0
s yield5 (2.08± 0.18)× 102

B0
s yield6 (1.63± 0.48)× 102

B0
s yield7 (1.74± 0.52)× 102

B0
s yield8 (1.83± 0.48)× 102

B0 fraction yield1 (5.6± 10.4)× 10−2

B0 fraction yield2 (2.24± 0.90)× 10−1

B0 fraction yield3 (1.15± 0.65)× 10−1

B0 fraction yield4 (1.50± 0.76)× 10−1

B0 fraction yield5 (1.14± 0.53)× 10−1

B0 fraction yield6 (5.30± 4.60)× 10−2

B0 fraction yield7 (5.65± 4.40)× 10−2

B0 fraction yield8 (1.10± 0.44)× 10−1

Exp coeff1 (−3.68± 0.35)× 10−3

Exp coeff2 (−3.34± 0.49)× 10−3

Exp coeff3 (−5.18± 0.54)× 10−3

Exp coeff4 (−4.48± 0.70)× 10−3

Exp coeff5 (−4.91± 0.75)× 10−3

Exp coeff6 (−6.74± 0.11)× 10−3

Exp coeff7 (−6.32± 11.4)× 10−3

Exp coeff8 (−8.00± 16.7)× 10−3

Table G.2 Simultaneous fit result for the 2011-2012 B0
s → J/ψη′ channel.
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Parameter Value

α (9.73± 0.30)× 10−1

∆mB0
s−B0 (8.72± 0.16) MeV/c2

Comb-bkg yield1 (2.45± 0.06)× 103

Comb-bkg yield2 (1.16± 0.04)× 103

Comb-bkg yield3 (9.63± 0.40)× 102

Comb-bkg yield4 (5.99± 0.32)× 102

Comb-bkg yield5 (4.98± 0.30)× 102

Comb-bkg yield6 (2.50± 0.22)× 102

Comb-bkg yield7 (2.07± 0.20)× 102

Comb-bkg yield8 (1.36± 0.18)× 102

µB0
s

(5.36700± 0.00004)× 103 MeV/c2

σB0
s

(11.47± 0.043) MeV/c2

B0
s yield1 (2.65± 0.29)× 102

B0
s yield2 (2.30± 0.23)× 102

B0
s yield3 (2.89± 0.23)× 102

B0
s yield4 (2.25± 0.20)× 102

B0
s yield5 (3.20± 0.21)× 102

B0
s yield6 (1.95± 0.17)× 102

B0
s yield7 (2.68± 0.18)× 102

B0
s yield8 (2.47± 0.17)× 102

B0 fraction yield1 (2.0± 10.8)× 10−2

B0 fraction yield2 (1.62± 0.82)× 10−1

B0 fraction yield3 (1.09± 0.60)× 10−1

B0 fraction yield4 (3.39± 5.97)× 10−2

B0 fraction yield5 (1.03± 0.43)× 10−1

B0 fraction yield6 (1.60± 0.56)× 10−1

B0 fraction yield7 (9.03± 3.85)× 10−2

B0 fraction yield8 (1.42± 0.40)× 10−1

Exp coeff1 (−2.84± 0.25)× 10−4

Exp coeff2 (−2.62± 0.36)× 10−4

Exp coeff3 (−3.99± 0.41)× 10−4

Exp coeff4 (−3.99± 0.52)× 10−4

Exp coeff5 (−5.40± 0.60)× 10−4

Exp coeff6 (−3.53± 0.82)× 10−4

Exp coeff7 (−8.09± 0.11)× 10−4

Exp coeff8 (−7.74± 0.13)× 10−4

Table G.3 Simultaneous fit result for the 2015-2016 B0
s → J/ψη′ channel.
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Parameter Value

α (9.71± 0.30)× 10−1

∆mB0
s−B0 (8.72± 0.16) MeV/c2

Comb-bkg yield1 (1.95± 0.06)× 103

Comb-bkg yield2 (1.01± 0.04)× 103

Comb-bkg yield3 (7.97± 0.36)× 102

Comb-bkg yield4 (4.48± 0.27)× 102

Comb-bkg yield5 (3.71± 0.26)× 102

Comb-bkg yield6 (2.10± 0.19)× 102

Comb-bkg yield7 (2.19± 0.20)× 102

Comb-bkg yield8 (1.59± 0.17)× 102

µB0
s

(5.36720± 0.00004)× 103 MeV/c2

σB0
s

(10.26± 0.04) MeV/c2

B0
s yield1 (2.54± 0.26)× 102

B0
s yield2 (1.63± 0.20)× 102

B0
s yield3 (2.69± 0.21)× 102

B0
s yield4 (2.08± 0.18)× 102

B0
s yield5 (2.56± 0.19)× 102

B0
s yield6 (1.78± 0.15)× 102

B0
s yield7 (2.13± 0.17)× 102

B0
s yield8 (1.95± 0.16)× 102

B0 fraction yield1 (8.51± 8.45)× 10−2

B0 fraction yield2 (1.18± 0.99)× 10−1

B0 fraction yield3 (1.48± 0.59)× 10−1

B0 fraction yield4 (1.88± 0.60)× 10−1

B0 fraction yield5 (1.33± 0.48)× 10−1

B0 fraction yield6 (1.39± 0.53)× 10−1

B0 fraction yield7 (1.21± 0.46)× 10−1

B0 fraction yield8 (5.27± 4.02)× 10−2

Exp coeff1 (−2.91± 0.28)× 10−3

Exp coeff2 (−3.60± 0.39)× 10−3

Exp coeff3 (−4.82± 0.46)× 10−3

Exp coeff4 (−3.87± 0.60)× 10−3

Exp coeff5 (−6.67± 0.73)× 10−3

Exp coeff6 (−6.17± 0.95)× 10−3

Exp coeff7 (−7.68± 1.01)× 10−3

Exp coeff8 (−7.15± 1.18)× 10−3

Table G.4 Simultaneous fit result for the 2017 B0
s → J/ψη′ channel.
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Parameter Value

α (9.73± 0.30)× 10−1

∆mB0
s−B0 (8.72± 0.16) MeV/c2

Comb-bkg yield1 (2.28± 0.06)× 103

Comb-bkg yield2 (1.20± 0.04)× 103

Comb-bkg yield3 (9.39± 0.40)× 102

Comb-bkg yield4 (5.68± 0.31)× 102

Comb-bkg yield5 (5.27± 0.30)× 102

Comb-bkg yield6 (3.01± 0.23)× 102

Comb-bkg yield7 (2.57± 0.22)× 102

Comb-bkg yield8 (1.53± 0.18)× 102

µB0
s

(5.36740± 0.00003)× 103 MeV/c2

σB0
s

(10.59± 0.04) MeV/c2

B0
s yield1 (2.90± 0.28)× 102

B0
s yield2 (2.18± 0.22)× 102

B0
s yield3 (3.16± 0.24)× 102

B0
s yield4 (2.60± 0.20)× 102

B0
s yield5 (3.30± 0.22)× 102

B0
s yield6 (2.16± 0.18)× 102

B0
s yield7 (2.69± 0.19)× 102

B0
s yield8 (2.73± 0.18)× 102

B0 fraction yield1 (2.81± 7.84)× 10−2

B0 fraction yield2 (0.00± 3.14)× 10−2

B0 fraction yield3 (9.06± 5.34)× 10−2

B0 fraction yield4 (6.87± 5.02)× 10−2

B0 fraction yield5 (5.04± 3.87)× 10−2

B0 fraction yield6 (7.95± 4.61)× 10−2

B0 fraction yield7 (7.18± 3.77)× 10−2

B0 fraction yield8 (1.14± 0.36)× 10−1

Exp coeff1 (−3.64± 0.26)× 10−3

Exp coeff2 (−3.67± 0.36)× 10−3

Exp coeff3 (−3.95± 0.42)× 10−3

Exp coeff4 (−4.78± 0.55)× 10−3

Exp coeff5 (−5.76± 0.59)× 10−3

Exp coeff6 (−5.33± 0.77)× 10−3

Exp coeff7 (−5.60± 0.85)× 10−3

Exp coeff8 (−8.12± 1.29)× 10−3

Table G.5 Simultaneous fit result for the 2018 B0
s → J/ψη′ channel.
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G.2 B0
s → J/ψf0

In tables G.6, G.7, G.8 and G.9 the simultaneous fit results are listed while in

figs. G.6, G.7, G.8 and G.9 the mass fit in each time bin for each year are shown.
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Figure G.6 Fit to the eight time bins described in table 7.1 for the 2011-2012
f0 data set. The fit to the model described in the text is shown in
red. The pull distributions are shown below the plot.
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Figure G.7 Fit to the eight time bins described in table 7.1 for the 2015-2016
f0 data set. The fit to the model described in the text is shown in
red. The pull distributions are shown below the plot.
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Figure G.8 Fit to the eight time bins described in table 7.1 for the 2017 f0 data
set. The fit to the model described in the text is shown in red. The
pull distributions are shown below the plot.
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Figure G.9 Fit to the eight time bins described in table 7.1 for the 2018 f0 data
set. The fit to the model described in the text is shown in red. The
pull distributions are shown below the plot.
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Parameter Value

α (9.70± 0.30)× 10−1

∆mB0
s−B0 (87.15± 0.15) MeV/c2

Comb-bkg yield0 (2.36± 0.03)× 104

Comb-bkg yield1 (8.5978e+ 03± 0.19)× 103

Comb-bkg yield2 (4.87± 0.15)× 103

Comb-bkg yield3 (1.73± 0.10)× 103

Comb-bkg yield4 (1.09± 0.09)× 103

Comb-bkg yield5 (3.87± 0.36)× 102

Comb-bkg yield6 (2.06± 0.42)× 102

Comb-bkg yield7 59.3± 18.8

B+ yield0 (3.89± 2.26)× 102

B+ yield1 (1.53± 1.43)× 102

B+ yield2 (3.03± 1.08)× 102

B+ yield3 (2.44± 0.71)× 102

B+ yield4 (2.85± 0.65)× 102

B+ yield5 (1.98± 0.37)× 102

B+ yield6 (1.57± 0.20)× 102

B+ yield7 (1.10± 0.12)× 102

µB0
s

(5.3666± 0.0001)× 103 MeV/c2

σB0
s

(8.55± 0.12) MeV/c2

B0
s yield0 (1.07± 0.06)× 103

B0
s yield1 (9.08± 0.47)× 102

B0
s yield2 (1.28± 0.05)× 103

B0
s yield3 (1.03± 0.04)× 103

B0
s yield4 (1.32± 0.04)× 103

B0
s yield5 (9.64± 0.36)× 102

B0
s yield6 (1.30± 0.03)× 103

B0
s yield7 (1.37± 0.04)× 103

B0 fraction yield0 (2.31± 0.54)× 10−1

B0 fraction yield1 (1.80± 0.41)× 10−1

B0 fraction yield2 (1.74± 0.25)× 10−1

B0 fraction yield3 (1.91± 0.23)× 10−1

B0 fraction yield4 (1.56± 0.17)× 10−1

B0 fraction yield5 (1.26± 0.16)× 10−1

B0 fraction yield6 (1.43± 0.14)× 10−1

B0 fraction yield7 (1.70± 0.14)× 10−1

Exp coeff0 (−2.03± 0.08)× 10−3 (MeV/c2)
−1

Exp coeff1 (−2.36± 0.14)× 10−3 (MeV/c2)
−1

Exp coeff2 (−2.93± 0.20)× 10−3 (MeV/c2)
−1

Exp coeff3 (−3.86± 0.40)× 10−3 (MeV/c2)
−1

Exp coeff4 (−4.67± 0.65)× 10−3 (MeV/c2)
−1

Exp coeff5 (−6.52± 0.78)× 10−3 (MeV/c2)
−1

Exp coeff6 (−1.41± 0.39)× 10−2 (MeV/c2)
−1

Exp coeff7 (−3.39± 1.34)× 10−2 (MeV/c2)
−1

Table G.6 Simultaneous fit result for the 2012 B0
s → J/ψf0 channel.
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Parameter Value
α (9.74± 0.25)× 10−1

∆mB0
s−B0 (87.25± 0.15) MeV/c2

Comb-bkg yield0 (5.80± 0.05)× 104

Comb-bkg yield1 (2.02± 0.03)× 104

Comb-bkg yield2 (1.14± 0.02)× 104

Comb-bkg yield3 (4.21± 0.14)× 103

Comb-bkg yield4 (2.51± 0.12)× 103

Comb-bkg yield5 (7.86± 0.90)× 102

Comb-bkg yield6 (2.80± 0.52)× 102

Comb-bkg yield7 (2.16± 0.55)× 102

B+ yield0 (3.15± 3.61)× 102

B+ yield1 (4.76± 2.11)× 102

B+ yield2 (6.07± 1.66)× 102

B+ yield3 (5.27± 1.06)× 102

B+ yield4 (5.04± 0.88)× 102

B+ yield5 (3.56± 0.65)× 102

B+ yield6 (4.00± 0.27)× 102

B+ yield7 (1.19± 0.36)× 102

µB0
s

(5.3670± 0.0001)× 103 MeV/c2

σB0
s

(8.83± 0.10) MeV/c2

B0
s yield0 (1.69± 0.09)× 103

B0
s yield1 (1.43± 0.06)× 103

B0
s yield2 (1.75± 0.06)× 103

B0
s yield3 (1.45± 0.04)× 103

B0
s yield4 (1.93± 0.05)× 103

B0
s yield5 (1.51± 0.04)× 103

B0
s yield6 (1.91± 0.04)× 103

B0
S yield7 (2.09± 0.04)× 103

B0 fraction yield0 (2.26± 0.53)× 10−1

B0 fraction yield1 (2.01± 0.39)× 10−1

B0 fraction yield2 (1.66± 0.25)× 10−1

B0 fraction yield3 (1.94± 0.22)× 10−1

B0 fraction yield4 (1.91± 0.16)× 10−1

B0 fraction yield5 (1.66± 0.15)× 10−1

B0 fraction yield6 (1.78± 0.13)× 10−1

B0 fraction yield7 (1.35± 0.10)× 10−1

Exp coeff0 (−2.00± 0.05)× 10−3 (MeV/c2)
−1

Exp coeff1 (−2.26± 0.09)× 10−3 (MeV/c2)
−1

Exp coeff2 (−2.66± 0.13)× 10−3 (MeV/c2)
−1

Exp coeff3 (−3.16± 0.23)× 10−3 (MeV/c2)
−1

Exp coeff4 (−3.74± 0.34)× 10−3 (MeV/c2)
−1

Exp coeff5 (−5.70± 0.10)× 10−3 (MeV/c2)
−1

Exp coeff6 (−1.54± 0.40)× 10−2 (MeV/c2)
−1

Exp coeff7 (−3.61± 0.16)× 10−3 (MeV/c2)
−1

Table G.7 Simultaneous fit result for the 2016 B0
s → J/ψf0 channel.

158



Parameter Value

α (9.83± 0.25)× 10−1

∆mB0
s−B0 (87.20± 0.01) MeV/c2

Comb-bkg yield0 (3.88± 0.03)× 104

Comb-bkg yield1 (1.36± 0.02)× 104

Comb-bkg yield2 (7.44± 0.18)× 103

Comb-bkg yield3 (2.81± 0.12)× 103

Comb-bkg yield4 (1.80± 0.10)× 103

Comb-bkg yield5 (6.07± 0.70)× 102

Comb-bkg yield6 (1.91± 0.46)× 102

Comb-bkg yield7 (2.10± 1.25)× 101

B+ yield0 (9.79± 24.0)× 101

B+ yield1 (2.07± 1.47)× 102

B+ yield2 (5.97± 1.34)× 102

B+ yield3 (4.11± 0.90)× 102

B+ yield4 (4.85± 0.77)× 102

B+ yield5 (2.13± 0.50)× 102

B+ yield6 (2.51± 0.25)× 102

B+ yield7 (1.58± 0.14)× 102

µB0
s

(5.36695± 0.0001)× 103 MeV/c2

σB0
s

(8.63± 0.10) MeV/c2

B0
s yield0 (1.43± 0.02)× 103

B0
s yield1 (1.21± 0.01)× 103

B0
s yield2 (1.55± 0.01)× 103

B0
s yield3 (1.25± 0.01)× 103

B0
s yield4 (1.62± 0.01)× 103

B0
s yield5 (1.30± 0.01)× 103

B0
s yield6 (1.68± 0.01)× 103

B0
S yield7 (1.83± 0.01)× 103

B0 fraction yield0 (2.63± 0.52)× 10−1

B0 fraction yield1 (1.38± 0.37)× 10−1

B0 fraction yield2 (1.64± 0.24)× 10−1

B0 fraction yield3 (1.94± 0.22)× 10−1

B0 fraction yield4 (1.73± 0.16)× 10−1

B0 fraction yield5 (1.64± 0.16)× 10−1

B0 fraction yield6 (1.63± 0.13)× 10−1

B0 fraction yield7 (1.47± 0.10)× 10−1

Exp coeff0 (−2.11± 0.06)× 10−3 (MeV/c2)
−1

Exp coeff1 (−2.48± 0.11)× 10−3 (MeV/c2)
−1

Exp coeff2 (−2.89± 0.16)× 10−3 (MeV/c2)
−1

Exp coeff3 (−3.37± 0.30)× 10−3 (MeV/c2)
−1

Exp coeff4 (−4.09± 0.43)× 10−3 (MeV/c2)
−1

Exp coeff5 (−4.71± 0.90)× 10−3 (MeV/c2)
−1

Exp coeff6 (−1.13± 0.34)× 10−2 (MeV/c2)
−1

Exp coeff7 (−1.13± 1.03)× 10−1 (MeV/c2)
−1

Table G.8 Simultaneous fit result for the 2017 B0
s → J/ψf0 channel
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Parameter Value
α (9.67± 0.14)× 10−1

∆mB0
s−B0 (87.15± 0.15) MeV/c2

Comb-bkg yield0 (4.38± 0.04)× 104

Comb-bkg yield1 (1.51± 0.02)× 104

Comb-bkg yield2 (8.72± 0.18)× 103

Comb-bkg yield3 (3.08± 0.12)× 103

Comb-bkg yield4 (1.88± 0.11)× 103

Comb-bkg yield5 (4.89± 0.74)× 102

Comb-bkg yield6 (2.73± 0.59)× 102

Comb-bkg yield7 (1.67± 1.06)× 101

B+ yield0 (2.27± 2.75)× 102

B+ yield1 (5.33± 1.73)× 102

B+ yield2 (2.60± 1.33)× 102

B+ yield3 (4.57± 0.89)× 102

B+ yield4 (4.44± 0.82)× 102

B+ yield5 (3.21± 0.51)× 102

B+ yield6 (2.51± 0.34)× 102

B+ yield7 (1.21± 0.13)× 102

µB0
s

(5.36696± 0.0001)× 103 MeV/c2

σB0
s

(8.71± 0.09) MeV/c2

B0
s yield0 (1.56± 0.02)× 103

B0
s yield1 (1.41± 0.01)× 103

B0
s yield2 (1.77± 0.01)× 103

B0
s yield3 (1.54± 0.01)× 103

B0
s yield4 (2.06± 0.01)× 103

B0
s yield5 (1.53± 0.01)× 103

B0
s yield6 (1.93± 0.01)× 103

B0
S yield7 (2.17± 0.01)× 103

B0 fraction yield0 (1.84± 0.48)× 10−1

B0 fraction yield1 (2.03± 0.33)× 10−1

B0 fraction yield2 (2.40± 0.24)× 10−1

B0 fraction yield3 (1.97± 0.20)× 10−1

B0 fraction yield4 (1.85± 0.14)× 10−1

B0 fraction yield5 (1.62± 0.14)× 10−1

B0 fraction yield6 (1.58± 0.12)× 10−1

B0 fraction yield7 (1.37± 0.89)× 10−1

Exp coeff0 (−2.13± 0.05)× 10−3 (MeV/c2)
−1

Exp coeff1 (−2.37± 0.10)× 10−3 (MeV/c2)
−1

Exp coeff2 (−2.59± 0.13)× 10−3 (MeV/c2)
−1

Exp coeff3 (−3.83± 0.28)× 10−3 (MeV/c2)
−1

Exp coeff4 (−4.00± 0.43)× 10−3 (MeV/c2)
−1

Exp coeff5 (−7.12± 1.55)× 10−3 (MeV/c2)
−1

Exp coeff6 (−1.02± 0.29)× 10−2 (MeV/c2)
−1

Exp coeff7 (−1.23± 0.01)× 10−1 (MeV/c2)
−1

Table G.9 Simultaneous fit result for the 2018 B0
s → J/ψf0 channel.
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Appendix H

DLS cuts

At trigger and stripping level, the J/ψ is required to be detached by applying a

DLS cut. Since data and Monte Carlo are not perfectly aligned, additional studies

are required in order to have a better agreement between data and simulation.

This study was performed with the B+ → J/ψK+ decay using similar selection

cuts. The pT cut on the K+ is slightly tighter than the one applied on the η′

(2.1 GeV vs 2.0 GeV) but this is not expected to have an impact on the final

result. This study is needed since there is a misalignment between data and

Monte Carlo DLS cuts. In addition, the data and Monte Carlo agreement of the

primary and secondary vertex resolution is not perfect due to the simplifications

in the simulations and the effects of VELO misalignment.

To find the optimal DLS value, a scan with multiple DLS cuts was performed

and a χ2 test between data and Monte Carlo was plotted for each year. The DLS

value minimizing the χ2 test was used in the analysis. The full list of DLS cuts

is shown in table H.1.

Year J/ψ DLS cut [σ]

2012 3.0

2016 3.45

2017 3.1

2018 3.2

Table H.1 Effective J/ψ DLS cuts for each year.
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(a) (b)

Figure H.1 Data and Monte Carlo comparison for the optimal 2016 DLS cut.
Figure H.1a shows the DLS scan, fig. H.1b shows data and Monte
Carlo comparison for the optimal DLS cut.

(a) (b)

Figure H.2 Data and Monte Carlo comparison for the optimal 2017 DLS cut.
Figure H.2a shows the DLS scan, fig. H.2b shows data and Monte
Carlo comparison for the optimal DLS cut.
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(a) (b)

Figure H.3 Data and Monte Carlo comparison for the optimal 2018 DLS cut.
Figure H.3a shows the DLS scan, fig. H.3b shows data and Monte
Carlo comparison for the optimal DLS cut.
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Appendix I

Time resolution in bins of decay

time

The time resolution is estimated in the simulation from the distribution of the

difference between the reconstructed decay time and the real Monte Carlo decay

time. This is well described by a triple Gaussian model. The distribution and

the fit are shown in fig. I.1. Even if the unbinned time resolution was much

smaller than the bin sizes, the time resolution was also computed in each bin as

an additional check. In fig. I.2 the fit for each time bin. As shown in table I.2,

the time resolution in each bin is much smaller than the bin width. This assures

the chosen binning scheme works fine with the decays used in this analysis.
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Figure I.1 Time resolution computed on 2016 η′ Monte Carlo sample.
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(a) Bin 1
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(c) Bin 3
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(d) Bin 4
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(e) Bin 5
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(f) Bin 6
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(g) Bin 7
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(h) Bin 8

Figure I.2 Time resolution fit in bin of reconstructed time for the 2016 η′.
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Bin µ [ps]× 10−4 σ1 [ps]× 10−2 σ2 [ps]× 10−2 σ3 [ps]× 10−2 frac1 × 10−1 frac2 × 10−1

1 −5.88± 6.40 1.66± 1.04 3.86± 0.097 1.05± 6.85 2.39± 3.35 7.61± 5.34

2 5.96± 5.82 2.14± 0.26 6.62± 1.74 3.73± 0.52 4.24± 1.67 5.49± 7.24

3 −3.72± 5.49 1.67± 0.24 3.98± 0.13 1.11± 5.11 2.44± 0.95 7.56± 0.63

4 −2.11± 5.89 2.44± 0.24 4.52± 0.85 9.73± 7.59 6.20± 1.66 3.55± 1.41

5 17.6± 1.10 1.95± 0.02 4.28± 0.02 3.07± 5.80 3.55± 0.06 6.44± 1.80

6 −3.61± 6.90 1.75± 0.91 4.12± 0.07 1.01± 8.88 2.27± 3.16 7.72± 0.25

7 4.74± 5.78 2.45± 0.22 4.52± 0.36 10.0± 6.60 5.10± 1.14 4.65± 1.10

8 −0.99± 6.31 2.59± 0.89 5.26± 0.26 1.07± 5.57 4.97± 0.91 5.03± 1.21

Unbinned 0.28± 2.05 1.71± 0.20 3.21± 0.17 6.44± 0.34 1.34± 6.26 7.25± 0.41

Table I.1 Time resolution fit results from 2016 η′ Monte Carlo.

Bin Time resolution [fs]

1 34

2 36

3 36

4 36

5 36

6 37

7 39

8 41

Unbinned 37

Table I.2 Time resolution calculated from 2016 η′ Monte Carlo.
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Appendix J

Time acceptance

The time acceptance plots described in section 7.3 and not shown in the main

text are listed below. They are split by decay channel and by type of acceptance.
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Figure J.1 2012, 2017 and 2018 DLS acceptance for the η′ channel. The red
dashed line highlights the reconstructed decay time cut applied.
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J.1.2 VELO
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Figure J.2 2012, 2017 and 2018 VELO acceptance for the η′ channel.
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J.1.3 MVA
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Figure J.3 2012, 2017 and 2018 MVA acceptance for the η′ channel.
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J.2 B0
s → J/ψf0
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Figure J.4 2012, 2017 and 2018 DLS acceptance for the f0 channel. The red
dashed line highlights the reconstructed decay time cut applied.
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J.2.2 VELO
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Figure J.5 2012, 2017 and 2018 VELO acceptance for the f0 channel.
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J.2.3 MVA
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Figure J.6 2012, 2017 and 2018 MVA acceptance for the f0 channel.
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J.2.4 Global acceptance fit

To better understand the systematic uncertainty the global acceptance fit

would introduce into the ∆Γs measurement, the fit function was changed to

Afit = (1− bt1.5) e−t/τMC and Afit = (1− bt0.5) e−t/τMC . The fits for both functions

and channels are shown in figs. J.7, J.8, J.9 and J.10.

(a) 2011-2012 (b) 2015-2016

(c) 2017 (d) 2018

Figure J.7 Time acceptance fits for the B0
s → J/ψη′ channel with

Afit =
(
1− bt1.5

)
e−t/τMC.
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(d) 2018

Figure J.8 Time acceptance fits for the B0
s → J/ψη′ channel with

Afit =
(
1− bt0.5

)
e−t/τMC

.

176



(a) 2011-2012 (b) 2015-2016

(c) 2017 (d) 2018

Figure J.9 Time acceptance fits for the B0
s → J/ψf0 channel with

Afit =
(
1− bt1.5

)
e−t/τMC

.
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(a) 2011-2012 (b) 2015-2016

(c) 2017 (d) 2018

Figure J.10 Time acceptance fits for the B0
s → J/ψf0 channel with

Afit =
(
1− bt0.5

)
e−t/τMC.
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