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Abstract

The axion is a very interesting hypothetical particle, as it is not only an ideal dark matter
candidate, but also dynamically, i.e., “naturally”, solves the strong CP problem - the
discrepancy between the theoretically allowed violation of the combined particle - anti-
particle exchange and spatial flip - symmetry in QCD on the one hand and its experimentally
observed (nearly perfect) conservation on the other hand.
“Hypothetical particle” means here that, despite significant experimental effort, the

axion has until now avoided experimental detection. Therefore, precise theoretical predic-
tions about its properties, especially its mass, are required. Furthermore, the investigation
of cosmology with axions has shown that the cosmological history of axions depends
critically on the temperature - dependent axion mass in the temperature range between
400 and 1100MeV, where very little is known about the axion mass so far.
The axion, and especially its mass, are directly linked to the topological properties of

QCD. The QCD vacuum allows for topologically non - trivial, local configurations, which do
not play a role in perturbation theory, but have non - perturbative effects on the quarks and
gluons. At zero temperature, these configurations are called instantons and for finite T
they are called calorons. The strength of these instanton/caloron effects, i.e., the strength
of the quark - gluon system’s response to such a topological background, is determined by
the topological susceptibility χtop. In turn, the axion mass is proportional to

√
χtop.

Using lattice QCD, the main model for accessing non - perturbative QCD effects, to
obtain χtop becomes very challenging at high temperatures as 400MeV < T < 1100MeV,
because the topological susceptibility is strongly suppressed at high T and since the bottom
quark is not heavy enough to ignore at such temperatures, while so far only 2 + 1+ 1, but
no 2 + 1 + 1 + 1 (including a dynamical bottom quark) lattice simulations exist.
Therefore, we estimate the effect of the bottom quark on χtop at high temperatures

by computing the ration between the 4 - quark χtop (available from lattice QCD) and the
4 + 1 - quark χtop in the caloron gas approximation. We do this by computing small -mass
and large -mass expansions of the finite -mass and -temperature fermionic fluctuation
determinant and connecting them with a Padé approximant. Together with the lattice QCD
results, this allows for predictions for χtop with a bottom quark at arbitrary temperatures.
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Zusammenfassung

Das Axion ist ein sehr interessantes hypothetisches Teilchen, denn es ist nicht nur ein idea-
ler Kandidat für die Dunkle Materie, sondern bietet über seine natürliche Dynamik auch
eine Lösung des CP - Problems der starken Wechselwirkung, der Diskrepanz zwischen der
theoretisch erlaubten Brechung der kombinierten Symmetrie aus Teilchen - Antiteilchen
Austausch und räumlicher Spiegelung in der QCD einerseits und der experimentell ge-
messenen (nahezu perfekten) Symmetrieerhaltung andererseits.
“Hypothetisches Teilchen” bedeutet hierbei, dass das Axion, trotz großen experimen-

tellen Aufwands, bisher nicht detektiert werden konnte, weswegen genaue theoretische
Vorhersagen zu seinen Eigenschaften, speziell seiner Masse, von Nöten sind. Des Weiteren
hat das Studium der Axionen - Kosmologie gezeigt, dass die kosmologische Entwicklung der
Axionen entscheidend von der Entwicklung der temperaturabhängigen Axionenmasse im
Temperaturbereich zwischen 400MeV und 1100Mev abhängt. Bei solchen Temperaturen
ist jedoch nur wenig über die Axionenmasse bekannt.
Das Axion, und seine Masse im Besonderen, hängen direkt mit den topologischen Eigen-

schaften der QCD zusammen. Das Vakuum der QCD erlaubt topologisch nicht - triviale, lo-
kale Zustände, die zwar in der Störungstheorie keine Rolle spielen, aber nicht - perturbativ
Einfluss auf Quarks und Gluonen nehmen. Am Temperaturnullpunkt heißen diese Zustän-
de Instantonen, bei endlicher Temperatur Caloronen. Die Stärke dieser Instanton- bzw.
Caloron - Effekte, also des Maßes, in dem Quarks und Gluonen auf solche topologischen
Hintergrundzustände reagieren, ist durch die topologische Suszeptibilität χtop gegeben.
Die Axionenmasse wiederum ist proportional zu √χtop.
Gitter QCD, das erfolgreichste Model zur Beschreibung nicht - perturbativer QCD, stößt

bei der Berechnung von χtop bei hohen Temperaturen 400MeV < T < 1100MeV auf
Probleme: nicht nur ist χtop bei solchen Temperaturen stark T - gedämpft, es exstieren
auch bis jetzt nur 2 + 1+ 1- und keine 2 + 1+ 1+ 1 - Simulationen, die das bottom Quark,
das nicht schwer genug ist, um bei diesen Temperaturen vernachlässigt zu werden, als
dynamisches Quark beinhalten.
Aus diesen Gründen bestimmen wir den Effekt des bottom Quarks auf χtop bei ho-

hen Temperaturen durch die Berechnung des Verhältnisses der 4 - Quark Suszeptibilität
(bekannt aus der Gitter QCD) und der 4 + 1 - Quark Suszeptibilität in der Calorongas -

ix



Näherung. Dafür entwickeln wir die fermionische Fluktuationsdeterminante bei endlichen
Temperaturen in kleinen und großen Massen und verbinden diese Entwicklungen mittels
einer Padé Approximation. Zusammen mit den Ergenissen aus der Gitter QCD ermöglicht
dies Vorhersagen für χtop mit inkludiertem bottom Quark bei beliebigen Temperaturen.
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Notation, Naming and Conventions

• We employ a system of natural units with c = ℏ = kB = 1, so that for example
Length=Time=Energy−1 =Temperature−1 =Mass−1 and Momentum=1. Typi-
cally one then sets the defining length (or energy) unit to be MeV−1 (or MeV).
In order to convert back to standard SI - units, one plugs in the appropriate combina-
tion of [1, 2] c = 299792458 ms , h = 6.62607015 ·10−34 Js = 4.135667697 ·10−15 eVs
and kB = 1.380649 · 10−23 J

K = 8.617333262 · 10−5 eV
K .

• We use the convention N = N0 = {0, 1, 2, ...}, i.e., we include 0 so that the natural
numbers are the non - negative integers. The positive integers we write as N+. This
is used for summation.

• We denote dimensionful physical quantities Q as Q = {Q} · [Q], where [Q] is the
dimension of the quantity and {Q} is the corresponding numerical value.
Furthermore, we often rescale physical quantities Q by the inverse temperature
β = T−1, thus obtaining dimensionless quantities. These numbers we assign an
artificial “β - dimension” of their non - rescaled counterparts. As an example, for
[Q] = Lengtha we then have q = Qβ−a with β - dimension [q]β = Lengtha.

• CapitalM ’s denote dimensionfull masses [M ] = Length−1, while smallm’s denote β -
rescaled, dimensionless masses [m] = [Mβ] = 1 with [m]β = Length−1. Accordingly,
we denote instanton/caloron sizes by ρ and their β - rescaled counterparts by ϱ with
[ρ] = Length= [ϱ]β = [ρβ−1]β.

• Every pair of indices, equal on both sides of an equation, independent of whether
they appear diagonally (QaQ′

a), horizontally (QaQ′a or Qaa) or vertically (Qaa),
implies a summation over these indices. We do not state these summations explicitly.
If no explicit metric is given, the metric for index contractions is always the Kronecker
delta. In the case of Minkowski spacetime the indices are marked with a subscript
“M” (cf. (2.1.1)).

• We are limited to (flat) 4 - dimensional spacetime (cf. section 2.4.2). In Minkowski
space R1,3 we label coordinates as x µM with indices µM, νM running from 0 to 3
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and Roman indices iM, jM from 1 to 3. We chose the “mostly minus” - convention
ηµMνM = diag(1,−1,−1,−1). Real time is denoted as x 0 = t and we write |x⃗ | = r .
In Euclidean spacetime R3 × S1

rad.= β/2π
, corresponding to a finite temperature

T = β−1, we have coordinates X =(X⃗,X4), where Greek indices µ, ν run over
1, ..., 4 and roman indices i, j run over 1, 2, 3. Imaginary time is denoted as X4 = t.
Temporally infinite Euclidean space R4 (corresponding to the zero temperature
limit T ↘ 0⇒ β →∞) is denoted by coordinates Xµ with X4 = t. We write
|X⃗| =

√
XiXi = R and |X| =

√
XµXµ = R.

In β - rescaled Euclidean spacetime R3 × S1
rad.= 1/2π

we label the dimensionless
coordinates x = X

β with x
4 = t

β = τ and keep the indices µ, ν.1 Analogously, we
denote the coordinates and tensors of infinite, but appropriately dimensionless space
R4
dimensionless by x

µ and qν1...νn(x). Like above: |x⃗| = r and |x| = r.
The unit vector in the µ - direction is denoted as êµ(M)

- and analogously in the
other spacetime settings, including abstract spaces. For the Levi - Civita symbol in
Minkowski spacetime we use the convention ε0M1M2M3M = −ε0M1M2M3M = 1.

• A “daggered” derivative operator is to be understood as acting to the left ∂† =
←−
∂ .

• Wick rotation is defined as t = x 0 → it = t = X4 and analogously for vectors

vµM → vµ =

{︄
viM

iv0M
and covectors wµM → wµ =

{︄
wiM
− iw0M

. For the metric this

means ηµMνM → −δµν in the sense that vµMηµMνMvνM → −vµδµνvν .

We choose an analogous transformation for the γ -matrices: γµM → γµ =

{︄
γiM

iγ0M
.

These Euclidean γ -matrices are then anti-Hermitian γµ† = −γµ and satisfy the
Clifford algebra {γµ, γν} = −2δµν1. The fifth Euclidean γ -matrix γ5 = γ1γ2γ3γ4

is Hermitian γ5† = γ5, involutory (γ5)2 = 1 and anti-commuting γ5γµ = −γµγ5.
The Dirac operator then Wick rotates as /∂M, /DM → −/∂,− /D which yields the trans-
formation

∫︁ 4
Rd

4x (i/∂M, i /DM)→ −
∫︁ 4
Rd

4X(i/∂, i /D) in the action.

• We always suppress indices in Dirac space. For reasons of clarity we sometimes
write the Dirac space - spinors and -matrices explicitly.

• We write elements of a general Lie Group G via the exponential with a factor of −i,
i.e., G ∋ A(θ) = exp

(︁
− iθaT a

)︁
with parameters θa and generators T a satisfying

1Actually, these coordinates are also always going to be chosen as centered around the caloron, cf. (3.1.1).
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[T a, T b] = ifabcT c, where fabc is the completely anti-symmetric structure constant.
This also defines the commutator [Q,Q′] = ifabcQbQ′c T a. When stating the defining
commutator relations or structure constants, we give only the non - vanishing ones.
All other relations/constants are to be understood as 0.

The SU(2) - generators in the defining or fundamental representation are then

given by “12 × Pauli matrices” T
a
SU(2), def =

σa

2 with σ
1 =

(︃
0 1
1 0

)︃
, σ2 =

(︃
0 −i
i 0

)︃
,

σ3 =

(︃
1 0
0 −1

)︃
and fabcSU(2) = εabc.

The defining SU(3) - generators are the “12 × Gell-Mann matrices” T
a
SU(3), def =

λa

2 :

λ1 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠, λ2 =

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠, λ3 =

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠, λ4 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠,
λ5 =

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠, λ6 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠, λ7 =

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠, λ8 = 1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠
with f123SU(3) = 1, f147SU(3) = −f

156
SU(3) = f246SU(3) = f257SU(3) = f345SU(3) = −f

367
SU(3) =

1
2 and

f458SU(3) = f678SU(3) =
√
3
2 .

• We use the following integral operator abbreviations:
∫︁ β
0 dt

∫︁
R3 d3X =

∫︁ βd4X and∫︁ 1
0 dτ

∫︁
R3 d3x =

∫︁ 1d4x.

We also write the operator trace as Tr(·) =
∫︁

x ,X,x,X,x trDirac, color, etc.(·), where the
general integral denotes the spacetime integral appropriate for the specific integrand
and “ tr ” performs the trace over all uncontracted index - pairs.

• We choose the “geometrical normalization” of the gauge field A. The gauge -
covariant derivative is then DµM = ∂µM − iAµM and the Yang -Mills Lagrangian
is given by LYM = − 1

2g2
tr
(︁
GµMνMGµMνM

)︁
with the (explicitly g - independent) field

strength GµMνM = i[DµM , DνM ] = ∂µMAνM −∂νMAµM − i[AµM , AνM ] - and analogously
in Euclidean spacetime.2

Occasionally we employ the following short - hand notation for gauge - covariant
derivatives: DµMQνM 1...νMn = QνM 1...νMn;µM .

2In comparison to the “physical normalization” of the gauge field where DµM − igAµMM and
LYM = − 1

2
tr
(︁
GµMνMGµMνM

)︁
this amounts to absorbing the coupling strength into the gauge field.
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• We denote the field configuration of the Belavin - Polyakov - Schwarz - Tyupkin in-
stanton ((2.4.24) in regular, (2.4.27) in singular gauge) by ABPST and the field
configuration of the Harrington - Shepard caloron (2.4.37) by AHS. The correspond-
ing field strengths are denoted without the subscripts “BPST” or “HS”.

• In order to avoid confusion with the effective action Γ, we denote the gamma function
by ˜︁Γ(x). The digamma function is denoted conventionally as ψ(x) = ˜︁Γ−1(x)dx˜︁Γ(x).

• We use 1n×n to denote n× n unit matrices (with the subscript included only if we
wish to emphasize the dimensionality) and id for infinite - dimensional operator-,
functional-, etc. identities.

• We use the following (standard) abbreviations: “SM“ for Standard Model, “QFT” for
Quantum Field Theory, “QCD” for Quantum Chromodynamics, “YM (theory)” for
Yang -Mills (theory), “pNG boson” for pseudo -Nambu -Goldstone boson, “DGA” for
dilute gas approximation, “VEV” for vacuum expectation value, “IBP” for integration
by parts

• Footnote - citations at the end of paragraphs provide sources for the whole paragraph
(sometimes even for multiple paragraphs, since the last footnote - citation, which
discuss one topic); “in text” - citations provide sources for one piece of information.

• We use passive language or “one [finds/...]” to provide information from the litera-
ture; in return, we write “we” when presenting our findings.
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1 Introduction

1.1 Matter Content of the Universe, Quantum Chromodynamics
and the Standard Model

All visible matter in the universe is made up of atoms, which are in turn composed of
electrons, protons and neutrons. The protons and neutrons are hadrons, i.e., particles that
consist of quarks, which interact via the electromagnetic, weak, strong and gravitational
interaction. On short length scales and for small masses, for example in hadronic bound
states such as protons, neutrons or pions, the strong interaction is the dominant force of
nature. The electromagnetic and weak interactions still play a role, while gravitational
effects are negligible. Just as electromagnetic and weak interactions are mediated by
photons and theW± - and Z - bosons, respectively, the strong force is associated to bosonic
mediators as well, the gluons. The theory describing quarks and their strong - force
interactions via gluons is called Quantum Chromodynamics, QCD for short. It is discussed
thoroughly in a plethora of literature, e.g., [3–6], which serve as general references for
the introduction (together with explicitly stated sources).
QCD is a confining theory, which means that quarks and gluons are not observed in

nature as individual particles, but always only in hadronic bound states [7, 8]. Additionally,
these hadrons are neutral with respect to the charge of the strong interaction carried by
both quarks and gluons. Gluons being charged and therefore self - interacting results in
many of the differences between QCD and Quantum Electrodynamics, as the photons
carry no electrical charge. Hadrons are composed of either two quarks, where one is
positively and one negatively charged with respect to the strong force, or three quarks
which each carry one of three different (positive) charges of the strong interaction. As
an analogy to color theory, these three charges are called color charges - red, blue and
green - and the quark - anti-quark hadrons (mesons) are called black, while the 3 - quark
hadrons (baryons) are labeled white. Confinement can for example be seen in terms of
the quark - anti-quark potential [9]

V (r ) = − g2

3πr
+ σQCD r , (1.1.1)

1



where g is the QCD - coupling constant marking the strength of the strong interaction and
σQCD is the quark string - tension. The linear rise in the potential shows that an increasing
amount of energy is required the further the bound quarks are to be separated, until the
string of binding energy (i.e., virtual particle - anti-particle pairs) eventually creates a new
quark - anti-quark pair, forming new bound mesons with the original pair.
Confinement means that there is no asymptotically free quarks (and gluons) for large

distances, i.e., small energies. QCD however allows for asymptotic freedom in the large
energy/small distance regime, as is shown by the energy dependency of the coupling
constant. At first order of quantum corrections (one - loop order), the coupling g at energy
scale µ reads

8π2

g2(µ2)
=

11N − 2Nf
3

ln

(︃
µ

ΛQCD

)︃
, (1.1.2)

where ΛQCD =(341±12)MeV [10] is the “typical QCD - energy scale” and the energy scale
of confinement, N denotes the general number of colors and Nf is the general number
of different quark flavors [11, 12]. From the spectroscopy of hadrons six quarks, up (u),
down (d), strange (s), charm (c), bottom (b) and top (t), have (so far) been identified.
They have (widely) different masses and carry electric charges of either 2e

3 or −
e
3 , but are

otherwise indistinguishable under (strong) interactions. The six quarks, their masses and
charges are listed in table 1.1. The quark flavor number Nf = 6 shows that g(µ) (1.1.2)
does increase for small µ and decrease for large energy scales, as is shown in figure 1.1.

up (u) down (d) strange (s) charm (c) bottom (b) top (t)
2.16+0.49

−0.26 4.67+0.48
−0.17 93.4+8.6

−3.4 1270± 20 4180+30
−20 172760±300

2e
3 − e

3 − e
3

2e
3 − e

3
2e
3

Table 1.1: Masses of the six quark flavors given in MeV and their charges [2]. up-, down-
(and strange-) quark are often called the two (three) light quarks.

QCD as the theory of quarks, gluons and their strong - force interactions is only a part of
the bigger theory, the Standard Model of Particle Physics (SM) which includes also Quantum
Electrodynamics (i.e., electromagnetic force) and the electroweak interactions, as well as
all related particles: leptons such as electrons, muons or neutrinos, the other gauge bosons
and the Higgs boson. The SM thus describes three of the four fundamental forces, lacking
a description of gravity. Furthermore, for high enough temperatures T ≳ 160GeV [13]
a unification of electromagnetic and weak interaction in the Glashow - Salam -Weinberg
model of the electroweak interaction was found; however, there are no experimental
findings suggesting an analogous unification with the strong interaction. Despite these
“aesthetic” shortcomings, the SM is exceptionally successful and excellently verified by

2



Figure 1.1: Taken from [2]: Energy - dependency of the QCD coupling strength. Compari-
son of the theoretical predictions for the coupling strength αs = g2

4π of QCD as
a function of the momentum transfer Q (corresponds to the energy scale µ in
(1.1.2)) and experimental values. One sees the divergence of α at small ener-
gies/large distances (confinement) and its vanishing for large energies/small
distances (asymptotic freedom).
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experimental results: the predicted and measured value of the electron magnetic moment
agree to over ten significant digits [14], the gluon [15, 16] and the hadron spectrum [17,
18] were discovered as predicted, the Higgs boson was detected [19, 20] over 50 years
after its prediction in the predicted mass range, etc.
From astrophysical and cosmological observations like [21–25], it has been determined,

however, that about 85% of all matter in the universe is indeed not visible, hadronic matter.
It is, in fact, not SM -matter at all. Instead, this so - called dark matter interacts only
gravitationally, meaning it is either uncharged with respect to the electromagnetic, weak
and strong interactions or its coupling is very small. This makes dark matter very difficult
to detect. Additionally, dark matter appears to be cold, i.e., of non - relativistic energies,
which allows it to “clump together” gravitationally [26]. Beyond that, not much is known
about dark matter, but many interesting (SM extending) models and dark matter candidate
particles have been put forward, one of which is the axion which we are going to introduce
in more detail in the following section 1.2 and discuss thoroughly in section 2.5.3. The
axion, specifically, its mass, is the main motivation for this work.

1.2 Topology and the Axion

From the study of Yang -Mills theory, which describes the gluons and their self - interactions,
it is known that there is no single, distinct gluon vacuum, but instead there are infinitely
many classical gluonic vacuum states which differ only by their topological properties.
These otherwise distinct vacua are connected by topologically non - trivial quantum me-
chanical tunneling processes called instantons at zero temperature and calorons for finite
temperature T > 0 [27, 28].
The topological properties of any geometric object or space are determined by its

global properties and are independent of any local features. This also means that local,
continuous deformations such as stretching, twisting, bending, etc. leave these topological
properties invariant, while discontinuous deformations such as cutting, opening and
closing of holes, etc. change the topology. The topologically interesting instanton- or
caloron - gauge configurations are local vacuum configurations that nevertheless change
the global, topological properties of the gluon vacuum, which are found by integrating
over all of spacetime. As an intuition, one can imagine a sheet of paper (R2) in which
one pierces a hole at the center (R2 \ {(0, 0)}). This local change nevertheless has global
implications: without the hole the sheet of paper (R2), understood as a topological space,
was simply connected, i.e., every closed path could be continuously contracted to a single
point; with the hole this is no longer the case, as simple connectedness now fails for every
closed path around (0, 0).
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The presence of instantons and calorons and the non - trivial topology of the gluon
vacuum is indeed reflected in the quark sector. Two import observables linked to the
gluonic topology are the chiral anomaly/the η - η′ - puzzle and the strong CP problem.
At high temperatures, the light u-, d- and s - quarks are (almost) massless and QCD

exhibits an SU(Nfl)V⊗SU(Nfl)A⊗U(1)V⊗U(1)A - symmetry in the space ofNfl = 3 light
quarks, with the axial symmetries flipping chirality. The classical U(1)A - axial symmetry is
anomalously broken, however, which is explained by topological effects [29–31]. Therefore,
it is no quantum symmetry after all. For temperatures where the thermal energy of the light
quarks drops below their binding energy, the classical axial symmetries are spontaneously
broken [8, 32]. This is due to the non - zero expectation value for quark - anti-quark
condensates

⟨︁
vac

⃓⃓
ψψ
⃓⃓
vac
⟩︁
= ⟨ψLψR+ψRψL⟩ = −Ebind allowed by the QCD - vacuum, i.e.,

the QCD quark vacuum settles into a lower energy state dominated by quark condensates.
For SU(3)A this results in eight pseudo Nambu -Goldstone bosons: the pions, kaons and
the η -meson. The η - η′ - puzzle is the large mass gap between the η and the related η′
meson and especially between η′ and the pions . Since U(1)A is no symmetry, however,
there is no ninth Nambu -Goldstone bosons and the η′ -mass is thus not protected from
being large. Topology consequently solves the η - η′ - puzzle [8, 33]. More so, the η′ -mass
is determined by topology via the Witten - Veneziano mechanism [34, 35].
The strong CP problem is the discrepancy between the CP breaking of topological

effects and the experimental exclusion of CP breaking by QCD. In detail, topological terms
enter QCD with the angle θ as a parameter and, from the point of theory, every value
θ ∈ [−π, π) is viable. The topological terms then result, for example, in a neutron electric
dipole moment of −1.52(71) · 10−18 θ e ·m [36] with an experimental upper bound on
the moment’s absolute value of 1.8 · 10−28 e ·m (90% confidence level) [37]. This sets
an upper bound of |θ| ≲ 1.2 · 10−10. Therefore, the strong CP problem is the following
fine - tuning problem: given that a priori every value θ ∈ [−π, π) is equally viable and CP
is not a fundamental symmetry of nature/QCD, why is θ fine - tuned to a very small value
|θ| ≲ 1.2 · 10−10 , so that CP is conserved and θ plays no role in (perturbative) particle
physics? [38]
A very promising solution of the strong CP problem is the extension of the SM in terms

of the aforementioned axion [39, 40]. For this, an additional U(1)Peccei Quinn - symmetry
[41, 42] in the high temperature limit of the early universe is introduced. After the cooling
of the universe and spontaneous symmetry breaking of U(1)PQ at some very high energy
scale fa, the axion a appears as the associated Nambu -Goldstone boson. Astrophysical and
cosmological observations set the range 108 GeV ≲ fa ≲ 1017 GeV for the PQ - symmetry
breaking scale [43–45]. As the temperature decreases further, the axion obtains a coupling
to gluons via topological terms and settles into its vacuum expectation value ⟨a⟩ = −θfa,
thus picking up a very small massma ∝ f−1

a and turning into a pseudo Nambu -Goldstone
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boson. Thereby, the axion also modifies θ as θ → θeff = θ + ⟨a⟩
fa

= 0. This means that by
settling in its vacuum expectation value, the axion dynamically ensures CP conservation
of QCD and settles the entire system in its lowest energy state described by θeff = 0.
Additionally, all interactions of the axion with SM - particles are also suppressed as f−1

a

(invisible axion), which makes the axion an ideal dark matter candidate [46–49]. As of
yet, the axion is still a hypothetical particle, i.e., it lacks verification by observation, but
many experiments focusing on axion dark matter are ongoing or planned [50].
The axion mass depends not only on the PQ scale fa, but also on the (temperature

dependent) topological susceptibility χtop(T ) via

Ma(T ) =

√︁
χtop(T )

fa
. (1.2.1)

Susceptibilities describe the response of physical systems to some perturbation, often of an
external force. As an example, the magnetic susceptibility χmag ∝ ∂2 lnZ(B)

∂B2 measures the
strength of a system’s magnetization given an external magnetic field B. We are interested
in the topological susceptibility χtop of a QCD - system of gluons and quarks, which
determines the system’s response to the presence of topologically non - trivial instanton or
caloron configurations. The strength of the topological background is determined by the
fluctuation of θ(eff) away from the vacuum expectation value ⟨θ⟩ ≈ 0 (the value predicted
by both experiment and theory):

χtop = −
1

V

∂2 ln
(︁
Z(θ)

)︁
∂θ2

⃓⃓⃓⃓
⃓
θ = 0

, (1.2.2)

where Z is the partition function and V is the volume of spacetime.
At zero temperature and including only the light quarks, χtop is determined using chiral

perturbation theory1 and precise results are available: 4
√︁
χtop(0) = (75.44±0.34)MeV [51],

which is in good agreement with other recent findings like 4
√︁
χtop(0) = (75.6± 0.6)MeV

[52], the SU(2) - chiral perturbation theory result 4
√︁
χtop(0) = (75.5± 0.5)MeV [44] or

the lattice QCD result 4
√︁
χtop(0) = (75.6± 1.8statistical ± 0.9systematic)MeV [53].For high

enough temperatures, where QCD - perturbation theory is applicable, a T - dependency
χtop ∝ T−a−Nf/3 was established, where a ≈ 7 depends on chromoelectric screening
effects [44, 49, 54].
Using the well - established value of the topological susceptibility at T = 0, the axion

mass was determined: Ma(0) = (5.691 ± 0.051)µeV
(︂
1012 GeV

fa

)︂
[51]. Together with the

1The effective theory emerging from QCD at low T where all quarks are subject to confinement.
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range of fa one finds the zero temperature axion mass range 10−11 eV ≲ ma(0) ≲ 10−2 eV.
In fact, assuming that axions constitute all of the dark matter and using the light - quark
topological susceptibility results, [55] determines the axion mass and PQ - symmetry
breaking scale asMa(0) = 26.2± 3.4µeV and fa =(2.21± 0.29) · 1011 GeV.
The topological susceptibility is temperature dependent and its evaluation well above

the QCD crossover temperature Tc ≃ 155 MeV [56, 57] is more challenging. But axion
cosmology requires precise results; ref. [55] shows that the cosmological history of the
axion depends critically on χtop(T ) in the temperature range 400MeV ≲ T ≲ 1.1GeV.
In this temperature range, χtop is small and dominated by isolated topological objects.
Unfortunately, the density of these topological objects cannot reliably be determined
perturbatively, requiring a lattice investigation instead. Both existing lattice investigations
in this temperature range [53] and any future investigations using topology reweighting
techniques [58, 59] will be performed in so - called 2 + 1 + 1 simulations, meaning that
the u, d, s, and c quarks are included, but the b quark is not. Indeed, we are not aware
of any lattice simulations which include dynamical bottom quarks - and adding them to
the existing simulation framework would require very significant additional work. At the
highest temperatures mentioned above, however, the bottom quark cannot be considered
heavy compared to the thermal scale and may influence the topological susceptibility, i.e.,
accurate results for χtop at high temperatures with heavy quarks are not available.

1.3 Aim of this Work

We address the question of how adding a dynamical b quark alters the topological suscep-
tibility of finite temperature 2+ 1+1+1 theory compared to the 2+ 1+1 case accessible
to lattice QCD. We compare the two theories keeping the infrared physics fixed, e.g., at
the same mass and decay - constant values for the (u, d, s, c) - containing pseudoscalars.
We do this by comparing the results of a dilute caloron gas model with a heavy b quark
of physical mass and the same model where the b quark is asymptotically heavy and the
coupling is matched so the 2 + 1 + 1 theories agree in the infrared (IR)/low energy limit.
For that, we calculate χtop(T ), once with physical bottom quark massMb and once with

an asymptotic bottom massMasy, keeping the 4 - flavor effective theories in the IR fixed,
i.e., equal for both cases. The physical -mass case is treated by computing the small -mass
and large -mass expansions of the finite - temperature fermion fluctuation determinant -
which, together with known bosonic results, yields the caloron density in the dilute gas
approximation and thus the topological susceptibility - and connecting these expansions
with a “Padé - like” approximant to obtain an general -mass result.
We choose this approach of small- and large -mass expansions and an interpolation due
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to the excellent agreement of analogously obtained results at zero temperature [60] with
the general -mass result at T = 0 [61] (for a more detailed reference, cf. below (2.4.83)).
Alternatively, one would have to solve a complicated 2 - dimensional partial differential
equation, which we obtain in appendix A.
Finally, we compute the ratio χtop(Mb,T )

χtop(Masy,T )
which, together with the 4 - flavor lattice result,

gives the full 5 - flavor topological susceptibility at high temperatures. For the impatient
reader: this result is plotted and discussed in figure 3.17.
A better understanding of χtop at high temperatures and with heavy quarks directly

translates to a better understanding of the axion’s cosmological history, specifically and
especially its mass and cosmological abundance.
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2 Quantum Chromodynamics, Topology,
Instantons and Axions

2.1 The “naive” Action of Quantum Chromodynamics

Quantum Chromodynamics, as stated in chapter 1, is the relativistic quantum field theory
which, as a part of the Standard Model, describes (fermionic) quarks [62, 63]1 and their
interactions with (bosonic) gluons [64]. QCD has proven to be a very successful theory
and has thus been thoroughly discussed in a plethora of literature, e.g., [3–6], which
serve as general references for this entire section.

Symmetry in Physics

A guiding principle of physics is that nature is invariant under certain symmetry transfor-
mations, which form mathematical groups. This makes symmetry an invaluable tool for
physics, not only as, arguably, the most aesthetic and natural basis for theory building,
but also for solving concrete physical problems, finding conservation laws for conserved
charges and currents [65] or scrutinizing and remodeling one’s theory to satisfy experi-
mental results (two important examples for this are reviewed in section 2.5). [66] provides
a more detailed discussion of this topic and [67] presents a comprehensive review of the
role of symmetry and geometry in physics (in German); [68] shows, as an example, how
symmetries manifest in non - relativistic Quantum Mechanics. In detail, symmetries are
realized in a theory by having the physical constituents transform under irreducible (the
constituents are fundamental), unitary (transition probabilities between physical states
are preserved) representations of the respective symmetry groups and by constructing
the Lagrangian to be invariant under these symmetry transformations. We now give an
outline on how one constructs the QCD Lagrangian LQCD purely based on symmetry.
Excluding gravity and thus general relativity, every fundamental theory (at zero tem-

perature, for finite temperature cf. section 2.2) has to be invariant under global Poincaré
1In [62] quarks are called “aces”.
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transformations of special relativity [69], i.e., the translational and rotational symmetries
of flat, empty spacetime have to be respected as well as the equality of all inertial frames
of reference and the invariance of the speed of light [70]. The constituents of QCD, i.e.,
quarks and gluons, therefore have to transform under irreducible, unitary representations
of the Poincaré group - the Lie group of Minkowski spacetime isometries. This means
that, mathematically, the constituents form vectors spaces such that Poincaré transforma-
tions are realized as matrix operations on these vectors with the matrices obeying the
structure/rules of Lorentz transformations. These representations were first classified in
[71], where it was also shown that they are uniquely classified by the mass m ≥ 0 and
spin j ∈ {0, 12 , 1,

3
2 , ...} = N ∪ N + 1

2 of the particles and that the representations have
2j + 1 degrees of freedom for every value of momentum with j the spin of the physical
constituent. Special relativity is formulated in 4 - dimensional Minkowski spacetime R1,3

with its coordinates x and metric η:

x µM =(x 0 = t , x⃗ ) , ηµMνM = diag(1,−1,−1,−1) . (2.1.1)

We choose the mostly minus - convention for the Minkowski metric and emphasize the
underlying spacetime (in contrast to Euclidean spacetime which is later going to be used
almost exclusively) by the subscript “M”.
Furthermore, QCD is invariant under internal, local rotations, so called gauge rotations,

in 3 - dimensional color space, i.e., “exchanging colors” of the quarks. The quarks thus
also need to transform under an irreducible representation of the color rotation Lie group
SU(3) and the gluons, via their interactions with the quarks based on color charge, ensure
the invariance of the Lagrangian despite the local, i.e., x - dependent nature of these gauge
rotations [64].
In [72] it was shown that the two above types of symmetries, spacetime and internal

symmetries, can never mix their transformations and only combine trivially. They can
therefore be discussed separately.

Representation Theory of the Poincaré Group, Quarks and Gluons

DescribingR1,3 - isometries, the Poincaré group ISO(1, 3) contains translations and Lorentz
transformations. For the latter, one chooses the subgroup of proper, orthochronous Lorentz
transformations SO+(1, 3) which excludes spatial flips and preserves the temporal direc-
tion by excluding time reversals. As a Lie group, the Poincaré group is then described by
the Lie algebra iso(1, 3) with generators {P 0, P i}i= 1,...,3 for translations, {J i}i= 1,...,3 for
rotations and {Ki}i= 1,...,3 for boosts together with the Lie algebra structure
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[P 0,Ki] = iP i , [P i,Kj ] = iδijP 0 ,

[P i, J j ] = iεijkP k , [J i, J j ] = iεijkJk ,

[J i,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk ,
(2.1.2)

where the J i and Ki span the Lorentz subalgebra so(1, 3) (a good review of this and the
following is also given in [73, 74], while [66, 75] provide more mathematical rigor). A
general Poincaré transformation is then of the form exp

(︁
−iaµMPµM

)︁
exp
(︁
iθiJ i+iζiKi

)︁
with

translation vector aµM , rotational angles θi ∈ [0, 2π) and rapidities ζ⃗ = artanh(|v⃗|)êv⃗ ∈ R3

for given spatial boost velocities v⃗ = v⃗
c , |v⃗| ∈ [0, 1), which can be understood as hyperbolic

angles. A change of basis to generators

J i± =
1

2
(J i ± iKi) yields

[J i±, J
j
±] = iεijkJ j± , [J i+, J

j
−] = 0

[P 0, J i±] = ∓P i , [P i, J j±] = iεijkP k ∓ δijP 0

(2.1.3)

and shows the mixing of rotations and boosts in this basis. The Lorentz algebra is thus
isomorphic to the Kronecker sum of two separate 3 - dimensional rotation algebras [75,
proposition 4.18],

so(1, 3) ∼= su(2)⊗ 1+ 1⊗ su(2) , (2.1.4)

which are spanned by the J±, respectively. The fundamental or defining representation of
su(2) is given by generators T iSU(2), def =

σi

2 with the Hermitian, traceless Pauli matrices

σ1 =

(︃
0 1
1 0

)︃
, σ2 =

(︃
0 −i
i 0

)︃
, σ3 =

(︃
1 0
0 −1

)︃
and

[︂
σi

2 ,
σj

2

]︂
= iεijk σ

k

2 .
2 Since the J i± are

thus Hermitian, theKi need to be anti-Hermitian and the J i± - parameters are then complex
θi± = θi∓ iζi such that iθi±J i± = iθiJi+ iζiKi. All of this has profound consequences and
requires all particles to be infinite - dimensional field representations of the Poincaré group,
as we are going to discuss below. With yet another change of basis to anti-symmetric
generators

Jµν =

{︄
J0i = Ki

J ij = εijkJk
with

[JµMνM , JρMσM ] = i
(︂
ηµMσMJνMρM − (µM ↔ νM)

)︂
−
(︂
ρM ↔ σM

)︂
,

[PµM , JρMσM ] = i
(︂
ηµMσMP ρM − ηµMρMP σM

)︂ (2.1.5)

2The Dynkin index [66, 75] of this representation is I(def ) = 1
2
, as tr

(︁
σi

2
σj

2

)︁
= I(def ) δij = 1

2
δij .
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one makes the relation to Minkowski spacetime obvious, since the Lorentz transformations
themselves are then explicitly Lorentz - covariant: exp

(︁
− iaµMPµM

)︁
exp
(︁
i
2ωµMνMJ

µMνM
)︁

with anti-symmetric 2 - tensors ω containing the (hyperbolic) angles ω0i = ζi, ωij = εijkθk.
As we stated above, one looks for irreducible, unitary representation of the Poincaré

group, denoted as Π
(︁
ISO(1, 3)

)︁
, to describe quarks and gluons. Excluding translations,

the representations of the Lorentz group Π
(︁
SO+(1, 3)

)︁
can be constructed from those of

the J± - su(2) algebras, denoted as πj±
(︁
su(2)

)︁
, following (2.1.4) and are labeled (j+, j−)

by the spins/eigenvalues j±(j±+1) of the Casimir operators J2
± =(J i±)

2. In fact, exponen-
tiation shows that πj+

(︁
su(2)

)︁
⊗1(2j−+1)×(2j−+1)+1(2j++1)×(2j++1)⊗πj−

(︁
su(2)

)︁
is the Lie

algebra for the tensor product of matrix representations Πj+
(︁
SU(2)

)︁
⊗Πj−

(︁
SU(2)

)︁
. The

corresponding vector space of physical constituents is (2j+ + 1)(2j− + 1) - dimensional, as
there are 2j± + 1 polarizations for each spin j±.
One now adds the j± - spins according to the Clebsch -Gordan coefficients (see [66,

75] or [68] for a physicist’s review), which corresponds to the change of basis from
(2.1.3) to (2.1.5), i.e., one obtains irreducible representations of the full Lorentz group.
The total spins j of the particles described by the vector space corresponding to said
representations are in the range |j+ − j−| ≤ j ≤ j+ + j−, each with 2j + 1 polarizations.
This again describes a

∑︁j++j−
j = |j+−j−|(2j+1) = (2j++1)(2j−+1) - dimensional vector space.

From the point of view of Lie algebras this addition of spins is given by the isomorphism
πj+
(︁
su(2)

)︁
⊗ 1j− + 1j+ ⊗ πj−

(︁
su(2)

)︁ ∼=⨁︁j πj
(︁
so(1, 3)

)︁
=
⨁︁

j j .3 The direct sum of Lie
algebras describes, by use of the exponential map, the direct product of the associated Lie
groups g⊕ h

exp→ G×H.

Spin 0 :
The simplest, trivial representation is the (0, 0) - representation of spin 0 - scalars, which are
Lorentz singlets, i.e, J i± = 0 and SO+(1, 3) is represented by 1 = 11×1. Fundamentally,
QCD does not contain scalars.

Spin 1
2 :

The next simplest irreducible representations,
(︁
1
2 , 0
)︁
and

(︁
0, 12
)︁
, correspond to one of

the sets being in the fundamental representation, J i+ = σi

2 or J
i
− = σi

2 , respectively. The
fundamental representations for J i± are realized by J i = σi

2 and K
i = ∓iσi2 , where the

two cases are related by parity transformation. All in all,
(︁
1
2 , 0
)︁
and

(︁
0, 12
)︁
describe

right- and left - chiral (depending on the handedness of the Lorentz representation) two
component - spinors ψR,L of spin 1

2 . These fermionic spinors are parity partners, i.e., by a
3The final shorthand notation is of common use.

12



flip in the spatial coordinates x⃗ → −x⃗ the left - chiral ψL transforms as ψR and vice versa.
Since QCD does not violate parity, one has to combine them as

(︁
0, 12
)︁
⊕
(︁
1
2 , 0
)︁
to obtain

the spin 1
2 four component - Dirac spinor ψ =

(︃
ψL
ψR

)︃
.

Lorentz transformations are then represented by ψ →
(︃
exp(iθi−J

i
−) 0

0 exp(iθi+J
i
+)

)︃
ψ.

The Dirac spinor is thus an irreducible representation of the Lorentz group extended by
parity and can be used to describe quarks. The above Lorentz group - representation can be
written covariantly as exp

(︁
i
2ωµMνMS

µMνM
)︁
, where SµMνM = i

4 [γ
µM , γνM ] is a representation

of the Lorentz algebra given by the 4× 4 γ -matrices in the Weyl/chiral representation

γ0MWeyl =

(︃
0 12×2

12×2 0

)︃
, γiMWeyl =

(︃
0 σi

−σi 0

)︃
. (2.1.6)

In fact, SµMνM is a Lorentz algebra - representation for all choices of γ -matrices satisfying
the Clifford algebra

{γµM , γνM} = 14×4 · 2ηµMνM . (2.1.7)

One also chooses to impose the Hermiticity condition γµM † = γ0MγµMγ0M =

{︄
γ0M

− γiM
,

which is satisfied by (2.1.6).
An anti-quark is described by the Dirac adjoint row spinor ψ = ψ†γ0M , which in Weyl

representation means ψ =(ψ†
R ψ

†
L). It transforms inversely as ψ → ψ exp

(︁
− i

2ωµMνMS
µMνM

)︁
.

The 2 - spinors can be retrieved from ψ by the Poincaré - invariant chiral projectors

PR,L = P± =
1

2

(︁
1± γ5M

)︁
, (2.1.8)

where γ5M = iγ0Mγ1Mγ2Mγ3M is the fifth γ -matrix. It is Hermitian γ5M † = γ5M , involutory
(γ5M)2 = 14×4 and anti-commuting {γ5M , γµM} = 0. In the Weyl basis γ5M and the chiral
projectors read

γ5MWeyl =

(︃
−12×2 0

0 12×2

)︃
, PL, Weyl =

(︃
1 0
0 0

)︃
, PR, Weyl =

(︃
0 0
0 1

)︃
. (2.1.9)

Thus, γ5M then also measures the chirality of the 2 - spinors since γ5MPR,L = γ5MP± = ±P±.
Note that since chirality is determined by the type of Lorentz representation, it is a

Poincaré - invariant. After a spatial flip ψR,L might transform as their partner, but their
type of representation remains unchanged and the projectors PR,L give the same result.
Helicity, on the other hand, measures the (anti-)parallelism of momentum and spin and
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can be changed via boosts (boosting from a frame slower than the particle to a faster one)
or parity flips. Often, a particle’s helicity is also called its parity. For Dirac spinors, the
parity transformation P is realized by

Pψ(x )P−1 = γ0Mψ(t ,−x⃗ ) . (2.1.10)

For massless particles, which travel at maximum velocity, the speed of light, no such
helicity - flipping boost is possible, since the speed of light is invariant of the reference
frame and one cannot “overtake” the particle. Therefore, for massless particles chirality
and helicity are the same and the chiral projectors (2.1.8) are also the helical projectors.

Spin 1 :
The representation

(︁
1
2 ,

1
2

)︁
with both the J i+ and J i− in the fundamental representation

describes 4 - vectors. To see this, one first notes that the vector space acted upon is 4 -
dimensional: the available total spins are ∈ {0, 1}, i.e., one has a spin 1 - particle with
three polarizations and a spin 0 - singlet adding one more degree of freedom. In terms
of Lie algebras:

(︁
1
2 ,

1
2

)︁
= π1/2

(︁
su(2)

)︁
⊗ 12×2 + 12× ⊗ π1/2

(︁
su(2)

)︁ ∼= 1⊕ 0. We are going
to outline below how to reduce these four degrees of freedom down to the two known
polarizations of massless vector particles like photons or gluons.
The straightforwardly constructed representation σi

2 ⊗ 1 + 1 ⊗ σi

2 satisfies (2.1.3),
but for the case of 4 - vectors it is better to reverse engineer using the known form of

Lorentz transformations for 4 - vectors. Rotations are generated by
(︃
1 0

0 R(θ⃗)

)︃
, with

R the 3 - dimensional rotation matrix, and boosts in the x iM - direction are of the form⎛⎜⎜⎝
γ(v1) v1γ(v1)
v1γ(v1) γ(v1)

1
1

⎞⎟⎟⎠,
⎛⎜⎜⎝

γ(v2) v2γ(v2)
1

v2γ(v2) γ(v2)
1

⎞⎟⎟⎠,
⎛⎜⎜⎝

γ(v3) v3γ(v3)
1

1
v3γ(v3) γ(v3)

⎞⎟⎟⎠
with the Lorentz factor γ(v) =

(︁
1− v2

)︁−1/2. Taking the infinitesimal limits of a general
Lorentz transformation Λ(θ⃗, v⃗), one finds the generators for rotations J i = −i∂θiΛ|θ⃗ = v⃗= 0
and boosts Ki = −i∂viΛ|θ⃗ = v⃗= 0

:

J1 = −i

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , J2 = −i

⎛⎜⎜⎝
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞⎟⎟⎠ , J3 = −i

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠ ,
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K1 = −i

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K2 = −i

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K3 = −i

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠ .

(2.1.11)

These satisfy (2.1.2) and one can construct from them J± -matrices as well as Jµν accord-
ing to (2.1.3) and (2.1.5). Like the photon, the gluon carries spin 1 and is thus a vector
particle described by a Lorentz 4 - vector AµM .

Higher spins:
Representations with j+ > 1

2 and/or j− > 1
2 describe higher spins, i.e., Lorentz tensors,

and are not fundamentally realized in QCD.

As we stated above, the boost generators Ki are anti-Hermitian. This results in anti-
unitary boost transformations, i.e., none of the above representations of the Lorentz
group are unitary and they cannot describe particles. Roughly speaking, this is because
the Lorentz groups is non - compact as the velocities and rapidities take values on open
intervals (−1, 1) and (−∞,∞) unlike the rotation angles θi ∈ [0, 2π), i.e., the Lorentz
group has an infinite group space. Finite - dimensional representations of non - compact
groups (as all of the above) are always non - unitary, whereas infinite - dimensional field
representations of such groups are indeed unitary. Infinite - dimensional representations of
the Lorentz group can be constructed by considering momentum - dependent basis vectors
for the quark spinors and gluon vector fields. For fixed momenta pµM the Lorentz group
SO+(1, 3) then reduces to the stabilizer group of momentum, the rotation group SO(3)
which is unitary and of the same form for all moments. Having pµM - dependent basis
vectors is the Fourier transformed analogue to having the particles be x - dependent fields
ψ(x ) and AµM(x ) characterized by their spins. Now one also reintroduces the translation
operator PµM . The field representation of the Poincaré group is given by the generators

PµM = −i∂µM , JµMνM = −i(x µM∂νM − x νM∂µM) = x µMP νM − x νMPµM , (2.1.12)

which perform translations and rotations of the particle fields by Taylor expansion.
Since P 2 commutes with all other Poincaré group generators, one has (Schur’s Lemma)

P 2 = const. · 1 and can use this Lorentz scalar constant to characterize particles. By
Fourier transformation, the x - dependency of the fields can be written via exponentials
e±ipµMx µM , so that the constant is fixed by the energy -momentum - relation P 2 = p2 = m2.
The proper orthochronous Lorentz transformations contain no time reversals, therefore
sign(p0M) is invariant. All in all, [71] thus identifies six categories of representations:
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1a) p2 = m2, p0M > 0: massive, timelike particle,

1b) p2 = m2, p0M < 0: massive, timelike particle, traveling backwards in time
⇒ unphysical,

2a) p2 = 0, p0M > 0: massless, timelike particle,

2b) p2 = 0, p0M < 0: massless, timelike particle, traveling backwards in time
⇒ unphysical,

3) pµM = 0: vacuum,

4) p2 < 0: virtual particles.

Particle spin is the second characterizing quantity, but it is actually not associated to the
total spin operator J2 =(J i+⊗1+1⊗J i−)2 = J2

+⊗1+1⊗J2
−+2J i+⊗J i−, as J2 is not a

Casimir invariant [J2, J i±] ̸= 0 (compare (2.1.3)). Alternatively, the total spin operator can
be defined as J2 =(J i)2, which again is not a Casimir operator as [J2,Ki] ̸= 0 (compare
(2.1.2)). The actual Casimir invariant corresponding to spin isW 2 = m2j(j + 1)1, where
WµM = −1

2ε
µM

νMρMσMJ
νMρMP σM is the Pauli - Lubanski pseudovector.4 WµM is orthogonal

to the momentum WµMPµM = 0. In the particle’s rest frame pµM =(m, 0⃗ ) this Casimir
operator reduces to the total spin operator,W iMWiM = m2(J i)2, but this is not a Lorentz
invariant relation.
The QCD - particles therefore categorize as follows: quarks are 1a) - type particles with

spin 1
2 and gluons are 2a) - type particles of spin 1.

Constructing the Lagrangian of free Quarks

Using the above, one constructs the Lagrangian for free quarks Lquark. Since the action

S =

∫︂
R1,3

d4x L (2.1.13)

for any Lagrangian has to be dimensionless, Lquark has to be a Lorentz scalar of dimension
[Lquark] = Length−4 containing Dirac spinors ψ and their derivatives. Note that since
physics is described in terms of fields, Lagrangians are only Poincaré - covariant, i.e.,
x - dependent Lorentz scalars, not Poincaré - invariant. The action is Poincaré - invariant,
however.
4WµM satisfies the commutation relations [PµM ,W νM ] = 0, [JµMνM ,W ρM ] = −iηρMµMW νM − (µM ↔ νM),
[WµM ,W νM ] = −iεµMνMρMσMW

ρMPσM
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For the quarks one can construct, from the Dirac and adjoint spinors, quantities which
transform as Lorentz - scalars, -vectors, -pseudoscalars, -pseudovectors or general Lorentz -
tensors:

scalar: ψψ , pseudoscalar: ψγ5Mψ , vector: ψγµMψ ,

pseudovector: ψγµMγ5Mψ ,
(︃
symmetric

anti-symmetric

)︃
2 - tensor: ψ

(︃
{γµM , γνM}
[γµM , γνM ]

)︃
ψ , ... .

(2.1.14)
The prefix “pseudo” means that these objects gain an additional factor −1 under parity
transformations (2.1.10).
Using the Feynman slash notation aµMγµM = /a, the possible LQCD - terms are then ψψ,

ψ/∂ψ and ψ{/∂, /∂}ψ. “Pseudo” - terms are excluded, since QCD preserves parity, i.e., it is
invariant under (2.1.10), and parity - invariant terms built from ψγ5Mψ and ψγµMγ5Mψ
would be at least of order O(ψ4), i.e., interaction terms. Furthermore, terms containing
higher order symmetric combinations of /∂’s are excluded as well, since they produce
pathological effects like negative energy states, non - unitarity, etc. Employing the Clifford
algebra, the third possible term reduces to ψ/∂/∂ψ = ψ 1

2∂
2ψ, which is just the theory of

four scalar fields ψ1,2
R,L, so it is insufficient to describe fermions. The remaining terms thus

give the Lagrangian for, in general, Nf flavors of free quark fields (in QCD Nf = 6, cf.
table 1.1):

Lquark =
Nf∑︂
f=1

ψf i/∂ψf −Mfψfψf . (2.1.15)

Dirac spinors are thus of dimension [ψ] = Length−3/2. The factor i in (2.1.15) ensures
that the differential operator i/∂ −Mf be self - adjoint with respect to the fermion inner
product, i.e., (ψ(x ), ψ′(x )) =

∫︁
R1,3d4x ψ(x )ψ′(x ) =

∫︁
R1,3d4x ψ†(x )γ0Mψ′(x ),

(︁
i/∂ψ, ψ′)︁ = ∫︂

R1,3

d4x (i/∂ψ)ψ′ = −
∫︂
R1,3

d4x iψ†∂†µMγ
µM †γ0Mψ′ =

=

∫︂
R1,3

d4x iψ†∂µMγ
0MγµMψ′ =

∫︂
R1,3

d4x ψi/∂ψ′ =
(︁
ψ, i/∂ψ′)︁ , (2.1.16)

where one uses γµM † = γ0MγµMγ0M . Therefore, i/∂−M has real eigenvalues. The fermionic
equation of motion then reads

(︁
i/∂ −Mf

)︁
ψf = 0 ⇔ ψf

(︁
i
←−
/∂ +Mf

)︁
= 0 . (2.1.17)
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Gauge Invariance, the Yang -Mills Lagrangian and the QCD Lagrangian

The quarks are not only spinors to be acted upon by representations of the Lorentz
group, but also carry color charge and thus transform under irreducible, unitary rep-
resentations of the color group SU(3). Specifically, quarks are vectors in color space

C3 = span

⎛⎝êred =
⎛⎝1
0
0

⎞⎠ , êblue =

⎛⎝0
1
0

⎞⎠ , êgreen =

⎛⎝0
0
1

⎞⎠⎞⎠, transforming under the funda-
mental representation of SU(3) given by generators T aSU(3), def =

λa

2 , with the Hermitian,

traceless Gell-Mann matrices λ1 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠, λ2 =

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠, λ3 =

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠,
λ4 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠, λ5 =

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠, λ6 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠, λ7 =

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠ and

λ8 = 1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠. These satisfy commutation relations [︂λa2 , λb2 ]︂ = ifabc λ
c

2 with

f123 = 1, f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2 and f

458 = f678 =
√
3
2 .
5

The Dirac adjoint ψ describing an anti-quark is then also a row vector in dual color space,
transforming under the anti-fundamental representation, i.e., the inverse/Hermitian -
conjugate of the fundamental representation.
The defining property of gauge symmetries is their locality, i.e., they correspond to

x - dependent transformations. Therefore one considers gauge rotations ψ → U(x )ψ,
U(x ) = exp

(︁
iθa(x )λa2

)︁
∈ SU(3). The Lagrangian (2.1.15) is not invariant (not even

covariant) under such transformations, however, and thus has to be modified by replacing
∂µM with a gauge - covariant derivative

DµM = ∂µM − iAµM(x ) (2.1.18)

given in terms of the gluon vector field AµM; the coupling strength g is here absorbed
into the gluon field. This is called the “geometrical normalization” of A. Alternatively, the
“physical normalization” of the gauge field which makes the coupling strength g explicit,
DµM − igAµM , is also often used. The gluon field is of dimension [A] = [∂] = Length−1.
The structure of the gauge - covariant derivative also fixes the coupling of gluons to quarks

5As for the fundamental su(2) - representation, the Dynkin index of the fundamental su(3) - representation
is also 1

2
.
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- the gluon is an su(3) -matrix AµM(x ) = AaµM(x )λa2 and couples to quarks via matrix
multiplication - and the gluon’s transformation properties under gauge rotations:

AµM(x )→ A′ µM(x ) = U(x )AµM(x )U−1(x ) + iU(x )∂µMU−1(x ) . (2.1.19)

This transformation property ensures that DµMψ transform under gauge rotations as ψ,

DµMψ → U(x )DµMψ , (2.1.20)

and therefore that the combination ψi /Dψ be gauge - invariant. The gauge - covariant
derivative D is analogous in design to the (geometrically) covariant derivative ∇ of
general relativity. Furthermore, just as the Christoffel symbol of general relativity, which
ensures the proper tensor transformation properties of covariant derivatives ∇µTαβ···, is
not and cannot be a tensor itself, the gluon gauge field does not transform under any
representation of the gauge group. Only for constant transformations U ̸= U(x ) does it
transform by the SU(3) - adjoint representation. Finally, the fermion equation of motion
(2.1.17) also gets modified: /∂ is replaced by /D.
One has to construct the Lagrangian of free gluons, the Lagrangian of Yang -Mills theory

[76], from terms which are both Lorentz scalars and gauge - invariant. General relativity
serves as a guide: the fundamental building block of the Einstein -Hilbert action [77]
of curved spacetime and gravity is the Riemann curvature tensor Rαβγδvβ = [∇γ ,∇δ]vα,
which is given by the commutator of said covariant derivatives. Analogously, one constructs
the gauge gluonic field strength tensor

GµMνM = i[DµM , DνM ] = ∂µMAνM − ∂νMAµM − i[AµM , AνM ] =

=
(︂
∂µMAa νM − ∂νMAaµM + fabcAb µMAc νM

)︂ λa
2

(2.1.21)

which is anti-symmetricGµMνM = −GνMµM and transforms under the adjoint representation
of the gauge group GµMνM → U(x )GµMνMU−1(x ). To construct a Lorentz scalar, one can
contract the unpaired GµMνM - Lorentz indices with either another field strength, the
gluon field or derivatives. The only unique, non - vanishing and gauge - invariant field
combinations are then found to be tr

(︁
GµMνMGµMνM

)︁
and tr

(︁ ˜︁GµMνMGµMνM)︁ with the dual
field strength tensor ˜︁GµMνM = 1

2ε
µMνM

ρMσMG
ρMσM . The second term is a total derivative,

however, and with the usual arguments of fields vanishing at large distances it should
not contribute to the action. Furthermore it does not alter the equations motion and
thus does not contribute at any order of perturbation theory. Thus it is discarded for the
usual gluon Lagrangian. This is, as we are going to discuss in section 2.4, too “naive”
an approach, however, as there exist gluon configurations such that boundary terms do
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in fact contribute non - perturbatively. Therefore, one actually should include the dual
field strength - term. Neglecting it for now, however, the Yang -Mills (YM) Lagrangian for
gluons (in geometrical gauge field normalization) reads

LYM = − 1

2g2
tr
(︁
GµMνMGµMνM

)︁
= − 1

4g2
GaµMνMGaµMνM . (2.1.22)

Note that all the above and the Lagrangian (2.1.22) are straightforwardly generalized to
SU(N) - gauge theory. The YM equation of motion for free gluons is

DµMG
µMνM = 0 . (2.1.23)

All in all, the QCD Lagrangian of quarks, gluons and their interactions is given by

LQCD = Lquark+LYM =

Nf∑︂
f = 1

ψf
(︁
i /D −Mf

)︁
ψf −

1

2g2
tr
(︁
GµMνMGµMνM

)︁
, (2.1.24)

whereMf = diag(M1, ...,MNf ) is the quark mass matrix generating scalar mass terms.
Quarks are thus described by ψ(x ) = ψflavor vector⊗ψDirac spinor(x )⊗ψcolor vector(x ), while

anti-quarks are given by ψ(x ) = ψTflavor vector ⊗ ψDirac spinor(x )⊗ ψ
†
color vector(x ). The flavor

vector ψflavor vector ∈ RNf describes the distinct flavor the quark; in the SM one has Nf = 6,
cf. table 1.1, and thus êu,d,s,c,b,t = ê1, ..., 6. This split of the (flavor and) Dirac spinor from
the color vector is a result of [72], which was discussed at the beginning of this section.
The SU(N) -matrix - valued gluons are given by A(x ) = Avector(x )⊗Acolor matrix(x ), with
N = 3 in the SM. The quark - gluon interaction is described by the covariant derivative
DµM = ∂µM − iAµM . Note that the coupling strength g, which is absorbed into the gluon
field as explained below (2.1.18), is universal for all quark flavors.6

Wilson Lines and Loops

To motivate and construct Wilson lines and loops, one again goes back to the guideline of
general relativity (even though general relativity is not a gauge theory) and to drawing
analogues:

• Riemann curvature tensor Rαβγδ ←→ field strength GµMνM

• covariant derivative ∇ ←→ gauge covariant derivative D

• Christoffel symbol Γαβγ ←→ gauge field AµM .

6In the full SM quarks also carry weak isospin and weak charge, by which they couple to theW± - bosons
and Z0 - boson, respectively, as well as electric charges so that they couple to photons.
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Just like one cannot compare two observables at different points in a curved spacetime
without taking into account the effects of translation between the points, one cannot
compare quarks at different points while neglecting the influence of the gauge field.
In detail, one cannot translate ψDirac spinor without also translating the x - dependent
orientation ψcolor vector in color space.
In general relativity such a connection between neighboring tangent spaces, i.e., be-

tween the velocity vectors determining trajectories, is given by ∇ and the associated
parallel transport. In gauge theory, the comparator is the Wilson line W (x , y). One
demands that gauge transformations change it as

W (x , y)) → U(x )W (x , y)U−1(y) , (2.1.25)

where U(x ) = exp
(︁
iθa(x )λa2

)︁
∈ SU(3) is also the transformation matrix for quarks, so

that

W (x , y))ψ(y)− ψ(x ) → U(x )
(︁
W (x , y))ψ(y)− ψ(x )

)︁
and (2.1.26)

DµMψ(x ) = lim
δx µM→ 0

W (x , x + δx )ψ(x + δx )− ψ(x )
δxµM

. (2.1.27)

Indeed, this completely fixes the structure of the Wilson line and one has

WC(x , y) = P exp

(︃
−i
∫︂
C
dzµM A

µM(z)
)︃
, (2.1.28)

where C is a curve linking y and x and P is the path ordering operator for the non -
commuting gauge field matrices along that curve. Closing the curve C and taking the trace
therefore yields a gauge - invariant object, the Wilson loop

WC[A] = tr
(︃
P exp

(︃
−i
∮︂
C
dzµM A

µM(z)
)︃)︃

= tr
(︃
exp

(︃
− i
2

∫︂
Σ
dσµMνM G

µMνM

)︃)︃
, (2.1.29)

where C encloses the surface Σ, i.e., ∂Σ = C. Obviously, the Wilson line and also the
Wilson loop depend on the specific curve C.

Gauge Fixing

The Lorentz vector field AµM has four degrees of freedom, but from photons one knows
that massless vector fields only have two polarizations. The YM Lagrangian is invariant
and the resulting equations of motion are covariant under the gauge transformations
(2.1.19). This means that one can choose appropriate U(x ) to “fix the gauge”, i.e., have
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A′ µM satisfy some (set of) condition(s) G(A′) = CµMA′µM = 0, with CµM some vectorial
quantity/operator, that reduce the degrees of freedom. These gauge conditions, or gauges
for short, are

• Lorenz gauge: GLorenz(A′) = ∂µMA
′ µM = 0,

• axial gauge: Gaxial(A′) = nµMA
′ µM = 0,

• Fock - Schwinger gauge [78–80]: GFock - Schwinger(A′) = xµMA′ µM = 0,

• Dirac gauge [81]: GDirac(A′) = A′
µMA

′ µM = const.,

• Coulomb gauge: GCoulomb(A′) = ∂iMA
′ iM = 0,

• Weyl/temporal gauge: GWeyl(A′) = A′ 0M = 0 (special case of the axial gauge),

• “longitudinal axial gauge”: G“long. axial”(A′) = êlong · A⃗′ = 0 (special case of the axial
gauge).

In ordinary QCD this exhausts all possible unique CµM ’s. The advantage of Lorenz gauge
is its full Poincaré - invariance, while the axial, Fock - Schwinger and Dirac gauge are
Poincaré - covariant. Coulomb, Weyl and “longitudinal axial gauge” break Lorentz covari-
ance (Coulomb and Weyl gauge at least preserve rotational covariance). The “longitudinal
axial gauge” is used to eliminate the longitudinal component of A⃗′ in some Lorentz frame,
e.g., A′ zM = 0 for a beam in z - direction in the lab frame.
Gauges which preserve Lorentz covariance are incomplete gauges, removing only one

degree of freedom, while complete gauges which reduce the A′ µM - degrees of freedom
by two break Lorenz invariance. This corresponds to choosing a preferred Lorentz frame
in which the complete gauge condition is true, which does however not translate to
other frames [82, 83]. For example, transversality and longitudinality as used in the
“longitudinal axial gauge” are not conserved under Lorentz boosts. An example of a
complete gauge is Coulomb gauge combined with Weyl gauge. This is a prominent
example, because the residual gauge freedom left from Coulomb gauge allows one to
freely impose Weyl gauge. Complete gauges require caution when boosting to different
Lorentz frames, as the physical results in the preferred “gauge frame” are specific to
this frame and have to be translated to any other frame. Incomplete gauges do not
suffer from this problem, but, in turn, an unphysical degree of freedom, a so - called
ghost field, is allowed to remain in the theory. These ghosts have vanishing/negative
norms, negative energies, violate the spin - statistics theorem or show other unphysical
properties. Depending on the quantization scheme, these ghost fields either only occur
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as internal states of quantum interactions, but not as external, observable states, or, if
that is not the case, they have to be removed from the spectrum of all external states
explicitly by enforcing the gauge condition. Axial and Fock - Schwinger gauge in fact
have the advantage that their ghosts decouple completely from other QCD fields, so
that their contributions can safely be neglected [80]. Gauge symmetry is thus not so
much a symmetry transformation between physical states, but rather makes obvious a
redundancy in describing one and the same state. Therefore, there are also no conserved
charges of currents associated to gauge symmetry, making it unobservable as a whole. This
corresponds to the statement in the introduction that all observable states are colorless,
i.e., color - singlets, and is also why one constructs the Lagrangians to be gauge - invariant,
but only Poincaré - covariant.
Having made a big effort to construct a Poincaré - covariant formulation of QCD, one

usually employs Poincaré - covariant gauge conditions GPoincaré - cov.(A′) like the Lorenz,
axial or Dirac gauge (another example for such a gauge, which is essential for this work,
is given in (2.4.42)).
Given the Lagrangian (2.1.24), gauge fixing still has to be enforced manually. This is

because the theory has not been quantized yet. In the following section 2.2 we are going
to show how gauge fixing can be automatically ensured in quantized QCD.

2.2 Path Integral Quantization and Thermal Field Theory

The LagrangianLQCD (2.1.24) and the resulting action SQCD =
∫︁
R1,3d4x LQCD still describe

the physics of classical fields. In order to describe quantum physics, a multitude of
quantization schemes are available and described in standard literature such as [3–6],
which again serve as general references for this section. The most common quantization
schemes are the canonical quantization scheme, where classical observables and fields are
replaced by operators with adequate (anti-)commutation relations, and the path integral
formalism, which we employ for our discussions. This has several reasons [6, 84, 85]:

1. The path integral is inherently Poincaré - covariant and allows for a natural inclusion
of constraints such as gauge conditions.

2. Observables and fields remain numbers (although possibly Graßmannian, to include
anti-commutation relations), quantum mechanical phenomena follow from the
structure of the fields, the Lagrangian and the fundamental principles of Quantum
Mechanics. No additional quantization prescriptions as in the operator formalism
are required.

3. Other quantization schemes can be derived from the path integral.
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4. The path integral allows for the calculation of perturbative and non - perturbative
results; this is going to prove especially useful in this work.

5. Renormalization is comparably easy to express using path integrals.

6. The path integral can easily be modified to describe equilibrium quantum processes
in a thermal medium; this is also going to be used extensively in this work.

For the derivation of the path integral we follow again [3–6], the modification to thermal
QFT is nicely described in [84–87]. The derivation is performed for the simple case of a
real scalar field, but the generalization to vectors or spinors is discussed at length in the
literature.

2.2.1 Path Integral Quantization and the Effective Action

We introduce the path integral in non - relativistic “standard” quantum mechanics in three
dimensions, as the results are straightforwardly extended to QFT.
For a physical system in standard mechanics defined by the degrees of freedom “position

x⃗ ” and “canonical momentum p⃗ ” with a Hamiltonian H(⃗p, x⃗ , t ) = p⃗Tx⃗ − L(t), the path
integral aims at calculating the generating functional Z:7

Z =
⟨︂

x⃗final
⃓⃓⃓
e−iH(t f−t i)

⃓⃓⃓
x⃗initial

⟩︂
= N

∫︂
all possible paths x⃗ (t) from x⃗i to x⃗f

eiS[x⃗ ] ,

S[x⃗ (t )] =
∫︂ t f

t i
dt L(x⃗ ,dt x⃗ ) =

∫︂ t f

t i
dt
(︃
1

2
(dt x⃗ )TM dt x⃗ − V (x⃗ , t )

)︃
,

(2.2.1)

where N is a normalization constant, the constant mass matrixM determines the kinetic
energy and V is a (potentially time - dependent) potential.
The intuition behind Z is the following: inserting a double slit screen between x⃗i and x⃗f

allows for two separate paths to combine, i.e., the final probability at x⃗f is obtained by
squaring the sum of the two amplitudes. Adding more screens with more slits produces,
in the limit of continuously many screens with continuously many slits, an integral over all
possible paths. One of those paths corresponds to the classical path x⃗cl(t ), the remaining
paths are quantum corrections. This is illustrated in figure 2.1a. In the semi - classical
limit, where quantum effects are accompanied by a factor {ℏ} ≪ 1, the stationary phase
approximation holds and the main contribution to Z is due to those paths x⃗ (t) which are
7To emphasize the relation of the non - relativistic quantummechanical processes to real time, i.e., Minkowski
time, we use here the same time symbols as for Minkowski spacetime (2.1.1), despite the symmetry group
of non - relativistic quantum mechanics being the Galilean group (see, for example, [67, p. 53]).
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“close” to the classical solution of − δS
δx⃗

⃓⃓⃓
x⃗cl

=
(︁
M d2t x⃗ + ∂⃗V

)︁⃓⃓⃓
x⃗cl

= 0. “Close” means here
that the phase difference between the classical path and the quantum perturbation around
the classical path does not exceed π and no cancellations occur: S[x⃗cl]− S[x⃗ ] ≲ πℏ. The
region of such quantum paths close to the classical solution is called the coherence region.
To obtain the relation between the propagator ⟨x⃗f|e−iH∆t |x⃗i⟩, i.e, the matrix ele-

ment of the time evolution operator, and the integral over all paths, one splits the
translation along x⃗ (t) into infinitesimal steps using Trotter’s Lie product formula [88]
eM+N = limn→∞

(︁
eM/neN/n

)︁n (for arbitrary square matricesM,N ) and by inserting
identities id =

∫︁
R3d3x |x⃗ ⟩⟨x⃗ |:⟨︁

x⃗f
⃓⃓
e−iH∆t ⃓⃓ x⃗i⟩︁ =

=

∫︂
R3

d3x n · · ·d3x 1 ⟨x⃗f|e−iH(tn)δt |x⃗n⟩ ⟨x⃗n|e−iH(tn)δt |x⃗n−1⟩ · · · ⟨x⃗1|e−iH(tN−1)δt |x⃗i⟩ ,
(2.2.2)

where ∆t
n = δt , t j = t 0 + jδt and x⃗j = x⃗ (t j). Using p⃗ =M dt x⃗ and ⟨⃗p |x⃗ ⟩ = e−i⃗p

Tx⃗ ,
each of the matrix elements for infinitesimal translations can be evaluated by performing
a Gaussian integration:⟨︂

x⃗j+1

⃓⃓⃓
e−iH(t j)δt

⃓⃓⃓
x⃗j
⟩︂
=

∫︂
R3

d3p
(2π)3

⟨x⃗j+1 |⃗p ⟩ ⟨⃗p |e−i(
1
2
p⃗ TM−1p⃗ +V (x⃗ ,t j))δt |x⃗j⟩ =

= e−iV (x⃗j ,t j)δt
∫︂
R3

d3p
(2π)3

exp

(︃
− iδt

2
p⃗TM−1p⃗ + i⃗p T(x⃗j+1 − x⃗j)

)︃
=

=

(︃
−i
δt

)︃ 3
2 √︁

det(M)⏞ ⏟⏟ ⏞
n√N

e−iV (x⃗j ,t j)δt+ iδt
2

(⃗xj+1−x⃗j)
T

δt M
x⃗j+1−x⃗j

δt =
n
√
Neiδt L(x⃗ ,dt x⃗ ,t) .

(2.2.3)

One then plugs (2.2.3) into (2.2.2) for every n and takes the limit n → ∞ ⇒ δt ↘ 0.
This means the exponents add up to a time - integral and the integration measures combine
to form an infinite - dimensional measure:

lim
n→∞

n+1∑︂
j = 0

L
(︁
x⃗ (t j), dt x⃗ |t j , t j

)︁
δt =

∫︂ t f

t i
dt L

(︁
x⃗ (t j),dt x⃗ , t

)︁
, (2.2.4)

lim
n→∞

n+1∏︂
j = 0

d3x (t j) = D3x (t) . (2.2.5)

This measure D3x yields integration over all possible x⃗j - values in infinitesimally small
separations, i.e., over all paths connecting x⃗ (t 0) = x⃗i and x⃗ (tn+1) = x⃗f. The classical path
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x⃗cl(t ) is special, as it gives the main contribution and determines the coherence region.
The above is illustrated in figure 2.1b.
The path integral (2.2.1) in standard quantum mechanics therefore reads:

Z =
⟨︂

x⃗f
⃓⃓⃓
e−iH(t f−t i)

⃓⃓⃓
x⃗i
⟩︂
= N

∫︂ x⃗ (t f) = x⃗f

x⃗ (t i) = x⃗i
D3x (t) eiS[x⃗ ] . (2.2.6)

The standard result (2.2.6) can be straightforwardly translated to a relativistic QFT
for a real scalar field ϕ(x ) with L(ϕ, ∂ϕ) = 1

2∂µMϕ∂
µMϕ − V (ϕ). The field contains not

three, but infinitely many degrees of freedom, so that the integration measure (2.2.5) is
infinite - dimensional as well, facilitating integration over possible all ϕ - values everywhere
in spacetime:

Dϕ(x ) =
∏︂

“x ∈ R1,3 ”

dϕ(x ) . (2.2.7)

The action in (2.2.6) is simply replaced by S[ϕ], as the above derivation of (2.2.6) can be
performed almost analogously for the Hamiltonian H

(︁
π(x ), ϕ(x )

)︁
= 1

2π
2 + V ′(ϕ, ∂⃗ϕ) of

field ϕ and conjugate momentum π = ∂tϕ and with the potential V ′ = 1
2

(︂
∂⃗ϕ
)︂2

+ V (ϕ).
The normalization N can be absorbed into the path integral measure via a field rescaling.
This is possible, since N drops out of all physical observables which can only measure
relative effects (of states w.r.t. each other, the vacuum, etc.). The generating functional
of QFT again describes the transition of the system, now from vacuum at “− infinity”
(both temporal and spatial”) to “+ infinity”. Since all physical fields vanish at asymptotic
distances or times, the generating functional is therefore a vacuum transition function:

Z[ϕ] = ⟨−∞,−∞⃗|∞, ∞⃗⟩ =
∫︂

DϕDπ exp

(︃
−i
∫︂
d4x H

)︃
=

=

∫︂
Dϕ exp

(︃
i

∫︂
R1,3

d4x L(ϕ, ∂ϕ)
)︃
.

(2.2.8)

It is important to note that the vacuum |0⟩ of a free theory with V (ϕ) = M2ϕ2 is not the
same as that that of an interacting theory with higher order terms V ⊃

∑︁
N ∋ k > 2 λkϕ

k.
We denote the vacuum of the (full) interacting theory by |Ω⟩.
The QFT path integral (2.2.8) works not only for real scalar fields, but also for complex

ones as well as vector fields and spinors like the gauge fields A and fermion fields ψ in
the QCD Lagrangian (2.1.24). The integral measures are then to be read as (for SU(N)
gauge theory):
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(a). Taken from [4]: The path integral of standard quantum mechanics as the limit of continuously
many screens with continuously many slits. The straight line in the right sketch is the classical
path and the curved lines depict quantum fluctuations around it.

(b). Taken from [3] and modified: Illustration of the space separation in the non - relativistic path
integral. By integrating over all x⃗ (t j), all possible paths are covered. The solid line ( )
shows the classical path x⃗cl, the dashed lines ( ) depict two possible quantum paths
(in the coherence region). It is important to note that the quantum fluctuations around x⃗cl
vanish at the start and end point.

Figure 2.1
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DAµM =
N2−1∏︂
a= 1

3∏︂
µM= 0

∏︂
x ∈ R1,3

dAaµM(x) , Dψf =

Nf∏︂
f = 1

4∏︂
αDirac= 1

N∏︂
ccolor= 1

∏︂
x ∈ R1,3

dψαDirac ccolorf (x )

(2.2.9)
and analogously for Dψf . Importantly, since fermion operators satisfy anti-commutation
relations in canonical quantization in order to reproduce Fermi - Dirac statistics and the
Pauli exclusion principle, the fermion fields ψf and ψf in the path integral have to be
anti-commuting as well. Therefore they need to be anti-commuting Graßmann numbers
[89] path integral is performed as a Berezin integral [90]. The path integral for QCD
without gauge fixing then reads

Z[ψf , A
µM ] =

∫︂
Dψf Dψf DAµM exp

(︃
i

∫︂
R1,4

d4x ψf
(︁
i /D −Mf

)︁
ψf −

1

2g2
tr
(︁
GµMνMGµMνM

)︁)︃
(2.2.10)

In order to introduce the effective action Γ and the effective potential Veff, two concepts
of great importance for this work, one usually considers the real scalar field and adds an
external source term J(x )ϕ(x ) to the Lagrangian L = 1

2∂µMϕ∂
µMϕ−V (ϕ) in (2.2.8). The

generating functional is then written as

Z[J ] = eiW [J ] = ⟨−∞,−∞⃗|∞, ∞⃗⟩J =

∫︂
Dϕ exp

(︃
i

∫︂
R1,3

d4x (L+Jϕ)
)︃
. (2.2.11)

A “functional Legendre transform” W [J ] = −i ln(Z[J ]) → Γ[ϕcl] yields the 1 - particle -
irreducible effective action

Γ[ϕcl] = W [J ]−
∫︂
R1,3

d4x J(x )ϕcl(x ) (2.2.12)

given in terms of the classical field ϕcl(x ) = −
δW [J ]
δJ(x ) =

⟨Ω|ϕ|Ω⟩J
⟨Ω|Ω⟩J

= ⟨ϕ(x )⟩J , where |Ω⟩J is
the vacuum of the interacting theory in the presence of the source J . This means ϕcl is the
normalized vacuum expectation value (VEV) of ϕ in presence of the source J . In turn, one
also has J(x ) = − δΓ[ϕcl]

δϕcl(x )
. Setting the external source to zero J = 0, the effective action Γ

andW agree, Γ[ϕcl]|J = 0 = −i ln(Z[J = 0]), and the classical field vanishes ϕcl|J = 0 = 0.
An expansion of the effective action (with J ̸= 0) in ϕcl yields

Γ[ϕcl(x )] =
∫︂
R1,3

d4x
(︁
Veff(ϕcl) +X(ϕcl) ∂µMϕcl ∂

µMϕcl +O
(︁
(∂ϕcl)

4
)︁)︁
,

Veff(ϕcl) = V (ϕcl) +O(quantum corrections)
(2.2.13)

with Veff the Coleman -Weinberg effective potential [91, 92]. The effective potential can
also be understood as the sum over all ϕcl - vacuum diagrams. In case of a translationally
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invariant, i.e., constant, classical field ϕcl ̸= ϕcl(x ), the effective action takes the form

Γ[ϕcl = const.] = vol
(︁
R1,3

)︁
Veff(ϕcl) . (2.2.14)

Just as the path integral, all of this also generalizes to QCD.

2.2.2 Gauge fixing in the Path Integral Formalism

The QCD - path integral in (2.2.10) shows that a homogeneous and (usually) Poincaré -
covariant gauge fixing condition G(A) = CµMAµM = 0 (homogeneity implies linearity and
thus excludes the Dirac gauge)) can be inserted into the path integral as [93, 94]

id =

(︄∫︂
SU(N)

DU

)︄
δ
(︁
G(A)

)︁
det FP . (2.2.15)

Here DU is the gauge - invariant group measure and this integral therefore yields an
unphysical, diverging constant that drops out via the vacuum - normalization of any
physical observable. The equally gauge - invariant Faddeev - Popov determinant

det FP = det

(︃
δG(A′(x ))
δU(x ′)

)︃
, (2.2.16)

with A′ as given in (2.1.19), is needed analogously to id =
∫︁
Rnd

nx δ(n)
(︁
f⃗(x⃗)

)︁
det
(︂
∂f⃗
∂x⃗

)︂
for functions f⃗ : Rn → Rn. One can rewrite det FP as an additional functional integral

det FP =

∫︂
DcDc exp

(︃
−i
∫︂
R1,3

d4x ca(CµMD
µMc)a

)︃
=

∫︂
DcDc exp

(︃
−i
∫︂
R1,3

d4x Lghost
)︃

(2.2.17)
over Graßmannian Lorentz - scalar (spin 0), gauge - adjoint fields c, c . The fact that these
fields are bosons yet anti-commute like fermions and thus satisfy Fermi - Dirac statistics
describes their unphysical nature. They are called Faddeev - Popov ghosts and are the ghost
fields related to the incompleteness of Poincaré - covariant gauges discussed in section 2.1.
Finally, the gauge condition δ

(︁
G(A)

)︁
can be turned into an additional L - term

Lgauge = −
1

2ξ
Ga(A)Ga(A) = −1

ξ
tr
(︁
G(A)G(A)

)︁
, (2.2.18)

where ξ ≥ 0 acts as a Lagrange multiplier. The Lagrange multiplier can appear in objects
like propagators, but finally drops out when physical observables are calculated.
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Setting ξ equal to some number, which has to be done only after quantization, i.e., after
expectation values have been calculated, can reproduce gauges discussed in the previous
section 2.1. For example, for CµM = ∂µ, taking ξ ↘ 0 is called the Landau gauge and is
equivalent to the Lorenz gauge. Setting instead ξ = 1 is called the Feynman - ’t Hooft
gauge and ξ = 3 is the lesser known Yennie gauge [95].
The full generating functional and Lagrangian to be used for path integral quantization

of QCD is therefore given by (2.2.10) together with (2.2.17) and (2.2.18):

Z[ψf , A
µM ] =

∫︂
Dψf Dψf DAµM exp

(︃
i

∫︂
R1,4

d4x L(ψf , AµM , c)
)︃

with (2.2.19)

L(ψf , AµM , c) = LQCD+Lgauge+Lghost =

=

Nf∑︂
f = 1

ψf
(︁
i /D −Mf

)︁
ψf −

1

2g2
tr
(︁
GµMνMGµMνM

)︁
− 1

ξ
tr
(︁
G(A)G(A)

)︁
− 1

N
tr
(︁
c CµMD

µMc
)︁
,

(2.2.20)

where it was used that the Dynkin index of SU(N) in the adjoint representation is N .

2.2.3 Thermal Field Theory in the Imaginary Time or Matsubara Formalism

In order to describe quantum processes in a thermal medium, i.e., taking place at finite
temperature T > 0, three main formalisms have been developed. [84, 86, 87] present
detailed reviews of these three formalisms and serve as general references for all of the
following.
The imaginary time orMatsubara formalism based on [96, 97] is computationally easiest

and can be obtained from the usual path integral by a simple change of coordinates
from real/Minkowski time x 0 = t to imaginary time t = it which serves as an “inverse
temperature” - variable t ∈ [0, β = T−1], together with β - (anti-)periodicity conditions for
(fermionic) bosonic fields. Its downside, however, is that the imaginary time formalism is
limited to describing fluctuations around equilibrium configurations.8 Good reviews of
this formalism are for example presented in [85, 98] and since we are going to employ
this formalism for our work, these also serve as general references for this section.
The real time or Schwinger - Keldysh formalism based on [99–103] is both conceptually

and computationally more elaborated, but can in turn describe systems evolving in real
time t far away from any equilibrium. One finds a good overview of this formalism in
[104], for example.
8Time evolution could be described by analytic continuation back to real time, but both the general validity
and specific application of this procedure are non - trivial [84].

30



Thermofield Dynamics, also called the Umezawa formalism, is based on [105, 106] and
mainly works as an operator formalism complementary to real time formalism, as it can
answer questions outside the scope of the latter. Thermofield Dynamics can, however,
also be rewritten as a path integral. It describes real time evolution at finite temperatures
(close to equilibrium). As an example, [107] reviews this formalism in more detail.
The aforementioned change of coordinates from real time to imaginary time is called

Wick rotation [108]. At zero temperature it is defined as

R1,3 → R4 ⇒ x =(t , x⃗ )→ X =(X⃗ = x⃗ , X4 = t = it) ,
ηµMνM = diag(1,−1,−1,−1)→ −δµν = −diag(1, 1, 1, 1) .

(2.2.21)

This gives vµM → vµ =

{︄
viM

iv0M
for vectors, wµM → wµ =

{︄
wiM
− iw0M

for covectors and

vµMηµMνMw
νM = v0Mw0M − viMwiM → −v0w0 − viwi = −vµδµνwν for scalar products. We

define the Euclidean “4 - radius” for T = 0 as |X| =
√
XµXµ = R. Under the Wick rota-

tion, the action of a real scalar field behaves as

d4x = dtd3x = −i dtd3X = −i d4X
(∂µMϕ)

2 = −(∂µϕ)2 , VM(ϕ) = V (ϕ)

}︄
⇒

⇒ iSM = i

∫︂
R1,3

d4x LM → −i
∫︂
R4

(−i)dX4

(︃
1

2
(∂µϕ)2 + V (ϕ

)︃
⏞ ⏟⏟ ⏞

L = EM

= −S (2.2.22)

The Euclidean Lagrangian equals the real time - energy of the system and the formerly
oscillatory action now acts as an exponential damping in the imaginary - time generating
functional Z[ϕ] =

∫︁
Dϕe−S[ϕ] (cf. (2.2.8)), which is called partition function due the

resemblance to statistical physics.
To describe finite temperatures, one restricts the spacetimeR4 in the temporal direction

and introduces a periodicity in this direction by identifying t = β ˆ︁= 0. Topologically, this
closes the temporal spacetime dimension to a circle of radius β

2π :

R4 → R3 × S1
rad.= β/2π

⇒ X =(X⃗, t)→ X =(X⃗ = X⃗,X4 = t = t ∈ [0, β]) .
(2.2.23)

In this spacetime we define the Euclidean, spatial “3 - radius” |X⃗| =
√
XiXi = R. Due to

the t - periodicity ϕ(X + βê4) = ϕ(X), the scalar field can be expanded in a Fourier series

ϕ(X⃗, t) =
1√
β

∑︂
α ∈ Z

˜︁ϕ(X⃗, iωbosα ) e−iω
bos
α t , ωbosα =

2πα

β
, (2.2.24)
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where ωbosα are called the bosonic Matsubara frequencies [96, 97].
For the Euclidean γ -matrices we choose a analogous transformation to the vectors,

γµM → γµ =

{︄
γiM

iγ0M
, so that they are anti-Hermitian γµ† = −γµ and satisfy the Clifford

algebra {γµ, γν} = −2δµν1. The fifth Euclidean γ -matrix γ5 = γ1γ2γ3γ4 is Hermitian
γ5

†
= γ5, involutory (γ5)2 = 1 and anti-commuting γ5γµ = −γµγ5. The Dirac operator

Wick rotates as /∂M, /DM → −/∂,− /D, where we explicitly marked the real time - derivatives
with the subscripts “M”.
One Wick rotates (2.2.19) together with (2.2.20) analogously to (2.2.22), using now∫︁

R1,3d4x (i/∂M, i /DM) → −
∫︁
R4d4X(i/∂, i /D) as well as GµMνMGµMνM → GµνGµν , and finds

the QCD partition function at T > 0:

Z[ψf , A
µ] =

∫︂
Dψf Dψf DAµ exp

⎛⎝−∫︂
R3×S1

rad. = β/2π

d4X L(ψf , Aµ, c)

⎞⎠ with (2.2.25)

L =

Nf∑︂
f = 1

ψf
(︁
i /D +Mf

)︁
ψf +

1

2g2
tr
(︁
GµνGµν

)︁
± 1

ξ
tr
(︁
GT(A)G(A)

)︁
+

1

N
tr
(︁
c CµDµc

)︁
.

(2.2.26)

Here the sign of the gauge term depends on the Wick rotation of the chosen gauge
condition. It is also important to note the Graßmannian fermion (and ghost fields) have
to satisfy anti-periodicity conditions ψ(X + βê4) = −ψ(X) and are therefore expanded
in terms of fermionic Matsubara frequencies [96, 97]

ψ(X⃗, t) =
1√
β

∑︂
α ∈ Z

˜︁ψ(X⃗, iωfermα ) e−iωαt , ωfermα =
2π
(︁
α+ 1

2

)︁
β

. (2.2.27)

Analogously to (2.2.12), (2.2.13) and (2.2.14) one defines the effective action and
potential in the imaginary time - formalism by Γ = − ln(Z) and, for a real scalar field,

ΓE[ϕcl = const.] = vol
(︂
R3 × S1

rad.= β/2π

)︂
Veff(ϕcl) = βV Veff(ϕcl) , (2.2.28)

where βV = vol
(︂
R3 × S1

rad.= β/2π

)︂
= β vol

(︁
R3
)︁
is the volume of spacetime. This can be

applied to QCD as well.
Finally, the temporal periodicity of R3 × S1

rad.= β/2π
allows for the definition of a special

Wilson loop (cf. (2.1.29)): the Polyakov loop [109] is a Wilson loop with the path C
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characterized by a constant and purely temporal velocity so that C and closes by periodicity

P (X⃗) = WC = {X⃗ + tê4 , 0≤ t≤ β} = tr
(︃
T exp

(︃
−i
∫︂ β

0
dt A4(X)

)︃)︃
= tr

(︁
Ω(X⃗)

)︁
. (2.2.29)

T denotes the time ordering of A4 along C, which is a special case of path ordering.
Ω denotes the untraced Polyakov loop, which is going to be important for the short
discussion on gluon field - topology at finite temperatures in section 2.4.2 and for the
finite - temperature effects in sections 3.1.2 and 3.1.3. 9

2.2.4 Symmetry Group of Thermal Field Theory

As we discussed above, finite temperature field theory in the imaginary time formalism
takes place in the Wick rotated and temporally bounded spacetime R3 × S1

rad.= β/2π

equipped with a Euclidean metric. Wick rotating R1,3 → R4 to Euclidean spacetime at
zero temperature maps the group of Lorentz transformations SO+(1, 3) of Minkowski
spacetime to the group SO(4) of 4 - dimensional rotations in R4. This group SO(4) is
constructed by Lie algebra exponentiation using the Wick rotated versions of the Lorentz
group generators JµMνM (cf. (2.1.5)).
At finite temperature T = β−1, the corresponding spacetime R3 × S1

rad.= β/2π
has a

distinct time direction in which it is bounded, as opposed to the open space directions.
This breaks the 4 - dimensional rotation symmetry group SO(4) down to the 3 - dimensional
one SO(3) [87, 98]. From the physical point of view, the presence of the external heat
bath implies a preferred Lorentz frame, the heat bath’s rest frame, which breaks Lorentz
invariance. Rotations (and translations) are still symmetries of the system allowed by the
heat bath, but Lorentz boosts are not [87]. Thus, the Lorentz group SO+(1, 3) is broken -
as [110] proves in detail - down to SO(3) and the loss of boost symmetry corresponds to
the breaking of SO(4) in Euclidean spacetime. Nevertheless, [86] argues that one can
still formulate thermal field theory in a manifestly SO(4) - invariant way (translations are
not impacted by this and are treated as in Minkowski spacetime) - a result one obtains
“by accident” and “without justification” by simply employing the change of coordinates
(2.2.21) in the path integral and enforcing the (anti-)periodicity conditions. It must
therefore always be remembered that this is merely notational elegance and does not
reflect an actual underlying symmetry, as is the case for T = 0 (compare the construction
of the QCD Lagrangian in section 2.1).

9[54, 85]
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2.3 Chiral Symmetry and Chiral Perturbation Theory

Chiral Symmetry and the Eightfold Way

Take the QCD - Lagrangian (2.1.24) or its gauge fixed version appearing in the path integral
(2.2.20) and consider the simplified version of massless quarksMf = 0 ∀f .10 Note that
in this theory the left- and right - chiral 2 - spinors forming the Dirac spinor decouple.
Classically, this simplified Lagrangian is invariant under the chiral symmetry group we
also mentioned in the introductory section 1.2:

SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A ,

ψf
SU(Nf )V→ exp(iθaT a)ff ′ ψf ′ ψf

SU(Nf )A→ exp
(︁
iϑaT aγ5M

)︁
ff ′

ψf ′

ψf
U(1)V→ eiαψf ψf

U(1)A→ eiβγ
5Mψf ,

(2.3.1)

where T a with [T a, T b] = ifabcT c, a, b, c = 1, ..., N2
f − 1 are the generators of SU(Nf )V

and T aγ5M with [T aγ5M , T bγ5M ] = ifabcT c (T a and γ5M act on different spaces and thus
commute) are the generators of SU(Nf )A. Note also [T a, T bγ5M ] = ifabcT cγ5M . One forms
two separate algebras T a± = 1

2(T
a±T aγ5M) with [T a±, T b±] = ifabcT c±, [T a±, T b∓] = 0, which

describe the separate rotations of theNf right- and left - chiral 2 - spinors. The chiral group
is therefore isomorphic to the symmetry group SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A.
These are two sets of SU(Nf ) isospin symmetries, one for the left- and one for the right -
chiral 2 - spinors, with Nf polarizations each, one global phase multiplication for all flavors
and one such phase multiplication that differentiates by chirality and multiplies left- and
right - chiral spinors by opposite phases (as γ5MPR,L = ±PR,L, cf. (2.1.8)). The conserved
currents j and charges Q according to [65] then are

• SU(Nf )V : jaµMV = ψfγ
µM(T a)ff ′ ψf ′ QaV =

∫︂
R3

d3x ja 0MV (2.3.2)

• SU(Nf )A : jaµMA = ψfγ
µMγ5M(T a)ff ′ ψf ′ QaA =

∫︂
R3

d3x ja 0MA (2.3.3)

=⇒ jaµMR,L = ψfγ
µMPR,L(T a)ff ′ ψf ′ QaR,L =

∫︂
R3

d3x ja 0MR,L (2.3.4)

• U(1)V : jµMV = ψfγ
µMψf QV =

∫︂
R3

d3x j0MV = nR + nL (2.3.5)

• U(1)A : jµMA = ψfγ
µMγ5Mψf QA =

∫︂
R3

d3x j0MA = nR − nL , (2.3.6)

10All of the following holds analogously after Wick rotation to Euclidean spacetime.
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where the QaR,L are N2
f − 1 isospin components for the left- and right - chiral 2 - spinors

each, QV = nR + nL is the total number of 2 - spinor fermions (nR/L is the number of
right-/left - chiral fermions) and QA = nR − nL is the net chirality.11
The massless limit is a good approximation for QCD at very high temperatures where

Mf ≪ T ∀f . For temperatures where the thermal energy of the quarks drops below
their binding energy, however, the axial part of the symmetry is spontaneously broken in
quantized QCD [32], which is due to the non - zero expectation value for quark - anti-quark
condensates

⟨︁
vac

⃓⃓
ψψ
⃓⃓
vac
⟩︁
= ⟨ψLψR+ψRψL⟩, as we discussed in section 1.2. QCD is then

described by an effective field theory called chiral perturbation theory which we briefly
discuss below. The quark condensate is conserved under SU(Nf )V and U(1)V, but neither
under SU(Nf )A nor under U(1)A. According to the Goldstone theorem [113–115], one
thus expects the existence of N2

f − 1 + 1 = N2
f massless pseudoscalar Nambu -Goldstone

bosons to reflect the spontaneously broken symmetry degrees of freedom.12
The real Nf = 6 quarks carry massesMf (cf. table 1.1), which explicitly breaks all but

the U(1)V - symmetry, even at T = 0:

• SU(Nf )V : ∂µMj
aµM
V = −i(Mf −Mf ′)ψf (T

a)ff ′ ψf ′ ̸= 0 (2.3.7)
• SU(Nf )A : ∂µMj

aµM
A = iψf{T a,Mq}ff ′ γ5Mψf ′ ̸= 0 (2.3.8)

• U(1)A : ∂µMj
µM
A = 2i

∑︂
f

Mfψfγ
5Mψf ̸= 0 , (2.3.9)

with the quark mass matrixMq = diag(M1, ...,MNf ).
One notes, however, that for quarks with “similar masses” the vectorial isospin rotations

are still good approximate symmetry transformations. For light quarks ψl even the axial
isospin rotations and U(1)A would still be good approximate symmetries, were it not for
the spontaneous breaking. The chiral symmetry breaking scale Λχ, which we discuss
below, and the QCD scale ΛQCD ∼ −⟨ψlψl⟩ thus separate the quarks into three heavy
quarks Mfh > Λχ, QCD, i.e., c -, b - and t - quark, which break chiral symmetry explicitly,
and three light quarksMfl ≪ Λχ, QCD, i.e., u -, d - and s - quark, where the spontaneous
symmetry breaking of the axial symmetries dominates. The light quarks have mass
differencesMd −Mu ∼ 2.5MeV andMs −Mu,d ∼ 100MeV smaller than the interaction
scale ΛQCD ≈ 340MeV and much smaller than the chiral symmetry breaking scale Λχ.
Therefore, SU(3)V remains as an approximate symmetry for the subspace of the three
light quarks, while SU(3)A ⊗ U(1)A are spontaneously broken.13

11[3, 4, 38, 46, 111, 112]
12[3, 4, 46, 112, 116]
13[4, 111, 112]
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From the SU(3)V - symmetry for the three light quarks and with (anti-)quarks trans-
forming under the (anti-)fundamental representation (cf. ψflavor vector below (2.1.24)),
one deduces from spin addition (equivalent to the discussion about the Lorentz group
in section 2.1) that mesons built from u-, d- and s - quarks are described by the product
representation 3⊗3 = 8⊕1 and that baryons are described by 3⊗3⊗3 = 10⊕8⊕8⊕1 (for
the representation theory of SU(3) see also [75]). This means that light quark -mesons
should exist as meson nonets, i.e., meson octets accompanied by a singlet, all of equal
mass, and that baryons should come as decuplets together with an octet and a singlet.
Furthermore, there should be an octet together with a singlet state of almost massless/very
light pseudoscalar pseudo -Nambu -Goldstone bosons (pNG bosons), where the small
mass is a result of the light explicit symmetry breaking. This grouping of mesons and
baryons is called the eightfold way [117, 118].14

In fact, baryons and mesons are measured to be grouped exactly as described above.
However, their masses are only roughly equal, as Ms ≈ 27 Mu+Md

2 and other quantum
effects such as excitations, spin - alignment, fine structure effects, etc. contribute. Also
some states like the lightest baryon singlet state Λ1 are excluded by Fermi - Dirac statistics
at ground level. The lightest meson octet consists of (unless the temperature dependency
is explicitly denoted, all particle masses are to be understood at T = 0)

• three pionsMπ± ≈ 140MeV,Mπ0 ≈ 135MeV

• four kaonsMK± ≈ 494MeV,MK0 = MK0 ≈ 498MeV

• η -mesonMη ≈ 548MeV.

The kaons and η are comparably heavier, because they contain the s - quark. If one had
excluded the s - quark from the light quarks and considered only the even better approx-
imate symmetry SU(2)V of u and d, one would have found the product representation
2⊗2 = 3⊕1 containing the triplet of almost equal mass pions. This octet of lightest mesons
serves as the octet of pseudoscalar pNG bosons for the SU(3)A - symmetry: eight pNG
bosons for the 8 - dimensional SU(3)A. However, both the above octet and the pion triplet
lack an accompanying singlet and the only possible candidate is the η′ -meson, which is
too heavy to both be part of the same nonet and a pNG boson for U(1)A: Mη′ ≈ 958MeV.
This is the η - η′ - puzzle we mentioned in the introduction 1.2. It is resolved by topological
effects as we are going to discuss in section 2.5.1.15

14[4, 33, 38, 111]
15[2–4, 33, 38, 111, 119]
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The next heavier meson group is formed by the octet consisting of

• three ρ -mesonsMρ±,0 ≈ 775MeV

• four K∗(892) -mesonsMK∗± ≈ 892MeV,MK∗ 0 = MK∗ 0 ≈ 896MeV

• ω -mesonMω ≈ 783MeV

and the accompanying the singlet ϕ -mesonMϕ ≈ 1019MeV. The lightest baryon group
consists of the decuplet containing

• four ∆ - baryonsM∆++,±,0 ≈ 1.23GeV

• three Σ∗ - baryonsMΣ∗+,0 ≈ 1.38GeV,MΣ∗− ≈ 1.39GeV

• two Ξ∗ - baryonsMΞ∗ 0 ≈ 1.53GeV,MΞ∗− ≈ 1.54GeV

• Ω - baryonMΩ− ≈ 1.67GeV,

the octet containing

• proton and neutronMp ≈Mn ≈ 0.94GeV

• Λ0 - baryonMΛ0 ≈ 1.12GeV

• three Σ - baryonsMΣ+,0 ≈ 1.19GeV,MΣ− ≈ 1.20GeV

• two Ξ - baryonsMΞ0 ≈ 1.31GeV,MΞ− ≈ 1.32GeV,

an additional octet given in [119, Table 5.3] and the singlet given in [119, eq. (5.62)],
which is forbidden by the Pauli exclusion principle. One way of setting the chiral symmetry
breaking scale is given by the mass scale of these lightest hadrons made up of the light
quarks (excluding the lightest meson octet of pNG bosons) and one usually chooses
Λχ ∼Mρ ≈ 775MeV.16
Note also that in low energy QCD, which describes most of our current universe, the

mass of hadrons is much larger than the mass sum of their constituent quarks (compare the
masses of themesons and baryons in this section with the quarkmasses in table 1.1). In fact,
most of the hadron mass is due to the quark binding energies. Therefore, one can define
so - called constituent quark masses, i.e., the “effective” masses of quarks when making
up matter. For the light quarks these constituent masses are Mu,d constituent ≈ 336MeV
andMs constituent ≈ 509MeV. This makes SU(3)V for the light quarks a good approximate
symmetry - and it is a basis for chiral perturbation theory which we discuss next.17

16[2, 4, 111, 119]
17[2, 6]
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Chiral Perturbation Theory

The following is only a short summary of chiral perturbation theory, as this effective theory
describing QCD at low or zero temperatures is not the focus of this work. Nevertheless we
mention it here, both for the sake of completeness and since chiral perturbation theory is
required to determine the mass of the axion (cf. section 2.5.3) at low or zero temperatures
- complemented by our efforts to provide a better understanding of the axion mass at high
temperatures. Extensive reviews of chiral perturbation theory can be found in [112] and
[120], for example.
At low temperatures/energies, where the QCD coupling strength becomes large, the

perturbative model of quarks and gluons (i.e., QCD as discussed in sections 2.1 and 2.2)
is no longer a suitable theory. Instead, quark confinement shows that in this temperature
regime nature is described by an effective theory in which the degrees of freedom are the
light hadrons given above. This theory is called chiral perturbation theory [121–124].18
According to the (approximate) SU(3)V - symmetry, the light hadrons are grouped in
SU(3) -matrices. For the pNG bosons this matrix is given by

U = exp
(︂ i

fπ
πaT aSU(3), def

)︂
= exp

⎛⎜⎝ i

fπ

⎛⎜⎝π
0 + η√

3

√
2π+

√
2K+

√
2π− −π0 + η√

3

√
2K0

√
2K− √

2K0 − 2√
3
η

⎞⎟⎠
⎞⎟⎠ (2.3.10)

with the pion decay constant fπ(T ↘ 0) = (92.32 ± 0.13)MeV [2], i.e., the strength of
the matrix element of the axial - vector current operator between a 1 - pion state and the
vacuum. To construct the massless Lagrangian, one again follows the guiding principle of
symmetry and an intuitive “theorem” from [112] - “ one writes down the most general
possible Lagrangian, including all terms consistent with assumed symmetry principles,
and then calculates matrix elements [...] to any given order of perturbation theory,
the result will simply be the most general possible S -matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetry principles”19:
LchPT ⊃

f2π
4 tr(∂

µU∂µU †) +
∑︁

i+j ≥ 2 ci,j

(︂(︁
tr(∂U∂U †)

)︁i · tr(︁(∂U∂U †)j
)︁)︂
, where the traces

contain all unique index contractions. This massless Lagrangian yields standard kinetic
terms for the mesons as well as all interactions terms and is invariant under SU(3)L ⊗
SU(3)R - transformations U → gLUg

†
R. In order to break the SU(3)A - symmetry as in QCD

of massive quarks (cf. (2.3.8)) - and thus break SU(3)L ⊗ SU(3)R down to SU(3)V -, one
adds a mass term LchPT ⊃ −

⟨qlql⟩
3 tr(MqlU

†+UM †
ql) to the purely kinetic chiral Lagrangian.

18Note that chiral perturbation theory is not required because QCD “fails” below Tc, but because it fails as a
perturbation theory. Non - perturbative QCD models like lattice QCD still work at low temperatures.

19The “theorem” is reiterated in [125] and its implications were proven in [126].
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The mass matrix for the three light quarks Mql (cf. (2.1.24) is taken to be complex for
convenience (cf. section 2.5.3). At leading order, the Lagrangian of chiral perturbation
theory for the pNG bosons reads

LchPT ⊃
f2π
4
tr(∂µM U∂

µMU †)− ⟨qlql⟩
3
tr(MqlU

† + UM †
ql
) . (2.3.11)

Chiral perturbation theory also describes baryons and one constructs that part of the
theory based on baryonic matrices like the octet matrix⎛⎜⎜⎝

Σ0
√
2
+ Λ0

√
6

Σ+ p

Σ− −Σ0
√
2
+ Λ0

√
6

n

Ξ− Ξ0 −
√︂

2
3Λ

⎞⎟⎟⎠ , (2.3.12)

but baryonic chiral perturbation theory is outside of the interest if this work.20
The pion decay constant is related to the u - and d - quark condensates ⟨uu⟩ ≈ ⟨dd⟩

(neglecting the s - quark) by the Gell-Mann -Oakes - Renner relation

M2
πf

2
π = −⟨uu⟩(Mu +Md) (2.3.13)

(for a detailed discussion of this relation at finite temperature see [127]), which gives
another way of setting the chiral symmetry breaking scale as Λχ ∼ 4πfπ ≈ 1.2GeV.
Regardless of the definition chosen for Λχ, it marks an internal momentum/energy scale at
which chiral perturbation theory breaks down. This return to regular QCD is an analytic,
gradual transition, so assigning a concrete value to Λχ always depends on convention.
Furthermore,Mρ and 4πfπ differ by a factor of approximately 1.5, i.e., an O(1) - number.
To make the nature of Λχ as a momentum cut - off scale more obvious, one can re - scale
the Lagrangian coefficients of full chiral perturbation theory as ci,j

Λi+jχ
. This is also the origin

of the factor 4π in the pion decay constant - definition of Λχ, as this factor results from
a geometrical factor in 4 - dimensional loop diagrams corresponding to the interactions
described by the higher order terms. All in all, fπ ̸= 0 is a necessary and sufficient
criterion for spontaneous chiral symmetry breaking, while ⟨qlql⟩ ̸= 0 is a sufficient, but
not a necessary condition.21
The temperature of chiral perturbation theory breakdown, called the critical temperature

Tc ≈ 156MeV [128] is (much) smaller than ΛQCD (Λχ), however. This is because, just
as, for example, in black body radiation, the thermal meson/baryon -medium contains
20[4, 112, 120]
21[4, 112, 120]
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a significant ratio of states with energies ∼ 3T (6T for fermions). This does not mean
that at Tc the average center of mass energies of the particles already extend the quark
condensate binding energy ΛQCD, but that a large enough number of mesons reach energy
scales high enough to dissolve light quark condensates and close to Λχ, meaning that it is
no longer sensible to use chiral perturbation theory for T ≳ Tc.22

2.4 Topology of SU(N) - Gauge Theories and the Interplay with
Particles

After having discussed QCD, its symmetries and its quantization - all based on the La-
grangian (2.1.24) we introduced in section 2.1 -, we are now going to elaborate why we
called this Lagrangian “naive” in the corresponding section title. The reason is that it
misses the topological effects of QCD; in detail, it does not take into account the non -
trivial topology of SU(N) Yang -Mills (YM) theory describing gluons, the importance of
which (in the IR limit) was first recognized in [109]. In order to provide an intuitive
picture, we are going to first discuss topology in a simplified toy model of non - relativistic
quantum mechanics. Following this, the topology of QCD is going to be discussed.

2.4.1 Instantons in non - relativistic Quantum Mechanics

The key concepts required to discuss the topology of SU(N) gauge groups can be intro-
duced using the simple quantum mechanics systems of the double well potential and
the periodic potential of infinitely many wells as depicted in figure 2.4. These topics are
presented more extensively in, for example, [8, 33, 38, 130–132], which therefore all
serve as general references for this section 2.4.1.
The amplitude for a quantum mechanical system to transition from (x⃗i, t i) to (x⃗f, t f) in

real time23 is given by the Schrödinger propagator Z, i.e., the matrix element of the time
evolution operator, which equals the partition function (2.2.6)

Z(x⃗f, t f; x⃗f, t i) = ⟨x⃗f, t f | x⃗f, t i⟩ =
⟨︁
x⃗f
⃓⃓
e−iH∆t ⃓⃓ x⃗i⟩︁ = N

∫︂ x⃗ (t f) = x⃗f

x⃗ (t i) = x⃗i
D3x exp

(︁
iS[x⃗ (t)]

)︁
,

S[x⃗ (t)] =
∫︂ t f

t i
dt
(︃
−1

2
x⃗ TT x⃗ − V (x⃗ )

)︃
=

∫︂ t f

t i
dt
(︃
−1

2
x⃗ TM d2t x⃗ − V (x⃗ )

)︃
,

(2.4.1)
22[98, 129]
23Like in section 2.2.1, specifically from (2.2.1) to (2.2.6), we again emphasize real (Minkowski) and
imaginary (Euclidean) time by using the same spacetime time as in (2.1.1) and (2.2.21), respectively.
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(a). Double well potential for a quantum particle•. Even for vanishing kinetic energy, purely
quantum mechanical tunneling processes from −X0 to −X0 ( instanton) and vice
versa ( anti-instanton) are possible. These processes cannot be quantized using the
path integral method (cf. section 2.2.1), as there is no classical solution for the quantum
processes.

(b). Periodic potential for a quantum particle, general n - instanton solutions which tunnel from
Xν to Xν+n exist (e.g.: and ). In the dilute instanton gas approximation (DGA),
n - instantons are described as n± consecutive instantons (+) and anti-instantons (−) in any
order such that n+ − n− = n, e.g., = 2× or = 2× + + .

Figure 2.2
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where we chose the form of the kinetic energy in (2.4.1) to match the discussion in
section 2.4.3. This form is not linked to the “standard” form in (2.2.6) by IBP for the
general case x⃗i ̸= x⃗f and/or (dt x⃗ )|t i ̸= (dt x⃗ )|t f . Nevertheless, the two forms obey the
same symmetries and yield the same equations of motion − δS

δx⃗

⃓⃓⃓
x⃗cl

=
(︁
T x⃗ + ∂⃗V

)︁⃓⃓⃓
x⃗cl

= 0

and thus the resulting instanton solutions (2.4.6) are also identical. The path integral
(2.4.1) can be calculated in the stationary phase approximation discussed below (2.2.1) by
employing Laplace’s method (which is often also called saddle point approximation) [133,
134]: The paths x⃗ (t) are treated as quantum fluctuations η⃗ around the classical solution
x⃗ (t) = x⃗cl(t ) + η⃗(t ) and the action functional S is expanded up the first non - vanishing
order in quantum fluctuations O

(︁
η⃗ 2
)︁
.

However, there exist quantum mechanical processes which have no corresponding
classical solution, so that the stationary phase approximation fails. An example are
tunneling processes in the double well potential shown in figure 2.2a. Such processes
cannot be described by the propagator as given in (2.4.1). This problem can be solved,
however, by performing a Wick rotation t → t = it analogous to (2.2.21) - since t ∈ R
the barred notation is used here in accordance to the notation for temporally infinite
Euclidean spacetime. This Wick rotation changes the path integral as

S =

∫︂ t f

t i
dt
(︂
− 1

2
x⃗ TT x⃗ − V (x⃗ )

)︂
→ iSE = i

∫︂ tf

ti

dt
(︂
− 1

2
X⃗ TTEX⃗ + V (X⃗)

)︂
⇒

∫︂ x⃗ (t f) = x⃗f

x⃗ (t i) = x⃗i
D3x eiS[x⃗ ] →

∫︂ X⃗(tf) =X f

X⃗(ti) =X i

D3X e−SE[X⃗] ,

(2.4.2)

where we also used the notation X = x in accordance with (2.2.21) and the subscript “E”
denotes the action in imaginary/Euclidean time. The kinetic energy - differential operator
now reads TE =M d2t . The important differences between the path integral and action
in real and imaginary time are the change of the action from a complex phase to an
exponential decay factor and the inversion in the potential V (x ) → −V (X).24 Due to
the former, imaginary time - physics structurally resembles thermodynamics, the latter
means that physics is now described by the potential −V (X) = −V (x ), while the actual,
“physical” potential is V (X). Therefore, processes like quantum tunneling through a
potential barrier which formerly lacked a classical solution in real time are now described
by regular, classical propagation paths in imaginary time, X⃗cl(t), through the well of
the inverted potential. These paths are solutions to − δSE

δX⃗

⃓⃓⃓
X⃗cl

=
(︁
TEX⃗ − ∂⃗V

)︁⃓⃓⃓
X⃗cl

= 0 as

24If the “standard” form of the kinetic energy had been chosen, one would have found the Euclidean
Lagrangian LE = 1

2
(dtX⃗)TM(dtX⃗) + V (X⃗) = EM given by the real time - energy of the system.
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Figure 2.3: Potential in Euclidean time. After a Wick rotation t → t = it the physically
relevant, i.e., descriptive, potential is the flipped, negative version−V (X). For-
merly purely quantum processes like instanton and anti-instanton
tunneling through a potential barrier (cf. figure 2.2a) now correspond to clas-
sical motions through the potential well. The existence of classical pathsXcl

then ensures the applicability of path integral quantization (cf. section 2.2.1).

illustrated in figure 2.3.
Now the stationary phase approximation can be employed again. Up to O

(︁
η⃗ 2
)︁
the path

integral is determined by the classical action SE[X⃗cl] and the (elliptic) differential operator

M defined by δ2SE[X⃗]

δX⃗(t)δX⃗(t
′
)

⃓⃓⃓⃓
X⃗cl

= M(X⃗cl) δ(t− t
′
) =

(︁
− TE + (∂i∂jV )|

X⃗cl
) δ(t− t′), where

(∂i∂jV ) is the Hessian matrix:

Z = N e−SE[X⃗cl]
∫︂ η⃗(tf) = 0

η⃗(ti) = 0
D3η exp

(︄
−1

2

∫︂ tf

ti

dt η⃗TM η⃗

)︄
. (2.4.3)

An expansion of the quantum fluctuations in eigenmodes s⃗n(t) ofM with eigenvalues λn,
η⃗ =

∑︁
n ∈ N cns⃗n, so that

∫︁
D3η =

∏︁
n

∫︁
R
dcn√
2π
as well as η⃗TM η⃗ =

∑︁
n λnc

2
n, and a Gaus-

sian integration yield (
√︁
det ′(M))−1/2, where det ′ denotes that zero eigenvalues are

excluded. In fact, zero modes s⃗0,k with vanishing eigenvalues λ0,k = 0 do not contribute
to the Gaussian integration and contribute separately. They correspond to symmetries
of the system and have associated collective coordinates which parametrize these sym-
metries. As an example, the classical velocity dtX⃗cl is always a zero mode ofM, since
M(dtX⃗cl) = −

(︁
M(d3t X⃗cl)− (∂i∂jV )ij |

X⃗cl
dtX

j
clêi
)︁
= −dt

(︁
TEX⃗cl − ∂⃗V |X⃗cl

)︁
= 0. The un-

derlying symmetry is a time translation symmetry; despite SE being time - independent,
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the solution X⃗cl depends on a free time parameter t0 denoting “when” in the time interval
[ti, tf] the classical process takes place. This time parameter t0 is the collective coordinate
associated with the time translation symmetry and one can replace the integration

∫︁
R dc0

by
∫︁ tf
ti
dt0 (and a modification of the normalization N). Assuming that the velocity is the

onlyM - zero mode, one finds the propagator or partition function

Z = N ′ e−SE[X⃗cl]
∫︂ tf

ti

dt0
1√︁

det ′(M)
=

∫︂ tf

ti

dt0 d (t0) , (2.4.4)

where one can interpret d (t0) as a temporal density/probability of the classical process.
As a first toy model we present the above analysis employed on tunneling processes for

a massM - particle in the 1 - dimensional double well potential (figure 2.2a), i.e.,

V (X) =
a2M

2X2
0

(︁
X2 −X2

0

)︁2
, M = M (2.4.5)

with some scale [a] = Length−1. This potential yields three classical solutions of finite
(or in this case vanishing) Euclidean energy EE = M

2 (dtX)2 − V (X) that explore one or
both of the maxima of −V : two trivial solutions X1,2 = ±X0 and a tunneling solution.
The tunneling solution’s vanishing energy EE(X tun) = 0 corresponds to a particle with
vanishing initial and final velocity taking an infinite time ti,f → ∓∞ to propagate from
±X0 to ∓X0. This is the analogue to the QFT tunneling processes we are going to present
below. One finds the tunneling solution by solving EE = 0 for dtX and integrating using
the separation of variables

X tun = ±X0 tanh
(︁
a(t− t0)

)︁
. (2.4.6)

A plot of these two tunneling solutions in figure 2.4a shows that the actual transitions
happen almost “instantaneously” within the timescale tinst ∼ 4a, compared to the infinite
time duration of the complete process. Therefore, one calls such tunneling solutions in
imaginary time instantons - here the “+” - solution describes a tunneling from −X0 to X0

and is called an instanton, while the inverse “−” - solution is called an anti-instanton. The
suffix “-on”, invoking a particle nature of such tunneling transitions, is due to the Euclidean
Lagrangian LE = M

2 (dtX)2+V (X) = EM or real time - energy having a pronounced peak
in time (cf. figure 2.4b) - or in spacetime in the case of QFT - instantons. The instanton
time scale, also the width of the LE - peak, can be understood as the (anti-)instanton size.
The differential operator used in (2.4.4) is M = −Md2t + V ′′(︁X tun(t − t0))︁ and the

free parameter t0 in (2.4.6), which controls when in the time interval ]ti, tf[ = (−∞,∞)
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Out[ ]=
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-X. 0

0

X. 0

(a). The quantum mechanical instanton and anti-instanton processes (2.4.6) in the double well
potential (2.4.5). The (anti-)instanton tunneling process effectively happens within a (Eu-
clidean time frame of tinst ∼ 4a.

Out[ ]=

-3a -2a -a 0 a 2a 3a

0

a2M X. 0
2

(b). The imaginary - time Lagrangian LE

(︁
X tun(t− t0)

)︁
, which equals the real - time energy EM of

the (anti-)instanton. The sharp, localized peak of temporal extent tinst shows why instantons
are intuitively understood as particles.
The real - time energy is non - conserved, opposed to the constant, i.e., conserved, imaginary -
time energy EE(X tun) = 0. This is unproblematic, however, because the (anti-)instanton
tunneling is not a real - time process and EM is therefore not a meaningful property.

Figure 2.4
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the actual “instantaneous tunneling transition” occurs, is the aforementioned collective
coordinate. Up to second order in quantum fluctuations, one thus finds the tunneling
propagator in the potential (2.4.5):

Z = N ′
∫︂
R
dt0

e−
4
3
aMX2

0√︂
det ′(−Md2t + V ′′

(︁
X tun(t− t0)

)︁
)
=

∫︂
R
dt0 d instanton(t0) . (2.4.7)

The temporal density d instanton is then called the instanton density. It is equal for instantons
and anti-instantons, as SE is equal for the two due to the spatial symmetry of the potential
and the resulting temporal symmetry of the tunneling solutions (2.4.6).
The presence of instantons, i.e., tunneling processes, also means that the ground state

of the system cannot be described by the system sitting in either of the two minima, as
they become degenerate due to tunneling. The real quantum mechanical ground state is
then a linear superposition |0⟩ = 1√

2
(|X0⟩+ |−X0⟩) (up to a global phase).

The second important quantum mechanics toy model is the extension of the double
well to a periodic potential of infinitely many wells as sketched in figure 2.2b. Here,
(anti-)instantons describe tunneling processes from Xν to Xν+1 (Xν−1). This again
causes a degeneracy in the ground states |Xν⟩, so that the physical ground state is again
given by a linear superposition in the form of a Fourier series

|θ⟩ =
∑︂
ν ∈ Z

e−iνθ
⃓⃓
Xν

⟩︁
(2.4.8)

defined by a phase parameter θ. In this periodic potential arbitrary n - instanton solutions
connecting Xν to Xν+n are possible as well. Given that instanton transitions occur
within short timescales tinst, a reasonable assumption is to describe an n - instanton as
a combination of n+ instantons and n− anti-instantons with n = n+ − n− which are
well - separated in time |t0,i − t0,j | ≫ tinst and thus understood as occurring consecutively.
This is called the dilute instanton gas approximation (DGA)25 and was first established in
[8] for SU(N) - instantons (cf. sections 2.4.2 and 2.4.4). Given the propagator/partition
function for a (anti-)single instanton Zinst = Zinst = ⟨ν ± 1|e−Htinst |ν⟩ and the DGA, one
constructs the full instanton partition function incorporating all n - instantons in the
periodic potential’s θ - ground state in two steps. Firstly, the instanton partition function

25Usually, the dilute instanton gas approximation is abbreviated as DIGA, but since in section 2.4.4 we employ
this approximation to QCD - instantons at finite temperature, which are called calorons, we leave out the
“I” in DIGA.
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Zinst is modified in the physical ground state (2.4.8)

⟨θ′|e−Htinst |θ⟩ =
∑︂

ν′, ν ∈ Z

eiν
′θ′−iνθ ⟨Xν′ |e−Htinst |Xν⟩ =

=
∑︂

ν′, ν ∈ Z

eiν
′(θ′−θ)ei(ν

′−ν)θδν′−ν,±1Zinst = 2πδ(θ′ − θ) Zinste±iθ⏞ ⏟⏟ ⏞
Zinst./inst(θ)

.
(2.4.9)

The overall factor
∑︁

ν′ ∈ Z e
iν′(θ′−θ) = 2πδ(θ′− θ) shows that instantons transitions cannot

connect physical ground states of different phases θ′ ̸= θ, i.e., different θ - values describe
entirely different systems (different universes in the case of QCD). Furthermore, in the
case of θ′ = θ, the diverging factor δ(0) (or

∑︁
ν′ → ∞) reflects the fact that there is an

infinite number of equal “starting points” Xν for instanton transitions. This prefactor
cancels after appropriate normalization. Secondly, for well - separated instantons and
anti-instantons the action exponentials commute and the n - instanton partition function
thus factorizes. The full DGA - partition function is then given by a linear superposition of
n - instanton partition functions analogously to (2.4.8):

⟨θ|
∑︂
n ∈ Z

e−Hn - insttn - inst |θ⟩ =
∑︂
n ∈ Z

Zn - inst(θ) =

= (2π)n++n−δ(0)
∑︂

n, n+, n− ∈ Z

δn,n+−n−

n+!n−!

(︁
Zinst(θ)

)︁n+
(︁
Zinst(θ)

)︁n− =

=(2π)n++n−δ(0) exp
(︁
Zinst e

iθ
)︁
exp
(︁
Zinst e

−iθ)︁ =(2π)n++n−δ(0) exp
(︁
2Zinst cos(θ)

)︁⏞ ⏟⏟ ⏞
ZDGA(θ)

.

(2.4.10)
One notes that the full DGA partition function ZDGA(θ) is completely determined by the
parameter θ and the single - instanton partition function.

2.4.2 Vacuum Topology, Instantons and Calorons

Having discussed instantons in simpler toy models in section 2.4.1, we now introduce
them in SU(N) - gauge theory relevant for QCD. At first, the zero temperature instanton
is going to be discussed and then its finite temperature generalization, the caloron.

Topologically non - trivial QCD Vacuum Structure

As in the toy models, SU(N) - instantons describe tunneling effects in imaginary time.
The potential landscape in which these tunneling processes take place is now given
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by the topologically non - trivial vacuum structure of SU(N) gauge theories. As we
stated at the beginning of the introduction 1.2, the mathematical discipline of topology
studies the global properties of geometric objects/spaces and maps from one space to
another which are preserved under local continuous deformations. This also means that
topological invariants are necessarily global properties independent of any local features.
Two geometrical objects or spaces are called topologically equivalent if they are linked by a
homeomorphism, a topological isomorphism that describes such a continuous deformation
of the one object into the other and vice versa. Any homeomorphic spaces also agree in
their topological invariants. Homotopy of maps between topological spaces is another
important topological property. In detail, two maps f, g :M → N between topological
spaces M and N are said to be homotopic if there exists a continuous family of maps
hs : M → N with s ∈ [0, 1] and h0 = f , h1 = g. For the spaces under consideration in
this work, namely n - spheres Sn, two maps f, g : Sn1 → Sn2 are homotopic if their images
are homeomorphic. An extensive introduction to topology and its applications as used
(implicitly) in this work is presented in various works, e.g., [135–137].
To establish the connection between gluonic SU(N) - vacua and topology [138], first

note that these states minimize the Euclidean YM action SYM = 1
2g2

∫︁
R4d4X tr

(︁
GµνGµν

)︁
(cf. (2.2.26)): they are pure gauge configurations

su(N) ∋ Aµvac(X) = iΩ(X)∂µΩ−1(X) , Ω ∈ SU(N) (2.4.11)

for which the Euclidean field strength (cf. (2.1.21)) and therefore SYM vanish. These
vacuum states are gauge transformations (2.1.19) of the trivial vacuum Aµvac = 0. It turns
out that the defining maps Ω fall into homotopy equivalence classes of maps R4 → SU(N)
labeled by integer winding numbers/topological charges n ∈ Z.26

As a toy model one considers closed homotopic maps ϑn : S1 → S1 with ϑn(0) = ϑn(2π)
and n ∈ Z as depicted in figure 2.5. The most important such maps are ϑn(φ) = einφ. The
winding number n = i

2π

∫︁ 2π
0 dφϑn∂φϑ

−1
n now counts how often the straight line - circle is

wound around the dashed line - one. This integral is invariant under continuous (closed)
deformations ϑn = ϑn + iδn(φ)ϑn and thus a topological invariant. With neither cuts nor
reversals (passing through itself completely) of the mapped lines being allowed continuous
deformations, the ϑn form distinct equivalence classes. Two equivalent maps ϑn and ϑ′n
of the same n are homotopic and the equivalence classes are labeled by the winding
number. Indeed, every map ϑn is homotopic to the ϑn of the same n and thus falls into
the corresponding equivalence class. One also notes that combining two maps ϑn and ϑn′

26[8, 33, 116, 130, 131, 138]
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Figure 2.5: The maps ϑn : S1 → S1 mapping the solid circle onto the dashed circle.
The paradigmatic map with winding number n = 0 is the trivial map
ϑ 0(φ) = einφ|n= 0 = 1 which maps the solid circle onto a single point. Any
other path ϑ0(φ) that does not fully wind around the dashed circle can be
contracted to a single point, meaning that ϑ0 is homeomorphic to ϑ 0 and also
has winding number 0. If the path winds around the dashed circle n times,
where negative n describe a winding in the opposite direction, the winding
number is n. An addition of a partial winding (like for n = 0) to a full winding
can again be “contracted away” and thus has no topological impact, leaving
n unchanged (cf. (2.4.12)).

by concatenation, the resulting map

ϑn ∗ ϑn′(φ) =

{︄
ϑn(2φ) : 0 ≤ φ ≤ π
ϑn′(2φ− 2π) : π ≤ φ ≤ 2π

(2.4.12)

falls into the equivalence class with winding number n+n′. Treating this concatenation as
a group operation, the homotopy equivalence classes form the homotopy group π1(S1) ∼= Z
of maps S1 → S1.27
To translate the above toy model to gluon vacua, i.e., maps Aµvac : R4 → su(N) de-

fined by (2.4.11), one considers both “sides” of the map separately. Firstly, one requires
limR→∞Avac = 0, i.e., limR→∞Ω = 1 · const., and up to a trivial rescaling this allows
one to restrict the vacua with limR→∞Ω = 1. As a consequence, all points at infinity
become indistinguishable from the point of view of the gauge field and can thus be iden-
tified; infinite Euclidean spacetime R4 is thus compactified to a 3 - sphere S3

space. This is
analogous to how the stereographic projection S2 → R2 maps the north pole of the sphere
to all points at radial infinity (cf. figure 2.6). Secondly, according to Bott’s theorem [139],
for any map S3 → G with G a simple Lie group like SU(N), only an SU(2) - subgroup of
27[33, 130]
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north pole

Figure 2.6: The stereographic projection S2 → R2 in the y = 0 plane/axis. The points
P,Q ∈ S2 get mapped to the points P ′, Q′ ∈ R2. From this construction one
sees that the north pole gets mapped to all points ||(x, y)|| → ∞, independent
of the direction. An inverse map thus compactifies the infinite R2 to the finite
S2 and identifies all of infinity with the single point at the S2 - north pole.

Figure 2.7: The maps Ω describing gluonic vacua as introduced in (2.4.11). Due to the
vanishing of Avac at spatial infinity independent of the direction and Bott’s
theorem in [139], only a compactified spatial 3 - sphere gets mapped onto a
group 3 - sphere.

G is “topologically active” and relevant for the maps. In other words, any map S3 → G can
be continuously deformed into map S3 → SU(2) ⊂ G. Therefore, one only has to consider
Ω : S3

space → SU(2) and, using the fact that SU(2) ∼= S3
group, one finds that the vacuum

configurations are topologically determined by maps Ω : S3
space → S3

group according to
(2.4.11). This is shown in figure 2.7. The gluon vacuum states can thus be written as

Avac., su(N) =

(︃
Avac., su(2) 02×(N−2)

0(N−2)×2 0(N−2)×(N−2)

)︃
(2.4.13)

up to residual gauge transformations, which do not alter the su(2) - vacuum topologically
or only change the embedding of the su(2) - object in the su(N) -matrix.28

28[33, 38, 130, 131, 140]
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Analogously to the S1 → S1 - toy model, one can define a winding number ν for the
gluon vacuum. On the level of the maps Ων : S3

space → S3
group it is given by the Pontryagin

index. Using the angles φi, i ∈ {1, 2, 3} to parametrize the spatial 3 - sphere, the Pontryagin
index reads

Z ∋ ν[Ων ] =
1

24π2

∫︂
S3
space

d3φεijk tr
(︁
Ων∂φiΩ

−1
ν Ων∂φjΩ

−1
ν Ων∂φkΩ

−1
ν

)︁
= (2.4.14)

= − i

12π2

∫︂
∂R4

d3φnµεµαβγ tr
(︁
Aα(ν)A

β
(ν)A

γ
(ν)

)︁
, (2.4.15)

with nµ the unit normal vector of the infinite 3 - sphere S3
∞ = ∂R4 and A(ν) a vacuum

state with winding number ν. The integrand in (2.4.14) can be viewed as a suitable
measure for integration in group space, since it is invariant under local deformations, i.e.,
small gauge transformations. As in the toy model, there exist paradigmatic maps

Ω 1 =
i(σ†)µXµ

R
, Ω ν =(Ω 1)

ν with σµ =(σ⃗,1 · i) ⇔ (σ†)µ =(σ⃗,−1 · i) (2.4.16)

which “define” homotopy classes labeled by the Pontryagin index as in the toy model.
Note especially: Ω−1 = iσµXµ

R
.

Here it is important to differentiate small and large gauge configurations. Small gauge
configurations defined by Ωsmall = Ω0 = eiω

a
smallT

a , T a ∈ su(N) the Lie group generators,
are those gauge configurations that can be built up from infinitesimal gauge configura-
tions via exponentiation, i.e., the Ωsmall are continuously connected to 1 at all X and
the Asmall gauge can be continuously deformed to 0 everywhere. This is not the case for
large gauge configurations defined by Ωlarge = Ων ̸= 0 = e

iωalargeT
a

, however, instead they
are discontinuous at least at one point, where Alarge gauge is then singular. Obviously, small
gauge transformations leave the homotopy class or winding number of a gauge configura-
tion intact, while large ones change it. In terms of the ω, the difference between small
and large gauge configurations is that limR→∞Ωsmall = 1 and limR→∞ ωsmall = 0, while
only the first is true for large gauge configurations. Defining a concatenation analogously
to (2.4.12) as a group operation for the maps Ων , the vacua again form a homotopy group
π3(S

3) ∼= Z.29
As stated above, gluonic vacua of different winding numbers fall into different homotopy

equivalence classes and cannot be connected via regular (i.e., small) gauge transformations.
Therefore, these gluon vacua must be separated by an energy barrier EM = LYM, E > 0
given by the gluon states separating the vacua. The resulting periodic energy landscape is
sketched in figure 2.8 and is analogous to the periodic potential in figure 2.2b.30

29[8, 33, 38, 130, 131, 138]
30[38, 130]
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Figure 2.8: Potential landscape for gluon vacua. The gluon vacuum configurations A(ν)

minimize SYM, E ≥ 0, any other gluon configuration therefore carries larger
action/energy which defines a periodic potential landscape analogous to
figure 2.2b.

Instantons, Vacuum -Tunneling and the θ - Vacuum

Like in section 2.4.1, the distinct ν - vacua can again be connected by instantons, i.e.,
tunneling procedures “through” the energy barriers depicted in figure 2.9. These instantons
can then either be understood as “starting out” in one A(ν) for t→ −∞ and “ending up”
in another A(ν′) for t→∞ or, in a more topological approach, as local, yet topologically
non - trivial, gauge field configurations that change the global, topological properties of
the gluon vacuum. These properties are found by integrating over all of R4. An intuition
for this is the hole pierced in a sheet of paper discussed in the introductory section 1.2.31
The instantons serve as classical solutions in the stationary phase approximation for

tunneling processes from one vacuum homotopy class to another. Therefore, they have to
be of finite YM action SYM = 1

2g2

∫︁
R4d4X tr

(︁
GµνGµν

)︁
and approach pure gauge configura-

tions fast enough as R→∞. In detail, the field strength has to fall off as O(R−a), a > 2
for R→∞ and therefore the instanton field configuration approaches pure gauge form
as R→∞ [141, 142]:

lim
R→∞

Aµinst = iΩ∂µΩ−1 +O(R−b) , b > 1 . (2.4.17)

Also, the instantons share the symmetries of the spacetime R4: they are covariant under
rotations, translations and dilatations, i.e., the changing of scales. Plugging this form
(2.4.17) into the Pontryagin index (2.4.14) yields a result similar to (2.4.15) with an
additional term since the instanton field strength does not vanish identically as for vacuum
configurations:32

31[8, 33, 38, 130, 131]
32Here and in the following we drop the subscript “inst.” and similar ones in instanton/... field strengths.
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Figure 2.9: Instanton tunneling in the gluon potential between topologically distinct vac-
uum configurations. As in section 2.4.1 (cf. (2.4.6) and figure 2.4a)), the
instanton approaches the vacua asymptotically as t → ±∞, whereas the
actual transition happens “almost instantaneously”.

Z ∋ n[Ainst] =
∫︂
∂R4

d3φnµ εµαβγ tr
(︃

i

24π2
AαinstA

β
instA

γ
inst +

1

16π2
AαinstG

βγ

)︃
⏞ ⏟⏟ ⏞

Kµ

. (2.4.18)

This surface integral can be rewritten as a volume integral of the total divergence ∂µKµ,
which can in turn be rewritten as a simple expression of field strengths only

Z ∋ n[Ainst] =
∫︂
R4

d4X ∂µKµ =
1

16π2

∫︂
R4

d4X tr
(︁ ˜︁GµνGµν)︁ = ∫︂

R4

d4X qn(X) , (2.4.19)

where ˜︁Gµν = 1
2ε
µναβGαβ is the dual instanton field strength. Note that 12ε

µναβ ˜︁Gαβ = Gµν ,
while 1

2ε
µMνMαMβM ˜︁GαMβM = −GµMνM . This integer n is called the instanton winding number

or topological charge and the integrand qn is called the instanton’s topological charge
density. Commonly, one speaks of instantons for n > 0 and anti-instantons for n < 0.33
The link to tunneling between different ν - vacua is most obvious in temporal gauge

A4 = 0. One can always enforce this gauge condition by performing a gauge transforma-
tion (2.1.19) with U = T exp

(︁
− i
∫︁ t
0dt

′A4
inst(X)

)︁
, where T is the time ordering operator

as in (2.2.29). Then one deforms S3
∞ = ∂R4 into a hypercylinder as depicted in fig-

ure 2.10. The top and bottom sides stand for the 3 - dimensional space at infinite time
I, III = R4

⃓⃓
t→±∞ = S3

t=±∞ and the surface II, corresponding to |X⃗| → ∞ and finite

33[33, 38, 131, 132]
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Figure 2.10: The boundary ∂R4 of infinite Euclidean spacetime deformed into a hypercylin-
der: I and III describe the infinite 3 - space at positive and negative temporal
infinity t→ ±∞ (here compactified to 3 - spheres S3

t=±∞), respectively, II is

the connecting surface at spatial infinity |X⃗| → ∞.

times, joins them. Then, the instanton winding number can be directly related to the
difference of vacuum winding numbers for t→∞ and t→ −∞ using (2.4.18):

n =

∫︂
S3
∞

d3φnµKµ =

∫︂
I
d3φnµI K

µ −
∫︂
III
d3φnµIIIK

µ +

∫︂ ∞

−∞
dt
∫︂
II
d2(cylinder)nµIIK

µ =

= ν(t→∞)− ν(t→ −∞) .
(2.4.20)

The second line in (2.4.20) is obtained as follows: the field strength falls off as R→∞
and thus the second term in Kµ (cf. (2.4.18)) vanishes on all surfaces I, II and III. Since
nI,III = ±ê4, the integrands in

∫︁
I,III get reduced to those of the Pontryagin index (2.4.15) in

temporal gauge− i
12ε

ijk tr
(︁
Ai(ν)A

j
(ν)A

k
(ν)

)︁
and the integrals

∫︁
I,III yield the winding numbers

of the vacuum configurations the instanton reaches as t → ±∞. The integrand of
∫︁
II

vanishes, as nII is purely spatial (i.e., n4II = 0). This means that the integrand has to contain
one field component A4

inst = 0 due to the Levi - Civita symbol. All in all, an instanton of
topological charge n indeed describes a tunneling process from winding number ν to
winding number ν + n.34
In order to find explicit instanton configurations, one can solve the Euclidean YM

equation of motion DµGµν = 0 (cf. (2.1.23)) in temporal gauge given the boundary
conditions lim t→±∞Ainst = A(ν+n),(ν). An easier approach, however, is to employ the
34[131, 140]
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fact that ˜︁Gµν ˜︁Gµν = GµνGµν and expand the YM action as

SYM[A(anti-)inst] =
1

2g2
Tr(GµνGµν) =

=
1

4g2
Tr
(︁
(Gµν ∓ ˜︁Gµν)2)︁⏞ ⏟⏟ ⏞

≥0

± 1

2g2
Tr( ˜︁GµνGµν) ≥ 8π2

g2
|n| , (2.4.21)

where we used the notation Tr(·) =
∫︁
R4d4X tr(·) for the full operator trace. In general,

the Tr - integration is to be thought of as taken over the appropriate spacetime and the
trace in the integrand is over all uncontracted index pairs. Also, ±n = |n| with n > 0
for instantons (−, +) and n < 0 for anti-instantons (+, −) was used. This is called the
Bogomol’nyi inequality [143]. Instantons and anti-instantons minimize SYM and thus have
to satisfy (2.4.21) as an equality, which in turn means that the instanton field strength
and YM action SYM[A(anti-)inst] satisfy

Gµνinst =
˜︁Gµνinst , Gµνanti-inst = − ˜︁Gµνanti-inst (2.4.22)

⇒ SYM[A(anti-)inst] =
8π2

g2
|n| . (2.4.23)

Instantons (and anti-instantons) that satisfy (2.4.22) are called self - dual (anti-self - dual).
A straightforward calculation shows that (2.4.22) is a sufficient condition for the equation
of motion to be satisfied. However, it is not a necessary condition, i.e., other instanton
solutions which do not satisfy (2.4.22) are possible, but usually not considered. A general
mechanism for finding solutions to (2.4.22) is provided by the Atiyah - Drinfeld - Hitchin -
Manin (ADHM) construction [144]; for the purposes of this work, instanton solutions
with n = ±1, so - called Belavin - Polyakov - Schwartz - Tyupkin (BPST) instantons [27] are
sufficient. Both the ADHM construction and the BPST solution are limited to R4, however.
This means that dimensional regularization, for example, is not available in a theory
with a classical instanton background, as there is no known expression for instantons in
4− 2ε - dimensional spacetime.35

The BPST instanton is found using the ansatz AµBPST = f(R) · iΩ1∂
µΩ−1. Plugging

this into (2.4.22) yields f(R) = R2

R2+ρ2
, where ρ is a constant of integration and can be

interpreted as the size of the instanton comparable to tinst ∼ 4a of the tunneling solution
(2.4.6) in the double well potential (2.4.5) in section 2.4.1. With the explicit forms of Ω1

35[33, 38, 131, 132]
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and Ω−1 (2.4.16) for the instanton and anti-instanton, respectively, one obtains

AµBPSTanti- = 2 ηaµν
(X − C)ν

(X − C)2 + ρ2
σa

2
(2.4.24)

Aµanti-BPST = 2 η aµν
(X − C)ν

(X − C)2 + ρ2
σa

2
, (2.4.25)

where the additional free translation parameter Cµ was introduced, which denotes the
center of the instanton analogously to t0 in (2.4.6). The BPST instanton and anti-instanton
are given in terms of the ’t Hooft and anti-’t Hooft symbols ηaµν = εaµν4 + δaµδν4− δaνδµ4
and η aµν = εaµν4 − δaµδν4 + δaνδµ4, respectively; in matrix form they read:

η1µν =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞⎟⎟⎠ , η2µν =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , η3µν =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ ,

η 1µν =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ , η 2µν =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , η 3µν =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ .

(2.4.26)
They are self - dual and anti-self - dual, respectively, satisfying ηaµν = 1

2ε
µνκληaκλ and

η aµν = −1
2ε
µνκλη aκλ [141]. The ’t Hooft symbols link the group space generators σa2 and

the SO(4) generators of rotations in R4 (the Wick rotated Lorentz group generators, cf.
section 2.2.4) in the sense that−iη aµνσa and−iη aµνσa are both generators of SO(4). This
also shows the implicit rotational symmetry of the instanton: the generators −i η(–) aµνσa
transform under the adjoint representation of SO(4) - rotations Sαβ, i.e., −i η(–) aµνσa →
Sµα− i η(–) aαβσaS−1βν , while the coordinate vector transforms as Xν → SνγXγ . Together,
this means that the instanton is covariant under spatial rotations, it transforms like a
constant vector. The BPST instanton Lagrangian LBPST ∝ GaµνGaµν = 192ρ4

((X−C)2+ρ2)
2 also

shows the expected rotational invariance.36
The instanton size ρ and its center Cµ are collective coordinates as t0 in section 2.4.1.

Since the BPST instanton as an su(2) - object is embedded into a larger N × N matrix
analogously to (2.4.13), there are additional collective coordinates that either leave the
instanton unchanged or simply change its embedding. They are discussed in more detail

36[8, 38, 130, 132, 140]
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in section 2.4.3 and it is shown that there are 4N − 5 of them. In total one thus has 4N
collective coordinates for an instanton in SU(N) gauge theory.
The BPST (anti-)instantons (2.4.24) and (2.4.25) are given in regular gauge. This means

that all of their topological charge is “stored” at spatial infinity where they approach pure
gauge form. Since the (anti-)self - duality condition (2.4.22) and the equation of motion
(2.1.23) are gauge - covariant, the BPST (anti-)instantons can be gauge transformed
with the singular gauge transformation (cf. (2.1.19)) U = iσµ(X−C)µ√

(X−C)2
into their singular

gauge - expressions

AµBPST, sing.anti- = UAµBPST U
−1 + iU∂µU−1

anti- = 2 η aµν
ρ2(X − C)ν

(X − C)2
(︁
(X − C)2 + ρ2

)︁ σa
2
,

(2.4.27)

Aµanti-BPST, sing = UAµanti-BPST U
−1 + iU∂µU−1 = 2 ηaµν

ρ2(X − C)ν

(X − C)2
(︁
(X − C)2 + ρ2

)︁ σa
2
.

(2.4.28)

Note that in this gauge ’t Hooft symbol in the instanton is replaced by the anti-’t Hooft
symbol and vice versa for the anti-instanton. More importantly, however, in the singular
gauge all topological information is moved to the singularity at the instanton center C and
“the winding about this singular point corresponds to the winding at infinity of the regular
instanton” [145, p. 52]. The singularity in Asing is just a gauge artifact and not physical,
however, since A itself is not physical either - in the sense that it is not an observable. In
all physical quantities, like the field strength G, for example, the singularity is removed.
Nevertheless, even in physical quantities a discontinuity may remain at the instanton
center C, so that they are “only defined on the punctured euclidean space” [145, p. 52].
This is important for our numerical calculations in section 3.1.2. In singular gauge the
BPST instanton can also be written as

AµBPST, sing = −η
aµν∂ν ln

(︃
1 +

ρ2

(X − C)2

)︃
(2.4.29)

and analogously for the BPST anti-instanton. This form allows for the generalization to a
configuration of N BPST instantons with sizes ρj and locations Cj

AµN× BPST, sing = −η
aµν∂ν ln

⎛⎝1 +
N∑︂
j = 1

ρ2j

(X − Cj)2

⎞⎠ ; (2.4.30)

an N - BPST anti-instanton solution is constructed analogously. This form and the singular
gauge choice in general is often beneficial in explicit calculations and is indeed required
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for the construction of finite temperature instantons, as we are are going to elaborate
below. In the following, instantons are always thought to be in singular gauge and the
subscript “sing” is dropped.37
A theory with instantons is quantized using the background field method: the gauge

field is set to be Aµ = Aµinst., su(N) +Aµqm, where the instanton is taken as embedded in an
N ×N matrix and Aµqm describes a quantum perturbation around the classical instanton;
all other fields {ϕqm} have no classical background and are thus purely quantum. Then
one determines the full partition function up to some desired order in quantum fields
and integrates out said quantum fluctuations order by order, obtaining a (1 - particle -
irreducible) effective action Γ[Ainst]. In this work, the quantum fluctuations are considered
and consequentially integrated out up to second order O({ϕqm}, Aqm)2 (analogously to
(2.4.3) and (2.4.4)). An advantage of this approach over, for example, perturbation
theory is that only the quantum fields propagate, the classical background is assumed
as stationary. Therefore, one has to perform gauge fixing only for Aqm and can choose a
gauge condition that respects the background field and its separate choice of gauge. In
this background gauge, the effective action Γ then turns out to be automatically gauge
invariant. This background field quantization is performed in detail in section 2.4.3.38
As a consequence of the presence of instantons, the physical gluon vacuum can again

not be any of the now degenerate ν - vacua A(ν), but again has to be a Fourier series - linear
superposition (cf. (2.4.8) for the periodic potential in section 2.4.1)

|θ⟩ =
∑︂
ν ∈ Z

e−iνθ
⃓⃓
A(ν)

⟩︁
=
∑︂
ν ∈Z

e−iνθ |ν⟩ . (2.4.31)

The BPST instantons and general instanton configurations with topological charge n then
leave this θ - vacuum invariant up to multiplication with a phase factor einθ. Mathematically
speaking, one can define “translation operators” T± and Tn in ν - space corresponding to
the BPST (anti-)instanton and general instantons, respectively:

T± |ν⟩ = |ν ± 1⟩ , Tn |ν⟩ = |ν + n⟩
⇒ T± |θ⟩ = e±iθ |θ⟩ , Tn |θ⟩ = einθ |θ⟩ .

(2.4.32)

Since instantons are gauge field configurations, these operators define unitary transforma-
tions, which again fixes the structure of the θ - vacuum: |θ⟩ has to be an eigenstate of the
Tn and the corresponding eigenvalues have to be complex phases, therefore |θ⟩ is given
as a Fourier series. The instanton operators also satisfy T †

n = T−1
n = T−n (unitarity) and

[Tn,Tn′ ] ̸= 0 (SU(N) - instantons do not commute).39

37[38, 131, 132, 140, 141]
38[38, 141], [4, p. 734]
39[38, 138, 140, 146]
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Using the operators (2.4.32), one determines the the partition function for an n -
instanton in the background field method Aµ = Aµn - inst +Aµqm describing tunneling from
|ν⟩ to |ν ′⟩ analogously to the tunneling propagator in a periodic potential discussed in
section 2.4.1 ([33, 38, 140], for example):

lim
∆t→∞

⟨︂
ν ′
⃓⃓⃓
e−H(An - inst)∆t

⃓⃓⃓
ν
⟩︂
=
⟨︁
ν ′
⃓⃓
Tn
⃓⃓
ν
⟩︁
= ⟨0 |T−ν′TnTν | 0⟩ =

= δν′−ν,n

∫︂
DAµqm e

− 8π2|n|
g2 exp

(︃
−
∫︂
d4X

(︁
Lint(An - inst, Aqm) + Lgauge+Lghost

)︂)︃
⏞ ⏟⏟ ⏞

= Zn - inst

.

(2.4.33)
Here the YM action of the background instanton can be calculated explicitly (2.4.23). The
introduction of the T - operators is important, as it generalizes the action of an instanton
andmakes it independent of the explicit tunneling picture conveyed by ⟨ν ′|e−H(An - inst)∆t|ν⟩.
The tunneling picture only holds in the temporal gauge, as was shown in (2.4.20), and is
incompatible with finite temperature instantons, as we are going to show in section 2.4.4.
The result (2.4.33) also determines the n - instanton partition function in the physical
θ - vacuum, which is calculated analogously to (2.4.9):⟨︁

θ′
⃓⃓
Tn
⃓⃓
θ
⟩︁
=

∑︂
ν′, ν ∈ Z

eiν
′θ′−iνθ ⟨︁ν ′ ⃓⃓Tn ⃓⃓ ν⟩︁ =

=
∑︂

ν′, ν ∈ Z

eiν
′(θ′−θ)ei(ν

′−ν)θ ⟨︁ν ′ ⃓⃓Tn ⃓⃓ ν⟩︁ = ∑︂
ν′ ∈ Z

eiν
′(θ′−θ)einθ Zn - inst =

= 2πδ(θ′ − θ)
∫︂

DAµqm exp

(︃
−
∫︂
d4X

(︂
Lint+Lgauge+Lghost−iθqn(X)

)︂)︃
⏞ ⏟⏟ ⏞

= Zn - inst(θ)

(2.4.34)

The factor 2πδ(θ′−θ) again shows that instantons cannot connect different θ - vacua and for
θ′ = θ there are infinitely many “starting points” A(ν) for the instanton transition reflected
by δ(0). Most importantly, however, the phase factor

∑︁
ν ∈ Z e

i(ν′−ν)θδν′−ν,n = einθ was
absorbed into the action by adding the θ - term −iθq = − iθ

16π2 tr
(︁ ˜︁Gµνn - instGµνn - inst)︁ (2.4.19)

to the Lagrangian. Therefore, the non - trivial QCD vacuum structure described by the
θ - vacuum enforces the addition of the θ - term to Lagrangian. This is the reason why it was
called “naive” to discard the θ - term in section 2.1: it does not contribute perturbatively or
in the equation of motion, but instantons are non - perturbative effects which necessitate
the addition of this term to the action.40
40[8, 38]
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It is also important to note that while the “naive” QCD action is shifted from acting as
a phase factor in real time t to an exponential damping factor in Euclidean spacetime
with imaginary time t, the θ - term is covariant under the Wick rotation and thus remains
oscillatory. The reason for this is the Levi - Civita symbol in the dual field strength. In
Minkowski spacetime, the corresponding term is

∫︁
R1,3d4x 1

2εµMνMρMσMG
ρMσMGµMνM and

due to the ε - tensor every index 0M, {iM} can always only appear once, i.e., the integrand
is 2G1M2MG3M0M + permutations (note ε1M2M3M0M = 1 and the factor 1

2 is canceled due to
the anti-symmetry of both ε and G). Wick rotation yields i G12G34+permutations and the
factor i combines with the factor −i from Wick rotating the temporal measure dt → −idt.
Therefore, adding the θ - term in imaginary time equals to adding the same term in real
time. [140]
We do not introduce the dilute gas approximation (DGA) for instantons at T = 0 and

instead postpone it to section 2.4.4, where it is discussed in the context of finite -T
instantons, i.e., calorons. The reason for this is also discussed there.

Topology at finite Temperature

After the above introduction to topology and instantons at finite temperatures, we now
generalize to finite temperatures described by the spacetime R3×S1

rad.= β/2π
(cf. (2.2.23)).

The intricacies of thermal SU(N) - gauge theory topology are discussed at length in [54],
which serves as the source for the following. It is shown that the topological charge
(2.4.19) is no longer automatically quantized at finite T , but can instead take any value.
In detail, it is given by

n =
1

16π2
Tr
(︁ ˜︁GµνGµν)︁ = n′ +

1

4π2

∫︂
∂R3

d2φnitr
(︁
ln(Ω)Bi

)︁
= n′ +

κ∑︂
α= 0

ln(λ∞α )

2πi
qα .

(2.4.35)
Here n′ ∈ Z is the usual Pontryagin index (2.4.18), Ω(X⃗) is the untraced Polyakov loop
(2.2.29) and B⃗ is the chromo -magnetic field. The λ∞α , α = 1, ..., κ are the gauge - invariant
asymptotic, non - degenerate polyakov loop - eigenvalues at spatial infinity and the integers
qα = 1

4π i

∫︁
∂R3d2φni tr(PαBi) ∈ Z are the quantized chromo -magnetic fluxes; the Pα are

projectors onto the R3 × S1
rad.= β/2π

- subspaces spanned by the λ∞α - eigenvectors.
Actually, the Ω - eigenvalues λα j(X) have multiplicities j = 1, ...,mα and the Pα project

on the subspace spanned by the eigenvectors associated to these degenerate eigenvalues,
but as R → ∞, the eigenvalue degeneracy vanishes as limR→∞ λα j = λ∞α +O(R−1/2)

so that the Polyakov loop reads limR→∞Ω(X⃗) = V (X⃗)diag(λ∞α )V −1(X⃗) + O(R−1/2)

with V ∈ SU(N)
G∞ and G∞ = U(1)κ+1 ⊗

∏︁κ
α= 0 SU(mα) the isotropy group of diag(λ∞α ).
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The Polyakov loop therefore provides a map ∂R3 = S2
∞ →

SU(N)
G∞ . Analogously to the

maps S3
∞ → SU(2) discussed for the gluon vacua, such maps form a homotopy group

π2(SU(N)/G∞) = π1(G
∞) ∼= Zκ+1 and the qα can be interpreted as the corresponding

winding numbers.
For vacuum configurations the chromo -magnetic flux vanishes qα = 0 ∀α and the

λ∞α distinguish gauge inequivalent vacua. We limit ourselves to the simplest choice
diag(λ∞α ) = limR→∞ exp

(︁
βA0(X)

)︁
= 1. The reason is that for instantons at finite tem-

perature, i.e., field configurations with n′ ̸= 0 and qα = 0, it turns out that only those with
diag(λ∞α ) = 1 contribute to the partition function. Therefore, in the following, vacuum
and instanton configurations at finite temperature are described by structurally identical
topological invariants as at zero temperature.

Calorons

Instantons at finite temperature are called calorons and their existence was first proven
in [28]. As any boson they are periodic in (bounded) time t (cf. (2.2.23)) and can thus
be constructed by periodically summing up infinitely many identical “time - copies” of a
single T = 0 - instanton separated purely in time t by units of β. The resulting caloron
then has the same topological charge as carried by each of the time copies. For this
summation and the subsequent compactification of spacetime in the temporal direction
R4 → R3×S1

rad.= β/2π
to make sense, one requires that each member of this “infinite string

of instantons” carry its topological information at its center and not at the edge of R4, i.e.,
the summed up instantons have to be in singular gauge and the resulting caloron is as
well. This procedure is illustrated in figure 2.11.41
The simplest such caloron with topological charge n = ±1 is called the Harrington -

Shepard (HS) (anti-)caloron [147] and is constructed by summing up infinitely many
singular gauge - BPST (anti-)instantons (2.4.27) according to (2.4.30) with ρj = ρ and
Cj = C + jβê4, j ∈ Z. This sum can be performed and reads

1 +
∑︂
j ∈ Z

ρ2(︁
X − (C⃗, C4 + jβ)

)︁2 =

= 1 +
πρ2 sinh(2πβ |X⃗ − C⃗ |)

β |X⃗ − C⃗ |
(︁
cosh(2πβ |X⃗ − C⃗ |)− cos(2πβ (t− C4)

)︁ = ϕ(X) . (2.4.36)

Using the multi - BPST instanton form (2.4.30) together with (2.4.36) then yields the HS
caloron of size ρ centered at C:
41[54]
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Figure 2.11: A caloron made up of an infinite sum of periodic instanton copies in the
temporal direction. The instanton copies have identical properties and are
separated in the t - direction of R4 by units of β. This summation yields an
overall temporal β - periodicity of the caloron, therefore essentially compacti-
fying the spacetime R4 → R3 × S1

rad.= β/2π
.
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AµHS(X) = −η aµν∂ν ln
(︁
ϕ(X)

)︁σa
2

= AaµHS
σa

2
(2.4.37)

and analogously with ηaµν for the HS anti-caloron. The HS caloron is singular at its center
and covariant under spatial rotations SO(3) ⊂ SO(4). The singularity can for example be

seen in A2x
HS = −

πρ2(Z−Cz)
(︁
2πR cosh(2π

β
R)−2πβ sinh(2π

β
R)
)︁(︁

cosh(2π
β
R)−cos(2π

β
t)
)︁
−2πR sinh2(2π

β
R)

βR3
(︂
cosh

(︂
2πR
β

)︂
−cos

(︂
2πτ
β

)︂)︂
ϕ(X)

:

for R = |X⃗ − C⃗| ↘ 0 it diverges as R−1. The dependency on the coordinate Z breaks
rotational invariance, but, by the same reasoning founded on (anti-)’t Hooft symbol - based
SO(4) - generators as was discussed below (2.4.26), the caloron is again covariant under
spatial rotations (since ϕ(X) is SO(4) - invariant and ∂ν transforms as a vector). The full
SO(4) - covariance is broken only by the boundedness of t. By design, the HS (anti-)caloron
satisfies the (anti - )self - duality condition (2.4.22) as well as the equation of motion and
has a classical YM action of SYM[A(anti-)HS] = ±8π2

g2
(cf. (2.4.23)). Furthermore, as we

stated in our discussion on topology at finite T , the caloron winding number is given by
the same term n = 1

16π2Tr
(︁ ˜︁GµνGµν)︁ as for instantons. Finally, since AHS = AHS, su(2) like

the BPST instanton or the vacuum configurations determined by the maps (2.4.16), the
full su(N) - configuration is again given by an embedding analogous to (2.4.13):42

AHS, su(N) =

(︃
AHS 02×(N−2)

0(N−2)×2 0(N−2)×(N−2)

)︃
. (2.4.38)

In the limit of small distances |(X⃗, t)| ≪ β the HS caloron takes the form of a BPST
instanton in singular gauge

AµHS
|X| ≪ β∼= η aµν

2ρ̃2

(X − C)2
(X − C)ν

(X − C)2 + ρ̃2
σa

2

(︂
1 +O

(︁
(|X|/β)4

)︁)︂
(2.4.39)

(cf. (2.4.27)) with modified, reduced size

ρ̃ =
ρ√︂

1 + π2ρ2

3β2

. (2.4.40)

The same is true for the HS anti-caloron and BPST anti-instanton given in (2.4.28)). This
means that on length scales much smaller than the temperature/periodicity scale the
caloron is identical to an instanton with modified size ρ̃ and the actual β periodicity is
concealed in the far distance 43.
42[54, 140]
43[54]
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The resulting field strength component Gµν(AHS) is not rotationally invariant, either,
but, as was noted below (2.4.27), the the AHS - singularity is now “only” a discontinuity
at the caloron center C. Both of these properties are illustrated in figure 2.12 for the
example of the G1xy - component. Note, however, that actual observables constructed
from the field strength do turn out to be invariant under spatial rotations, as we are going
to use repeatedly in the numerical integrations of section 3.1.3 and as we discuss in some
more appendix 3.3.
Finally, note that, as temperature increases, calorons as tunneling solutions eventually

become the subdominant topological transition process since eventually the mean thermal
energy becomes comparable to the potential barrier between different vacuum sectors
A(ν) and A(ν′). This allows for real time topological transitions, so called sphalerons, to
occur due to thermal fluctuations and dominate the tunneling transitions.44

2.4.3 Caloron Density with massive Quarks

After having discussed instantons and calorons at length in the two preceding sections
2.4.1 and 2.4.2, we now show how one proceeds to perform the quantization of a theory
with massive quarks at finite temperature and a classical HS caloron background using
the background field method as described in section 2.4.2. In detail, we show how one
calculates the partition function up to second order in quantum fluctuations and thus
obtains the caloron density function.

Caloron Density from the Partition Function

The caloron density D is a way of expressing the regularized, vacuum - normalized caloron
partition function as

Z = βV D + O
(︁
(quantum fluctuations)2

)︁
(2.4.41)

up to 1 - loop order in the quantum fluctuations of the gluonic and matter fields. βV is the
volume of R3 × S1

rad.= β/2π
. Compare this to the instanton density in (2.4.7) for the toy

model. The caloron density depends, as we show in the following, on the temperature,
the strong interaction coupling strength, the regularization energy scale, the types and
numbers of fields and their masses as well as the representation of the gauge group under
which they transform.45

44[148, 149]
45[8, 33, 54, 132, 141]
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(a). The HS caloron field strength component
G1 xy(ρ = β

2
, x, y, 0, t = β

10
). (b). G1 xy(ρ = β

2
, x, 0, z, t = β

10
)

(c). G1 xy(ρ = β
2
, 0, y, z, t = β

10
) (d). G1 xy(ρ = β

2
, x, 0, 0, t)

(e). G1 xy(ρ = β
2
, 0, y, 0, t) (f). G1 xy(ρ = β

2
, 0, 0, z, t)

Figure 2.12: The HS caloron field strength component G1xy(ρ,X) in different planes of
R3×S1

rad.= β/2π
(here we set the caloron center toC = 0). If the field strength

were rotationally invariant, figures 2.12a, 2.12b and 2.12c would be equal as
well as figures 2.12d, 2.12e and 2.12f.
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For a general discussion we therefore extend Euclidean QCD and consider a theory
containing not only Nf quarks ψf and an su(N) - gauge field Aµ, but also Nϕ real and Nφ

complex scalar fields, ϕi and φj , respectively. The real scalar fields are uncharged and
therefore transform trivially under gauge rotations (TSU(N), triv = 0), while the complex
scalars can be taken to be composite objects containing numerous charged multiplets such
that they form arbitrary representations of SU(N) (compare [141]). We use a HS caloron
with n = 1 (2.4.38) as a classical gauge field background for this extended theory and
show how one obtains the important caloron density function D for this theory (following
the notion of the temporal instanton density (2.4.7) discussed in section 2.4.1).
As we stated in section 2.4.2, the caloron is a solution to the classical equations of

motion and thus describes a saddle point of the Euclidean YM action at finite temper-
ature. Following the background field method analogously to the steps from (2.4.3)
to (2.4.4), one considers a perturbative expansion, i.e., a saddle point approximation
using Laplace’s method, of the above theory in the caloron background, rewrites the
partition function in terms of caloron - dependent differential operator determinants and
calculates those. The gauge field then has the form Aµ = AµHS, su(N) +Aµqm and the scalar
and fermion fields, having no classical background, are purely quantum/infinitesimal
ϕi, φj , ψf = ϕi qm, φj qm, ψf qm. Additionally, the background gauge condition

Gbackground(Aµqm) = Dµ(AµHS, su(N))A
µ
qm = 0 (2.4.42)

is enforced, which means adding a pair of Faddeev - Popov ghosts c, c = cqm, cqm to the
theory (cf. (2.2.15) - (2.2.17)). These ghosts form an adjoint representation of SU(N).
As we stated, all interactions O(ϕi, φj , ψf , Aµqm)3 are neglected in this approximation, i.e.,
one performs a 1st - order non-linear approximation of the full Lagrangian (2.2.26) up to
1 - loop level. All in all, the Lagrangian is:

L+Lθ = LYM(AHS) +
∑︂
i, j, f

1

2
ϕiMϕ(i)ϕi + φ∗

jMφ(j)φj + ψf Mψ(f)ψf +

+
1

2g2
tr
(︁
AµqmM

µν
A Aνqm

)︁
+

1

N
tr
(︁
cMghc

)︁
− iθ

16π2
tr
(︁ ˜︁GµνGµν)︁ , (2.4.43)

with Lθ = −iθq(x) (cf. (2.4.19)) and the differential operators
• Mϕ(i) = −∂2+ +M2

ϕi
, (2.4.43.a)

• Mφ(j) = −D2
+, arb

(︁
AµHS, su(N)

)︁
+M2

φj , (2.4.43.b)

• Mψ(f) = i /Dfund
(︁
AµHS, su(N)

)︁
+Mψf = i /D(AHS) +Mψf , (2.4.43.c)
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• Mµν
A =

(︂
−D2

+

(︁
AµHS, su(N)

)︁
δµν − 2Gµνsu(N)

)︂
adj

(2.4.43.d)

• Mgh = −D2
+, adj

(︁
AµHS, su(N)

)︁
, (2.4.43.e)

where the subscripts “+/−” denote β - periodicity/anti-periodicity of the respective fields,
the subscripts “arb”, “fund” and “adj” denote the arbitrary, fundamental/defining and
adjoint representation of SU(2) (embedded in SU(N)), respectively, and the factor 1

N
compensates the Dynkin index of the SU(N) - adjoint representation (cf. (2.2.20)). In the
following, D is always to be read as D(AHS). The partition function (neither normalized
by a vacuum background Avac. background = 0 nor renormalized) is given by

ZHS(θ) = e
− 8π2

g2
+iθ
∫︂

D [ϕi, φ
∗
j , φj , ψf , ψf , A

µ
qm, c, c] e

−
∫︁ β d4X L , (2.4.44)

where SYM[AHS] was plugged in according to (2.4.23) and (2.4.19) was used. When
referring to the above operators (2.4.43.a) - (2.4.43.e) in a vacuum background, we
denote them with an additional subscript “0”: Mϕ, φ, ψ,A, gh, 0. The caloron density is then
given via ZHS = eiθ βV D.46

Laplace’s Method and Caloron Zero Modes

Following the procedure for the instanton toy model in section 2.4.1, one expands the
quantum fields in bosonic eigenfunctions χ(X) of their corresponding M - operators,
ϕi(X) = ξαϕiχ

α
ϕi
, Aµ(X) = ξαAχ

αµ
A , etc., with (c - number/Graßmannian) expansion co-

efficients ξα, and eigenvalues λα: Mχα = λαχα. The eigenfunctions are chosen or-
thogonal with respect to the inner product ⟨χαϕi |χ

β
ϕi
⟩ = 1

I(ϕi)
Tr
(︁
χαϕi(X)χβϕi(X)

)︁
= uαϕiδ

αβ ,
⟨χαµA |χ

β µ
A ⟩ =

1
I(A)g2

Tr
(︁
χαµA (X)χβ µA (X)

)︁
= uαAδ

αβ, etc., with I the Dynkin index of the
respective representation, e.g., I(def ) = I(A) = 1

2 . Now the path integral functional

measures can be rewritten as Dϕi =
∏︁
α

(︂
uαϕi
2π

)︂1/2
dξαϕi , etc. (for the bosonic fields) and

Dψf =
∏︁
α

(︁
uαψf
)︁−1/2dξαψf , etc. (for the fermionic/Graßmannian fields).

47

As in section 2.4.1, zero modes Zα0 = χα0 with λ′α0 = 0 again need to be treated
separately. Zero modes can only appear for MA. To see this, consider the individual
differential operators:

46[54, 140, 141, 150]
47[140]
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Scalar fields ϕ, φ and ghosts c :
Just as the 4 - dimensional Laplacian −∂2± , −D2

± is also a positive operator [151, 152]
andM2 > 0, so thatMϕ, φ, gh cannot have zero eigenvalues.

Quarks ψ :
In an (anti-)self - dual background, Mψ and −D2

− + M2 are isospectral, i.e., one can
recast detMψ = det(i /D +M) in terms of det(−D2

− +M2) and an exponential factor
depending on the number of zero modes of i /D. According to the above, the subscript “−”
in det(−D2

−+M2)means that the determinant is to be calculated with respect to only the
anti-periodic eigenfunctions. An analogous transformation links detMψ, 0 = det(i/∂ +M)
and det(−∂2− +M2). By the same logic as for the scalar and ghost fields,Mψ then has no
zero modes. We show this in three steps.
First, we use that i /D + c, c ∈ R is self - adjoint with respect to the fermionic inner

product, (ψ(X), ψ′(X)) =
∫︁ β
0 dt

∫︁
R3 d3X ψ(X)ψ′(X) =

∫︁ βd4X ψ†(X)γ4ψ′(X), i.e.,

(︁
i /Dψ,ψ′)︁ = ∫︂ β

d4X (i /Dψ)ψ′ = −
∫︂ β

d4X iψ†Dµ †γµ †γ4ψ′ =

=

∫︂ β

d4X iψ†
(︃
−D⃗
D4

)︃
·
(︃
γ⃗ γ4

γ4γ4

)︃
ψ′ =

∫︂ β

d4X iψ†
(︃
−D⃗
D4

)︃
·
(︃
−γ4γ⃗
γ4γ4

)︃
ψ′ =

=

∫︂ β

d4X ψi /Dψ′ =
(︁
ψ, i /Dψ′)︁ .

(2.4.45)

Here, γµ † = −γµ and the anti-Hermiticity of the derivative in Minkowski spacetime
∂†µM = −∂µM (given that boundary terms do not contribute) were used. Two fermion fields,
each β - anti-periodic, are again periodic and thus the boundary terms do indeed vanish.

After Wick rotation of any vector vµ =

{︄
viM

iv0M
, especially ∂µ, one finds a mixed behavior of

the components under Hermitian conjugation: Dµ † =

{︄
− D⃗
iD4

. All in all, the determinant

is therefore real: det(i /D +M) = det(i /D +M) = (det(i /D +M))∗. Compare this with
(2.1.16).
Second, from det(AB) = det(A) det(B), (γ5)2 = 1 and {γ5, γµ} = 0 it follows that

det(i /D+M) = det((γ5)2(i /D+M)) = det(γ5(−i /D+M)γ5) = det(−i /D+M) . (2.4.46)
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Thus, the fermionic determinants can be rewritten in terms of /D2 and −∂2−:

det(i/∂ +M) =

√︂
det(i/∂ +M) det(−i/∂ +M) =

√︂
det(/∂2 +M2) =

(︁
det(−∂2− +M2)

)︁2
,

det(i /D +M) =
√︂
det( /D2 +M2) =

√︃
det(−D2

− −
i

2
Gµνγµγν +M2) ,

(2.4.47)
where the power of 4 (2 after the square - root) in the first line is due to the remaining
1 -matrix in Dirac space and Gµν = i [Dµ, Dν ] was used. The operator i /D +M has no
zero modes for finiteM > 0 [140]. To verify that, assume ψ0(X) solves (i /D +M)ψ0 = 0

and act from the left with (i /D +M)PR,L (c.f. (2.1.8)) for a
(︃
self - dual (R)

anti - self - dual (L)

)︃
caloron.

Now anti-commute the right (i /D +M) to the left past PR,L to find ( /D2 +M2)PR,Lψ0 = 0
and use that, for (anti-)self - dual field strengths, /D2PR,L = −D2

−PR,L [152, 153]. The
resulting equation (−D2

− +M2)PR,Lψ0 = 0 has no solution. Either (−D2
− +M2)ψ0 would

have to yield 0, but, again, −D2
− is a positive operator and M2 > 0, or one would

require PR,Lψ0 = 0, but the eigenfunctions of (i /D +M) have no defined chirality, since
{i /D+M,γ5} ̸= 0. Thus, there can only be zero modes forM = 0. Then the eigenfunctions

come in chirality pairs (as {i /D, γ5} = 0) and the zero modes have
(︃
negative (L)
positive (R)

)︃
chirality

for
(︃

self - dual
anti - self - dual

)︃
caloron fields, i.e, they satisfy PR,LψL,R0 = 0 [152, 153].

Third, the Gµν - term can be dropped from the expression for det( /D2 +M2), i.e., the
spin - dependency can be eliminated and i /D +M and −D2

− +M2 are isospectral [61].
We prove that using Jacobi’s formula for the determinant of some matrix/operator A(s):
ds det(A(s)) = det(A(s)) tr

(︁
A−1(s)dsA(s)

)︁
. For the operator /D2 +M2 with parameter

M2 this means
d
dM2

det( /D2 +M2) = det( /D2 +M2)Tr
(︃

1

/D2 +M2

)︃
, (2.4.48)

where Tr(·) again denotes the operator trace
∫︁ βd4X trDirac, color(, etc.)(︁ ⟨X | ( · ) |X⟩ )︁. In

[153] one finds the following expansion for the propagator of a massive fermion in a
self - dual gauge field background:

1

/D2 +M2
=

1

−D2
− +M2

PR +
1

M2

(︂
1− /D

1

−D2
− +M2

/D
)︂
PL . (2.4.49)

Compare the part in brackets of the second term with the projection operator into the
subspace of i /D - zero modes, Pz. m. =

(︁
1− /D 1

−D2
−
/D
)︁
PR, found in [152, 153]. Expanding
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1
−D2

−+M2 = 1
−D2

−
− M2

−D2
−(−D2

−+M2)
, we can isolate this projector:

1

/D2 +M2
=

1

−D2
− +M2

PR + /D
1

−D2
−(−D2

− +M2)
/D PL +

Pz. m.
M2

. (2.4.50)

Finally, using the identities trDirac(γµγν) = −4δµν , trDirac(γ5) = trDirac(γµγνγ5) = 0 and
tr(Pz. m.) = rank(Pz. m.) =#(i /D - zero modes)= nf , we find for the trace in (2.4.48)

Tr
(︃

1

/D2 +M2

)︃
= 4Tr

(︃
1

−D2
− +M2

)︃
+

nf
M2

. (2.4.51)

Solving the resulting differential equation for det( /D2 +M2),

d
dM2

det( /D2 +M2) = det( /D2 +M2)

(︃
4Tr

(︃
1

−D2
− +M2

)︃
+

nf
M2

)︃
, (2.4.52)

by separation of variables gives the desired overall result [60, 154]:

ln det( /D
2
+M2) = 4Tr ln(−D2

− +M2) + nf ln(M
2) = 4 ln det(−D2

− +M2) + ln(M2nf )

⇔ detMψ(f) = det(i /D +M) = Mnf
(︁
det(−D2

− +M2)
)︁2
.

(2.4.53)
Let’s assume an additional integration constant c appearing in the integration of the

separation of variables - process. On the one hand, the same considerations with the
identical integration constant c hold for the vacuum case A = 0, since both

∫︁
d(det) and∫︁

dM2 work analogously (−D2
− +M2 and −∂2− +M2 have the sameM2 - dependency).

On the other hand, det(/∂2+M2)) =
(︁
det(−∂2−+M2)

)︁4. Thus, we conclude that c = 0.48
It turns out that the number nf of i /D - zero modes is also determined by the caloron

background. Expand the massless quark field ψ = ξjχj , ψ = ξjχ
†
j in a basis {χj(X)}

of orthonormal i /D - eigenspinors, i.e., i /Dχj = λjχj , (i /Dχj)† = χ†
j(−i
←−
/D) = λjχ

†
j and∫︁ βd4X χ†

jχk = δjk, together with Graßmannian expansion coefficients ξj . A lengthy
and very technical calculation involving the regularization of the infinite sum χ†

jγ
5χj

(see for example [3, 130]) shows that the caloron topological charge can be written as
n = −

∫︁ βd4X χ†
jγ

5χj [151, 155]. Using γ5 = PR−PL = P2R−P2L (cf. (2.1.8)), χ
†
jγ

5χj can
be written in terms of the right-/left - chiral 2 - spinors χj R,L as χ†

jγ
5χj = χ†

j Rχj R−χ
†
j Lχj L.

Performing the
∫︁ βd4X - integral of these spinor products amounts to computing the

48Any other value c ̸= 0 would cancel anyway after regularization/normalization with the free theory, cf.
(2.4.65) or (2.4.82).
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scalar product of the Weyl spinor fields (χj R,L, χj R,L) =
∫︁ βd4X χ†

j R,Lχj R,L and since χj R
and χj L are related via parity transformation, the above terms cancel except for either
χk R = 0 or χk L = 0. This corresponds to 4 - spinor eigenfunctions of defined helicity
PR,Lχk,± = ±χk,±. Since [PR,L, i /D] ̸= 0, the only χk,± to contribute can be zero modes
with λk = 0. In that case, the two terms in

∫︁ βd4X χ†
jγ

5χj yield the number of right- and
left - chiral i /D zero modes nR,L, respectively, and the caloron’s topological charge fixes the
net number of these zero modes [151, 155]:

index topological(i /D) = n = nL − nR = index analytical(i /D) . (2.4.54)

The relation (2.4.54) between the topological and analytical index of i /D is a special case of
the Atiyah - Singer index theorem [156, 157] relating the topological and analytical indices
of elliptic operators on compact manifolds (see also [135]). A caloron configuration of
topological charge n is thus accompanied by a net of nL − nR unpaired left-/right - chiral
zero modes of i /D.
An alternative way of obtaining (2.4.54) is to note that since {γ5, i /D} = 0, the χj can

be grouped in pairs (χj , χ−j = γ5χj) with opposite sign - eigenvalues (λj , λ−j = −λj).
The χj are orthonormal by definition and thus the pairs (χj , γ5χj) are as well and do not
contribute to the integrated sum except for λk = 0 when they share an eigenvalue.49

In the case of an HS (anti-)caloron with n = ±1, (2.4.54) sets nL = nR ± 1 and since
i /D in an (anti-)self - dual background has no (left - chiral) right - chiral zero modes, one
finds

nf
(anti-)self - dual background

= |n| = 1 . (2.4.55)

All in all, i /D +m therefore has no zero modes and, equally importantly, it is sufficient
to consider the determinants of −D2

− +M2 (and −∂2− +M2) for a (free) β - anti-periodic
scalar field in a HS caloron background field together with the zero mode of the massless
Dirac operator i /D to calculate the fermionic contributions to the partition function.

Gluon gauge field Aµ :
The differential operatorMA (2.4.43.d) has zero modes (as −Gµνsu(N), adj can contribute
negatively). Just like in section 2.4.2, these correspond to the symmetries of the caloron
and are parametrized by the corresponding collective coordinates γα0

A :

49[3, 116, 130]
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• translation invariance of caloron center←→ four collective coordinates Cµ

• “dilatation symmetry” 50 ←→ collective coordinate ρ

• su(2) - caloron AHS embedded in su(N) - gauge field (2.4.38), i.e., SU(N) - transfor-
mations can change embedded caloron or embedding itself

– global (“rigid”) SU(2) - symmetry acts on caloron in on upper left corner:
AHS → USU(2)(θ⃗ )AHS U

−1
SU(2)(θ⃗ )

– SU(N − 2) - transformations acting on “unoccupied” upper right and lower left
corner leave caloron invariant, one generator (λ82 for SU(3)) generates trivially
commuting U(1) - subgroup⇒ SU(N −2)×U(1) = stability group of caloron
embedding

⇒ global “change of embedding symmetry” via G = SU(N)
SU(N−2)×U(1) ,

AHS → UG(ϑ⃗ )AHSU
−1
G (ϑ⃗ ), dim(G) = N2 − 1− (N − 2)2 = 4N − 5

←→ 4N − 5 collective coordinates {ΘA} = {θa}a= 1,2,3 ∪ {ϑi}i= 4,5,...,4N−5

All in all, there are 4 + 1 + 4N − 5 = 4N zero modes χα0 µ
A , α0 = 1, ..., 4N , for an su(2) -

caloron in SU(N) - gauge theory, corresponding to 4N zero eigenvalues λα0
A = 0 and

collective coordinates γα0
A . Analogously to dtX⃗cl in section 2.4.1, they are of the structure

χα0 µ
A = Zµα0

(X, γ⃗A) =
∂AµHS, su(N)(X, γ⃗A)

∂γα0
A

+Dµ∆α0(X, γ⃗A) , (2.4.56)

where the function∆α0 ensures the zero mode Zα0 satisfy the background gauge condition
(2.4.42). Unlike the λα ̸= 0 -modes, the caloron zero modes written in the form (2.4.56)
are not orthogonal: ⟨Zµα0 |Z

µ
β0
⟩ = 2

g2
Tr
(︁
Zµα0Z

µ
β0

)︁
= Uα0β0 . The factor 1

g2
in the zero mode -

inner product is necessary because the Jacobian matrix U can be understood as a metric in
collective coordinate space and with this normalization the collective coordinate - action
has the same g−2 - prefactor as the YM action (cf. (2.1.22)).51
Continuity52 fixes the integration measures for the zero mode expansion constants

ξα0
A analogously to the non - zero modes. Due to the non - orthogonality, the total zero
50Due to the externally fixed scale β, there is no dilatation symmetry in the usual sense as for the instanton.
In detail, under a rescaling X → cX one neither has A → cαA, nor is the periodicity preserved. Instead,
the combined transformation X → cX, β → cβ (constituting a scale transformation ρ → ρ

c
) yields the

desired family of independent solutions and thus the collective coordinate and zero modes [158].
51[140, 150, 158]
52Infinitesimal changes to L, e.g., the insertion of an infinitesimal mass for the gauge field, turn zero modes
into non - zero modes for the calculation.
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mode integration measure reads
∏︁
α0

dξα0√
2π

√︁
det(U). The integration over the zero modes

is performed by converting the ξα0
A - integrals into integrals over the known collective

coordinates γα0
A . For that one inserts an identity into the ξ

α0
A - integrals similarly to the

Faddeev - Popov gauge fixing procedure (cf. (2.2.15) and (2.2.16))

id =

∫︂ 4N∏︂
α0 = 1

dγα0
A δ(4N)(f⃗(γ⃗A))

⃓⃓⃓⃓
⃓det

(︄
∂f⃗

∂γ⃗A

)︄⃓⃓⃓⃓
⃓ ,

f⃗(γ⃗A) = fα0 êα0 = −
⟨︁
Aµqm

⃓⃓
Zµα0

(γ⃗A)
⟩︁
êα0 =

⟨︁
AµHS(γ⃗A)−A

µ
⃓⃓
Zµα0

(γ⃗
⟩︁
êα0 .

(2.4.57)

Here δ(4N)(f⃗) = δ(4N)(−Uβ0α0ξ
β0 êα0) = δ(4N)(U⃗ξ′) and ∂fα0

∂γ
β0
A

yields ⟨Zµβ0 |Z
µ
α0⟩ = Uβ0α0

as well as a term O(Aqm) which first contributes at 2 - loop order, so det ∂f⃗
∂γ⃗A

= detU .
Performing the ξ′α0 - integrals cancels the Jacobian determinant detU and the collective
coordinate integrals remain. The partition function then reads

ZHS(θ) = e
− 8π2

g2
+iθ
∫︂ ∏︂

i, j, f

∏︂
α

√︃
uαϕi
2π

uαA
2π

uαφj
2π

1

uαψf

1

uαgh
dξαϕidξ

α ∗
φj dξ

α
φjdξ

α
ψf
dξαψfdξ

α
Adξαghdξ

α
gh×

× exp

(︄
−
∑︂
i, j, f

∑︂
α

(︃
1

2
(ξαϕi)

2λαϕiu
α
ϕi

+ ξα ∗
φj ξ

α
φjλ

α
φju

α
φj + ξαψf ξ

α
ψf
λαψfu

α
ψf
+

+
1

2
(ξαA)

2λαAu
α
A + ξαghξ

α
ghλ

α
ghu

α
gh

)︃)︄
=

= e
− 8π2

g2
+iθ ∏︂

i, j, f

∫︂
dρd4C d3θ d4N−8ϑ

(
√
2π)4N

√
detU

(︁
detMϕ(i)

)︁−1/2(︁
detMφ(j)

)︁−1×

×Mψf

(︂
det(−D2

− +M2
ψf
)
)︂2 (︁

det ′ MA

)︁−1/2
detMgh ,

(2.4.58)
where the Gaussian integrals were performed neglecting the vanishing eigenvalues λα0

A

as indicated by det ′ MA and where (2.4.53) together with (2.4.55) was used for the
i /D - determinant.53

53[140, 141, 150]
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In detail, the caloron zero modes are given by

• Zµρ =
∂AHS
∂ρ

= −2

ρ
ηaµν

∂νϕ

ϕ2
σa

2
(2.4.59)

• ZµCν = −∂AHS
∂Xν

+DµAνHS = Gµν (2.4.60)

• Zµθa = Dµ
adj
(︁
ϕ−1

)︁ σa
2

= −δ
ab∂νϕ+ εabcηcµν∂νϕ

ϕ2
σb

2
(2.4.61)

• Zµ
ϑj,k

= Dµ
(︂
ϕ−

1
2

)︂ T j,k
2
− h.c. = − ((i, σ⃗) · ∂)ϕ−

1
2 (i,−σ⃗)µT

j,k

2
− h.c. , (2.4.62)

with ϕ(X) as given in (2.4.36) and the 4N − 8 collective coordinates ϑi and generators
T i relabeled with indices j ∈ {±1,±2}, k = 3, ..., N such that (T j > 0, k)pq = δjpδkq and
T j < 0, k = i T j > 0, k. The zero modes are independent of the caloron gauge orientation
described by the θa and ϑj,k and, in fact, orthogonal, so that the resulting U -matrix is
diagonal,

U =

⎛⎜⎜⎝
Uρρ

(UCµCν )µν
(Uθaθb)ab

(Uϑiϑj )ij

⎞⎟⎟⎠
4N×4N

=

=

⎛⎜⎜⎜⎜⎝
16π2

g2

8π2

g2
14×4

4π2ρ2

g2
13×3

2π2ρ2

g2
1(4N−8)×(4N−8)

⎞⎟⎟⎟⎟⎠ ,

(2.4.63)

and one has
√
detU = 22N+7

ρ5

(︂
π2ρ2

g2

)︂2N
, which is again θ -ϑ - independent. If one considers

only gauge - invariant correlation functions, one can therefore integrate out the gauge
orientations54

∫︁
d3θ d4N−8ϑ = vol

(︂
SU(N)

SU(N−2)×U(1)

)︂
= 24N−5π2N−2

(N−1)!(N−2)! .
55

Before plugging these results into the expression (2.4.65) for the partition function,
one notes that the partition function is infinite without proper normalization with respect
to a vacuum background and regularization/renormalization.

54This expression for the gauge group volume holds for the choice of Dynkin index Cdef = 1
2
. A different

choice alters the volume but leaves the overall density (2.4.66) invariant.
55[54, 140, 150, 158]
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Renormalization is achieved by employing Pauli - Villars regularization [159], which
introduces additional copies of all quantum fields with large mass Λ≫Mϕi,φj ,ψf and min-
imal coupling only to the background. For the vector and ghost fields one introduces fields
Aheavy and cheavy which add to the Lagrangian as 1

2A
µ
heavyM

µν
A (AHS)A

ν
heavy−Λ

2AµheavyA
µ
heavy

and cheavyMgh(AHS)cheavy−Λ2cheavycheavy, respectively. Therefore all physics is understood
as in relation to these heavy particles which probe physics at the asymptotically free UV -
limit. UV divergences then cancel in the difference of two theories (at physical mass versus
at Λ -mass). Pauli - Villars regularization is required (instead of the more conventional
dimensional methods), since, as we discussed in section 2.4.2, actual expressions for
SU(2) - instantons/calorons are only available in the 4 -/3 + 1 - dimensional spacetimes
R4 and R3 × S1

rad.= β/2π
. The main drawback of Pauli Villars regularization, the fact that

it violates gauge - invariance in non - Abelian gauge theories, does not pose a problem in
this case, since for the background instanton/caloron fields the gauge is fixed prior to
calculations. In this gauge, every zero mode χα0

ϕi, φj , A
is accompanied by a factor Λ2 and

every zero mode χα0

ψf , gh carries carries a factor Λ so that one has to modify
√
detU by a

factor
√
Λ8N and finds56

√
detU =

22N+7

ρ5

(︃
π2ρ2Λ2

g2

)︃2N

. (2.4.64)

Combining this determinant (2.4.64) with (2.4.58) and inserting normalization by a
vacuum background (which, in this approximation, cancels the ϕi - contributions), the
overall partition function and the thereby defined caloron density D thus read:

ZHS(θ) = eiθ
∫︂ ∞

0
dρ
∫︂ β

d4Z 4 e
− 8π2

g2

π2(N − 1)!(N − 2)!

(︃
4π2ρ2Λ2

g2

)︃2N
1

ρ5
×

×
∏︂
j, f

detMφ(Λ) detMφ, 0(Mφj )

detMφ(Mφj ) detMφ, 0(Λ)

Mψf

Λ

(︄
det(−D2

− +M2
ψf
) det(−∂2− + Λ2)

det(−D2
− + Λ2) det(−∂2− +M2

ψf
)

)︄2

×

×

√︄
det ′ MA(Λ) det ′ MA, 0

det ′ MA det ′ MA, 0(Λ)

detMgh detMgh, 0(Λ)

detMgh(Λ) detMgh, 0
=

(2.4.65)

= eiθ βV

∫︂ ∞

0
dρ d (T,Mφj ,Mψf , ρ,Λ) = eiθ βV D(T,Mφj ,Mψf ,Λ) = (2.4.66)

= exp
(︁
− Γfermion, complex scalar, gluon and ghost(θ)

)︁
= eiθ βV

∫︂ ∞

0
dρ e−γ(ρ) , (2.4.67)

56[141]
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where βV = vol(R3×S1
rad.= β/2π

) =
∫︁ βd4C and γ(ρ) = − ln(d ) is the negative logarithmic

caloron density, “log - caloron density” for short. We denote the log - caloron density by γ
since βV eiθ

∫︁∞
0 dρ e

−γ(ρ) = e−Γ(θ).57

Determinant Ratios and Relations

The instanton/caloron - density (2.4.66) was calculated for the simplified case of mass-
less/almost massless scalar/fermionic fields at zero temperature in [141] and was extended
to finite temperatures in [54].
For T = 0,Mφj = 0 and vanishingly small fermion massesMψfρ≪ 1, the fermionic,

vector and ghost determinants (2.4.43.c) - (2.4.43.e), using the background gauge and
given a self - dual SU(2) - background, are conveniently related. In detail, one has:

• det ′ MA =
(︁
det(−D2

adj)
)︁4

=
(︂
det(−D2

spin 1)
(︁
det(−D2)

)︁2(N−2)
)︂4
, (2.4.68)

• detMgh =
(︁
det ′ MA

)︁ 1
4 = det(−D2

spin 1)
(︁
det(−D2

spin 1/2)
)︁2(N−2)

, (2.4.69)

•
(︃
det(−D2) det(−∂2 + Λ2)

det(−D2 − Λ2) det(−∂2)

)︃
spin 1/2

= eα(
1
2)+

1
6
ln(Λρ) , (2.4.70)

•
(︃
det(−D2) det(−∂2 + Λ2)

det(−D2 − Λ2) det(−∂2)

)︃
spin 1

= eα(1)+
2
3
ln(Λρ) , (2.4.71)

•
detMψ(Mψf ) detMψ, 0(Λ)

detMψ(Λ) detMψ, 0(Mψf )

(2.4.53)
=

Mψf

Λ

(︄
det(−D2 +M2

ψf
) det(−∂2 + Λ2)

det(−D2 + Λ2) det(−∂2 +M2
ψf
)

)︄2

spin 1/2

=

•
Mψf

ρ≪ 1, (2.4.70)
=

Mψf

Λ
e2α(

1
2)+

1
3
ln(Λρ) = Mψfρ e

2α( 1
2)−

2
3
ln(Λρ) , (2.4.72)

•
detMφj detMφj 0(Λ)

detMφj (Λ) detMφj 0
= e

− 1
6
ln(Λρ)

∑︁
tj
C(tj)−

∑︁
tj
α(tj)

, (2.4.73)

where the (not explicitly denoted) fundamental representation corresponds to spin 1
2 ,

α
(︁
1
2

)︁
≈ 0.145873 and α(1) ≈ 0.443307, the tj are the spins of the SU(2) - representations

making up the composite fields φj , the corresponding Dynkin indices are given by
C(tj) =

2
3 tj(tj + 1)(2tj + 1) and the general expression for α(tj) is given in [141, eq.

(12.4)]. Furthermore, the instanton zero modes yield the same Jacobian matrix as (2.4.63)
and thus the same Jacobian determinant. Given the above simplifications and relations
one obtains the partition function:58

57[8, 54]
58[54, 141, 160]
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ZHS(T = 0,Mφj = 0,Mψfρ≪ 1, θ) =

= eiθ βV

∫︂ ∞

0
dρ d (T = 0,Mφj = 0,Mψfρ≪ 1, ρ,Λ) = eiθ βV

∫︂ ∞

0
dρ e−γ(ρ) =

= eiθ βV

∫︂ ∞

0
dρ 4 e−α(1)−2(N−2−Nf )α( 1

2)

π2(N − 1)!(N − 2)!

(︃
4π2

g2

)︃2N
1

ρ5

∏︂
f

Mψfρ×

× exp

⎛⎝−8π2

g2
+

1

3
ln(Λρ)

(︄
11N − 2Nf −

1

2

∑︂
j, tj

C(tj)

)︄
−
∑︂
j, tj

α(tj)

⎞⎠ .

(2.4.74)

In the following we are going to focus on a description of QCD in a caloron background
and thus drop the scalar fields φj and shorten the notationMψf →Mf . The remaining
logarithm in the exponent, 13 ln(Λρ)(11N − 2Nf ), coincides with the 1 - loop β - function
for the coupling constant of SU(N) - YM theory coupled to Nf fermions in the sense that
8π2

g2
− 1

3 ln(Λρ)(11N − 2Nf ) =
8π2

g2(µ=1/ρ)
is the 1 - loop regularized coupling at scale 1

ρ as
given in (1.1.2). Therefore, the factor g−4N in (2.4.74) is often manually replaced by the
running coupling g−4N (1/ρ).59
As was established for massless quarks in (2.4.77) and [54] and as we are going to

verify for the general case (cf. figure 3.16), the preferred caloron size is small: ρT ≈ 0.42
in pure glue withN = 3, which goes own to ρT ≈ 0.34 in the case of four light quarks. We
deduce that the replacement g−4N → g−4N(1/ρ) in (2.4.74) adds only small corrections:
the large Pauli - Villars mass Λ ≫ T yields

(︁
ln(Λρ)

)︁2N
=(lnΛ)2N

(︁
1 + 2Nϵ+O(ϵ2)

)︁
,

ϵ = ln ρ
ln Λ . Therefore, we choose to neglect the ρ - dependent ϵ - corrections and keep only

the “constant”, i.e., ρ - independent, term ln Λ.
This identification of the running coupling also allows for the relation of the above result

in Pauli - Villars regularization to other regularization schemes, for example the MS- or
MS - scheme of dimensional regularization as described in [132, eqs. (82) - (89)] and
[161, eqs. (3), (4)]. The MS - result was first established in [141]. Overall, the caloron
density at T = 0 for vanishingly light quarks (in Pauli - Villars regularization) reads

d =
2e−α(1)+4α( 1

2)+ln 2−N(2α( 1
2)+2 ln 2)+2Nfα( 1

2)

π2(N − 1)!(N − 2)!

(︃
8π2

g2

)︃2N
e
− 8π2

g2(1/ϱ)

∏︁
f Mfρ

ϱ5
(2.4.75)

with the running coupling g(µ = 1/ρ) (1.1.2).

59Or even the renormalization group - improved running coupling (see [54]):
8π2

g2
(︁

1
ρ

)︁ = − 1
3
ln(Λρ)(11N − 2Nf ) + ln

(︂
ln
(︂

1
Λρ

)︂)︂
17N2−

Nf
2N

(13N2−3)

11N−2Nf
+O

(︂
1

ln(Λρ)

)︂
.
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Compare the partition function (2.4.74) given in terms of D =
∫︁∞
0 dρ d (ρ) and (2.4.75)

with the remaining collective coordinate ρ to (2.4.7) for the toy model. In the sense of
(2.4.4), d (ρ) can be seen as the topological transition rate (per caloron size) [8].60
In order to extend the above to the physically interesting case of T > 0 andMfρ ̸≪ 1 as

well asMfβ ̸≪ 1, the determinant relations must be reevaluated for these new parameters.
For that the determinant relations in (2.4.65) are split into the parts with T = 0,Mfρ≪ 1
and a correction factor f , i.e.,

d (T,Mf , ρ,Λ) = d (T = 0,Mfρ≪ 1, ρ,Λ) · f (T,Mf , ρ) , (2.4.76)

and one uses the fact that (2.4.68) - (2.4.71) still hold at finite temperature [54].
For vanishing fermion masses but finite temperature this correction factor was calculated

in [54] and reads f (T,Mfβ ≪ 1,Mfρ≪ 1, ρ) = f (T,Mf = 0, ρ):

f (T, 0, ρ) = exp

(︃
−(πρT )2

3
(2N +Nf )−A(πρT )

(︁
12 + 2(N −Nf )

)︁)︃
(2.4.77)

with A(x) ≈ − 1
12 ln

(︁
1 + x2

3

)︁
+ a1

(︁
1 + a2

x3/2

)︁−8, a1 ≈ 0.01289764 and a2 ≈ 0.15858.
For zero temperature but non - vanishing fermion masses, the fermion determinant

relation has also been evaluated and one finds analytical results for small mass- and large
mass - expansions

f (0,Mfρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏︂
f

exp
(︂
M2
f ρ

2 ln(Mfρ) + (γE − ln 2)M2
f ρ

2 +O
(︁
(Mfρ)

4
)︁)︂

: Mfρ ≲ 0.5

∏︂
f

e−2α( 1
2)

(Mfρ)
1
3

exp
(︂
− 2

75 (Mfρ)2
− 34

735 (Mfρ)4
+

+
464

2835 (Mfρ)6
− 15832

148225 (Mfρ)8

)︂ : Mfρ ≳ 1.8

(2.4.78)
as well as an interpolation between them, covering arbitrary masses, in [60]:

f (0,Mfρ) =

=
∏︂
f

e−2α( 1
2)

(Mfρ)
1
3

exp

(︄
1
3 ln(Mfρ) + 2α

(︁
1
2

)︁
−
(︁
6α
(︁
1
2

)︁
− γE + ln 2

)︁
(Mfρ

2)− 2
5(Mfρ)

4

1− 3(Mfρ)2 + 20(Mfρ)4 + 15(Mfρ)6

)︄
.

(2.4.79)
60[54, 132, 161]
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Furthermore, an explicit numerical solution for arbitrary masses was found [61]:

f (0,Mf , ρ) =
∏︂
f

e−2α( 1
2) exp

(︄
− 2 lim

L→∞

(︄
L∑︂

l= 0, 1
2
,...

(2l + 1)(2l + 2)PMf, ρ(l) + 2L2 + 4L−

−

(︄
1

6
+
M2
f ρ

2

2

)︄
ln(L) +

M2
f ρ

2

2

(︁
ln(Mfρ) + 1− 2 ln 2

)︁
+

127

72
− ln 2

3

)︄)︄
,

(2.4.80)
wherePMf, ρ(l) = S

l,l+ 1
2

Mf, ρ
(R→∞)+S

l+ 1
2
,l

Mf, ρ
(R→∞) and Sl,jMf, ρ(R) is the numerical solution

to the ordinary differential equation

d2Sl,j

dR2
+

(︃
dSl,j

dR

)︃2

+

(︄
1

R
+ 2
dRI2l+1(MfR)

I2l+1(MfR)

)︄
dSl,j

dR
=

4(j − l)(j + l + 1)

R2 + ρ2
− 3ρ2(︁

R2 + ρ2
)︁2 ,

(2.4.81)
with Iα(x) the modified Bessel function of the first kind.
We aim to calculate the fermionic correction factor f (T,Mf , ρ) = e−γferm ∝ e−2γs,−

for the general case of heavy quarks at finite temperatures. Here, γferm is the negative
logarithmic caloron density due to a fermion and γs, − is the logarithmic density for an anti-
periodic, complex scalar particle, i.e., the regularized, vacuum - normalized Klein - Gordon
operator determinant in (2.4.65):

γ(ρ) ⊃ γfermion(ρ) = − ln

(︃
det(i /D +Mf ) det(i/∂) + Λ)

det(i /D + Λ) det(i/∂) +Mf )

)︃
=

= −2 ln

(︄
det(−D2

− +M2
f ) det(−∂2− + Λ2)

det(−D2
− + Λ2) det(−∂2− +M2

f )

)︄
− ln

(︃
Mf

Λ

)︃
=

= −2 γscalar, anti-periodic(ρ)− ln

(︃
Mf

Λ

)︃
= −2 γs, −(ρ)− ln

(︃
Mf

Λ

)︃
.

(2.4.82)
A straight - forward calculation of γs, − in (2.4.82) would require us to solve a com-

plicated, 2 - dimensional partial differential equation, which we derive in appendix A,
compared to the ODE (2.4.81). This is due to the broken spacetime symmetry for ther-
mal field theories described by the imaginary time formalism (cf. section 2.2.4) and the
caloron - rotational covariance being restricted to spatial R3. We instead follow an alterna-
tive approach which was first used for T = 0 in [60] and that we adapt and generalize to
finite temperatures. First, we calculate the correction factor f (T,Mf , ρ) for large masses
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(M ≫ T , cf. section 3.1) and light quarks (M ≪ T ,Mρ≪ 1, cf. section 3.2), obtaining

f (T,Mf , ρ) =

⎧⎪⎨⎪⎩
exp
(︁
2 γs, −(Mfβ < 1, ρ)

)︁
: non - vanishigly smallMf

e−2α( 1
2)

(Λρ)
1
3

exp
(︁
2 γs, −(Mfβ > 1, ρ)

)︁
: largeMf

.

(2.4.83)
The factor e−2α( 1

2)(Λρ)−
1
3 cancels {M} ≪ 1 - terms in (2.4.75). Second, we interpolate

between these mass regimes (cf. section 3.3) to obtain a result for arbitrary masses. This
is the finite T - generalization of (2.4.78) and (2.4.79).
As stated in section 1.3, our approach is motivated by the excellent agreement of

γs, −(Mf , ρ) at T = 0 as given by the interpolation (2.4.79) in [60] with the full numerical
result (2.4.80) from [61] as shown in figure 6 of [61].

2.4.4 Dilute Gas Approximation for Calorons

So far, only BPST (anti-)instantons and HS (anti-)calorons of topological charge n = ±1
have been discussed. In general, topological configurations can carry any integer topo-
logical charge n ∈ Z, however (even at finite T only such configurations contribute, cf.
section 2.4.2). While the general ADHM - construction for higher charge - instanton con-
figurations is known and corresponding calorons could be constructed following [147],
explicit expressions are only available for HS (anti-)calorons.
Given that small calorons ρ ∼ 0.35β dominate, however, (see [54] and our results in

figure 3.16) it is reasonable to employ the small constituent - approximation, i.e., to describe
more complicated background configurations as superpositions of spatially well - separated
and thus non - interacting61 single HS (anti-)calorons. At leading order, all higher charge -
calorons can then be described this way. A general caloron background is populated by
calorons of all topological charges and one describes n - caloron configurations by the
small constituent - approximation using n+ HS calorons and n− HS anti-calorons with
n+ − n− = n. This is the dilute gas approximation (DGA), as introduced for the periodic
potential in section 2.4.1, employed for calorons.62
One defines again - analogously to the instanton case at T = 0 - the physical θ - vacuum
|θ⟩ =

∑︁
ν ∈ Z e

−iνθ |ν⟩ and the operators T± and Tn that change the vacuum winding
number as T± |ν⟩ = |ν ± 1⟩ and Tn |ν⟩ = |ν + n⟩, i.e., Tn |θ⟩ = einθ |θ⟩ (cf. (2.4.31) and
61Instanton and caloron interactions are short - ranged; e.g., for well - separated instantons at locations Zi
with typical separation scale d, the interaction corrections compared to an exact solution are ≲ ρ2

d3
in the

“near region” |X − Zi| ≲ ρ (for some i) and ≲ ρ4

d5
in the “far region” |X − Zi| ≳ ρ ∀i [162].

62[8, 138, 163]

80



(2.4.32)). From the point of view of these operators, the DGA then implies

Tn =
∑︂

n+, n− ∈ N

δn,n+−n−

n+!n−!
(T+)n+(T−)n− with [T±,T∓] = 0 , (2.4.84)

where the factor (n+!n−!)−1 accounts for the overcounting due to indistinguishable
combinations of the HS (anti-)calorons. Compare this to figure 2.2b. Following (2.4.33)
and (2.4.34) and using ZHS = ZHS = βVD (cf. (2.4.66)), the DGA transition amplitude
and the caloron background partition function ZDGA(θ) read

⟨θ|
∑︂
n ∈ Z

e−H(An - cal)β|θ⟩ =
∑︂
n

⟨θ |Tn | θ⟩ =
∑︂

n, n+, n−

δn,n+−n−

n+!n−!
⟨θ | (T+)n+(T−)n− | θ⟩ =

=
∑︂
n+, n−

1

n+!n−!

∫︂ 2π

0

n++n−−1∏︂
j = 1

dθj
⟨︁
θ
⃓⃓
T+
⃓⃓
θn++n−−1

⟩︁
· · ·
⟨︁
θ1+n−

⃓⃓
T+
⃓⃓
θn−

⟩︁
×

×
⟨︁
θn−

⃓⃓
T−
⃓⃓
θn−−1

⟩︁
· · · ⟨θ1 |T− | θ⟩ =

=(2π)n++n−δ(0)
∑︂
n+ ,n−

1

n+!n−!

(︁
eiθ ZHS

)︁n+
(︁
e−iθ ZHS

)︁n− =

=(2π)n++n−δ(0) exp(eiθ βVD) exp(e−iθ βVD) = (2π)n++n−δ(0) exp(2βVD cos(θ))⏞ ⏟⏟ ⏞
= ZDGA(θ)

.

(2.4.85)
The overall factor δ(0) again reflects the infinite number of “starting point” |ν⟩ - vacua for
the transition (cf. (2.4.34) with θ′ = θ so that

∑︁
ν′ →∞ or accordingly δ(θ′ − θ) = δ(0)).

This expression for ZDGA(θ) shows that it is fully sufficient to calculate the HS caloron
density D(T ) to obtain the full DGA partition function.63
The picture of a caloron tunneling process in imaginary time, connecting otherwise dis-

tinct |ν⟩ - vacua, which is invoked by the expression ⟨θ|
∑︁

n e
−H(An - cal)β|θ⟩ and corresponds

to the instanton case discussed in section 2.4.1 (cf. figure 2.10, (2.4.20) and (2.4.33))
is insufficient to discuss the DGA for calorons. For instantons with an infinite time scale
for the “complete tunneling process” ∆t→∞, the usual reasoning behind the DGA is to
assume temporally well - separated instantonsC4

i −C4
j ≫ δt ∀i, j, where δt is the instanton

size, i.e., time scale (e.g., see [8, 33, 38, 130, 132, 140]). At finite temperatures, the
dominant caloron size is not much smaller than the temporal size of the system, however,
and the calorons typically occupy most of the available space in the temporal direction
[164]. Therefore, the usual reasoning for the applicability of the DGA fails. The caloronic
63[8, 116, 132]
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DGA is based on a spatial separation of the small constituents to justify (2.4.84). This
is realized by the caloron sizes ρi being small enough, so that the field strengths fall off
quickly (cf. figure 2.12) and for every HS (anti-)caloron Zi = βVD ≈ βViD with disjoint
volumes Vi ⊂ R3, Vi ∩ Vj = ∅, ∪iVi = R3. This is also the reason why initially introducing
the T - operators in (2.4.32) was important, as for calorons the topological transitions
cannot be thought of as tunneling transitions in infinite time and thus require a general
description independent of this interpretation.
[141] and [54] also show why we abstained from discussing the DGA for instantons

in section 2.4.2 and only introduced it for calorons. Large caloron sizes are damped
exponentially with temperature, called Debye screening (cf. (2.4.77)), so that at T = 0
infinitely large instantons populate the vacuum and dominate the instanton density. This
leads to both the failure of the DGA and an infrared divergence of the partition function.

2.4.5 Topological Susceptibility

In section 2.4.2 we reviewed how the topologically non - trivial QCD vacuum structure
and the presence of vacuum tunneling processes enforce the addition of the θ - term
−iθq(X) = − iθ

16π2 tr
(︁ ˜︁GµνGµν)︁ to the Lagrangian and in the the above section 2.4.4 we

presented the DGA, which shows that it is sufficient to consider only HS (anti-)calorons.
The “strength” of the topological term is thus determined by the value of the angle θ and the
“strength” of the topological fluctuations caused by caloron backgrounds is measured by
the topological susceptibility χtop. Analogously to, for example, the magnetic susceptibility,
which measures the response of a system to (the strength of) an external magnetic field
B, one defines the topological susceptibility χtop as the response of QCD to a topological
background, the strength of which is determined by the fluctuation θ away from its VEV
⟨θ⟩ ≈ 0 (the value predicted by both experiment and theory, for the latter cf. section
2.5.3). Given the magnetic susceptibility χmag ∝ ∂2 lnZ(B)

∂B2 (e.g., see [6, p. 572/573]), the
topological susceptibility is defined as (cf. (1.2.2))

χtop = −
1

βV

∂2 ln
(︁
Z(θ)

)︁
∂θ2

⃓⃓⃓⃓
⃓
θ = 0

=

(︁
⟨n2⟩ − ⟨n⟩2

)︁⃓⃓
θ = 0

βV
=
⟨n2⟩|θ = 0

βV
=

=

∫︂ β

d4X tr
(︁
q(X)q(0)

)︁
,

(2.4.86)

where it was used that ⟨n⟩ = 0, since calorons and anti-calorons appear equally (they are
linked via the flip θ → −θ ).64

64[4, 47, 49, 116, 165]
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At temperatures T > Tc above the critical temperature of chiral perturbation theory
(cf. section 2.3), where gluons are a fundamental degree of freedom, the DGA yields
a convenient expression for χtop. Using the DGA - partition function (2.4.85), which
describes general caloron configurations at such temperatures, in the definition of χtop
(2.4.86), the topological susceptibility takes the convenient form:

χtop(T > Tc)
DGA
= − 1

βV

∂2 ln
(︁
ZDGA(θ)

)︁
∂θ2

⃓⃓⃓⃓
⃓
θ = 0

= 2D(T ) , (2.4.87)

with D(T ) the HS caloron density (cf. (2.4.66) - (2.4.80)). From (2.4.75) and (2.4.77) a
temperature dependency χtop ∝ T−a−Nf/3, a ≈ 7 can be deduced. The exact coefficient
of χtop in this regime depends on chromo -magnetic and -electric screening and is not
precisely known, however.65

At temperatures T < Tc, QCD as a perturbation theory fails and strong interaction
matter is described chiral perturbation theory, which we introduced in section 2.3. For
low temperatures and at leading order in chiral perturbation theory, the topological
susceptibility reads

χtop(T < Tc)
chiral pert. theory

= f2π(T )M
2
π(T )

MuMdMs

(Mu +Md)(MuMd +MuMs +MdMs)
(2.4.88)

and has been calculated at zero temperature 4
√︁
χtop(0) = (75.44±0.34)MeV [51]66. In the

limitMs ≫Mu,d (2.4.88) simplifies to χtop(T < Tc)
Ms≫Mu,d

= f2π(T )M
2
π(T )

MuMd
(Mu+Md)2

.67

2.5 Observable Effects of Topology

After having discussed at length the role of topological effects and instantons (calorons) in
QCD (at finite temperatures), we now present some of the most important and well - known
phenomena that make the non - trivial topology of the QCD vacuum observable as well as
their implications.

65[44, 49, 165, 166]
66This is in good agreement with other recent results as 4

√︁
χtop(0) = (75.6 ± 0.6)MeV [52] or the

SU(2) - chiral perturbation theory result 4
√︁

χtop(0) = (75.5 ± 0.5)MeV [44] and lattice QCD results
4
√︁

χtop(0) = (75.6± 1.8statistical ± 0.9systematic)MeV [53], where the b - quark was included.
67[44, 48, 52, 165]
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2.5.1 Axial Anomaly and the missing Nambu - Goldstone Boson

In sections 1.2 and 2.3 we introduced the η - η′ - puzzle: the large mass gap between the
η′- and the η -meson and especially between η′ and the pions. This mass gap seemingly
disagrees with η′ being the singlet accompanying the light meson octet according to the
SU(3)V - product representation 3⊗ 3 = 8⊕ 1 and it directly disagrees with η′ serving as a
pseudo -Nambu -Goldstone boson (pNG boson) for U(1)A like the light octet for SU(3)A.
The η - η′ - puzzle is solved by an anomalous explicit breaking of the U(1)A - symmetry,
which is in turn explained by topological effects. This quantum anomaly is called the axial
or chiral anomaly [29–31].68

The anomaly is due to U(1)A - transformations ψfl → eiβγ
5Mψfl , ψfl → ψfle

iβγ5M of
the, in general, Nfl light quark flavors ψfl . These transformations leave the the quark
Lagrangian (2.1.15) invariant/only lightly broken by terms ∝ Mfl (cf. (2.3.9)), but
actually change the path integral measure ((2.2.10), (2.2.19)) by a Jacobian determinant∏︁
fl

Dψfl Dψfl →
∏︁
f Dψfl Dψfl Jfl which turns out to add to the Lagrangian a term

proportional to the topological charge density [167, 168]. To see this, one neglects theMfl -
terms (they are treated as perturbations in this approximation) and, using the Lagrangian
ψfli /Dψfl , expands the now equal quark flavors ψf = ξjχj , ψf = ξjχ

†
j in a basis {χj(x )}

of orthonormal i /D - eigenfunctions, i.e., i /Dχj = λjχj , (i /Dχj)† = χ†
j(−i
←−
/D) = λjχ

†
j and∫︁

R1,3d4x χ†
jχk = δjk, together with Graßmannian expansion coefficients ξj . The path

integral measure
∏︁
fl

Dψfl Dψfl =
(︁∏︁

j dξj dξj
)︁Nfl can then be shown to change by the

Jacobian determinant

J =(Jfl)
Nfl = exp

(︃
−2iNfl β

∫︂
R1,3

d4x χ†
jγ

5Mχj
)︁)︃

=

= exp

(︃
iNfl β

8π2

∫︂
R1,3

d4x tr
(︁ ˜︁GµMνMGµMνM)︁)︃ = exp

(︃
2iNfl β

∫︂
R4

d4X q(X)

)︃
.

(2.5.1)

Below (2.4.34) it was shown that this topological term is covariant under Wick rotation
and in (2.4.19) it was identified as the topological charge n =

∫︁
R4d4X q(X) (analogously

for calorons at finite T ). Here one finds again the important relation between n and the
infinite sum χ†

jγ
5χj mentioned above (2.4.54). In conclusion, the axialU(1)A - symmetry is

no symmetry at all, not even for the light quarks, as it anomalously changes the Lagrangian
the action by −2Nfl βn. These terms are not small like the mass terms and thus cannot be
neglected. The associated current (in Euclidean spacetime) is broken explicitly but lightly

68[3, 4, 33, 38, 111]
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by mass terms as well as explicitly and strongly by a topological term:

∂µjµA = 2i
∑︂
fl

Mflψflγ
5ψfl + 2Nfltr

(︁ ˜︁GµνGµν)︁ = 2i
∑︂
fl

Mflψflγ
5ψfl + 2Nflq . (2.5.2)

Compare this with the “naive” expression (2.3.9).69
In the truly massless case, the associated charge QA is therefore changed by 2Nfln units

of axial charge[142]:

∆QA = QA(t→∞)−QA(t→ −∞) =

∫︂
R4

d4X ∂µjµA = 2Nfln . (2.5.3)

This can be shown analogously to the derivation of the Atiyah - Singer index theorem
for i /D (2.4.54) in section 2.4.2. In detail, an instanton (caloron) of topological charge
n creates 2Nfln units of axial charge by creating/annihilating a net of nL /nR unpaired
left-/right - chiral zero modes of i /D (or by helicity flipping existing unpaired ones [141]).70
In the language of Feynman diagrams, the discussed breaking of U(1)A can be under-

stood via the triangle diagrams shown in figure 2.13 which describe the coupling an
external axial vector current and two external photons via a loop of massless fermions. As
it turns out, these diagrams are non - zero and the associated matrix element, describing
the divergence of the axial vector current creating the two photons, is non - vanishing
as well. This result is unchanged by renormalization, as there exists no regularization
scheme that preserves the U(1)A - symmetry.71
Furthermore, topology also determines the mass of the η′ -meson via the Witten -

Veneziano mechanism [34, 35]. ConsideringNfl light quark flavors, the Witten - Veneziano
relation for the η′ -mass at zero temperature reads

2Nfl χtop(Nfl , 0)

f2π(0)
= M2

η +M2
η′ − 2M2

K , (2.5.4)

where χtop(Nfl , 0) and fπ(0) are the topological susceptibility and pion decay constant (cf.
(2.3.10)) at zero temperature, respectively, andMK is the (average) kaon mass. In the chi-
ral limitMfl = 0 ∀fl, where the chiral SU(3)A - symmetry is restored, the non - anomalous
mass contribution to η′ and the two other meson mass contributions largely cancel, so that
only the anomalous mass contribution remains in (2.5.4): M2

η′

⃓⃓⃓
Mfl = 0

=
2Nf χtop(0)
f2π(0)

. From

the point of view of the light quarks, thermal field theory at high enough temperatures
69[3–5, 33, 38, 46, 116, 130, 140]
70[33, 116, 130]
71[3–5, 38, 111, 130]
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Figure 2.13: Taken from [3] and modified: A UV - divergent quark loop generating the
according divergence of the axial vector current and the chiral anomaly, here
in Euclidean spacetime. An axial vector current (momentum q) couples to a
(diverging) loop of massless quarks - •marks an axial vector vertex γ5γρ -,
which in turn couples to two vector currents (momenta p and k) - via vector
vertices γµ and γν .

(T ≳ ΛQCD or “no higher than T ∼ Λχ”, for both cf. section 2.3) corresponds to the
chiral limit, i.e., chiral perturbation theory has broken down, the light quarks are again
fundamental degrees of freedom in the quark - gluon plasma and the thermal kinetic
energy has grown much larger than the light quark masses, i.e., mfl = βMfl ≈ 0. At such
temperatures, it is therefore technically no longer sensible to speak of (light) baryons.
Nevertheless, one can still look for the masses of excitations in the quark - gluon plasma
with quantum numbers corresponding to the respective baryons (this can be implemented
by corresponding external currents in correlation functions, for example [4, p. 402]).
The excitations corresponding to the light octet of pNG bosons are all essentially massless
at such temperatures and the mass of “η′ - excitations” has to fall as well according to
Nf χtop(T )
f2π(T )

, where both fπ(T ) and χtop(T ) decrease with increasing temperatures. For ex-
ample, at T = 200GeV, the mass of an “η′ - excitation” was measured to be at least about
200MeV lower than the zero temperature massMη′(T = 0) ≈ 958MeV [169, 170]. The
thermal η′ -mass therefore depends critically on how the pion decay constant and the
topological susceptibility fall off at finite temperature and on how the system transitions
into a quark - gluon plasma. Current theoretical predictions do not agree with experimen-
tal results, therefore a better understanding of χtop(T ) (and fπ(T )) at high temperatures
is required.72

Topology thus explains both why U(1)A is not a symmetry, i.e., no ninth (fourth)
pNG boson is required, and why the large mass of η′, not being a pNG boson, is not in
contradiction with theory, i.e., it is indeed the singlet accompanying the light meson octet

72[129, 171]
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of pNG bosons. Furthermore, U(1)A - transformations flip a particle’s helicity/parity, as
can be seen by employing (2.1.10) and {γ5M , γ0M} = 0. If U(1)A were actually a good
approximate symmetry for the light quarks, all light hadrons made up of the light quarks
would have to appear as parity - doublets of similar masses. This is not realized in nature,
however - for example, the pions and ρ -mesons would be such parity partners with
identical quark content and opposite parity, but their mass difference is ∼ 640MeV.73
This is the first important example of symmetry considerations - the chiral symmetry,

in this case - leading to further developments of a seemingly established theory - the
realization of the relation between anomalous U(1)A - breaking and the η - η′ - puzzle -
which we was advertised at the beginning of section 2.1.

2.5.2 Strong CP Problem and its Resolution by Axions

While including the topological sector of QCD explains the axial anomaly and its conse-
quences, it also creates problems, namely the strong CP problem: the topological θ - term
in the Lagrangian is odd under combined charge conjugation C and parity transformation
P, while, experimentally, QCD has proven to be invariant under the CP - transformation.
The θ - term in the Lagrangian is Lθ = −iθq (cf. (2.4.19)). In section 2.4.2 it was

shown that this term is covariant under Wick rotations. With the chromo - electric and
-magnetic fields EiM = G0iM and BiM = 1

2ε
iM
jMkMG

jMkM , one can rewrite this term (using
ε0M

iM
jMkMε

iM
jMkM = 1) as Lθ = − iθ

4π2 tr(EiMBiM). Under parity transformation P and the
charge conjugation C

PAµM(x )P−1 =

{︄
A0M(t ,−x⃗ )

−A⃗(t ,−x⃗ )

}︄
= AµM(t ,−x⃗ ) , CAµMC−1 = −AµM (2.5.5)

the chromo - electric field picks up two factors of −1 (it is P- and C - odd), while the
chromo -magnetic field picks up only one (it is C - odd but P - even, as it is a pseudo - vector).
Therefore, the action term Sθ is CP - odd, CPSθP−1C−1 = −Sθ, and CP - invariance seems
to be broken in QCD.74
As we discussed in the introductory section 1.2, the strong CP problem is the fine -

tuning problem |θ| ≲ 1.2 · 10−10 by experimental results compared to the full range
of theoretically possible values θ ∈ [−π, π). This also means that strong CP break-
ing cannot play a role in any CP violating process compared to CP violation by the
weak interaction. To see this, one considers, for example, the decay of neural kaons.
The neutral kaons K0 = ds and K0 = sd introduced in section 2.3 are not their own
73[5, 33, 111]
74[3, 4, 6, 46, 116, 130, 140, 165]
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anti-particles (like π0 = 1√
2
(uu − dd), for example), but they oscillate into each other

K0 ↔ K0 via box diagrams (figure 2.14) and are CP - partners CPK0C−1P−1 = K0.

Figure 2.14: Taken from [3]:
Kaon oscillations

This means they cannot be the true physical eigenstates
of the theory. The linear superpositionsK1 = 1√

2
(K0+

K0) and K2 = 1√
2
(K0 −K0) are each their own anti-

particles, i.e., they are flavor eigenstates, and are
CP eigenstates as well with CPK1,2C−1P−1 = ±K1,2.
However, due to small complex phases in the CKM ma-
trix, CP is (slightly) broken by the weak interactions
of the box diagram and the true physical/mass eigen-
states are therefore given by K0

S = 1√
1+ε2

(K1 + εK2)

and K0
L = 1√

1+ε2
(K2 + εK1) with ε ≈ 2.2 · 10−3; this

is called direct CP breaking. The names of these eigen-
states correspond to the fact that K0

L has a mean lifetime of circa 5 · 10−8 s and is thus
long lived compared to K0

S with a 556 - times shorter mean lifetime of approximately
9 · 10−11 s. Additionally, there is also indirect CP breaking due to decays. In detail, the
dominant CP conserving decay channels for the CP - even K1 (or K0

S) are decays into
two pseudoscalar pions, while the CP - odd K2 (or K0

L ) predominantly decays leptonically
or into three pions. However, K2 can also violate CP and decay into two - pion states.
For kaons, this indirect CP violation is suppressed by a factor ε′ ≈ 1.65ε · 10−3, however.
Therefore, the ration of decay rates Γ(K0

L→π+π−)

Γ(K0
S→π+π−)

= ε provides a good measure for the
strength of (direct) CP breaking in weak interactions. From this ratio and the comparison
to the upper bound |θ| ≲ 1.2 · 10−10 given above, one deduces the following: if either CP
were actually conserved by weak interactions and instead strong CP breaking (in some
loop process) were the source of ε or if the weak interaction broke CP, but strong CP
breaking were to actually play a role, a much higher value for θ would be required than is
allowed by, for example, the neutron dipole moment bound.75
Many ideas within the SM have been brought forward to solve the strong CP problem,

e.g., a spontaneous CP - breaking modifying the Higgs mechanism and thereby the CKM
matrix Y so that θ → θ + arg det(Y ) or a truly massless u - quark allowing for a U(1)A -
transformation and a shift θ → θ − 2βn due to the Jacobian (2.5.1), but none has proven
satisfactory. Both the Higgs and the CKM model of weak interactions work well and
have been verified experimentally (for example by observation of the Higgs boson in the
predicted mass range [19, 20]), with CP being explicitly broken in weak interactions, not
spontaneously. The u - quark is not a truly massless particle (as would be required by a
75[3, 4, 38, 46, 116]
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symmetry), so even if it were extremely light, this would just be a different fine - tuning
problem, now for a vanishingly small u -mass.76
A very promising solution of the strong CP problem is the extension of the SM in terms

of the axion, the (p)NG boson of the U(1)Peccei Quinn - symmetry, as discussed briefly in the
introduction 1.2. The theory of axions, its role as a dark matter candidate, the dependency
of its mass on the topology of the gluon field as well as experimental setups for axion
detection are discussed in more detail in the following section 2.5.3. The strong CP -
problem as a whole and the introduction of the axion as a possible resolution is the second
example of symmetry shaping theory mentioned at the beginning of section 2.1.77

2.5.3 The Axion and its Relation to Topology

Standard Model - Extension, Resolution of the Strong CP -Problem and Axion as
Dark Matter Candidate, Axion Mass and Topology

As stated before, the axion is introduced by extending the SM by the U(1)PQ - symmetry.
This has to be done such that this symmetry is unobservable in the current universe except
for the existence and interactions of the axion. The two most important “benchmark”
models that achieve this SM - extension are the Kim - Shifman - Vainshtein - Zakharov (KSVZ)
model [172, 173] and the Dine - Fischler - Srednicki - Zhitnitsky (DFSZ) model [174, 175].
For this short overview on the theory of axions we employ the simpler KSVZ model and
only briefly mention the DFSZ model at the end.78
The KSVZ model introduces the U(1)PQ - symmetry via an additional vector - like quark

Q = QL ⊕QR and a complex, “SM - singlet” scalar field Φ which are both PQ - charged:
QL,R carries PQ - charge ±1

2 and Φ has PQ - charge 1. For early - universe temperatures
T > fa, which is the very large energy scale setting spontaneous U(1)PQ - symmetry
breaking, the temperature - dependent Lagrangian reads

L = LSM+LKSVZ = LSM+|∂µMΦ|
2 + iQ /DQ− (y QLQRΦ+ h.c.)− V (Φ, T ) , (2.5.6)

with: • potential V (Φ, T ) =
λ

2

(︃
|Φ|2 − f2a

2

)︃2
+
λ

3
T 2|Φ|2 (2.5.7)

• Dµ = ∂µ − iAi µT iSU(3) −
i

2
V j µT jSU(2) − iB

µ . (2.5.8)

Since fa ≫ Tew ≈ 160GeV, the electroweak symmetry breaking scale, the gauge bosons of
the weak interaction are still massless and intermixed with the photon and the covariant
76[3, 4, 6, 38, 46]
77[4, 6, 38, 46–50]
78[46, 47, 50]
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derivative contains the gluon AiT iSU(3) as well as the gauge bosons V
jT jSU(2) and B of

the electroweak symmetry group SU(2)w ⊗ U(1)Y .79 The additional quark Q transforms
under general representations of SU(3)color and SU(2)w described by the corresponding
generators. The additional quark and scalar field interact via a Yukawa term; a detailed
review of electroweak and Yukawa theory can be found in [3, sections 4 and 20] and [4,
section 29], for example.80
Due to cooling of the universe, spontaneous symmetry breaking of U(1)PQ occurs at

TPQ =
√︂

3
2fa. The scalar field then takes the form Φ = 1√

2
(Fa(T ) + ϕ(X)) e

i
a(X)
Fa(T ) , with

the temperature - dependent scale Fa(T ) =
√︂
f2a − 2

3T
2 and axion field a introduced as

the corresponding Nambu -Goldstone boson. The KSVZ - Lagrangian is thus of the form

LKSVZ =
1

2
(∂µϕ)2 − λF 2

a

2
ϕ2 +

1

2
(∂µa)2 +

1

Fa
L(1)int

(︁
(∂a)2, ϕ, T

)︁
+ L(2)int (ϕ, T )+

+ iQ /DQ−
(︂ y√

2
FaQLQR e

i a
Fa + h.c.

)︂
+ L(3)int

(︁
ϕ ei

a
Fa , QQ, T

)︁
.

(2.5.9)

The axion is indeed massless, while the “radial excitation” field ϕ acquires a mass
Mϕ =

√
λFa(T ), which grows fromMϕ(TPQ) = 0 to be much larger than any SM -mass

Mϕ(T ≪ fa) ∼ fa ≫ MSM as the universe cools further. Now one performs an axion

field - dependent axial U(1)PQ rotation81 Q→ e
−i a(X)

2Fa(T )
γ5
Q, thereby removing the axion

from both the ϕ - independent Yukawa term y√
2
FaQLQR e

i a
Fa + h.c.→ y√

2
FaQLQR + h.c.

and from L(3)int , which originates from the Yukawa term. Therefore, the quark obtains
a mass MQ(T ) =

yFa(T )√
2
, which, as before, vanishes at TPQ and grows large at lower

temperatures MQ(T ≪ fa) ∼ yfa√
2
≫ MSM. Due to the anomalous nature of this axial

transformation (cf. (2.5.1)), it introduces not only interactions of the axion with Q, but
also axion - gauge boson interaction terms; after a proper normalization of the axion field
one has

δLKSVZ = − i

16π2
a

Fa(T )
˜︁Gi µνGi µν − i I(V )

16π2I(A)

a

Fa(T )
˜︁V j µνV j µν−

− i

16π2I(A)

a

Fa(T )
˜︁BµνBµν +

1

Fa(T )
L(4)int (∂a,Qγγ

5Q) ,

(2.5.10)

79The weak electroweak coupling strength gweak and the U(1) - charge Y were absorbed into the V - and
B - boson, respectively, following the geometrical normalization for the gluon.

80[47, 50, 176, 177]
81The derivation of the axial anomaly in section 2.5.1 is actually performed using a local angle β(x ), so this
axion - valued transformation is legitimate.
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where I(A) and I(V ) are the Dynkin indices of the SU(3)color- and SU(2)w - representation
and V µν and Bµν are the field strength tensors. Their appearance is due to an analogous
axial anomaly in the electroweak sector as was discussed in section 2.5.1 (e.g., see [3,
section 19]).82
At temperatures below the electroweak symmetry breaking scale but above the critical

temperature of chiral perturbation theory (cf. section 2.3) Tc < T < Tew ≪ fa - i.e.,
Fa(T ) ≈ fa and quarks and gluons are the degrees of freedom - the additional fields
Q and ϕ form a decoupled sector of super heavy particles that can be integrated out.83
Also, the fields V and B form theW±- and Z- bosons, which gain a mass via the Higgs
mechanism, and the massless photons A(γ) (e.g., see [3, section 20], [4, section 29], [5,
section VII.2] or [6, section 10]). (2.5.10) then yields f−1

a - damped coupling of the axion
to gauge bosons

δLKSVZ = − i

16π2
a

fa
˜︁Gi µνGi µν − i I(V )

16π2I(A)s2w

a

fa
˜︂W+µνW−µν−

− i I(V )

16π2I(A)s2wc
2
w

a

fa
˜︁ZµνZµν − i

16π2I(A)

a

fa
˜︁Aµν(γ)Aµν(γ)−

− i I(V )

16π2I(A)swcw

a

fa
˜︁Aµν(γ)Zµν ,

(2.5.11)

where W±µν , Zµν , Aµν(γ) are the respective field strength tensors and sw, cw are short -
hand notations for the sine and cosine of the weak mixing/Weinberg angle given as
sin2(θw) ≈ 0.23 [2] ⇒ cos2(θw) ≈ 0.77. L(4)int has been removed, since the quark Q and
scalar Φ are considered as integrated out of the now effective theory. These interactions
(2.5.11) allow for experimental searches of the axion, as we are going to discuss below.84
As the temperature falls below Tc, strong interaction matter is no longer described

by quarks and gluons as the degrees of freedom, but by light hadrons. The topological
term and thus also the axion interaction with the hadrons is retained by performing a
transformation of the light quarks and thus of the light quark mass matrix (cf. (2.1.24)
and (2.3.11))⎛⎝ud

s

⎞⎠→ eiθeff(X) γ5A

⎛⎝ud
s

⎞⎠ , θeff(X) = θ +
a(X)

fa
, tr(A) = 1

⇒ Mql → eiθeff γ
5AMqle

iθeff γ
5A = Mql(a) ,

(2.5.12)

82[46, 47, 176]
83The resulting effective theory withoutQ andΦ is already valid in the wide temperature range Tew < T ≪ fa,
the only difference is that the electroweak symmetry is still intact.

84[47, 176]
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so that the axion -modified Lagrangian of chiral perturbation theory now contains a mass
or interaction term − ⟨qq⟩

3 tr
(︁
Mql(a)U

† +UM †
ql(a)

)︁
. The other interaction terms in (2.5.11)

remain intact, as there is electroweak confinement. The axial transformation (2.5.12) is
justified, as the axion can also couple to SM - quarks, either directly as in the DFSZ model
which we briefly discuss below, or via loop level interactions in the KSVZ model (the
interaction is then stillO(f−1

a ), but one should include a damping factor in the exponential
to account for the higher order nature of the interaction). 85
The above axion - gauge boson interactions (2.5.11) contain the topological charge den-

sities for the gauge bosons. The U(1) - topology of photons is trivial:
∫︁ βd4X ˜︁Aµν(γ)Aµν(γ) = 0

and the photon vacuum is always homeomorphic to 0. Thus there are no photonic in-
stantons/calorons, but this term does constitute an interaction a E⃗(γ) · B⃗(γ), the so - called
Primakoff effect or Primakoff conversion. The SU(2) - theory describing the weak inter-
actions is topologically non - trivial, analogous to QCD, but its effects are exponentially
suppressed as e−g

−2
weak+g

−2
strong due to the classical action of the electroweak calorons com-

pared to the gluonic ones. Furthermore, electroweak calorons only contribute in baryon-
and lepton - number violating processes. All in all, electroweak calorons could only have
been relevant during the phase of baryo- and leptogenesis at very high temperatures in
the early universe. The gluonic topological interaction term in (2.5.11) is therefore the
dominant interaction term. It becomes significant for temperatures ≲ ΛQCD, where the
non - perturbative topological effects of QCD become significant, i.e., calorons start to
matter.86
At temperatures Tc < T < Tew, the interaction of axions with calorons determined

by L ⊃ −iθq − i afa q = −iθeff q yields an effective potential for the axion. This can be
seen by following the discussion in section 2.4.4. The axion -modified DGA partition
function (cf. (2.4.85)) reads ZDGA(θeff) = N exp

(︁
2βVD cos(θeff)

)︁
and the effective action

is Γ[⟨a⟩] = − ln(ZDGA) = − ln(N) + 2βVD cos(θeff). Comparing this with the definition
of the effective potential (2.2.28), the effective axion potential, normalized by a vacuum
containing no calorons and thus also only fully decoupled axions, reads

Veff, DGA(⟨a⟩) =
1

βV

(︂
− ln

(︁
ZDGA(θeff)

)︁
+ ln

(︁
ZDGA(0)

)︁)︂
= 2D(T )

(︂
1− cos

(︂
θ +
⟨a⟩
fa

)︂)︂
,

(2.5.13)
where the normalization in terms of fully decoupled axions canceled the term − ln(N) and
the HS caloron density D(T ) is to be obtained as discussed in section 2.4.3. Comparing
this expression for the axion effective potential with the topological susceptibility in the

85[44]
86[38, 178]
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DGA (2.4.87), one notes that Veff(⟨a⟩) can also be written as

Veff, DGA(⟨a⟩) = χtop(T )
(︁
1− cos(θeff)

)︁
, θeff = θ +

⟨a⟩
fa

. (2.5.14)

At temperatures T < Tc one can also derive an axion effective potential from chiral
perturbation theory, which reads

Veff, chPT(⟨a⟩) = −M2
π(T )f

2
π(T )

√︄
1−

χtop(T )

M2
π(T )f

2
π(T )

sin2(θeff) , (2.5.15)

with the chiral susceptibility in chiral perturbation theory as given in (2.4.88).87
Due to its effective potential (2.5.14) and (2.5.15) the axion settles into its VEV
⟨a⟩ = −faθ, thus minimizing Veff(⟨a⟩)|⟨a⟩=−faθ = 0 and canceling the angle θ, so that the
overall effective angle vanishes θeff|⟨a⟩=−faθ = 0 and the strong CP problem is resolved.
Furthermore, the axion also picks up a very small mass (cf. (1.2.1))

M2
a (T ≪ fa) =

∂2Veff(⟨a⟩)
∂⟨a⟩2

⃓⃓⃓⃓
⟨a⟩= faθ

=
1

f2a

∂2Veff(θeff)

∂θ2eff

⃓⃓⃓⃓
θeff = 0

=
χtop(T )

f2a
=

=
1

f2a
·

⎧⎨⎩
2D(T ) : T > Tc

f2π(T )M
2
π(T )

MuMdMs

(Mu +Md)(MuMd +MuMs +MdMs)
: T < Tc

,

(2.5.16)
which slowly grows as the temperature falls. We gave the current available evaluations of
χtop(0) andMa(0) in section 1.2.88
From the point of view of the Φ - potential (2.5.7), the “creation” of the axion mass via

interactions can be understood intuitively as a tilt of the Mexican hat potential. This is
sketched in figure 2.15.
All of the above features make the axion an excellent candidate for dark matter: Firstly,

all its interactions are, at current low temperatures T ≪ fa, strongly damped as f−1
a ,

making it de facto non - interacting with SM - particles. Secondly, it is a very light boson
and would constitute cold, i.e., slow -moving, dark matter, which is favored by cosmology
and astrophysics. Thirdly, the detection of the Higgs boson [19, 20] proved that the
process of spontaneous symmetry breaking is realized in nature, validating the axion as
the pNG boson associated to the spontaneous U(1)PQ - breaking.89

87[44, 46, 49, 52, 165]
88[39, 44, 49, 52, 165, 179]
89[43]
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Figure 2.15: (Tilted) potential V (Φ) at high and low temperatures. For temperatures
ΛQCD ≪ T < TPQ, the spontaneously broken potential V allows for a mass-
less axion (•) as the excitation of angular propagation along the potential
minimum (⃝). As temperatures fall, T ≲ ΛQCD, and QCD topology becomes
relevant, the axion - caloron interactions effectively tilt V , associating a mass
to the angular axion trajectories.
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The discussion so far used the KSVZ axion model. Instead, the DFSZ model could
also have been employed. Just like the KSVZ model it introduces a SM - singlet complex
scalar Φ, such that the axion is the Nambu -Goldstone boson of the spontaneously broken
U(1)PQ - symmetry in the Φ - potential. Also, the Φ - radial mode becomes fa - heavy at
low temperatures and decouples it from the theory. The DFSZ model is more intricate
than the KSVZ model, however, as in DFSZ the SM - quarks are PQ - charged as well, just
as an additional Higgs doublet interacting with Φ and with the SM - quarks (via Yukawa
terms). The interaction of the axion with gauge bosons then enters via an axion - valued
axial transformation of the SM - quarks, similar to the KSVZ model. The DFSZ model is
discussed in more detail in [47], for example. Qualitatively and as far as the free - axion
Lagrangian is concerned, the DFSZ model agrees with the KSVZ model. One of the main
differences is that the DFSZ model includes tree level interaction terms of the axion with
chiral currents of SM quarks∝ ∂µa

Fa(T )
ψfγ

µγ5ψf , while in the KSVZ model such interactions
happen only at loop level (nevertheless at first order in f−1

a ).90.

Experimental Searches for the Axion

A nice overview of the most important (current and future) experimental ventures on
detecting the axion/measuring its mass and coupling strengths as well the experimental
results is given in [50], which serves as a general reference for the following. We briefly
present the concepts for a small selection of experiments employing the Primakoff effect -
interaction of the axion with photons a E⃗(γ) · B⃗(γ), i.e., the conversion of axions into
photons/light in the presence of a (strong) magnetic field - and vice versa.
The basic idea of “Light shining through Walls” - experiments, as illustrated in [50, figure

4], is to use a high intensity laser to inject photons into a cavity with a strong magnetic
field, at the end of which an opaque wall absorbs the laser. By means of the Primakoff
effect, some photons get converted into axions which, due to their weak interactions, pass
through the wall unhindered and get converted back into photons in a second magnetic
cavity behind the wall. Two photon sensors then detect whatever photons might have
passed through the wall (through radiation or otherwise) and the surplus of photons after
the back conversion chamber which was produced by the axions. The goal of such Light
shining through Walls - experiments therefore is to measure the squared axion - photon
coupling, which is proportional to f−2

a .
Another type of experiments, so - called “Dark Matter Haloscopes”, make use of the

fact that axions, as dark matter, should be present as a background even in local physics.
The galactic dark matter halo has local energy density density ϵ ∼ 0.2 to 0.56 GeVcm3 [180,

90[44, 47]
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181]. Assuming dark matter to be made up entirely of axions and using the axion mass
26.2µeV, the local cold axion density then is naxion ∼ (7.6 to 21) · 106 axionscm3 . In the
standard halo model, the axions move “slowly” (given their small mass) with a virial
velocity (i.e., purely due to galactic gravitation) of v ≈ 10−3 c. All in all, the global
collective of dark matter axions is then best described by a classical field (rather than
a gas). The field is coherent over length scales comparable to the non - relativistic de
Broglie wavelength λaxion = h

Ma(0)v
≈ 1.240m

(︂
1µeV

Ma(0) [µeV]

)︂
≈ 47.3m and thus spatially

constant on laboratory length scales. Furthermore, it oscillates with a frequency given by
the axion mass ν ≈ Ma(0)c2

h ≈ 2.42 · 109 1
s

(︂
Ma(0) [µeV]

1µeV

)︂
≈ 6.34 · 1010 1

s , with a frequency
spread of about δν/ν ∼ 10−6. The idea of dark matter haloscopes shown in [50, figure 5]
is to convert the dark matter axions into photons in a magnetic cavity via the Primakoff
effect and detect these using a low - noise photon amplifier and a photon detector. If the
resonance frequency of the magnetic cavity matches the axion frequency in the narrow
bandwidth given by δν/ν, the production of photons from dark matter axions is resonantly
enhanced by a factor ∼ (δν/ν)−1. By fine - tuning the magnetic resonance frequencies,
dark matter haloscopes thus aim to measure the axion mass.
The third type of axion detection experiments we wish to mention are “Axion Helioscope”

experiments, which aim to detect axions produced by the sun. In the strong magnetic
fields inside the sun, produced by the high density of charged particles, axions are
produced from solar core photons via the Primakoff effect. The typical core photon
energies ∼ 3 keV (corresponding to the core temperature of ∼ 1 keV, for the factor 3 cf.
the discussion concerning Tc in section 2.3) yield highly relativistic axions with energies
∼ 3 keV≫Ma(T ∼ 1 keV) which leave the sun as an axion flux independent ofMa. As
illustrated in [50, figure 9], axion helioscopes aim a magnetic cavity with subsequent
X - ray optics and photon detectors at the sun, hoping to partially convert this flux of solar
axions back into photons via the Primakoff effect and detect these photons. This way, the
axion - photon coupling is to be measured.
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3 Caloron Density for heavy Fermions –
Large and Small Mass - Expansion

In the following, we now show how to obtain γs, − in (2.4.82) including (non - vanishingly)
heavy quarks. For that, we perform the expansions in (2.4.83).

3.1 Large Mass - Expansion of the Caloron Density

3.1.1 Schwinger Proper Time - Representation

First we consider a heavy quark and expand the fermionic log - caloron density (2.4.82) in
powers of the inverse mass (Mβ)−2k, N ∋ k ≥ 1. For that, let the fermion massM be an
energy scale much larger than the temperature: M2 ≫ T 2 = β−2. We start by rescaling
the fermion and regulator massesM, Λ→ m = Mβ, λ = Λβ as well as the caloron size
ρ → ϱ = ρβ−1 to dimensionless properties and by transforming the dimensionful X -
coordinates of R3×S1

rad.= β/2π
to dimensionless x - coordinates of R3×S1

rad.= 1/2π
centered

on the caloron located at C:

X =(X⃗, t)→ x =
(︁
x⃗ = β−1(X⃗ − C⃗ ), τ = β−1(t− C4)

)︁
. (3.1.1)

This change of coordinates also makes explicit the dimensions of integration and differen-
tiation -

∫︁ βd4X → β4
∫︁ 1d4x and ∂X → β−1∂x. Furthermore, it implies the introduction of

β - rescaled and therefore dimensionless fermion and gauge fields: ψ(X)→ β−3/2ψ(x) and
AµHS(X)→ β−1AµHS(x) = −β−1 η aµν∂ν ln(ϕ(x))σ

a

2 with ϕ(x) = 1+ πϱ2 sinh(2πr)
r(cosh(2πr)−cos(2πτ) (cf.

(2.4.37) and (2.4.36), respectively). We use the same symbols for these fields and the
(β - )dimensionality is made clear by the X- or x - dependency. Accordingly, we also have
the field strengthGµν(X)→ β−2Gµν(x). In the following, we use the rescaled fields exclu-
sively. The fermionic part of (2.4.82) is dimensionless and thus remains unchanged by all
of the above (i.e., it can safely be reformulated in terms of the dimensionless coordinates
and parameters m, λ, ϱ). In order to discuss the “dimensions” of such rescaled properties
and of final expressions as well as for dimensionally verifying our results, we assign each
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object in this dimensionless picture the “β - dimension” of its non - rescaled counterpart,
e.g., m is of β - dimension [m]β = Length−2.
The determinants of the free Klein - Gordon operator −∂2−+m2 and the one in a caloron

background −D2
− +m2 are inherently divergent. To regularize and renormalize these

divergences, employ the Schwinger proper time (s) - representation of the (anti-periodic,
scalar) log - caloron density (see [4] for a good review of Schwinger proper time and [60,
154] for the T = 0 - case):

γscalar, anti-periodic(ϱ) = γs, −(ϱ) = ln

(︃
det(−D2

− +m2) det(−∂2− + λ2)

det(−D2
− + λ2) det(−∂2− +m2)

)︃
=

= −
∫︂ ∞

0

ds
s

(︁
e−m

2s − e−λ2s
)︁ ∫︂ 1

d4x tr
⟨︂
x
⃓⃓⃓ (︁
e−(−D2

−)s − e−(−∂2−)s)
⃓⃓⃓
x
⟩︂
. (3.1.2)

In this representation, the mass is separated from the now purely caloron - dependent
operator −D2

− and from −∂2−. Note that the proper time s is also β - rescaled and
thus dimensionless with β - dimension [s]β = Length2. ⟨x|e−(−D2

−)s|y⟩ = ⟨xs | y⟩− and
⟨x|e−(−∂2−)s|y⟩ = ⟨xs | y⟩−0 are the anti-periodic proper time -Green’s functions, i.e., they
satisfy proper time - Schrödinger equations: −∂s ⟨xs | y⟩− = −D2

x,− ⟨xs | y⟩
− and analo-

gously for ⟨xs | y⟩−0 . These Green’s functions describe a propagation from y to x in proper
time s. From them, the ordinary anti-periodic propagators from y to x in Euclidean time
are reproduced by s - integration: ∆−(x, y,m2) = ⟨x| 1

−D2
−+m2 |y⟩ =

∫︁∞
0 ds ⟨xs | y⟩

− e−m
2s

(analogously for ∆−
0 (x, y,m

2)). As the ordinary propagator has [∆±
(0)]β = Length−2 and

the s - integration is of β - dimension [ds]β = Length2, the proper time -Green’s func-
tions must be [⟨xs | y⟩±(0)]β = Length−4. This is confirmed by the fact that their β - 4 -
dimensional x - integration then yields a dimensionless quantity. All in all, the proper
time - representation allows us to consider the proper time - Green’s function of a massless,
anti-periodic boson. The proper time - Green’s function is also called the heat kernel of the
operator, here of −D2

− and −∂2−, with respect to proper time.1
The log - caloron density (3.1.2) is then given by the spacetime integral over all traced,

closed loop - propagators of the anti-periodic scalar in a periodic spacetime with a caloron
background. This is illustrated in figure 3.1. Closed loop propagators are called coincident
propagators and they diverge. In order to regularize the caloron density, one performs
an asymptotic expansion in the inverse mass, the so - called heat kernel expansion, of the
coincident proper time -Greens functions. Said expansion is possible, because the term
e−m

2s in γ, together with the large fermion mass, leads to an exponential suppression
1[154, 182]
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of large proper time - regions, i.e., only very small s ≲ m−2 ≪ 1 contribute to γ. Thus,
the heat kernel expansion, which is valid for s ↘ 0, can be employed. We discuss this
expansion in detail in the next section 3.1.2 and perform it numerically in section 3.1.3.

3.1.2 Heat Kernel Expansion at finite Temperature

Heat Kernel Expansion at zero Temperature

We first present the details of the heat kernel expansion at T = 0, i.e., in infinite, dimen-
sionless 4 - dimensional Euclidean spacetime2 R4

dim.less with coordinates x
µ (the barred

notation again denotes the T = 0 - case), and a BPST instanton backgroundABPST (2.4.27),
as discussed in [60, 154, 182–184]. To emphasize the difference to the finite temperature
heat kernel expansion in the following section, we also employ the T = 0 - barred notation
for the BPST instanton AµBPST and its field strength Gµν . The coincident heat kernel in R4

can be expanded as

⟨xs |x⟩ =
⟨︂
x
⃓⃓⃓
e−(−D2)s

⃓⃓⃓
x
⟩︂ s↘ 0∼=

∑︂
k ∈ N

sk−2

(4π)2
a2k
(︁
ABPST(x)

)︁
(3.1.3)

in terms of Seeley -DeWitt heat kernel coefficients a2k; and analogously for −∂ 2. The large -
mass expansion corresponds to inserting the series expansion (3.1.3) in (3.1.2), switching
the order of the k - sum and s - integral, and performing the s - integral followed by the
operator trace. The uniform convergence properties needed to exchange sum and integral
are not generally fulfilled, so the large -mass k - summation is generally only asymptotic.
Therefore, it is valid to consider only its first few terms. The known Seeley - DeWitt heat
kernel coefficients for −D2 read

a0 = 12×2 , a2 = 0 , a4(x) = −
1

12
GµνGµν ,

a6 = −1

6

(︂ 2i
15
GµνGνκGκµ − 1

20
Gνκ;µGνκ;µ

)︂
,

a8 =
1

24

(︂
− 1

21
GµνGνκGκλGλµ +

11

420
GµνGκλGµνGκλ +

2

35
GµνGµνGκλGκλ+

+
4

35
GµνGνκGµλGλκ +

6i

35
GκλGλν;µGνκ;µ +

8i

105
GκλGµν;κGµν;λ − 1

70
Gκλ;νµGκλ;µν

)︂
,

(3.1.4)
a10 is given in appendix B and a12 in [183], the a2k > 12 are unknown. Here we use the
notation Gµν;κ = DκGµν = [Dκ, Gµν ] , Gµν;κλ = Gµν;κ;λ = DλDκGµν , etc.
2β - rescaled and centered around Z for consistency
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Figure 3.1: Some closed loop - propagators in the periodic spacetime R3 × S1
rad.= 1/2π

as
they appear in the log - caloron density (3.1.2). The periodicity of the space-
time is made explicit by showing all the time copies of the boson and BPST
instanton making up the thermal boson and HS caloron, respectively.
The anti-periodic boson copies are located at (•) x + jê4, j ∈ Z and are
connected by closed loops; the solid lines ( ) show “aperiodically closed
loops” which do not encounter the spacetime periodicity, the dash - dotted
lines ( · · ) show loops which encounter the periodicity j times and close
(anti-)periodically for j even (odd). The caloron is made up of periodic instan-
ton copies located at (■) 0 + jê4.
All boson copies and all connecting, closed loop - propagators are affected
by all periodic copies of the instanton; this is symbolized by the dashed red,
green and blue lines ( ) connecting the instanton and boson copies.
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The “traced integral - heat kernel coefficients” b2k, i.e., those appearing in the traced
and integrated heat kernel expansion used in the log - caloron density

Tr
(︁
⟨xs |x⟩

)︁
= Tr

(︂⟨︂
x
⃓⃓⃓
e−(−D2)s

⃓⃓⃓
x
⟩︂)︂ s↘ 0∼=

∑︂
k ∈ N

sk−2

(4π)2

∫︂
R4

d4x tr
(︂
b2k
(︁
ABPST(x)

)︁)︂
,

(3.1.5)
can be simplified using trace cyclicity, IBP as well as the equation of motion and the
Bianchi identity.3 These traced integral - coefficients are

b0 = a0 , b2(x) = a2 , b4(x) = a4 , b6 =
i

90
GµνGµκGνκ ,

b8 =
1

24

(︃
17

210
GµνGµνGκλGκλ +

2

35
GµνGµκGνλGκλ +

1

105
GµνGνκGκλGλµ+

+
1

420
GµνGκλGµνGκλ

)︃
,

b10 =
1

120

(︃
i

945
GµνGκλGαµGνκGλα − 47i

126
GµνGµνGκλGλαGακ+

+
i

126
GµνGκλGµνGλαGακ +

i

63
GµνGνκGµλGλαGακ − 11i

189
GµνGκλGλνGµαGακ+

+
37i

945
GµνGνκGκλGλαGαµ +

4

189
GναGαλGνκ;µGκλ;µ − 2

63
GκλGνα;µGναGκλ;µ−

− 2

189
GκλGνα;µGαλGνκ;µ +

4

63
GκλGκλGνα;µGνα:µ +

2

63
GµκGκλGνα;µGνα;λ+

+
4

189
GκλGλνGνα;µGακ;µ

)︃
.

(3.1.6)
For a12 the corresponding simplification to b12 is unknown, i.e., b12 = a12.
Counting β - dimensions in the heat kernel expansion, the heat kernel coefficients

(regular and traced integral) have to be [a2k]β = Length−2k = Mass2k to reproduce the
β - dimension of the proper time - Green’s functions. In general, the expansion of the heat
kernel

⟨︂
x
⃓⃓⃓
e−Ds

⃓⃓⃓
x
⟩︂
for some general second order differential operator of Laplace type

D = −gµν(∇µ− iAµ)(∇ν− iAν)+f(x), with metric g, geometrical covariant derivative∇
and some gauge - invariant matrix - valued function f(x), has its coefficients ak constructed
from all possible invariants formed using f , the Riemann, Ricci and scalar curvature, the
gauge field strength and their covariant derivatives. All these tensors are of β - dimension
Length−2 and of even rank 0, 2 or 4. Therefore, odd Seeley - DeWitt coefficients a2k+1

3Gµν;µ = 0 and ενµκλGκλ;µ = 0 ⇔ Gκλ;µ +Gµκ;λ +Gλµ;κ = 0, respectively.
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corresponding to sk+
1
2
−2 cannot be constructed, as they would be [a2k+1]β = Length−2k−1

which requires an odd number of covariant derivatives that cannot be contracted with
tensors of even rank to form an invariant. As can be seen above, in the case of D = −D2

in flat spacetime, all invariants are constructed from the field strength.
Since regions of larger (i.e., “non - infinitesimal”) proper time give strongly exponentially

damped contributions, it is reasonable to both truncate the heat kernel expansion after
the first few (or finitely many) terms and keep the full s - integral over R.
The free coincident proper time -Green’s function is described by a single heat kernel

coefficient ⟨xs |x⟩0 =
⟨︁
x|e−(−∂2)s|x

⟩︁ s↘ 0∼= s−2

(4π)2
a0(0) with a0(0) = afree = bfree = 12×2.4

Structure of the Expansion at finite Temperature

At finite temperature T and for the β - rescaled spacetime R3 × S1
rad.= 1/2π

containing
a HS caloron background AHS(x) (2.4.37), the coincident heat kernel expansion reads
(analogously to (3.1.3))

⟨xs |x⟩− =
⟨︂
x
⃓⃓⃓
e−(−D2

−)s
⃓⃓⃓
x
⟩︂ s↘ 0∼=

∑︂
k ∈ N ∪ N+ 1

2

sk−2

(4π)2
a2k
(︁
AHS(x)

)︁
(3.1.7)

with heat kernel coefficients of β - dimension [a2k]β = Length−2k [185, 186].
These heat kernel coefficients a2k are given by linear combinations of, firstly, the T = 0 -

coefficients a2k and, secondly, the chromo - electric and -magnetic fields Ei = Gi4 and
Bi = 1

2ε
ijkGjk and their covariant derivatives, together with matrix - valued combination

coefficient functions

φl(x⃗, ϱ, s) =
∑︂
α ∈ Z

√
4π s

l+1
2
(︁
ipbos/fermα − lnΩ(x⃗, ϱ)

)︁l
es
(︁
ipbos/fermα −lnΩ(x⃗,ϱ)

)︁2
, (3.1.8)

where pbos/fermα = βωbos/fermα =

(︃
2πα

2π(α+ 1/2)

)︃
, α ∈ Z, are the β - rescaled

(︃
bosonic
fermionic

)︃
Matsubara frequencies (cf. (2.2.24) and (2.2.27)) with [pbos/ferm]β = Length−1 and

Ω(x⃗, ϱ) = T exp
(︂
i

∫︂ 1

0
dτ A4

HS(x⃗, τ)
)︂

(3.1.9)

is the untraced Polyakov loop (2.2.29). The coefficient functions φl are dimensionless
- see [185, 186] for the non -β - rescaled expressions. Note that now also odd a2k with
4[60, 154, 182–184]
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half - integer k are possible. They can be constructed using temporal derivatives that
do not have to be contracted and the chromo - electric and -magnetic fields, which are
tensors with [E]β = [B]β = Length−2 and rank 1. For −D2

− the finite -T heat kernel
coefficients have the structure a2k even = φ0 a2k even + A2k even(φl even, D

(a)E,D(b)B) and
a2k odd = A2k odd(φl odd, D

(a)E,D(b)B), with fermionic Matsubara frequencies in the φl
to encode the anti-periodicity of the corresponding eigenfunctions and A2k denoting the
finite -T terms.
The traced integral - heat kernel coefficients b2k in the operator trace (cf. (3.1.5))

Tr
(︁
⟨xs |x⟩−

)︁
= Tr

(︂⟨︂
x
⃓⃓⃓
e−(−D2

−)s
⃓⃓⃓
x
⟩︂)︂ s↘ 0∼=

∑︂
k ∈ N ∪ N+ 1

2

sk−2

(4π)2

∫︂ 1

d4x tr
(︂
b2k
(︁
AHS(x)

)︁)︂
,

(3.1.10)
are of the same structure as the a2k - coefficients, but contain simpler finite -T terms
B2k(φl, D(a)E,D(b)B) and the traced integral - heat kernel coefficients at T = 0:

b0(AHS) = φ0 = φ0b0 , b4(AHS) = φ0b4 −
φ0 + 2φ2

6
EiEi ,

b6(AHS) =φ0b6 +
φ0 + 2φ2

60

(︂(︁
Ei;i

)︁2
+
(︁
Gij;4

)︁2 − 2EiGijEj
)︂
−

−
(︃
φ0

15
+
φ2

3
+

2φ4

15

)︃(︁
Ei;4

)︁2
,

b6< 2k ≤ 12(AHS) = φ0b2k + “unknown” ;

(3.1.11)

the other coefficients either vanish in general (2k ∈ {1, 3}) or in this case (2k ∈ {2, 5}),
are unknown beyond φ0b2k (6 < 2k ≤ 12 and 2k = even) or are completely undetermined
(2k > 6 and 2k = odd). In appendix D.1 and the ancillary files we present our method
to find the detailed functional forms of the known coefficients b0≤ 2k≤ 12(AHS) and finite
temperature terms B0≤ 2k≤ 6(AHS) as given in (3.1.11); for that we use the OGRe - package
[187] for Mathematica.5

The free contribution resulting from −∂2− can be calculated more straightforwardly,
i.e., without employing the elaborated techniques described in [185, 186] that lead to
the coefficient function - structure. Instead, a simpler method from [185, 186] can be
utilized, where the temporal part of the asymptotic expansion, that is, the expansion in
Matsubara frequencies, is split off and the heat kernel expansion is only performed in the
3 - dimensional spatial part for −∂⃗ 2. This yields

5[185, 186]
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⟨xs |x⟩−0 =
⟨︂
x
⃓⃓⃓
e−(−∂2−)s

⃓⃓⃓
x
⟩︂
=
∑︂
α ∈ Z

⟨︃
x⃗

⃓⃓⃓⃓
e−
(︁
−∂⃗ 2−(ipfermα )2)

)︁
s

⃓⃓⃓⃓
x⃗

⟩︃
=

s↘ 0∼=
∑︂
α ∈ Z

e−(pfermα )2s 1

(4πs)
3
2

12×2 =
1

(4πs)2
φ0(x⃗, 0, s)12×2 ,

(3.1.12)

with Ω(x⃗, 0) = 1 in the free case. This is equal to a 4 - dimensional heat kernel expansion
with the −∂2− - heat kernel coefficient afree = bfree = φ0|A=0 = 1.6

The coefficient function φ0 can be transformed using the Poisson summation formula
[185, 186]. Treating f̃(p) = exp

(︁
(ip− lnΩ)2

)︁
as a continuous, aperiodic function of p ∈ R

with a Fourier transform f(τ), one has
∑︁

p ∈ Z f̃(p) =
∑︁

j ∈Z f(j), i.e.,

φ0 =
∑︂
α ∈ Z

√
4πs es

(︁
ipbos/fermα −ln(Ω)

)︁2
=
∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s (3.1.13)

with ±1 for the
(︃
bosonic
fermionic

)︃
case. Therefore, for small s all terms with j ̸= 0 are

exponentially suppressed such that φ0
s↘ 0−→ 12×2 with 12×2 the identity in SU(2) - color

space. This Fourier back - transformation connects the momentum space of Matsubara
frequencies back to Euclidean time. This means that modes with j = 0 correspond to
loops in the heat kernel expansion that close “aperiodically”, i.e., without crossing the
(anti-)periodic boundary at τ = 1 ˆ︁= 0, while j ̸= 0 -modes correspond to loops which
close by “(anti-)periodically” crossing the boundary j times, cf. figure 3.1.
Furthermore, reintroducing the explicit dimensionalities we observe an exponential

damping factor e−
j2β2

4s which, in the zero temperature limit β →∞, goes to 0 for j ̸= 0,
i.e, in this limit all finite T - effects vanish as expected.
We can also use the Poisson summation formula to calculate higher φl > 0. For that,

notice that by modifying the coefficient functions as φl(a) =
∑︁

p

√
4π s(l+1)/2QlesQ

2+aQ

with Q = ip− ln(Ω), we have the general form φl = sl/2 (∂
(l)
a φ0(a))|a= 0. Now we Fourier

transform φ0(a), employ the Poisson formula and perform the a - derivatives before finally
setting a = 0. For the first few coefficient functions up to l = 4 and the combinations
appearing in the known traced Seeley - DeWitt coefficients (3.1.11) we find:

6The sum over the n -modes (and thus over the Matsubara frequencies) gives a well - defined object, the
2nd Jacobi theta function ϑ2(0, e

−4π2s).
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φ1 = −
∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j

2s1/2
, φ2 =

∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j2 − 2s

4s
,

φ3 = −
∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j(j2 − 6s)

8s3/2
, φ4 =

∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j4 − 12j2s+ 12s2

16s2
,

φ0 + 2φ2 =
∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j2

2s
,

φ0

15
+
φ2

3
+

2φ4

15
=
∑︂
j ∈ Z

(±1)j Ωj e−
j2

4s
j2(j2 − 2s)

120s2
.

(3.1.14)
We note a general structure: φl even/odd contains terms jc

sc/2
with even/odd 0 ≤ c ≤ l. Again

all modes j ̸= 0 are exponentially suppressed and for φl odd the j = 0 -mode vanishes
identically (i.e., they contain only terms with c > 0). The limit s↘ 0 produces the j = 0 -
mode: φ2

s↘ 0−→ −1
212×2, φ4

s↘ 0−→ 3
41, (φ6

s↘ 0−→ −15
8 1, φ8

s↘ 0−→ 105
16 1) and φ1,3(,5,7)

s↘ 0−→ 0

as well as φ0 + 2φ2
s↘ 0−→ 0 and φ0

15 + φ2

3 + 2φ4

15

s↘ 0−→ 0. From this we can also see that the
(known) finite T - terms, which contain only j ̸= 0 -modes, vanish for β →∞, just as was
discussed for φ0 above.

The j-th powers of the untraced Polyakov loop Ω appearing in the φl - coefficient func-
tions can be calculated straightforwardly. For that, we first perform the τ - integral of
A4
HS = −ηa4ν∂ν ln(ϕ(r, τ))

σa

2 = −∂⃗ lnϕ · σ⃗2 = −∂rϕ
ϕ

x⃗·σ⃗
2r (result confirmed in [188]):

−i
∫︂ 1

0
dτ ∂rϕ

ϕ
= 2πi

⎛⎝1−
ϱ2
(︁
2πr cosh(2πr)− sinh(2πr)

)︁
+ 2r2 sinh(2πr)

r
√︂
2(r2 + π2ϱ4)

(︁
cosh(4πr)− 1

)︁
+ 4πϱ2r sinh(4πr)

⎞⎠ =

= 2πi ω(r, ϱ) .
(3.1.15)

The untraced Polyakov loop then reads Ω = exp
(︁
iπ ω x⃗·σ⃗

r

)︁
. As shown in figure 3.2,

ω(r, ϱ) ≥ 0 ∀ r, ϱ ≥ 0, especially ω(0, ϱ) = 1 and ω(r, 0) = 0 (the latter correctly re-
produces the vacuum background case) with an according discontinuity at r = ϱ = 0
that we can make obvious by a simultaneous Taylor expanding of ω(rε, ϱε) for ε ↘ 0.
This expansion yields ω =

(︁
(r2 + ϱ2)1/2 − r

)︁
(r2 + ϱ2)−1/2 +O(ε2) and we see that now

taking r ↘ 0 yields 1 while ϱ↘ 0 produces 0. Furthermore, ω falls off quickly at large
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Figure 3.2: ω(r, ϱ) as it appears in the untraced Polyakov loop Ω = exp
(︁
iπ ω x⃗·σ⃗

r

)︁
.

radii; by expanding7 we find ω = ϱ4π2

r2
+O

(︁
(ϱr )

2
)︁
. Second, we expand Ω using

(︁
x⃗·σ⃗
r

)︁2
= 1

and find Ω(x⃗, ϱ) = cos
(︁
π ω(r, ϱ)

)︁
12×2+ i sin

(︁
π ω(r, ϱ)

)︁
x⃗·σ⃗
r . The inverse is therefore given

by Ω−1 = exp
(︁
− iπ ω x⃗·σ⃗

r

)︁
= cos

(︁
π ω(r, ϱ)

)︁
1 − i sin

(︁
π ω(r, ϱ)

)︁
x⃗·σ⃗
r and the general j-th

power reads

Ωj(x⃗, ϱ) = cos
(︁
jπ ω(r, ϱ)

)︁
12×2 + i sin

(︁
jπ ω(r, ϱ)

)︁ x⃗ · σ⃗
r

∀j ∈ Z . (3.1.16)

Since ω r→∞→ 0, Ωj approaches the free case Ωj(x⃗, 0) = 1 ∀j at large (enough) distances
from the caloron as expected.
It is important to note that the leading terms of (3.1.11), i.e., those given by b2k times 1 ⊂

φ0 (cf. j = 0 in (3.1.13)), yield the same expansion structure as at T = 0. Here, “leading”
means dominant compared to the j ̸= 0 -modes of φ0 and φl, which are due to finite
temperature, exponentially suppressed as s↘ 0 (cf. (3.1.14)) and which we find below to
be of O(mbe−m), b ∼ 1. Therefore, the leading expansions are equivalent for the periodic
and anti-periodic operators D2

+ and D2
−, while the summations should actually differ.

The exponentially damped B - terms, which introduce boundary condition - dependency,
cannot be thought of as the required corrections, however, as they are of the order of the
typical ambiguity associated with summing an asymptotic series like the heat kernel series.

7ω
r→∞→ 1− r2e2πr+ϱ2πre2πr

r
√
r2e4πr+2ϱ2πre4πr

= 1− 1+ ϱ2π
r√︃

1+ 2ϱ2π
r

= ϱ4π2

r2
+O

(︁
( ϱ
r
)2
)︁
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Figure 3.3

The finite -T terms in (3.1.11) are therefore uncertainties in the
summation and we have to ensure that m is large enough to allow
us to neglect such terms. The exponential damping of the finite -T
terms is due to heavy quarks m ≫ 1 exploring R3 × S1

rad.= 1/2π
on

length scalesm−1 ≪ 1, i.e., essentially as they would R4. Figure 3.3
sketches this: a typical caloron ϱ ≈ 0.5 (gray) and the heavy quark -
propagation range (red). Temperature then only enters in the way
that it modifies the caloron fields; the short - range propagation
only feels the boundary conditions in an exponentially suppressed
fashion because propagation of a heavy field over a distance β ˆ︁= 1
is exponentially small.
In the end we also connect the large -m expansion to the small -m one which, as we

are going to see in section 3.2, contains explicit boundary condition information and thus
serves as a “boundary condition” itself for the interpolation between small -m and large -m
expansion (cf. (2.4.83) and the short outlook below), ensuring the correct anti-periodic
properties.

3.1.3 Heat Kernel Expansion Order by Order - Numerical Results

Now we plug the finite temperature - heat kernel coefficients with the above φl into the
log - caloron density of the heavy, anti-periodic scalar particle in a HS caloron background:

γs, − = −
∫︂ ∞

0

ds
s

(︁
e−m

2s − e−λ2s
)︁ ∫︂ 1

d4x tr

⎛⎜⎝ ∑︂
k ∈ N ∪ N+ 1

2

sk−2

(4π)2
b2k
(︁
AHS(x)

)︁
− bfree

⎞⎟⎠ .

(3.1.17)
We note that only the leading contributions of the coefficients (3.1.11) contain “actual
physical information”, while we use the finite -T uncertainties to find a lower limit on the
large masses.
As we stated before, we perform the s - integrals first. In general, these integrals are of

the structure (analogously for λ2 instead of m2)

I
(︂
m2, k, j2;

c

2

)︂
=

∫︂ ∞

0
ds e−m2s− j2

4s sk−3− c
2 , (3.1.18)

with c the semi-positive definite integer resulting from the φl in (3.1.14). For j = 0, i.e.,
the non - suppressed/leading modes, this integer is c = 0 and the integrals are
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I(m2, k, 0; 0)

⎧⎨⎩
→ ∞ : k ∈ {0, 1, 2}

=
1

m2k−4
˜︁Γ(k − 2) =

(k − 3)!

m2k−4
: N ∋ k ≥ 3

, (3.1.18.a)

where by ˜︁Γ we denote the Gamma function [189]. Note that there are no leading
contributions for half - integer k. To parametrize the divergences in (3.1.18.a), one
introduces a a small - scale cut - off εs for the s - integral and finds [189]

I(m2, 0 ≤ k ≤ 2, 0; 0) = lim
εs↘ 0

∫︂ ∞

εs

ds e−m2s sk−3 =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−m
2εs(1−m2εs)

2ε2s
+
m4

2

(︁
ln(m2εs) + γE +O(m2εs)

)︁
: k = 0

e−m
2εs

εs
+m2

(︁
ln(m2εs) + γE +O(m2εs)

)︁
: k = 1

lim
εs↘ 0

˜︁Γ(0,m2εs) = − ln(m2εs)− γE +O(m2εs) : k = 2

, (3.1.18.b)

where γE is the Euler -Mascheroni - constant and ˜︁Γ(0, z) is the upper incomplete Gamma
function. For j ̸= 0 with general c ̸= 0 we obtain

I
(︂
m2, k, j2;

c

2

)︂
= 2−(k−3− c

2
)

(︃
|j|
m

)︃k−2− c
2

K|k−2− c
2
|(|j|m)

m2 ≫ 1∼

∼ 2−(k− 5
2
− c

2
)√π |j|

k− 5
2
− c

2

mk− 3
2
− c

2

e−|j|m

⎛⎝1 +
∑︂
u ∈ N+

∏︁u
v = 1

(︁
4(k − 2− c

2)
2 − (2v − 1)2

)︁
u!(8|j|m)u

⎞⎠ ,

(3.1.18.c)
with Kα(x) the modified Bessel function of the second kind. Since the Kα - expansion
is an asymptotic one, it is justified for large (enough) |j|m to keep only the first few
terms. The integrals I

(︁
m2, k, j2; c2

)︁
are e−m - exponentially suppressed, but part of the

infinite summation over all j ̸= 0 -modes of the coefficient functions φl. Therefore, one
cannot simply neglect them and we compute the total finite -T terms to quantify the
large enough masses required to keep these terms suppressed compared to the leading
contributions. Note also that for the j - summation I

(︁
m2, k, j2; c2

)︁
has to be multiplied by

the corresponding factor ∝ jc from the coefficient functions (cf. (3.1.14)).
In the following we consider the different orders of the traced integral - heat kernel

expansion and present our analytical and numerical results for the resulting log - caloron
density contributions. A detailed description of our numerical methods can be found in
the appendices D.1 and D.2 and the ancillary files.

108



Order k = 0 :
The leading j = 0 -modes of both b0(AHS) = φ0(AHS)1 =

∑︁
j ∈ Z(−1)jΩje

− j2

4s (3.1.13)

and the vacuum term bfree = φ0(0) =
∑︁

j ∈ Z(−1)je
− j2

4s1 both give rise to quadratically
divergent contributions I(m2, 0, 0; 0) (cf. (3.1.18.b)) and multiply the spacetime volume
spacetime V = vol(R3 × S1

rad.= 1/2π
) =

∫︁ 1dx4. These divergent contributions therefore
cancel identically and the leading k = 0 - contribution to the log - caloron density (3.1.17)
vanishes: γ0 = 0 (we denote j = 0 -mode terms from φ0b2k as γ2k ).
For the j ̸= 0 -modes of b0(AHS) and b0(0) we find finite s - integrals I(m2, 0, j2; 0).

Plugging these s - integrals into the infinite j - summation of φ0 (3.1.13), we find the
contributions from b0(AHS) to be given by∑︂

j ∈ Z\{0}

(−1)jΩj 2
5
2
√
π
m

3
2

|j|
5
2

e−|j|m
(︂
1 +

15

8|j|m
+O(m−2)

)︂
. (3.1.19)

Here and in the proceeding treatment of the large m - expansion’s finite - temperature
terms we drop all contributions which are additionally (to the overall e−m - damping)
mass damped by inverse powers of m with respect to the leading j = 0 -mode: for k = 0
the “leading” term is 0 and thus O(m0), therefore, we neglect all terms O(m−1/2) and
lower in (3.1.19).
We plug in Ωj (3.1.16), keeping only the traceful part of Ωj , i.e., cos(jπ ω)1, which is

denoted as “=tr”, and perform the j - summation:∑︂
j ∈ Z\{0}

(−1)jΩj 2
5
2
√
π
m

3
2

|j|
5
2

e−|j|m
(︂
1 +

15

8|j|m

)︂
=tr

=tr
∑︂
j ∈ N+

(−1)j cos(jπ ω) 2
7
2
√
π
m

3
2

j
5
2

e−jm
(︂
1 +

15

8jm

)︂
1 =

= 2
7
2
√
π

(︄
m

3
2 Re

(︁
Li 5

2
(−eiπω−m)

)︁
+

15m
1
2

8
Re
(︁
Li 7

2
(−e−iπω−m)

)︁)︄
1 =

= 2
7
2
√
π
(︂
L 3

2
, 5
2

(︁
m,ω(r, ϱ)

)︁
+

15

8
L 1

2
, 7
2

(︁
m,ω(r, ϱ)

)︁)︂
1 , (3.1.20)

where Lib(z) is the polylogarithm8 and we abbreviate a (hereafter) often recurring pattern
by introducing the function

La,b
(︁
m,ω(r, ϱ)

)︁
= ma Re

(︂
Lib
(︁
− eiπω(r,ϱ)−m

)︁)︂
. (3.1.21)

8Not to be confused with the polylogarithmic function.
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For leading order mass terms O(md) our rule about dropping mass damped terms thus
translates to neglecting all contributions La,b with a < d.
The free case for b0(0) is calculated analogously with Ω = 1⇔ ω = 0 and we obtain

the contribution

2
7
2
√
π
(︂
m

3
2 Li 5

2
(−e−m) + 15m

1
2

8
Li 7

2
(−e−m) +O

(︁
m− 1

2
)︁)︂

1 . (3.1.22)

The overall contribution to the log - caloron density is therefore given by the space(time)
integral (additional factor of (2π)−1 due to a factor of 2 from tr(12×2), the heat kernel
expansion prefactor (4π)−2, the volume element 4πr2 dr and the integral

∫︁ 1
0 dτ trivially

yielding 1)

γφ0
0 (m, ϱ) =

2
5
2

√
π

∫︂ ∞

0
dr r2

(︂
L 3

2
, 5
2

(︁
m,ω(r, ϱ)

)︁
+

15

8
L 1

2
, 7
2

(︁
m,ω(r, ϱ)

)︁
−

−m
3
2 Li 5

2
(−e−m)− 15m

1
2

8
Li 7

2
(−e−m)

)︂
.

(3.1.23)

By γφ0

2k (m, ϱ) we denote the finite temperature contribution to the log - caloron density at
heat kernel expansion order k coming from the j ̸= 0 -modes of φ0b2k. The corresponding
terms from B2k we denote as γB2k (here obviously γB0 = 0).
Note that ω falls off quickly with increasing r, so that the caloron background - terms

in γφ0
0 quickly approach the r - independent vacuum terms which renders the overall

spacetime integral finite. To see this, first note that γφ0
0 is a positive definite function which

we prove by employing the Fermi - Dirac integral - representation of the polylogarithm
function [190]:

Lib(−e−z) = −˜︁Γ−1(b)

∫︂ ∞

0
du ub−1

eu+z + 1
. (3.1.24)

This holds ∀Re(b) > 0 and ∀z ∈ C, z ̸= ±iπ + x, x ≤ 0.9 In our case this excludes only
the pathological combination r = 0 ∧ m ≤ 0. The O(ma) - terms of γφ0

0 (a = 3
2 ,

1
2) are

then determined (up to positive prefactors ma · const.) by the integral

˜︁Γ−1(b)

∫︂ ∞

0
duub−1

(︃
1

eu+m + 1
− 1 + eu+m cos(πω)

e2(u+m) + 2eu+m cos(πω) + 1

)︃
(3.1.25)

with b = a+ 1, 2. This integrand is positive ∀u+m > 0∧ ω ∈ [0, 1]. In the limit r ↘ 0⇒
ω ↗ 1⇒ cos(πω)→ −1 it simplifies to 2ub−1eu+m

e2(u+m)−1
which is finite given u ≥ 0, m > 1. In

9I.e., it holds ∀z ∈ C except z ∈ R ∧ z ≤ −1.
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Figure 3.4: The general splitting of them - ϱ - plane required for parametrizing the finite
temperature heat kernel corrections (3.1.27), (3.1.29), (3.1.34) and (3.1.35).

the limit r →∞⇒ ω ↘ 0, the integrand falls off as ω2 ∝ r−4 (cf. below (3.1.15)) and for
large u as ub−1e−u, rendering the u - integral finite and γφ0

0 as a whole “
∫︁∞
0 dr r

−2 - finite”.
In the ancillary files we provide the data for γφ0

0 (m, ϱ), which we obtained using the
SymPy [191] and mpmath [192] packages10. It is difficult to provide a good functional fit
to this data - and indeed for all finite temperature corrections; the best approximation for
the finite temperature ambiguities is given by the function

ζ(m, ϱ̃, ϱ ; ã, b̃, c̃, a, b, c) = e−m
(︂
ãmb̃ ϱ̃ c̃ + ambϱc

)︂
, (3.1.26)

where the choice of ϱ̃ or ϱ depends on the ϱ - value as we see in the following (ϱ̃ = ρ̃
β

(2.4.40) describes HS (anti-)calorons at length scales r ≪ 1, where they resemble BPST
(anti-)instantons of modified size ϱ̃ (cf. (2.4.39)). We compute γφ0

0 on an m - ϱ - grid of
15000 points formed by 100 fermion masses m ∈ {1.001 · ( 200

1.001)
i
99 |N ∋ i ≤ 99} “times”

150 caloron sizes ϱ ∈ {10−3 · ( 200
10−3 )

i
149 |N ∋ i ≤ 149} with mmin = 1.001, ϱmin = 10−3

and mmax = ϱmax = 200, splitting the m - ϱ - plane in nine sectors (i) - (ix) as shown in
figure 3.4. The coefficients ã, b̃, c̃, a, b, c in these sectors as well as the sector boundaries
are given in table 3.1. We write this using the short - hand notation

γφ0
0 (m, ϱ)

(3.1.26)
= ζ(m, ϱ̃, ϱ ; ã, b̃, c̃, a, b, c)

⃓⃓⃓
Table 3.1

. (3.1.27)

10These packages allows us to handle polylogarithms in symbolic and numerical Python - calculations,
respectively.
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Figure 3.5: Relative error δγφ00
of the fitting function (3.1.27).

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
ã 8.878 8.107 5.000 ã

(1)
0 (ϱ) ã

(2)
0 (ϱ) ã

(3)
0 (ϱ) 0 0 0

b̃ 1.03 1.17 1.42 1.03 1.17 1.42 0 0 0
c̃ 3.00 3.00 3.00 3.13 3.13 3.13 0 0 0
a 0 0 0 a

(1)
0 (ϱ) a

(2)
0 (ϱ) a

(3)
0 (ϱ) 3.075 2.823 1.700

b 0 0 0 1.04 1.18 1.42 1.04 1.18 1.43
c 0 0 0 2.25 2.26 2.26 2.00 2.00 2.00

Table 3.1: The (m, ϱ) - sector boundaries corresponding to figure 3.4 arem1 ≈ 2,m2 ≈ 8,
ϱ1 ≈ 0.22 and ϱ2 ≈ 1.2, the upper values are m3 = ϱ3 = 200. The ã and a
functions in sectors (iv) - (vi) are required due to the rapid transition of small -
caloron (ϱ̃) to large - caloron description (ϱ); they contain step functions for
which we choose the logistic function approximationΘl(ϱ, u) =

(︁
1+ e−2uϱ

)︁−1:
ã
(1)
0 = 11.24

(︁
1 − Θl(ϱ − 0.4, 7.5)

)︁
, ã(2)0 = 10.29(1 − Θl), ã

(3)
0 = 6.350(1 − Θl),

a
(1)
0 = 2.904Θl(ϱ− 0.4, 7.5), a(2)0 = 2.657Θl , ã

(3)
0 = 1.650Θl.

The boundaries in table 3.1 are roughly set by hand to minimize the fitting error, which
is shown in figure 3.5.
Concerning the λ2 - regulator terms: the j = 0 -modes cancel again like for m2 and the

j ̸= 0 -mode contribution γφ0
0 (λ, ϱ) vanishes exponentially as λ→∞.

All in all, the diverging j = 0 -modes in the caloron and the vacuum background cancel,
just like for T = 0 (where b0(AInstanton) = 1 = b0(0)) and we find the finite - temperature
term −γφ0

0 (m, ϱ).
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Order k = 1
2 :

The coefficient b1 is always 0.

Order k = 1 :
For −D2

− (and −∂2−) the coefficient b2 vanishes (just as for instantons).

Order k = 3
2 :

The coefficient b3 is always 0.

Order k = 2 :
The j = 0 -mode of b4 is given by φ0b4 (again only the traceful part of φ0 contributes)
and diverges logarithmically as I(m2, 2, 0; 0) ∝ ˜︁Γ(0) (cf. (3.1.18.b)). This logarithmic
divergence is canceled by the Pauli - Villars - regulator term (see [60, 154] for T = 0 - case);
the γE - terms cancel as well. Thus the physical j = 0 -mode contribution at asymptotic
order k = 2 reads

γ4(m,λ) = ln
(︂ λ2
m2

)︂ 1

(4π)2
Tr
(︁
b4
)︁
= ln

(︂m2

λ2

)︂ 1

12(4π)2

∫︂ 1

d4x tr
(︁
GµνGµν

)︁
=

1

6
ln
(︂m
λ

)︂
,

(3.1.28)
where it was used that integrating tr

(︁
b4(AHS)

)︁
yields the caloron’s topological charge:

1
(4π)2

Tr
(︁
b4(AHS)

)︁
= n = 1. This result is analogous to the instanton - case in [60].

In order to verify our numerical methods, we also perform the x - integral numerically
for 35 ϱ - values ranging over several orders of magnitude ϱ ∈ {0.005 · 1.5i |N ∋ i ≤ 34}
with ϱmax = 4853.70 and find excellent agreement with the analytical value. As can be
seen in figure 3.6, and our data in the ancillary files, the relative error of the numerical
integration with respect to 1

12 never exceeds |δγ4, max| ≈ 2.3 · 10−5%.
The j ̸= 0 - ambiguities from b4 = φ0b4 − φ0+2φ2

6 EiEi come from φ0 with c = 0, i.e.,
from the integral I(m2, 2, j2; 0), and from 1

6(φ0 + 2φ2), where j2

12s means c = 2 and the
integral in question thus is I(m2, 2, j2; 1). For both b4 ∝ GµνGµν and EiEi only the trace-
ful part cos(jπω)1 of Ωj in φ0 and φ0+2φ2 contributes. The traceless part i sin(jπω)x

aσa

r
yields: i4 sin(jπω)

xa

r G
b µνGc µνσaσbσc =tr −1

2 sin(jπω)
xa

r G
b µνGc µν εabc1 = 0 due to the

exchange symmetry for the field strength - analogously for the chromo - electric field.
Performing the j - summation in the first term gives 23/2

√
π
(︁
L− 1

2
, 1
2
+ ...

)︁
b4 and we ne-

glect this contribution completely as it contains a mass damping. The second term
yields (mind the factor j

2

12 in this j - summation) −2
5/2√π( 1

12 L 1
2
,− 1

2
+ ...)EiEi, where

tr(1EiEi) = Ea iEb i tr
(︁
σa

2
σb

2

)︁
= 1

2E
a iEa i gave a factor of 12 , so that we obtain the overall
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Figure 3.6: Relative error δγ4 of (3.1.28) compared to the theoretical value of 1
12 .

finite temperature contribution

γB4 (m, ϱ) = −
1

2
5
2 · 3
√
π

∫︂ 1

0
dτ
∫︂ ∞

0
dr r2 L 1

2
,− 1

2

(︁
m,ω(r, ϱ)

)︁
(Ea iEa i)(r, τ, ϱ) =

(3.1.26)
= ζ(m, ϱ̃, ϱ ; ã, b̃, c̃, a, b, c)

⃓⃓⃓
Table 3.2

.

(3.1.29)

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
ã 0 0 0 0 0 0 0 0 0
b̃ 0 0 0 0 0 0 0 0 0
c̃ 0 0 0 0 0 0 0 0 0
a -0.092 -0.069 -0.069 -0.088 -0.061 -0.061 -0.085 -0.057 -0.057
b 0.27 0.50 0.50 0.23 0.50 0.50 0.17 0.50 0.50
c 0 0 0 0.05 0.10 0.10 0 0 0

Table 3.2: The sector boundaries corresponding to figure 3.4 are m1 ≈ 3.4, m2 ≈ 8,
m3 = 45 and ϱ1 ≈ 0.3, ϱ3 ≈ 2, ϱ3 = 45.

Here 55 fermion mass values m ∈ {1.001 · ( 45
1.001)

i
54 |N ∋ i ≤ 54} and 85 caloron size

values ϱ ∈ {10−3 · 10
3i
49 |N ∋ i ≤ 50} ∪ {10−3 · 10

150
49 · 39.083

i
34 |N+ ∋ i ≤ 34} form a grid

of 4675 points. The corresponding data and the relative fitting error of (3.1.29) are to be
found in the ancillary files.
This integral (3.1.29) is finite - just as (3.1.28) and the other heat kernel contributions,

because the field strength and thus the chromo - electric and -magnetic fields vanish fast
enough for r →∞ (cf. figure 2.12).
Overall, the contribution to γs, − is −γ4(m,λ) with a finite -T uncertainty −γB4 (m, ϱ).
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Order k = 5
2 :

For −D2
− the coefficient b5 vanishes.

Order k = 3 :
I
(︁
m2, k, j2; c2

)︁
is always finite for k ≥ 3, e.g., I(m2, 3, 0; 0) = m−2. Here we find the

physical γs, − - contribution

γ6(ϱ)

m2
= I(m2, 3, 0; 0)

1

(4π)2
Tr
(︁
b6
)︁
= − 1

1440πm2

∫︂ 1

0
dτ
∫︂ ∞

0
dr r2 εabcGaµνGb µκGc νκ .

(3.1.30)
The corresponding λ - terms thus vanish as λ→∞. We calculate γ6 for 150 caloron sizes
ϱ ∈ {10−3 · 1.1i |N ∋ i ≤ 100} ∪ {10−3 · 1.1100 · 1.075i |N+ ∋ i ≤ 49} with ϱmax ≈ 476.74
and obtain

γ6(ϱ)

m2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.013

ϱ̃2.00m2
: 0 < ϱ ≤ 0.267

0.128ϱ̃1.55

m2
+

0.021

ϱ1.78m2
: 0.267 < ϱ ≤ 1.844

0.008

ϱ2.00m2
+

0.052

m2
: 1.844 < ϱ

, (3.1.31)

where 0.013 ≈ 1
75 is the prefactor of the corresponding instanton heat kernel expansion

[60] - in fact, the full numerical result agrees with 1
75 = 0.013 to eight decimal places.

Furthermore, the difference between “x” and “x.00” in (3.1.31) and other numerical
results is that the former denotes the exact integer number (either obtained by analytical
calculation or set by hand), while the latter means a numerical result that is given to
two decimal places. The data and fitting function as well as the latter’s relative error
compared to the data are shown in figures 3.7a and 3.7b, respectively and can be found
in the ancillary files.
In (3.1.31) we can identify three ϱ - regions: for small caloron sizes or low temperatures

ϱ = ρT ≤ 0.267 the heat kernel coefficient γ6 is best described by ϱ̃ (2.4.40); for large
caloron sizes or large temperatures ρT > 1.844, ϱ describes the coefficient; in the inter-
mediate region, both ϱ and ϱ̃ play a role. This means that for ρ≪ β the caloron is small
enough to only effect physics on length scales much smaller than the temperature scale.
Therefore, such a small caloron essentially behaves like an instanton. As the caloron gets
larger, its actual periodic nature becomes increasingly important for its effect on particles.
The j ̸= 0 -modes at k = 3 are due to (I) φ0 with I(m2, 3, j2; 0), (II) 1

60(φ0 + 2φ2)

with I(m2, 3, j2; 1), where we study the terms (II.1) 1
60(φ0 + 2φ2)

(︂(︁
Ei;i

)︁2
+
(︁
Gij;4

)︁2)︂
and (II.2) −tr

(︁
1
60(φ0 + 2φ2) 2E

iGijEj
)︁
separately, and (III) −

(︁φ0

15 + φ2

3 + 2φ4

15

)︁
with
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(a). m−2 - coefficient γ6 (3.1.31) of γs, − (3.1.17): our data (orange) on the left, data points (blue) and
fitting function (orange) on right. The vertical, dashed gray lines again mark the boundaries
of the piecewise defined function (3.1.31).
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(b). Relative error δγ6 of (3.1.31) compared to our data in %. Again, the vertical lines mark the
boundaries in the fitting function. We see good agreement in the physically relevant region
0.1 ≲ ϱ ≲ 1.

Figure 3.7
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(III.1) I(m2, 3, j2; 1) and (III.2) I(m2, 3, j2; 2). For the j - summation we use that
in all (I) - (III.2) only cos(jπω)1 ⊂ Ωj contributes. For the traceless part we find:
(I) xaGb µνGc µκGd νκσaσbσcσd =tr 2x

a
(︁
GaµνGb µκGb νκ + (ν ↔ κ) + (µ ↔ κ)

)︁
= 0 be-

cause of index symmetries; (II.1), (III.1) and (III.2) give vanishing contributions due
to σaσbσc =tr 2i εabc together with exchange symmetries in G and E; (II.2) yields
xaEb iGc ijEd jσaσbσcσd =tr 2x

a
(︁
Ea iGb ijEb j − (i ↔ j) − Eb iGa ijEb j

)︁
, where the first

two terms cancel and the third again vanishes owing to index symmetry. Finally, the
corresponding traceful contributions with all mass damped terms neglected are:

(I)
√
2π L− 3

2
,− 1

2
b6 =tr

√
π

27/2·45 L− 3
2
,− 1

2
εabcGaµνGb µκGc νκ 1 ,

(II.1)
√
π

27/2·15
(︁
L− 1

2
,− 3

2
− 1

8 L− 3
2
,− 1

2

)︁(︁
(Ea i;i)2 + (Ga ij;4)2

)︁
1 ,

(II.2) −
√
π

27/2·15
(︁
L− 1

2
,− 3

2
− 1

8 L− 3
2
,− 1

2

)︁
εabcEa iGb ijEc j 1 ,

(III.1)
√
π

25/2·15
(︁
L− 1

2
,− 3

2
− 1

8 L− 3
2
,− 1

2

)︁(︁
Ea i;4

)︁2
1 ,

(III.2) −
√
π

25/2·15
(︁
L 1

2
,− 5

2
+ 3

8 L− 1
2
,− 3

2
− 15

128 L− 3
2
,− 1

2

)︁(︁
Ea i;4

)︁2
1 .

Performing the trace and plugging the result in the spacetime integral we find the finite
temperature corrections at k = 3:

γφ0
6 (m, ϱ) =

1

2
9
2 · 45

√
π

∫︂ 1

0
dτ
∫︂ ∞

0
dr r2 L− 3

2
,− 1

2
εabcGaµνGb µκGc νκ , (3.1.32)

γB6 (m, ϱ) =
1

2
7
2 · 15

√
π

∫︂ 1

0
dτ
∫︂ ∞

0
dr r2

(︃
1

2

(︁
L− 1

2
,− 3

2
− 1

8
L− 3

2
,− 1

2

)︁(︁
(Ea i;i)2 + (Ga ij;4)2−

− εabcEa iGb ijEc j
)︁
−
(︁
L 1

2
,− 5

2
− 5

8
L− 1

2
,− 3

2
+

1

128
L− 3

2
,− 1

2

)︁(︁
Ea i;4

)︁2)︃
.

(3.1.33)

The numerical values for these ambiguities

γφ0
6 (m, ϱ) = non - trivial function(m, ϱ) · e−m (3.1.34)

γB6 (m, ϱ)
(3.1.26)
= ζ(m, ϱ̃, ϱ ; ã, b̃, c̃, a, b, c)

⃓⃓⃓
Table 3.3

(3.1.35)

were again obtained on the grid of 4675 (m, ϱ) - pointsm ∈ {1.001 · ( 45
1.001)

i
54 |N ∋ i ≤ 54}

and ϱ ∈ {10−3 · 10
3i
49 |N ∋ i ≤ 50} ∪ {10−3 · 10

150
49 · 39.083

i
34 |N+ ∋ i ≤ 34} and can
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be found in the ancillary files. Note that the “non - trivial function” of γφ0
6 contains a

transition from negative to positive values and is therefore difficult to describe by the
function (3.1.26).

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
ã 0.012 0.009 0.003 ã

(1)
6 (ϱ) ã

(2)
6 (ϱ) ã

(3)
6 (ϱ) 0 0 0

b̃ -0.04 0.03 0.68 0.07 -0.16 0.61 0 0 0
c̃ -1.99 -2.00 -2.00 -2.27 -1.90 -1.63 0 0 0
a 0 0 0 a

(1)
6 (ϱ) a

(2)
6 (ϱ) a

(3)
6 (ϱ) 0.029 0.048 0.012

b 0 0 0 0.66 -0.11 0.65 0.62 -0.25 0.74
c 0 0 0 -0.08 -0.16 -0.28 -0.00 -0.25 -0.02

Table 3.3: The sector boundaries corresponding to figure 3.4 are m1 ≈ 2.2, m2 ≈ 3.5,
m3 = 45 and ϱ1 ≈ 0.2, ϱ2 ≈ 2.5, ϱ3 = 45. The ã and a functions are:
ã
(1)
6 = 0.007

(︁
1−Θl(ϱ− 0.65, 7.5)

)︁
, ã(2)6 = 0.013(1−Θl), ã

(3)
6 = 0.007(1−Θl),

a
(1)
6 = 0.030Θl(ϱ− 0.65, 7.5), a(2)6 = 0.050Θl , ã

(3)
6 = 0.020Θl.

The relative fitting error of (3.1.35) on the above m - ϱ - grid is also provided in the
ancillary files.

We find the k = 3 - contribution to the log - caloron density −γ6(ϱ)
m2 with boundary con-

dition dependent ambiguities −γφ0
6 (m, ϱ)− γB6 (m, ϱ).

We showed, that despite the infinite j - summation, the finite T - ambiguities at k = 0, 2, 4
are not only exponentially damped for small s, but also for large m, and decrease in
importance. In keeping with the nature of an asymptotic expansion, we can therefore
neglect all further finite T - terms, where the B2k > 6 are unknown.

All in all “the finite temperature corrections are negligible in the ultraviolet region” and
“temperature does not modify the renormalization properties” [185]. In figure 3.10 and
(3.1.40) we quantify how large a mass is necessary to limit the particle to said UV region.

We now continue the heat kernel expansion up to higher orders. Due to expected com-
putational cost in calculating the explicit form of b12(x, ϱ) and performing the integration
of this term, we compute the physical terms only up to k = 5, leaving out the last known
k = 6 - contribution. All the following results are also documented in the ancillary files.
We find the γs, − - contributions:
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(a). m−4 - coefficient γ8 (3.1.36) of γs, − (3.1.17).
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(b). Relative error δγ8 of (3.1.36) compared to our data.

Figure 3.8

Order k = 4 :

γ8(ϱ)

m4
= I(m2, 4, 0; 0)

1

(4π)2
Tr
(︁
b8
)︁
=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.023

ϱ̃4m4
: 0 < ϱ ≤ 0.120

0.090

ϱ̃2.34m4
+

0.021

ϱ4.03m4
: 0.120 < ϱ ≤ 1.183

0.020

ϱ3.11m4
+

0.096

ϱ1.99m4
+

0.388

m4
: 1.183 < ϱ

,

(3.1.36)

plotted in figures 3.8a and 3.8b. The full small - ϱ coefficient in (3.1.36) fits the expected
instanton coefficient 17

735 [60] up to 1%. For the numerical calculation of (3.1.36) we used
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130 caloron sizes ϱ ∈ {10−3 · 1.2i |N ∋ i ≤ 25}∪ {10−3 · 1.225 · 1.085i |N+ ∋ i ≤ 104} with
ϱmax ≈ 461.56.

Order k = 5 :

γ10(ϱ)

m6
= I(m2, 5, 0; 0)

1

(4π)2
Tr
(︁
b10
)︁
=

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 0.082

ϱ̃6m6
: 0 < ϱ ≤ 0.298

− 0.463

ϱ̃3.87m6
+

0.267

ϱ5.33m6
: 0.298 < ϱ ≤ 1.348

− 2.280

ϱ2.15m6
− 5.106

m6
: 1.348 < ϱ

,

(3.1.37)

which is plotted in figure 3.9. The small - ϱ coefficient here agrees with the instanton
coefficient 232

2385 up to −0.21%.
11

Finally, we give the large mass expansion of the log - caloron density for an anti-periodic
scalar particle in a HS caloron background (3.1.17) up to m−6:

γs, −(m large, ϱ, λ) =
1

6
ln
(︂ λ
m

)︂
−
(︃
γ6(ϱ)

m2
+
γ8(ϱ)

m4
+
γ10(ϱ)

m6

)︃
+O(mbe−m) , b ∼ 1 .

(3.1.38)
In order to estimate the validity of (3.1.38), we modify the idea of [60] and demand

that the expansion (3.1.38) be asymptotic, i.e., that each additional expansion order
contribute less to the existing expansion than the one before. For that, we find the “lightest
heavy mass” so that 1) γ6

m2 ≥ γ8
m4 and 2) γ8

γ6m2 ≥ γ10
γ6m4+γ8m2 . Additionally, the finite -

temperature ambiguities in (3.1.38) need to be small compared to the physical expansion
and we therefore demand 3)

⃓⃓⃓
γ6(ϱ)
m2 + γ8(ϱ)

m4 + γ10(ϱ)
m6

⃓⃓⃓
> 1.2(γT0 (m, ϱ)+γ

T
4 (m, ϱ)+γ

T
6 (m, ϱ),

where the factor 1.2 gives a conservative estimate and we abbreviate the full T > 0 -
uncertainties at order 2k as γT2k. We consider conditions 1) and 2) for 650 caloron sizes
ϱ ∈ {10−3(1− j

249) · 0.15
j

249 |N ∋ j ≤ 249}, ϱ ∈ {0.1531−
j

249 · 1.5
j

249 |N ∋ j ≤ 249} and
ϱ ∈ {1.5141−

j
149 · 100

j
249 |N ∋ j ≤ 249} with minimal caloron size 0.001 and maximum

size 100 an find the combined, conservative (meaning that in 1) and 2) the higher order
term contributes at most about 67% of the existing series) restriction:
11Wewould like to specifically thank Simon Stendebach for setting up the code for the numerical x - integration
of tr(b10) in (3.1.37) and performing the integrals (using the Cubature package [193–196] to handle the
highly oscillatory integrand tr(b10)).
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(a). m−6 - coefficient γ10 (3.1.37) of γs, − (3.1.17).
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(b). Relative error δγ10 of (3.1.37) compared to our data.

Figure 3.9
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mlarge, min, (1,2)(ϱ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1.7ϱ̃−1 : 0 < ϱ ≤ 0.094

2.1ϱ−0.9 + 0.5 : 0.094 < ϱ ≤ 0.44

1.7ϱ̃−1 − 2.3ϱ−0.1 + 22.4 : 0.44 < ϱ ≤ 1.39

0.16ϱ−2.1 + 3.4 : 1.39 < ϱ

. (3.1.39)

Condition 3) cannot be inverted and we show the numerical results, obtained for 650
sizes ϱ ∈ {0.311−

j
249 · 0.6

j
249 |N ∋ j ≤ 249}, ϱ ∈ {0.6011−

j
249 · 3

j
249 |N ∋ j ≤ 249} and

ϱ ∈ {3.0191−
j

149 · 25
j

249 |N ∋ j ≤ 249} with minimal caloron size 0.31 (for smaller ϱ,
condition 3) is satisfied, see figure 3.10a) and maximum size 25, in figure 3.10b.
All in all, the lightest quark mass for which our heat kernel expansion is valid is

mlarge, min(ϱ) = max
(︁
mlarge, min, (1,2)(ϱ), mlarge, min, 3(ϱ)

)︁
. (3.1.40)

Our large mass result (3.1.38) together with the estimate for the minimal mass (3.1.40)
gives the large m - correction factor f according to (2.4.83) - compare also the T = 0
result (2.4.78):

f large(m ≥ mlarge, min(ϱ), ϱ) =
e−2α( 1

2)

(λϱ)
1
3

e2γs,− =

=
e−2α( 1

2)

(mϱ)
1
3

exp

(︃
−2γ6(ϱ)

m2
− 2γ8(ϱ)

m4
− 2γ10(ϱ)

m6

)︃ (3.1.41)

3.2 Small Mass - Expansion of the Caloron Density

3.2.1 Expansion Strategy

After analyzing heavy quarks the the large -mass heat kernel expansion, we now consider
light fermions with m ≪ 1, but non - vanishing. The straightforward procedure in this
limit is a Taylor expansion of the log - caloron density (2.4.82) up to first order inm2 using
d
dm2 ln det(−D2

−+m2) = d
dm2Tr ln(−D2

−+m2) = Tr
(︁

1
−D2

−+m2

)︁
=
∫︁ 1d4x tr

⟨︁
x| 1

−D2
−+m2 |x

⟩︁
with the massive anti-periodic closed loop - propagator ∆−(x, x,m2) =

⟨︁
x| 1

−D2
−+m2 |x

⟩︁
.

Including higher orders in the Taylor expansion would require convolutions of such
propagators and we thus avoid them.
Since these closed loop - propagators are naturally divergent, we achieve regularization

via point splitting, i.e., by considering “almost closed loop” - propagation ∆−(x′, x,m2)
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(a). The leading heat kernel expansion
⃓⃓⃓
γ6(ϱ)
m2 + γ8(ϱ)
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⃓⃓⃓
shown in orange compared to

1.2(γT0 + γT
4 + γT

6 ) depicted in blue (the factor 1.2 allows for a conservative restriction).
The ϱ = 0.31 - plane shows that for smaller caloron sizes the finite -T ambiguities are always
smaller, while for ϱ ≳ 0.31 a large enough quark mass is required.
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(b). The minimal, i.e., lightest, possible heavy massmlarge, min, 3(ϱ) determined from condition 3).
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Figure 3.10
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from x to x′ = x+ε, ε→ 0.12 To retain the gauge invariance of γferm, an appropriateWilson
line P exp

(︂
i
∫︁ x′
x dz

µAµHS(z)
)︂
= 1+iAµHS(x) ε

µ+ 1
2

(︂
i∂µAνHS|x−(A

µ
HSA

ν
HS)(x)

)︂
εµεν+O

(︁
ε3
)︁

(2.1.28) has to be added to the propagator. Using also (2.4.77), we find the Taylor
expansion up to O(m2):13

γferm = − 1

3
ln(λϱ)− 2α

(︃
1

2

)︃
+

1

3
(πϱ)2 − 2A(πϱ)−

− 2m2 lim
ε→ 0

Tr

(︄⟨︃
x′
⃓⃓⃓⃓

1

−D2
−

⃓⃓⃓⃓
x

⟩︃
P exp

(︂
i

∫︂ x′

x
dzµAµHS(z)−

⟨︃
x′
⃓⃓⃓⃓

1

−∂2−

⃓⃓⃓⃓
x

⟩︃)︄
.

(3.2.1)
Such a Taylor expansion is not possible in the limit T ↘ 0 ⇔ β → ∞. At zero

temperature the known result for γs, − contains a term (Mρ)2 ln(Mρ) [60], which is
non - analytical atMρ = 0. This IR non - analyticity corresponds to eigenmodes of −D2

with arbitrarily low momenta that get effected arbitrarily strongly by the introduction
of even an infinitesimal mass. At finite energy, however, particles in equilibrium always
carry a non - zero thermal energy with typical energies ∼ T ; in detail, fermions have
anti-periodic boundary conditions which raise the lowest fluctuation frequencies in D2

−
to the lowest fermionic Matsubara frequency ωferm0 = πT (cf. 2.2.27)). Therefore, as
long as M ≪ T ↘ 0 ⇒ m = Mβ ≪ 1, the introduction of a such small mass only
infinitesimal effects on the particles and the fluctuation determinant. Therefore, the above
Taylor expansion is justified, but its convergence radius in m will drop to 0 in the limit
T ↘ 0⇔ β →∞. In other words, the lower T gets, the smallerM and thus also m have
to be to ensure convergence of the Taylor series.
In order to verify the Taylor series expansion, one could also also adapt the procedure

developed in [60], which is suitable to produce the non - analytical expansion at T = 0, to
finite temperatures and compare the result to the Taylor expansion. For this, γs, − is used
in its Schwinger proper time representation (3.1.2) and γferm is expanded in m2 as

γferm = γferm|m= 0 − 2

∫︂ m2

0
d˜︁m2

(︃
∂γs, −[˜︁m2]

∂ ˜︁m2

)︃
s - regularized

− ln
(︂m
λ

)︂
, (3.2.2)

with the integration only up to m2 ≪ 1 and the ˜︁m2 - derivative regularized not via point
splitting, but by using instead a lower integration cut - off εs ≪ 1 in the s - integration. We
discuss this approach in a bit more detail in appendix C.
12Technically speaking, the dm2 - derivative above cannot be performed, before the diverging integral (without

λ) is regularized, via point splitting or otherwise. This is of importance in appendix C.
13[54, 60, 141]
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For the Taylor expansion (and the alternative expansion in appendix C), the massless anti-
periodic scalar propagator in a caloron and a vacuum background are required. In general,
any (anti-)periodic propagator ∆±

(0)(x, y,m
2) can be obtained from the corresponding

aperiodic propagator ∆(0)(x, y,m
2) in R4 by adding up time copies [54]:

∆±
(0)(x, y,m

2) =
∑︂
j ∈ Z

(±1)j∆(0)(x, y + jê4,m
2) (3.2.3)

Also compare this with the construction of the caloron from instantons described in section
2.4.2, especially (2.4.36). Performing the time - copy sums amounts to compactifying the
spacetime in the temporal direction R4 → R3×S1

rad.= 1/2π
, therefore the bars are dropped:

∆ → ∆, |x⃗|, |⃗y| → rx, ry, x4, y4 → τx, τy, etc. The (almost-)closed loop propagators in
(3.2.1) correspond again to the system sketched in figure 3.1. Thus, before proceeding,
we have to obtain these massless propagators.

3.2.2 Periodic and anti-periodic massless scalar Propagator in a HS Caloron
Background

Aperiodic Propagator

First we calculate the aperiodicR4 - propagator for a scalar field in a HS caloron background.
An ansatz for this propagator can be found by employing the results of [152]:

∆(x, y) =
1√︁
ϕ(x)

F (x, y)

4π2(x− y)2
1√︁
ϕ(y)

, ϕ(x) = 1 +
πϱ2 sinh(2πrx)

rx(cosh(2πrx)− cos(2πτx)
,

F (x, y) = 1+ ϱ2
∑︂
k ∈ Z

σµ(x− k ê4)µ

(x− k ê4)2
σ† ν(y − k ê4)ν

(y − k ê4)2
,

(3.2.4)
where σµ =(σ⃗, i) and σ⃗ are the Pauli matrices. Since ϕ is periodic in the x4 - direction,
the x - and x - coordinates are equivalent for ϕ. All of the summations (3.2.3) and (3.2.4)
performed in the following are presented in detail in the ancillary files.
We expand F (x, y) and compute its traceful and traceless parts separately, beginning

with the traceful part. For that, we denote x− y = ∆ with x4 − y4 = ∆4:
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F =

= 1+ ϱ2
∑︂
k ∈ Z

x⃗ · y⃗ + (x4 − k)(y4 − k) + i(x4 − k)⃗y · σ⃗ − i(y4 − k)x⃗ · σ⃗ + i(x⃗× y⃗ ) · σ⃗
x⃗ 2 y⃗ 2 + x⃗ 2(y4 − k)2 + y⃗ 2(x4 − k)2 + (x4 − k)2(y4 − k)2

=tr

=tr 1+ 1ϱ2
∑︂
k ∈ Z

x⃗ · y⃗ + (x4 − k)(y4 − k)
x⃗ 2 y⃗ 2 + x⃗ 2(y4 − k)2 + y⃗ 2(x4 − k)2 + (x4 − k)2(y4 − k)2

=

= 1+ 1ϱ2 Re

(︄
i x⃗ · y⃗ − |x⃗|(i |x⃗|+∆4)

|x⃗|
(︁
y⃗ 2 − (|x⃗| − i∆4)2

)︁(︁ψ(−x4 − i |x⃗|)− ψ(1 + x4 + i |x⃗|)
)︁)︄

+ (x↔ y) ,

(3.2.5)
with ψ(z) = dz˜︁Γ(z)˜︁Γ(z) the digamma function; ˜︁Γ(z) again represents the Gamma function.
Employing ψ(1 − z) = ψ(z) + π cot(πz) (reflection formula for the digamma function
[189]) with 1 − z = −x4 − i|x⃗| ⇔ z = 1 + x4 + i |x⃗| as well as the periodicity of the
cotangent cot(a+ π) = cot(a) gives

F =tr1+ 1ϱ2 Re

(︄
i x⃗ · y⃗ − |x⃗|(i |x⃗|+∆4)

|x⃗|
(︁
y⃗ 2 − (|x⃗| − i∆4)2

)︁ ×
×
(︁
ψ(1 + x4 + i |x⃗|) + π cot(π(x4 + i |x⃗|))− ψ(1 + x4 + i |x⃗|)

)︁)︄
+ (x↔ y) ,

(3.2.6)
so that the ψ - terms now cancel. The cotangent of a complex argument can be expanded
cot(π(x4 + i |x⃗|)) = sin(2πx4)

cosh(2π|x⃗|)−cos(2πx4)
− i sinh(2π|x⃗|)

cosh(2π|x⃗|)−cos(2πx4)
and we obtain

F (x, y) =tr 1+ 1πϱ2 Re

(︄
i x⃗ · y⃗ − |x⃗|(i |x⃗|+∆4)

|x⃗|
(︁
y⃗ 2 − (|x⃗| − i∆4)2

)︁ cot
(︁
π(x4 + i |x⃗|)

)︁)︄
+ (x↔ y) =

= 1+ 1
πϱ2

c1(|x⃗|, x4) d(|x⃗|, |⃗y|, x4, y4)

(︂
−∆4(∆)2 sin(2πx4)+

+
(︁
|x⃗|(∆)2 + êx⃗ · y⃗ (∆)2 + 2|x⃗|(êx⃗ · y⃗ )

2 − 2|x⃗| y⃗ 2
)︁
sinh(2π|x⃗|)

)︂
+ (x↔ y) ,

(3.2.7)
where we shortened our notation by introducing the functions

c1(z1, z2) = cosh(2πz1)− cos(2πz2) , (3.2.8)
d(|x⃗|, |⃗y|, x4, y4) =

(︁
(|x⃗| − |⃗y|)2 + (x4 − y4)2

)︁(︁
(|x⃗|+ |⃗y|)2 + (x4 − y4)2

)︁
. (3.2.9)
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Now we consider only the traceless part - denoted by “=\tr”:

F =\tr iϱ
2
∑︂
k ∈ Z

(x4 − k)σ⃗ · y⃗ − (y4 − k)σ⃗ · x⃗+ (x⃗× y⃗ ) · σ⃗
x⃗ 2 y⃗ 2 + x⃗ 2(y4 − k)2 + y⃗ 2(x4 − k)2 + (x4 − k)2(y4 − k)2

=

= iϱ2 Re

⎛⎝ π(i |⃗y|+∆4) coth
(︁
π(|⃗y|+ iy4)

)︁
|⃗y|
(︂(︁
|x⃗| − |⃗y|+ i∆4

)︁(︁
|x⃗|+ |⃗y| − i∆4

)︁)︂−
− ψ(−x4 − i |x⃗|)− ψ(1 + x4 + i |x⃗|)(︁
|x⃗| − |⃗y| − i∆4

)︁(︁
|x⃗|+ |⃗y| − i∆4

)︁)︄ y⃗ · σ⃗ + (x↔ y)−

+ iπϱ2 Re

(︄
−

coth
(︁
π(|x⃗|+ ix4)

)︁
|x⃗|
(︁
|x⃗| − |⃗y|+ i∆4

)︁(︁
|x⃗|+ |⃗y|+ i∆4

)︁+
+

coth
(︁
π(|⃗y|+ iy4)

)︁
|⃗y|
(︁
|x⃗| − |⃗y|+ i∆4

)︁(︁
|x⃗|+ |⃗y| − i∆4

)︁)︄ (x⃗× y⃗ ) · σ⃗ .

(3.2.10)

Using again the digamma function reflection formula, the cotangent periodicity and
complex expansion as well as coth

(︁
π(|⃗y|+ i y4)

)︁
= i cot(π(−y4 + i |⃗y|)) we obtain

F (x, y) =\tr iπϱ
2

(︄
x⃗ 2 − y⃗ 2 − (∆4)2

d(|x⃗|, |⃗y|, x4, y4)
sin(2πy4)

c1(|⃗y|, y4)
+

∆4
(︁
x⃗ 2 + y⃗ 2 + (∆4)2

)︁
|⃗y| d(|x⃗|, |⃗y|, x4, y4)

sinh(2π|⃗y|)
c1(|⃗y|, y4)

−

− x⃗ 2 − y⃗ 2 − (∆4)2

d(|x⃗|, |⃗y|, x4, y4)
sin(2πx4)

c1(|x⃗|, x4)
− 2 |x⃗|∆4

d(|x⃗|, |⃗y|, x4, y4)
sinh(2π|x⃗|)
c1(|x⃗|, x4)

)︄
y⃗ · σ⃗ − (x↔ y)+

+ iπϱ2

(︄
∆4

d(|x⃗|, |⃗y|, x4, y4)
sin(2πx4)

c1(|x⃗|, x4)
− x⃗ 2 − y⃗ 2 − (∆4)2

2 |x⃗| d(|x⃗|, |⃗y|, x4, y4)
sinh(2π|x⃗|)
c1(|x⃗|, x4)

−

− ∆4

d(|x⃗|, |⃗y|, x4, y4)
sin(2πy4)

c1(|⃗y|, y4)
− y⃗ 2 − x⃗ 2 − (∆4)2

2 |⃗y| d(|x⃗|, |⃗y|, x4, y4)
sinh(2π|⃗y|)
c1(|⃗y|, y4)

)︄
(x⃗× y⃗) · σ⃗ . (3.2.11)

The aperiodic scalar propagator reads ∆(x, y) = F (x,y)
4π2(x−y)2

1√
ϕ(x)ϕ(y)

with the traceful
(diagonal) and traceless (off-diagonal) parts of F (x, y) as given above. Note that the
diagonal part of ∆(x, y) is x↔ y - symmetric, while the off-diagonal part is x↔ y - anti-
symmetric. Taking the limit ρ→ 0⇒ ϱ→ 0 (no caloron), the free aperiodic propagator
∆(x, y) = 1

4π2(x−y)2 is reproduced.
We use this result to calculate the (free) periodic and anti-periodic propagator∆±

(0)(x, y)
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by performing the summation over time copies as described at the end of section 3.2.1:

∆±(x, y) =
1√︁

ϕ(x)ϕ(y)

∑︂
j ∈ Z

(±1)j
F
(︁
x, y + jê4)

)︁
4π2(∆− jê4)2

. (3.2.12)

Note that ϕ(y+ jê4) = ϕ(y) ∀j ∈ Z (cf. (2.4.36)), i.e., the ϕ can be pulled out of any time
copy sums due to their periodicity.
We can also obtain the R4 - propagator for T = 0 from the aperiodic propagator by

reverting the (coordinate) transformation (in (3.1.1)),
(︁
x⃗, x4

)︁
=
(︁
β−1X⃗, β−1x4

)︁
, ϱ = ρ

β
(keep the caloron centered at the origin) with the bars again denoting the zero temperature
case, and taking the limit β →∞:

lim
β→∞

F (β−1X,β−1Y , β−1ρ)

4π2(X − Y )2
1√︂

ϕ((X, ρ, β)ϕ((Y , ρ, β)
=tr

=tr 1
|X| |Y |+ ρ2 êX · êY

4π2(X − Y )2
√︂(︁

X2 + ρ2
)︁(︁
Y 2 + ρ2

)︁ . (3.2.13)

This is shown in the ancillary files.

Periodic Propagator

For calculating the traceful part of the periodic propagator in a caloron background with
the caloron centered at the origin according to (3.2.12) and using (3.2.7), we identify
three types of periodic time copy sums:

(1)+ =
∑︂
j ∈ Z

1

4π2(∆− jê4)2
,

(2)+x,y =
∑︂
j ∈ Z

−(∆4 − j)
4π d(|x⃗|, |⃗y|, x4, y4 + j)

,

(3)+x,y =
∑︂
j ∈ Z

(±1)j
(︁
|x⃗|(∆− jê4)2 + êx⃗ · y⃗ (∆− jê4)

2 + 2|x⃗|(êx⃗ · y⃗ )
2 − 2|x⃗| y⃗ 2

)︁
4π(∆− jê4)2 d(|x⃗|, |⃗y|, x4, y4 + j)

,

(3.2.14)
where (2)+x,y and (3)+x,y are not (explicitly) x↔ y - symmetric and a factor π was absorbed
into these terms. The traceful part of the full periodic propagator thus reads:
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∆+(x, y) =tr 1

(︃
(1)+ + ϱ2

(︃
(2)+x,y

sin(2πτx)

c1(rx, τx)
+ (2)+y,x

sin(2πτy)

c(ry, τy)

)︃
+

+ ϱ2
(︃
(3)+x,y

sinh(2πrx)

c(rx, τx)
+ (3)+y,x

sinh(2πry)

c1(ry, τy)

)︃)︃
1√︁

ϕ(x)ϕ(y)
.

(3.2.15)

Here we dropped the barred notation, because performing the j - summation describes
the transition from R4 to R3 × S1

rad.= 1/2π
.

Explicitly, we find for the periodic case, denoting similarly to above τx − τy = ∆τ ,
rx − ry = ∆r, and x⃗− y⃗ = ∆⃗:

(1)+ =
sinh(2π|∆⃗|)

4π|∆⃗| c1(|∆⃗|,∆τ)
, (3.2.16)

(2)+x,y = −sinh(2πrx) sinh(2πry) sin(2π∆τ)

8rxry c1(rx + ry,∆τ) c1(∆r,∆τ)
, (3.2.17)

(3)+x,y =
1

16rx

(︄
sinh(2π∆r)

ry c1(∆r,∆τ)
− sinh(2π(rx + ry))

ry c1(rx + ry,∆τ)
+

2 sinh(2π|∆⃗|)
|∆⃗| c1(|∆⃗|,∆τ)

)︄
. (3.2.18)

Plugging our results (3.2.16) - (3.2.18) into (3.2.15) yields the traceful (diagonal) part of
the full massless, periodic propagator:

∆+(x, y) =tr
1√︁

ϕ(x)ϕ(y)

[︄
sinh(2π|∆⃗|)

4π|∆⃗| c1(|∆⃗|,∆τ)
+

+ ϱ2
(︁
cosh(2πrx) sin(2πτy)− cosh(2πry) sin(2πτx) + sin(2π∆τ))

)︁
×

× sin(2π∆τ) sinh(2πrx) sinh(2πry)

8rxry c1(rx, τx) c1(ry, τy) c1(rx + ry,∆τ) c1(∆r,∆τ)
+

+ ϱ2

(︄
1

16rx

(︄
sinh(2π∆r)

ry c1(∆r,∆τ)
− sinh(2π(rx + ry))

ry c1(rx + ry,∆τ)
+

2 sinh(2π|∆⃗|)
|∆⃗| c1(|∆⃗|,∆τ)

)︄
sinh(2πrx)

c1(rx, τx)
+

+
1

16ry

(︄
− sinh(2π∆r)

rx c1(∆r,∆τ)
− sinh(2π(rx + ry))

rx c1(rx + ry,∆τ)
+

2 sinh(2π|∆⃗|)
|∆⃗| c1(|∆⃗|,∆τ)

)︄
sinh(2πry)

c1(ry, τy)

)︄]︄
.

(3.2.19)
As a quick check for our method, we we show in the ancillary files that the back -
transformation

(︁
x⃗, x4

)︁
=
(︁
β−1X⃗, β−1x4

)︁
, ϱ = ρ

β and limit β →∞ of our result (3.2.19)
reproduce the result in (3.2.13).
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The free periodic propagator by is obtained taking ϱ→ 0:

∆+
0 (x, y) =tr 1

∑︂
j ∈ Z

1

4π2(∆− jê4)2
= 1 (1)+ =

sinh(2π|∆⃗|)
4π|∆⃗| c(|∆⃗|,∆τ)

(3.2.20)

and in the limit of zero temperature we reproduce the well - known free R4 - propagator:
∆+

0 (X,Y ) =tr 1
β sinh(2π|X⃗−Y⃗ |β−1)

4π|X⃗−Y⃗ |(cosh(2π|X⃗−Y⃗ |β−1)−cos(2π(tX−tY )β−1)
β→∞→ 1

4π2(X−Y )
2 .

Anti-periodic Propagator

In the anti-periodic, traceful case of (3.2.12), we are interested in the following anti-
periodic time copy sums of (3.2.7):

(1)− =
∑︂
j ∈ Z

(−1)j

4π2(∆− jê4)2
,

(2)−x,y =
∑︂
j ∈ Z

−(−1)j(∆4 − j)
4π d(|x⃗|, |⃗y|, x4, y4 + j)

,

(3)−x,y =
∑︂
j ∈ Z

(−1)j
(︁
|x⃗|(∆− jê4)2 + êx⃗ · y⃗ (∆− jê4)

2 + 2|x⃗|(êx⃗ · y⃗ )
2 − 2|x⃗| y⃗ 2

)︁
4π(∆− jê4)2 d(|x⃗|, |⃗y|, x4, y4 + j)

,

(3.2.21)
where (2)−x,y and (3)−x,y are again not (explicitly) x↔ y - symmetric and contain the factor
π. The traceful part of the full anti-periodic propagator thus reads

∆−(x, y) =tr 1

(︃
(1)− + ϱ2

(︃
(2)−x,y

sin(2πτx)

c(rx, τx)
+ (2)−y,x

sin(2πτy)

c1(ry, τy)

)︃
+

+ ϱ2
(︃
(3)−x,y

sinh(2πrx)

c1(rx, τx)
+ (3)−y,x

sinh(2πry)

c(ry, τy)

)︃)︃
1√︁

ϕ(x)ϕ(y)
.

(3.2.22)

For numerical reasons we have to split up the sum (3)−x,y into three parts/individual

sums: (3.1)−x,y =
∑︁

j ∈ Z
(−1)j

(︁
|x⃗|+ ê

x⃗
· y⃗
)︁

4π d(|x⃗|,|⃗y|,x4,y4+j) , (3.2)
−
x,y =

∑︁
j

(−1)j |x⃗|
(︁
ê
x⃗
· y⃗
)︁2

2π(∆−jê4)2 d(|x⃗|,|⃗y|,x4,y4+j)
as well

as (3.3)−x,y = −
∑︁

j
(−1)j |x⃗| y⃗ 2

2π(∆−jê4)2 d(|x⃗|,|⃗y|,x4,y4+j)
. Additionally, we introduce the function

c2(z1, z2) = cosh2(πz1)− cos2(πz2). We find:

(1)− =
sinh(π|∆⃗|) cos(π∆τ)
2π|∆⃗| c1(|∆⃗|,∆τ)

, (3.2.23)
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(2)−x,y = −
(︁
cosh(2πrx) + cosh(2πry) + cos(2π∆τ) + 1

)︁
sinh(πrx) sinh(πry) sin(π∆τ)

16rxry c2(rx + ry,∆τ) c2(∆r,∆τ)
,

(3.2.24)

(3)−x,y = −

(︄
(1− êx⃗ · êy⃗) sinh(π(rx + ry))

(rx + ry)c2(rx + ry,∆τ)
+

(1 + êx⃗ · êy⃗) sinh(π∆r)
∆r c2(∆r,∆τ)

− 2 sinh(π|∆⃗|)
|∆⃗| c2(|∆⃗|,∆τ)

−

− (rx + ry êx⃗ · êy⃗)
(︃

sinh(π(rx + ry))

ry(rx + ry) c1(rx + ry,∆τ)
+

sinh(π|∆r|)
c1(∆r,∆τ)

)︃)︄
cos(π∆τ)

16rx
.

(3.2.25)

Using again (3.2.15) yields the massless, anti - periodic scalar propagator’s diagonal part.
As it is very lengthy and not needed for this work, we do do not present it in full, however;
especially because we only find one simplification for the explicit form:

(2)−x,y
sin(2πτx)

c1(rx, τx)
+ (2)−y,x

sin(2πτy)

c1(ry, τy)
=

=
(︁
cosh(2πrx) sin(2πτy)− cosh(2πry) sin(2πτx) + sin(2π∆τ)

)︁
×

×
(︁
cosh(2πrx) + cosh(2πry) + cos(2π∆τ) + 1

)︁
sinh(πrx) sinh(πry) sin(π∆τ)

16rxry c1(rx, τx) c1(ry, τy) c2(rx + ry,∆τ) c2(∆r,∆τ)
.

(3.2.26)
Analogously to the periodic case, we find for the free anti-periodic propagator:

∆−
0 (x, y) =tr 1

∑︂
j ∈ Z

(−1)j

4π2(∆− jê4)2
= 1 (1)−x,y =

sinh(π|∆⃗|) cos(π∆τ)
2π|∆⃗| c(|∆⃗|,∆τ)

. (3.2.27)

For T = 0, this also yields the familiar free R4 - propagator: ∆−
0 (X,Y )

β→∞→ 1

4π2(X−Y )
2 .

Closed Loop -Propagators

Finally, we calculate the finite and infinite parts of the coincident (anti-)periodic propaga-
tor ∆±(x, x) (3.2.3), which correspond to (anti-)periodically (j ̸= 0) and aperiodically
(j = 0) closed loops, respectively. Compare this to figure 3.1, where these anti-periodic
propagators are shown and discussed.
For the finite part of the coincident propagator, first set x = y in the calculation of the

aperiodic propagator’s traceful part and include j ̸= 0. This drastically simplifies the
calculation of F as given in (3.2.4) (cf. also (3.2.5)):
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F (x, x+ j ê4) =tr

=tr 1+
∑︂
k ∈ Z

1ϱ2
(︁
x⃗ 2 + (x4 − k)(x4 + j − k)

)︁
x⃗ 4 + x⃗ 2(x4 − k)2 + x⃗ 2(x4 + j − k)2 + (x4 − k)2(x4 + j − k)2

=

= 1

(︄
1 +

4πϱ2x⃗ 2 sinh(2π|x⃗|)
(4 x⃗ 2 + j2) c(|x⃗|, x4)

)︄
.

(3.2.28)

We can now perform the j - summation according to (3.2.12) and find the traceful finite
part of the coincident (anti-)periodic propagator:∑︂

j ∈ Z\{0}

(±1)j∆(x, x+ jê4) =
∑︂

j ∈ Z\{0}

(±1)jF (x, x+ jê4)

4π2j2 ϕ(x)
=tr

=tr
∑︂

j ∈ Z\{0}

(±1)j

4π2 ϕ(x)

(︄
1

j2
+

(︃
1

j2
− 1

4 x⃗ 2 + j2

)︃
πϱ2 sinh(2π|x⃗|)
|x⃗| c(|x⃗|, x4)

)︄
=

=

⎧⎪⎨⎪⎩
1

12

− 1

24

⎫⎪⎬⎪⎭+
1 ϱ2 sinh(2πrx)

16πr3x c1(rx, τx)ϕ(x)

(︄
1− 2πrx ·

{︄
coth(2πrx)

csch(2πrx)

}︄)︄
,

(3.2.29)

where we used that 1
j2(4x⃗ 2+j2)

= 1
4 x⃗ 2j2

− 1
4 x⃗ 2(4 x⃗ 2+j2)

. We abbreviate { 1
12 ,−

1
24} = C±.

This finite contribution contains the corresponding finite contribution to the free propagator∑︂
j ∈ Z\{0}

(±1)j∆0(x, x+ jê4) =
∑︂
j∈Z

(±1)j

4π2j2
= 1C± . (3.2.30)

Second, the finite traceless part vanishes. To see that, we calculate the traceless part
(again with the general formulae (3.2.4) and (3.2.5))

F (x, x+ jê4) =\tr
∑︂
k ∈ Z

−iϱ2j x⃗ · σ⃗
x⃗ 4 + x⃗ 2(x4 − k)2 + x⃗ 2(x4 + j − k)2 + (x4 − k)2(x4 + j − k)2

=

= −2iπϱ2 sinh(2π|x⃗|) êx · σ⃗
c(|x⃗|, x4)

j

4 x⃗ 2 + j2

(3.2.31)
and note that it is odd in j, i.e., the time copy sums vanish:∑︂

j ∈ Z\{0}

(±1)j∆
(︁
x, x+ jê4)

)︁
∝\tr

∑︂
j ∈ Z\{0}

(±1)jj
(4 x⃗ 2 + j2)j2

= 0 . (3.2.32)
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Note that the connection to dimensionful coordinates and parameters X⃗, t, ρ for the
finite contributions is achieved by rescaling j → jβ before performing the j - summations.
This introduces an overall factor of β−2 in (3.2.29) so that the caloron background term
reads 1 ρ2 sinh(2π|X⃗|β−1)

16πβ|X⃗|3 c
(︁
|X⃗|β−1, tβ−1

)︁
ϕ(X)

(︂
1− 2π|X⃗|β−1 · {...}

)︂
. As expected, (3.2.29) vanishes

as β →∞⇒ T ↘ 0.
Third, we turn to the infinite (or rather, regularized) parts. We cannot employ the

Schwinger proper time representation and heat kernel expansion in this case, as there
is no large parameter to take the place of m ≫ 1 and enforce s ↘ 0 as in section 3.1,
which would ensure convergence. As discussed section 3.2.1, point splitting can instead
provide regularization. We choose a temporal splitting x′ = x+ ετ ê4, ετ ↘ 0 to find the
regularized part of the coincident propagator from x to x′. Note that this procedure for
the j = 0 -mode is equivalent for the periodic and anti-periodic case. In temporal point
splitting regularization, the traceful part of F (x′, x) as given in (3.2.4) and (3.2.5) reads

F (x′, x) =tr

=tr 1+ 1
∑︂
k ∈ Z

ϱ2
(︁
x⃗ 2 + (x4 + ετ − k)(x4 − k)

)︁
x⃗ 4 + x⃗ 2(x4 − k)2 + x⃗ 2(x4 + ετ − k)2 + (x4 + ετ − k)2(x4 − k)2

=

= 1+
1πϱ2

4 x⃗ 2 + ε 2τ

(︂
2 |x⃗| sinh(4π|x⃗|)− 2 |x⃗| sinh(2π|x⃗|)

(︁
cos(2πx4) + cos(2π(x4 + ετ ))

)︁
−

− ετ cosh(2π|x⃗|)
(︁
sin(2π(x4 + ετ ))− sin(2πx4)

)︁
+ ετ sin(2πετ )

)︂
×

× 1

c(|x⃗|, x4)c(|x⃗|, x4 + ετ )
(3.2.33)

and for the traceless part described in (3.2.4) and (3.2.10) we find

F (x′, x) =\tr
∑︂
k ∈ Z

iϱ2 ετ x⃗ · σ⃗
x⃗ 4 + x⃗ 2(x4 − k)2 + x⃗ 2(x4 + ετ − k)2 + (x4 + ετ − k)2(x4 − k)2

=

=
iπϱ2 êx · σ⃗
4 x⃗ 2 + ε 2τ

(︂
ετ sinh(4π|x⃗|) + 2 |x⃗| cosh(2π|x⃗|)

(︁
sin(2π(x4 + ετ ))− sin(2πx4)

)︁
−

− ετ sinh(2π|x⃗|)
(︁
cos(2πx4) + cos(2π(x4 + ετ ))

)︁
− 2 |x⃗| sin(2πετ )

)︂
×

× 1

c(|x⃗|, x4)c(|x⃗|, x4 + ετ )
.

(3.2.34)
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Finally, we obtain the full coincident propagator at finite temperature, regularized via
point splitting in the temporal direction, by plugging (3.2.29) - (3.2.34) into (3.2.3),
performing a Taylor expansion in ε and dropping the subscript “x” for clarity of notation:

∆±(x′ = x+ ετ ê4, x) =
F (x′, x)

4π2 ε 2τ
√︁
ϕ(x′)ϕ(x)

+
∑︂

j ∈ Z\{0}

(±1)jF (x, x+ jê4)

4π2j2 ϕ(x)
=

=
1

4π2 ε2τ
+ 1C± +

1 ϱ2 sinh(2πr)

(︄
1− 2πr ·

{︄
coth(2πr)

csch(2πr
)︁}︄)︄

16πr3
(︁
cosh(2πr)− cos(2πτ)

)︁
ϕ(x)

−

− 1 ϱ2

64πr3

(︄
sinh(6πr) + 4πr cosh(4πr) cos(2πτ)− sinh(2πr)×

×

(︄
8π3ϱ2r sinh(2πr) sin2(2πτ)(︁
cosh(2πr)− cos(2πτ)

)︁
ϕ(x)

− 2 cos(2πτ)− 3

)︄
− 4
(︁
sinh(4πr)− 3πr

)︁
cos(2πτ)−

− 4πr cosh(2πr)(cos(4πτ) + 3)

)︄(︂(︁
cosh(2πr)− cos(2πτ)

)︁3
ϕ(x)

)︂−1
+

+
iϱ2 σr(x)

64πr3 ετ

(︄
r sinh(8πr) + πϱ2 cosh(8πr) +

(︁
(4π2ϱ2 − 6)r sinh(6πr)+

+ 4π(r2 − ϱ2) cosh(6πr)
)︁
cos(2πτ)− 2π

(︂
(4r2 − ϱ2)

(︁
2 + cos(4πτ)

)︁
+ ϱ2

)︂
cosh(4πr)−

− 12π2ϱ2r sinh(4πr) + 8r sinh(4πr)− 2(2π2ϱ2 − 3)r sinh(4πr) cos(4πτ)+

+ 4π cosh(2πr)
(︁
(14r2 + ϱ2) cos(2πτ) + r2 cos(6πτ)

)︁
− 2r sinh(2πr) cos(6πτ)+

+ 4(5π2ϱ2 − 3)r sinh(2πr)) cos(2πτ)− π(8r2 + ϱ2)(2 cos(4πτ) + 3)

)︄
·

·
(︂(︁

cosh(2πr)− cos(2πτ)
)︁4
ϕ2(x)

)︂−1
−

− iϱ2 σr(x)

64πr3

(︄
2πr

(︁
2πr cosh(6πr) + 8π2ϱ2 sinh3(2πr) + sinh(6πr)

)︁
sin(2πτ)−

− 4πr sinh(4πr)− 4π2r2 cosh(2πr)
(︁
6 sin(2πτ) + sin(6πτ)

)︁
+

+ 2πr sinh(2πr)
(︁
2 sin(4πτ) + sin(6πτ)

)︁
+ 16π2r2 sin(4πτ)

)︄
×

·
(︂(︁

cosh(2πr)− cos(2πτ)
)︁4
ϕ2(x)

)︂−1
+O(ετ ) , (3.2.35)
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with C± = { 1
12 ,−

1
24}, x⃗ · σ⃗ = r σr(x) and σr(x) = êr(x) · σ⃗ =

(︃
cos(θ) sin(θ)e−iφ

sin(θ)eiφ − cos(θ)

)︃
a

function of only the polar and azimuthal angles θ, φ of x⃗. Note: tr(σr) = 0 and (σr)2 = 1.
The first two (constant) diagonal terms in ∆±(x′, x) correspond to the periodic/anti-

periodic free field coincident propagator ∆±
0 (x

′, x) = ∆±(x′, x)|ϱ=0 = 1
4π2 ε2τ

+1C±. The
spacetime - dependent diagonal terms (third and fourth term) we write as 1∆±

diag, finite(x).
In the periodic case, this finite contribution due to the caloron centered at the ori-
gin x = 0 vanishes polynomially as ∆+

diag, finite
r→∞∝ − ϱ2

8r2
for large distances from the

caloron, while for the anti-periodic scalar of interest this term falls off exponentially as
∆−
diag, finite

r→∞∝ − ϱ2

2r2
e−2πr cos2(πτ). The off-diagonal part of the coincident propagator

(fifth and sixth term) contains an “ετ ↘ 0 - diverging” term and a finite one, which we
denote as iσr(x) ε−1

τ ∆off-diag, infinite(x) and iσr(x)∆off-diag, finite(x), respectively. They fall
off as ∆off-diag, infinite

r→∞∝ ϱ2

8πr2
and ∆off-diag, finite

r→∞∝ −πϱ2

2r e
−2πr sin(2πτ).

The fact that the anti- periodic propagator falls off exponentially at large separation,
but the periodic one does not, explains why it is possible to perform an m2 - expansion
in the anti- periodic but not the periodic case. For periodic boundary conditions, the
lowest Matsubara frequency is zero, and the logarithmic IR effects present in vacuum
become more severe, appearing as a linear divergence in the m2 - coefficient. We expect
the truem2 - dependency to be non - analytic∝ m, similar to what happens in the finite -m
expansion of the pressure [197].
Close to the caloron center, i.e., for r ↘ 0, the coincident propagator - terms scale

as: ∆+
diag, finite

r↘ 0
∝ − π2ϱ2(1+π2ϱ2)

2
(︁
2π2ϱ2+1−cos(2πτ)

)︁2 , ∆−
diag, finite

r↘ 0
∝ − π2ϱ2 cos2(πτ)

2
(︁
2π2ϱ2+1−cos(2πτ)

)︁2 for the
(anti-)periodic traceful terms and ∆off-diag, infinite

r↘ 0
∝ r

π2ϱ2
(︁
2+cos(2πτ)

)︁
csc2(πτ)

6
(︁
2π2ϱ2+1−cos(2πτ)

)︁ as well as

∆off-diag, finite
r↘ 0
∝ −r π

3ϱ2
(︁
12π2ϱ2+9−8 cos(2πτ)−cos(4πτ)

)︁
cot(πτ) csc2(πτ)

12
(︁
2π2ϱ2+1−cos(2πτ)

)︁2 for the traceless parts.

Using all the above abbreviations, we write the closed loop - propagator (3.2.35) as

∆±(x′, x) =
1

4π2 ε2τ
+ 1C± + 1∆±

diag, finite(r, τ) +
iσr(x)

ετ
∆off-diag, infinite(r, τ)+

+ iσr(x)∆off-diag, finite(r, τ) +O(ετ ) .
(3.2.36)
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3.2.3 Taylor Expansion

Now obtain the Taylor expansion as described in section 3.2.1, using the results from
section 3.2.2. According to the temporal point splitting employed above, we have to
include a temporal Wilson line. Using again A4

HS(x) = −
∂rϕ
ϕ

σr(x)
2 we find an expression

for this temporal line

ei
∫︁ τ+ετ
τ dτ A4

HS(x⃗,τ) = 1+ iA4
HS(x) ετ +

1

2

(︂
i∂τA

4
HS
⃓⃓
x
−
(︁
A4
HS(x)

)︁2)︂
ε2τ +O

(︁
ε3τ
)︁
=

= 1
(︂
1− 1

8

(︂ ∂rϕ
ϕ

⃓⃓⃓⃓
x

)︂2
ε2τ

)︂
− i σ

r(x)

2

(︂∂rϕ
ϕ

ετ +
∂τ∂rϕ

2ϕ
ε2τ −

∂τϕ∂rϕ

2ϕ2
ε2τ

)︂⃓⃓⃓⃓
x

.
(3.2.37)

We note the large and small distance behavior of the caloron field: A4
HS ∝

∂rϕ
ϕ

r→∞∝ −πϱ2

r2

and ∂rϕ
ϕ

r↘ 0
∝ −r 8π4ϱ2

(︁
2+cos(2πτ)

)︁
3
(︁
2π2ϱ2+1−cos(2πτ)

)︁(︁
1−cos(2πτ)

)︁ .
With this, the m2 - coefficient of γferm reads

− 2 lim
ετ↘ 0

∫︂ 1

d4x tr
(︃

1

4π2 ε2τ
+ 1C− − 1

32π2

(︂ ∂rϕ
ϕ

⃓⃓⃓⃓
x

)︂2
+ 1∆−

diag, finite(r, τ)+

+
1

2
∆off-diag, infinite(r, τ)

∂rϕ

ϕ

⃓⃓⃓⃓
x

−∆−
0 (x

′, x)

)︃
=

= −
∫︂ 1

0
dτ
∫︂ ∞

0
dr r2

(︃
− 1

2π

(︂ ∂rϕ
ϕ

⃓⃓⃓⃓
x

)︂2
+ 16π∆−

diag, finite(r, τ)+

+8π∆off-diag, infinite(r, τ)
∂rϕ

ϕ

⃓⃓⃓⃓
x

)︃
=

= −
∫︂ 1

0
dτ
∫︂ ∞

0
dr int−(ϱ, r, τ) = −2γsmalls, − (ϱ)

(3.2.38)

⇒ γferm = γferm|m= 0 − 2m2γsmalls, − (ϱ) +O(m4), (3.2.39)

with γferm|m= 0 given in (3.2.1). Due to the aforementioned large- and small - distance
behaviors of ∂rϕϕ , ∆

+
diag, finite and ∆

+
off-diag, infinite, the integral γ

small
s, − (ϱ) is finite and we can

calculate it numerically for different values of the parameter ϱ. In the periodic case, the
corresponding integral γsmalls, + is linearly divergent, as we discussed before. This is due to
∆+
diag, finite(r, τ) scaling as r

−2 for large distances.
The set ϱ ∈ {5 · 10−4 · 1.075 j |N ∋ j ≤ 30} ∪ {5 · 10−4 · 1.07530 · 1.12 k |N ∋ k ≤ 79}

of 110 ϱ - caloron sizes - with a minimal and maximal caloron size of ϱmin = 5 · 10−4 and
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ϱmax ≈ 33.8 - is chosen for the numerical integration of (3.2.38). Detailed information on
the numerical procedure is provided in appendix D.2 and the ancillary files:14

γsmalls, − (ϱ) =

⎧⎪⎨⎪⎩
− 0.500ϱ̃2 ln(0.946ϱ̃) : 0 ≤ ϱ ≤ 0.082

− 0.85ϱ1.80 + 0.59ϱ̃1.28 : 0.082 < ϱ ≤ 1.045

− 0.76ϱ2.00 : 1.045 < ϱ

, (3.2.40)

where, as explained in section 3.1.3, “x.00” again means the coefficient is numerically given
to two decimal places in comparison to “x” which is the coefficient set to the exact integer.
The ϱ - boundaries 0.082 and 1.045 again separate the regions of small, intermediate and
large caloron sizes. The fitting function (3.2.40) and our data as well as the fit’s relative
error are shown in figures 3.11a and 3.11b.
We gauge the validity of our expansion (3.2.39) with −2γsmalls, − as in (3.2.40) by modify-

ing the method proposed in [60]: we compare (3.2.40) with the expected terms of O(m4)
in the Taylor series:

m4

2

d2γferm
d2m2

⃓⃓⃓⃓
⃓
m=0

= m4 ·

⎧⎪⎨⎪⎩
c1ϱ̃

4 : 0 ≤ ϱ ≤ 0.1

c2ρ
4 + c3ϱ̃

4 : 0.1 < ϱ ≤ 1

c4ϱ
4 : 1 < ϱ

. (3.2.41)

The coefficients c1, c4 and c2+c3 are expected to be ofO(1) and we set them as c1 = c4 = 1
and c2 = 0.8, c3 = 0.2 (c2 and c3 are chosen as such for later convenience). The boundaries
0.1 and 1 are set to simplified versions of their counterparts in (3.2.40). We estimate the
upper limit of the Taylor expansion by determining the maximumm - valuemsmall, max, 1(ϱ)
such that the O(m4) - contribution (3.2.41) is at maximum about 2

3 of the O(m
2) - one

(this value of 23 is chosen in accordance with [60], where it is used as the maximum for the
m4 - instanton contribution). We obtain this maximumm - value for 750 caloron sizes given
by the sets ϱ ∈ {10−3(1− j

249) · 0.1
j

249 |N ∋ j ≤ 249}, ϱ ∈ {0.1021−
j

249 · 1
j

249 |N ∋ j ≤ 249}
and ϱ ∈ {1.0091−

j
249 · 50

j
249 |N ∋ j ≤ 249} with minimal and maximal caloron sizes 0.001

and 50; the coefficients c2 and c3 were chosen by hand such that jumps in themsmall, max, 1 -
values are minimized as well as possible. We obtain the conservative, simplified fit for
msmall, max, 1:

14To improve the interpolation function we added the apparent point (ϱ,−2γsmalls,− ) = (0, 0) to the interpolation
data set only. It turns out that this point is also covered by the resulting interpolation function.
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(a). m2 - coefficient −2γsmall
s, − of the fermionic determinant ratio (3.2.39). Our data and the bound-

aries of (3.2.40) are shown in orange on the left and the right figure shows the data points in
blue together with fitting function in orange.
Despite the deceiving similarity to a simple quadratic function, even close to ϱ = 0, such
an ansatz becomes an arbitrarily bad fit to the data as ϱ → 0. γsmall

s, − is is non - analytical
at ϱ = 0, just as the small mass expansion at T = 0 given in [60], which contains the term
(Mρ)2 ln(Mρ), is non - analytical at ρ = 0. This is shown explicitly below in figure 3.11c.
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small caloron sizes, this fit becomes arbitrarily bad as ϱ↘ 0.

Figure 3.11
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msmall, max, 1(ϱ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√︃
−5

8
ln(ϱ̃)ϱ̃−2 : 0 < ϱ ≤ 0.07

0.35ϱ̃−1.38 + 5.3ϱ−0.17 − 5.3 : 0.07 < ϱ ≤ 1.00

ϱ−1 : 1.00 < ϱ

. (3.2.42)

Additionally, this small mass Taylor expansion requires M to be small compared to T ,
which gives a second upper bound m ≤ msmall, max, 2 = δ, where we chose δ = 0.5. All
in all, the full maximum mass which limits the “small mass regime” and thus the Taylor
expansion’s applicability is

msmall, max(ϱ) = min
(︁
msmall, max, 1(ϱ), msmall, max, 2

)︁
. (3.2.43)

Our small mass result (3.2.39) together with (3.2.40), the finite T - corrections atM = 0
(2.4.77) and the estimate for the minimal mass (3.2.43) gives the small m - correction
factor f according to (2.4.83) - compare also the T = 0 result (2.4.78):

fsmall(m ≤ msmall, max(ϱ), ϱ) = f (T, 0) e−γferm = exp

(︃
−(πϱ)2

3
+ 2A(πϱ)− 2m2γsmalls, - (ϱ)

)︃
.

(3.2.44)

3.3 Interpolation between Mass Regimes and Topological
Susceptibility

Having performed the large and small mass - expansions, we can now insert the cor-
responding correction factors (3.1.41) and (3.2.44) into the general correction factor
(2.4.83), which we define in terms of an exponent p(mfh , ϱ):

f (mfh , ϱ) = e−2α( 1
2)−p(mfh ,ϱ) = e−2α( 1

2)

{︄
e2α(

1
2) fsmall : mfh ≤ msmall, max(ϱ)

e2α(
1
2) f large : mfh ≥ mlarge, min(ϱ)

}︄
=

= e−2α( 1
2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︃
2α

(︃
1

2

)︃
− (πϱ)2

3
+ 2A(πϱ)− 2m2

fh
γsmalls, − (ϱ)

)︃
: mfh ≤ msmall, max(ϱ)

1

(mfhϱ)
1
3

exp

(︄
−2γ6(ϱ)

m2
fh

− 2γ8(ϱ)

m4
fh

− 2γ10(ϱ)

m6
fh

)︄
: mfh ≥ mlarge, min(ϱ)

(3.3.1)
We use the function p(mfh , ϱ) to interpolate between the regimes of small and large

masses, i.e., we demand it produce the correct form in these limits. For that, we make the
“Padé - like” approximant ansatz
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p(m, ϱ) =
∑︁K

i= 0 pi(ϱ)m2i∏︁K+1
j = 1

(︁
1 + Pj(ϱ)m2

)︁ + 1

6
ln
(︁
m2ϱ2 + ξ2(ϱ)

)︁
, Pj > 0∀j, ϱ . (3.3.2)

Form≪ 1 this ansatz approaches anm - independent function of ϱwithO(m2) - corrections
and for m ≫ 1 the logarithm correctly reproduces the corresponding term in (3.3.1),
while the rational part falls off as m−2. (3.3.2) contains 2K + 3 ϱ - dependent coefficient
functions p0(ϱ), ..., pK(ϱ),P1(ϱ), ...,PK+1(ϱ) and ξ(ϱ), which we fix in terms of the five
functions available in (3.3.1): −2α

(︁
1
2

)︁
+ (πϱ)2

3 − 2A(πϱ), γsmalls, − and γ6, γ8, γ10. This
means we have to set K = 1. In order to fix the coefficient functions, we perform a Taylor
expansion of (3.3.2) up to O(m2) for small masses as well as a Laurent expansion up to
O(m−6) for large masses and identify these expansions with the corresponding ones in
(3.3.1) by equating the ϱ - dependent coefficients. This yields a non - linear, but solvable
system of equations.
It is important to note that one cannot write an ansatz of the structure (3.3.2) with an

even number of coefficients. Therefore, if one has a largem - expansion up to, for example,
γ12(ϱ)
m8 , one cannot extend the general p - expansion up to higher K > 1, but is limited to
solving an over - determined system of equations for the five p - coefficient functions.
With p we can then describe the full caloron density (2.4.76), using (2.4.75) and the

factor f (Nfl , N, ϱ) (2.4.77) due to light quarks and the gauge and ghost sector. For, in
general, Nfl light and Nfh heavy fermions, Nfl +Nfh = Nf , in SU(N) - gauge theory we
have:

d (mfl ,mfh , ϱ, λ) =
2e−α(1)+4α( 1

2)+ln 2−N(2α( 1
2)+2 ln 2)+2Nflα(

1
2)

π2(N − 1)!(N − 2)!

(︃
lnλ(11N − 2Nf )

3

)︃2N
×

× e
− 8π2

g2(Nf ,N,1/ϱ)

∏︁
f mfϱ

ϱ5
f (Nfl , N, ϱ)

∏︂
fh

e−p(mfh ,ϱ)

(3.3.3)
with g(1/ϱ) given in (1.1.2) and with the replacement of g−4N by only the λ - dependent
part as discussed below (2.4.74).
With K = 1 in (3.3.2) our ansatz reads

p
(︁
mfh , ϱ

)︁
=

p0(ϱ) + p1(ϱ)m
2
fh(︂

1 + P1(ϱ)m2
fh

)︂(︂
1 + P2(ϱ)m2

fh

)︂ +
1

6
ln
(︁
m2
fh
ϱ2 + ξ2(ϱ)

)︁
, P1,2 > 0∀ϱ.

(3.3.4)
Performing the Taylor and Laurent expansions of (3.3.4) for small and large mfh , respec-
tively, and equating them to the respective expansions in (3.3.1) we find:
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small mfh :

p0 +
1

3
ln(ξ) +

(︃
p1 − p0P1 − p0P2 +

ϱ2

6ξ2

)︃
m2
fh

!
= −2α

(︃
1

2

)︃
+

(πϱ)2

3
− 2A− 2m2

fh
γsmalls, − ,

(3.3.5)
large mfh :

1

3
ln(mfhϱ) +

6p1ϱ
2 + P1P2ξ

2

6P1P2m2
fh
ϱ2

+
12p0P1P2ϱ

4 − 12p1P1ϱ
4 − 12p1P2ϱ

4 − P 2
1 P 2

2 ξ
4

12P 2
1 P 2

2 m
4
fh
ϱ4

−

−
18p0P 2

1 P2ϱ
6 + 18p0P1P 2

2 ϱ
6 − 18p1P 2

1 ϱ
6 − 18p1P1P2ϱ

6 − 18p1P 2
2 ϱ

6 − P 3
1 P 3

2 ξ
6

18P 3
1 P 3

2 m
6
fh
ϱ6

!
=

!
=

1

3
ln(mfhϱ) +

2γ6
m2
fh

+
2γ8
m4
fh

+
2γ10
m6
fh

.

(3.3.6)

Using the m2 -, m−2 -, m−4 - and m−6 - coefficient, we analytically solve for p0

(︁
ϱ, ξ(ϱ)

)︁
,

p1

(︁
ϱ, ξ(ϱ)

)︁
, P1

(︁
ϱ, ξ(ϱ)

)︁
and P2

(︁
ϱ, ξ(ϱ)

)︁
and finally, using the O(m0) - terms, obtain ξ(ϱ)

numerically. We find the following analytical results:

p0

(︁
ϱ, ξ(ϱ)

)︁
=

√
2

12
(︁
− 18γ10ϱ6 + ξ6

)︁ (︃ 3√
2

(︁
6γ6ϱ

2 − ξ2
)︁(︁
12γ8ϱ

4 + ξ4
)︁
+

1

ξϱ

√︂
q1(ϱ, ξ) ×

×
√︂
−6γsmalls, −

(︁
ξ8 − 18γ10ξ2ϱ6

)︁
− 2ξ6ϱ2 + 18γ6ξ4ϱ4 − 54γ26ξ

2ϱ6 + 9γ10ϱ8
)︃
,

(3.3.7)

p1

(︁
ϱ, ξ(ϱ)

)︁
=

6γ6ϱ
2 − ξ2

3

(︃
q5(ϱ,ξ)

q1 −
√

3q3(ϱ,ξ)
(︁
12γ8ϱ4+ξ4

)︁
|q1|

)︃ (︄q2(ϱ, ξ)
q1

−
ϱ2
√︁
3q3

|q1|

)︄
×

×

(︄
q4(ϱ, ξ)

q1
+

√︁
3q3
(︁
6γ6ϱ

2 − ξ2
)︁

|q1|

)︄
,

(3.3.8)

P1

(︁
ϱ, ξ(ϱ)

)︁
=

q2
q1
−
ϱ2
√︁
3q3

|q1|
, (3.3.9)

P2

(︁
ϱ, ξ(ϱ)

)︁
=

2ϱ2

q5
q1 −

√
3q3
(︁
12γ8ϱ4+ξ4

)︁
|q1|

(︄
q4
q1

+

√︁
3q3
(︁
6γ6ϱ

2 − ξ2
)︁

|q1|

)︄
(3.3.10)
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with

q1(ϱ, ξ) = ξ8 − 24γ6ξ
6ϱ2 − 72γ8ξ

4ϱ4 − 72γ10ξ
2ϱ6 − 432

(︁
γ28 − γ6γ10

)︁
ϱ8 , (3.3.11)

q2(ϱ, ξ) = 3
(︁
−
(︁
1 + 4p2

0

)︁
ξ6ϱ2 + γ6ξ

4ϱ4 − 12γ8ξ
2ϱ6 + 72(γ6γ8 + γ10p0)ϱ

8
)︁
, (3.3.12)

q3(ϱ, ξ) =
(︁
7 + 36p0 + 48p2

0

)︁
ξ12 − 36γ6(5 + 12p0)ξ

10ϱ2 + 108
(︁
13γ26 − 2γ8 − 4γ8p0

)︁
ξ8ϱ4−

− 144
(︂
24γ36 − 18γ6γ8(1− 2p0) + γ10

(︁
2 + 9p0 + 12p2

0

)︁)︂
ξ6ϱ6−

− 1296
(︁
6γ26γ8 − 2γ6γ10(2 + 3p0) + γ28(1 + 12p0)

)︁
ξ4ϱ8+

+ 15552
(︁
γ6γ

2
8 − 2γ26γ10 − γ8γ10p0

)︁
ξ2ϱ10−

− 15552
(︂
3γ26γ

2
8 − 4γ36γ10 − 6γ6γ8γ10p0 + p0

(︁
4γ28 − γ210p0

)︁)︂
ϱ12 ,

(3.3.13)

q4(ϱ, ξ) = − 3
(︂
(1 + 2p0)ξ

8 − 12γ6(1− 2p0)ξ
6ϱ2 + 12

(︁
3γ26 + γ8 + 12γ8p0

)︁
ξ4ϱ4−

− 72(2γ6γ8 − γ10p0)ξ
2ϱ6 + 432

(︁
γ26γ8 + 2γ28p0 − γ6γ10p0

)︁
ϱ8
)︂
,

(3.3.14)
q5(ϱ, ξ) = − (5 + 12p0)ξ

10 + 78γ6ξ
8ϱ2 − 72

(︁
4γ26 − γ8(1− 2p0)

)︁
ξ6ϱ4−

− 72
(︁
6γ6γ8 − γ10(2 + 3p0)

)︁
ξ4ϱ6 + 432

(︁
γ28 − 4γ6γ10

)︁
ξ2ϱ8−

− 2592
(︁
γ6γ

2
8 − 2γ26γ10 − γ8γ10p0

)︁
ϱ10

(3.3.15)

and the numerical results for ξ as shown in figure 3.12a. The full set of 750 ϱ - values for
which we obtained ξ is the same as the one used to determine (3.2.42). In figure 3.12b
we also show the parameters P1 and P2 and verify that they are indeed positive - definite
functions as demanded in (3.3.4).
Finally, in figures 3.13 and 3.14 we present the full result of the “Padé - like” interpolation

and the agreement with the small and large mass results given in (3.3.1).
Having determined p(mfh , ϱ), we can obtain the caloron density d as given in (3.3.3)

for the case of N = 3, Nfl = 4 and Nfh = 1 (i.e., the light quarks are the u-, d-, s- and c -
quark and the heavy quark is the b - quark). To depict d , we normalize it by the maximum
density of the asymptotic case mb → ∞, which cancels any renormalization scale (λ)
dependency. Here it is important to make sure that the caloron densities we compare
describe theories which agree in the accessible IR limit, as we briefly stated in section 1.3.
This means we have to ensure that both theories yield equal Nfl - flavor effective theories
in the IR. In order to do this, we define the running coupling constant (1.1.2) for the
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(a). Numerical values for the parameter ξ(ϱ) of the “Padé - like” approximation (3.3.4), shown for
the physically relevant caloron sizes ϱ (left) and for the full set of ϱ - values (right).
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(b). The parameters P1(ϱ) and P2(ϱ) of (3.3.4), shown for the full set of ϱ - values; the parameters
are positive - definite functions as demanded.

Figure 3.12: The parameters ξ(ϱ), P1(ϱ) and P2(ϱ) or the “Padé - like” interpolation (3.3.4).
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Figure 3.13: The negative caloron density logarithm corresponding to the heavy quark
− ln

(︁
d (m, ϱ)

)︁
⊃ − ln

(︁
mϱe2α(

1
2)f (m, ϱ)

)︁
(cf. (3.3.3) with (3.3.1); mfh = m

for short.
The “Padé - like” interpolation function − ln(mϱ) + p(m, ϱ) ((3.3.4) with
coefficients (3.3.7) - (3.3.10) together with (3.3.11) - (3.3.15) as well as
figure 3.12a) is shown in blue. The small- and large -mass exponents
− ln(mϱ) − 2α

(︁
1
2

)︁
− ln

(︁
fsmall, large

)︁
given in (3.3.1) are depicted as green

and orange grids, respectively.
For large and small masses the interpolation agrees well with the numerical
results for these regimes, in between it provides a reasonable analytical
interpolation. This is shown in for several ϱ - values in figure 3.14.
As we can see here and in figures 3.14f - 3.14i, the choice δ = 0.5 for
msmall, max, 2 in (3.2.43) is actually too large for large ϱ, but this does not
effect our interpolation.

144



theory containing asymptotically heavy quarks by

8π2

g2asy(Nf , N, 1/ϱ, λ)
=

8π2

g2phys(Nf , N, 1/ϱ, λ)⏞ ⏟⏟ ⏞
− 1

3
ln(λϱ)(11N−3Nf )

+
2

3

∑︂
fh

ln

(︃
mfh, asy

mfh

)︃
. (3.3.16)

This is illustrated and described in figure 3.15. In figure 3.16 we now show the normal-
ized caloron density. These results also verify the small constituent - approximation, as
introduced in the section 2.4.4, for finite T and with heavy quarks.
Using the full caloron density (3.3.3), we can employ (2.4.85) to obtain the partition

function in the DGA and then use (2.4.87) to find the resulting topological susceptibility
given purely in terms of the (integrated) caloron density χtop = 2D(T,mfl ,mfh , λ). We are
interested in the effects of a physically heavy b - compared to a system of four light quarks (u,
d, c, s) together with an asymptotically heavy fifth quark (i.e., with the modified coupling
(3.3.16)), which is well - understood due to lattice QCD; all with a background of dilute
SU(3) - calorons. For that purpose, we consider the ratio of topological susceptibilities:

κ(mfh , Nfl , Nfh , N) =
χtop

(︁
N,mfl ,mfh , gphys

)︁
χtop

(︁
N,mfl ,mfh, asy , gasy

)︁ =

=

∫︂ ∞

0
dϱ ϱ

11N+Nf
3

−5 f (Nfl , N, ϱ)
∏︁
fh

3
√︁
mfh e

−p(mfh ,ϱ)∫︂ ∞

0
dϱ ϱ

11N+Nfl
3

−5 f (Nfl , N, ϱ)

(3.3.17)

with f (Nfl , N, ϱ) (2.4.77) the factor due to the light quarks, gluons and gauge ghosts.
We calculate (3.3.17) for the physical case κ(mb, 4, 1, 3) and 160 bottom quark -masses

given by mb ∈ {0.1 · 10
j
49 |N ∋ j ≤ 49}, mb ∈ {1.0481−

j
49 · 2

j
49 |N ∋ j ≤ 49} and

mb ∈ {2.0271−
j
49 · 10

j
49 |N ∋ j ≤ 49}, together with the large and small outliers

mb ∈ {0.01, 0.025, 0.05, 12, 14, 16, 18, 20, 22.5, 25}. This is our main result shown
in figure 3.17. We see that for the temperature range of main interest for axion physics,
400MeV ≲ T ≲ 1.1GeV (the temperature most important for the cosmological history
of axions, see [55] and the discussion in the introduction 1.2), and thus the mass range
4 ≲ mb ≲ 11, the difference between the physically heavy b and its asymptotically heavy
counterpart used in lattice QCD is ≲ 5%, i.e., κ ≳ 0.95. Only for high temperatures
mb ≲ 2 do we see κ ≲ 0.9 and an appreciable (≳ 10%) difference between the topological
susceptibilities of finite temperature 2 + 1 + 1 + 1 theory (including a dynamical b quark)
and the 2 + 1 + 1 case of lattice QCD.
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Figure 3.14: The caloron density term − ln
(︁
mϱe2α(

1
2)f (m, ϱ)

)︁
(cf. (3.3.3) and (3.3.1))

shown in figure 3.13 presented for several caloron sizes.
The agreement of the small -mass ( ) and large -mass ( ) results
with the Padé approximation ( ) and the latter’s interpolation between the
mass regimes is shown for several caloron sizes in the physically interesting
region 0.1 ≲ ϱ ≲ 1 as well as for a vanishingly small caloron ϱ = 0.001 and
some “unphysically large” calorons ϱ = 1.25, ϱ = 1.5 and ϱ = 10.
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Figure 3.15: The running coupling g−2(λ) for a theory with four light and a heavy b quark.
At large energy scales ≫ mb one has a 5 - flavor running ( ) which switches
to 4 - flavor running at the energy scalemb ( ). For a theory with an asymp-
totically heavy b quark, the switch occurs at the UV scale mb, asy ( ) and
the two theories disagree in the IR, with the asymptotic b - theory failing to
describe known 4 - flavor QCD/IR theory.
In order to compare the mb - and mb, asy - theory with matching IR physics,
we modify the coupling gasy and describe it in terms of the coupling gphys
(3.3.16) for scales > mb ( ). Overall, gasy is thus given by ( ). This is
arbitrarily off compared to the physical description in the UV (which is, how-
ever, inaccessible to reasonable physical description anyway), but agrees
in the IR and thus corresponds better to what happens in a 2 + 1 + 1 - flavor
lattice calculation.
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Figure 3.16: The caloron density d (Nfl = 4, N = 3,mb, ϱ, λ) (3.3.3) with the correction
factor e−2α( 1

2)−p(m,ϱ) (3.3.1). We normalize it by the maximum density of
4 - flavor theory, represented by dmax(mb →∞, gasy) with gasy as in (3.3.16),
which is located at ϱ ≈ 0.3428. This value is marked by the dashed line.
We see a decline of the maximum caloron density with decreasingmb and
a slight shift of the density peak: for finite mb ⪆ 1.073 the peak moves to
higher ϱ - values asmb decreases and then progresses back down to smaller
sizes (formb ≈ 0.569 the peak is again located at ϱ ≈ 0.3428).

149



0.01 0.10 100 101

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

mb

0 1 2 3 4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

mb

Figure 3.17: The ratio of topological susceptibilities κ(mb, 4, 1, 3) (3.3.17) comparing a
theory with a four light and a physical b quark in SU(3) gauge theory to lattice
QCD, where the b quark is asymptotically heavy. Due to the modification of
the running coupling (3.3.16), κ depends only on the physical quark massmb.
The interesting mass range 3 ≲ mb ≲ 12, chosen to be slightly wider than
the physically relevant temperature range 400MeV ≲ T ≲ 1.1GeV - given a
dimensionful b -massmb ≈ 4.2MeV [2] -, is marked marked in purple.
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A. Partial Differential Equation

In order to solve the full problem of the topological susceptibility’s quark mass dependency
at finite temperatures, one has to compute the determinant ratio det(−D2

−+m2
f ) det(−∂2−+λ2)

det(−D2
−+λ2) det(−∂2−+m2

f )

(cf. (2.4.65) with dimensionless coordinates (3.1.1), masses, etc.), i.e., one has to solve
the eigenvalue problem

(−D2
− +m2)ψn = λnψn (A.1)

given in terms of coupled ordinary and partial differential equations (ODEs and PDEs).
We derive these differential equations in the following.
Following [54], the spacetime R3 × S1

rad.= 1/2π
can be separated into three regions

as depicted in figure A.1: the “instanton region” I with |(x⃗, τ)| =
√
r2 + τ2 ≪ 1, the

“asymptotic region” III with r =
√
x⃗ 2 ≫ 1, and the “transition region” II in between.

Figure A.1: The three spacetime regions important for solving (A.1). As in figure 3.3,
the caloron is shown as a graded gray sphere. In the “instanton region” I
the caloron resembles a 4 - dimensional radially symmetric instanton; in the
“asymptotic region” III the caloron is reduced to a 3 - dimensional, radially
symmetric object. The topology of R3 × S1

rad.= 1/2π
with its distinct, bounded

time direction and open space directions and the resulting broken down sym-
metry group (cf. the discussion in section 2.2.4) are relevant in the asymptotic
region III as well as the “transition region” II.

In the instanton region I the caloron AaµHS = −η aµν∂ν ln(ϕ) (2.4.37) resembles an in-
stanton of modified size ϱ̃ (cf. (2.4.39) and (2.4.40)). The behavior of individual solutions
to (A.1) in this region is the same as for an instanton. This determines the small - radius
boundary conditions for the solutions in the transition region.
In the asymptotic region III we can expand ϕ r≫ 1→ 1 + πϱ2

r + π2ϱ2O(re−πr). This
obeys 3 - dimensional radial symmetry and the resulting asymptotic caloron components
read Aa 4HS

r≫ 1→ 1
1+ r

πϱ2

xa

r2
= aIIIϱ (r)x

a

r2
and Aa iHS

r≫ 1→ aIIIϱ (r) εaij x
j

r2
; the caloron is static in τ .

We can thus exploit this radial symmetry by adapting the approach developed in [141]:
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we use the regular angular momentum operators La = −i εaijxi∂j and define the isospin
operators T a = σa

2 as well as the “spin + isospin” operators J
a = La + T a. This means

that L2 has eigenvalues l(l + 1), l ∈ N ∪ N + 1
2 , T 2 has the eigenvalue 3

4 , and J
2 has

eigenvalues j(j + 1), j = |l ± 1
2 |. Using this, we find the −D

2
− - operator in region III:

−D2
− = −∂2r −

2

r
∂r +

L2

r2
+ 2aIIIϱ (r)

L⃗ · T⃗
r2

+

(︁
aIIIϱ (r)

)︁2
r2

T 2 − ∂2τ +
2iaIIϱ (r)

r
êr · T⃗ ∂τ =

= −∂2r −
2

r
∂r +

l(l + 1)

r2
+ aIIIϱ

(j − l)(j + l + 1)

r2
− 3

4

(︁
aIIIϱ
)︁2

rπϱ2
− ∂2τ +

2iaIIIϱ
r

êr · T⃗ ∂τ ,

(A.2)
where we used a separation ansatz for the eigenfunction ψn, l, j(x) = χl, j(θ, φ)Ψn, l, j(r, τ)

with χl, j a function and ˜︁Ψn, l, j a 2 - spinor. Furthermore, in the asymptotic limit r ≫ 1
with τ - independent calorons any ψn can be expanded in terms of fermionic Matsubara fre-
quencies pfermα ∈ Z = 2π

(︁
α+ 1

2

)︁
, i.e., ψn, l, j(x) = χl, j(θ, φ)

∑︁
α ∈ Z

˜︁Ψn, l, j, α(r, p
f
α)e

−ipfατ . This
gives us the −D2

− - operator as it acts on ˜︁Ψn, l, j, α:

−D2
− = −∂2r −

2

r
∂r +

l(l + 1)

r2
+ aIIIϱ

(j − l)(j + l + 1)

r2
+

3

4

(︁
aIIIϱ
)︁2

rπϱ2
− (pfα)

2 +
2aIIIϱ p

f
α

r
êr · T⃗ .

(A.3)
Note that (A.3) gives a coupled system of two ODEs due to the isospin operators T a

(alternatively: êr · T⃗ = σr

2 ). Together with (A.1) this is the eigenvalue problem in the
asymptotic region which gives the boundary conditions for the transition region solutions.
For the transition region II we again introduce La and T a together with the separation

ansatz ψn, l, j(x) = χl, j(θ, φ)Ψn, l, j(r, τ). Additionally, we define the function Φ = ϕ(r,τ)
r ,

so that Aa 4HS = −
(︁
1 + r ∂rΦΦ

)︁
xa

r2
= −aIIϱ (r, τ)x

a

r2
and Aa iHS = −aIIϱ (r, τ) εaij

xj

r2
+ δai ∂τΦΦ . We

thus find the differential operator acting on Ψn, l, j:

−D2
− = − ∂2r −

2

r
∂r +

L2

r2
+ 2aIIϱ (r, τ)

L⃗ · T⃗
r2

+ i ∂r
∂τΦ

Φ
êr · T⃗ − i ∂τ

∂rΦ

Φ
+

+

(︁
aIIϱ (r, τ)

)︁2
r2

T 2 +

(︃
∂τΦ

Φ

)︃2

T 2 − ∂2τ −
2iaIIϱ (r, τ)

r2
êr · T⃗ ∂τ =

(A.4)

= − ∂2r −
2

r
∂r +

l(l + 1)

r2
+ aIIϱ

(j − l))(j + l + 1)

r2
+ i ∂r

∂τΦ

Φ
êr · T⃗ −

− i ∂τ
∂rΦ

Φ
+

3

4

aIIϱ
r

∂rΦ

Φ
+

3

4

(︃
∂τΦ

Φ

)︃2

− ∂2τ −
2iaIIϱ
r2

êr · T⃗ ∂τ .

(A.5)

Since Ψn, l, j cannot be expanded in terms of Matsubara frequencies in this region, the
transition region - eigenvalue problem given by (A.5) and (A.1) is posed in terms of a
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2 - dimensional, coupled system of PDEs.15 These are to be matched at small and large√
r2 + τ2 to the asymptotic forms in the other two regions.

B. Heat Kernel Coefficient a10

The heat kernel coefficient a10 for our case reads [183] (with the barred notation used
just as described in section 3.1.2, especially as used in (3.1.4) and (3.1.6)):

a10 =
1

120

(︃
1

9
GκλGλµGκρ;νGρµ;ν − i

18
GκλGνρ;λµGρν;µκ − 1

189
GκλGλµGνρ;κGρν;µ+

+
1

252
Gνρ;κλµGρν;µλκ +

1

378
GκλGνρ;λµGµκGρν − 2i

21
Gλµ;κGµρ;κνGρλ;ν+

+
2

63
GκλGνρ;µGλκGρν;µ +

2i

945
GκλGλνGµνGνρGρκ − 4i

63
GκλGλρ;µνGρκ;νµ−

− 5

63
GκλGλµGµρ;νGρκ;ν +

5

63
GκλGλν;µGκρGρν;µ +

5

63
GκλGνρ;µGρλGνκ;µ−

− 5i

126
Gλµ;κGνρ;µκGρν;λ − 5i

126
Gλµ;κGνρ;µGρν;λκ +

8i

63
GκλGλµGκνGµρGρν−

− 8

189
GκλGµν;λGκρ;νGρµ − 10

189
GκλGµν;λGνρGµκ;ρ − 10

189
GκλGλν;µGµρGρν;κ+

+
11

189
GκλGλκ;µGνρGρν;µ +

11

189
GκλGνρ;µGρνGλκ;µ − 11

378
GκλGλµGνρ;µκGρν+

+
13

252
GκλGλκGνρ;µGρν;µ − 16

63
GκλGµν;λGνρGρµ;κ − 16

189
GκλGλµGνρGρν;µκ−

− 16i

945
GκλGµνGλρGνκGρµ − 19

756
GκλGµν;λGκρGνµ;ρ − 19

756
GκλGνρ;µGµλGρν;κ−

− 22i

189
GκλGλµGκνGνρGρµ +

25

189
GκλGλν;µGκρ;µGρν − 26

189
GκλGλν;µGµκ;ρGρν−

− 31i

378
GκλGλνGνρGµκGρν − 34

189
GκλGµν;λGνκ;ρGρµ − 41

378
GκλGλµGνρ;µGρν;κ−

− 53i

378
GκλGλκGµνGνρGρµ +

61

756
GκλGλκ;µGνρ;µGρν +

61

756
GκλGµνGλκ;ρGνµ;ρ

)︃
.

(B.1)
15If one aims to solve this eigenvalue problem, one could expand Φ(r, τ) in terms of radial and temporal
variables u, v given by r = 1 + u and τ = 1 − v, respectively. This simplifies the coefficient functions
in (A.5) to rational functions of u and v, thus possibly simplifying calculations, reducing numerical
cost and/or making possible the application of certain theorems from the theory or partial differential
equations.
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C. Alternative Small -Mass Expansion

In order to obtain a small m - expansion which is sensitive to possible non - analytical
contributions, we propose an alternative procedure following [60] and using techniques
from [154]: we propose to calculate

γferm = γferm|m= 0 − 2

∫︂ m2

0
d˜︁m2 dγs, −(˜︁m2)

d˜︁m2
− ln

(︂m
λ

)︂
, (C.1)

with the integration only up until small m2 ≪ 1.
The m2 - derivative of γs, −(m2) cannot be performed straight - forwardly. This can

be seen by employing the Schwinger proper time - representation (3.1.2) for the Pauli
Villars - regularized log - caloron density and neglecting the λ - dependent regulator terms
γs, − = −

∫︁∞
0
ds
s e

−m2s
∫︁ 1d4x tr ⟨x|

(︁
e−(−D2

−)s − e−(−∂2−)s)|x⟩+ “reg. terms”. Treating γs, −
as a function γs, −(m2) and noting that divergences appear at the lower integral boundary,
i.e., as s↘ 0 where the heat kernel expansion (3.1.10) applies, one has two sources of
divergence: the j = 0modes at k = 0 and k = 2 (cf. (3.1.18.b)). The first has its divergent
contribution canceled by the free terms before the m2 - derivative is performed, but the
later divergence remains, as it is only canceled by the regulator terms (cf. the order - by -
order discussion of the heat kernel expansion in section 3.1.3). This remaining divergence
results in the divergence of the integrand e−m2s s−1tr(⟨xs|x⟩− − ⟨xs|x⟩−0 ) diverging as
s ↘ 0 and, according to Leibniz’ integral rule, differentiation and integration do not
commute for a discontinuous integrand. Thus, an integration cut - off εs ≪ 1 has to
be introduced as in (3.1.18.b) so that the m2 - derivative can be performed inside the
s - integral [154]:16(︃

dγs, −(m2)

dm2

)︃
εs - reg.

= lim
εs↘ 0

∫︂ ∞

εs

ds e−m2s

∫︂ 1

d4x tr
(︁
⟨xs |x⟩− − ⟨(xs |x⟩−0

)︁
. (C.2)

The cut - off can be understood as subtracting the divergent terms at s ↘ 0 to yield an
overall finite result. This is an alternative regularization compared to the point splitting
procedure employed for the Taylor expansion.
For practical reasons, one however aims to replace this cut - off regularization and use

point splitting again. This is because one is then allowed to perform the limit εs ↘ 0 and
rewrite the above expression in terms of Euclidean time propagators as discussed below
(3.1.2). There we discussed how the anti-periodic proper time -Green’s functions (or
16The limit εs ↘ 0 must not be performed, even though, using the heat kernel expansion for small s, it turns
out the result would be finite, as this would correspond to having taken the m2 - derivative without the
regulator.
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heat kernels) ⟨xs | y⟩−(0) produce the ordinary anti-periodic Euclidean time - propagators
via s - integration: ∆−(x, y,m2) = ⟨x| 1

−D2
−+m2 |y⟩ =

∫︁∞
0 ds ⟨xs | y⟩

− e−m
2s (analogously

for ∆−
0 (x, y,m

2)). The m2 - differentiated log - caloron density can thus be understood as
given in terms of εs - regularized propagators. Exchanging the cut - off regularization with
the point splitting requires one to subtract additional terms (not just the diverging terms
required for overall finiteness) which appear due to this exchange of limits. These terms
vanish initially (i.e., before the exchange of the two regularizations) as the point splitting
is sent to vanish inside the εs - regularized s - integral (C.2), but become finite after the
exchange.
Now we determine these additional terms due to introducing a temporal point splitting

x′ = x+ ετ ê4, ετ ↘ 0 in (C.2), exchanging it with the εs - regularization and eventually
taking the limit εs↘ 0 in the s - integral. We start by introducing the point splitting:(︃
dγs, −(m2)

dm2

)︃
reg.

= lim
εs↘ 0

lim
ετ↘ 0

∫︂ ∞

εs

ds e−m2s

∫︂ 1

d4x tr
(︁ ⟨︁
x′s
⃓⃓
x
⟩︁− − ⟨︁(x′s ⃓⃓x⟩︁−

0

)︁
. (C.3)

Now we exchange the limits and identify the diverging s - integrals for taking ετ ↘ 0
after εs↘ 0. Since these divergences appear at s = 0, we can analyze them using a heat
kernel expansion (cf. (3.1.7)) with non - coincident, finite temperature Seeley - DeWitt

coefficients coefficients ⟨x′s |x⟩±
s↘ 0∼= e−

ε2τ
4s
∑︁

k ∈ Z ∪ Z+ 1
2

sk−2

(4π)2
a2k(x

′, x).17 Performing the

s - integrals
∫︁∞
0 ds e

−m2s− ε2τ
4s sk−2 using (3.1.18) with k → k+1 (due to them2 - derivative

in (C.2) and (C.3) adding a factor of s compared to (3.1.2)), one finds divergences as
ετ ↘ 0 for k ∈ {0, 12 , 1}. However, the a2k(x

′, x) = a2k(ετ , x) reproduce the a2k(x) as
ετ ↘ 0, i.e., they contain terms which vanish in this limit and thus potentially cancel the
s - integral divergences. This is the source of the additional terms one has to subtract. For
a more detailed analysis, the general a2k(ετ , x) would be required, which are unavailable,
unfortunately. Nevertheless, we can analyze the general structure of the non - coincident
heat kernel coefficients and simplify them in case of temporal point splitting. In fact, it
turns out that the available parts of the non - coincident heat kernel coefficients are exactly
those which we find to be required.
In general, the a2k(x, y) are can be expanded in (x − y), such that the are given by

the known a2k(y) and additional terms of order O(|x− y|) and higher. This means that
coefficients a2k which vanish in the coincident limit can be non - zero in general. At T = 0,

17Actually, for the differentiated log - caloron density the traced integral - heat kernel coefficients b2k are
required, which is discussed in the following.
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the first three of these expansions are given in [154]:

a0(x, y) = 1+ i(x− y)µAµBPST(y)+

+
i

4
(x− y)µ(x− y)ν

(︁
∂
(µ
H A

ν)
BPST + iA

(µ
BPSTA

ν)
BPST

)︁
|y +O(|x− y|3) ,

(C.4)

a1(x, y) = 0 , a2(x, y) = −
i

6
(x− y)µ[Dν , Gµν ]|y +O(|x− y|2) , (C.5)

where (anti-)symmetrization over N indices is defined without the factor 1/N !. Notice
that a0(x, y) = P exp

(︂
i
∫︁ x
y dz

µAµHS(z)
)︂
is given by a Wilson line from y to x (cf. (2.1.28)

and above (3.2.1)) and that a2(x, y) = O(|x− y|2) with the commutator vanishing for an
instanton satisfying the classical YM equation. We thus use the following ansatz for the
structure of the general, non - coincident heat kernel coefficients:

a2k(x, y) = φ0(x, y)a2k(x, y)+
∑︂
J ∈ N
Aµ1...µJ2k,J (φl, ∂

(a)A,D(b)E,D(c)G)|y (x−y)µ1 · · · (x−y)µJ

(C.6)
so that in the limit x→ y we have a2k(x, y)→ a2k(y) and

∑︁
J(...)→ A2k,0(y) = A2k(y)

given by the known finite -T terms (cf. below (3.1.9) and (3.1.11) for the traced - integral
ones). By also demanding φl(x, y)→ φl(y) we then reproduce the known a2k(y) in the
limit. The known finite -T terms A2k(y) only contain j ̸= 0 -modes (cf. (3.1.14)) and
the same has to hold for the unknown additional terms

∑︁
J ∈ N+(...). This is because

only these modes converge to 0 as β → ∞ and all finite T terms have to vanish in this
limit. Furthermore, A0,0 = 0 [185, 186] and the finite temperature generalization of the
Wilson line a0(x, y) is already obtained by plugging AHS into a0(x, y) instead of ABPST.
In case of a temporal point splitting, we can use the fact that the coincident coefficient
functions φl(x⃗, ϱ, s) do not depend on time, so that φl(x′, x) = φl(x⃗ ). This simplifies the
non - coincident coefficients in the caloron background:

a0(ετ , x) = φ0(x⃗ )a0(ετ , x) +
∑︂
J ∈ N+

A0 ··· 0
0,J (φl, D

(a)Ei, D(b)Gij)|x εJτ with

a0(ετ , x) = 1+ iA4
HS(x) ετ +

1

2

(︂
i∂τA

4
HS
⃓⃓
x
−
(︁
A4
HS(x)

)︁2)︂
ε2τ +O

(︁
ε3τ
)︁
,

(C.7)

a2k > 0(ετ , x) = φ0(x⃗ )a2k(ετ , x) +
∑︂
J ∈ N

A0 ··· 0
2k,J |x εJτ , (C.8)

where a1 = 0 in general and a2 = O(ε2τ ) in a classical background. As we stated above,
a0 equals the purely temporal Wilson line (3.2.37) in section 3.2.3. We thus also find
the non - coincident vacuum heat kernel coefficient afree(ετ , x) = afree(x) = φ0(x⃗)|A= 0.
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Additionally, we now have leading j = 0 -modes at odd 2k which get multiplied by εJ > 1
τ

due to the ετ - expansion of the a2k odd.
The log - caloron density and its (regularized)m2 - derivative contain the traced integral -

heat kernel coefficients b2k(x) = φ0(x⃗ )a2k(x)+B2k(φl, D(b)E,D(c)G)|x, however, not the
a2k(x). But introducing non - coincident versions of the b2k(x) is not reasonable, as that
disagrees with their traced nature18 and with how they are obtained from the a2k(x).
Nevertheless, just as the a2k(x, y) produce a2k(y) in the limit x→ y, their trace appearing
in the spacetime integral has to yield (after the appropriate transformations using trace
cyclicity, IBP, etc.) the b2k(y) and

∑︁
J A2k,J has to produce B2k in the limit and after

taking the trace.
Now we plug the coefficients (C.7) and (C.8) into the (C.3) - caloron background - term

lim ετ↘ 0

∫︁∞
0 ds e

−m2s− ε2τ
4s

∫︁ 1d4x
∑︁

k
sk−2

(4π)2
tr(a2k(ετ , x)) and perform the s - integrals using

(3.1.18) with, as stated above, k → k + 1. The s - integral divergences are now due
to the j = 0 -modes for k = 0 and k = 1. The leading j = 0 -mode for k = 1

2 vanishes
due to a1 = 0 and the j = 0 -modes for k = 3

2 and k = 2 are rendered finite by the
m2 - derivative (they would diverge without it). The j = 0 -mode of φ0(x⃗ )a0(ετ , x) gives
I(m2, 1, ε2τ ; 0) =

4m
ετ
K1(mετ )

ετ↘ 0∼ 4
ε2τ
(3.1.18.c), which diverges quadratically, and for

k = 1 we find the integral I(m2, 2, ε2τ ; 0) to diverge logarithmically as −2 ln
(︁
1
2mετ

)︁
. The

k = 0 - contribution is thus given by an infinite, traceful term 1
4π2ε2τ

and a finite, traceful
contribution − 1

32π2 I(m
2, 1, ε2τ ; 0)(A

4(x))2ε2τ = − 1
8π2 (A

4(x))2. For k = 1 the logarithmic
divergence gets multiplied by terms O(ε2τ ), so that the overall contribution vanishes
as lim ετ↘ 0 ε

2
τ ln(mετ ) = 0. The finite temperature j ̸= 0 -modes of φ0(x⃗ )a2k(ετ , x)

and
∑︁

J A0···0
2k,J |x εJτ are no longer exponentially suppressed (since m ̸≫ 1), but remain

finite as long as m > 0. In general, we find them to be determined by s - integrals
I
(︁
m2, k+1, j2+ ε2τ ;

c
2

)︁
= I

(︁
m2, k+1, j2; c2

)︁
= 2−(k−2− c

2
)
(︁ |j|
m

)︁k−1− c
2K|k−1− c

2
|(|j|m); here

we safely took the limit ετ ↘ 0. This is finite for j ̸= 0. Plugging these integrals into the
j -mode summation and recalling the general φl - structure obtained in (3.1.14) in section
3.1.2, we find traceful contributions∑︂

j ∈ Z\{0}

(−1)jΩjjc I
(︁
m2, k + 1, j2;

c

2

)︁
=tr

=tr

∞∑︂
j = 1

(−1)j2−(k−3− c
2
) cos(jπω)

jk−1+ c
2

mk−1− c
2

K|k−1− c
2
|(jm) .

(C.9)

18Tr includes the spacetime integral over the closed loop proper time - Green’s functions, i.e., point splitting
makes no sense.

159



We can analyze the (potentially) interesting regions of small and asymptotically large j:

• j ≪ m−1
√︁
|k − 1− c

2 |+ 1: For k = 0 we have only j ̸= 0 -modes with c = 0 in φ0

and thus K1(jm) ∼ (jm)−1, while for k ∈ {12 , 1} we have in general c ≥ 0 with
K|k−1− c

2
|(jm) ∼ (jm)−|k−1− c

2
| for k − 1− c

2 ̸= 0 and K|k−1− c
2
|(jm) ∼ − ln

(︁ jm
2

)︁
for

k − 1− c
2 = 0. For k = 0 the summands are therefore ∝ 1

j2
and for k ≥ 1 they are

∝
(︁ j
m

)︁c 1
m2k−2 , ∝ j2k−2 ln

(︁ jm
2

)︁
and ∝ j2k−2 for k − 1 − c

2 > 0, k − 1 − c
2 = 0 and

k− 1− c
2 < 0, respectively. As expected, we can see non - analytic behavior atm = 0

and finite contributions as m > 0. Only finitely many of these small j - terms get
added up and yield an overall finite contribution.

• j ≫ m−1|((k − 1− c
2)

2 − 1/4|: At first order of the asymptotic expansion of the
modified Bessel function of the second kind (sufficient for asymptotically large
j) the summands fall off exponentially as jk−

3
2+ c

2

mk−
1
2+ c

2
e−jm. By Cauchy’s criterion

(root test or radical test) the overall infinite j - sum converges to a finite value:

lim supj→∞

⃓⃓⃓⃓
2−(k−3) j

k− 3
2+ c

2

mk−
1
2+ c

2
cos(jπω)e−jm

⃓⃓⃓⃓ 1
j

≤ limj→∞ j
k−3/2+c/2

j e−m = e−m < 1

for m > 0, where we used limj→∞ a
1
j = limj→∞ j

1
j = 1 ∀ finite a. This is in-

dependent of k.

These contributions are either finite (∀a2k(x) ̸= 0 and A2k,0 ̸= 0) and thus require no
regularization or vanish (for A2k,J ≥ 1, as they get multiplied by terms O(εJ ≥ 1

τ )).
All in all, we find two terms produced by the ετ - regularized s - integrals at heat kernel

orders k ∈ {0, 12 , 1}:
1

4π2ε2τ
, which equals the free term that is already subtracted, and

− 1
8π2 (A

4(x))2, which is an additional term resulting from exchanging the limits. In order
to keep the structure of the (differentiated) log - caloron density, we thus have to subtract
the second term, arriving at:

dγs, −
dm2

= lim
ετ↘ 0

∫︂ 1

d4x tr
(︂
∆−(x′, x,m2)−∆−

0 (x
′, x,m2) +

1

8

(︁
A4
HS(x)

)︁2)︂
. (C.10)

This is the finite temperature analogue to the T = 0 - result obtained in [154, eq. (2.26)]
and used in [60]. From this one can proceed as discussed in [60].
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D. Numerical Methods

D.1 Heat Kernel Coefficients - Obtaining the functional Form

We obtain the general functional form of the finite temperature heat kernel coefficients
given in (3.1.11) employing Mathematica and making extensive use of the OGRe package
[187] to handle tensor calculus computations.
As the functional forms of the caloron field strength and especially the heat kernel

coefficients (3.1.11) with (3.1.6) are quite complicated, Mathematica is limited to calcu-
lating their structures for a general, unspecified caloron field described not by ln

(︁
ϕ(x)

)︁
as in (2.4.37) (ϕ(x) in (2.4.36) or (3.2.4)), but by the general function “funct(x)”, i.e.
AµHS(x) = −η aµν∂νfunct(x). We then calculate the caloron field and field strength as well
as the heat kernel coefficients with respect to funct and then plug funct = ln(ϕ) in the
final expressions for (3.1.11). Furthermore, OGRe is designed to perform Ricci index
calculations in a general relativity setup and can only handle tensors with an explicit
coordinate - dependence - and since funct needs to be an OGRe - tensor object and ϱ is not
a coordinate, using funct = funct(ϱ, x) is not possible. Instead, we introduce ϱ and its
specific values when plugging in funct = ln(ϕ).
Moreover, despite ϕ(x) = ϕ(r, τ) being spatially rotationally symmetric, the caloron is

defined explicitly in Cartesian coordinates. This is because the ’t Hooft symbols (2.4.26)
are defined in this coordinate system. A coordinate transformation to spatial spherical
coordinates yields no simplification, neither in advance of calculations - as the ’t Hooft
symbols possess no spatial rotational symmetry -, nor subsequent to obtaining the heat
kernel coefficients - since there is no way in OGRe to define symmetric properties for the
general (transformed) function funct(r, θ, φ, τ).
Lastly, general relativity deals only with spacetime - indices, not with index sets of

different types, as in the case of the caloron carrying a spacetime- and a Lie algebra - index.
Regarding 4 - dimensional Cartesian coordinates with a Euclidean metric as well as an
SU(2) - gauge group and thus su(2) - instanton, i.e., a 3 - dimensional Lie algebra with
again a δ - “metric”, we overcome this limitation of OGRe by adding an extra spacetime
dimension to all Lie algebra - valued objects. This extra dimension then stores the three
Lie algebra - components and we set the fourth component (the “time” component in the
artificial spacetime dimension) to always be 0. For example, in our code the caloron field
Aaµ is described by the 4× 4 -matrix

A =

⎛⎜⎜⎝
A1 1 A1 2 A1 3 A1 4

A2 1 A2 2 A2 3 A2 4

A3 1 A3 2 A3 3 A3 4

0 0 0 0

⎞⎟⎟⎠ , (D.1)
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where the upper three rows contains the four components of the three spacetime vectors
A1µ, A2µ andA3µ, respectively, and the fourth row contains 0’s (as there is no vectorA4µ).
The columns contain the components of the four Lie algebra 3 - vectors Aa 1, Aa 2, Aa 3
and Aa 4. With this description of su(2) - valued tensors, we can employ general relativity
style index calculus as facilitated by OGRe. This is another reason why it is necessary for
us to obtain the heat kernel coefficients in Cartesian coordinates. General relativity (and
therefore also OGRe) does not allow for certain indices of a tensor to be contracted by a
different metric than the rest (e.g., radial spherical metric for the spacetime indices and
Euclidean metric for the Lie algebra ones).
We remark that our method of including Lie algebra indices into OGRe - tensor calcu-

lus can be straightforwardly extended to higher dimensional gauge groups SU(N > 2).
In this case, one has to include indices corresponding to the N2 − 1 - dimensional Lie
algebra su(n). This is done by again adding artificial spacetime dimension to Lie algebra -
valued tensors and extending the spacetime to be N2 − 1 - dimensional with coordi-
nates (x, y, z, τ, x1art, ..., xN

2−5
art ). One has to make sure that the N2 − 5 extra spacetime -

components of any tensor are always set to 0. As an example, the gauge field is then given
by the (N2 − 1)× (N2 − 1) -matrix

Asu(N) =

⎛⎜⎜⎜⎜⎜⎝
A1 1 A1 2 A1 3 A1 4 0 ... 0
A2 1 A2 2 A2 3 A2 4 0 ... 0
A3 1 A3 2 A3 3 A3 4 0 ... 0
...

...
...

...
...
...
...

A(N2−1) 1 A(N2−1) 2 A(N2−1) 3 A(N2−1) 4 0 ... 0

⎞⎟⎟⎟⎟⎟⎠ . (D.2)

D.2 Spacetime Integration

As we discussed in section 2.4.2, specifically below (2.4.26) and (2.4.37), and showed in
figure 2.12, the HS caloron is not invariant, but only covariant, under spatial rotations,
with the same being true for the caloron field strength. The (ϱ, r, τ) - dependent integrands
for the coefficient functions of (3.3.1), i.e., b0, 4, 6, 8, 10 (3.1.11) and int− (3.2.38), however,
are rotationally invariant; even though they are explicitly given in Cartesian coordinates.
We show this for multiple of these integrands in figures provided in the ancillary files.
Making use of this implicit spatial rotational symmetry, we enhance the performance of

our numerical integrations by choosing (without loss of generality) the radial axis to be the
x - axis. This then means we can set y = z = 0 in the integrands, but have to multiply the
integrands by 4π x2, the volume element of ourmakeshift spatial spherical coordinates. The
integral

∫︁ 1
0 dτ is left unchanged. This reduces the 4 - dimensional numerical integrations

down to 2 - dimensional ones.
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D.3 Ancillary Files

Our code and the resulting data are distributed to the following files and can be found at
https://git.rwth-aachen.de/qcd/ancillary_files_finite_t_top_su
scep_heavy_quarks:

• heat_kernel_coeffs.nb contains the analytical (tensor) calculations of all heat
kernel coefficients (3.1.11), excluding b10; heat_kernel_coeff_b10.nb con-
tains the calculation of b10

• heat_kernel_coeffs.m contains the saved heat kernel coefficients (except b10)
and the auxiliary tensors required for their calculation; heat_kernel_
coeff_b10.m contains the saved structure for b10

• b4_coeff.nb contains the numerical integration for (3.1.28) to verify our analyti-
cal and numerical methods

• b4_data.dat contains the data for (3.1.28); b4_error.dat and b4_log_
error.dat contain the (logarithmic) error of the numerical results compared
to the theoretical value

• b6_coeff.nb contains the numerical integration for (3.1.31)

• b6_data.dat contains the data for (3.1.31); b6_fitting_error.dat and
b6_log_fitting_error.dat contain the (logarithmic) error of the of the fitting
function (3.1.31) compared to the data

• b8_coeff.nb contains the numerical integration for (3.1.36)

• b8_data.dat contains the data for (3.1.36); b8_fitting_error.dat and
b8_log_fitting_error.dat contain the (logarithmic) error of the of the fitting
function (3.1.36) compared to the data

• b10_coefficient.zip contains the numerical integration for (3.1.37); the inte-
grand as a C - function is contained in b10_coeff_c.txt

• b10_data.dat contains the data for (3.1.37); b10_fitting_error.dat and
b10_log_fitting_error.dat contain the (logarithmic) error of the of the
fitting function (3.1.37) compared to the data

• B0_coeff_finite_T_integration.ipynb contains the numerical integration
for (3.1.23); B0_coeff_finite_T_fitting.nb contains the fitting process
yielding (3.1.27)
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• B0_data_corrected.txt and B0_mrho_corrected.txt contain the data
and m - ϱ - grid for (3.1.23), respectively; B0_finite_T_fitting_error.dat
contains the error of the fitting function compared to the data

• B4_coeff_finite_T_fitting.nb contains the calculation and simplification of
the explicit form (3.1.29) and the fitting process to the data; B4_coeff_finite_
T_integration.ipynb contains the numerical integration

• B4_data_corrected.txt and B4_mrho_corrected.txt contain the data
and m - ϱ - grid for (3.1.29), respectively; B4_finite_T_fitting_error.dat
contains the error of the fitting function compared to the data

• B6_coeff_finite_T.nb contains the calculation and simplification of the explicit
form of (3.1.32) and (3.1.33), the numerical integration for (3.1.34) and the fitting
process for (3.1.35)

• B6B_coeff_finite_T_integration.ipynb contains the numerical integra-
tion for (3.1.35); B6_coeff_D4E_D4E.txt, B6_coeff_D4G_D4G.txt, B6_
coeff_DiE_DiE.txt and B6_coeff_EGE.txt contain the simplified explicit
terms of (3.1.33)

• B6_phi0_data.dat contains the data for (3.1.34) produced in B6_coeff_
finite_T.nb, B6B_results.txt contains the integration results of B6B_
coeff_finite_T_integration.ipynb and B6B_data.dat contains the full
data

• B6B_fitting_error.dat contains the error of the fitting function (3.1.35) com-
pared to the data

• propagator_sum_periodic.nb contains the summations (3.2.5), (3.2.10),
(3.2.16), (3.2.17) and (3.2.18) and the resulting simplification for (3.2.19);
propagator_sum_antiperiodic.nb contains the summations (3.2.5), (3.2.23),
(3.2.24) and (3.2.25) and the resulting simplification for (3.2.22)

• R4_propagator_limits.nb contains the β →∞ limits (in R4) (3.2.13) and of
(3.2.19)

• propagator_sum_coincident.nb contains the summations (3.2.29), (3.2.31),
(3.2.33) and (3.2.34), the Taylor expansion in (3.2.35) as well as discussions con-
cerning the asymptotic behavior of (3.2.35)
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• Taylor_exp_small_m_coeff.nb contains the numerical integration
producing the data for (3.2.40) and the fitting process

• m2_coeff_data.dat contains the data for (3.2.40); m2_coeff_fitting_
error.dat and m2_coeff_log_fitting_error.dat contain the (logarith-
mic) error of the fitting function (3.2.40) compared to the data

• pade_interpolation.nb contains the derivation of the large -mass expansion’s
validity (3.1.40) and the small -mass expansions validity (3.2.42) range of validity
as well as the Padé interpolation (3.3.4) - (3.3.15) & figure 3.12. It also produces
the figures 3.13 and 3.14.

• pade_interpol.m contains the explicit result for the Padé approximant (3.3.4);
caldens_pade.m contains the full mass dependency of the caloron density with
the Padé interpolation plugged in (i.e., including the factor mbϱ from (2.4.75))

• ratio_topological_susceptibilities.nb contains a discussion of the b -
quark’s effects on the caloron density and the numerical calculation of (3.3.17),
producing also figure 3.16 and the main result shown in figure 3.17; ratio_
topological_susceptibilities_data.dat contains the data for (3.3.17)
and figure 3.17

165





List of Figures

1.1 Running of the QCD coupling at 1 - loop order . . . . . . . . . . . . . . . . 3

2.1 Path integral in non - relativistic quantum mechanics . . . . . . . . . . . . 27
2.2 Instanton toy model: double well and periodic potential and tunneling . . 41
2.3 Flipped potential in Euclidean time . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Instanton toy model: (anti-)instanton solutions and real - time energy . . . 45
2.5 Winding number for toy model maps S1 → S1 . . . . . . . . . . . . . . . . 49
2.6 Stereographic projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Gluon vacuum maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Potential landscape for gluon vacua . . . . . . . . . . . . . . . . . . . . . . 52
2.9 Instanton tunneling in gluon potential . . . . . . . . . . . . . . . . . . . . 53
2.10 Boundary ∂R4 deformed into a hypercylinder . . . . . . . . . . . . . . . . 54
2.11 Caloron as infinite sum of instantons . . . . . . . . . . . . . . . . . . . . . 62
2.12 HS caloron field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.13 Feynman diagrams axial/chiral anomaly . . . . . . . . . . . . . . . . . . . 86
2.14 Kaon oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.15 Mexican hat potential and (massive) axions . . . . . . . . . . . . . . . . . 94

3.1 Coincident propagators in caloron background . . . . . . . . . . . . . . . . 100
3.2 ω - function defining the Polyakov loop . . . . . . . . . . . . . . . . . . . . 106
3.3 Large -mass damping of finite -T terms . . . . . . . . . . . . . . . . . . . . 107
3.4 m - ϱ - plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5 Heat kernel order k = 0, finite -T ambiguities: relative fitting error . . . . 112
3.6 ln(m) - coefficient: relative numerical error . . . . . . . . . . . . . . . . . . 114
3.7 m−2 - coefficient: data, interpolation, relative fitting error . . . . . . . . . . 116
3.8 m−4 - coefficient: data, interpolation, relative fitting error . . . . . . . . . . 119
3.9 m−6 - coefficient: data, interpolation, relative fitting error . . . . . . . . . . 121
3.10 Finite -T large -mass condition . . . . . . . . . . . . . . . . . . . . . . . . 123
3.11 m2 - coefficient: data, interpolation, relative fitting error, non - analyticity . 138
3.12 Parameters ξ(ϱ) and P0,1(ρ) of the Padé interpolation . . . . . . . . . . . . 143

167



3.13 Interpolation between mass regimes using Padé approximation . . . . . . 144
3.14 Interpolation between mass regimes for several ϱ - values . . . . . . . . . . 147
3.15 Modified coupling for asymptotically heavy b quark . . . . . . . . . . . . . 148
3.16 Caloron density for different b masses . . . . . . . . . . . . . . . . . . . . . 149
3.17 Topological susceptibility with dynamical b quark compared to lattice QCD 150
A.1 Spacetime regions for fermionic eigenvalue problem . . . . . . . . . . . . . 153

168



Bibliography

[1] BIPM. Le Système international d’unités / The International System of Units (‘The SI
Brochure’). 9th Edition. Bureau international des poids et mesures, 2019/2022.
isbn: 978-92-822-2272-0. url: https://www.bipm.org/en/publication
s/si-brochure/.

[2] R. L. Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022), p. 083C01.
doi: 10.1093/ptep/ptac097.

[3] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory.
Reading, USA: Addison-Wesley, 1995. isbn: 978-0-201-50397-5.

[4] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge
University Press, Mar. 2014. isbn: 978-1-107-03473-0, 978-1-107-03473-0.

[5] Anthony Zee.Quantum Field Theory in a Nutshell. 2nd Edition. Princeton University
Press, 2010. isbn: 978-0-691-14034-6.

[6] Michio Kaku. Quantum Field Theory: A modern Introduction. Oxford University
Press, Mar. 1993, p. 808. isbn: 978-0195076523.

[7] R Alkofer and J Greensite. “Quark confinement: the hard problem of hadron
physics”. In: Journal of Physics G: Nuclear and Particle Physics 34.7 (May 2007),
S3. doi: 10.1088/0954-3899/34/7/S02.

[8] Curtis G. Callan, Roger Dashen, and David J. Gross. “Toward a theory of the
strong interactions”. In: Phys. Rev. D 17 (10 May 1978), pp. 2717–2763. doi:
10.1103/PhysRevD.17.2717.

[9] Kenneth G. Wilson. “Confinement of quarks”. In: Phys. Rev. D 10 (8 Oct. 1974),
pp. 2445–2459. doi: 10.1103/PhysRevD.10.2445.

[10] Mattia Bruno et al. “QCD Coupling from a Nonperturbative Determination of the
Three-Flavor Λ Parameter”. In: Phys. Rev. Lett. 119 (10 Sept. 2017), p. 102001.
doi: 10.1103/PhysRevLett.119.102001.

169

https://www.bipm.org/en/publications/si-brochure/
https://www.bipm.org/en/publications/si-brochure/
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1088/0954-3899/34/7/S02
https://doi.org/10.1103/PhysRevD.17.2717
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevLett.119.102001


[11] David J. Gross and Frank Wilczek. “Ultraviolet Behavior of Non-Abelian Gauge
Theories”. In: Phys. Rev. Lett. 30 (26 June 1973), pp. 1343–1346. doi: 10.1103
/PhysRevLett.30.1343.

[12] H. David Politzer. “Reliable Perturbative Results for Strong Interactions?” In: Phys.
Rev. Lett. 30 (26 June 1973), pp. 1346–1349. doi: 10.1103/PhysRevLett.3
0.1346.

[13] Michela D’Onofrio and Kari Rummukainen. “Standard model cross-over on the
lattice”. In: Phys. Rev. D 93 (2 Jan. 2016), p. 025003. doi: 10.1103/PhysRev
D.93.025003.

[14] Brian C. Odom et al. “New Measurement of the Electron Magnetic Moment Using a
One-Electron Quantum Cyclotron”. In: Phys. Rev. Lett. 97 (3 July 2006), p. 030801.
doi: 10.1103/PhysRevLett.97.030801. Erratum: Gerald Gabrielse et al.
“Erratum: New Determination of the Fine Structure Constant from the Electron g
Value and QED]”. In: Phys. Rev. Lett. 99 (3 July 2007), p. 039902. doi: 10.1103
/PhysRevLett.99.039902.

[15] R. Brandelik et al. “Evidence for planar events in e+e− annihilation at high
energies”. In: Physics Letters B 86.2 (1979), pp. 243–249. issn: 0370-2693. doi:
10.1016/0370-2693(79)90830-X.

[16] TASSO Collaboration et al. “Evidence for a spin-1 gluon in three-jet events”. In:
Physics Letters B 97.3 (1980), pp. 453–458. issn: 0370-2693. doi: 10.1016/03
70-2693(80)90639-5.

[17] H. Hamber and G. Parisi. “Numerical Estimates of Hadronic Masses in a Pure
SU(3) Gauge Theory”. In: Phys. Rev. Lett. 47 (25 Dec. 1981), pp. 1792–1795. doi:
10.1103/PhysRevLett.47.1792.

[18] Don Weingarten. “Monte Carlo evaluation of hadron masses in lattice gauge
theories with fermions”. In: Physics Letters B 109.1 (1982), pp. 57–62. issn:
0370-2693. doi: 10.1016/0370-2693(82)90463-4.

[19] G. Aad et al. “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1
(2012), pp. 1–29. issn: 0370-2693. doi: 10.1016/j.physletb.2012.08.0
20.

[20] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30–61. issn:
0370-2693. doi: 10.1016/j.physletb.2012.08.021.

170

https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1103/PhysRevLett.97.030801
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1103/PhysRevLett.99.039902
https://doi.org/10.1016/0370-2693(79)90830-X
https://doi.org/10.1016/0370-2693(80)90639-5
https://doi.org/10.1016/0370-2693(80)90639-5
https://doi.org/10.1103/PhysRevLett.47.1792
https://doi.org/10.1016/0370-2693(82)90463-4
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021


[21] Vera C. Rubin. “The Rotation of Spiral Galaxies”. In: Science 220.4604 (1983),
pp. 1339–1344. doi: 10.1126/science.220.4604.1339.

[22] Douglas Clowe et al. “A Direct Empirical Proof of the Existence of Dark Matter”. In:
The Astrophysical Journal 648.2 (Aug. 2006), p. L109. doi: 10.1086/508162.

[23] Anton Bergmann, Vahe Petrosian, and Roger Lynds. “Gravitational lens models
of arcs in clusters”. In: The Astrophysical Journal 350 (Mar. 1990), p. 23. doi:
10.1086/168359.

[24] G. F. Smoot et al. “Structure in the COBE Differential Microwave Radiometer
First-Year Maps”. In: The Astrophysical Journal 396 (Sept. 1992), p. L1. doi:
10.1086/186504.

[25] Planck Collaboration et al. “Planck 2018 results - I. Overview and the cosmological
legacy of Planck”. In: Astronomy and Astrophysics 641 (2020), A1. doi: 10.1051
/0004-6361/201833880. And: Planck Collaboration et al. “Planck 2018 results
- VI. Cosmological parameters”. In: Astronomy and Astrophysics 641 (2020), A6.
doi: 10.1051/0004-6361/201833910. with Errattum: Planck Collaboration
et al. “Planck 2018 results - VI. Cosmological parameters (Corrigendum)”. In:
Astronomy and Astrophysics 652 (2021), p. C4. doi: 10.1051/0004-6361/20
1833910e.

[26] George R. Blumenthal et al. “Formation of galaxies and large-scale structure
with cold dark matter”. In: Nature 311.5986 (Oct. 1984), pp. 517–525. issn:
1476-4687. doi: 10.1038/311517a0.

[27] Alexander A. Belavin et al. “Pseudoparticle solutions of the Yang-Mills equations”.
In: Physics Letters B 59.1 (1975), pp. 85–87. issn: 0370-2693. doi: 10.1016/0
370-2693(75)90163-X.

[28] Barry J. Harrington and Harvey K. Shepard. “Euclidean solutions and finite tem-
perature gauge theory”. In: Nuclear Physics B 124.4 (1977), pp. 409–412. issn:
0550-3213. doi: 10.1016/0550-3213(77)90413-8.

[29] Stephen L. Adler. “Axial-Vector Vertex in Spinor Electrodynamics”. In: Phys. Rev.
177 (5 Jan. 1969), pp. 2426–2438. doi: 10.1103/PhysRev.177.2426.

[30] John S. Bell and Roman Jackiw. “A PCAC puzzle: π0 → γγ in the σ model”. In:
Nuovo Cim. A 60 (1969), pp. 47–61. doi: 10.1007/BF02823296.

[31] William A. Bardeen. “AnomalousWard Identities in Spinor Field Theories”. In: Phys.
Rev. 184 (5 Aug. 1969), pp. 1848–1859. doi: 10.1103/PhysRev.184.1848.

171

https://doi.org/10.1126/science.220.4604.1339
https://doi.org/10.1086/508162
https://doi.org/10.1086/168359
https://doi.org/10.1086/186504
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1038/311517a0
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1016/0550-3213(77)90413-8
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRev.184.1848


[32] Y. Nambu and G. Jona-Lasinio. “Dynamical Model of Elementary Particles Based on
an Analogy with Superconductivity. I”. In: Phys. Rev. 122 (1 Apr. 1961), pp. 345–
358. doi: 10.1103/PhysRev.122.345.

[33] Sidney R. Coleman. “The Uses of Instantons”. In: Subnucl. Ser. 15 (1979). Ed. by
Mikhail A. Shifman, pp. 805–941. doi: 10.1007/978-1-4684-0991-8_16.
url: https://www.physics.mcgill.ca/~jcline/742/Coleman-Ins
tantons.pdf.

[34] Edward Witten. “Current algebra theorems for the U(1) “Goldstone boson””. In:
Nuclear Physics B 156.2 (1979), pp. 269–283. issn: 0550-3213. doi: 10.1016
/0550-3213(79)90031-2.

[35] Gabriele Veneziano. “U(1) without instantons”. In: Nuclear Physics B 159.1 (1979),
pp. 213–224. issn: 0550-3213. doi: 10.1016/0550-3213(79)90332-8.

[36] Jack Dragos et al. “Confirming the existence of the strong CP problem in lattice
QCD with the gradient flow”. In: Phys. Rev. C 103 (1 Jan. 2021), p. 015202. doi:
10.1103/PhysRevC.103.015202.

[37] C. Abel et al. “Measurement of the Permanent Electric Dipole Moment of the
Neutron”. In: Phys. Rev. Lett. 124 (8 Feb. 2020), p. 081803. doi: 10.1103/Phy
sRevLett.124.081803.

[38] Erick J. Weinberg. Classical solutions in quantum field theory: Solitons and Instan-
tons in High Energy Physics. Cambridge Monographs on Mathematical Physics.
Cambridge University Press, Sept. 2012. isbn: 978-0-521-11463-9, 978-1-139-
57461-7, 978-0-521-11463-9, 978-1-107-43805-7.

[39] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 Jan. 1978),
pp. 223–226. doi: 10.1103/PhysRevLett.40.223.

[40] Frank A. Wilczek. “Problem of Strong P and T Invariance in the Presence of
Instantons”. In: Phys. Rev. Lett. 40 (5 Jan. 1978), pp. 279–282. doi: 10.1103
/PhysRevLett.40.279.

[41] Roberto D. Peccei and Helen R. A. Quinn. “CP Conservation in the Presence of
Instantons”. In: Phys. Rev. Lett. 38 (1977), pp. 1440–1443. doi: 10.1103/Phys
RevLett.38.1440.

[42] Roberto D. Peccei and Helen R. A. Quinn. “Constraints Imposed by CP Conservation
in the Presence of Instantons”. In: Phys. Rev. D 16 (1977), pp. 1791–1797. doi:
10.1103/PhysRevD.16.1791.

172

https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1007/978-1-4684-0991-8_16
https://www.physics.mcgill.ca/~jcline/742/Coleman-Instantons.pdf
https://www.physics.mcgill.ca/~jcline/742/Coleman-Instantons.pdf
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1016/0550-3213(79)90332-8
https://doi.org/10.1103/PhysRevC.103.015202
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791


[43] Francesca Chadha-Day, John Ellis, and David J. E. Marsh. “Axion dark matter:
What is it and why now?” In: Science Advances 8.8 (Feb. 2022), eabj3618. doi:
10.1126/sciadv.abj3618.

[44] Giovanni Grilli di Cortona et al. “The QCD axion, precisely”. In: Journal of High
Energy Physics 2016.1 (Jan. 2016), p. 34. doi: 10.1007/JHEP01(2016)034.

[45] David J. E. Marsh. “Axion cosmology”. In: Physics Reports 643 (July 2016), pp. 1–
79. issn: 0370-1573. doi: 10.1016/j.physrep.2016.06.005.

[46] Markus Kuster, Georg Raffelt, and Berta Beltrán, eds. Axions. Theory, Cosmology
and Experimental Searches. Vol. 741. 2008, pp. XI, 245. isbn: 978-3-540-73517-5.

[47] Luca Di Luzio et al. “The landscape of QCD axion models”. In: Physics Reports 870
(2020). The landscape of QCD axion models, pp. 1–117. issn: 0370-1573. doi:
10.1016/j.physrep.2020.06.002.

[48] Olivier Wantz and Edward P. S. Shellard. “Axion cosmology revisited”. In: Phys.
Rev. D 82 (12 Dec. 2010), p. 123508. doi: 10.1103/PhysRevD.82.123508.

[49] Szabolcs Borsányi et al. “Axion cosmology, lattice QCD and the dilute instanton
gas”. In: Physics Letters B 752 (2016), pp. 175–181. issn: 0370-2693. doi: 10.1
016/j.physletb.2015.11.020.

[50] Igor García Irastorza. “An introduction to axions and their detection”. In: SciPost
Phys. Lect. Notes (2022), p. 45. doi: 10.21468/SciPostPhysLectNotes.45.

[51] Marco Gorghetto and Giovanni Villadoro. “Topological susceptibility and QCD
axion mass: QED and NNLO corrections”. In: Journal of High Energy Physics 2019.3
(Mar. 2019), p. 33. issn: 1029-8479. doi: 10.1007/JHEP03(2019)033.

[52] Zhen-Yan Lu et al. “QCD θ-vacuum energy and axion properties”. In: Journal of
High Energy Physics 2020.5 (May 2020), p. 1. issn: 1029-8479. doi: 10.1007
/JHEP05(2020)001.

[53] Szabolcs Borsányi et al. “Calculation of the axion mass based on high-temperature
lattice quantum chromodynamics”. In: Nature 539.7627 (2016), pp. 69–71. doi:
10.1038/nature20115.

[54] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe. “QCD and instantons
at finite temperature”. In: Rev. Mod. Phys. 53 (1 Jan. 1981), pp. 43–80. doi:
10.1103/RevModPhys.53.43.

[55] Vincent B. Klaer and Guy D. Moore. “The dark-matter axion mass”. In: Journal of
Cosmology and Astroparticle Physics 2017.11 (Nov. 2017), p. 049. doi: 10.1088
/1475-7516/2017/11/049.

173

https://doi.org/10.1126/sciadv.abj3618
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1103/PhysRevD.82.123508
https://doi.org/10.1016/j.physletb.2015.11.020
https://doi.org/10.1016/j.physletb.2015.11.020
https://doi.org/10.21468/SciPostPhysLectNotes.45
https://doi.org/10.1007/JHEP03(2019)033
https://doi.org/10.1007/JHEP05(2020)001
https://doi.org/10.1007/JHEP05(2020)001
https://doi.org/10.1038/nature20115
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1088/1475-7516/2017/11/049
https://doi.org/10.1088/1475-7516/2017/11/049


[56] Szabocls Borsányi et al. “Full result for the QCD equation of state with 2+1
flavors”. In: Phys. Lett. B 730 (2014), pp. 99–104. doi: 10.1016/j.physletb
.2014.01.007. arXiv: 1309.5258 [hep-lat].

[57] A. Bazavov et al. “Equation of state in ( 2+1 )-flavor QCD”. In: Phys. Rev. D 90
(2014), p. 094503. doi: 10.1103/PhysRevD.90.094503. arXiv: 1407.6387
[hep-lat].

[58] Peter Thomas Jahn, Guy D. Moore, and Daniel Robaina. “χtop(T ≫ Tc) in pure-
glue QCD through reweighting”. In: Phys. Rev. D 98.5 (2018), p. 054512. doi:
10.1103/PhysRevD.98.054512. arXiv: 1806.01162 [hep-lat].

[59] P. Thomas Jahn, Guy D. Moore, and Daniel Robaina. “Improved Reweighting
for QCD Topology at High Temperature”. In: (Feb. 2020). arXiv: 2002.01153
[hep-lat].

[60] O-Kab Kwon, Choonkyu Lee, and Hyunsoo Min. “Massive field contributions to the
QCD vacuum tunneling amplitude”. In: Phys. Rev. D 62 (11 Nov. 2000), p. 114022.
doi: 10.1103/PhysRevD.62.114022.

[61] Gerald V. Dunne et al. “Calculation of QCD instanton determinant with arbitrary
mass”. In: Phys. Rev. D 71 (8 Apr. 2005), p. 085019. doi: 10.1103/PhysRev
D.71.085019.

[62] George Zweig. “An SU(3) model for strong interaction symmetry and its breaking.
Version 2”. In: DEVELOPMENTS IN THE QUARK THEORY OF HADRONS. VOL. 1.
1964 - 1978. Ed. by D. B. Lichtenberg and Simon Peter Rosen. Feb. 1964, pp. 22–
101. url: https://cds.cern.ch/record/570209/files/CERN_Repor
t_TH-412_corrected.pdf?version=1.

[63] Murray Gell-Mann. “A schematic model of baryons and mesons”. In: Physics Letters
8.3 (1964), pp. 214–215. issn: 0031-9163. doi: 10.1016/S0031-9163(64
)92001-3.

[64] Harald Fritzsch, Murray Gell-Mann, and Heinrich Leutwyler. “Advantages of the
color octet gluon picture”. In: Physics Letters B 47.4 (1973), pp. 365–368. issn:
0370-2693. doi: 10.1016/0370-2693(73)90625-4.

[65] Emmy Noether. “Invariante Variationsprobleme. Invariant Variation Problems”. In:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse (1918), pp. 235–257. doi: 10.1080/00411457108231446.
arXiv: physics/0503066. url: https://gdz.sub.uni-goettingen.de
/id/PPN252457811_1918.

174

https://doi.org/10.1016/j.physletb.2014.01.007
https://doi.org/10.1016/j.physletb.2014.01.007
https://arxiv.org/abs/1309.5258
https://doi.org/10.1103/PhysRevD.90.094503
https://arxiv.org/abs/1407.6387
https://arxiv.org/abs/1407.6387
https://doi.org/10.1103/PhysRevD.98.054512
https://arxiv.org/abs/1806.01162
https://arxiv.org/abs/2002.01153
https://arxiv.org/abs/2002.01153
https://doi.org/10.1103/PhysRevD.62.114022
https://doi.org/10.1103/PhysRevD.71.085019
https://doi.org/10.1103/PhysRevD.71.085019
https://cds.cern.ch/record/570209/files/CERN_Report_TH-412_corrected.pdf?version=1
https://cds.cern.ch/record/570209/files/CERN_Report_TH-412_corrected.pdf?version=1
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1080/00411457108231446
https://arxiv.org/abs/physics/0503066
https://gdz.sub.uni-goettingen.de/id/PPN252457811_1918
https://gdz.sub.uni-goettingen.de/id/PPN252457811_1918


[66] Jürgen Fuchs and Christoph Schweigert. Symmetries, Lie algebras and represen-
tations: A graduate course for physicists. Cambridge University Press, Oct. 2003.
isbn: 978-0-521-54119-0.

[67] Martin Schottenloher. Geometrie und Symmetrie in der Physik: Leitmotive der
Mathematischen Physik. Geometry and Symmetry in Physics: Guiding Principles of
Mathematical Physics. Vieweg+Teubner Verlag Wiesbaden, Jan. 1995. isbn: 978-
3-528-06565-2, 978-3-322-89928-6. doi: 10.1007/978-3-322-89928-6.
url: https://www.mathematik.uni-muenchen.de/~schotten/bas
/Geometrie%5C%20und%5C%20Symmetrie.pdf.

[68] Jun J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. 3rd Edition.
Cambridge University Press, 2020. isbn: 9781108587280.

[69] Henri Poincaré. “Sur la dynamique de l’électron. On the dynamics of the electron”.
In: Rendiconti del Circolo Matematico di Palermo (1884-1940) 21.1 (Dec. 1906),
pp. 129–175.

[70] Albert Einstein. “Zur Elektrodynamik bewegter Körper. On the electrodynamics
of moving bodies”. In: Annalen der Physik 322.10 (1905), pp. 891–921. doi:
10.1002/andp.19053221004.

[71] Eugene P. Wigner. “On Unitary Representations of the Inhomogeneous Lorentz
Group”. In: Annals Math. 40 (1939). Ed. by Y. S. Kim and W. W. Zachary, pp. 149–
204. doi: 10.2307/1968551.

[72] Sidney Coleman and Jeffrey Mandula. “All Possible Symmetries of the S Matrix”.
In: Phys. Rev. 159 (5 July 1967), pp. 1251–1256. doi: 10.1103/PhysRev.159
.1251.

[73] Lewis H. Ryder. Quantum Field Theory. Cambridge University Press, June 1996.
isbn: 978-0-521-47814-4, 978-1-139-63239-3, 978-0-521-23764-2.

[74] Tommy Ohlsson. Relativistic Quantum Physics: From Advanced Quantum Mechanics
to Introductory Quantum Field Theory. Cambridge University Press, 2011. isbn:
9781139032681.

[75] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Intro-
duction. Graduate Texts in Mathematics. Springer International, May 2015. isbn:
978-3-319-13466-6, 978-3-319-37433-8, 978-3-319-13467-3.

[76] Chen-Ning Yang and Robert L. Mills. “Conservation of Isotopic Spin and Isotopic
Gauge Invariance”. In: Phys. Rev. 96 (1 Oct. 1954), pp. 191–195. doi: 10.1103
/PhysRev.96.191.

175

https://doi.org/10.1007/978-3-322-89928-6
https://www.mathematik.uni-muenchen.de/~schotten/bas/Geometrie%5C%20und%5C%20Symmetrie.pdf
https://www.mathematik.uni-muenchen.de/~schotten/bas/Geometrie%5C%20und%5C%20Symmetrie.pdf
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.2307/1968551
https://doi.org/10.1103/PhysRev.159.1251
https://doi.org/10.1103/PhysRev.159.1251
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1103/PhysRev.96.191


[77] David Hilbert. “Die Grundlagen der Physik . (Erste Mitteilung.)” In: Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse (1915), pp. 395–408.

[78] Vladimir A. Fock. “Proper time in classical and quantum mechanics”. In: Sov. Phys.
12 (1937), p. 404.

[79] Julian Schwinger. “On Gauge Invariance and Vacuum Polarization”. In: Phys. Rev.
82 (5 June 1951), pp. 664–679. doi: 10.1103/PhysRev.82.664.

[80] Wolfgang Kummer and Johann Weiser. “Quantization of Gauge-Fields in the
Fock-Schwinger Gauge”. In: Zeitschrift für Physik C, Particles and Fields 31.1 (Mar.
1986), pp. 105–110. issn: 1431-5858. doi: 10.1007/BF01559599.

[81] Paul A. M. Dirac. “A new classical theory of electrons”. In: Proc. R. Soc. Lond.
A 209 (1951), pp. 291–296. doi: 10.1098/rspa.1951.0204. Reprinted in:
Nature 168 (1951).

[82] Suraj N. Gupta. “Theory of Longitudinal Photons in Quantum Electrodynamics”.
In: Proceedings of the Physical Society. Section A 63.7 (July 1950), p. 681. doi:
10.1088/0370-1298/63/7/301.

[83] Konrad Bleuler. “Eine neue Methode zur Behandlung der longitudinalen und
skalaren Photonen. A new method of treating longitudinal and scalar photons”.
In: Helvetica Physica Acta 23.V (1950), p. 567. issn: 0018-0238. doi: 10.5169
/seals-112124.

[84] Michel Le Bellac. Thermal Field Theory. Cambridge Monographs on Mathematical
Physics. Cambridge University Press, Mar. 2011. isbn: 978-0-511-88506-8, 978-
0-521-65477-7.

[85] Joseph I. Kapusta and Charles Gale. Finite-temperature field theory: Principles
and Applications. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, 2011. isbn: 978-0-521-17322-3, 978-0-521-82082-0, 978-0-
511-22280-1.

[86] Ashok Das. Finite Temperature Field Theory. WORLD SCIENTIFIC, 1997.
[87] Jacopo Ghiglieri et al. “Perturbative thermal QCD: Formalism and applications”.

In: Physics Reports 880 (2020). Perturbative Thermal QCD: Formalism and Applica-
tions, pp. 1–73. issn: 0370-1573. doi: 10.1016/j.physrep.2020.07.004.

[88] Hale F. Trotter. “On the Product of Semi-Groups of Operators”. In: Proceedings of
the American Mathematical Society 10.4 (1959), pp. 545–551. doi: 10.1090/S0
002-9939-1959-0108732-6.

176

https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF01559599
https://doi.org/10.1098/rspa.1951.0204
https://doi.org/10.1088/0370-1298/63/7/301
https://doi.org/10.5169/seals-112124
https://doi.org/10.5169/seals-112124
https://doi.org/10.1016/j.physrep.2020.07.004
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1090/S0002-9939-1959-0108732-6


[89] Hermann Graßmann. Die lineare Ausdehnungslehre. The Theory of linear Extension.
Wigang Leipzig, 1878. url: https://gdz.sub.uni-goettingen.de/id
/PPN534901565.

[90] Felix A. Berezin. The Method of Second Quantization. 1st Edition. Translated
by Nobumichi Mugibayashi and Alan Jeffrey. Academic Press, 1966. isbn: 978-
0120894505.

[91] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. “Broken Symmetries”. In:
Phys. Rev. 127 (3 Aug. 1962), pp. 965–970. doi: 10.1103/PhysRev.127.965.

[92] Giovanni Jona-Lasinio. “Relativistic field theories with symmetry-breaking solu-
tions”. In: Il Nuovo Cimento (1955-1965) 34.6 (Dec. 1964), pp. 1790–1795. issn:
1827-6121. doi: 10.1007/BF02750573.

[93] Ludvig D. Faddeev and Victor N. Popov. “Feynman diagrams for the Yang-Mills
field”. In: Physics Letters B 25.1 (1967), pp. 29–30. issn: 0370-2693. doi: 10.10
16/0370-2693(67)90067-6.

[94] Victor N. Popov and Ludvig D. Faddeev. “Perturbation Theory for gauge-invariant
Fields”. In: 50 Years of Yang-Mills Theory. 2005, pp. 40–60. doi: 10.1142/9789
812567147_0003. Originally in: Kiev Inst. Theor. Phys. Acad. Sci. preprint ITP
67-36 (1967).

[95] Donald R. Yennie, Steven C. Frautschi, and Hiroshi Suura. “The infrared divergence
phenomena and high-energy processes”. In: Annals of Physics 13.3 (1961), pp. 379–
452. issn: 0003-4916. doi: 10.1016/0003-4916(61)90151-8.

[96] Takeo Matsubara. “A New approach to quantum statistical mechanics”. In: Prog.
Theor. Phys. 14 (1955), pp. 351–378. doi: 10.1143/PTP.14.351.

[97] Hajime Ezawa, Yukio Tomozawa, and Hiroomi Umezawa. “Quantum statistics
of fields and multiple production of mesons”. In: Nuovo Cim. 5 (1957). Ed. by
A. Arimitsu et al., pp. 810–841. doi: 10.1007/BF02903206.

[98] Munshi G. Mustafa. “An introduction to thermal field theory and some of its
application”. In: The European Physical Journal Special Topics 232.9 (Aug. 2023),
pp. 1369–1457. issn: 1951-6401. doi: 10.1140/epjs/s11734-023-00868-
8.

[99] Julian Schwinger. “Brownian Motion of a Quantum Oscillator”. In: Journal of
Mathematical Physics 2.3 (Dec. 2004), pp. 407–432. issn: 0022-2488. doi: 10.1
063/1.1703727.

177

https://gdz.sub.uni-goettingen.de/id/PPN534901565
https://gdz.sub.uni-goettingen.de/id/PPN534901565
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1007/BF02750573
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1142/9789812567147_0003
https://doi.org/10.1142/9789812567147_0003
https://doi.org/10.1016/0003-4916(61)90151-8
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1007/BF02903206
https://doi.org/10.1140/epjs/s11734-023-00868-8
https://doi.org/10.1140/epjs/s11734-023-00868-8
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727


[100] Pradip M. Bakshi and Kalyana T. Mahanthappa. “Expectation Value Formalism in
Quantum Field Theory. I”. In: Journal of Mathematical Physics 4.1 (Dec. 2004),
pp. 1–11. issn: 0022-2488. doi: 10.1063/1.1703883.

[101] Pradip M. Bakshi and Kalyana T. Mahanthappa. “Expectation Value Formalism in
Quantum Field Theory. II”. In: Journal of Mathematical Physics 4.1 (Dec. 2004),
pp. 12–16. issn: 0022-2488. doi: 10.1063/1.1703879.

[102] Kalyana T. Mahanthappa. “Multiple Production of Photons in Quantum Electrody-
namics”. In: Phys. Rev. 126 (1 Apr. 1962), pp. 329–340. doi: 10.1103/PhysRe
v.126.329.

[103] Leonid V. Keldysh. “Diagram technique for nonequilibrium processes”. In: Zh.
Eksp. Teor. Fiz. 47 (1964), pp. 1515–1527. Also in: Sov. Physics JTEP 20 (1965),
p. 1018.

[104] Jørgen Rammer. Quantum Field Theory of Non-Equilibrium States. Cambridge
University Press, Jan. 2007, p. 550. isbn: 9780521874991. eprint: https://ww
w-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Ra
mmer.pdf.

[105] Yasushi Takahashi and Hiroomi Umezawa. “Thermofield Dynamics”. In: Collective
Phhenomena 2 (1975), pp. 55–80. Reprinted in: International Journal of Modern
Physics B 10.13n14 (1996), pp. 1755–1805. doi: 10.1142/S0217979296000
817.

[106] Hiroomi Umezawa, Hideaki Matsumoto, and M. Tachiki. Thermofield Dynamics
and Condensed States. Amsterdam, New York: North-Holland Pub. Co. ; Sole
distributors for the U.S.A. and Canada, Elsevier Science Pub. Co. Amsterdam, New
York, 1982. isbn: 9780444863614.

[107] Faqir C. Khanna et al. Thermal Quantum Field Theory: Algebraic Aspects and
Applications. WORLD SCIENTIFIC, 2009. isbn: 13 978-981-281-887-4, 10 981-
281-887-1.

[108] Gian Carlo Wick. “Properties of Bethe-Salpeter Wave Functions”. In: Phys. Rev. 96
(4 Nov. 1954), pp. 1124–1134. doi: 10.1103/PhysRev.96.1124.

[109] Alexander M. Polyakov. “Compact gauge fields and the infrared catastrophe”. In:
Physics Letters B 59.1 (1975), pp. 82–84. issn: 0370-2693. doi: 10.1016/0370
-2693(75)90162-8.

[110] Izumi Ojima. “Lorentz Invariance Versus Temperature in QFT”. In: Lett. Math.
Phys. 11 (1986), p. 73. doi: 10.1007/BF00417467.

178

https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703879
https://doi.org/10.1103/PhysRev.126.329
https://doi.org/10.1103/PhysRev.126.329
https://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Rammer.pdf
https://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Rammer.pdf
https://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Rammer.pdf
https://doi.org/10.1142/S0217979296000817
https://doi.org/10.1142/S0217979296000817
https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1016/0370-2693(75)90162-8
https://doi.org/10.1016/0370-2693(75)90162-8
https://doi.org/10.1007/BF00417467


[111] Hagop Sazdjian. “Introduction to chiral symmetry in QCD”. In: EPJ Web Conf.
137 (2017). Ed. by Y. Foka, N. Brambilla, and V. Kovalenko, p. 02001. doi:
10.1051/epjconf/201713702001.

[112] Stefan Scherer. “Introduction to Chiral Perturbation Theory”. In: Advances in
Nuclear Physics, Volume 27. Ed. by J. W. Negele and E. W. Vogt. Boston, MA:
Springer US, 2003, pp. 277–538. isbn: 978-0-306-47916-8. doi: 10.1007/0-3
06-47916-8_2.

[113] Jeffrey Goldstone. “Field theories with « Superconductor » solutions”. In: Il Nuovo
Cimento (1955-1965) 19.1 (Jan. 1961), pp. 154–164. issn: 1827-6121. doi:
10.1007/BF02812722.

[114] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. “Broken Symmetries”. In:
Phys. Rev. 127 (3 Aug. 1962), pp. 965–970. doi: 10.1103/PhysRev.127.965.

[115] Yoichiro Nambu. “Quasi-Particles and Gauge Invariance in the Theory of Super-
conductivity”. In: Phys. Rev. 117 (3 Feb. 1960), pp. 648–663. doi: 10.1103/Ph
ysRev.117.648.

[116] Thomas Schäfer and Edward V. Shuryak. “Instantons in QCD”. In: Rev. Mod. Phys.
70 (2 Apr. 1998), pp. 323–425. doi: 10.1103/RevModPhys.70.323.

[117] Murray Gell-Mann. “The EightfoldWay: A Theory of Strong Interaction Symmetry”.
In: Technical Report at the California Institute of Technology, Synchrotron Laboratory
(Mar. 1961). doi: 10.2172/4008239.

[118] Yuval Ne’eman. “Derivation of Strong Interactions from a Gauge Invariance”. In:
Nuclear Physics 26.2 (1961), pp. 222–229. issn: 0029-5582. doi: 10.1016/002
9-5582(61)90134-1.

[119] Fayyazuddin and Riazuddin. A Modern Introduction to Particle Physics. 3rd Edition.
World Scientific, 2012. isbn: 978-981-4338-83-7, 978-981-4338-85-1. eprint:
https://library.oapen.org/handle/20.500.12657/53580.

[120] Bastian Kubis. An introduction to chiral perturbation theory. 2007. arXiv: hep-ph
/0703274 [hep-ph].

[121] Steven Weinberg. “Pion Scattering Lengths”. In: Phys. Rev. Lett. 17 (11 Sept. 1966),
pp. 616–621. doi: 10.1103/PhysRevLett.17.616.

[122] Juerg Gasser and Heinrich Leutwyler. “Chiral perturbation theory to one loop”.
In: Annals of Physics 158.1 (1984), pp. 142–210. issn: 0003-4916. doi: 10.101
6/0003-4916(84)90242-2.

179

https://doi.org/10.1051/epjconf/201713702001
https://doi.org/10.1007/0-306-47916-8_2
https://doi.org/10.1007/0-306-47916-8_2
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/RevModPhys.70.323
https://doi.org/10.2172/4008239
https://doi.org/10.1016/0029-5582(61)90134-1
https://doi.org/10.1016/0029-5582(61)90134-1
https://library.oapen.org/handle/20.500.12657/53580
https://arxiv.org/abs/hep-ph/0703274
https://arxiv.org/abs/hep-ph/0703274
https://doi.org/10.1103/PhysRevLett.17.616
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2


[123] Juerg Gasser and Heinrich Leutwyler. “Chiral perturbation theory: Expansions in
the mass of the strange quark”. In: Nuclear Physics B 250.1 (1985), pp. 465–516.
issn: 0550-3213. doi: 10.1016/0550-3213(85)90492-4.

[124] Steven Weinberg. “Phenomenological Lagrangians”. In: Physica A: Statistical Me-
chanics and its Applications 96.1 (1979), pp. 327–340. issn: 0378-4371. doi:
10.1016/0378-4371(79)90223-1.

[125] Steven Weinberg. “Effective field theories - past and future”. In: Proceedings of 6th
International Workshop on Chiral Dynamics — PoS(CD09). Vol. 086. 2010, p. 001.
doi: 10.22323/1.086.0001.

[126] Heinrich Leutwyler. “On the Foundations of Chiral Perturbation Theory”. In:
Annals of Physics 235.1 (1994), pp. 165–203. issn: 0003-4916. doi: 10.1006/a
phy.1994.1094.

[127] Cesareo A. Dominguez, Mirela S. Fetea, and Marcelo Loewe. “The GMOR relation
at finite temperature”. In: Nuclear Physics B - Proceedings Supplements 54.1 (1997).
Proceedings of QCD 96, pp. 333–337. issn: 0920-5632. doi: 10.1016/S0920-
5632(97)00063-7.

[128] Jishnu Goswami et al. “Searching for the QCD Critical Point Along the Pseudo-
critical/Freeze-out Line Using Padé-resummed Taylor Expansions of Cumulants of
Conserved Charge Fluctuations”. In: Acta Phys. Polon. Supp. 16.1 (2023), 1–A76.
doi: 10.5506/APhysPolBSupp.16.1-A76.

[129] S. Benić et al. “η′ multiplicity and the Witten-Veneziano relation at finite temper-
ature”. In: Phys. Rev. D 84 (1 July 2011), p. 016006. doi: 10.1103/PhysRev
D.84.016006.

[130] Hilmar Forkel. A Primer on Instantons in QCD. 2002. arXiv: hep-ph/0009136.
[131] David Olive, Stefano Sciuto, and Rodney J. Crewther. “Instantons in Field Theory”.

In: La Rivista del Nuovo Cimento 2 (Aug. 1979), pp. 1–117. doi: 10.1007/BF02
724349.

[132] Arkady I. Vainshtein et al. “ABC of instantons”. In: Soviet Physics Uspekhi 25.4
(Apr. 1982), p. 195. doi: 10.1070/PU1982v025n04ABEH004533.

[133] Pierre-Simon Laplace. “Mémoire sur la Probabilité des Causes par les évènemens.
Memoir on the probability of the causes of events”. In: Savants Estranges 6 (1774),
pp. 621–656. doi: 10.1214/ss/1177013621.

[134] Ole E. Barndorff-Nielsen. “Laplace’s method. Edgeworth and saddle-point approxi-
mations”. In: Parametric Statistical Models and Likelihood. New York, NY: Springer
New York, 1988, pp. 188–212.

180

https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.22323/1.086.0001
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1006/aphy.1994.1094
https://doi.org/10.1016/S0920-5632(97)00063-7
https://doi.org/10.1016/S0920-5632(97)00063-7
https://doi.org/10.5506/APhysPolBSupp.16.1-A76
https://doi.org/10.1103/PhysRevD.84.016006
https://doi.org/10.1103/PhysRevD.84.016006
https://arxiv.org/abs/hep-ph/0009136
https://doi.org/10.1007/BF02724349
https://doi.org/10.1007/BF02724349
https://doi.org/10.1070/PU1982v025n04ABEH004533
https://doi.org/10.1214/ss/1177013621


[135] Mikio Nakahara. Geometry, Topology and Phyiscs. 2nd Edition. Institute of Phyiscs
Publishing Bristol and Philadelphia, June 2003. isbn: 978-0750306065. eprint:
http://www.stat.ucla.edu/~ywu/GTP.pdf.

[136] Bert Mendelson. Introduction to Topology. 3rd Edition. Dover Publications, July
1990. isbn: 978-0486663524.

[137] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. isbn: 978-
0-521-79540-1. eprint: https://pi.math.cornell.edu/~hatcher/AT/A
T.pdf.

[138] Curtis G. Callan, Roger F. Dashen, and David J. Gross. “The structure of the gauge
theory vacuum”. In: Physics Letters B 63.3 (1976), pp. 334–340. issn: 0370-2693.
doi: 10.1016/0370-2693(76)90277-X.

[139] Raoul Bott. “An Application of Morse theory to the topology of Lie groups”. In:
Bull. Soc. Math. Fr. 84 (1956), pp. 251–281.

[140] Stefan Vandoren and Peter van Nieuwenhuizen. Lectures on instantons. 2008.
arXiv: 0802.1862 [hep-th].

[141] Gerard ’t Hooft. “Computation of the quantum effects due to a four-dimensional
pseudoparticle”. In: Phys. Rev. D 14 (12 Dec. 1976), pp. 3432–3450. doi: 10.1
103/PhysRevD.14.3432. Erratum: “Erratum: Computation of the quantum
effects due to a four-dimensional pseudoparticle”. In: Phys. Rev. D 18 (6 Sept.
1978), pp. 2199–2200. doi: 10.1103/PhysRevD.18.2199.3.

[142] Gerard ’t Hooft. “Symmetry Breaking through Bell-Jackiw Anomalies”. In: Phys.
Rev. Lett. 37 (1 July 1976), pp. 8–11. doi: 10.1103/PhysRevLett.37.8.
Announced susequent publication: “Computation of the quantum effects due to a
four-dimensional pseudoparticle”. In: Phys. Rev. D 14 (12 Dec. 1976), pp. 3432–
3450. doi: 10.1103/PhysRevD.14.3432. Erratum: “Erratum: Computation
of the quantum effects due to a four-dimensional pseudoparticle”. In: Phys. Rev. D
18 (6 Sept. 1978), pp. 2199–2200. doi: 10.1103/PhysRevD.18.2199.3.

[143] E. B. Bogomolny. “Stability of Classical Solutions”. In: Sov. J. Nucl. Phys. 24 (1976),
p. 449.

[144] Michael F. Atiyah et al. “Construction of instantons”. In: Physics Letters A 65.3
(1978), pp. 185–187. issn: 0375-9601. doi: 10.1016/0375-9601(78)9014
1-X.

181

http://www.stat.ucla.edu/~ywu/GTP.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://doi.org/10.1016/0370-2693(76)90277-X
https://arxiv.org/abs/0802.1862
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.18.2199.3
https://doi.org/10.1103/PhysRevLett.37.8
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.18.2199.3
https://doi.org/10.1016/0375-9601(78)90141-X
https://doi.org/10.1016/0375-9601(78)90141-X


[145] Olivier Wantz. “The topological susceptibility from grand canonical simulations
in the interacting instanton liquid model: Zero temperature calibrations and
numerical framework”. In: Nuclear Physics B 829.1 (2010), pp. 48–90. issn: 0550-
3213. doi: 10.1016/j.nuclphysb.2009.12.007.

[146] Roman W. Jackiw and Claudio Rebbi. “Vacuum Periodicity in a Yang-Mills Quan-
tum Theory”. In: Phys. Rev. Lett. 37 (3 July 1976), pp. 172–175. doi: 10.1103
/PhysRevLett.37.172.

[147] Barry J. Harrington and Harvey K. Shepard. “Periodic Euclidean solutions and the
finite-temperature Yang-Mills gas”. In: Phys. Rev. D 17 (8 Apr. 1978), pp. 2122–
2125. doi: 10.1103/PhysRevD.17.2122.

[148] Mikko Laine and Aleksi Vuorinen. Basics of Thermal Field Theory: A Tutorial on
Perturbative Computations. Vol. 925. Lecture Notes in Physics. Springer, 2016.
isbn: 978-3-319-31932-2, 978-3-319-31933-9. doi: 10.1007/978-3-319-31
933-9. arXiv: 1701.01554 [hep-ph].

[149] Guy D. Moore and Marcus Tassler. “The sphaleron rate in SU(N) gauge theory”.
In: Journal of High Energy Physics 2011.2 (Feb. 2011), p. 105. doi: 10.1007
/JHEP02(2011)105.

[150] Claude Bernard. “Gauge zero modes, instanton determinants, and quantum-chro-
modynamic calculations”. In: Phys. Rev. D 19 (10 May 1979), pp. 3013–3019. doi:
10.1103/PhysRevD.19.3013.

[151] Lowell S. Brown, Robert D. Carlitz, and Choonkyu Lee. “Massless excitations
in pseudoparticle fields”. In: Phys. Rev. D 16 (2 July 1977), pp. 417–422. doi:
10.1103/PhysRevD.16.417.

[152] Lowell S. Brown et al. “Propagation functions in pseudoparticle fields”. In: Phys.
Rev. D 17 (6 Mar. 1978), pp. 1583–1597. doi: 10.1103/PhysRevD.17.1583.

[153] Lowell S. Brown and Choonkyu Lee. “Massive propagators in instanton fields”. In:
Phys. Rev. D 18 (6 Sept. 1978), pp. 2180–2183. doi: 10.1103/PhysRevD.18
.2180.

[154] Choonkyu Lee, Hae Won Lee, and P.Y. Pac. “Calculation of one-loop instanton
determinants using propagators with space-time dependent mass”. In: Nuclear
Physics B 201.3 (1982), pp. 429–460. issn: 0550-3213. doi: 10.1016/0550-3
213(82)90442-4.

[155] Albert S. Schwarz. “On regular solutions of Euclidean Yang-Mills equations”. In:
Physics Letters B 67.2 (1977), pp. 172–174. issn: 0370-2693. doi: 10.1016/03
70-2693(77)90095-8.

182

https://doi.org/10.1016/j.nuclphysb.2009.12.007
https://doi.org/10.1103/PhysRevLett.37.172
https://doi.org/10.1103/PhysRevLett.37.172
https://doi.org/10.1103/PhysRevD.17.2122
https://doi.org/10.1007/978-3-319-31933-9
https://doi.org/10.1007/978-3-319-31933-9
https://arxiv.org/abs/1701.01554
https://doi.org/10.1007/JHEP02(2011)105
https://doi.org/10.1007/JHEP02(2011)105
https://doi.org/10.1103/PhysRevD.19.3013
https://doi.org/10.1103/PhysRevD.16.417
https://doi.org/10.1103/PhysRevD.17.1583
https://doi.org/10.1103/PhysRevD.18.2180
https://doi.org/10.1103/PhysRevD.18.2180
https://doi.org/10.1016/0550-3213(82)90442-4
https://doi.org/10.1016/0550-3213(82)90442-4
https://doi.org/10.1016/0370-2693(77)90095-8
https://doi.org/10.1016/0370-2693(77)90095-8


[156] Michael F. Atiyah and Isadore M. Singer. “The Index of elliptic operators. I”. In:
Annals Math. 87 (1968), pp. 484–530. doi: 10.2307/1970715.

[157] Michael F. Atiyah and Isadore M. Singer. “The index of elliptic operators on
compact manifolds”. In: Bull. Am. Math. Soc. 69 (1969), pp. 422–433. doi: 10.1
090/S0002-9904-1963-10957-X.

[158] Barry J. Harrington and Harvey K. Shepard. “Thermodynamics of the Yang-Mills
gas”. In: Phys. Rev. D 18 (8 Oct. 1978), pp. 2990–2994. doi: 10.1103/PhysRe
vD.18.2990.

[159] Wolfgang E. Pauli and Felix M. H. Villars. “On the Invariant Regularization in
Relativistic Quantum Theory”. In: Rev. Mod. Phys. 21 (3 July 1949), pp. 434–444.
doi: 10.1103/RevModPhys.21.434.

[160] Yu A. Bashilov and Sergey V. Pokrovsky. “Quantum fluctuations in the vicinity of
an instanton in the SU(N) group”. In: Nuclear Physics B 143.3 (1978), pp. 431–444.
issn: 0550-3213. doi: 10.1016/0550-3213(78)90063-9.

[161] Andreas Ringwald and Fridger Schrempp. “Confronting instanton perturbation
theory with QCD lattice results”. In: Physics Letters B 459.1 (1999), pp. 249–258.
issn: 0370-2693. doi: 10.1016/S0370-2693(99)00682-6.

[162] Claude Bernard. “Instanton interactions at the one-loop level”. In: Phys. Rev. D 18
(6 Sept. 1978), pp. 2026–2041. doi: 10.1103/PhysRevD.18.2026.

[163] Fabian Rennecke. “Higher topological charge and the QCD vacuum”. In: Phys. Rev.
Res. 2 (3 Sept. 2020), p. 033359. doi: 10.1103/PhysRevResearch.2.0333
59.

[164] Tamas G. Kovacs. The fate of chiral symmetries in the quark-gluon plasma. Nov.
2023. arXiv: 2311.04208 [hep-lat]. And: High temperature U(1)A breaking
in the chiral limit. Dec. 2023. arXiv: 2312.08775 [hep-lat].

[165] Guy D. Moore. “Axion dark matter and the Lattice”. In: EPJ Web Conf. 175 (2018),
p. 01009. doi: 10.1051/epjconf/201817501009.

[166] Peter Thomas Jahn, Guy D. Moore, and Daniel Robaina. Improved Reweighting
for QCD Topology at High Temperature. 2020. arXiv: 2002.01153 [hep-lat].
Extension to: “χtop(T ≫ Tc) in pure-glue QCD through reweighting”. In: Phys.
Rev. D 98 (5 Sept. 2018), p. 054512. doi: 10.1103/PhysRevD.98.054512.

[167] Kazuo Fujikawa. “Path integral for gauge theories with fermions”. In: Phys. Rev.
D 21 (10 May 1980), pp. 2848–2858. doi: 10.1103/PhysRevD.21.2848.
Erratum: “Erratum: Path integral for gauge theories with fermions”. In: Phys. Rev.
D 22 (6 Sept. 1980), pp. 1499–1499. doi: 10.1103/PhysRevD.22.1499.

183

https://doi.org/10.2307/1970715
https://doi.org/10.1090/S0002-9904-1963-10957-X
https://doi.org/10.1090/S0002-9904-1963-10957-X
https://doi.org/10.1103/PhysRevD.18.2990
https://doi.org/10.1103/PhysRevD.18.2990
https://doi.org/10.1103/RevModPhys.21.434
https://doi.org/10.1016/0550-3213(78)90063-9
https://doi.org/10.1016/S0370-2693(99)00682-6
https://doi.org/10.1103/PhysRevD.18.2026
https://doi.org/10.1103/PhysRevResearch.2.033359
https://doi.org/10.1103/PhysRevResearch.2.033359
https://arxiv.org/abs/2311.04208
https://arxiv.org/abs/2312.08775
https://doi.org/10.1051/epjconf/201817501009
https://arxiv.org/abs/2002.01153
https://doi.org/10.1103/PhysRevD.98.054512
https://doi.org/10.1103/PhysRevD.21.2848
https://doi.org/10.1103/PhysRevD.22.1499


[168] Kazuo Fujikawa. “Path-Integral Measure for Gauge-Invariant Fermion Theories”.
In: Phys. Rev. Lett. 42 (18 Apr. 1979), pp. 1195–1198. doi: 10.1103/PhysRev
Lett.42.1195.

[169] Támas F. Csörgő, Róbert Vértesi, and Janos I. Sziklai. “Indirect Observation of an
In-Medium η

′ Mass Reduction in√sNN = 200 GeV Au+Au Collisions”. In: Phys.
Rev. Lett. 105 (18 Oct. 2010), p. 182301. doi: 10.1103/PhysRevLett.105
.182301.

[170] Róbert Vértesi, Támas F. Csörgő, and Janos I. Sziklai. “Significant in-medium
η
′ mass reduction in √sNN = 200 GeV Au+Au collisions at the BNL Relativistic
Heavy Ion Collider”. In: Phys. Rev. C 83 (5 May 2011), p. 054903. doi: 10.1103
/PhysRevC.83.054903.

[171] Joseph I. Kapusta, Dmitri E. Kharzeev, and Larry D. McLerran. “Return of the
prodigal Goldstone boson”. In: Phys. Rev. D 53 (9 May 1996), pp. 5028–5033.
doi: 10.1103/PhysRevD.53.5028.

[172] Jihn-eui Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In: Phys. Rev.
Lett. 43 (2 July 1979), pp. 103–107. doi: 10.1103/PhysRevLett.43.103.

[173] Mikhail A. Shifman, Arkady I. Vainshtein, and Valentin I. Zakharov. “Can confine-
ment ensure natural CP invariance of strong interactions?” In: Nuclear Physics B
166.3 (1980), pp. 493–506. issn: 0550-3213. doi: 10.1016/0550-3213(80
)90209-6.

[174] Michael Dine, Willy Fischler, and Mark Srednicki. “A simple solution to the strong
CP problem with a harmless axion”. In: Physics Letters B 104.3 (1981), pp. 199–
202. issn: 0370-2693. doi: 10.1016/0370-2693(81)90590-6.

[175] Ariel R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions.
(In Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.

[176] Gonzalo Alonso-Álvarez, Maria B. Gavela Legazpi, and Pablo Quílez Lasanta.
“Axion couplings to electroweak gauge bosons”. In: The European Physical Journal
C 79.3 (Mar. 2019), p. 223. issn: 1434-6052. doi: 10.1140/epjc/s10052-0
19-6732-5.

[177] Masahiro Kawasaki and Kazunori Nakayama. “Axions: Theory and Cosmological
Role”. In: Ann. Rev. Nucl. Part. Sci. 63 (2013), pp. 69–95. doi: 10.1146/annur
ev-nucl-102212-170536.

[178] Larry McLerran, Robert D. Pisarski, and Vladimir Skokov. “Electroweak instantons,
axions, and the cosmological constant”. In: Physics Letters B 713.3 (2012), pp. 301–
303. issn: 0370-2693. doi: 10.1016/j.physletb.2012.05.057.

184

https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.42.1195
https://doi.org/10.1103/PhysRevLett.105.182301
https://doi.org/10.1103/PhysRevLett.105.182301
https://doi.org/10.1103/PhysRevC.83.054903
https://doi.org/10.1103/PhysRevC.83.054903
https://doi.org/10.1103/PhysRevD.53.5028
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1140/epjc/s10052-019-6732-5
https://doi.org/10.1140/epjc/s10052-019-6732-5
https://doi.org/10.1146/annurev-nucl-102212-170536
https://doi.org/10.1146/annurev-nucl-102212-170536
https://doi.org/10.1016/j.physletb.2012.05.057


[179] Howard Georgi, David B. Kaplan, and Lisa Randall. “Manifesting the invisible axion
at low energies”. In: Physics Letters B 169.1 (1986), pp. 73–78. issn: 0370-2693.
doi: 10.1016/0370-2693(86)90688-X.

[180] Justin I. Read. “The local dark matter density”. In: Journal of Physics G: Nuclear
and Particle Physics 41.6 (May 2014), p. 063101. doi: 10.1088/0954-3899/4
1/6/063101.

[181] Salucci, Paolo et al. “The dark matter density at the Sun’s location”. In: Astron.
Astrophys. 523 (June 2010), A83. doi: 10.1051/0004-6361/201014385.

[182] Dmitri V. Vassilevich. “Heat kernel expansion: user’s manual”. In: Physics Reports
388.5 (2003), pp. 279–360. issn: 0370-1573. doi: 10.1016/j.physrep.200
3.09.002.

[183] Denny Fliegner et al. “The Higher Derivative Expansion of the Effective Action
by the String Inspired Method, II”. In: Annals of Physics 264.1 (1998), pp. 51–74.
issn: 0003-4916. doi: 10.1006/aphy.1997.5778. a12 coefficient in: The
Higher derivative expansion of the effective action by the string inspired method. Part
2. 1998. arXiv: hep-th/9707189.

[184] Bryce S. DeWitt. “Quantum field theory in curved spacetime”. In: Physics Reports
19.6 (1975), pp. 295–357. issn: 0370-1573. doi: 10.1016/0370-1573(75)9
0051-4.

[185] Eugenio Megías, Enrique Ruiz Arriola, and Lorenzo L. Salcedo. “Thermal heat
kernel expansion and the one-loop effective action of QCD at finite temperature”.
In: Phys. Rev. D 69 (11 June 2004), p. 116003. doi: 10.1103/PhysRevD.69
.116003.

[186] Eugenio Megías, Enrique Ruiz Arriola, and Lorenzo L. Salcedo. “The Polyakov
loop and the heat kernel expansion at finite temperature”. In: Physics Letters B
563.3 (2003), pp. 173–178. issn: 0370-2693. doi: 10.1016/S0370-2693(03
)00699-3.

[187] Barak Shoshany. “OGRe: An Object-Oriented General Relativity Package for Math-
ematica”. In: Journal of Open Source Software 6.65 (2021), p. 3416. doi: 10.21
105/joss.03416.

[188] Kenji Fukushima and Vladimir Skokov. “Polyakov loop modeling for hot QCD”. In:
Progress in Particle and Nuclear Physics 96 (2017), pp. 154–199. issn: 0146-6410.
doi: 10.1016/j.ppnp.2017.05.002.

185

https://doi.org/10.1016/0370-2693(86)90688-X
https://doi.org/10.1088/0954-3899/41/6/063101
https://doi.org/10.1088/0954-3899/41/6/063101
https://doi.org/10.1051/0004-6361/201014385
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1006/aphy.1997.5778
https://arxiv.org/abs/hep-th/9707189
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1103/PhysRevD.69.116003
https://doi.org/10.1103/PhysRevD.69.116003
https://doi.org/10.1016/S0370-2693(03)00699-3
https://doi.org/10.1016/S0370-2693(03)00699-3
https://doi.org/10.21105/joss.03416
https://doi.org/10.21105/joss.03416
https://doi.org/10.1016/j.ppnp.2017.05.002


[189] Milton Abramowitz and Irene Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. 10th print, with corr. Selected govern-
ment publications. New York, 1972. isbn: 0471800074.

[190] R. B. Dingle. “The Fermi-Dirac integrals Fp(η) = (p!)−1
∫︁∞
0 εp(eε−η + 1)−1dε ”.

In: Applied Scientific Research, Section B 6.1 (Dec. 1957), pp. 225–239. issn:
0365-7140. doi: 10.1007/BF02920379.

[191] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103.

[192] The mpmath development team. mpmath: a Python library for arbitrary-precision
floating-point arithmetic (version 1.3.0). https://mpmath.org. 2023.

[193] Steven G. Johnson. Multi-dimensional adaptive integration in C: The Cubature
package. https://github.com/stevengj/cubature. 2005.

[194] A. C. Genz and A. A. Malik. “Remarks on algorithm 006: An adaptive algorithm
for numerical integration over an N -dimensional rectangular region”. In: Journal
of Computational and Applied Mathematics 6 (1980), pp. 295–302. doi: 10.101
6/0771-050x(80)90039-x.

[195] Jarle Berntsen, Terje O. Espelid, and Alan Genz. “An adaptive algorithm for the ap-
proximate calculation of multiple integrals”. In: ACM Transactions on Mathematical
Software 17 (1991), pp. 437–451. doi: 10.1145/210232.210233.

[196] J. M. Bull and T. L. Freeman. “Parallel globally adaptive algorithms for multi-
dimensional integration”. In: Applied Numerical Mathematics 19 (1995), pp. 3–16.
doi: 10.1016/0168-9274(95)00076-7.

[197] D. A. Kirzhnits and Andrei D. Linde. “Symmetry Behavior in Gauge Theories”. In:
Annals Phys. 101 (1976), pp. 195–238. doi: 10.1016/0003-4916(76)90279
-7.

186

https://doi.org/10.1007/BF02920379
https://doi.org/10.7717/peerj-cs.103
https://mpmath.org
https://github.com/stevengj/cubature
https://doi.org/10.1016/0771-050x(80)90039-x
https://doi.org/10.1016/0771-050x(80)90039-x
https://doi.org/10.1145/210232.210233
https://doi.org/10.1016/0168-9274(95)00076-7
https://doi.org/10.1016/0003-4916(76)90279-7
https://doi.org/10.1016/0003-4916(76)90279-7


Curriculum Vitae

Personal Information

Name: Bruno Maria Högl
Date of Birth: 6th December 1993
Place of Birth: Munich

Education and Employment

11/2020 - 11/2024 PhD Researcher (Physics)
TU Darmstadt, Group Prof. Moore

04/2019 - 10/2020 Research Assistant (Physics)
LMU Munich, Group Prof. Hofmann
“Physics in precision-dependent normal neighborhoods”,
Phys. Rev. D 102 (2020) 8, 084065

04/2016 - 03/2019 Master of Science (Physics), Grade: 1.56 (“good”)
LMU Munich, Master’s Thesis (Group Prof. Hofmann):
“Riemann Normal Coordinates - Determination of the Domain
of Validity and Application in Quantum Field Theory in Curved
Spacetime”

10/2012 - 03/2016 Bachelor of Science (Physics), Grade: 1.75 (“good”)
LMU Munich, Bachelor’s Thesis (Group Prof. Hofmann):
“Lie-Groups and Lie-Algebras as a Combination of Group
Theory and Differential Geometry”

06/2012 Abitur, Gymnasium Miesbach, Grade: 1.0 (“very good”)

187



Miscellaneous

• Member of the Collaborative Research Center "CRC-TR 211 - strong interaction
matter under extreme conditions" during PhD Studies

• 08/2021 - 11/2024: server administrator (supervision of the TU Darmstadt’s nuclear
physics theory center’s web and e-mail server)

• 2021: Teaching Assistant for “Quantum Field Theory” lecture at TU Darmstadt

• 2019/2020: Teaching Assistant for several courses in theoretical and experimental
physics at LMU Munich

• Scholarship of the “Max-Weber Programm Bayern” for Bachelor and Master Studies

• 2012 - 2024: Member of the “Deutsche Physikalische Gesellschaft”

188


	Notation, Naming and Conventions
	Introduction
	Matter Content of the Universe, Quantum Chromodynamics and the Standard Model
	Topology and the Axion
	Aim of this Work

	Quantum Chromodynamics, Topology, Instantons and Axions
	The ``naive'' Action of Quantum Chromodynamics
	Path Integral Quantization and Thermal Field Theory
	Path Integral Quantization and the Effective Action
	Gauge fixing in the Path Integral Formalism
	Thermal Field Theory in the Imaginary Time or Matsubara Formalism
	Symmetry Group of Thermal Field Theory

	Chiral Symmetry and Chiral Perturbation Theory
	Topology of SU(N)-Gauge Theories and the Interplay with Particles
	Instantons in non-relativistic Quantum Mechanics
	Vacuum Topology, Instantons and Calorons
	Caloron Density with massive Quarks
	Dilute Gas Approximation for Calorons
	Topological Susceptibility

	Observable Effects of Topology
	Axial Anomaly and the missing Nambu-Goldstone Boson
	Strong CP Problem and its Resolution by Axions
	The Axion and its Relation to Topology


	Caloron Density for heavy Fermions – Large and Small Mass-Expansion
	Large Mass-Expansion of the Caloron Density
	Schwinger Proper Time-Representation
	Heat Kernel Expansion at finite Temperature
	Heat Kernel Expansion Order by Order - Numerical Results

	Small Mass-Expansion of the Caloron Density
	Expansion Strategy
	Periodic and anti-periodic massless scalar Propagator in a HS Caloron Background
	Taylor Expansion

	Interpolation between Mass Regimes and Topological Susceptibility
	A. Partial Differential Equation
	B. Heat Kernel Coefficient 1mu-1mua-1mu1mu10
	C. Alternative Small-Mass Expansion
	D. Numerical Methods
	D.1 Heat Kernel Coefficients - Obtaining the functional Form
	D.2 Spacetime Integration
	D.3 Ancillary Files


	List of Figures
	Bibliography
	Curriculum Vitae

