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Abstract

In these lectures we review the basic structure of Poincaré gauge
theory of gravity, with emphasis on its fundamental principles and
geometric interpretation. A specific limit of this theory, defined by the
teleparallel geometry of spacetime, is discussed as a viable alternative
for the description of macroscopic gravitational phenomena.

Introduction

Despite its successes in describing macroscopic gravitational phenomena,
Einstein’s general relativity (GR) still lacks the status of a fundamental mi-
croscopic theory, because of the problem of quantization and the existence
of singular solutions under very general assumptions. Among various at-
tempts to overcome these difficulties, gauge theories of gravity are especially
attractive, as the concept of gauge symmetry has been very successful in the
foundation of other fundamental interactions. The importance of Poincaré
symmetry in particle physics leads one to consider Poincaré gauge theory
as a natural framework for description of the gravitational phenomena.
The principle of equivalence implies that Einstein’s GR is invariant un-
der local Poincaré transformations. Instead of thinking of local Poincaré
symmetry as derived from the principle of equivalence, the whole idea can
be reversed, in accordance with the usual philosophy of gauge theories.
When gravitational field is absent, it has become clear from a host of ex-
periments that the underlying spacetime symmetry of fundamental interac-
tions is given by the global (rigid) Poincaré group. If we now want to make
a physical theory invariant under local Poincaré transformations, with pa-
rameters which depend on spacetime points, it is necessary to introduce
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new, compensating fields; these fields are found to represent the gravita-
tional interaction.

Localization of Poincaré symmetry leads to Poincaré gauge theory of
gravity, which contains GR as a special case. Here, in contrast to GR, at
each point of spacetime there exists a whole class of local inertial frames,
mutually related by Lorentz transformations. Using this freedom, allowed
by the principle of equivalence, one can naturally introduce not only energy-
momentum, but also spin of matter fields into gravitational dynamics.

We begin our exposition by presenting the basic principles of Poincaré
gauge theory (PGT). Then, an analysis of the geometric interpretation of
PGT leads us to conclude that spacetime has the structure of Riemann—
Cartan geometry, possessing both the curvature and the torsion. Finally,
we study in more details the teleparallel limit of PGT, which represents a
viable alternative gravitational theory for macroscopic matter.

1 Poincaré gauge theory

We shall now analyze the process of transition from global to local Poincaré
symmetry, and find its relation to the gravitational interaction [1-6]. Other
spacetime symmetries (de Sitter, Weyl, etc.) can by treated in an analogous
manner [7, 6].

Global Poincaré symmetry

Minkowski spacetime. In physical processes at low energies, the grav-
itational field does not have a significant role, since the gravitational in-
teraction is extremely weak. In the absence of gravity, the spacetime is
described by the special relativity (SR), and its mathematical structure cor-
responds to Minkowski space My. The physical observer in spacetime makes
use of some reference frame, endowed with coordinates z# (u = 0,1,2,3).
An inertial observer in My can always choose global inertial coordinates,
such that the infinitesimal interval takes the simple form ds® = Nuvdxtdz”
where 7, = (1,—1,—1, —1) are components of the metric in the inertial
frame.

Coordinate transformations x — x’ which do not change the form of the
metric define the isometry group of a given space. The isometry group of
My is the group of global (rigid) Poincaré transformations, the infinitesimal
form of which is given by

o't =t + M (x), g =wh a¥ + et (1.1)
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where wh” = —w"" and e are ten constant parameters (Lorentz rotations
and translations).

Matter fields. In order to define matter fields in spacetime (scalars,
spinors, etc.), it is useful to introduce the concept of tangent space. The
set of all tangent vectors at point P in M, defines the tangent space Tp.
Since the geometric structure of My is pretty simple, the structure of Tp
actually coincides with that of My. The choice of basis in the tangent space
(frame) is not unique. A coordinate frame (C frame) is determined by a
set of four vectors e,, tangent to the coordinate lines z#. In My we can
also introduce a local Lorentz frame (L frame), represented by a set of four
orthonormal tangent vectors e;(x) (vierbein or tetrad): e;-e; = n;;." To
each L frame e; we can associate the related (local) inertial coordinates z*.
If the coordinates x* are globally inertial, one can always choose the tetrad
in such a way that it coincides with the C' frame, e; = d!'e,.

A matter field ¢(z) in spacetime is always referred to an L frame; in
general, it is a multicomponent object which can be represented as a vector-
column. The action of global Poincaré transformations in Tp transforms
each L frame into another L frame, inducing an appropriate transformation
of the field ¢(x):

a" =1 + Wl + €, ¢ (x') = (1 + %wijZij) o(z) .

Here, X;; is the spin matrix related to the multicomponent structure of
¢(x). Equivalently, we can write

do6 = (3w My + P ) 6 = Po, (12)

where do¢p(z) = ¢ (z) —P(x) is the change of form of ¢(z), and M;; = x;0;—
x;0;+ %5, P, = —0, are the generators of global Poincaré transformations
in the space of fields.

Since form variation and differentiation are commuting operations, we
easily derive from (1.2) the transformation law for Jk¢:

500k ® = POk + wi'0ip = Py O . (1.3)

Global Poincaré invariance. Dynamical content of basic physical
interactions is successfully described by Lagrangian field theory. Dynamical

'Here, the Latin indices (i,,...) refer to local L frames, while the Greek indices
(4, v, ...) refer to C' frames. Later, when we come to a geometric interpretation, this
distinction will become geometrically more important.
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variables in this theory are fields ¢(z), and dynamics is determined by a
function £(¢, d¢), called the Lagrangian. Equations of motion are given as
the Euler-Lagrange equations for the action integral I = [ d*zL.
Invariance of a theory under spacetime transformations can be ex-
pressed in terms of some conditions on the Lagrangian, which are different
from those characterizing Yang—Mills theories. To see that, consider an ac-
tion integral defined over a spacetime region €, I(Q) = [, d*zL(¢, Oxo; x),
where we allow for the possibility that £ may depend explicitly on x. The
action integral is invariant under spacetime transformations ' = = + £(x)
if [1]
AL =60L +E10, LA+ (0,6")L =0, (1.4)

where 6oL = (0L/0¢)b0¢p + (0L/0¢ 1)00¢ . The Lagrangian L satisfying
the invariance condition (1.4) is usually called an invariant density. Here,
we wish to make two comments: (a) the above result is based on the as-
sumption 0o, = 0; (b) the condition (1.4) can be relaxed by demanding a
weaker condition AL = d,A*; in that case the action changes by a surface
term, but the equations of motion remain invariant.

If we now substitute the Poincaré expressions for £* and dp¢ in (1.4),
the vanishing of the coefficients multiplying w*” and &* implies two sets of
identities: the first identity is the condition of Lorentz invariance, while the
second one, related to translational invariance, is equivalent to the absence
of any explicit  dependence in £, as one could have expected.

Assuming the equations of motion to hold, the invariance condition
(1.4) leads to the differential conservation laws for Noether currents — the
energy-momentum and angular momentum tensors. Spatial integrals of
the null components of the currents define the related charges. The usual
conservation in time of these charges does not hold automatically, but only
if the related flux integrals through the boundary of the three-space vanish.

Localization of Poincaré symmetry

Suppose that we have a theory described by a matter Lagrangian Ly =
L (¢, Ox@), which is invariant under global Poincaré transformations. If we
now generalize Poincaré transformations by replacing ten constant group
parameters with some functions of spacetime points,

W= w(z), et (),

the invariance condition (1.4) is violated for two reasons:
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= the old transformation rule (1.3) of Jx¢ is changed into

800kp = POk — (OkE")0u ¢ + 5 (Ohw) S50
= P 0m¢ + (0e, Ow)-terms; (1.5)

= the term 0,£" in (1.4) does not vanish, in contrast to the old relation
Ot = wt, = 0.

The violation of local invariance can be compensated by certain modifica-
tions of the original theory, whereupon the resulting theory becomes locally
invariant.

Covariant derivative. In the first step of our compensation proce-
dure, we wish to eliminate non-invariance stemming from the change of the
transformation rule of dx¢. This can be accomplished by introducing a new
Lagrangian

where V¢ is the covariant derivative of ¢, which transforms according to
the “old rule” (1.3):

8oV =PVio +wi'Vid. (1.6b)

The new Lagrangian satisfies the condition 6L, = 6oL, + & - 9L, = 0.
The construction of V¢ is realized in two steps:

i) Vup=(0,+ A0, A, =1AY9,%;, (1.7a)
’LZ) vk(;5 = 55VM¢> - A‘ukvu¢ = hk‘uv#gb . (17b)

The transformation rule of the w-covariant derivative V¢,
50Vu¢ = Pv,ud’ - (aufy)v,,gb, (1-8)

is chosen so as to eliminate the term Opw®” appearing in (1.5); it leads
to a definite transformation rule for the Lorentz compensating field A% 1)
given in (1.9a). The complete V¢ is defined by adding a new field, hxt =
ol — Aty with the transformation properties defined by equation (1.6b).
It is useful to introduce another field b%,, the inverse of hi*: bF phitt = 521»“,
vE LY = d,,. The transformation laws for the compensating fields A%, and
bk u read:

50Aiju = —Vﬂwij — (auf)\)AijA — anAAiju , (1.9&)
b, = WFb®, — (9,EMDF — £2an0" ., (1.9b)
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with Vuwij = 8Nwij + Aisuwsj + Asjuwi‘s.

In order to facilitate geometric interpretation of the local transforma-
tions, it is convenient to generalize our previous convention concerning the
use of Latin and Greek indices. According to the transformation rules
(1.9), the use of indices in A%, and b*, follows the following convention:
the fields transform as local Lorentz tensors with respect to Latin indices,
and as world (coordinate) tensors with respect to Greek indices; the term
—Buwij shows that AY u is not a true tensor but a potential. One can also
check that local Lorentz tensors can be transformed into world tensors and
vice versa, by the multiplication with hi* or b* [

Matter field Lagrangian. Up to now we have found the Lagrangian
"w» such that 6L, = 0. In the second step of restoring local invariance
of the theory, we have to take care of the fact that 9,&# # 0. This can be
done by introducing Lo = AL, where A is a suitable function of the new
fields. The invariance condition (1.4) for £y, holds if doA + Ou(§"A) = 0.
Using the known transformation properties of the fields, one finds a simple
solution for A: A = det(b¥,) = b.
Thus, the final form of the modified Lagrangian for matter fields is

Lar =bLar(¢, Vi) (1.10)

It is obtained from the original Lagrangian Ljs(¢,0x¢) by the minimal
coupling prescription: a) Ox¢ — Vi¢ and b) Ly — bLys. The Lagrangian
Ly satisfies the invariance condition (1.4) by construction, hence it is an
invariant density.

The above construction is in general valid for massive matter fields. In
electrodynamics, however, one can not apply the prescription 0 — V with-
out violating the internal U(1) gauge symmetry! Hence, in order to retain
the internal gauge symmetry, one should keep the original field strength
unchanged, F,, = 0, A, — 0,A,. Although the minimal coupling prescrip-
tion is thereby abandoned, the procedure is compatible with both internal
gauge symmetry and local Poincaré covariance [8]. Consequently, the grav-
itational coupling to the electromagnetic field in PGT remains the same as
in GR.

Complete Lagrangian. We succeeded to modify the original matter
Lagrangian by introducing gauge potentials, so that the invariance condi-
tion (1.4) remains true also for local Poincaré transformations. In order to
construct a Lagrangian for the new fields b” u and Ab > we shall first intro-
duce the corresponding field strengths. The commutator of two covariant
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derivatives has the form
Vi, Vilop = $F7 8¢ — F*uVsg.
Here, Fi}; = Fiju,,hk“hl”, Fiy = Fiw,hk“hl”, and

FY,, = 0,49, — 0,AY , + A" A, — A’ A,
Fluy = Vub'y — Vb, (1.11)

The quantities F'¥ o and F i wv are called the Lorentz and translation field
strengths, respectively. They transform as tensors, in conformity with their
index structure.

Jacobi identities for the commutators of covariant derivatives imply the
following Bianchi identities for the field strengths:

(1St) {_:pu)\l/v‘uFS)\V — 5pu/\VFSk>\ka,u, ’
(2nd)  ePMTVLFY = 0. (1.12)

The free Lagrangian must be an invariant density depending only on the
field strengths, while the complete Lagrangian of matter and gauge fields
has the form _

L=bLp(F F'y) + 0L (¢, Vid) - (1.13)

Generalized conservation laws. The invariance of the Lagrangian
in a gauge theory for an internal symmetry leads, after using the equations
of motion, to covariantly generalized differential conservation laws. The
same thing happens also in PGT. We restrict our discussion to the mat-
ter Lagrangian L M, and introduce dynamical energy-momentum and spin
currents for matter fields:

oo Okm o OLu
BTk, YT GA,

Assuming that matter field equations are satisfied, one can show that local
Poincaré invariance leads to generalized conservation laws of the dynamical
currents [6]:

bkuv,ﬂ'uk = TVka;W + %injFUlw,
Vyuoti; = Tij — Tji - (1.14)

Similar analysis can be applied to the complete Lagrangian (1.13).
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2 Geometric structure of spacetime

In order to facilitate a proper understanding of the geometric content of
PGT, we introduce here some basic concepts of differential geometry [3, 4,
6, 9].

Riemann—Cartan geometry

Manifolds. Spacetime is often described as a “four-dimensional contin-
uum”. In SR, it has the structure of Minkowski space My. In the presence
of gravity spacetime can be divided into “small, flat pieces” in which SR
holds (on the basis of the principle of equivalence), and these pieces are
“sewn together” smoothly. Although spacetime looks locally like My, it
may have quite different global properties. Mathematical description of
such four-dimensional continuum is given by the concept of a differentiable
manifold.

To be more rigorous, one should start with the natural concept of topo-
logical space, which allows a precise formulation of the idea of continuity.
A topological space X is given the structure of a manifold by introduc-
ing local coordinates on X. The compatibility of different local coordinate
systems promotes a manifold into a differentiable manifold, in which one
can easily introduce and study mappings which are both continuous and
differentiable.

Tensors. Thus, we assume that spacetime has the structure of a differ-
entiable manifold X4. We believe that the laws of physics can be expressed
as relations between geometric objects, such as vectors, tensors, etc..

In order to define tangent vectors in terms of the internal structure of
the manifold, one should abandon the idea of the “displacement” of a point.
The most acceptable approach is to define tangent vectors as directional
derivatives, without any reference to embedding. Directional derivatives
represent an abstract realization of the usual geometric notion of tangent
vectors.

The set of all tangent vectors at P defines the tangent space Tp. The
set of vectors tangent to the coordinate lines x* defines the coordinate basis
e, = 0, in Tp. An arbitrary vector v in T’p can be represented in the form
v = vt'e,, where v* are components of v in the basis e,,. Under the change
of local coordinates x — 2/, both e, and v* change the form,

, ox”

ox't
€= =

= o

/
v

154



but v itself remains invariant. The second equation is known as the vec-
tor transformation law. Vectors v = (v*) are usually called contravariant
vectors.

Following the usual ideas of linear algebra, we can associate a dual
vector space T with each tangent space Tp of X. Consider linear mappings
from Tp to R, defined by w* : v — w*(v) € R. If a set of these mappings is
equipped with the usual operations of addition and scalar multiplication, we
obtain the dual vector space T. Vectors w™ in T are called dual vectors,
covariant vectors (covectors) or differential forms. Given the basis e, in
Tp, one can construct its dual basis # in T} by demanding 6*(v) = v#,
or equivalently, 60#(e,) = 0¥. Each dual vector w* can be represented in
the form w* = w;0". A change of local coordinates induces the following
change in 6" and wy;:

ox'®

lokind
o+ = WOV’ w;’ = ax’l‘w;'
To simplify the notation, one usually omits the sign * for dual vectors.

The concept of a dual vector as a linear mapping from Tp to R, can
be naturally extended to the concept of tensor as a multilinear mapping.
Thus, a tensor w of type (0,2) is a bilinear mapping which maps a pair of
vectors (u,v) into a real number w(u,v). Using the dual basis 0" ® 6", we
can represent w as w = wy, 0" ® 0¥, so that w(u,v) = wyutv”. Similarly,
a tensor a of type (1,1) maps a pair (u, w*) into a real number a(u, w*) =
ay utw,. After these examples, it is not difficult to define the general
tensor t of type (p, q). Its components transform as the product of p vectors
and g dual vectors.

A tensor field on X is a mapping x — t(x) that associates a tensor ()
to each point x in X.

Totally antisymmetric tensor fields of type (0,p) are particularly im-
portant objects, called differential p-forms (forms of degree p). A 1-form
a is a dual vector, a = «,0". A 2-form B in the basis 8" ® 6" is given
as 3 = %ﬂu,ﬁ“ A 0Y, where 0" N 0¥ = 0% ® ¥ — 0¥ ® 6", and so on. In
the space of smooth p-forms one can introduce the exterior derivative as a
differential operator d which maps a p-form « into a (p + 1)-form da.

Tensor densities are objects similar to tensors; they can be defined on
orientable manifolds.

Parallel transport. On X, one can define differentiable mappings,
tensors, and various algebraic operations with tensors at a given point (ad-
dition, multiplication, contraction). However, comparing tensors at differ-
ent points requires some additional structure on X4: the law of parallel
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transport. Consider, for instance, a smooth vector field A on X, such that
A, lies in the tangent space T}, and A, is in 7. In order to compare A,
with Ay, it is necessary first to “transport” A, from T}, to T}, and then to
compare the resulting object Apr = (Apr)y with A,. This “transport” pro-
cedure generalizes the concept of parallel transport in flat space and bears
the same name. The vector Apy is in general different from A,. If the
point y is infinitesimally close to x, y = = +dx, then the components of A,
with respect to the coordinate basis at y have the form Af = A#(z + dx),
while those of Apy are defined by the rule (Figure 1)

Aby = AM(z) +6AM(x),  §AM = - AMda”, (2.1)

where the infinitesimal change §A* is bilinear in A* and dz”. The set of
64 components 'y o defines a linear (or affine) connection T' on Xy, in the
coordinate basis. An X, equipped with I is called linearly connected space,
Ly = (X4,T).

DA

A+ 0A A+dA

Figure 1: Parallel transport of vectors from T, to Ty 4

Linear connection is equivalently defined by the covariant derivative D.
Computing, for instance, the difference A, — Apy we find

DAF = Al — Al = dAF — §AF
= (9, A" + T AN dz? = D,(T') A*da” . (2.2)
Covariant derivative of a dual vector is defined by demanding 6(A*B,,) = 0.
Covariant derivative of an arbitrary tensor field ¢(p,q) is defined a) as a
mapping t(p,q) — Dt(p,q + 1), which is b) linear, satisfies the Leibnitz
rule, Df = df if f is a scalar, and commutes with contraction.

The linear connection is not a tensor, but its antisymmetric part defines
a tensor called the torsion tensor:

Ty, =T — T, . (2.3)
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Parallel transport is a path dependent concept. If we parallel transport
a vector around an infinitesimal closed path, the result is proportional to
the Riemann curvature tensor:

R'uu)\p = 8)\Fﬁp + F'g}\rgp - ()‘ A p) . (24)

Metric compatible connection. On X, one can define metric tensor
g as a symmetric, nondegenerate tensor field of type (0,2). After that we
can introduce the scalar product of two tangent vectors, u-v = g(u, v), and
calculate lengths of curves, angles between vectors, etc. The differentiable
manifold Xy equipped with linear connection and metric becomes linearly
connected metric space (Ly,g) = (X4,T, g).

Generally, linear connection and metric are independent geometric ob-
jects. In order to preserve lengths and angles under parallel transport in
(L4, g), one can impose the metricity condition

_Q;w)\ = D,ugu/\ = a,ugw\ - F’V)ng)\ - Fé\)'ugl/p =0, (2-5)

which relates I and g. The requirement of vanishing nonmetricity Q estab-
lishes local Minkowskian structure on Xy, and defines a metric compatible
linear connection:

Fl)fl, = {){L,/} + K#)\V ) K#)\V = *%(T#AV - TV“)\ + T)\l/'u) ) (26)

where {{!} is the Christoffel connection and K the contortion.

A space (Ly,g) with the most general metric compatible linear con-
nection I' is called Riemann—Cartan space Uy. If the torsion vanishes, a
U, becomes a Riemannian space Vy of GR; if, alternatively, the curvature
vanishes, a Uy becomes Weitzenbock’s teleparallel space Ty. Finally, the
condition R¥,), = 0 transforms a Vj into a Minkowski space My, and
THy, = 0 transforms a Ty into an My (Figure 2).

Spin connection. Linear connection and metric are geometric objects
independent of the choice of frame. Their components are defined with
respect to a frame and are, clearly, frame-dependent. The choice of frame
in Tp is not unique; C frames e, and L frames e; are of particular practical
importance.? Every tangent vector u can be expressed in both frames:
u = ul'e, = u'e;. In particular, e; = eit'e,, e, = eiuei, and accordingly,
u' = e'yut, ut = e;#u’. The scalar product of two tangent vectors can be
written in two equivalent forms: u - v = g, ufv” = mjuivj , where

v i j
nij = €; - e = gueil'e;” v = €y - ey, = 1mje' e’y .

2The existence of L frames is closely related to the principle of equivalence.
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Figure 2: Classification of spaces satisfying the metricity condition
The parallel transport of a tangent vector u € T, represented in the
form u = u'e;, is defined by the parallel transport rule
out = —wij#ujdx”’,

where w%, is the so-called spin connection, with 64 components. Parallel
transport of v; is determined by requiring §(u'v;) = 0: dv; = ijvjdx”.
An equivalent definition of the parallel transport may be given in terms of
the w-covariant derivative:

D(w)u' = (8Mui + wimuj)dx“ = D, (w)u'dz" (2.7)

and similarly for v;.

The existence of L frames at each point of X4 implies the existence of
the Lorentz metric n;; at each point of X;. Demanding the tensor field 7;;
to be invariant under the parallel transport, implies that the connection is
antisymmetric in its Latin indices:

R G S Ndok = (w.: . B
5771] = (W iplsj +w j,unsz)dx = (ng + Wzy,u)d-r =0.
Since 1 is a constant tensor, its covariant derivative vanishes:

Dy (w)ny; = 0. (2.8)

Relation between w and I'. The parallel transport is a unique geo-
metric operation, independent of the choice of frame, hence

u' + dut = (u' + Sut)e’,(x + dr) .
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From this property, we obtain the relation between w and I', called the
tetrad postulate:

Dy(w+T)e', = Dy(w)e'y, — F’V’ueip =0, (2.9)

where D, (w)e', = d,€e', +w';,e’,. The operator D(w+T') can be formally
understood as a “total” covariant derivative. Using the above equations we
easily derive the metricity condition:

Du(r)guu = Du(w + F)guu = Du(w + F)(m‘jeiﬂeju) =0.

The w-covariant derivative can be generalized to a quantity ¢ belonging
to an arbitrary representation of the Lorentz group:

D)o = (Op+wi)d,  wu= 3wy, (2.10)

where ¥ is the related spin matrix.

It is interesting to note that if we find I' = I'(w) from equation (2.9)
and substitute the result into the expressions (2.3) and (2.4) for the torsion
and the curvature, we obtain

T"Weip = D#(w)ei,, — D,,(w)ei,, = Tiw,(w) , (2.11a)

eNIPRY ) = D, + Wit — (u e v) = RY,,(w). (2.11b)
Equation (2.11a) can be formally solved for the connection w:

wijn = Aijp + Kijp ,
Aiju = %(Cijm — Cmij —+ iji)emu, (212)

where ciw, = 8ueiy — 0! u is called the object of anholonomity, and K is
the contortion.

Geometric interpretation of PGT

The final result of the analysis of PGT is the construction of the invariant
Lagrangian (1.12). It is achieved by introducing new fields A%, and b’, (or
hi"), which are used to construct the covariant derivative Vi = h;”V, and
the field strengths Fijuy and F’p,,. This theory can be thought of as a field
theory in Minkowski space. However, geometric analogies are so strong,
that it would be unnatural to ignore them.

«) The Lorentz gauge field A, can be identified with the spin con-
nection w',, as follows from its transformation law (1.9a). Equivalently,
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V,(A) can be identified with the geometric covariant derivative D, (w).
This follows from the definition of V¢, which implies that a) the quantity
V¢ has one additional dual index, as compared to ¢; b) it acts linearly,
obeys Leibniz rule, commutes with contraction, and V,f = 0,f if f is a
scalar function.

Table 1. Relation between PGT (left) and Riemann—Cartan geometry

A%, Lorentz gauge field w®, spin connection

V. (A) covariant derivative D,,(w) w-covariant derivative

b', (") transl. gauge field ', (ex”) tetrad coframe (frame)
I'7, not defined I'f,,, connection

1%

tetrad postulate! = T, defined D,(w)e', = Fpﬂeip tetrad postulate

V,ni; = 0 metricity condition D, (T")gy» = 0 metricity condition

Fluy = Vyb'y = Vb T = (T — Fﬁu)bip =T (w)
Fijw/ = FijW(A) Rijw/ = Rij;w(w)

) The field b’,, can be identified with €’,, on the basis of its transfor-
mation law (1.9b). It ensures the possibility to transform local Lorentz and
coordinate indices into each other.

v) Local Lorentz symmetry of PGT implies the metricity condition
(2.8). After adopting the tetrad postulate (2.9), whereby one introduces the
connection I'), in PGT, the metricity condition (2.8) becomes equivalent
to (2.5).

) It follows from equations (2.11) that the translation field strength
Fim, is nothing but the torsion Tiw/v while the Lorentz field strength Fijuy
represents the curvature R*,,. Consequently,

» PGT has the geometric structure of Riemann—Cartan space Uy.

Although PGT has a well defined geometric interpretation, its gauge
structure differs from what we have in “standard” gauge theories (Appendix
A).

The principle of equivalence in PGT

The principle of equivalence (PE) is a dynamical principle, which severely
restricts the form of the gravitational interaction. It states that ) the

160



effect of gravity on matter is locally equivalent to the effect of a non-inertial
reference frame in special relativity (SR).3

To clarify the dynamical content of the PE, let us consider an inertial
frame in My, in which (massive) matter field ¢ is described by a Lagrangian
Ly (¢, 0;¢). When we go over to a non-inertial frame, £y, transforms into
bLa (¢, Vig), with V; = €;#(0, + wy). The pseudo-gravitational field,
equivalent to the non-inertial reference frame, is contained in b and V;.
This field can be eliminated on the whole spacetime by simply going back
to the global inertial frame, while for real gravitational fields this is not
true — they can be eliminated only locally, as we shall see. For this reason,
in the last step of introducing a real gravitational field, Einstein replaced
My with a Riemann space Vy. Although this is a correct choice, we shall
see that Finstein could have chosen also a Riemann—Cartan space Uy.

Let us now recall another formulation of the PE: i) the effect of gravity
on matter can be locally eliminated by a suitable choice of reference frame,
whereupon matter behaves as in SR. More precisely,

® at any point P in spacetime one can choose an orthonormal reference
frame e;, such that: a) w”, =0, b) e =48, at P.

We shall see that this statement is correct not only in GR (V4), but also in
PGT (Uy) [10].

Gravitational theory in Riemann space Vj possesses certain features
which do not follow necessarily from the PE. Namely, the form of Rieman-
nian connection shows that relative orientation of the orthonormal frame
e;(z+dzr) with respect to e;(x) (parallel transported to z+dzx) is completely
fixed by the metric. The change of this orientation is described by Lorentz
transformations, which do not produce any gravitational effect; therefore,
there is no reason to prevent any additional Lorentz rotation of local frames.
If we want to realize this freedom, the spin connection should contain an ex-
tra part, independent of the metric: w’ jp = A’ jut+ K ‘ ju- Interpreted in this
way, the PE becomes nicely incorporated into Riemann—-Cartan geometry,
as shown bellow.

Let e; be a basis for Tp in spacetime. For each 7, one can define an auto-
parallel C; through P, with tangent vector e;. By parallel transporting
e;, one can define a vector field e; along C;, in some neighborhood O;.
Taking a suitable restriction of the intersection of all O;, we can find a
neighborhood O of P in which the auto-parallels C; do not intersect. The
set of vector fields e; can be extended to form a parallel frame on O. Hence,

3The PE does not allow, for instance, the #R coupling of the scalar matter.
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the connection coefficients at P, defined with respect to this particular
frame, vanish: F; #(P) = 0. This result makes no use of any metric property,
and holds for an arbitrary linearly connected manifold [10]. In Uy, the
parallel frame on O can be made orthonormal, e; - e; = 1;;, which gives an
attractive physical content to the PE. Using the formula Fé-k = ekpwijp, we
conclude that w®,(P) = 0.

At each point P in O, one can introduce local inertial coordinates,
defined by dz! = €’ pdzt. Let us now change the coordinates z#, 2 — y#, so
that y* coincide with z* at P: dy* = §f'dx*. This coordinate transformation
ensures e;(P) = 6!, without changing w' ,(P) = 0.

m The existence of torsion does not violate the PE.

The PE fits naturally into a Uy geometry of spacetime. In particular, it
holds in Vj, and also in Tj. In more general geometries, where the symmetry
of the tangent space is higher than the Poincaré group, the usual form of
the PE is violated, and local physics is different from SR [7, 6].

3 The teleparallel theory

Dynamics of the gravitational field in PGT is determined by the form of the
gravitational Lagrangian Lg. If we demand that the equations of motion
are at most of second order in field derivatives, L4 can be at most quadratic
in torsion and curvature. A lot of different invariants makes the general
structure of L rather complicated: Lo ~ R + T? + R? + \, with eleven
(1434 6+ 1) constant parameters [5].

The simple action

1

_ 400 _
IEc—/dxb( aR+£M), a 16:C

defines the so-called Einstein—Cartan (EC) theory, a direct generalization of
GR to Riemann—Cartan spacetime [1, 2]. The EC theory incorporates both
mass and spin of matter as sources of the gravitational field, and represent
a description of gravity which is microscopically more satisfying than GR.
Indeed, in current theories of fundamental interactions matter is described
by matter fields, with their spins, symmetries and conserved currents; at
this level, there is no space for the conventional GR, with matter consisting
of point particles, fluids and light rays. On the other hand, spin effects are
negligible for macroscopic matter, so that the empirical predictions of the
EC theory are, for all practical purposes, the same as in GR. A simple
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but accurate way to depict this situation is to name GR “the best available
alternative gravitational theory”, the best theory being the EC theory itself
[11]. Since the structure of the EC theory is pretty well known, we turn
our attention to the teleparallel theory as “the next best” alternative [11].

General geometric arena of PGT, the Riemann—Cartan space Uy, may
be a priori restricted by imposing certain conditions on the curvature and
the torsion. Thus, Einstein’s GR is defined in Riemann space Vj, obtained
from Uy by the requirement of vanishing torsion. Another interesting limit
of PGT is Weitzenbock or teleparallel geometry Ty, defined by the require-
ment

RY,,(A)=0. (3.1)

The vanishing of curvature means that parallel transport is path indepen-
dent (if some topological restrictions are adopted), hence we have an abso-
lute parallelism. The teleparallel geometry is, in a sense, complementary to
Riemannian: curvature vanishes, and torsion remains to characterize the
parallel transport.

The physical interpretation of the teleparallel geometry is based on the
fact that there is a one-parameter family of teleparallel Lagrangians which
is empirically equivalent to GR [12, 13, 14].

Lagrangian. In the framework of the teleparallel geometry Ty, gravi-
tational field is described by the tetrad bku and Lorentz connection A% s
subject to the condition of vanishing curvature. We shall consider here the
gravitational dynamics determined by a class of Lagrangians quadratic in
the torsion:

E =bLr + )\ijMVRijuy + EM s
Lp = a(ATijkTijk + BTy T + CTka> = Bur(T)T*,  (3.2)

where \;j#” are Lagrange multipliers introduced to ensure the teleparal-

lelism condition (3.1) in the variational formalism, and 3;;, = a(ATZ-jk +

BT[jz’k] + Cm[ka]).

The parameters A, B,C' in the Lagrangian should be determined on
physical grounds, so as to obtain a consistent theory which could describe
all the known gravitational experiments. If we require that the theory (3.2)
gives the same results as GR in the linear, weak-field approximation, we
can restrict our considerations to the one-parameter family of Lagrangians,
defined by the conditions [12, 13, 14]

i) 2A+B+C=0, C=-1.
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This family represents a viable gravitational theory for macroscopic matter
(scalar and electromagnetic fields), empirically indistinguishable from GR.
Von der Heyde and Hehl have given certain theoretical arguments in favor
of the choice B = 0 [4]. There is, however, another, particularly interesting
choice determined by the requirement
ii) 2A — B =0.

In the gravitational sector, this choice leads effectively to the Einstein—
Hilbert Lagrangian of GR, Lgy = —abR(A), with Riemannian connection
A = A. To see that, we substitute the expression (1.12) for the spin
connection, A = A + K, into the definition of the scalar curvature tensor
R(A), and obtain the geometric identity

abR(A) = abR(A) + £, — 2a0,(bT7) , (3.3)
where Elr‘lp is the torsion Lagrangian (3.2) with
A=1, B=3, C=-1. (3.4)

The conditions 7) and ii) given above coincide with (3.4). In the teleparallel
spacetime, where R(A) = 0, the identity (3.3) implies the relation C':'r =
Lpp + divergence; that is why the teleparallel theory (3.2) with Lp = E&
is called the teleparallel formulation of GR (GRj). It is equivalent to GR
for scalar and electromagnetic matter (see Lecture 1), but the other matter
fields have different couplings in T4 and Vj.

Field equations. By varying the Lagrangian (3.2) with respect to
b, AV, and A\i*, we obtain the gravitational field equations [15]:

AV, (BBH0) = AbB ™ Ty + hi#bLy = TV, (3.52)
4Vp)\ij“p - Sbﬁ[z]}# = O"uij 5 (35b)
RY,, =0. (3.5¢)

The third field equation defines the teleparallel geometry in PGT. The
first field equation is a dynamical equation for b¥ u- The symmetric part of
this equation plays the role analogous to Einstein’s equation in GR, while
the antisymmetric part implies

In GR, the left hand side vanishes, so that 7(;;) must also vanish. Since this
is not true for Dirac field, it follows that the description of Dirac matter
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in GR) is not consistent. In the one-parameter teleparallel theory the left
hand side is proportional to the axial torsion, and we do not have any
problem. By taking the covariant divergence of (3.5b), one obtains the
consistency condition

—8Vy (bﬁ[ijl“ ) ~ Vot (3.6b)

This condition is satisfied as a consequence of (3.6a) and the second iden-
tity in (1.14). Thus, the only role of (3.5b) is to determine the Lagrange
multipliers A;;#. Taking into account equation (3.6b), one concludes that
the number of independent equations (3.5b) is 24 — 6 = 18. It is clear that
these equations cannot determine 36 multipliers A;;#" in a unique way. As
we shall see, non-uniqueness of \;;#* is related to an extra gauge freedom
in the theory.

The A symmetry. The gravitational Lagrangian (3.2) is, by construc-
tion, invariant under the local Poincaré transformations. In addition, it is
also invariant, up to a four-divergence, under the transformations [15]

doij"" = V peit7 (3.7a)

where the gauge parameter ¢;;/"? = —e;;#"P is completely antisymmetric
in its upper indices, and has 6 x 4 = 24 components. The invariance is
easily verified by using the second Bianchi identity e*** V,RY,, =0. On
the other hand, the invariance of the field equation (3.5b) follows directly
from RY,, = 0. The symmetry (3.7a) will be referred to as A symmetry.

It is useful to observe that the A transformations can be written in the
form

50)\¢jaﬁ = VO&'jaﬁ + V7€ijaﬂ7, 50)\¢joﬁ = Vﬂ/&]ﬂv, (3.7b)

where aijaﬁ = 5ij“ﬁ0. However, one can show by canonical methods (Ap-
pendix B) that

m the only independent parameters of the A\ symmetry are €¢ja6 .

The six parameters 6ij°‘ﬁ7 are not independent of eijo‘ﬁ . Hence, they can
be completely discarded, leaving us with 24 — 6 = 18 independent gauge
parameters. They can be used to fix 18 multipliers A\;;*”, whereupon the
remaining 18 multipliers are determined by the independent field equations
(3.5b) (at least locally).

The Poincaré and A\ gauge symmetries are always present (sure sym-
metries), independently of the values of parameters A, B and C in the
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teleparallel theory (3.2). Specific models, such as GR), may have extra
gauge symmetries, which are present only for some critical values of the
parameters. The gauge structure of the one-parameter teleparallel theory
is problematic [16].

OT frames. Teleparallel theories in Uy are based on the condition
of vanishing curvature. Let us choose an arbitrary tetrad at point P of
spacetime. Then, by parallel transporting this tetrad to all other points,
we generate the tetrad field on spacetime manifold. If the manifold is
paralellizable (which is a strong topological assumption), the vanishing of
curvature implies that the parallel transport is path independent, so the
resulting tetrad field is globally well defined. In such an orthonormal and
teleparallel (OT) frame, the connection coefficients vanish:

AY,=0. (3.8)

The above construction is not unique — it defines a class of OT frames,
related to each other by global Lorentz transformations. In an OT frame,
the covariant derivative reduces to the partial derivative, and the torsion
takes the simple form: 7%, = 9,b", — d,b',, (see e.g. [17]).

Equation (3.8) defines a particular solution of the condition R%,, (A4) =
0. Since a local Lorentz transformation of the tetrad field induces a non-
homogeneous change in the connection,

L L o
¢l = Npeb, = A, = NN AT 4 N0, AT

it follows that the general solution of RY,,(A) = 0 has the form AY, =
A%, 9, A7™. Thus, the choice (3.8) breaks local Lorentz invariance, and
represents a gauge firing condition.

In the action (3.2), the condition of teleparallelism is ensured by the
Lagrange multiplier. The field equation (3.5b) merely serves to determine
the multiplier, while the non-trivial dynamics is completely contained in
(3.5a). Hence, the teleparallel theory (on parallelizable manifolds) may
also be described by imposing the gauge condition (3.8) directly in the
action. The resulting theory is defined in terms of the tetrad field only,
and may be thought of as the gauge theory of translations. This formalism
is often used in the literature because of its technical simplicity, but the
local Lorentz-invariant formulation simplifies the canonical analysis of the
conservation laws.

Exact solutions. It is interesting to see how some exact solutions
of the one-parameter theory can be obtained by a simple analysis of the
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field equations [18, 19]. We start with the torsion Lagrangian of the one-
parameter theory, written in the form
a

£T:£¥_12

(2B — 1) A AV, Ak = Tk + Trij + Tjgi, - (3.9)
where E& is the torsion Lagrangian of GR). Using the geometric identity
(3.3), it follows that the first field equation has the form

Rin(A) — iniR(A) + O(A) = 73,/2ab (3.10)

where O(A) are terms proportional to A;j,. For 2B — 1 = 0 the above
Lagrangian reduces to the GR form, and equations (3.10) coincides with
Einstein’s equations. More generally, for any field configurations satisfy-
ing Ajjr = 0, the first field equation has the same form as in GR. The
consistency of this equation requires 7; to be symmetric.

Taking into account that the second field equation serves only to de-
termine the Lagrange multipliers \;;#”, we can use this result to generate
some solutions of the teleparallel theory, starting from certain solutions
of GR. Consider, for instance, a metric which has diagonal form in some
coordinate system:

ds® = A(dx®)? — By (dzt)? — Bo(dz?)? — Bs(dz®)?. (3.11a)
Let us choose the tetrad components to be diagonal,
o=VA, b =06VB,, (3.11b)

and fix the gauge AY u = 0. Then, one easily proves that A;;; = 0, and
derives an important consequence:

» If the diagonal metric (3.11a) is a solution of GR, the related tetrad
(3.11b) is a solution of the one-parameter theory, in the gauge A7, =
0 and with the same 7.

An important class of solutions of this type is the class of spherically sym-
metric solutions.

All observational differences from GR are related to the effects stemming
from A; ;1 # 0.

On the physical interpretation. We have seen that the field equa-
tions of GR) are identical to those of GR for macroscopic matter (scalar
and electromagnetic fields), but the coupling of Dirac field is not consistent.
What happens in the one-parameter theory? The related argument about
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Dirac matter coupling does not hold any more: the antisymmetric part of
the first field equation (3.10) shows that Tij] is proportional to the axial
torsion Ay, contained in O(A). Thus, it seems that one should abandon
GR| and use the one-parameter theory in order to consistently describe
Dirac matter. However, serious arguments given in Refs. [16] strongly
indicate that the gauge structure of the one-parameter theory (the initial
value problem and the canonical formulation) is problematic. Unless the
problem is solved in a satisfactory way, one should remain skeptical about
the idea of treating this theory as a fundamental approach to gravity.
The situation just described led some authors to interpret the telepar-
allel theory only as an effective macroscopic theory of gravity [13]. If we
accept this point of view, we can investigate experimental predictions of the
theory by using test particles/fields of any type (scalars, spinors, etc). Pos-
sible empirical differences between GR and the one-parameter teleparallel
theory can be tested by measuring non-trivial axial torsion effects [18, 20].

Concluding remarks

We conclude the exposition with a short summary.

1) PGT is based on the global Poincaré symmetry, a well established
symmetry in particle physics, and incorporates both mass and spin as
sources of the gravitational field.

2) The geometric interpretation of PGT leads to Riemann—Cartan ge-
ometry of spacetime, in which both curvature and torsion are used to
characterize the gravitational phenomena. Riemann—Cartan geometry is
compatible with the principle of equivalence.

3) The EC version of PGT is microscopically more satisfying then GR,
while its macroscopic predictions are, for all practical purposes, the same
as in GR.

4) In the teleparallel limit of PGT, curvature vanishes and torsion re-
mains to characterize both the geometry of spacetime and the gravitational
dynamics. The general one-parameter theory, including GR| as a special
case, is empirically equivalent to GR. In spite of that, the existing con-
sistency problems make it difficult to accept the teleparallel theory as a
fundamental theory of gravity.
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Appendix A: On the gauge structure of PGT

It is an intriguing fact that PGT does not have the structure of an
“ordinary” gauge theory [21]. To clarify this point, we start from the
Poincaré generators Py, M, and define the gauge potential as A, = €%, P,+

%w“buMab. The infinitesimal gauge transformation

SoA, = =V, A= =9\ — [A,, N,
where A = \*P, + %)\abMab, has the following component content:

Translations: doe’ = =V, A%, 50wabu =0,

: . _ b b _ b
Rotations: doe” = A"e’y, dow®, = =V A",

where V = V(w) is the covariant derivative with respect to the spin con-
nection w. The resulting gauge transformations are clearly different from
those obtained in PGT.

Although the tetrad field and the spin connection carry a represen-
tation of the Poincaré group, the EC action in four dimensions, Igc =
i Ik dAxet e g€t )\edpR“bW, is not invariant under the translational part
of the Poincaré group,

Srlpe = b / A e g N Ry 10,

but it remains invariant under Lorentz rotations and diffeomorphisms. The
situation is different in 3d, where gravity can be represented as a “true”
gauge theory [22].

Appendix B: Canonical generator of the A symmetry

The canonical analysis of a gauge theory is the best way to explain its
gauge structure. We apply this approach to examine the A symmetry in
the teleparallel theory [15].

The basic phase space dynamical variables of the teleparallel theory
(3.2) are (b),, A%, \;;#") and the corresponding momenta (m;*, m;;*, 7 ,).
Going through the standard Dirac type analysis, one can find all the con-
straints and the total Hamiltonian. Then, starting from the primary first
class constraint 7% ,3, one can apply the general canonical procedure and
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show that the canonical gauge generator acting on the Lagrange multipliers
Ai;*" has the form

1 g y
Gale]l = 1 /d3:1: [éijaﬁﬂ-waﬁ + 5ijaﬁswaﬁ} ;

Using the rule §oX = [ d32'{X, G'}, we apply the generator (B.1a) to the
A field, and find

85 X" = Ve, A0 = Ve, (B.1b)

as the only non-trivial transformations. Surprisingly, this result does not
agree with the form of the A symmetry (3.7b), which contains an additional
piece, vaijaﬂ'y’ in the expression for 60)\ijaﬁ . Since there are no other
primary first class constraints that could produce the transformation of
/\ijaﬁ, the canonical origin of the additional term seems somewhat puzzling.

The solution of the problem is, however, quite simple: if we consider
only independent gauge transformations, this term is not needed. To prove
this statement, consider the following primary first class constraint

Y 05y = Vam gy + Voym o5 + Vim0

which is essentially a linear combination of 7% «3- Hence, the related gauge
generator will not be truly independent of the general expression (B.la).
The standard canonical construction yields

1 g
Gale) = — / B e Vo' g, (B.2a)

where the parameter gijozﬁv is totally antisymmetric with respect to its
upper indices. The only non-trivial field transformation produced by this
generator is

503)\7;jaﬁ = vygijaﬁ’y, (B.Qb)

and it coincides with the missing term in equation (B.1b). Thus, if we are
interested only in the independent A transformations,

» the six parameters Eijaﬁv in the A transformations (3.7b) can be com-
pletely discarded.

Although the generator Gp is not truly independent of G4, it is conve-
nient to define G = G4 + Gp as an overcomplete gauge generator, since it
automatically generates the covariant Lagrangian form of the A symmetry.
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