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Abstract
We define and parametrize so-called 𝔰𝔩(2)-type fibres
of the 𝖲𝗉(2𝑛, ℂ)- and 𝖲𝖮(2𝑛 + 1, ℂ)-Hitchin system.
These are (singular) Hitchin fibres, such that spectral
curve establishes a 2-sheeted covering of a second Rie-
mann surface 𝑌. This identifies the 𝔰𝔩(2)-type Hitchin
fibres with fibres of an 𝖲𝖫(2, ℂ)-Hitchin, respectively,
𝖯𝖲𝖫(2, ℂ)-Hitchin map on 𝑌. Building on results of
[Horn, Int. Math. Res. Not. IMRN 10 (2020)], we give
a stratification of these singular spaces by semi-abelian
spectral data, study their irreducible components and
obtain a global description of the first degenerations.
We will compare the semi-abelian spectral data of
𝔰𝔩(2)-type Hitchin fibres for the two Langlands dual
groups. This extends the well-known Langlands duality
of regular Hitchin fibres to 𝔰𝔩(2)-type Hitchin fibres.
Finally, we will construct solutions to the decoupled
Hitchin equation for 𝔰𝔩(2)-type fibres of the symplectic
and odd orthogonal Hitchin system. We conjecture
these to be limiting configurations along rays to the
ends of the moduli space.
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2 HORN

1 INTRODUCTION

For more than 30 years, the study of moduli spaces of Higgs bundles is a very active research
area located at the crossroads of algebraic, complex and differential geometry with the theory of
integrable systems and surface group representations. One major reason for the ongoing interest
in these moduli spaces is their extremely rich geometry. They were introduced by Hitchin [18] as
examples of non-compact hyperkähler spaces. They are homeomorphic to moduli spaces of flat
𝐺-bundles on 𝑋 by the famous non-abelian Hodge correspondence [5, 7, 18, 31]. And most impor-
tantly for the present work, they have a dense subset carrying the structure of an algebraically
completely integrable system— the so-called Hitchin system [17].
By definition, the Higgs bundle moduli space 𝐺 on a Riemann surface 𝑋 associated to a

complex reductive linear group 𝐺 is a moduli space of pairs (𝐸, Φ). Here 𝐸 is a holomorphic 𝐺-
vector bundle on 𝑋 and Φ is holomorphic one-form valued in 𝔤, called the Higgs field.𝐺 has a
complex symplectic structure on its smooth locus, and the Hitchin map

𝖧𝗂𝗍𝐺 ∶ 𝐺 → 𝐵𝐺

defines a proper, surjective, holomorphic map to a complex vector space 𝐵𝐺 of half the dimen-
sion of 𝐺 , referred to as the Hitchin base. Hitchin showed for the classical groups [17] and
Scognamillo for all complex reductive groups [30], that on a dense subset 𝐵𝗋𝖾𝗀

𝐺
⊂ 𝐵𝐺 the fibres of

the Hitchin map are torsors over abelian varieties. Thereby, the pre-image of the regular locus
𝐵
𝗋𝖾𝗀

𝐺
under the Hitchin map is an algebraically completely integrable system, nowadays called the

Hitchin system.
To identify the Hitchin fibres over the regular locus with abelian varieties one introduces spec-

tral data. TheHitchinmap applied to aHiggs bundle (𝐸, Φ) computes the eigenvalues of theHiggs
fieldΦ. These eigenvalues are decoded in the spectral curve Σ, a covering of the original Riemann
surface 𝑋. The eigenspaces determine a line bundle on the spectral curve. For a point in the reg-
ular locus 𝐵𝗋𝖾𝗀

𝐺
the spectral curve is smooth. In this case, the moduli spaces of eigen line bundles

are the classical examples of abelian varieties, most importantly Jacobian and Prym varieties.
The Hitchin fibration played a major role in two recent developments in the theory of Higgs

bundle moduli spaces: First, in the study of the asymptotic of the hyperkähler metric [24] and
second, in the Langlands duality of Higgs bundle moduli spaces [6]. Both results were considered
on the regular locus of the Hitchin map and it is an interesting question how they extend to the
singular locus (see [1]). In this paper, we do the first steps in this direction.

1.1 Singular Hitchin fibres of 𝖘𝖑(𝟐)-type

We introduce and study the class of 𝔰𝔩(2)-type Hitchin fibres of the 𝖲𝗉(2𝑛, ℂ)- and 𝖲𝖮(2𝑛 + 1, ℂ)-
Hitchin system. This class of (singular) Hitchin fibres is distinguished by the singularities of the
spectral curve, such that for 𝑛 = 2 all fibres are of 𝔰𝔩(2)-type (see Definition 2.5, respectively, 3.2
for precise definitions). For 𝖲𝖫(2, ℂ), the singular Hitchin fibres were studied in [14, 28] using
the Beauville–Narasimhan–Ramanan correspondence [3]. In [21], the author developed a more
direct approach introducing semi-abelian spectral data. These consist of an abelian torsor over the
Prym variety of the normalized spectral curve and non-abelian coordinates parametrizing local
deformations of the Higgs bundle at the singularities of the spectral curve.
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 3

For Hitchin fibres of 𝔰𝔩(2)-type the spectral curve Σ defines a 2-sheeted covering over another
Riemann surface 𝑌. The main result of this work identifies the 𝖲𝗉(2𝑛, ℂ)- and 𝖲𝖮(2𝑛 + 1, ℂ)-
Hitchin fibres of 𝔰𝔩(2)-type with 𝖲𝖫(2, ℂ)-Hitchin, respectively, 𝖯𝖦𝖫(2, ℂ)-Hitchin fibres of amod-
uli space of twisted Higgs bundles on 𝑌 (Theorems 2.15 and 3.9). This allows to extend the results
of [21] to 𝔰𝔩(2)-type Hitchin fibres.

Theorem 1.1 (Theorems 2.20 and 4.6). Let 𝐺 = 𝖲𝗉(2𝑛, ℂ) or 𝐺 = 𝖲𝖮(2𝑛 + 1, ℂ). Let 𝑏 ∈ 𝐵𝐺 with
irreducible and reduced spectral curve of 𝔰𝔩(2)-type. Then there exists a stratification

𝖧𝗂𝗍−1𝐺 (𝑏) =
⨆
𝑖∈𝐼

𝑖

by finitely many locally closed subsets 𝑖 , such that every stratum 𝑖 is a finite-to-one covering of a
(ℂ∗)𝑟𝑖 × ℂ𝑠𝑖 -bundle over an abelian torsor 𝑇(𝑏).

When the spectral curve Σ is smooth, it is of 𝔰𝔩(2)-type. Then the stratification is trivial and
this result gives a new approach to the identification of regular fibres of the symplectic and odd
orthogonal Hitchin system with abelian torsors originally obtained in [19].
The abelian torsor parametrizes the eigen line bundles of (𝐸, Φ) ∈ 𝖧𝗂𝗍−1

𝐺
(𝑏) and will be referred

to as the abelian part of the spectral data. The (ℂ∗)𝑟𝑖 × ℂ𝑠𝑖 -fibres, the non-abelian part of the spec-
tral data, parametrize Hecke transformations of the Higgs bundle at the singularities of the spec-
tral curve.
The stratification of Theorem 1.1 contains a unique, open and dense stratum 0 ⊂ 𝖧𝗂𝗍−1

𝐺
(𝑏).

This dense stratum is compactified by lower dimensional strata distinguished from 0 by a lower
dimensional moduli space of Hecke parameters. For the unique closed stratum of lowest dimen-
sion, this parameter space is a point and hence this stratum is an abelian torsor.
In the second part of [21], it was studied how the fibres glue together to form the singular

Hitchin fibre. Let us describe the first degeneration in more detail. For 𝐺 = 𝖲𝖫(2, ℂ), the Hitchin
base is the vector space of quadratic differentials𝐻0(𝑋,𝐾2

𝑋
). In this setting, the examples we want

to consider are Hitchin fibres over a quadratic differential 𝑞 ∈ 𝐻0(𝑋, 𝐾2
𝑋
) with a single zero of

order 2, such that all other zeros are simple. For 𝖲𝗉(2𝑛, ℂ) and 𝖲𝖮(2𝑛 + 1, ℂ), there are singular
Hitchin fibres like this, for all 𝑛 ∈ ℕ.
In this example, we have two strata each isomorphic to a (ℂ∗)𝑟𝑖 × ℂ𝑠𝑖 -bundle over the abelian

torsor 𝑇(𝑞) with exponents given by

0 ∶ (𝑟0 = 1, 𝑠0 = 0), 1 ∶ (𝑟1 = 0, 𝑠1 = 0).

In Figure 1, we sketched the situation by compressing the abelian part of the spectral data to a
circle. On the left-hand side, we see a sketch of the open and dense stratum0, where theℂ∗-fibres
are depicted by little tunnels.We obtain the singularHitchin fibre by gluing the twomissing points
of the ℂ∗-fibre to the abelian torsor in a twisted way. Indeed, the Higgs bundles corresponding to
the points zero and infinity do not have the same eigen line bundle and hence do not correspond
to the same point on the abelian torsor. In particular, the fibring over the abelian torsor does not
extend to𝖧𝗂𝗍−1(𝑞). This example can be also found in [14, 20] for the 𝖲𝖫(2, ℂ)-case.More generally,
we will give a global description of the first degenerations up to normalization in Examples 2.22
and 4.3.
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4 HORN

F IGURE 1 Twisted ℙ1-bundle over an abelian torsor

1.2 Towards Langlands duality for singular Hitchin fibres

The Langlands duality of Higgs bundle moduli spaces is a reincarnation of mirror symmetry and
its geometric interpretation in terms of integrable systems by the Strominger–Yau–Zaslow con-
jecture [34]. For Hitchin systems, mirror symmetry is connected to another important duality in
pure mathematics - the so-called Langlands duality. For a algebraic group 𝐺 there exists a Lang-
lands dual group𝐺𝐿, such that conjecturally the representation theory of𝐺 is controlled by Galois
representations into 𝐺𝐿.
Starting from the work of Hausel and Thaddeus [16] for 𝐺 = 𝖲𝖫(𝑛, ℂ), 𝐺𝐿 = 𝖯𝖲𝖫(𝑛, ℂ) and

Hitchin [19] for 𝐺 = 𝖲𝗉(2𝑛, ℂ), 𝐺𝐿 = 𝖲𝖮(2𝑛 + 1, ℂ) and 𝐺 = 𝐺𝐿 = 𝖦2, Donagi and Pantev [6]
established the following formulation of Langlands duality of 𝐺-Hitchin systems for a complex
semi-simple Lie group 𝐺.

(i) The Hitchin bases 𝐵𝐺 and 𝐵𝐺𝐿 are isomorphic and the isomorphism restricts to the regular
loci 𝐵𝗋𝖾𝗀

𝐺
and 𝐵𝗋𝖾𝗀

𝐺𝐿 .
(ii) The regular fibres over corresponding points 𝑏 ∈ 𝐵

𝗋𝖾𝗀

𝐺
and 𝑏′ ∈ 𝐵

𝗋𝖾𝗀

𝐺𝐿 are abelian torsors over
dual abelian varieties.

Concerning Langlands duality for singular Hitchin fibres of 𝔰𝔩(2)-type, we have to take a
closer look at the abelian part of the spectral data. For 𝐺 = 𝖲𝗉(2𝑛, ℂ), the spectral curve Σ has an
involutive deck transformation 𝜎 ∶ Σ → Σ. The quotient defines a complex algebraic curve Σ∕𝜎.
Together with the normalized spectral curve Σ̃, we obtain the commutative diagram of spectral
curves in Figure 2.
By definition the spectral curve Σ is of 𝔰𝔩(2)-type if and only if Σ∕𝜎 is smooth. In this case, there

is an abelian variety associated to the 2-sheeted branched covering of Riemann surfaces Σ̃ → Σ∕𝜎,
the so-called Prym variety. The abelian part of the spectral data for 𝐺 = 𝖲𝗉(2𝑛, ℂ) is a torsor over
this Prym variety.
For 𝐺 = 𝖲𝖮(2𝑛 + 1, ℂ), the abelian part of the spectral data is a union of torsors over a quo-

tient of the Prym variety by the finite group ℤ
2g
2
, where g is the genus of 𝑋. This quotient can be
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 5

F IGURE 2 Commutative diagram of spectral curves

identified with the dual abelian variety. We obtain the following formulation of Langlands corre-
spondence for singular Hitchin fibres of 𝔰𝔩(2)-type.

Corollary 1.2 (Corollary 4.9). Let 𝑏 ∈ 𝐵𝖲𝗉(2𝑛,ℂ) = 𝐵𝖲𝖮(2𝑛+1,ℂ) be of 𝔰𝔩(2)-type, such that the spec-
tral curve is irreducible and reduced. Then the Hitchin fibres 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑏) and 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝑏) are

related as follows.

(i) The abelian parts of the spectral data are unions of torsors over dual abelian varieties.
(ii) The parameter spaces of Hecke transformations are isomorphic.

1.3 Limiting configurations for singular Hitchin fibres

Another recent development in the study of Higgs bundle moduli spaces is the analysis of the
asymptotic of the hyperkähler metric. Evolving from an intriguing conjectural picture developed
by Gaiotto, Moore and Neitzke [12], it was shown that on the regular locus of the Hitchin map the
asymptotic of the hyperkähler metric are described by a so-called semi-flat metric [8, 10, 24]. This
is a hyperkählermetric defined on any algebraically completely integrable system by the theory of
special Kähler manifolds [11]. It does not extend over the singular locus, but Gaiotto, Moore and
Neitzke suggest that it can be modified to define a hyperkähler metric on𝐺 . Recent progress in
this direction can be found in [35].
As the first step in analysing the asymptotic of the hyperkähler metric, Fredrickson, Mazzeo,

Swoboda, Weiss and Witt studied limits of solutions to the Hitchin equation along rays to the
ends of the moduli space [9, 23, 26]. It was shown in [9, 22], that these so-called limiting config-
urations satisfy a decoupled version of the Hitchin equation and are completely determined by
spectral data. In Theorem 5.8, we will use the semi-abelian spectral data explained above to con-
struct solutions to the decoupled Hitchin equation for 𝔰𝔩(2)-type fibres of the symplectic and odd
orthogonal Hitchin system. We conjecture them to be limiting configurations. For 𝖲𝖫(2, ℂ), this
is a theorem by Mochizuki [26].

1.4 Reader’s guide

The paper is structured into four sections. In Section 2, we will introduce 𝔰𝔩(2)-type Hitchin fibres
of the symplecticHitchin system.We prove the identification of theseHitchin fibreswith 𝖲𝖫(2, ℂ)-
Hitchin fibres on Σ∕𝜎 and give the parametrization by semi-abelian spectral data using the results
of [21]. In Section 3, we repeat these considerations for the odd orthogonal group.
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6 HORN

Summing up, we formulate the Langlands correspondence for 𝖲𝗉(2𝑛, ℂ)- and 𝖲𝖮(2𝑛 + 1, ℂ)-
Hitchin fibres of 𝔰𝔩(2)-type in Section 4. Finally, in Section 5, we will construct solutions to the
decoupled Hitchin equation andmotivate why we conjecture theses to be limiting configurations.

2 𝖘𝖑(𝟐)-TYPE FIBRES OF SYMPLECTIC HITCHIN SYSTEMS

2.1 The 𝗦𝗽(𝟐𝒏, ℂ)-Hitchin system

Let𝑋 be a Riemann surface of genus g ⩾ 2 and let𝑀 denote a holomorphic line bundle on𝑋 with
deg(𝑀) > 0.

Definition 2.1. An𝑀-twisted 𝖲𝗉(2𝑛, ℂ)-Higgs bundle is a triple (𝐸, Φ, 𝜔) of a

(i) holomorphic vector bundle 𝐸 of rank 2𝑛,;
(ii) an anti-symmetric bilinear form 𝜔 ∈ 𝐻0(𝑋,

⋀2 𝐸∨), such that 𝜔∧𝑛 ∈ 𝐻0(𝑋, det(𝐸∨)) is non-
vanishing and

(iii) Φ ∈ 𝐻0(𝑋, End(𝐸) ⊗𝑀), such that 𝜔(Φ ⋅, ⋅) = −𝜔(⋅, Φ ⋅).

Theorem 2.2 (Simplified stability condition [13].A 𝖲𝗉(2𝑛, ℂ)-Higgs bundle (𝐸, Φ, 𝜔) is stable, if for
all isotropic Φ-invariant subbundles 0 ≠ 𝐹 ⊊ 𝐸

deg(𝐹) < 0.

Let𝖲𝗉(2𝑛,ℂ)(𝑋,𝑀) denote the moduli space of stable𝑀-twisted 𝖲𝗉(2𝑛, ℂ)-Higgs bundles on 𝑋.
This is a complex algebraic variety (see [13, 29]). For𝑀 = 𝐾𝑋 , it is a complex symplectic manifold
of dimension

(2g − 2)(2𝑛2 + 𝑛).

Let 𝐴 ∈ 𝔰𝔭(2𝑛, ℂ). The characteristic polynomial of 𝐴 is of the form

𝑇2𝑛 + 𝑎2(𝐴)𝑇
2𝑛−2 +⋯ + 𝑎2𝑛(𝐴) ∈ ℂ[𝑇].

The coefficients (𝑎2, … , 𝑎2𝑛) are homogeneous generators of ℂ[𝔤]𝐺 and the associated Hitchin
map is given by

𝖧𝗂𝗍𝖲𝗉(2𝑛,ℂ) ∶ 𝖲𝗉(2𝑛,ℂ)(𝑋,𝑀) → 𝐵2𝑛(𝑋,𝑀) ∶=

𝑛⨁
𝑖=1

𝐻0(𝑋,𝑀2𝑖),

(𝐸, Φ) ↦ (𝑎2(Φ), … , 𝑎2𝑛(Φ)).

This is proper, surjective, flat, holomorphic map [27, 33]. For 𝑀 = 𝐾𝑋 , the Hitchin map
restricted to a dense subset 𝐵𝗋𝖾𝗀

2𝑛
⊂ 𝐵2𝑛 defines an algebraically completely integrable system

[17, 19].
The characteristic equation of (𝐸, Φ) ∈ 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑎2, … , 𝑎2𝑛) is given by

𝜂2𝑛 + 𝑎2𝜂
2𝑛−2 +⋯ + 𝑎2𝑛 = 0.
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 7

Let 𝑝𝑀 ∶ 𝑀 → 𝑋 the bundle map, then 𝜂 can be interpreted as the tautological section 𝜂 ∶ 𝑀 →

𝑝∗
𝑀
𝑀. The pointwise eigenvalues of the Higgs field form the a complex analytic curve

Σ ∶= 𝑍𝑀(𝜂2𝑛 + 𝑝∗
𝑀𝑎2𝜂

2𝑛−2 +⋯ + 𝑝∗
𝑀𝑎2𝑛) ⊂ 𝖳𝗈𝗍𝑀.

This is the so-called spectral curve. The projection 𝑝𝑀 restricts to a 2𝑛-sheeted branched ana-
lytic covering 𝜋 ∶ Σ → 𝑋. Recall that in general the spectral curve is singular at the points,
where different sheets meet. Due to the specific type of characteristic equation the spec-
tral curve comes with an involutive automorphism 𝜎 ∶ Σ → Σ reflecting in the zero section
of𝑀.
For𝑀 = 𝐾𝑋 , the regular locus 𝐵

𝗋𝖾𝗀
2𝑛

is the subset of the Hitchin base, where the spectral curve
Σ is smooth. The fibres over 𝐵𝗋𝖾𝗀

2𝑛
are torsors over the Prym variety

𝖯𝗋𝗒𝗆(Σ → Σ∕𝜎)

(see [17, 19]). We will reprove this result in Theorem 2.20.
The regular locus can be detected by the 𝔰𝔭(2𝑛, ℂ)-discriminant. Consider the representation

of 𝔰𝔭(2𝑛, ℂ)

{
𝐴 ∈ 𝖬𝖺𝗍(2𝑛 × 2𝑛, ℂ) ∣ 𝐴tr𝐽2𝑛 + 𝐽2𝑛𝐴 = 0

}
, where 𝐽2𝑛 =

(
0 id𝑛

−id𝑛 0

)
.

A Cartan subalgebra is given by

𝔥 = {𝐻 = diag(ℎ1, … , ℎ𝑛, −ℎ𝑛, … ,−ℎ1) ∣ ℎ𝑖 ∈ ℂ}.

Define 𝑒𝑖 ∈ 𝔥∨ by 𝑒𝑖(𝐻) = ℎ𝑖 . Then a root system is given by

Δ = {±𝑒𝑖 ± 𝑒𝑗 ∣ 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛} ∪ {±2𝑒𝑖 ∣ 1 ⩽ 𝑖 ⩽ 𝑛}.

The 𝔰𝔭(2𝑛, ℂ)-discriminant is the invariant polynomial defined by product over all roots

𝖽𝗂𝗌𝖼𝔰𝔭 ∶=
∏
𝛼∈Δ

𝛼 ∈ ℂ[𝔥]𝑊 ≅ ℂ[𝔤]𝐺.

There are two types of roots differing by their length. The roots ±2𝑒𝑖 have
√
2 times the length

of the roots ±𝑒𝑖 ± 𝑒𝑗 (as depicted in the Dynkin diagram). The Weyl group𝑊 preserves the inner
product on 𝔥 and hence the set of long/short roots. Therefore, we can define invariant polynomials
in ℂ[𝔤]𝐺 by the product over the long/short roots. The product over the long roots

∏𝑛
𝑖=1 −4𝑒

2
𝑖
is

(up to a scalar) the determinant function on 𝔥. We refer to the product over the short roots as the
reduced 𝔰𝔭(2𝑛, ℂ)-discriminant

𝖽𝗂𝗌𝖼red
𝔰𝔭 ∶=

∏
𝑖<𝑗

−(𝑒𝑖 ± 𝑒𝑗)
2.

We have

𝖽𝗂𝗌𝖼𝔰𝔭 = det 𝖽𝗂𝗌𝖼red
𝔰𝔭 .
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8 HORN

The discriminant of a Higgs bundle (𝐸, Φ) ∈ 𝖲𝗉(2𝑛,ℂ)(𝑋,𝑀) is the section

𝖽𝗂𝗌𝖼𝔰𝔭(Φ) ∈ 𝐻0(𝑋,𝑀2𝑛2).

Being invariant polynomials 𝖽𝗂𝗌𝖼𝔰𝔭 and 𝖽𝗂𝗌𝖼red
𝔰𝔭 factor through theHitchinmap. For𝑎 ∈ 𝐵2𝑛(𝑋,𝑀),

we will write 𝖽𝗂𝗌𝖼𝔰𝔭(𝑎) and 𝖽𝗂𝗌𝖼red
𝔰𝔭 (𝑎) for the (reduced) discriminant computed in this manner.

Lemma 2.3. If all zeros of 𝖽𝗂𝗌𝖼𝔰𝔭(𝑎) ∈ 𝐻0(𝑋,𝑀2𝑛2) are simple, then the spectral curve is smooth.

Proof of Lemma 2.3. Let 𝑥 ∈ 𝑋 be a simple zero of

𝖽𝗂𝗌𝖼𝔰𝔭(𝑎) = 𝑎2𝑛𝖽𝗂𝗌𝖼
red
𝔰𝔭 (𝑎) ∈ 𝐻0(𝑋,𝑀2𝑛2).

If 𝑎2𝑛 has a simple zero at 𝑥 and 𝖽𝗂𝗌𝖼red
𝔰𝔭 (𝑎)(𝑥) ≠ 0, then 𝜋−1(𝑥) ∈ Σ contains a simple ramification

point on the zero section. If 𝖽𝗂𝗌𝖼red
𝔰𝔭 (𝑎) has a simple zero at 𝑥 and 𝑎2𝑛(𝑥) ≠ 0, then 𝜋−1(𝑥) ∈ Σ

contains two simple ramification points 0 ≠ 𝜆, −𝜆 ∈ 𝑀𝑥. Hence, the spectral curve is smooth. □

Example 2.4 (𝖲𝗉 (4, ℂ)). For (𝑎2, 𝑎4) ∈ 𝐵4(𝑋,𝑀), The 𝔰𝔭(4, ℂ)-discriminant is given by

𝖽𝗂𝗌𝖼𝔰𝔭(𝑎2, 𝑎4) = 𝑎4(𝑎
2
2 − 4𝑎4).

If instead we compute the discriminant of the characteristic polynomial, the 𝔰𝔩(4, ℂ)-
discriminant, we obtain

𝖽𝗂𝗌𝖼𝔰𝔩(4,ℂ)(𝑎2, 𝑎4) = 𝑎4(𝑎
2
2 − 4𝑎4)

2.

This expression has higher order zeros for all (𝑎2, 𝑎4) ∈ 𝐵4(𝑋,𝑀). Hence, the 𝔰𝔩(4, ℂ)-
discriminant cannot detect the regular locus of the 𝖲𝗉(4, ℂ)-Hitchin map.

Notation. In the following we will often consider a branched covering of Riemann surfaces
𝑝 ∶ 𝑌 → 𝑋. To avoid confusion, we will refer to points in 𝑌, where different sheets meet or equiv-
alently zeros of 𝜕𝑝 as ramification points and to the images of these points under 𝑝 as branch
points. We denote by 𝑅 = 𝖽𝗂𝗏(𝜕𝑝) ∈ 𝖣𝗂𝗏(𝑌) the ramification divisor and refer to its coefficient 𝑅𝑦
at a ramification point 𝑦 ∈ 𝑌 as the ramification index. 𝐵 ∶= 𝖭𝗆(𝑅) ∈ 𝖣𝗂𝗏(𝑋) is referred to as
branch divisor.

2.2 𝖘𝖑(𝟐)-Type spectral curves

In this subsection, we will define the class of 𝔰𝔩(2)-type fibres of the 𝖲𝗉(2𝑛, ℂ)-Hitchin map.
These Hitchin fibres are distinguished by the singularities of the spectral curve, such that for
𝐺 = 𝖲𝖫(2, ℂ) all Hitchin fibres are of 𝔰𝔩(2)-type.
Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀), Σ ⊂ Tot(𝑀) the associated spectral curve and 𝜎 the involutive biholomor-

phism reflecting in the zero section of𝑀. Being the zero section of a polynomial with coefficients
in a line bundle on a Riemann surface, the spectral curve Σ is algebraic. The involution 𝜎 defines
an algebraic ℤ2-action on Σ. We will construct its quotient in the algebraic category. A geometric
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 9

quotient by this action is given by

𝜋2 ∶ Σ → Σ∕𝜎 ∶= 𝖲𝗉𝖾𝖼(𝜎
Σ),

where 𝜎
Σ
denotes the sheaf of 𝜎-invariant regular functions on Σ. As 𝜋 is invariant under the

ℤ2-action, we obtain the commutative diagram on the right side of this paragraph:

Definition 2.5. An element 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) is called of 𝔰𝔩(2)-type, if Σ∕𝜎 is smooth. In this case,
𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑎) is called 𝔰𝔩(2)-type Hitchin fibre. An 𝖲𝗉(2𝑛, ℂ)-Higgs bundle is called of 𝔰𝔩(2)-type,

if it is contained in an 𝔰𝔩(2)-type Hitchin fibre.

Example 2.6.

(i) Let 𝑛 = 1. Then 𝑋 ≅ Σ∕𝜎 is smooth for all 𝑎2 ∈ 𝐻0(𝑋,𝑀2) and hence all Hitchin fibres are
of 𝔰𝔩(2)-type.

(ii) A regular point 𝑎 ∈ 𝐵
𝗋𝖾𝗀
2𝑛

(𝑋,𝑀) is of 𝔰𝔩(2)-type. In this case, Σ is smooth and so is Σ∕𝜎. The
fibres are isomorphic to 𝖯𝗋𝗒𝗆(Σ → Σ∕𝜎), which in turn determines a regular Hitchin fibre of
the 𝜋∗

𝑛𝐾𝑋-twisted 𝖲𝖫(2, ℂ)-Hitchin system on Σ∕𝜎.
(iii) Consider 𝑛 = 2 and (𝑎2, 𝑎4) ∈ 𝐵4(𝑋,𝑀), such that Σ is smooth except of one point 𝑝 ∈ Σ on

the zero section. Assume that the spectral curve is locally at 𝑝 isomorphic to 𝑍(𝑦2 − 𝑧2) ⊂

ℂ2 with 𝜎 ∶ ℂ2 → ℂ2, (𝑦, 𝑧) ↦ (−𝑦, 𝑧). Locally, the quotient Σ∕𝜎 is isomorphic to the affine
curve 𝖲𝗉𝖾𝖼((ℂ[𝑦, 𝑧]∕(𝑦2 − 𝑧2))𝜎). There is an isomorphism(

ℂ[𝑦, 𝑧]∕(𝑦2 − 𝑧2)
)𝜎

→ ℂ[𝑤], 𝑦2 ↦ 𝑤2, 𝑧 ↦ 𝑤

and hence Σ∕𝜎 is smooth at 𝑝. In conclusion, (𝑎2, 𝑎4) ∈ 𝐵4 ⧵ 𝐵
𝗋𝖾𝗀
4

is of 𝔰𝔩(2)-type.

Proposition 2.7. A point 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) is of 𝔰𝔩(2)-type if and only if all singular points of Σ lie on
the zero section of𝑀 → 𝑋 and only two sheets meet in the singular points. In particular, all singular
points of Σ are of type 𝐴𝑘 , 𝑘 ⩾ 1, that is, higher nodes and cusps.
If 𝖽𝗂𝗌𝖼𝗋𝖾𝖽𝔰𝔭 (𝑎) ∈ 𝐻0(𝑋,𝑀2𝑛(𝑛−1)) has simple zero and 𝑍(𝑎2𝑛−2) ∩ 𝑍(𝑎2𝑛) = ∅, then

𝑎 = (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋,𝑀) is of 𝔰𝔩(2)-type.

Proof. If 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) is of 𝔰𝔩(2)-type, there cannot be any singular points away from the
zero section of 𝑀. Otherwise Σ∕𝜎 is singular, too. Let 𝑦 ∈ Σ be a singular point on the zero
section. Choose a trivialization 𝑀 ||𝑈 ≅ 𝑈 × ℂ over a coordinate neighbourhood (𝑈, 𝑧) cen-
tred at 𝜋(𝑦) and let (𝑧, 𝜆) be the induced coordinate on 𝑀. Then Σ is locally given by the
equation

𝑞(𝑧, 𝜆) ∶= 𝜆2𝑛 + 𝜆2𝑛−2𝑎2(𝑧) +⋯ + 𝑎2𝑛(𝑧) = 0
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10 HORN

with the involution given by 𝜎 ∶ (𝑧, 𝜆) ↦ (𝑧, −𝜆). Because 𝑦 = (0, 0) is a singular point, we have

𝜕

𝜕𝑧
|| (𝑧,𝜆)=(0,0) 𝑞 =

𝜕

𝜕𝜆
|| (𝑧,𝜆)=(0,0) 𝑞 = 0.

Hence, 𝜕

𝜕𝑧
|| 𝑧=0 𝑎2𝑛 = 0, that is, 𝑎2𝑛 has a higher order zero at 𝑧 = 0. Now, Σ∕𝜎 is locally given by

the equation

𝑞𝜎(𝜂, 𝑧) = 𝜂𝑛 + 𝜂𝑛−1𝑎2(𝑧) +⋯ + 𝑎2𝑛(𝑧) = 0

and smooth at (0, 0) by assumption. Therefore,

0 ≠
𝜕

𝜕𝜂
|| (𝑧,𝜂)=(0,0) 𝑞𝜎 = 𝑎2𝑛−2(0).

In particular, 𝜆 = 0 is a zero of 𝑞(0, 𝜆) of multiplicity 2 and hence only two sheets meet in the
singular point.
Conversely, if a singular point 𝑝 lies on the zero section and two sheets of the covering 𝜋

meet there, then Σ is locally given by a polynomial equation of the form 𝑦2 − 𝑧𝑘 = 0. Let 𝑅 =

ℂ[𝑦, 𝑧]∕(𝑦2 − 𝑧𝑘). The ring of invariant functions 𝑅𝜎 is generated by 𝑦2 and 𝑧. In particular,

𝑅𝜎 → ℂ[𝑧], 𝑦2 ↦ 𝑧𝑘, 𝑧 ↦ 𝑧

defines an isomorphism of coordinate rings. Hence, 𝖲𝗉𝖾𝖼(𝑅𝜎) ≅ ℂ and the quotient is smooth.
The discriminant condition implies that, away from the zero section, the only points, where

different sheets meet, are smooth ramification points of ramification index 1. Furthermore,
𝑍(𝑎2𝑛−2) ∩ 𝑍(𝑎2𝑛) = ∅ implies that only two sheets meet at the zero section, in particular at the
singular points. Hence, the spectral curve is of 𝔰𝔩(2)-type by the first criterion. □

Remark 2.8. Nevertheless, there can be smooth ramification points of 𝜋 ∶ Σ → 𝑋 of higher order
on the zero section of𝑀 for an 𝔰𝔩(2)-type spectral curve Σ. For 𝑛 = 2, an example is the spectral
curve defined by (0, 𝑎4) ∈ 𝐵4(𝑋,𝑀) with 𝑎4 having simple zeros.

Remark 2.9. An irreducible algebraic/analytic subset𝑍 ⊂ ℂ𝑛 is a𝐶1-manifold in a neighbourhood
of a point 𝑝 if and if only 𝑍 is locally given by algebraic/analytic equations

𝐹1(𝑥1, … , 𝑥𝑛) = 0, … , 𝐹𝑘(𝑥1, … , 𝑥𝑛) = 0,

such that 𝐷(𝐹1, … , 𝐹𝑘) has maximal rank at 𝑝. The backwards implication follows from the
implicit function theorem. For the converse see [25, p. 13].

Proposition 2.10. Let 𝑝 ∶ 𝑀2 → 𝑋 the bundle map and 𝜂 ∶ 𝑀2 → 𝑝∗𝑀2 the tautological section.
Let (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type. The reduced spectral curve Σ∕𝜎 is the zero divisor of

𝜂𝑛 + 𝑎2𝜂
𝑛−1 +⋯ + 𝑎2𝑛−2𝜂 + 𝑎2𝑛 ∈ 𝐻0(𝑀2, 𝑝∗𝑀2𝑛).

In particular,𝐾Σ∕𝜎 ≅ 𝜋∗
𝑛(𝑀

2𝑛−2 ⊗ 𝐾𝑋) and(𝑅) ≅ 𝜋∗
𝑛𝑀

2𝑛−2, where 𝑅 ∈ 𝖣𝗂𝗏(Σ∕𝜎) is the ramifica-
tion divisor of 𝜋𝑛 ∶ Σ∕𝜎 → 𝑋.
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 11

F IGURE 3 Spectral curves

Proof. The first assertion is clear from the proof of the previous proposition. It is easy to see, that
𝐾𝑀2 ≅ 𝑝∗

𝑀2(𝐾𝑋 ⊗𝑀−2) and hence by the adjunction formula

𝐾Σ∕𝜎 =
(
𝐾𝑀2 ⊗ 𝑝∗

𝑀2𝑀
2𝑛
) || Σ∕𝜎 = 𝜋∗

𝑛

(
𝑀2𝑛−2 ⊗ 𝐾𝑋

)
.

The last assertion follows as (𝑅) = 𝐾Σ∕𝜎 ⊗ 𝜋∗
𝑛𝐾

−1
𝑋
. □

In the subsequent analysis of 𝔰𝔩(2)-type Hitchin fibres, another version of the spectral curve
plays an important role.We can naturally associate a smooth curve Σ̃ to the singular spectral curve
Σ by normalization. It can be defined as the unique extension of the covering 𝜋 || Σ× ∶ Σ× → 𝑋× to
a holomorphic covering of Riemann surfaces. Here ⋅× refers to the complement of ramification,
respectively, branch points. If Σ∕𝜎 is smooth, it can be defined in the same way as the extension
of the covering of Riemann surfaces 𝜋2

|| Σ× ∶ Σ× → (Σ∕𝜎)×. Intrinsically, it is the analytic curve
Σ̃ associated to the integral closure of the structure sheaf. We obtain the commutative diagram in
Figure 3.
For 𝑎2𝑛 ∈ 𝐻0(𝑋,𝑀2𝑛), let

𝑛odd ∶= 𝑛odd(𝑎2𝑛) ∶= #{𝑥 ∈ 𝑍(𝑎2𝑛) ∣ 𝑥 zero of odd order}.

Lemma 2.11. Let (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type. Then the genus of Σ∕𝜎 is given by

g(Σ∕𝜎) = 𝑛(g − 1) + (𝑛2 − 𝑛) deg(𝑀) + 1.

The genus of the normalized spectral curve is

g(Σ̃) = 2𝑛(g − 1) + 2(𝑛2 − 𝑛) deg(𝑀) + 1

2
𝑛odd + 1.

If𝑀 = 𝐾, we have

g(Σ∕𝜎) = (2𝑛2 − 𝑛)(g − 1) + 1
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12 HORN

and

g(Σ̃) = (4𝑛2 − 2𝑛)(g − 1) + 1

2
𝑛odd + 1.

Proof. This is immediate from Proposition 2.10 and the Riemann–Hurwitz formula. □

2.3 𝖘𝖑(𝟐, ℂ)-Type Hitchin fibres are fibres of an 𝗦𝗟(𝟐, ℂ)-Hitchin map

In this subsection, we prove the main theorem in the 𝖲𝗉(2𝑛, ℂ)-case identifying the 𝔰𝔩(2)-type
Hitchin fibres with fibres of an 𝖲𝖫(2, ℂ)-Hitchin system on the spectral curve Σ∕𝜎.

Proposition 2.12. Let 𝑝 ∶ 𝑌 → 𝑋 be an 𝑠 ∶ 1 covering of Riemann surfaces. Fix a square root
(𝑅)

1
2 of the ramification divisor𝑅 ∈ 𝖣𝗂𝗏(𝑌). Let (𝐸, Φ) ∈ 𝖲𝖫(2,ℂ)(𝑌, 𝑝

∗𝑀), then the pushforward

(𝑝∗(𝐸 ⊗ (𝑅)
1
2 ), 𝑝∗Φ) defines a𝑀-twisted 𝖲𝗉(2𝑠, ℂ)-Higgs bundle on 𝑋.

Recall that the ramification divisor 𝑅 has even degree by the Riemann–Hurwitz formula.

Proof. Let 𝐸′ ∶= 𝐸 ⊗ (𝑅)
1
2 . The pushforward 𝑝∗𝐸′ is locally free and

𝑝∗Φ ∶ 𝑝∗𝐸
′ → 𝑝∗(𝐸

′ ⊗ 𝑝∗𝑀) = 𝑝∗𝐸
′ ⊗𝑀

defines a𝑀-twisted Higgs field on 𝑝∗𝐸′. The symplectic form𝜔 ∈ 𝐻0(𝑌,
⋀2 𝐸∨) induces a degen-

erate symplectic form 𝜔′ = 𝜔(𝜕𝑝)−1 ∈ 𝐻0(𝑌,
⋀2 𝐸∨(−𝑅)) on 𝐸′. Let 𝑈 ⊂ 𝑋 be trivially covered,

such that 𝐸′ || 𝑝−1(𝑈) is trivial. Hence 𝑝−1(𝑈) = 𝑉1 ⊔⋯ ⊔ 𝑉𝑠. Let 𝑠𝑖𝑗 with 𝑖 = 1, 2; 𝑗 = 1,… , 𝑠 be
symplectic frames of 𝐸′ || 𝑉𝑗

, that is,

𝜔′ || 𝑉𝑗
=

(
0 1

−1 0

)
,

with respect to 𝑠1𝑗, 𝑠2𝑗 . Then the induced symplectic form on 𝑝∗(𝐸
′) ||𝑈 is given by

𝑝∗𝜔
′ ||𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1

−1 0

⋱

0 1

−1 0

⎞⎟⎟⎟⎟⎟⎟⎠
with respect to the frame 𝑠𝑖𝑗 . This defines a symplectic form 𝑝∗𝜔

′ on 𝑝∗𝐸
′ || 𝑌× , where 𝑌× = 𝑌 ⧵

𝗌𝗎𝗉𝗉𝑅. Obviously, 𝑝∗𝜔′(𝑝∗Φ ⋅, ⋅) = −𝑝∗𝜔
′(⋅, 𝑝∗Φ ⋅).

To extend the symplectic form over the branch points, we use a description of the alge-
braic pushforward by local ℤ𝑘-invariant bundles at the corresponding ramification point. Let
𝜔′ ∶= 𝜔(𝜕𝑝)−1 ∈ 𝐻0(𝑌,

⋀2(𝐸′)∨). Let 𝑦 ∈ 𝑌 be a ramification point of order 𝑘. Choose coordi-
nate neighbourhoods (𝑉, 𝑧) centred at 𝑦 and (𝑈,𝑤) centred at 𝑝(𝑦), such that the projection map
is given by 𝑝 ∶ 𝑧 ↦ 𝑧𝑘. Let 𝜉 a primitive root of unity of order 𝑘. Then 𝜏 ∶ 𝑉 → 𝑉, 𝑧 ↦ 𝜉𝑧 induces
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 13

a local ℤ𝑘-action interchanging the sheets. Consider the local holomorphic ℤ𝑘-vector bundle

𝐹 ∶= 𝐸′ || 𝑉 ⊕ 𝜏∗𝐸′ || 𝑉 ⊕⋯⊕ (𝜏𝑘−1)∗𝐸′ || 𝑉.
Let 𝑠1, 𝑠2 be a symplectic frame of 𝐸′ || 𝑉 , then

𝑠𝑖𝑗 ∶=
1

𝑘
(𝑠𝑖 + 𝜉𝑗𝜏∗𝑠𝑖 + 𝜉2𝑗(𝜏2)∗𝑠𝑖 +⋯ + 𝜉(𝑘−1)𝑗(𝜏𝑘−1)∗𝑠𝑖)

for 𝑖 ∈ {1, 2} and 0 ⩽ 𝑗 ⩽ 𝑘 − 1 define a frame of 𝐹, such that the ℤ𝑘-action is given by

diag(1, 1, 𝜉, 𝜉, … , 𝜉𝑘−1, 𝜉𝑘−1).

The induced degenerate symplectic form Ω = 𝜔′ + 𝜏∗𝜔′ +⋯ + (𝜏𝑘−1)∗𝜔′ is given by

Ω(𝑠1𝑙, 𝑠2𝑚) =

{
𝑧−𝑘+1 for 𝑙 + 𝑚 = 𝑘 − 1

0 otherwise.

We obtain a localℤ𝑘-invariant holomorphic vector bundle 𝐹̂ descending to 𝑝(𝑉) as a Hecke trans-
formation

0 → 𝐹̂ → 𝐹 →

𝑘−1⨁
𝑖=1

(𝑦∕𝑧
𝑖𝑦)

2 → 0

introducing the new transition function

𝜓01 = diag(1, 1, 𝑧, 𝑧, … , 𝑧𝑘−1, 𝑧𝑘−1)

with respect to the frame 𝑠𝑖𝑗 . The Hecke transformed Higgs bundle is ℤ𝑘-invariant and descends
to a local frame of the pushforward 𝑝∗(𝐸′, Φ) on 𝑝(𝑉). The induced symplectic form is given by

Ω̂ = (𝜓∗
01Ω)(𝑠1𝑙, 𝑠2𝑚) =

{
1 for 𝑙 + 𝑚 = 𝑘 − 1

0 otherwise,

where 𝑠𝑖𝑗 denotes the induced frame of 𝐹̂ at 𝑦. Hence, Ω̂ descends to a non-degenerate symplectic
form on 𝑝∗𝐸

′. Again it is clear that the induced Higgs field 𝑝∗Φ is anti-symmetric with respect to
the symplectic form. □

In the same way one proves:

Proposition 2.13. Let 𝜋 ∶ 𝑌 → 𝑋 be a branched covering of Riemann surfaces. Let 𝐸, 𝐹 holomor-
phic vector bundles on 𝑌 and 𝛽 ∶ 𝐸 ⊗ 𝐹 → ℂ a non-degenerate bilinear pairing. Fix a square root
(𝑅)

1
2 . Then there is an induced non-degenerate pairing

𝜋∗(𝐸 ⊗ (𝑅)
1
2 ) ⊗ 𝜋∗(𝐹 ⊗ (𝑅)

1
2 ) → ℂ.
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14 HORN

Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type. The spectral curve Σ comes with a section 𝜆 ∈ 𝐻0(Σ, 𝜋∗𝑀)

solving the spectral equation. The product 𝜆𝜎∗(𝜆) ∈ 𝐻0(Σ, 𝜋∗𝑀2) defines a 𝜎-invariant section
descending to 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗

𝑛𝑀
2).

Proposition 2.14. Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type and 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2) the induced sec-
tion. There is a holomorphic map

𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) → 𝖧𝗂𝗍−1
𝖲𝖫(2,ℂ)

(𝑏2) ⊂ 𝖲𝖫(2,ℂ)(Σ∕𝜎, 𝜋
∗
𝑛𝑀).

Proof. Let (𝐸, Φ) ∈ 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎). The pullback of the characteristic polynomial along
𝜋𝑛 ∶ Σ∕𝜎 → 𝑋

𝜆2𝑛 + 𝜋∗
𝑛𝑎2𝜆

2𝑛−2 +⋯ + 𝜋∗
𝑛𝑎2𝑛

factors through 𝜆2 + 𝑏2 and hence defines a generalized locally free eigen sheaf 𝐸2 by

0 → 𝐸2 → 𝜋∗
𝑛𝐸

𝜋∗
𝑛Φ

2+𝑏2id
����������→ 𝜋∗

𝑛(𝐸 ⊗𝑀2) → 𝐸2 ⊗ 𝜋∗
𝑛𝑀

2𝑛 → 0.

Here the cokernel of 𝜋∗
𝑛Φ

2 + 𝑏2id is identified with 𝐸2 ⊗ 𝜋∗
𝑛𝑀

2𝑛 using the symplectic form. The
dualized exact sequence tensored with 𝜋∗

𝑛𝑀
2 results in

0 → 𝐸∨
2 ⊗ 𝜋∗

𝑛𝑀
2−2𝑛 → 𝜋∗

𝑛𝐸
∨

(𝜋∗
𝑛Φ

2+𝑏2id)
∨

������������→ 𝜋∗
𝑛(𝐸

∨ ⊗𝑀2) → 𝐸∨
2 ⊗ 𝜋∗

𝑛𝑀
2 → 0.

The symplectic form 𝜔 identifies 𝐸 with 𝐸∨ and from the anti-symmetry of the Higgs field the
bundle map 𝜋∗

𝑛Φ
2 + 𝑏2id𝜋∗

𝑛𝐸
is self-dual. Hence, there is an induced isomorphism 𝐸2 ≅ 𝐸∨

2
⊗

𝜋∗
𝑛𝑀

2−2𝑛. In particular,𝜔 restricts to a symplectic form𝜔2 on𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1 and the inducedHiggs
fieldΦ2 on𝐸2 is anti-symmetric with respect to it. Hence, (𝐸2, Φ2) is a𝜋∗

𝑛𝑀-twisted 𝖲𝖫(2, ℂ)-Higgs
bundle on Σ∕𝜎. Stability will be discussed in the proof of the following theorem. □

Theorem 2.15. Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type and 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2) the induced section.
The holomorphic map

𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) → 𝖧𝗂𝗍−1
𝖲𝖫(2,ℂ)

(𝑏2)

defined in Proposition 2.14 is a biholomorphism. Its inverse is given by Proposition 2.12.

Proof. We need to show that the holomorphic maps defined in Propositions 2.12 and 2.14
with (𝑅)

1
2 = 𝜋∗

𝑛𝑀
𝑛−1 are inverse to each other. Let (𝐸2, Φ2) ∈ 𝖧𝗂𝗍−1(𝑏2). By Proposition 2.12,

(𝜋𝑛∗(𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1), 𝜋𝑛∗Φ2) defines a 𝖲𝗉(2𝑛, ℂ)-Higgs bundle on𝑋with spectral curveΣ.We have
a natural map

𝐸2 ⊗ 𝜋∗
𝑛𝑀

1−𝑛 → 𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1

by multiplying with the canonical section of (𝑅) ≅ 𝜋∗
𝑛𝑀

2𝑛−2. This induces an inclusion

𝜄 ∶ 𝐸2 ⊗ 𝜋∗
𝑛𝑀

1−𝑛 → 𝜋∗
𝑛𝜋𝑛∗(𝐸2 ⊗ 𝜋∗

𝑛𝑀
𝑛−1).

It is clear by construction that the 𝗂𝗆(𝜄) = 𝗄𝖾𝗋(𝜋∗
𝑛𝜋𝑛∗Φ

2
2
+ 𝑏2id).
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 15

For the converse, let (𝐸, Φ) ∈ 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) and denote by (𝐸2, Φ2) the induced 𝖲𝖫(2, ℂ)-Higgs
bundle on Σ∕𝜎. It is clear that

𝜋𝑛∗(𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1, Φ2)
|| 𝑋× ≅ (𝐸,Φ) || 𝑋×,

where 𝑋× = 𝑋 ⧵ 𝜋𝑛(𝗌𝗎𝗉𝗉𝑅). We are left with showing that this isomorphism extends over the
branch points. Let 𝑥 ∈ 𝑋 be a branch point. For simplicity of notation we assume that it corre-
sponds to a ramification point 𝑦 ∈ 𝑌 of index 𝑛 − 1. Let (𝑉, 𝑧), respectively, (𝑈,𝑤) be coordinate
neighbourhoods centred at 𝑦, respectively, 𝑥, such that the covering is given by 𝜋𝑛 ∶ 𝑉 → 𝑈, 𝑧 ↦

𝑧𝑛. We have a local automorphism 𝜏 ∶ 𝑉 → 𝑉, 𝑧 ↦ 𝜉𝑧, where 𝜉 is a primitive 𝑛th root of unity.
This automorphism interchanging the sheets induces a local ℤ𝑘-action on Σ∕𝜎 at 𝑦. The pullback
𝜋∗
𝑛(𝐸, Φ)

|| 𝑉 is invariant by this ℤ𝑘-action. As explained in the proof of Proposition 2.12, we can
obtain a frame of 𝜋∗

𝑛𝜋𝑛∗(𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1, Φ2) || 𝜋−1
𝑛 𝑋× at 𝑦 by extending

(𝐹, Ψ) = (𝐸′, Φ) || 𝑉× ⊕ 𝜏∗(𝐸′, Φ) || 𝑉× ⊕⋯⊕ (𝜏𝑘−1)∗(𝐸′, Φ) || 𝑉×

to a 𝜏-invariant 𝖲𝖫(2𝑛, ℂ)-Higgs bundle at 𝑦. This is the unique way to do so. Hence, the isomor-
phism extends over the branch points.
Finally, let us check that this isomorphism preserves stability. If Σ is irreducible, there are no

Higgs field-invariant subbundles of 𝐸2 or 𝐸 and hence all Higgs bundles in the corresponding
𝖲𝖫(2, ℂ)-Hitchin, respectively, 𝖲𝗉(2𝑛, ℂ)-Hitchin fibre are stable. So let us assume Σ is reducible.
Being 𝔰𝔩(2)-type the spectral curve has two irreducible components Σ = Σ1 ∪ Σ2 interchanged
by 𝜎. Let 𝐿 ⊂ 𝐸2 be an Φ2-invariant line bundle, then 𝑉 = 𝜋𝑛∗𝐿 ⊗ 𝜋∗

𝑛𝑀
𝑛−1 is a 𝜋𝑛∗Φ2-invariant

isotropic subbundle of 𝐸 = 𝜋𝑛∗𝐸2 ⊗ 𝜋∗
𝑛𝑀

𝑛−1 of degree

deg(𝑉) = deg
(
𝖭𝗆(𝐿) ⊗𝑀𝑛(𝑛−1) ⊗ det(𝜋𝑛∗Σ∕𝜎)

)
= deg(𝐿), (1)

where we used that

det(𝜋𝑛∗Σ∕𝜎)
2 = (−𝐵) = 𝖭𝗆(−𝑅) = 𝑀2𝑛(1−𝑛).

Hence, if (𝐸, Φ, 𝜔) is stable, (𝐸2, Φ2) is stable. Furthermore, allΦ-invariant subbundles of (𝐸, Φ, 𝜔)
are of this form. (In other words, there are two of them corresponding to the irreducible compo-
nents of Σ.) Hence, the converse holds true as well. □

2.4 Semi-abelian spectral data for 𝖘𝖑(𝟐)-type Hitchin fibres

In this section, we apply the results of [21] to 𝖲𝗉(2𝑛, ℂ)-Hitchin fibres of 𝔰𝔩(2)-type. Let us start by
defining the twisted Prym varieties, the abelian part of the spectral data.

Definition 2.16. Let 𝑝 ∶ 𝑌 → 𝑋 be branched covering of Riemann surfaces. Let 𝑁 ∈ 𝖯𝗂𝖼(𝑋).
Define

𝖯𝗋𝗒𝗆𝑁(𝑝) ∶= 𝖭𝗆−1
𝑝 (𝑁),

where 𝖭𝗆𝑝 ∶ 𝖯𝗂𝖼(𝑌) → 𝖯𝗂𝖼(𝑋) is the norm map associated to 𝑝.
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16 HORN

Lemma 2.17. 𝖯𝗋𝗒𝗆𝑁(𝑝) is an abelian torsor over the Prym variety 𝖯𝗋𝗒𝗆𝑋
(𝑝) = 𝗄𝖾𝗋(𝖭𝗆𝑝), when-

ever it is non-empty. If 𝑝 ∶ 𝑌 → 𝑋 is two-to-one and 𝜎 ∶ 𝑌 → 𝑌 the involution interchanging the
sheets, then

𝖯𝗋𝗒𝗆𝑁 ⊆ {𝐿 ∈ 𝖯𝗂𝖼(𝑌) ∣ 𝐿 ⊗ 𝜎∗𝐿 = 𝑝∗𝑁}.

If 𝑝 is not unbranched, this is an equality.

Proof. The first statement is clear. For the second, see [21] Proposition 5.6. □

In the same vein as in [21] for 𝖲𝖫(2, ℂ), the semi-abelian spectral data will define a stratification
of the singular Hitchin fibres. The strata are indexed by so-called Higgs divisors.

Definition 2.18. Let 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛
𝑋
). An associated Higgs divisor is a divisor𝐷 ∈ 𝖣𝗂𝗏(𝑋), such

that 𝗌𝗎𝗉𝗉(𝐷) ⊂ 𝑍(𝑎2𝑛) and for all 𝑥 ∈ 𝑍(𝑎2𝑛)

0 ⩽ 𝐷𝑥 ⩽
1

2
𝗈𝗋𝖽𝑥(𝑎2𝑛).

Lemma 2.19. Let 𝑎 ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type. Let (𝐸, Φ) ∈ 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) and 𝑥 ∈ 𝑍(𝑎2𝑛) ⊂ 𝑋

a zero of order𝑚. There exists a coordinate neighbourhood (𝑈, 𝑧) centred at 𝑥 and a frame of 𝐸 ||𝑈 ,
such that the Higgs field is given by

Φ =

⎛⎜⎜⎜⎝
0 𝑧𝑙𝑥

𝑧𝑚−𝑙𝑥 0

𝜙

⎞⎟⎟⎟⎠ d𝑧
for some 0 ⩽ 𝑙𝑥 ⩽

𝑚

2
. Here 𝜙 has pointwise non-zero eigenvalues. The Higgs divisor of (𝐸, Φ) is the

divisor

𝐷 = 𝐷(𝐸,Φ) =
∑

𝑥∈𝑍(𝑎2𝑛)

𝑙𝑥.

Proof. By assumption 0 is an eigenvalue ofΦ𝑥 of algebraic multiplicity 2. Therefore, we can find a
coordinate neighbourhood (𝑈, 𝑧) centred at 𝑥, such that (𝐸, Φ) ||𝑈 = (𝐸0 ⊕ 𝐸1, Φ0 ⊕ Φ1), where
𝐸0 is of rank 2withΦ0(𝑥) nilpotent and 𝐸1 is of rank 2𝑛 − 2withΦ1 having non-zero eigenvalues.
Moreover, by the anti-symmetry of Φ the symplectic form 𝜔 restricts to a symplectic form on 𝐸0

and 𝐸1. Now, we can bring (𝐸0, Φ0) in the desired form by [21] Lemma 5.1. □

For 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛
𝑋
), let

𝑛even ∶= #{𝑥 ∈ 𝑍(𝑎2𝑛) ∣ 𝑥 zero of even order},

𝑛odd ∶= #{𝑥 ∈ 𝑍(𝑎2𝑛) ∣ 𝑥 zero of odd order}.

For 𝐷 ∈ 𝖣𝗂𝗏+(𝑋) a Higgs divisor associated to 𝑎2𝑛, let

𝑛diag(𝐷) ∶= #{𝑥 ∈ 𝑍(𝑎2𝑛) ∣ 𝐷𝑥 = 1

2
𝗈𝗋𝖽𝑥(𝑎2𝑛)}.
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 17

Theorem 2.20. Let 𝑎 ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type, such that Σ is irreducible and reduced. There
is a stratification

𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) =
⨆
𝐷

𝐷

by locally closed analytic sets 𝐷 indexed by Higgs divisors associated to 𝑎2𝑛. If 𝑎2𝑛 has at least one
zero of odd order, every stratum 𝑆𝐷 is a holomorphic fibre bundle

(ℂ∗)𝑟 × (ℂ)𝑠 → 𝐷 → 𝖯𝗋𝗒𝗆𝜋∗
𝑛𝐾

−1
𝑋

(𝐷)(𝜋̃2)

with

𝑟 = 𝑛even − 𝑛diag(𝐷), 𝑟 + 𝑠 = 2𝑛(g − 1) − deg(𝐷) −
𝑛odd
2

.

If all zeros of𝑎2𝑛 have even order, 𝜋̃2 is unbranched and each stratum𝐷 is a 2 ∶ 1-branched covering
of a holomorphic (ℂ∗)𝑟 × (ℂ)𝑠-bundle over

𝖯𝗋𝗒𝗆𝐼𝜋∗
𝑛𝐾

−1
𝑋

(𝐷)(𝜋̃2).

with 𝑟, 𝑠 given by above formulae. Here, 𝐼 denotes the unique non-trivial line bundle on Σ∕𝜎, such
that 𝜋̃∗

2
𝐼 = Σ̃. In both cases,

dim𝐷 = (2𝑛2 + 𝑛)(g − 1) − deg(𝐷).

Proof. This is a direct consequence of Theorem 2.15 and the stratification result for singular fibres
of 𝖲𝖫(2, ℂ)-Hitchin systems with irreducible and reduced spectral curve in [21] Theorem 5.13. The
dimension of the twisted Prym varieties is given by

dim𝖯𝗋𝗒𝗆(𝜋̃2) = g(Σ̃) − g(Σ∕𝜎) = 𝑛(2𝑛 − 1)(g − 1) +
𝑛odd
2

. □

Theorem 2.21. Let 𝑎 = (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type, such that 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛
𝑋
) has

only zeros of odd order. Then 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) is a holomorphic fibre bundle over 𝖯𝗋𝗒𝗆𝜋∗
𝑛𝐾

−1
𝑋
(𝜋̃2) with

fibres given by the compact moduli of Hecke parameters described in [21] Section 7.

Proof. This is a direct consequence of [21, Theorem 7.13]. □

Putting together [21, Corollary 7.14, 7.16 and Example 8.3, 8.5] we obtain:

Example 2.22. Let 𝑎 = (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type. Let 𝑎2𝑛 have 𝑘𝑙 zero of order
𝑙 for 𝑙 ∈ {2, 3, 4, 5} and at least one zero of odd order. Then up to normalization 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑎) is

given by a holomorphic fibre bundle

(ℙ1)𝑘2+𝑘3 × (ℙ(1, 1, 2))𝑘4+𝑘5 → 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) → 𝖯𝗋𝗒𝗆𝜋∗
𝑛𝐾

−1
𝑋
(𝜋̃2).
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18 HORN

Theorem2.23. The fibre bundles over abelian varieties appearing inTheorems 2.20, 2.21 andExam-
ple 2.22 are smoothly trivial.

Proof. This will be proved in Section 5 using analytic techniques. □

Corollary 2.24. Let 𝑎 = (𝑎2, … , 𝑎2𝑛) ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) of be 𝔰𝔩(2)-type, such that 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛
𝑋
)

has at least one zero of odd order, then𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎) is an irreducible complex space. If all zero of 𝑎2𝑛
have even order, then 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑎) is connected and has four irreducible components.

Proof. This follows from [21, Corollary 8.6 and Theorem 8.8]. □

Remark 2.25. Note that the identification of Hitchin fibres in Theorem 2.15 is not restricted
to 𝔰𝔩(2)-type Hitchin fibres with irreducible and reduced spectral curve. In particular,
the parametrization of singular Hitchin fibres with reducible spectral curve in [14, Sec-
tion 7] describes certain 𝔰𝔩(2)-type Hitchin fibres of the 𝖲𝗉(2𝑛, ℂ)-Hitchin system, for all
𝑛 ∈ ℕ.

3 𝖘𝖑(𝟐)-TYPE FIBRES OF ODD ORTHOGONAL HITCHIN SYSTEMS

3.1 The 𝗦𝗢(𝟐𝒏 + 𝟏, ℂ)-Hitchin system

Let 𝐺 = 𝖲𝖮(2𝑛 + 1, ℂ) and

𝔰𝔬(2𝑛 + 1, ℂ) =
{
𝐴 ∈ 𝖬𝖺𝗍(𝑛 × 𝑛, ℂ) ∣ 𝐴tr𝐽2𝑛+1 + 𝐽2𝑛+1𝐴 = 0

}
,

where

𝐽2𝑛+1 =

⎛⎜⎜⎜⎝
0 id𝑛 0

id𝑛 0 0

0 0 1

⎞⎟⎟⎟⎠ .
Then a Cartan subalgebra is given by

𝔥 = {𝐻 = diag(ℎ1, … , ℎ𝑛, −ℎ1, … ,−ℎ𝑛, 0) ∣ ℎ𝑖 ∈ ℂ}.

Define by 𝑒𝑖 ∈ 𝔥∨ by 𝑒𝑖(𝐻) = ℎ𝑖 . Then a root system is given by

Δ = {±𝑒𝑖 ± 𝑒𝑗 ∣ 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛, 𝑖 ≠ 𝑗} ∪ {±𝑒𝑖 ∣ 1 ⩽ 𝑖 ⩽ 𝑛}.

As before, the 𝔰𝔬(2𝑛 + 1, ℂ)-discriminant decomposes by the length of the roots

𝖽𝗂𝗌𝖼𝔰𝔬 =

𝑛∏
𝑖=1

−𝑒2𝑖 𝖽𝗂𝗌𝖼
𝗋𝖾𝖽
𝔰𝔬 , where 𝖽𝗂𝗌𝖼𝗋𝖾𝖽𝔰𝔬 =

∏
𝑖≠𝑗

−(𝑒𝑖 ± 𝑒𝑗)
2.
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 19

The characteristic polynomial of 𝐴 ∈ 𝔰𝔬(2𝑛 + 1, ℂ) has the form

𝜆(𝜆2𝑛 + 𝑎2𝜆
2𝑛−2 +⋯ + 𝑎2𝑛).

The coefficients 𝑎2, … , 𝑎2𝑛 form a basis of the invariant polynomials ℂ[𝔤]𝐺 .

Definition 3.1. An𝑀-twisted 𝖲𝖮(𝑚,ℂ)-Higgs bundle is a triple (𝐸, Φ, 𝜔) of a

(i) holomorphic vector bundle 𝐸 of rank𝑚 with det(𝐸) ≅ 𝑋 ;
(ii) a holomorphic non-degenerate symmetric bilinear form 𝜔 ∈ 𝐻0(𝑋, 𝑆2𝐸∨) and
(iii) a Higgs field Φ ∈ 𝐻0(𝑋, End(𝐸) ⊗𝑀), such that 𝜔(Φ ⋅, ⋅) = −𝑤(⋅, Φ ⋅).

(𝐸, Φ, 𝜔) is called stable, if for all isotropic Φ-invariant subbundles 0 ≠ 𝐹 ⊊ 𝐸

deg(𝐹) < 0

(see [13] for this simplified stability condition).

Let𝖲𝖮(𝑚,ℂ)(𝑋,𝑀) be themoduli space of stable𝑀-twisted 𝖲𝖮(𝑚,ℂ)-Higgs bundles on𝑋. For
𝑚 = 2𝑛 + 1 the Hitchin map is given by

𝖧𝗂𝗍𝖲𝖮(2𝑛+1,ℂ) ∶ 𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) → 𝐵𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) ∶=

𝑛⨁
𝑖=1

𝐻0(𝑋,𝑀2𝑖),

(𝐸, Φ, 𝜔) ↦ (𝑎2(Φ), … , 𝑎2𝑛(Φ)).

In particular, we observe that 𝐵𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) = 𝐵2𝑛(𝑋,𝑀). Let (𝐸, Φ, 𝜔) ∈

𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎2, … , 𝑎2𝑛), then the characteristic polynomial of Φ is given by

𝜆(𝜆2𝑛 + 𝑎2𝑛−2𝜆
2𝑛−2 +⋯ + 𝑎2𝑛).

Hence, the spectral curve decomposes in two irreducible components 0 ∪ Σ, where 0 is the image
of the zero section in𝑀 and Σ is the 𝖲𝗉(2𝑛, ℂ)-spectral curve associated to (𝑎2, … , 𝑎𝑛).

Definition 3.2. An element of the Hitchin base 𝑎 ∈ 𝐵𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) is called of 𝔰𝔩(2)-type, if
Σ∕𝜎 is smooth. In this case, the corresponding Hitchin fibre 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝑎) is called of 𝔰𝔩(2)-

type. A 𝑀-twisted 𝖲𝖮(2𝑛 + 1, ℂ)-Higgs bundles is of 𝔰𝔩(2)-type, if it is contained in a 𝔰𝔩(2)-type
Hitchin fibre.

From Lemma 2.3 and Proposition 2.7, we immediately have

Lemma3.3. Let𝑎 ∈ 𝐵2𝑛(𝑋,𝑀). If all zeros of 𝖽𝗂𝗌𝖼𝔰𝔬(𝑎) ∈ 𝐻0(𝑋,𝑀2𝑛2)are simple, thenΣ is smooth.
If 𝖽𝗂𝗌𝖼𝗋𝖾𝖽𝔰𝔬 (𝑎) ∈ 𝐻0(𝑋,𝑀2𝑛(𝑛−1)) has simple zeros, then 𝑎 is of 𝔰𝔩(2)-type.

Hence, the descriptions and properties of 𝔰𝔩(2)-type spectral curves in Section 2.2 carry over to
𝔰𝔩(2)-type Hitchin fibres of the odd orthogonal Hitchin system by adding the irreducible compo-
nent 0.
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20 HORN

3.2 Odd orthogonal 𝖘𝖑(𝟐, ℂ)-type fibres as fibres of an
𝗦𝗢(𝟑, ℂ)-Hitchin map

Lemma 3.4. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) be of 𝔰𝔩(2)-type. Let 𝑝 ∈ 𝑍(det(Φ)) be a zero of
order𝑚, then there exists a coordinate neighbourhood (𝑈, 𝑧) centred at𝑝 and an orthogonal splitting
(𝐸, Φ) ||𝑈 = (𝑉0 ⊕ 𝑉1, Φ0 ⊕ Φ1), such that 𝑉0 is of rank 3 and Φ0(𝑝) is nilpotent, and 𝑉1 is of rank
2𝑛 − 2 containing the eigenspaces to eigenvalues 𝜆 with 𝜆(𝑝) ≠ 0. There exists a orthogonal frame of
𝑉0

||𝑈 , such that
Φ0(𝑧) = 𝑧𝑙𝑝

⎛⎜⎜⎜⎝
0 1 − 𝑧𝑚−2𝑙𝑝 0

𝑧𝑚−2𝑙𝑝 − 1 0 𝑖(𝑧𝑚−2𝑙𝑝 + 1)

0 −𝑖(𝑧𝑚−2𝑙𝑝 + 1) 0

⎞⎟⎟⎟⎠ d𝑧.

Proof. By construction (𝑉0, Φ0) is a 𝖮(3, ℂ)-Higgs bundle on 𝑈. Due to the exceptional isomor-
phism 𝖲𝖮(3, ℂ) ≅ 𝖯𝖲𝖫(2, ℂ) the Higgs field Φ0 can be obtained as 𝖺𝖽(Ψ) for a 𝖲𝖫(2, ℂ)-Higgs field
Ψ (cf. Section 4). By [21, Lemma 5.1], we can find a local frame, such that

Ψ =

(
0 𝑧𝑙𝑝

𝑧𝑚−𝑙𝑝 0

)
d𝑧.

With respect to the induced local frame of 𝑉0 the Higgs field Φ is given by

Φ = 𝖺𝖽(Ψ) =

⎛⎜⎜⎜⎝
0 −𝑧𝑙𝑝 0

−𝑧𝑚−𝑙𝑝 0 𝑧𝑙𝑝

0 𝑧𝑚−𝑙𝑝 0

⎞⎟⎟⎟⎠ d𝑧

and the orthogonal structure induced by the Killing form by

⎛⎜⎜⎜⎝
1

1

1

⎞⎟⎟⎟⎠ .
Choosing an orthogonal frame we obtain the desired form. □

Definition 3.5. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) be of 𝔰𝔩(2)-type. The Higgs divisor of (𝐸, Φ, 𝜔)
is the divisor

𝐷(𝐸,Φ, 𝜔) ∶=
∑

𝑝∈𝑍(𝑎2𝑛)

𝑙𝑝,

where 𝑙𝑝 is defined by the previous lemma.

Lemma 3.6. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀) be of 𝔰𝔩(2)-type and 𝐷 its Higgs divisor, then

(i) 𝗄𝖾𝗋(Φ) ≅ 𝑀−𝑛(𝐷) and 𝜔 || 𝗄𝖾𝗋(Φ) = 𝑎2𝑛
𝑠2
𝐷

∈ 𝐻0(𝑋,𝑀2𝑛(−2𝐷)), where 𝑠𝐷 denotes the canonical

section of (𝐷);
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 21

(ii) there is an exact sequence of coherent sheaves

0 → (𝗄𝖾𝗋(Φ) ⊕ 𝗄𝖾𝗋(Φ)⟂) → (𝐸) →  → 0,

where  is a torsion sheaf with det( ) ≅ (Λ − 2𝐷);
(iii) (𝐸, Φ, 𝜔) is uniquely determined by 𝐷 and(

𝗄𝖾𝗋(Φ)⟂, Φ || 𝗄𝖾𝗋(Φ)⟂ , 𝜔 || 𝗄𝖾𝗋(Φ)⟂).
Proof.

(i) The proof of the first assertion is closely following an argument in [19, Section 4.1/4.2] using
the local form for the Higgs field describe in Lemma 3.4. Let 𝑥 ∈ 𝑋 and (𝑈, 𝑧) a coordinate
chart centred at 𝑥. Consider an orthogonal splitting 𝐸 ||𝑈 = 𝑉0 ⊕ 𝑉2 ⊕⋯⊕𝑉𝑛, such that
𝑉0 is as in the lemma and 𝑉𝑖 for 𝑖 ⩾ 2 is rank 2 containing the eigenspaces to eigenvalues
±𝜆𝑖 ≠ 0. Let 𝑒0, 𝑒1, 𝑒2 be an orthogonal frame for 𝑉0, such that Φ0 has the form described in
the lemma and 𝑒2𝑖−1, 𝑒2𝑖 an orthogonal frame of 𝑉𝑖 of eigen sections of Φ. Then the induced
alternating bilinear form 𝛼 ∶= 𝜔(Φ⋅, ⋅) is given by

𝛼 = 𝑖𝑧𝑙(𝑒2 ∧ (𝑒3 + 𝑖𝑒1) + 𝑧(⋯)) + 𝑖𝜆2(𝑒3 ∧ 𝑒4) +⋯ + 𝑖𝜆𝑛(𝑒2𝑛−1 ∧ 𝑒2𝑛).

Let us assume that with respect to our frame the volume form is given by vol = 𝑒0 ∧⋯ ∧

𝑒2𝑛 ∈ 𝐻0(𝑈, det(𝐸)). Then, we can write
⋀𝑛 𝛼 ∈ 𝐻0(𝑈,

⋀2𝑛 𝐸 ⊗𝑀𝑛) as a contraction 𝑖𝑣0vol
with

𝑣0 = −𝑖𝑛−1𝑧𝑙𝜆2⋯ 𝜆𝑛(𝑒3 + 𝑖𝑒1) + 𝑧𝑙+1(⋯) ∈ 𝐻0(𝑈, 𝐸 ⊗𝑀𝑛).

So 𝑣0 defines a non-vanishing section of 𝐻0(𝑋, 𝐸 ⊗𝑀𝑛(−𝐷)) that spans the kernel of Φ.
Hence, 𝗄𝖾𝗋 ∶= 𝗄𝖾𝗋(Φ) ≅ 𝑀−𝑛(𝐷).
Furthermore, using the local form of the previous lemma one computes that for 𝑝 ∈ 𝑍(𝑎2𝑛)

we have 𝜔 || 𝗄𝖾𝗋 = 𝑧𝗈𝗋𝖽𝑝𝑎2𝑛−2𝐷𝑝 . Hence (up to the right choice of 𝑠𝐷)

𝜔 || 𝗄𝖾𝗋 = 𝑎2𝑛

𝑠2
𝐷

∈ 𝐻0(𝑋,𝑀2𝑛(−2𝐷)).

(ii) 𝗄𝖾𝗋⟂ ⊂ 𝐸 is a Φ-invariant subbundle of rank 2𝑛, such that

𝐸 ||𝑈 ≅ 𝗄𝖾𝗋 ⊕ 𝗄𝖾𝗋⟂ ||𝑈
for all open 𝑈 ⊂ 𝑋, such that 𝑈 ∩ 𝑍(𝑎2𝑛) = ∅. Hence, the inclusions define an exact
sequence of coherent sheaves

0 → (𝗄𝖾𝗋 ⊕ 𝗄𝖾𝗋⟂) → 𝑂(𝐸) →  → 0

with  a torsion sheaf supported on 𝑍(𝑎2𝑛). Now, det( ) can be computed from the local
description in Lemma 3.4.
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22 HORN

(iii) Stated differently, (ii) tells us that 𝐸 is a Hecke modification of 𝗄𝖾𝗋 ⊕ 𝗄𝖾𝗋⟂ (see [2, Definition
1.1]). We need to show that there is a unique Hecke modification doing the job, that is, a
unique Hecke modification, such that

𝐹 = 𝗄𝖾𝗋 ⊕ 𝗄𝖾𝗋⟂

with its degenerate symmetric bilinear form

𝛽 = 𝜔 || 𝗄𝖾𝗋 ⊕ 𝜔 || 𝗄𝖾𝗋⟂
is transformed into an 𝖲𝖮(2𝑛 + 1, ℂ)-bundle (𝐹̂, 𝛽). At 𝑝 ∈ 𝑍(𝑎2𝑛) we have an orthogonal
decomposition (

𝗄𝖾𝗋⟂, Φ || 𝗄𝖾𝗋⟂) ||𝑈 = (𝑉2 ⊕ 𝑉2𝑛−2, Φ2 ⊕ Φ1)

by restricting the orthogonal decomposition in Lemma 3.4. One the one side, 𝑉2 is of rank
2 and Φ2(𝑝) is nilpotent, on the other, Φ1 has non-zero eigenvalues and 𝜔 || 𝑉1

is non-
degenerate. Thereby, we are left with showing that we can find a unique Hecke modification
twisting (

𝗄𝖾𝗋 ||𝑈 ⊕ 𝑉2,
𝑎2𝑛

𝑠2
𝐷

⊕ 𝜔 || 𝑉2

)

into a 𝖲𝖮(3, ℂ)-bundle.
Using the local description of the Higgs field in Lemma 3.4 one can show that there are local
frames 𝑒0 of 𝗄𝖾𝗋𝑈 and 𝑒1, 𝑒2 of 𝑉2, such that the non-degenerate bilinear form at 𝑝 is given
by

𝑎2𝑛

𝑠2
𝐷

⊕ 𝜔 || 𝑉2
=

⎛⎜⎜⎜⎝
𝑧𝑚−2𝑙 0 0

0 𝑧𝑚−2𝑙 0

0 0 1

⎞⎟⎟⎟⎠ ,
where 𝑚 = 𝗈𝗋𝖽𝑝(𝑎2𝑛) and 𝑙 = 𝐷𝑝. Hence, the Hecke modification can be assumed to take
place in 𝗌𝗉𝖺𝗇{𝑒0, 𝑒1}. If there were two Hecke modifications,

such that 𝐹̂1, 𝐹̂2 are 𝖲𝖮(3, ℂ)-bundles with the induced orthogonal structure, then up
to choosing frames 𝑠1◦𝑠−12 reduces to a meromorphic 𝖲𝖮(2, ℂ)-gauge (an element of the
𝖲𝖮(2, ℂ)-loop group). It is not hard to show, that such a gauge is automatically holomorphic.
Hence, the resulting 𝖲𝖮(3, ℂ)-bundles 𝐹̂1, 𝐹̂2 are isomorphic. □
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 23

Proposition 3.7. Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type and 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2) the induced section.
The pushforward induces a holomorphic map

𝖲𝖮(3,ℂ)(Σ∕𝜎, 𝜋
∗
𝑛𝑀) ⊃ 𝖧𝗂𝗍−1

𝖲𝖮(3,ℂ)
(𝑏2) → 𝖧𝗂𝗍𝖲𝖮(2𝑛+1,ℂ)(𝑎) ⊂ 𝖲𝖮(2𝑛+1,ℂ)(𝑋,𝑀).

Proof. Let (𝐸3, Φ3, 𝜔3) ∈ 𝖧𝗂𝗍−1
𝖲𝖮(3,ℂ)

(𝑏2). The pushforward

𝜋𝑛∗

(
𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝑀

𝑛−1, Φ3
|| 𝗄𝖾𝗋(Φ3)

⟂ , (𝜕𝜋−1
𝑛 )𝜔3

|| 𝗄𝖾𝗋(Φ3)
⟂

)
defines a𝑀-twisted 𝖦𝖫(2𝑛, ℂ)-Higgs bundle on 𝑋 with

det
(
𝜋𝑛∗

(
𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝑀

𝑛−1
))

= 𝑀−𝑛(𝖭𝗆𝐷),

and a symmetric bilinear form 𝜋𝑛∗((𝜕𝜋
−1
𝑛 )𝜔3

|| 𝗄𝖾𝗋(Φ3)
⟂), which is non-degenerate away from

𝑍(𝑎2𝑛) by Proposition 2.13. Furthermore, 𝜋𝑛∗Φ3 is anti-symmetric with respect to this bilinear
form. Moreover, we have a induced Higgs divisor given by 𝖭𝗆(𝐷) supported at 𝑍(𝑎2𝑛). Now there
is a unique way to recover a 𝖲𝖮(2𝑛 + 1, ℂ)-Higgs bundle (𝐸, Φ, 𝜔) by Lemma 3.6.
This reconstruction seems to depend on the Higgs divisor 𝐷. However, we saw in the proof

of Lemma 3.6 that the construction is local and only depends on the rank 2 subbundle of
𝜋𝑛∗(𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝑀

𝑛−1), on which the Higgs field has vanishing eigenvalue. So for a trivially
covered neighbourhood 𝑈 ⊂ 𝑋 of 𝑥 ∈ 𝑍(𝑎2𝑛) it recovers (𝐸3, Φ3)

|| 𝑉 , where 𝑉 ⊂ 𝜋−1
𝑛 (𝑈) is the

unique connected component, such that 𝜆 ∈ 𝐻0(𝑉, 𝜋∗
𝑛𝐾) has a zero. Hence, (𝐸, Φ, 𝜔) varies holo-

morphically with (𝐸3, Φ3, 𝜔3).
Finally, we show that this map preserves stability. If Σ is irreducible, there are no Φ-invariant

isotropic subbundles of (𝐸, Φ, 𝜔). Hence, it is automatically stable. If this is not the case, being
of 𝔰𝔩(2)-type the corresponding 𝖲𝗉(2𝑛, ℂ)-spectral curve decomposes into two irreducible com-
ponents Σ = Σ1 ∪ Σ2. TheΦ3-invariant isotropic subbundles 𝐿1, 𝐿2 ⊂ 𝗄𝖾𝗋(Φ3)

⟂ ⊂ 𝐸3 are the eigen
line bundles corresponding to the irreducible components Σ1, Σ2 of Σ. Their pushforwards 𝜋𝑛∗𝐿𝑖
define 𝜋𝑛∗Φ3-invariant isotropic subbundles of 𝐸. These are all Φ-invariant isotropic subbundles
of 𝐸. Now, Equation (1) in the proof of Theorem 2.15. Shows that (𝐸3, Φ3, 𝜔3) is stable if and only
if (𝐸, Φ, 𝜔) is. □

Proposition 3.8. Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type and 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2) the induced section.
The pullback along 𝜋𝑛 ∶ Σ∕𝜎 → 𝑋 induces a holomorphic map

𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎) → 𝖧𝗂𝗍−1
𝖲𝖮(3,ℂ)

(𝑏2) ⊂ 𝖲𝖮(3,ℂ)(Σ∕𝜎, 𝜋
∗
𝑛𝑀).

Proof. Let (𝐸, Φ, 𝜔) ∈ 𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎). The pullback of the characteristic polynomial to Σ∕𝜎

𝜆
(
𝜆2𝑛 + 𝜋∗

𝑛𝑎2𝜆
2𝑛−2 +⋯ + 𝜋∗

𝑛𝑎2𝑛
)

factors through 𝜆(𝜆2 + 𝑏2) and hence defines a generalized eigen bundle 𝐸3 on Σ∕𝜎 by

0 → 𝐸3 → 𝜋∗
𝑛𝐸

Ψ
�→ 𝜋∗

𝑛(𝐸 ⊗𝑀3) → 𝐸3 ⊗ 𝜋∗
𝑛𝑀

2𝑛+1 → 0,

where

Ψ ∶= 𝜋∗
𝑛Φ

(
𝜋∗
𝑛Φ

2 + 𝑏2id𝜋∗
𝑛𝐸

)
.
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24 HORN

Here the cokernel ofΨ is identified with𝐸3 ⊗ 𝜋∗
𝑛𝑀

2𝑛+1 using the orthogonal form. The dual exact
sequence tensored with 𝜋∗

𝑛𝑀
3 results in

0 → 𝐸∨
3 ⊗ 𝜋∗

𝑛𝑀
2−2𝑛 → 𝜋∗

𝑛𝐸
∨ Ψ∨

���→ 𝜋∗
𝑛(𝐸

∨ ⊗𝑀3) → 𝐸∨
3 ⊗ 𝜋∗

𝑛𝑀
3 → 0.

The orthogonal bilinear form 𝜔 identifies 𝐸 with 𝐸∨ and from the anti-symmetry of the Higgs
field Ψ∨ = −Ψ under this identification. Hence, 𝜔 induces an isomorphism 𝐸3 ≅ 𝐸∨

3
⊗ 𝜋∗

𝑛𝑀
2−2𝑛.

Finally, 𝜔 restricts to a symmetric, non-degenerate bilinear form 𝜔3 on 𝐸3 ⊗ 𝜋∗
𝑛𝑀

𝑛−1 and the
induced Higgs field Φ3 on 𝐸3 is anti-symmetric with respect to it. Hence, (𝐸3, Φ3) is a 𝜋∗

𝑛𝑀-
twisted 𝖲𝖮(3, ℂ)-Higgs bundle on Σ∕𝜎. It will become clear that this map preserves stability
by the proof of the following theorem stating that it is the inverse map to the one defined in
Proposition 3.7. □

Theorem 3.9. Let 𝑎 ∈ 𝐵2𝑛(𝑋,𝑀) be of 𝔰𝔩(2)-type and let 𝑏2 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2) the induced section.
The holomorphic map between the Hitchin fibres

𝖧𝗂𝗍−1
𝖲𝖮(3,ℂ)

(𝑏2) → 𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎)

defined in Proposition 3.7 is a biholomorphism of complex spaces.

Proof. We are left with showing that the maps defined in the previous propositions are inverse to
each other. We start with (𝐸3, Φ3) ∈ 𝖧𝗂𝗍−1

𝖲𝖮(3,ℂ)
(𝑏2). Consider the holomorphic map

𝗄𝖾𝗋(Φ3)
⟂ ⊗ 𝜋∗

𝑛𝑀
1−𝑛 → 𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝑀

𝑛−1

tensoringwith 𝑠𝑅 = 𝜕𝜋𝑛 ∈ 𝐻0(Σ∕𝜎, 𝜋∗
𝑛𝑀

2𝑛−2). This induces an embedding of locally free sheaves

0 → 𝗄𝖾𝗋(Φ3)
⟂ ⊗ 𝜋∗

𝑛𝑀
1−𝑛 → 𝜋∗

𝑛𝜋𝑛∗

(
𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝑀

𝑛−1
)
.

By construction its image is 𝗄𝖾𝗋(𝜋∗
𝑛𝜋𝑛∗Φ

2
3
− 𝑏2id). Hence, we recover 𝗄𝖾𝗋(Φ3)

⟂ by themap defined
in Proposition 3.8. This uniquely determines (𝐸3, Φ3, 𝜔3) by Lemma 3.6(iii).
For the converse, let (𝐸, Φ, 𝜔) ∈ 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝑎). Then

(𝐸3, Φ3) =
(
𝗄𝖾𝗋Ψ,Φ || 𝗄𝖾𝗋Ψ)

decomposes 𝜋∗(𝐸, Φ) into rank 3 subbundles. For 𝑈 ⊂ 𝑋, such that

𝜋−1
𝑛 (𝑈) =

𝑛⨆
𝑖=1

𝑈𝑖,

these are the generalized eigenbundles to the eigenvalues 0, ±𝜆 ||𝑈𝑖
. The pushforward of

𝗄𝖾𝗋(Φ3)
⟂ ⊗ 𝜋∗

𝑛𝑀
𝑛−1 ⊂ 𝐸3 reassembles the eigenbundles to ±𝜆 ||𝑈𝑗

for all 𝑖. By Lemma 3.6 this
uniquely determines a 𝖲𝖮(2𝑛 + 1, ℂ)-Higgs bundle. Hence, we recover (𝐸, Φ, 𝜔). □

Remark 3.10 (Hitchin’s approach to regular fibres). Another way to attack to problem is trying to
generalize Hitchin’s approach in [19]. Hitchin describes the regular 𝖲𝖮(2𝑛 + 1, ℂ)-Hitchin fibres
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 25

by relating them to the corresponding 𝖲𝗉(2𝑛, ℂ)-Hitchin fibre on𝑋. Let (𝑉, Φ, g) ∈ 𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎)

with 𝑎 of 𝔰𝔩(2)-type. Adopting Hitchin’s notation, let 𝑉0 ⊂ 𝑉 be the kernel line bundle and Φ′ ∶

𝑉∕𝑉0 → 𝑉∕𝑉0 the induced Higgs field. It is easy to see that 𝛼 ∶= g(Φ′⋅, ⋅) defines a holomorphic
anti-symmetric bilinear form on𝑉∕𝑉0 that is non-degenerate, whereΦ has distinct eigenvalues. If
deg(𝐷) ≡ 0 mod 2𝑛, where 𝐷 = 𝐷(𝑉,Φ), we can choose a square root 𝐿2𝑛 = 𝐾−𝑛

𝑋
(𝐷) and define

a symplectic Higgs bundle by

(𝐸 ∶= 𝑉∕𝑉0 ⊗ 𝐿, 𝜙′, 𝛼).⋀𝑛 𝛼 ∈ 𝐻0(𝑋, det(𝐸)) is generically non-zero and det(𝐸) = 𝑋 by Lemma 3.6(i). Hence, 𝛼 is non-
degenerate on 𝐸. For regular Hitchin fibres, 𝐷 is always zero and therefore this defines a map

𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎) → 𝖧𝗂𝗍−1
𝖲𝗉(2𝑛,ℂ)

(𝑎).

Hitchin uses this map to study the regular 𝖲𝖮(2𝑛 + 1, ℂ)-fibres as covering spaces of symplectic
Hitchin fibres. The singular fibres are stratified by the Higgs divisors 𝐷. One the open and dense
stratum, we have 𝐷 = 0 and we could apply the same argument. But for the lower strata deg(𝐷)
mod 2𝑛 is unconstrained. Hence, this trick does not generalize.

4 LANGLANDS CORRESPONDENCE FOR 𝖘𝖑(𝟐)-TYPE HITCHIN
FIBRES

In this section, we compare the 𝔰𝔩(2)-type Hitchin fibres for the Langlands dual groups 𝖲𝗉(2𝑛, ℂ)
and 𝖲𝖮(2𝑛 + 1, ℂ) projection to the same point in theHitchin base. Concerning the abelian part of
the spectral data we will recover torsors over dual abelian varieties. This reproves and generalizes
the result for regular fibres in [19]. The non-abelian part of the spectral data will not change under
the duality. This is a new phenomenon. We will start with the rank 1 case.
For rk(𝔤) = 1, we can compare the Hitchin fibres using the exceptional isomorphisms

𝖲𝗉(2, ℂ) ≅ 𝖲𝖫(2, ℂ) and 𝖲𝖮(3, ℂ) ≅ 𝖯𝖦𝖫(2, ℂ). The moduli space of 𝖯𝖦𝖫(2, ℂ)-Higgs bundles can
be constructed as follows (see [15]). First recall that

𝖦𝖫(1,ℂ)(𝑋,𝑀) ≅ 𝖯𝗂𝖼(𝑋) × 𝐻0(𝑋,𝑀)

is an abelian group with an action on𝖦𝖫(2,ℂ)(𝑋,𝑀). Let

(𝐿, 𝜆) ∈ 𝖦𝖫(1,ℂ)(𝑋,𝑀) and (𝐸, Φ) ∈ 𝖦𝖫(2,ℂ)(𝑋,𝑀),

then the proper, holomorphic action is given by

((𝐿, 𝜆), (𝐸, Φ)) ↦ (𝐸 ⊗ 𝐿,Φ + 𝜆id𝐸).

We define the 𝖯𝖦𝖫(2, ℂ)-Higgs bundle moduli as the orbifold quotient

𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) = 𝖦𝖫(2,ℂ)(𝑋,𝑀)∕𝖦𝖫(1,ℂ)(𝑋,𝑀).
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26 HORN

Actingwith𝐻0(𝑋,𝑀), we can find a representative for each 𝖯𝖦𝖫(2, ℂ)-Higgs bundleswith tr(Φ) =
0. Hence,

𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) ≅ 𝖧𝗂𝗍−1
𝖦𝖫(2,ℂ)

(𝐵𝖲𝖫(2,ℂ)(𝑋,𝑀))∕𝖯𝗂𝖼(𝑋),

where we think of 𝐵𝖲𝖫(2,ℂ)(𝑋,𝑀) ⊂ 𝐵𝖦𝖫(2,ℂ)(𝑋,𝑀) by the obvious inclusion. For 𝑁 ∈ 𝖯𝗂𝖼(𝑋)

define

𝑁
𝖲𝖫(2,ℂ)

(𝑋,𝑀) =
{
(𝐸, Φ) ∈ 𝑀𝖦𝖫(2,ℂ)(𝑋,𝑀) ∣ det(𝐸) = 𝑁, tr(Φ) = 0

}
.

The action of 𝖯𝗂𝖼(𝑋) identifies𝑁1

𝖲𝖫(2,ℂ)
(𝑋,𝑀) and𝑁2

𝖲𝖫(2,ℂ)
(𝑋,𝑀), whenever deg(𝑁1) = deg(𝑁2)

mod 2. Hence, fixing a line bundle 𝑁 ∈ 𝖯𝗂𝖼(𝑋) of degree 1, we have

𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) =
(


𝑋

𝖲𝖫(2,ℂ)
(𝑋,𝑀) ⊔𝑁

𝖲𝖫(2,ℂ)
(𝑋,𝑀)

)
∕𝖩𝖺𝖼(𝑋)[2], (2)

where 𝖩𝖺𝖼(𝑋)[2] ≅ ℤ
2g
2
denotes the group of two-torsion points of 𝖩𝖺𝖼(𝑋).

The isomorphism to the moduli space of 𝖲𝖮(3, ℂ)-Higgs bundles is defined using the adjoint
representation

𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) → 𝖲𝖮(3,ℂ)(𝑋,𝑀)

(𝐸, Φ) ↦
(
(𝐸 ×𝖠𝖽 𝔰𝔩(2, ℂ)) ⊗ det(𝐸)−1, 𝖺𝖽(Φ), 𝜔

)
.

Here, the orthogonal structure𝜔 is induced by theKilling formon 𝔰𝔩(2, ℂ). Topologically 𝖲𝖮(3, ℂ)-
Higgs bundles on a Riemann surface are classified by the second Stiefel–Whitney class

𝗌𝗐2 ∈ 𝐻2(𝑋, ℤ2) ≅ ℤ2.

This is the obstruction to lift a 𝖲𝖮(3, ℂ)-Higgs bundle to a 𝖲𝗉𝗂𝗇(3, ℂ) ≅ 𝖲𝖫(2, ℂ)-Higgs bundle.
Hence, under the isomorphism

𝑋

𝖲𝖫(2,ℂ)
(𝑋,𝑀)∕𝖩𝖺𝖼(𝑋)[2] is mapped onto the connected compo-

nent of 𝖲𝖮(3, ℂ)-Higgs bundles with 𝑠𝑤2 = 0 and 𝑁
𝖲𝖫(2,ℂ)

(𝑋,𝑀)∕𝖩𝖺𝖼(𝑋)[2] onto the connected
component with 𝑠𝑤2 = 1.
The Hitchin map

𝖧𝗂𝗍𝖯𝖦𝖫(2,ℂ) ∶ 𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) → 𝐻0(𝑋,𝑀2)

is defined in terms of the decomposition (2) by the 𝖲𝖫(2, ℂ)-Hitchin map on each connected com-
ponent.
For (𝐸, Φ) ∈ 𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀), there is awell-defined 𝖲𝖫(2, ℂ)-Higgs fieldΦ by (2). In particular,

we can define a Higgs divisor 𝐷(𝐸,Φ) as we did in Lemma 2.19.

Theorem 4.1. Let 𝑎2 ∈ 𝐻0(𝑋,𝑀2), such that the spectral curve is irreducible and reduced, then
there is a stratification

𝖧𝗂𝗍−1
𝖯𝖦𝖫(2,ℂ)

(𝑎2) =
⨆
𝐷

𝐷
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 27

by finitely many locally closed analytic sets 𝐷 indicated by Higgs divisors𝐷 associated to 𝑎2. If there
is at least on zero of 𝑎2 of odd order, each stratum is a holomorphic (ℂ∗)𝑟 × ℂ𝑠-bundle over(

𝖯𝗋𝗒𝗆𝑀−1(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝑁𝑀−1(𝐷)(𝜋̃)
)
∕𝖩𝖺𝖼(𝑋)[2],

where

𝑟 = 𝑛even − 𝑛diag(𝐷), 𝑟 + 𝑠 = 2𝑛(g − 1) − deg(𝐷) −
𝑛odd
2

.

If all zeros of 𝑎2 are of even order, each stratum 𝐷 is a holomorphic (ℂ∗)𝑟 × ℂ𝑠-bundle over(
𝖯𝗋𝗒𝗆𝐼𝑀−1(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝐼𝑁𝑀−1(𝐷)(𝜋̃)

)
∕𝖩𝖺𝖼(𝑋)[2],

with 𝑟, 𝑠 given by above formulae. Here 𝐼 is the unique non-trivial line bundle on 𝑋, such that 𝜋̃∗𝐼 =

𝑋 . A local trivialization of the fibre bundle 𝐷 ⊂ 𝖧𝗂𝗍−1
𝖯𝖦𝖫(2,ℂ)

(𝑎2) induces a local trivialization of the
fibre bundle structure of the corresponding stratum 𝐷 ⊂ 𝖧𝗂𝗍−1

𝖲𝖫(2,ℂ)
(𝑎2) and vice versa.

Proof. Fix a 𝖲𝖫(2, ℂ)-representative (𝐸, Φ) of a Higgs bundle in

𝐷 ⊂ 𝖧𝗂𝗍−1
𝖯𝖦𝖫(2,ℂ)

(𝑎2) ⊂
(


𝑋

𝖲𝖫(2,ℂ)
(𝑋,𝑀) ⊔𝑁

𝖲𝖫(2,ℂ)
(𝑋,𝑀)

)
∕𝖩𝖺𝖼(𝑋)[2]

By [21, Theorem 5.5], we can associate an eigen line bundle 𝐿 on the normalized spectral cover 𝜋̃ ∶

Σ̃ → 𝑋 to (𝐸, Φ). If det(𝐸) = 𝑋 , it will lie in 𝖯𝗋𝗒𝗆𝑀−1(𝐷)(𝜋̃) and, if det(𝐸) = 𝑁, in 𝖯𝗋𝗒𝗆𝑁𝑀−1(𝐷)(𝜋̃).
After choosing frames 𝑠 of 𝐿 at 𝜋̃−1𝑍(𝑎2) the 𝖲𝖫(2, ℂ)-Higgs bundle (𝐸, Φ) is uniquely determined
by its 𝑢-coordinate in (ℂ∗)𝑟 × ℂ𝑠 with 𝑟, 𝑠 as in the Theorem. The action by 𝖩𝖺𝖼(𝑋)[2] lifts to the
normalized spectral curve and induces an action

𝖩𝖺𝖼(𝑋)[2] × 𝖯𝗋𝗒𝗆𝐹(𝜋̃) → 𝖯𝗋𝗒𝗆𝐹(𝜋̃), (𝐽, 𝐿) ↦ 𝜋̃∗𝐽 ⊗ 𝐿

for 𝐹 ∈ 𝖯𝗂𝖼(𝑋). For 𝐹 = 𝑀−1(𝐷) and 𝐹 = 𝑁𝑀−1(𝐷), this is exactly the action on the eigen line
bundle induced by the action of 𝖩𝖺𝖼(𝑋)[2] on (𝐸, Φ).
Recall, that in 𝖲𝖫(2, ℂ)-case for 𝑎2 ∈ 𝐻0(𝑋,𝑀2) having only zeros of even order, each stratum

is a 2-sheeted covering of a fibre bundle over the twisted Prym variety. This was due to the iden-
tification of (𝐸, Φ) and (𝐸 ⊗ 𝐼, Φ) via pullback. However, 𝐼 ∈ 𝖩𝖺𝖼(𝑋)[2] and so

𝜋̃∗ ∶ 𝖯𝖦𝖫(2,ℂ)(𝑋,𝑀) → 𝖯𝖦𝖫(2,ℂ)(Σ̃, 𝜋̃
∗𝑀)

is injective.
The non-abelian part of the spectral data decodes the local Hecke parameter at 𝜋̃−1𝑍(𝑎2) and

does not change under the action of 𝐽 ∈ 𝖩𝖺𝖼(𝑋)[2] on (𝐸, Φ). Choosing a collection of frames 𝑗
of 𝐽 at 𝑍(𝑎2), we obtain a frame of 𝜋̃∗𝐽 ⊗ 𝐿 at 𝜋̃−1𝑍(𝑎2) by 𝜋̃∗𝑗 ⊗ 𝑠. The 𝑢-coordinate does not
depend on the choice of 𝑗 by [21, Proposition 5.8]. This proves the last assertion. □

Theorem 4.2. Let 𝑎2 ∈ 𝐻0(𝑋,𝑀2), such that the spectral curve is locally irreducible, then the
𝖯𝖦𝖫(2, ℂ)-Hitchin fibre over 𝑎2 is itself a holomorphic fibre bundle over(

𝖯𝗋𝗒𝗆𝑀−1(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝑁𝑀−1(𝐷)(𝜋̃)
)
∕𝖩𝖺𝖼(𝑋)[2]

with fibres given by the compact moduli of Hecke parameters.
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28 HORN

Proof. This is a direct consequence of the previous theorem and [21, Theorem 7.13]. □

Example 4.3. Example 2.22 carries over to the 𝖯𝖦𝖫(2, ℂ)-case. Let 𝑎2𝑛 have 𝑘𝑙 zeros of order 𝑙 for
𝑙 ∈ {2, 3, 4, 5} and at least one zero of odd order. Then up to normalization 𝖧𝗂𝗍−1

𝖯𝖦𝖫(2,ℂ)
(𝑎2) is given

by a holomorphic

(ℙ1)𝑘2+𝑘3 × (ℙ(1, 1, 2))𝑘4+𝑘5 −

bundle over (
𝖯𝗋𝗒𝗆𝑀−1(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝑁𝑀−1(𝐷)(𝜋̃)

)
∕𝖩𝖺𝖼(𝑋)[2].

Before we formulate the Langlands duality in rk(𝔤) = 1, let us identify the abelian part of the
spectral data for 𝖯𝖦𝖫(2, ℂ) as an abelian torsor over the dual abelian variety to the Prym variety.

Proposition 4.4 ([16, Lemma 2.3]). Let 𝜋 ∶ 𝑌 → 𝑋 a 𝑠-sheeted covering of Riemann surfaces, then

𝖯𝗋𝗒𝗆(𝜋)∨ ≅ 𝖯𝗋𝗒𝗆(𝜋)∕𝖩𝖺𝖼(𝑋)[𝑠].

Corollary 4.5. Let 𝑎2 ∈ 𝐻0(𝑋,𝑀2), such that the spectral curve is irreducible and reduced. The
Hitchin fibres 𝖧𝗂𝗍−1

𝖯𝖦𝖫(2,ℂ)
(𝑎2) and 𝖧𝗂𝗍−1𝖲𝖫(2,ℂ)(𝑎2) are related as follows:

(i) The abelian part of the spectral data are torsors over dual abelian varieties.
(ii) The complex spaces of Hecke parameters are isomorphic.

Proof. Assertion (i) is immediate from the previous theorems and proposition. We showed in
Theorem 4.1 that a trivialization of the bundle of Hecke parameters of 𝖧𝗂𝗍−1

𝖲𝖫(2,ℂ)
(𝑎2) induces

a trivialization of the bundle of Hecke parameters of 𝖧𝗂𝗍−1
𝖯𝖦𝖫(2,ℂ)

(𝑎2). The identity with respect
to corresponding trivialization induces an isomorphism between the complex spaces of Hecke
parameters. □

By Theorem 3.9, these results carry over to higher rank.

Theorem 4.6. Let 𝑎 ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type with irreducible and reduced 𝖲𝗉(2𝑛, ℂ)-spectral
curve. Fix𝑁 ∈ 𝖯𝗂𝖼(Σ∕𝜎) of degree 1. All the results from the previous section carry over to the 𝖲𝖮(2𝑛 +

1, ℂ)-case.
In explicit, there is a stratification

𝖧𝗂𝗍−1
𝖲𝖮(2𝑛+1,ℂ)

(𝑎) =
⨆
𝐷

𝐷

by fibre bundles over disjoint unions of abelian torsors indicated by Higgs divisors as described in
Theorem 4.1. If 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛

𝑋
) has at least one zero of odd order, the disjoint union of abelian

torsors is given by (
𝖯𝗋𝗒𝗆𝜋∗

𝑛𝐾
−1
𝑋

(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝑁𝜋∗
𝑛𝐾

−1
𝑋

(𝐷)(𝜋̃)
)
∕𝖩𝖺𝖼(𝑋)[2].
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 29

If all zeros of 𝑎2𝑛 are of even order, it is(
𝖯𝗋𝗒𝗆𝐼𝜋∗

𝑛𝐾
−1
𝑋

(𝐷)(𝜋̃) ⊔ 𝖯𝗋𝗒𝗆𝐼𝑁𝜋∗
𝑛𝐾

−1
𝑋

(𝐷)(𝜋̃)
)
∕𝖩𝖺𝖼(𝑋)[2],

where 𝐼 ∈ 𝖩𝖺𝖼(Σ∕𝜎) is the unique non-trivial line bundle, such 𝜋̃∗
2
𝐼 = Σ̃.

When𝑎2𝑛 has only zeros of odd order, we obtain a global fibreing of the 𝖲𝖮(2𝑛 + 1, ℂ)-Hitchin fibre
over this union of abelian torsors as described in Theorem 4.2. Replacing the union of abelian torsors
by the above, Example 4.3 describes the first degenerations of singular 𝔰𝔩(2)-type Hitchin fibres for
𝖲𝖮(2𝑛 + 1, ℂ) up to normalization.

Proof. This is immediate from the identification of 𝔰𝔩(2)-type Hitchin fibres for 𝖲𝖮(2𝑛 + 1, ℂ)

with fibres of the 𝜋∗
𝑛𝐾𝑋-twisted 𝖲𝖮(3, ℂ)-Hitchin system on Σ∕𝜎 in Theorem 3.9. □

Remark 4.7. It follows fromTheorem 2.23 and the last assertion in Theorem 4.1, that all these fibre
bundles are smoothly trivial.

Corollary 4.8. Let 𝑎 ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type with irreducible and reduced 𝖲𝗉(2𝑛, ℂ)-spectral
curve. Then 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝑎) has two connected components. If 𝑎2𝑛 ∈ 𝐻0(𝑋, 𝐾2𝑛

𝑋
) has at least one

zero of odd order, these two connected components are irreducible. If all zeros of 𝑎2𝑛 have even order,
then each connected component has two irreducible components.

Proof. For 𝖯𝖦𝖫(2, ℂ), the Hitchin fibres in(


𝑋

𝖲𝖫(2,ℂ)
(𝑋, 𝜋∗

𝑛𝐾𝑋) ⊔𝑁
𝖲𝖫(2,ℂ)

(𝑋, 𝜋∗
𝑛𝐾𝑋)

)
∕𝖩𝖺𝖼(𝑋)[2]

have two connected components by [21, Corollary 8.6 and Theorem 8.8]. These results also prove
that the components are irreducible in the first case. When all zeros of 𝑎2𝑛 have even order, each
connected component has two irreducible components stemming from the two connected com-
ponents of 𝖯𝗋𝗒𝗆(𝜋̃2). In the difference to the 𝖲𝖫(2, ℂ)-case, the pullback of Higgs bundles along
𝜋̃2 is injective for 𝖯𝖦𝖫(2, ℂ) (cf. [21, Proposition 3.12]). Now, the general result follows from The-
orem 3.9. □

In particular, Corollary 4.5 generalizes verbatim to higher rank:

Corollary 4.9. Let𝑎 ∈ 𝐵2𝑛(𝑋, 𝐾𝑋) be of𝔰𝔩(2)-typewith the spectral curve is irreducible and reduced.
The Hitchin fibres 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝑎) and 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝑎) are related as follows:

(i) The abelian part of the spectral data is a disjoint union of torsors over dual abelian varieties.
(ii) The complex spaces of Hecke parameters are isomorphic.

5 SOLUTION TO THE DECOUPLEDHITCHIN EQUATION
THROUGH SEMI-ABELIAN SPECTRAL DATA

In this last section, we will show how to use semi-abelian spectral data for 𝔰𝔩(2)-type Hitchin
fibres to produce solutions to the decoupled Hitchin equation. In a series of works of Fredrickson,
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30 HORN

Mazzeo, Swoboda, Weiss and Witt [8, 22, 23] and independently Mochizuki [26], such singular
Hermitianmetrics were established as limits of sequences of actual solutions to the Hitchin equa-
tion under scaling the Higgs field to infinity. We conjecture this to be true for the solutions to the
decoupled Hitchin equation that we will construct. In the 𝖲𝖫(2, ℂ)-case, this is a theorem by [26].
Let (𝑃, Ψ) ∈ 𝐺(𝑋,𝑀). A reduction of structure group ℎ ∶ 𝑋 → 𝑃∕𝐾𝐺 to a maximal compact

subgroup 𝐾𝐺 ⊂ 𝐺 is called solution to the decoupled Hitchin equation, if the Chern connection
is flat and the Higgs field Ψ is normal. By definition, the Higgs field Ψ is normal, if

0 = [Ψ ⊗ 𝜏ℎ(Ψ)] ∈ 𝐻0
(
𝑋, (𝑃 ×𝖠𝖽 𝔤) ⊗𝑀2

)
,

where 𝜏ℎ denotes the induced Cartan involution on 𝑃 ×𝖠𝖽 𝔤. For𝑀 = 𝐾𝑋 this is equivalent to

𝐹ℎ = 0, 0 = [Ψ ∧ 𝜏ℎ(Ψ)] ∈ 𝐻(1,1)(𝑋, 𝑃 ×𝖠𝖽 𝔤).

In most cases, there is no smooth solution to this equation. For 𝖲𝖫(2, ℂ) it is easy to check by
a local computations similar to [22, Section 3.2], that ℎ is singular at all zeros of the determi-
nant of odd order (cf. Corollary 5.5). Global solutions to the decoupled Hitchin equation can be
constructed through the pushforward of a Hermitian–Einstein metric on the eigen line bundle
𝐿 ∈ 𝖯𝗋𝗒𝗆𝜋∗

𝑛𝐾
−1
𝑋

(𝐷)(𝜋̃). This method was applied for regular Hitchin fibres in [8, 22].

Remark 5.1. Usually the solutions of the decoupled Hitchin equation are not unique. They can
be modified by applying a Hecke modification — a meromorphic gauge — at a singularity of the
Hermitian metric. However, in the cases we consider, there are natural choices indicated by the
construction and the known approximation results of [8, 26].

5.1 𝗦𝗽(𝟐𝒏, ℂ)

Before going to higher rank, we reproduce a result of Mochizuki for the 𝖲𝖫(2, ℂ)-case [26, Section
4.3.2] using the description of singularHitchin fibres by abelian parameters andHecke parameters
developed in [21]. The resultingHermitianmetrics agree by the uniqueness statement [26, Lemma
4.8].

Theorem 5.2 (cf. [26, Section 4.3.2]). Let (𝐸, Φ) ∈ 𝖲𝖫(2,ℂ)(𝑋,𝑀) with irreducible and reduced
spectral curve. Let 𝑎2 = det(Φ), 𝐷 its Higgs divisor and for 𝑥 ∈ 𝑍(𝑎2) let 𝑛𝑥 ∶= 𝗈𝗋𝖽𝑥𝑎2 − 2𝐷𝑥 ∈ ℕ0.
Then there exists a Hermitian metric ℎ𝑑𝑐 = ℎ𝑑𝑐(𝐸, Φ) on 𝐸 || 𝑋⧵𝑍(𝑎2) solving the decoupled Hitchin
equation and inducing a non-singular Hermitian metric on det(𝐸). For all 𝑥 ∈ 𝑍(𝑎2) there exists a
coordinate (𝑈, 𝑧) centred at 𝑥 and a local frame of 𝐸 ||𝑈 , such that the Higgs field is given by

Φ =

(
0 𝑧𝐷𝑥

𝑧𝗈𝗋𝖽𝑥𝑎2−𝐷𝑥 0

)
d𝑧

and the Hermitian metric for 𝗈𝗋𝖽𝑥(𝑎2) ≡ 1 mod 2 is given by

ℎ𝑑𝑐 =
⎛⎜⎜⎝

g1|𝑧| 𝑛𝑥2 g2𝑧
1−𝑛𝑥
2 |𝑧| 𝑛𝑥2

ḡ2𝑧̄
1−𝑛𝑥
2 |𝑧| 𝑛𝑥2 g1|𝑧|−𝑛𝑥

2

⎞⎟⎟⎠ ,
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 31

with g1 a real positive smooth functionand g2 a complex smooth function, such that g21 − |g2|2|𝑧| = 1.
For 𝗈𝗋𝖽𝑥(𝑎2) ≡ 0 mod 2 with respect to such frame, the Hermitian metric is given by

ℎ𝑑𝑐 =
⎛⎜⎜⎝

g1|𝑧| 𝑛𝑥2 g2𝑧
−𝑛𝑥
2 |𝑧| 𝑛𝑥2

ḡ2𝑧̄
−𝑛𝑥
2 |𝑧| 𝑛𝑥2 g1|𝑧|−𝑛𝑥

2

⎞⎟⎟⎠ ,
with g1, g2 real positive smooth functions, such that g21 − g2

2
= 1. In both cases, the smooth functions

g1, g2 ∈ 𝑈 are determined through the 𝑢-coordinate of (𝐸, Φ) at 𝑥.

Proof. Let (𝐸, Φ) ∈ 𝖧𝗂𝗍−1
𝖲𝖫(2,ℂ)

(𝑎2) with Higgs divisor 𝐷. Recall the description of (𝐸, Φ) via the
semi-abelian spectral data developed in [21, Section 5]. Let 𝜆 ∈ 𝐻0(Σ̃, 𝜋̃∗𝑀) the section solving the
spectral equation and Λ = 𝖽𝗂𝗏(𝜆) its divisor. The abelian part of the spectral data is a line bundle
𝐿 ∈ 𝖯𝗋𝗒𝗆𝑀−1(𝐷)(𝜋̃) defined by

(𝐿) = 𝗄𝖾𝗋(𝜋̃∗Φ − 𝜆id(𝜋̃∗𝐸)).

We recover 𝜋̃∗𝐸 as a Hecke transformation of

(𝐸𝐿, Φ𝐿) ∶= (𝐿 ⊕ 𝜎∗𝐿, diag(𝜆, −𝜆)).

Up to choices of frames of 𝐿 at 𝑍(𝜋̃∗𝑎2) these Hecke transformations are parametrized by a so-
called 𝑢-coordinate. These 𝑢-coordinates are the non-abelian parameters of the spectral data.
For constructing the solution to the decoupledHitchin equation let us fix an auxiliary parabolic

structure on 𝐿 by introducingweights𝛼𝑝 ∶= 1

2
(Λ − 𝜋̃∗𝐷)𝑝 for all𝑝 ∈ 𝑍(𝜋̃∗𝑎2). Then the parabolic

degree pdeg(𝐿, 𝛼) = 0. Hence, there exists a Hermitian metric ℎ𝐿 adapted to the parabolic struc-
ture that satisfies the Hermitian–Einstein equation

𝐹ℎ𝐿
= 0

unique up to rescaling by a constant (see [4, 32]). This induces a flat Hermitian metric ℎ𝐿 + 𝜎∗ℎ𝐿
on 𝐸𝐿, such that the Higgs fieldΦ𝐿 is normal. Applying the Hecke transformation to (𝐸𝐿, Φ𝐿, ℎ𝐿 +

𝜎∗ℎ𝐿)we obtain aHermitianmetric on 𝜋̃∗𝐸 || 𝑋⧵𝑍(𝑎2) solving the decoupledHitchin equation. This
descends to the desired metric ℎ𝑑𝑐.
To show that it induces a non-degenerate Hermitian metric on det(𝐸) = 𝑂𝑋 , we compute its

local shape at 𝑍(𝑎2). Let 𝑥 ∈ 𝑍(𝑎2) be a zero of odd order and 𝑝 ∈ Σ̃ its pre-image. By [8, Propo-
sition 3.5], we can choose a frame 𝑠 of 𝐿 around 𝑝, such that ℎ𝐿 = |𝑧|2𝛼𝑝 . Such frame is unique
up to multiplying with 𝑐 ∈ 𝖴(1) and therefore defines a unique 𝑢-coordinate for (𝐸, Φ) at 𝑝 (see
[21, Proposition 5.8]). We want to change the frame of 𝐿, such that the Higgs bundle (𝐸, Φ) cor-
responds to 𝑢 = 0 with respect to the new frame. This guarantees the desired local shape of Φ.
The transformation rule for 𝑢-coordinates was given in [21, Proposition 5.8]. Choosing the frame
𝑠′ =

√
1+𝑢

1−𝑢
𝑠 the 𝑢-coordinate for (𝐸, Φ) is 𝑢′ = 0. The Hermitian metric ℎ𝐿 with respect to the

frame 𝑠′ is given by

ℎ𝐿 = 𝑓|𝑧|2𝛼𝑝 with 𝑓 =
||||1 − 𝑢

1 + 𝑢

||||.
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32 HORN

Applying the Hecke transformation the induced Hermitian metric on 𝜋̃∗𝐸 at 𝑝 is given by

⎛⎜⎜⎝
(𝑓 + 𝜎∗𝑓)|𝑧|2𝛼𝑝 (𝑓 − 𝜎∗𝑓)

(|𝑧|
𝑧

)2𝛼𝑝
(𝑓 − 𝜎∗𝑓)

(|𝑧|
𝑧̄

)2𝛼𝑝
(𝑓 + 𝜎∗𝑓)|𝑧|−2𝛼𝑝

⎞⎟⎟⎠ .
There exists g1, g2 ∈ 𝑈 , such that

𝜋̃∗g1 = 𝑓 + 𝜎∗𝑓 and 𝜋̃∗g2 = 𝑧−1(𝑓 − 𝜎∗𝑓)

Hence, we obtain the desired local form of ℎ𝑑𝑐 at 𝑥 ∈ 𝑍(𝑎2).
Using the description of the Hecke parameters at even zeros in terms of 𝑢-coordinates [21,

Proposition 8.1], one can adapt this argument to the zeros of 𝑎2 of even order.
In the case of irreducible, locally reducible spectral curve Σ, the proof works in the same way

as

𝖯𝗋𝗒𝗆𝐼𝑀−1(𝐷)(𝜋̃2) ⊂ {𝐿 ∈ 𝖯𝗂𝖼(Σ̃ ∣ 𝐿 ⊗ 𝜎∗𝐿 = 𝑀−1(𝐷)},

where 𝐼 is the unique non-trivial line bundle on 𝑋, such that 𝜋̃∗𝐼 = Σ̃. □

Remark 5.3. For the regular fibres of𝖲𝖫(2,ℂ)(𝑋, 𝐾𝑋), this resembles the construction of limiting
metrics in [8]. In difference to Fredrickson, we work with positive weights instead of negatives.
This is due to the fact that Fredrickson’s construction uses the line bundle 𝐿′ with the property
𝜋∗𝐿

′ = 𝐸 to reconstruct the Higgs bundle. In terms of 𝐿 ∈ 𝖯𝗋𝗒𝗆𝜋∗
𝑛𝐾

−1
𝑋
(𝜋̃2) it is given by 𝐿′ =∶

𝐿 ⊗ 𝜋∗𝐾𝑋 . To every solution ℎ𝐿 of the Hermitian–Einstein equation on (𝐿, 𝛼), as defined in the
previous theorem, one obtains a solution of the Hermitian–Einstein equation on (𝐿′, −𝛼) in a
canonical way by ℎ′ ∶= ℎ𝐿|𝜆|−2.
Remark 5.4. Similar to [8, Proposition 3.3], one can obtain solutions to the decoupled Hitchin
equation in the fixed determinant case. One first fixes a Hermitian–Einstein metric ℎdet(𝐸) on
det(𝐸). In this case, the eigen line bundle 𝐿 will be an element of

{𝐿 ∈ 𝖯𝗂𝖼(Σ̃) ∣ 𝐿 ⊗ 𝜎∗𝐿 = 𝜋̃∗ det(𝐸)𝑀−1(𝐷)}

and one can choose the Hermitian–Einstein metric ℎ𝐿, such that

ℎ𝐿 ⊗ 𝜎∗ℎ𝐿 = 𝜋̃∗ℎdet(𝐸)

||||| 𝜋̃
∗𝑎2

𝜋̃∗𝑠2
𝐷

|||||,
where 𝑠𝐷 ∈ 𝐻0(𝑋,𝑋(𝐷)) is a canonical section. Then the induced solution to the decoupled
Hitchin equation satisfies det(ℎ𝑑𝑐) = ℎdet.

Corollary 5.5. Let (𝐸, Φ) ∈ 𝖲𝖫(2,ℂ)(𝑋, 𝐾𝑋), such that det(Φ) ∈ 𝐻0(𝑋, 𝐾2
𝑋
) has no global square

root and Φ is everywhere locally diagonalizable. Then the Hermitian metric ℎ𝑑𝑐 defined in Theo-
rem 5.2 is a smooth solution to the Hitchin equation on (𝐸, Φ).
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𝔰𝔩(2)-TYPE SINGULAR FIBRES 33

Remark 5.6. Let (𝐸, Φ) as in the previous corollary. (𝐸, Φ) is stable by the irreducibility of the
spectral curve. Hence, the rescaled Hitchin equation

𝐹ℎ + 𝑡2[Φ ∧ Φ∗ℎ] = 0, 𝑡 ∈ ℂ∗,

decouples and the solutions is independently of 𝑡 given by the Hermitian metric ℎ𝑑𝑐. Hence, this
Hermitian metric is the limit of a constant sequence of solutions to the Hitchin equation along a
ray to the ends of the moduli space.

Proof of Corollary 5.5. We have 𝜋̃∗𝐷𝑝 = 1

2
𝗈𝗋𝖽𝑝(𝜋̃

∗𝑎2) = 𝗈𝗋𝖽𝑝(𝜆) for all 𝑝 ∈ 𝑍(𝜋̃∗𝑎2). Hence all
weights 𝛼𝑝 of the auxiliary parabolic structure are zero. In particular, the Hermitian–Einstein
metric ℎ𝐿 is smooth and so is ℎ𝐿 + 𝜎∗ℎ𝐿. This Hermitian metric descends to ℎ𝑑𝑐. By assump-
tion, (𝐸, Φ) is in the lowest dimensional stratum, that is, there are no Hecke parameters for this
stratum. Hence, the descend does not include a Hecke transformation and the smoothness is
preserved. □

Theorem 5.7 [26, Corollary 5.4]. Let (𝐸, Φ) ∈ 𝖲𝖫(2,ℂ)(𝑋, 𝐾𝑋) with irreducible and reduced spec-
tral curve, then the solution to the decoupled Hitchin equation ℎ𝑑𝑐 is a limiting metric. In explicit, let
ℎ𝑡 be the solution to the rescaled Hitchin equation

𝐹ℎ𝑡
+ 𝑡2[Φ ∧ Φ∗ℎ𝑡 ] = 0, 𝑡 ∈ ℝ+,

then ℎ𝑡 converges to ℎ∞ in 𝐶∞ on any compact subset of 𝑋 ⧵ 𝑍(det(Φ)) for 𝑡 → ∞.

Proof. For 𝖲𝖫(2, ℂ)-Hitchin fibres with irreducible and reduced spectral curve the auxiliary
parabolic structure is uniquely determined by the condition that the singular Hermitian metric
ℎ∞ induces a non-singular Hermitian metric on det(𝐸) (see [26, Lemma 4.8]). Hence, ℎ∞ coin-
cides with the limiting Hermitian metric constructed byMochizuki and the approximation result
follows from [26, Corollary 5.4]. □

Applying the biholomorphism of Theorem 2.15, we can use Theorem 5.2 to construct solutions
to the decoupled Hitchin equation for 𝖲𝗉(2𝑛, ℂ)-Higgs bundles of 𝔰𝔩(2)-type.

Theorem 5.8. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝗉(2𝑛,ℂ)(𝑋, 𝐾𝑋) with irreducible and reduced spectral curve of
𝔰𝔩(2)-type. Let (𝐸2, Φ2) ∈ 𝖲𝖫(2,ℂ)(Σ∕𝜎, 𝜋

∗
𝑛𝐾𝑋) the corresponding 𝖲𝖫(2, ℂ)-Higgs bundle under the

biholomorphism of Theorem 2.15. The solution to the decoupled Hitchin equation on (𝐸2, Φ2) ∈

𝖲𝖫(2,ℂ)(Σ∕𝜎, 𝜋
∗
𝑛𝐾𝑋) induces aHermitianmetric ℎ𝑑𝑐 on (𝐸, Φ, 𝜔) || 𝑋⧵𝑍(𝖽𝗂𝗌𝖼(𝐸,Φ,𝜔)) solving the decou-

pled Hitchin equation.

Proof. Letℎ2 be the solution to the decoupledHitchin equation on (𝐸2, Φ2)defined inTheorem5.2.
Then ℎ′ ∶= ℎ2|𝜕𝜋𝑛|−1 defines a Hermitian metric on 𝐸2 ⊗ 𝜋∗

𝑛𝐾
𝑛−1
𝑋

singular on 𝑍(det(Φ2)) ∪

𝗌𝗎𝗉𝗉𝑅, where 𝑅 = 𝖽𝗂𝗏(𝜋𝑛) is the ramification divisor. Recall from Theorem 2.15, that 𝜋𝑛∗(𝐸2 ⊗

𝜋∗
𝑛𝐾

𝑛−1
𝑋

) = 𝐸. Hence, 𝜋𝑛∗ℎ
′ defines a flat Hermitian metric on 𝐸 singular on

𝑍(𝑎2𝑛) ∪ 𝜋𝑛(𝗌𝗎𝗉𝗉𝑅) = 𝑍(𝖽𝗂𝗌𝖼(𝐸, Φ, 𝜔))

compatible with the symplectic form, such that [𝜋𝑛∗Φ ∧ 𝜋𝑛∗Φ
∗𝜋𝑛∗ℎ′ ] = 0. □
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34 HORN

The local building blocks for these solutions to the decoupled Hitchin equation at its singulari-
ties were already considered before. Non-zero eigenvalues of the Higgs field of higher multiplicity
correspond to smooth ramification points of 𝜋 ∶ Σ → 𝑋. Here the 𝖲𝗉(2𝑛, ℂ)-Higgs bundle locally
looks like a Higgs bundle in a regular 𝖲𝖫(2𝑛, ℂ)-Hitchin fibre. Hence, the local approximation
problem is covered by [8, Section 4.1]. The singular points of Σ lie on the zero section of 𝐾𝑋 and
are locally given by an equation of the form

𝜆2 − 𝑧𝑘 = 0.

These are exactly the singularities of 𝖲𝖫(2, ℂ)-spectral curves. In this case, the local approximation
result was proven in [26, Section 3]. This leads to the following conjecture.

Conjecture 5.9. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝗉(2𝑛,ℂ)(𝑋, 𝐾𝑋) with irreducible spectral curve of 𝔰𝔩(2)-type.
Then the solution ℎ𝑑𝑐(𝐸, Φ, 𝜔) to the decoupled Hitchin equation is a limiting metric, that is, let ℎ𝑡
be the solution to the rescaled Hitchin equation

𝐹ℎ𝑡
+ 𝑡2[Φ ∧ Φ∗ℎ𝑡 ] = 0, 𝑡 ∈ ℝ+,

then ℎ𝑡 converges to ℎ∞ in 𝐶∞ on any compact subset of 𝑋 ⧵ 𝑍(𝖽𝗂𝗌𝖼𝔰𝔭(𝐸, Φ, 𝜔)) for 𝑡 → ∞.

5.2 𝗦𝗢(𝟐𝒏 + 𝟏, ℂ)

Theorem 5.10. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝖮(3,ℂ)(𝑋, 𝐾𝑋) and 𝑎2 = det(Φ), such that the associated
𝖲𝖫(2, ℂ)-spectral curve is irreducible and reduced. Then there exists a metric on (𝐸, Φ, 𝜔) || 𝑋⧵𝑍(𝑎2)
solving the decoupled Hitchin equation.

Proof. The adjoint representation 𝖠𝖽 ∶ 𝖦𝖫(2, ℂ) → 𝖲𝖮(3, ℂ) induces a commutative diagram:

Ametric on the 𝖲𝖮(3, ℂ)-Higgs bundle (𝐸, Φ, 𝜔) is a reduction of structure group to 𝖲𝖮(3). Denot-
ing by 𝑃 the 𝖲𝖮(3, ℂ)-frame bundle associated to 𝐸, it corresponds to a section of 𝑃 ×𝖲𝖮(3,ℂ)

𝖲𝖮(3, ℂ)∕𝖲𝖮(3). Let (𝐸′, Φ′) ∈ 𝖧𝗂𝗍−1
𝖦𝖫(𝑛,ℂ)

(0, 𝑎2), such that its image under themap of Higgs bundle
moduli spaces

𝖦𝖫(𝑛,ℂ)(𝑋, 𝐾𝑋) → 𝖲𝖮(3,ℂ)(𝑋, 𝐾𝑋)

induced by the adjoint representation is (𝐸, Φ, 𝜔). By the above diagram, any Hermitianmetric on
(𝐸′, Φ′) induces ametric on (𝐸, Φ, 𝜔). Letℎdet denote theHermitian–Yang–Millsmetric ondet(𝐸′).
By Remark 5.4, there exists a solution to the decoupled Hitchin equation ℎ𝑑𝑐 on (𝐸′, Φ′), such that
det(ℎ𝑑𝑐) = ℎdet unique up to scaling. This induces a solution to the decoupledHitchin equation on

 17538424, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12216, W
iley O

nline L
ibrary on [12/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



𝔰𝔩(2)-TYPE SINGULAR FIBRES 35

(𝐸, Φ) by the above diagram. Furthermore, if we choose another representative (𝐸′ ⊗ 𝐿,Φ′) with
𝐿 ∈ 𝖯𝗂𝖼(𝑋). Then ℎ𝑑𝑐(𝐸

′ ⊗ 𝐿,Φ′) = ℎ𝑑𝑐(𝐸
′, Φ′)ℎ𝐿, where ℎ𝐿 is the Hermitian–Einstein metric on

𝐿. We see from the commutative diagram that the resulting metric on the 𝖲𝖮(3, ℂ)-bundle 𝐸 does
not depend on this choice. □

Example 5.11. Fix a Higgs divisor 𝐷 associated to 𝑎2 ∈ 𝐻0(𝑋, 𝐾2
𝑋
). Let

(𝐸, Φ, 𝜔) ∈ 𝐷 ⊂ 𝖧𝗂𝗍−1
𝖲𝖮(3,ℂ)

(𝑎2)

be the Higgs bundle corresponding to the 𝑢-coordinate 0 with respect to the frames fixed in the
proof of Theorem 5.2. For 𝑥 ∈ 𝑍(𝑎2) there exists a coordinate (𝑈, 𝑧) centred at 𝑥 and a local frame
of 𝐸 ||𝑈 , such that the Higgs field is given by

Φ =

⎛⎜⎜⎜⎝
0 𝑖

√
2𝑧𝐷𝑥 0

−𝑖
√
2𝑧𝗈𝗋𝖽𝑥(𝑎2)−𝐷𝑥 0 −𝑖

√
2𝑧𝐷𝑥

0 𝑖
√
2𝑧𝗈𝗋𝖽𝑥(𝑎2)−𝐷𝑥 0

⎞⎟⎟⎟⎠ d𝑧,

the orthogonal structure by

𝜔 =

⎛⎜⎜⎜⎝
1

1

1

⎞⎟⎟⎟⎠
and the solution to the decoupled Hitchin equation is given by

ℎ𝑑𝑐 =

⎛⎜⎜⎜⎝
|𝑧|𝗈𝗋𝖽𝑥(𝑎2)−𝐷𝑥 0 0

0 1 0

0 0 |𝑧|𝐷𝑥−𝗈𝗋𝖽𝑥(𝑎2)

⎞⎟⎟⎟⎠ .
Applying Theorem 3.9, we can use this result to obtain solutions to the decoupledHitchin equa-

tion for 𝖲𝖮(2𝑛 + 1, ℂ)-Higgs bundles of 𝔰𝔩(2)-type.

Theorem 5.12. Let (𝐸, Φ, 𝜔) ∈ 𝖲𝖮(2𝑛+1,ℂ)(𝑋, 𝐾𝑋) be of 𝔰𝔩(2)-type with irreducible and reduced
spectral curve. Then the pushforward along 𝜋𝑛∗ defines a solution to the decoupled Hitchin equation
ℎ𝑑𝑐.

Proof. This proof is similar to the proof of Theorem 5.8. Let (𝐸3, Φ3, 𝜔3) be the 𝜋∗
𝑛𝐾𝑋-twisted

𝖲𝖮(3, ℂ)-Higgs bundle on Σ∕𝜎 corresponding to (𝐸, Φ, 𝜔) under the isomorphism of Theorem 3.9.
Recall, that we recover (𝐸, Φ, 𝜔) by a unique Hecke modification of

(𝐸̂, Φ̂) ∶=
(
𝗄𝖾𝗋(Φ) ⊕ 𝜋𝑛∗

(
𝗄𝖾𝗋(Φ3)

⟂ ⊗ 𝜋∗
𝑛𝐾

𝑛−1
𝑋

)
, 0 ⊕ Φ || 𝗄𝖾𝗋(Φ3)

⟂

)
,

where the perpendicular is taken with respect to the orthogonal structure 𝜔3. In Theorem 5.10,
we constructed a solution to the decoupled Hitchin equation ℎ3 on (𝐸3, Φ3, 𝜔3). ℎ3 induces a
singular Hermitian metric on 𝗄𝖾𝗋(Φ3)

⟂, which descends to a Hermitian metric 𝜋𝑛∗(ℎ3|𝜕𝜋𝑛|−1)
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36 HORN

on 𝜋𝑛∗(𝗄𝖾𝗋(Φ3)
⟂ ⊗ 𝜋∗

𝑛𝐾
𝑛−1
𝑋

) singular at 𝑍(𝑎2𝑛) ∪ 𝗌𝗎𝗉𝗉𝐵. Here 𝐵 denotes the branch divisor of
𝜋𝑛 ∶ Σ∕𝜎 → 𝑋. There is a canonical singular flat metric on 𝗄𝖾𝗋(Φ) = 𝐾−𝑛

𝑋
(𝐷) given by |𝑎2𝑛

𝑠𝐷
| sin-

gular at 𝑍(𝑎2𝑛). This defines a singular flat Hermitian metric

|𝑎2𝑛
𝑠𝐷

|⊕𝜋𝑛∗(ℎ3|𝜕𝜋𝑛|−1)
on (𝐸̂, Φ̂), such that the Higgs field is normal and which is compatible with the singular orthog-
onal structure. The Hecke modification at 𝑍(𝑎2𝑛) desingularizes the orthogonal structure. The
induced Hermitian metric on (𝐸, Φ, 𝜔) solving the decoupled Hitchin equation is singular at
𝑍(𝑎2𝑛) ∪ 𝗌𝗎𝗉𝗉(𝐵) = 𝑍(𝖽𝗂𝗌𝖼𝔰𝔭(𝑎2, … , 𝑎2𝑛)). □

Remark 5.13. In the previous proof, we used Lemma 3.6 stating that we can reconstruct a 𝖲𝖮(2𝑛 +

1, ℂ)-Higgs bundle in a unique way from

(𝐸̂, Φ̂) =
(
𝗄𝖾𝗋(Φ) ⊕ 𝗄𝖾𝗋(Φ)⟂, 0 ⊕ Φ || 𝗄𝖾𝗋(Φ)⟂)

through Hecke modification. For a 𝖲𝖮(3, ℂ)-Higgs bundle this gives another way to construct a
solution to the decoupled Hitchin equation. An easy, but tedious computation using the local
models of Theorem 5.2 shows that ℎ𝑑𝑐 as constructed in Theorem 5.10 is equal to the solution of
the decoupled Hitchin equation obtain from the singular flat Hermitian metric

|𝑎2
𝑠𝐷

|⊕ ℎ𝑑𝑐 || 𝗄𝖾𝗋(Φ)⟂
on (𝐸̂, Φ̂) in this way. This shows that the construction of solutions to the decoupledHitchin equa-
tion in the previous proof is consistent.

Similar to the symplectic case, the approximation of the local models of these solutions
of the decoupled 𝖲𝖮(2𝑛 + 1, ℂ)-Hitchin equation follows from the work of Mochizuki [26]
and Fredrickson [8]. Applying the same argument as in the proof of Theorem 5.10 to the
solutions of the rescaled Hitchin equation in Theorem 5.7, one shows that the solutions to
the decoupled 𝖲𝖮(3, ℂ)-Hitchin equation are limiting metrics. In particular, the local mod-
els of the solution to the decoupled Hitchin equation for 𝖲𝖮(2𝑛 + 1, ℂ) are approximated.
At the branch points of 𝜋𝑛 ∶ Σ∕𝜎 → 𝑋 the Higgs bundle looks like to copies of a 𝖲𝖫(𝑛, ℂ)-
Higgs bundle interchanged by 𝜔 plus the kernel. So the local models are described and
approximated by the work of [8]. This leads us to analogue of Conjecture 5.9 for 𝖲𝖮(2𝑛 +

1, ℂ).

Conjecture 5.14. The solutions to the decoupled Hitchin equation for 𝖲𝖮(2𝑛 + 1, ℂ) constructed in
Theorem 5.12 are limiting metrics.

Remark 5.15. In the light of the Langlands duality of Hitchin systems, it would be interesting
to compute, whether the induced 𝐿2-metrics on 𝖧𝗂𝗍−1

𝖲𝗉(2𝑛,ℂ)
(𝐵𝗋𝖾𝗀) and 𝖧𝗂𝗍−1

𝖲𝖮(2𝑛+1,ℂ)
(𝐵𝗋𝖾𝗀) define

the semi-flat hyperkähler metrics associated to the Langlands dual algebraically completely inte-
grable systems. We hope to come back to this question in the future.
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5.3 Smooth trivialization of semi-abelian spectral data

In Sections 2.4 and 4, we stratified the 𝔰𝔩(2)-type Hitchin fibres by fibre bundles over abelian
torsors. Using the solutions to the Hermitian–Einstein equation discussed above, we can prove
that all these fibre bundles are smoothly trivial.

Proof of Theorem 2.23. We only need to show the triviality in the 𝖲𝖫(2, ℂ)-case. Then it follows in
all other cases by the identification of 𝔰𝔩(2)-type Hitchin fibres with fibres of an 𝖲𝖫(2, ℂ)-Hitchin,
respectively, 𝖯𝖦𝖫(2, ℂ)-Hitchin map. In the proof of Theorem 5.2, we saw that a solution to the
Hermitian–Einstein equation ℎ𝐿 on the eigen line bundle 𝐿 ∈ 𝖯𝗋𝗒𝗆𝐾−1

𝑋
(𝐷)(𝜋̃)with respect to some

auxiliary parabolic structure induces local frames 𝑠 at 𝑝 ∈ 𝜋̃−1𝑍(𝑎2), such that ℎ𝐿 = |𝑧|2𝛼𝑝 . These
frames are unique up to multiplying by a constant and therefore define unique 𝑢-coordinates at
all 𝑝 ∈ 𝑍(𝜋̃∗𝑎2) (see [21, Proposition 5.8]). ℎ𝐿 depends smoothly on 𝐿 ∈ 𝖯𝗋𝗒𝗆𝐾−1

𝑋
(𝐷)(𝜋̃) (see [24,

Proposition 3.3]). Furthermore, the choice of 𝑠 depends smoothly on ℎ𝐿 by the explicit argument
in [8, Proposition 3.5]. Hence, this defines a smooth trivialization in the 𝖲𝖫(2, ℂ)-case and hence
in all other cases. □
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