
PROGRESS ON THOR SCSI DEVELOPMENT
P. Schnizer∗, W. Sulaiman Khail, J. Bengtsson, M. Ries
Helmholtz-Zentrum Berlin, BESSY, Berlin, Germany

L. Deniau, CERN, Genève, Switzerland

Abstract
Tracy, the code base used for designing synchrotron light

sources with predictable performance, has been significantly
refactored. Furthermore it now uses MAD-NG’s GTPSA
library.

We describe the achieved progress, discuss its python
interface. We show how to use it for achieving a robust
design for a modern synchrotron light source.

INTRODUCTION
The Helmholtz Zentrum Berlin is looking into mod-

ernising and upgrading its own synchrotron light source
BESSY II next to the one it operates on behalf of PTB, the
light source MLS. These will now transit to a 4th and 3rd

generation light source. In parallel the existing light sources
BESSY II and MLS are constantly upgraded. These up-
grades require proper tools for modelling these accelerators
for predictable results.

Influenced by the design choices of MAD-NG [1, 2]
Tracy 2 [3, 4] is being revamped in to a modern code base
called Thor Scsi. This code base is building on tools made
available by others. We report on the progress made and on
design choice along the line. Furthermore it profits from the
scientific working environment provided the python world.

GTPSA
Many accelerator design tasks require the study of the

influence of different parameters on the performance of a
particular beam. The Truncated Power Series Algebra sim-
plifies this task [5]. For the Next Generation version of the
MAD series, the truncated power series have been tailored
and implemented in a new way in order to speed up the
code and make appropriate choices by splitting variables
and parameters [6].

This power series objects implement methods for basic
arithmetic operations. Given that C++ provides operator
overloading many physics equations can be implemented in
a way that it is readable to physicists. Using C++ templates
the same code can be used for efficient single particle track-
ing using C++ primitives or parameter dependence using
truncated power series objects as base ones.

Wrappers for C++ and python
The GTPSA library is implemented in C [6]. For Thor Scsi

a shallow C++ wrapper was created, which uses C++’s smart
pointers (i.e. std::shared_ptr and std::unique_ptr). The wrap-
per then uses the allocation and deletion functions provided
by GTPSA.
∗ pierre.schnizer@helmholtz-berlin.de

A shallow python wrapper was made using [7], which
allows using tpsa (real) and ctpsa (complex) objects as any
other python objects. A considerable subset of GTPSA func-
tionalities is provided in its current implementation.

SUPPORTING PARAMETER STUDIES
Thor, a version of Tracy 2, already allowed studying the

influence of different parameters using TPSA objects. The
parameter to be studied had to be set at compile time.

The development of last year made Thor Scsi a python li-
brary. All beam elements are implemented in C++. GTPSA
allows defining an ample amount of parameters to study (on
one of the authors laptop up to 300 parameters). A straight-
forward solution would be to make all parameters TPSA
objects. The solution chosen here was to wrap gtpsa::tpsa
and double objects in a std::variant. Then simple wrappers
were provided that so that the different accelerator Lego
building blocks can use efficient basis types of tpsa objects
at the user selection.

Using pybind11 a python interface was developed which
allows now using a parameter as a double or gtpsa object. In
it current form the user needs to instantiated this wrapper if
required. In a next step it will be modified that the wrapper
will make conversions on the users behalf.

The different types need to be wrapped in a common type
as C++ is statically typed. The work required to implement
and handle such a type show once more that a language
using dynamic typing make implementing such use cases
much more straight forward. The user will either use a basic
value or a GTPSA object to his preference and the rest will
be sorted out by dynamic typing.

A Just in Time (JIT) engine will provide the flexibility
of a dynamic language parred with a fast evaluation speed.
Given LuaJIT [8], a fast JIT for Lua embedded and extended
in MAD-NG [9], will make this flexibility overhead nearly
negligible.

GTPSA: PYTHON USER INTERFACE
Python packages as pandas dataframes [10, 11] or xar-

ray [12] simplify the access and make tables or array data
elements easier to access for humans. xarray, targeting mak-
ing multidimensional arrays easier to implement and access
went further and allowed naming the dimensions.

The python wrapper of the GTPSA object next to the state
space object used for tracking, now uses an “IndexMapping”
object.

d = dict(x=0, px=1, y=2, py=3, delta=4, ct=5,
K=6, dx=7, dy=8)

named_index = gtpsa.IndexMapping(d)



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL127

MC5.D11: Code Developments and Simulation Techniques

3413

WEPL: Wednesday Poster Session: WEPL

WEPL127

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Figure 1: Phase space inspection within a modern programming environment. The code is stopped by the debugger. The
phase space x component (note access by name) is exported to a pandas dataframe. The IDE supports the user inspecting
this dataframe.

Here you can see that the first 6 dimensions follow the
standard naming used for single particle tracking, which
allows supports 2.5 dimensional studies. The “IndexMap-
ping” object checks internally if this standard selection is
followed, unless the user sets an optional flag to override this
behaviour. One can see that here further indices are available
for “K”, “𝑑𝑥” and “𝑑𝑦”. This could be names chosen for
estimating expected orbit distortions as found during a beam
based alignment session.

GTPSA provides methods that instrument its objects as
required for parametric studies. The following code would
set the gtpsa variable 𝛿 to 10−3

delta.set_variable(1e-3, "delta") .

Furthermore it will set the coefficient of the first order deriva-
tive in 𝛿 to 1. Similar functionality is provided for knobs
e.g.

dx.set_knob(1e-3, "dx") .

GTPSA provides a clean straightforward interface to ac-
cess all coefficients. The python gtpsa packages provides
now utilities to convert these to numpy record arrays and
then in turn into Pandas dataframe1.
1 The separation was a deliberate design choice so that gtpsa does only

depend on numpy. Support for the conversion to a pandas dataframe is
provided as an option.

Modern integrated development environments (IDE), e.g.
PyCharm’s professional offering then allow inspection of the
coefficients of one of the phase space components selecting
filters on the different coefficients (see Fig. 1). Indexing with
numbers will provide the same results. Indexing by names
can be seen as more intuitive and thus less error prone.

USE CASE EXAMPLES: BBA
Beam based alignment is a standard procedure at syn-

chrotron light sources to measure the position of the
quadrupoles versus the beam orbits. This is typically done
by measuring the closed beam orbit at slightly different
quadrupole strength. The gradient change can be typically
neglected. The correlation of the orbit change to the gradient
allows estimating the “feed down” dipole of the quadrupole
due the misalignment of the quadrupole with respect to the
reference orbit.

Different to the original method [13], at BESSY II the
machine model is used to estimate the orbit deviation due to
the gradient change. This orbit deviation requires checking
that the quadrupole gradient change applied on the machine
is the same as in the model. The tune of the BESSY II ma-
chine can be precisely measured using dedicated hardware .
The change in phase advance can be simply calculated by
instrumenting each quadrupole in turn by using:



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL127

3414

MC5.D11: Code Developments and Simulation Techniques

WEPL127

WEPL: Wednesday Poster Session: WEPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



k_org = magnet.get_main_multipole_strength()
k = gtpsa.ctpsa(desc, po,

mapping=named_index)
k.set_knob(k_org, "K")
muls = magnet.get_multipoles()
muls.set_multipole(2,

gtpsa.CTpsaOrComplex(k))

Then the phase space object is traced trough the machine.
At the end the phase advance dependence on 𝐾 is a simple
lookup of using

dq_dK = ps.ct.get(K=1)

The variable dq_dK now contains the value of 𝜕𝑄/𝜕𝐾 with
𝑄 the Floquet space coordinate and 𝐾 = 𝐺/(𝐵𝜌), with 𝐺
the quadrupole gradient, 𝐵 the dipole field and 𝜌 the beam
curvature within the dipoles. This data is evaluated for every
different quadrupole and can be compared to. This allows
checking if the model used is consistent with the machine. In
case of BESSY II a dedicated power converter is connected
to a dedicated winding on the quadrupoles. In this manner
it can be checked if no polarity error was introduced in
one of the windings. The required computation for all 144
quadrupoles requires less than a minute using a single core
on a standard laptop CPU of today (Intel Core I7).

As the chosen beam based alignment is model based one
more check was introduced. One quadrupole was moved in
the model by 0.1 mm. The quadrupole’s feed-down effect
was compensated adding a dipole component of opposite
sign. Orbit tracking showed that the orbit was zero all along
the ring. Now the strength of this very quadrupole was
changed by 1 % and following calculations were made:

• the expected orbit distortion was estimated using
Courant-Snyder’s equation describing the closed orbit
for a single distorted quadrupole

• the fixed point was searched by tracking a phase space
of doubles and recorded for the positions of the beam
position monitors.

• the effect of the displaced quadrupole was estimated
instrumenting its position in 𝑥 and 𝑦 as knobs.

The results are depicted in Fig. 2. One can see that the lines
agree pretty much to each other.

Beam based alignment procedures are standard at many
facilities; this approach here shows a method, how a model
based one can be validated in a pretty straightforward manner.
Given its simplicity it can be a good choice for a unit test.

EXTENSION OF USE CASES
Since long different parameters of the machine model

were used as knobs. Thanks to GTPSA’s implementation
many parameters can be used: the coefficient is selected
or set by the powers associated to it [6]. Different gtpsa
objects are combined into a state space for tracking, typically
representing the different canonical variables.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

10

5

0

5

10

x 
[u

m
]

0 50 100 150 200 250

10

5

0

5

10

x 
[u

m
]

Figure 2: Orbit distortion due to quadrupole displacement
calculated using parameter dependence or finding the fixed
point and tracking it through the ring.

Beam based alignment data can be retrieved at BESSY II
as for many standard light sources. The description above
allows estimating the contribution of the linear dependency
on the position. Subtracting the estimation of this effect
allows studying the influence of higher oder terms.

Similar reasoning applies to other challenges of light
source optimisation: e.g. minimising the impact of sex-
tupole response, LOCO, orbit perturbations or conducting a
robustness analysis.

Results of these studies on the BESSY II machine will be
published elsewhere.

CONCLUSION
Thor Scsi developments targeted to use GTPSA library in-

stead of Tracy 2’s TPSA libray. As Thor Scsiis implemented
in C++ a shallow wrapper implemented for gtpsa. Based on
this wrapper a python interface was developed. This gives
access to a considerable subset of GTPSA’s library.

Parameter dependence study support was added to Thor
scsi and made accessible via the python interface. It now
allows turning many parameters of the beam dynamics ele-
ments into user knobs and study their impact on the beam.
It was first used on testing and evaluating the beam based
alignment procedure. Further use cases are studying optics
perturbation and for engineering tolerances and robustness
of the design.

REFERENCES
[1] L. Deniau, MAD-NG’s Reference Manual. https://cern.
ch/mad/releases/madng/html/

[2] L. Deniau, MAD-NG Source Repository. https://github.
com/MethodicalAcceleratorDesign/MAD

[3] J. Bengtsson, “The sextupole scheme for the swiss light
source,” Paul Scherrer Institute, Tech. Rep., 1997. https:
//ados.web.psi.ch/slsnotes/sls0997.pdf



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL127

MC5.D11: Code Developments and Simulation Techniques

3415

WEPL: Wednesday Poster Session: WEPL

WEPL127

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



[4] J. Bengtsson, W. Rogers, and T. Nicholls, A CAD tool for lin-
ear optics design: A controls engineer’s geometric approach
to hill’s equation, 2021.
doi:10.48550/ARXIV.2109.15066

[5] M. Berz, “The method of power series tracking for the mathe-
matical description of beam dynamics,” Nucl. Instrum. Meth-
ods Phys. Res., Sect. A, vol. 258, no. 3, pp. 431–436, 1987.
doi:10.1016/0168-9002(87)90927-2

[6] L. Deniau and C. I. Tomoiaga, “Generalised Truncated Power
Series Algebra for Fast Particle Accelerator Transport Maps,”
in Proc. IPAC’15, Richmond, VA, USA, May 2015, pp. 374–
377. doi:10.18429/JACoW-IPAC2015-MOPJE039

[7] J. Wenzel, J. Rhinelander, and D. Moldovan, Pybind11
– seamless operability between C++11 and python,
https://github.com/pybind/pybind11, 2017.

[8] M. Pall, The LuaJIT Project. https://luajit.org
[9] D. D’Andrea, “Behavioural Analysis of Tracing JIT Compiler

Embedded in the Methodical Accelerator Design Software,”

Presented 2019, 2019. https://cds.cern.ch/record/
2692915

[10] The pandas development team, Pandas-dev/pandas: Pandas,
version latest, 2020. doi:10.5281/zenodo.3509134

[11] W. McKinney, “Data Structures for Statistical Computing
in Python,” in Proceedings of the 9th Python in Science
Conference, 2010, pp. 56–61.
doi:10.25080/Majora-92bf1922-00a

[12] S. Hoyer and J. Hamman, “Xarray: N-D labeled arrays and
datasets in Python,” J. Open Res. Software, vol. 5, no. 1,
2017. doi:10.5334/jors.148

[13] G. Portmann, D. Robin, and L. Schachinger, “Automated
Beam Based Alignment of the ALS Quadrupoles,” in Proc.
PAC’95, Dallas, TX, USA, May 1995, pp. 2693–2695.
doi:10.1109/PAC.1995.505662



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL127

3416

MC5.D11: Code Developments and Simulation Techniques

WEPL127

WEPL: Wednesday Poster Session: WEPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


