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Abstract

We define and parametrize so-called 31(2)-type fibres
of the Sp(2n,C)- and SO(2n + 1,C)-Hitchin system.
These are (singular) Hitchin fibres, such that spectral
curve establishes a 2-sheeted covering of a second Rie-
mann surface Y. This identifies the 8[(2)-type Hitchin
fibres with fibres of an SL(2, C)-Hitchin, respectively,
PSL(2, C)-Hitchin map on Y. Building on results of
[Horn, Int. Math. Res. Not. IMRN 10 (2020)], we give
a stratification of these singular spaces by semi-abelian
spectral data, study their irreducible components and
obtain a global description of the first degenerations.
We will compare the semi-abelian spectral data of
3[(2)-type Hitchin fibres for the two Langlands dual
groups. This extends the well-known Langlands duality
of regular Hitchin fibres to 3I(2)-type Hitchin fibres.
Finally, we will construct solutions to the decoupled
Hitchin equation for 3[(2)-type fibres of the symplectic
and odd orthogonal Hitchin system. We conjecture
these to be limiting configurations along rays to the
ends of the moduli space.
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2 | HORN

1 | INTRODUCTION

For more than 30 years, the study of moduli spaces of Higgs bundles is a very active research
area located at the crossroads of algebraic, complex and differential geometry with the theory of
integrable systems and surface group representations. One major reason for the ongoing interest
in these moduli spaces is their extremely rich geometry. They were introduced by Hitchin [18] as
examples of non-compact hyperkihler spaces. They are homeomorphic to moduli spaces of flat
G-bundles on X by the famous non-abelian Hodge correspondence [5, 7, 18, 31]. And most impor-
tantly for the present work, they have a dense subset carrying the structure of an algebraically
completely integrable system — the so-called Hitchin system [17].

By definition, the Higgs bundle moduli space M on a Riemann surface X associated to a
complex reductive linear group G is a moduli space of pairs (E, ®). Here E is a holomorphic G-
vector bundle on X and @ is holomorphic one-form valued in g, called the Higgs field. M has a
complex symplectic structure on its smooth locus, and the Hitchin map

HltG . MG - BG

defines a proper, surjective, holomorphic map to a complex vector space B; of half the dimen-
sion of My, referred to as the Hitchin base. Hitchin showed for the classical groups [17] and
Scognamillo for all complex reductive groups [30], that on a dense subset B;eg C B the fibres of
the Hitchin map are torsors over abelian varieties. Thereby, the pre-image of the regular locus
ng under the Hitchin map is an algebraically completely integrable system, nowadays called the
Hitchin system.

To identify the Hitchin fibres over the regular locus with abelian varieties one introduces spec-
tral data. The Hitchin map applied to a Higgs bundle (E, ®) computes the eigenvalues of the Higgs
field ®. These eigenvalues are decoded in the spectral curve %, a covering of the original Riemann
surface X. The eigenspaces determine a line bundle on the spectral curve. For a point in the reg-
ular locus ng the spectral curve is smooth. In this case, the moduli spaces of eigen line bundles
are the classical examples of abelian varieties, most importantly Jacobian and Prym varieties.

The Hitchin fibration played a major role in two recent developments in the theory of Higgs
bundle moduli spaces: First, in the study of the asymptotic of the hyperkihler metric [24] and
second, in the Langlands duality of Higgs bundle moduli spaces [6]. Both results were considered
on the regular locus of the Hitchin map and it is an interesting question how they extend to the
singular locus (see [1]). In this paper, we do the first steps in this direction.

1.1 | Singular Hitchin fibres of $1(2)-type

We introduce and study the class of 3[(2)-type Hitchin fibres of the Sp(2n, C)- and SO(2n + 1, C)-
Hitchin system. This class of (singular) Hitchin fibres is distinguished by the singularities of the
spectral curve, such that for n = 2 all fibres are of 31(2)-type (see Definition 2.5, respectively, 3.2
for precise definitions). For SL(2, C), the singular Hitchin fibres were studied in [14, 28] using
the Beauville-Narasimhan-Ramanan correspondence [3]. In [21], the author developed a more
direct approach introducing semi-abelian spectral data. These consist of an abelian torsor over the
Prym variety of the normalized spectral curve and non-abelian coordinates parametrizing local
deformations of the Higgs bundle at the singularities of the spectral curve.
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81(2)-TYPE SINGULAR FIBRES | 3

For Hitchin fibres of 31(2)-type the spectral curve X defines a 2-sheeted covering over another
Riemann surface Y. The main result of this work identifies the Sp(2n, C)- and SO(2n + 1, C)-
Hitchin fibres of 8[(2)-type with SL(2, C)-Hitchin, respectively, PGL(2, C)-Hitchin fibres of a mod-
uli space of twisted Higgs bundles on Y (Theorems 2.15 and 3.9). This allows to extend the results
of [21] to 8((2)-type Hitchin fibres.

Theorem 1.1 (Theorems 2.20 and 4.6). Let G = Sp(2n,C) or G = SO(2n + 1,C). Let b € B with
irreducible and reduced spectral curve of 81(2)-type. Then there exists a stratification

Hit;'(0) = | |S;

i€l

by finitely many locally closed subsets S;, such that every stratum S; is a finite-to-one covering of a
(C*)'1 x CSi-bundle over an abelian torsor T(b).

When the spectral curve X is smooth, it is of 8[(2)-type. Then the stratification is trivial and
this result gives a new approach to the identification of regular fibres of the symplectic and odd
orthogonal Hitchin system with abelian torsors originally obtained in [19].

The abelian torsor parametrizes the eigen line bundles of (E, ®) € Hital(b) and will be referred
to as the abelian part of the spectral data. The (C*)"i X CSi-fibres, the non-abelian part of the spec-
tral data, parametrize Hecke transformations of the Higgs bundle at the singularities of the spec-
tral curve.

The stratification of Theorem 1.1 contains a unique, open and dense stratum S, C Hitgl(b).
This dense stratum is compactified by lower dimensional strata distinguished from S, by a lower
dimensional moduli space of Hecke parameters. For the unique closed stratum of lowest dimen-
sion, this parameter space is a point and hence this stratum is an abelian torsor.

In the second part of [21], it was studied how the fibres glue together to form the singular
Hitchin fibre. Let us describe the first degeneration in more detail. For G = SL(2, C), the Hitchin
base is the vector space of quadratic differentials H°(X, K)Z(). In this setting, the examples we want
to consider are Hitchin fibres over a quadratic differential g € H°(X ,K)z() with a single zero of
order 2, such that all other zeros are simple. For Sp(2n, C) and SO(2n + 1, C), there are singular
Hitchin fibres like this, for all n € N.

In this example, we have two strata each isomorphic to a (C*)"i X C%-bundle over the abelian
torsor T(q) with exponents given by

SOZ(I’OII,S():O), Sll(r1=0,sl=0).

In Figure 1, we sketched the situation by compressing the abelian part of the spectral data to a
circle. On the left-hand side, we see a sketch of the open and dense stratum S, where the C*-fibres
are depicted by little tunnels. We obtain the singular Hitchin fibre by gluing the two missing points
of the C*-fibre to the abelian torsor in a twisted way. Indeed, the Higgs bundles corresponding to
the points zero and infinity do not have the same eigen line bundle and hence do not correspond
to the same point on the abelian torsor. In particular, the fibring over the abelian torsor does not
extend to Hit~!(q). This example can be also found in [14, 20] for the SL(2, C)-case. More generally,
we will give a global description of the first degenerations up to normalization in Examples 2.22
and 4.3.
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4 HORN

FIGURE 1 Twisted P!-bundle over an abelian torsor

1.2 | Towards Langlands duality for singular Hitchin fibres

The Langlands duality of Higgs bundle moduli spaces is a reincarnation of mirror symmetry and
its geometric interpretation in terms of integrable systems by the Strominger-Yau-Zaslow con-
jecture [34]. For Hitchin systems, mirror symmetry is connected to another important duality in
pure mathematics - the so-called Langlands duality. For a algebraic group G there exists a Lang-
lands dual group G%, such that conjecturally the representation theory of G is controlled by Galois
representations into G~.

Starting from the work of Hausel and Thaddeus [16] for G = SL(n,C), G = PSL(n,C) and
Hitchin [19] for G = Sp(2n,C), G¥ = SO(2n + 1,C) and G = G' = G,, Donagi and Pantev [6]
established the following formulation of Langlands duality of G-Hitchin systems for a complex
semi-simple Lie group G.

(i) The Hitchin bases B; and Bg: are isomorphic and the isomorphism restricts to the regular
. preg reg
loci B;” and B ..
(ii) The regular fibres over corresponding points b € ng and b’ € B;Lg are abelian torsors over
dual abelian varieties.

Concerning Langlands duality for singular Hitchin fibres of 8[(2)-type, we have to take a
closer look at the abelian part of the spectral data. For G = Sp(2n, C), the spectral curve X has an
involutive deck transformation o : £ — X. The quotient defines a complex algebraic curve Z/o.
Together with the normalized spectral curve £, we obtain the commutative diagram of spectral
curves in Figure 2.

By definition the spectral curve X is of 81(2)-type if and only if £/o is smooth. In this case, there
is an abelian variety associated to the 2-sheeted branched covering of Riemann surfaces £ — =/,
the so-called Prym variety. The abelian part of the spectral data for G = Sp(2n, C) is a torsor over
this Prym variety.

For G = SO(2n + 1, C), the abelian part of the spectral data is a union of torsors over a quo-
tient of the Prym variety by the finite group Zgg , where g is the genus of X. This quotient can be
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FIGURE 2 Commutative diagram of spectral curves

identified with the dual abelian variety. We obtain the following formulation of Langlands corre-
spondence for singular Hitchin fibres of 3[(2)-type.

Corollary 1.2 (Corollary 4.9). Let b € Bsp(a,,c) = Bsoan+1,c) be of 8L(2)-type, such that the spec-
tral curve is irreducible and reduced. Then the Hitchin fibres Hitg;&n’c)(b) and Hit;(;(zn +1,C)(b) are
related as follows.

(i) The abelian parts of the spectral data are unions of torsors over dual abelian varieties.
(ii) The parameter spaces of Hecke transformations are isomorphic.

1.3 | Limiting configurations for singular Hitchin fibres

Another recent development in the study of Higgs bundle moduli spaces is the analysis of the
asymptotic of the hyperkéhler metric. Evolving from an intriguing conjectural picture developed
by Gaiotto, Moore and Neitzke [12], it was shown that on the regular locus of the Hitchin map the
asymptotic of the hyperkihler metric are described by a so-called semi-flat metric [8, 10, 24]. This
is a hyperkdhler metric defined on any algebraically completely integrable system by the theory of
special Kdhler manifolds [11]. It does not extend over the singular locus, but Gaiotto, Moore and
Neitzke suggest that it can be modified to define a hyperkéhler metric on M. Recent progress in
this direction can be found in [35].

As the first step in analysing the asymptotic of the hyperkdhler metric, Fredrickson, Mazzeo,
Swoboda, Weiss and Witt studied limits of solutions to the Hitchin equation along rays to the
ends of the moduli space [9, 23, 26]. It was shown in [9, 22], that these so-called limiting config-
urations satisfy a decoupled version of the Hitchin equation and are completely determined by
spectral data. In Theorem 5.8, we will use the semi-abelian spectral data explained above to con-
struct solutions to the decoupled Hitchin equation for 81(2)-type fibres of the symplectic and odd
orthogonal Hitchin system. We conjecture them to be limiting configurations. For SL(2, C), this
is a theorem by Mochizuki [26].

1.4 | Reader’s guide

The paper is structured into four sections. In Section 2, we will introduce 8((2)-type Hitchin fibres
of the symplectic Hitchin system. We prove the identification of these Hitchin fibres with SL(2, C)-
Hitchin fibres on /o and give the parametrization by semi-abelian spectral data using the results
of [21]. In Section 3, we repeat these considerations for the odd orthogonal group.
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6 | HORN

Summing up, we formulate the Langlands correspondence for Sp(2n, C)- and SO(2n + 1, C)-
Hitchin fibres of 8[(2)-type in Section 4. Finally, in Section 5, we will construct solutions to the
decoupled Hitchin equation and motivate why we conjecture theses to be limiting configurations.

2 | 8I(2)-TYPE FIBRES OF SYMPLECTIC HITCHIN SYSTEMS
2.1 | The Sp(2n,C)-Hitchin system

Let X be a Riemann surface of genus g > 2 and let M denote a holomorphic line bundle on X with
deg(M) > 0.

Definition 2.1. An M-twisted Sp(2n, C)-Higgs bundle is a triple (E, ®, w) of a

(i) holomorphic vector bundle E of rank 2n,;
(ii) an anti-symmetric bilinear form w € H°(X, /\2 EV), such that o™ € H(X, det(EY)) is non-
vanishing and
(iii) ® € H°(X,End(E) ® M), such that w(®-,-) = —w(-, ® ).

Theorem 2.2 (Simplified stability condition [13]. A Sp(2n, C)-Higgs bundle (E, ®, w) is stable, if for
all isotropic ®-invariant subbundles0 # F C E

deg(F) < 0.

Let Mgyon,c)(X, M) denote the moduli space of stable M-twisted Sp(2n, C)-Higgs bundles on X.
This is a complex algebraic variety (see [13, 29]). For M = Ky, it is a complex symplectic manifold
of dimension

(29 —2)(2n® + n).
Let A € 3p(2n, C). The characteristic polynomial of A is of the form
T?" 4+ a,(A)T*"% + - + a,,(A) € C[T].

The coefficients (a,, ..., a,,) are homogeneous generators of C[g]® and the associated Hitchin
map is given by

n

Hitspanc) 1 Mspano) X, M) = By, (X, M) := @ HO(X, M),
i=1

(E’ (I)) = (a2(q))’ R aZn(q)))-

This is proper, surjective, flat, holomorphic map [27, 33]. For M = Ky, the Hitchin map
restricted to a dense subset B;;g C B,,, defines an algebraically completely integrable system
[17,19].

The characteristic equation of (E, ®) € Hit_!

Sp(2n,C)(a2’ .. Oyy,) is given by

?" + an® 2 + -+ ay, = 0.
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81(2)-TYPE SINGULAR FIBRES | 7

Let py; : M — X the bundle map, then 7 can be interpreted as the tautological section?n : M —
PyM. The pointwise eigenvalues of the Higgs field form the a complex analytic curve

T 1= Zy(™ + piaon®™ 4 - + play,) C TotM.

This is the so-called spectral curve. The projection p,, restricts to a 2n-sheeted branched ana-
lytic covering 7 : ¥ — X. Recall that in general the spectral curve is singular at the points,
where different sheets meet. Due to the specific type of characteristic equation the spec-
tral curve comes with an involutive automorphism o : ¥ — X reflecting in the zero section
of M.

For M = Ky, the regular locus B®

2n
¥ is smooth. The fibres over B;Zg are torsors over the Prym variety

is the subset of the Hitchin base, where the spectral curve

Prym(Z — X£/0)

(see [17, 19]). We will reprove this result in Theorem 2.20.
The regular locus can be detected by the 8p(2n, C)-discriminant. Consider the representation
of 3p(2n, C)

t 0 id,
{A € Mat(2n x 2n,C) | A"J,, +J,,A = 0}, where J,, = 4o )

A Cartan subalgebra is given by
h = {H = diag(hy,..., h,,—h,,..,—hy) | h; € C}.
Define e; € §¥ by ¢;(H) = h;. Then a root system is given by
Az{ieiiej|1<i<j<n}u{126i|1<i<n}.
The 8p(2n, C)-discriminant is the invariant polynomial defined by product over all roots

discg, := [] « € c[o]" = c[g]°.

aEeA

There are two types of roots differing by their length. The roots +2e; have \/5 times the length
of the roots +e; + e; (as depicted in the Dynkin diagram). The Weyl group W preserves the inner
product on § and hence the set of long/short roots. Therefore, we can define invariant polynomials
in C[g] by the product over the long/short roots. The product over the long roots []'_, —4ei2 is
(up to a scalar) the determinant function on §. We refer to the product over the short roots as the

reduced 3p(2n, C)-discriminant
discg’;j = H —(e; £ e).
i<j
We have

red

discg,, = detdiscy .
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8 | HORN

The discriminant of a Higgs bundle (E, ®) € Mg, ¢)(X, M) is the section
discg,, () € HO(X, M),

Being invariant polynomials disc,, and disc;f factor through the Hitchin map. Fora € B,,(X, M),
red

we will write discgp(g) and disc 2y (a) for the (reduced) discriminant computed in this manner.

Lemma 2.3. Ifall zeros of discg,(a) € HO(X, M) are simple, then the spectral curve is smooth.
Proof of Lemma 2.3. Let x € X be a simple zero of

discgy(a) = azndisc;e;(g) € HO(X,MZ”Z).

red
sp
point on the zero section. If disc;f(g) has a simple zero at x and a,,(x) # 0, then 77}(x) € £

contains two simple ramification points 0 # 4, —A € M .. Hence, the spectral curve is smooth. []

If a,, has a simple zero at x and disc’>(a)(x) # 0, then 7~}(x) € = contains a simple ramification

Example 2.4 (Sp (4, C)). For (a,,a,) € B,(X, M), The 8p(4, C)-discriminant is given by
discgy(ay, a,) = ay(a; —4ay).

If instead we compute the discriminant of the characteristic polynomial, the 8I(4,C)-
discriminant, we obtain

discap,0)(as, ay) = ay(a; — 4ay)’.

This expression has higher order zeros for all (a,,a,) € B,(X,M). Hence, the 381(4,C)-
discriminant cannot detect the regular locus of the Sp(4, C)-Hitchin map.

Notation. In the following we will often consider a branched covering of Riemann surfaces
p : Y — X. To avoid confusion, we will refer to points in Y, where different sheets meet or equiv-
alently zeros of dp as ramification points and to the images of these points under p as branch
points. We denote by R = div(dp) € Div(Y) the ramification divisor and refer to its coefficient R,
at a ramification point y € Y as the ramification index. B := Nm(R) € Div(X) is referred to as
branch divisor.

2.2 | 8l(2)-Type spectral curves

In this subsection, we will define the class of 81(2)-type fibres of the Sp(2n, C)-Hitchin map.
These Hitchin fibres are distinguished by the singularities of the spectral curve, such that for
G = SL(2, C) all Hitchin fibres are of 81(2)-type.

Let a € B,,(X, M), X C Tot(M) the associated spectral curve and o the involutive biholomor-
phism reflecting in the zero section of M. Being the zero section of a polynomial with coefficients
in a line bundle on a Riemann surface, the spectral curve X is algebraic. The involution o defines
an algebraic Z,-action on X. We will construct its quotient in the algebraic category. A geometric
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81(2)-TYPE SINGULAR FIBRES 9

quotient by this action is given by
7, : X — Z/o = Spec(O5),

where O denotes the sheaf of o-invariant regular functions on X. As 7 is invariant under the
Z,-action, we obtain the commutative diagram on the right side of this paragraph:

Definition 2.5. An element a € B,,(X, M) is called of 81(2)-type, if X /o is smooth. In this case,
Hitgpl(m C)(g) is called 81(2)-type Hitchin fibre. An Sp(2n, C)-Higgs bundle is called of 81(2)-type,
if it is contained in an 3[(2)-type Hitchin fibre.

Example 2.6.

(i) Letn = 1. Then X = /o is smooth for all a, € H°(X, M?) and hence all Hitchin fibres are

of 3[(2)-type.

(ii) A regular pointa € B;ig(X , M) is of 81(2)-type. In this case, X is smooth and so is £/c. The
fibres are isomorphic to Prym(ZX — /o), which in turn determines a regular Hitchin fibre of
the 77 Ky -twisted SL(2, C)-Hitchin system on Z/c.

(iii) Consider n = 2 and (a,,a,) € B,(X, M), such that X is smooth except of one point p € X on
the zero section. Assume that the spectral curve is locally at p isomorphic to Z(y? — z?) C
C? witho : C? — C?,(y,z) & (—y, z). Locally, the quotient = /o is isomorphic to the affine
curve Spec((Cly, z]/(y? — z?))°). There is an isomorphism

(Cly,2l/¢* = 29)° = Clw], V= whz - w
and hence X /o is smooth at p. In conclusion, (a,,a,) € B, \ Bfg is of 31(2)-type.

Proposition 2.7. A point a € B,,(X, M) is of 8L(2)-type if and only if all singular points of = lie on
the zero section of M — X and only two sheets meet in the singular points. In particular, all singular
points of Z are of type Ay, k > 1, that is, higher nodes and cusps.

If disc;;d(g) € HO(X,M*""=D)  has simple zero and Z(a,,_,)NZ(a,,) =@, then
a =(ay,...,ay,) € B,,(X, M) is of 31(2)-type.

Proof. If a € B,,(X,M) is of 31(2)-type, there cannot be any singular points away from the
zero section of M. Otherwise X /o is singular, too. Let y € X be a singular point on the zero
section. Choose a trivialization M |;; = U x C over a coordinate neighbourhood (U, z) cen-
tred at 7(y) and let (z,4) be the induced coordinate on M. Then X is locally given by the
equation

q(z,A) 1= A" + /lzn_zaz(z) + - +a,,(2)=0
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10 | HORN

with the involution given by o : (z,4) — (z,—A4). Because y = (0, 0) is a singular point, we have

o) _ 0 -0
3z |(z,/1)=(0,0) q= 3 |(z,/1)=(0,0) q=>9u.

Hence, ;—Z | 2=0 a2, = 0, that s, a,,, has a higher order zero at z = 0. Now, /0 is locally given by

the equation
q°(,2) =" +7"ay(@) + - + ay(2) = 0

and smooth at (0, 0) by assumption. Therefore,
a ag
0# 5, lem=00 8 = 220500

In particular, 1 = 0 is a zero of g(0,4) of multiplicity 2 and hence only two sheets meet in the
singular point.

Conversely, if a singular point p lies on the zero section and two sheets of the covering =
meet there, then X is locally given by a polynomial equation of the form y? —zK = 0. Let R =
Cly,z]/(y* — z¥). The ring of invariant functions R° is generated by y? and z. In particular,

R° > Clz], y*+~zZrzoz

defines an isomorphism of coordinate rings. Hence, Spec(R?) = C and the quotient is smooth.
The discriminant condition implies that, away from the zero section, the only points, where
different sheets meet, are smooth ramification points of ramification index 1. Furthermore,

Z(ay,_,) N Z(a,,) = @ implies that only two sheets meet at the zero section, in particular at the
singular points. Hence, the spectral curve is of 31(2)-type by the first criterion. [l

Remark 2.8. Nevertheless, there can be smooth ramification points of 7 : £ — X of higher order
on the zero section of M for an 81(2)-type spectral curve X. For n = 2, an example is the spectral
curve defined by (0, a,) € B,(X, M) with a, having simple zeros.

Remark2.9. An irreducible algebraic/analytic subset Z C C" is a C!-manifold in a neighbourhood
of a point p if and if only Z is locally given by algebraic/analytic equations

Fi(xy,..,%,) =0, ..., Fi(xq,...,%x,) =0,

such that D(Fy,...,F;) has maximal rank at p. The backwards implication follows from the
implicit function theorem. For the converse see [25, p. 13].

Proposition 2.10. Let p : M? — X the bundle map andn : M? — p*M? the tautological section.
Let (a,, ..., ay,) € B,,(X, M) be of 31(2)-type. The reduced spectral curve Z /o is the zero divisor of

N+ a)" "+ e+ ay,_om + ay, € HO(M?, p*M").

In particular, Ky, & (M™% @ Ky) and O(R) = 7 M>"~2, where R € Div(Z/0) is the ramifica-
tion divisorof ,, : /0 — X.
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M

2

by

Y/o

M|

T s

FIGURE 3 Spectral curves

Proof. The first assertion is clear from the proof of the previous proposition. It is easy to see, that
Kyp = pLz(Kx ® M~2) and hence by the adjunction formula

Kso = (KMZ ® PX/[zMzn) |5/o =7, (M ® Kx).

The last assertion follows as O(R) = Ky, ® n:‘lK;l. O

In the subsequent analysis of 8[(2)-type Hitchin fibres, another version of the spectral curve
plays an important role. We can naturally associate a smooth curve £ to the singular spectral curve
% by normalization. It can be defined as the unique extension of the covering 77 | gy« : £¥ = X* to
a holomorphic covering of Riemann surfaces. Here -* refers to the complement of ramification,
respectively, branch points. If £ /o is smooth, it can be defined in the same way as the extension
of the covering of Riemann surfaces 7, | gy« : Z¥ — (£/0)*. Intrinsically, it is the analytic curve
% associated to the integral closure of the structure sheaf. We obtain the commutative diagram in
Figure 3.

For a,, € H(X,M?"), let

Nodd == Moad(azy,) = #{x € Z(a,,) | x zero of odd order}.

Lemma 2.11. Let (a,, ..., a,,) € B,,(X, M) be of 31(2)-type. Then the genus of /o is given by
gZ/o)=n(g—1)+ (n* = n) deg(M) + 1.
The genus of the normalized spectral curve is
9(%) = 2n(g — 1) + 2(n* — n) deg(M) + 3noqq + 1.
If M = K, we have

9gE/o)=02n* —n)(g—-1)+1
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12 | HORN

and
9(%) = (4n” = 2n)(g — 1) + 3noqq + 1.

Proof. This is immediate from Proposition 2.10 and the Riemann-Hurwitz formula. O

2.3 | 8I(2,C)-Type Hitchin fibres are fibres of an SL(2, C)-Hitchin map

In this subsection, we prove the main theorem in the Sp(2n, C)-case identifying the 3[(2)-type
Hitchin fibres with fibres of an SL(2, C)-Hitchin system on the spectral curve X /o.

Proposition 2.12. Let p : Y — X be an s : 1 covering of Riemann surfaces. Fix a square root
1
O(R)? of the ramification divisor R € DivV(Y). Let (E, @) € Mg (5 o\(Y, p*M), then the pushforward

1
(p.(E ® O(R)2), p,.P) defines a M-twisted Sp(2s, C)-Higgs bundle on X.
Recall that the ramification divisor R has even degree by the Riemann-Hurwitz formula.

Proof. LetE' :=EQ® O(R)%. The pushforward p,E’ is locally free and

p.®: p.E' > p(E'®p*M)=p.E' @M
defines a M-twisted Higgs field on p,E’. The symplectic form w € H(Y, /\2 EV)induces a degen-
erate symplectic form o’ = w(dp)~! € H(Y, /\2 EV(—=R)) on E’. Let U C X be trivially covered,

such that E’ |p_1(U) is trivial. Hence p‘l(U) =V,u--uV,. Let 8ij withi=1,2;j=1,..,s be
symplectic frames of E’ | v that is,
0 1
’ _
w |vj = <_1 0>,

with respect to s, j, 5, ;. Then the induced symplectic form on p.(E") |y is given by

0 1
-1 0

p*w, |U =

0 1
-1 0

with respect to the frame s;;. This defines a symplectic form p.@ on p,E'|yx, where Y* =Y \
suppR. Obviously, p,o'(p,®-,-) = —p, @', p,® ).

To extend the symplectic form over the branch points, we use a description of the alge-
braic pushforward by local Z,-invariant bundles at the corresponding ramification point. Let
o :=w@p)~t € HY, /\Z(E’)V). Let y € Y be a ramification point of order k. Choose coordi-
nate neighbourhoods (V, z) centred at y and (U, w) centred at p(y), such that the projection map
isgivenby p : z - z¥. Let £ a primitive root of unity of order k. Thent : V — V, z = £z induces
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81(2)-TYPE SINGULAR FIBRES | 13

alocal Z-action interchanging the sheets. Consider the local holomorphic Z, -vector bundle
F:=E'|,®@TE |, ® & )E|,.
Let s;, 5, be a symplectic frame of E’ | v, then

Sij = %(Si +E s + E() s 4 e+ EETDI )

fori €{1,2}and 0 < j < k — 1 define a frame of F, such that the Z, -action is given by

diag(1,1,¢,&, ..., §k_1, Ek_l).

The induced degenerate symplectic form Q = o’ + t*w’ + -+ + (tF"1)*w’ is given by

a ) z7k+tl forl+m=k—1
Sq7, S =
15 %2m 0 otherwise.

We obtain a local Z, -invariant holomorphic vector bundle F* descending to p(V) as a Hecke trans-
formation

k-1
0->F—>F- @((9y/zi(9y)2 -0
i=1

introducing the new transition function

¥o, = diag(1,1,2,z, ...,z 1, 25 1)

with respect to the frame s;;. The Hecke transformed Higgs bundle is Z;-invariant and descends
to a local frame of the pushforward p,(E’, ®) on p(V). The induced symplectic form is given by

A By o 1 forl+m=k-1
Q= (¢019)(S117S2m) =

0 otherwise,

where §;; denotes the induced frame of F at y. Hence, Q descends to a non-degenerate symplectic
form on p,E’. Again it is clear that the induced Higgs field p, ® is anti-symmetric with respect to
the symplectic form. O

In the same way one proves:

Proposition 2.13. Let 7 : Y — X be a branched covering of Riemann surfaces. Let E, F holomor-
phic vector bundleson'Y and 8 : E ® F — C a non-degenerate bilinear pairing. Fix a square root

1
O(R)2. Then there is an induced non-degenerate pairing

7,(E® OR)2) ® 7,(F ® OR)?) — C.
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Let a € B,,(X, M) be of 31(2)-type. The spectral curve = comes with a section 2 € H(Z, 7*M)
solving the spectral equation. The product Ac*(1) € H(Z, 7*M?) defines a o-invariant section
descending to b, € H(Z /o, i M?).

Proposition 2.14. Let a € B,,(X, M) be of 8[(2)-type and b, € H(Z/a, 7 M?) the induced sec-
tion. There is a holomorphic map

Hitgpl(zm(g) - Hitgl_l(z,c)(bz) C Mg .0)(Z/0, T, M).

Proof. Let (E,®) e Hitgpl(m1 G:)(g). The pullback of the characteristic polynomial along
T, 2o —>X

P4 a4 e+ Ay,
factors through 12 + b, and hence defines a generalized locally free eigen sheaf E, by

i +b,id

0—E,>mE——— 1 (EQM?) > E,@m:M*" - 0.

Here the cokernel of 77 ®? + b,id is identified with E, ® 7:M*" using the symplectic form. The
dualized exact sequence tensored with 7z; M 2 results in

(7 @2 +byid)Y .
0-E) @n:M*"*" > m'EY —————— 7wi(EY Q M*) - Ej @ T:M* - 0.

The symplectic form w identifies E with EV and from the anti-symmetry of the Higgs field the
bundle map n':‘lcbz + byidpp is self-dual. Hence, there is an induced isomorphism E, = E;’ ®
7 M?~2" In particular, w restricts to a symplectic form w, on E; @ 7 M"~! and the induced Higgs
field @, on E, is anti-symmetric with respect to it. Hence, (E,, ®,) is a 7y M-twisted SL(2, C)-Higgs
bundle on £/o. Stability will be discussed in the proof of the following theorem. O

Theorem 2.15. Let a € B,,(X, M) be of 81(2)-type and b, € H°(Z /o, n:‘le) the induced section.
The holomorphic map
=1 =1
Hitg 00,0 (@ = Hitg ; ¢)(b2)

defined in Proposition 2.14 is a biholomorphism. Its inverse is given by Proposition 2.12.

Proof. We need to show that the holomorphic maps defined in Propositions 2.12 and 2.14

1
with O(R)z = n:M"‘l are inverse to each other. Let (E,, ®,) € Hit"!(b,). By Proposition 2.12,
(7 (B @ miM™1), 7, @,) defines a Sp(2n, C)-Higgs bundle on X with spectral curve . We have
a natural map

E,Qm:M'™" > E, @ m:M""!
by multiplying with the canonical section of O(R) = 7*M?"~2. This induces an inclusion
1B, Q@miM' " 5 min, (B, @ miM"TY).

It is clear by construction that the im(t) = ker(n;nn*fbg + b,id).
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81(2)-TYPE SINGULAR FIBRES | 15

For the converse, let (E, ®) € Hitgpl(Zn C)(g) and denote by (E,, ®,) the induced SL(2, C)-Higgs
bundle on X /0. It is clear that

T (BEy @ TEM™™, @) | xx = (E, @) |y,

where X* = X \ 7, (suppR). We are left with showing that this isomorphism extends over the
branch points. Let x € X be a branch point. For simplicity of notation we assume that it corre-
sponds to a ramification point y € Y of index n — 1. Let (V, z), respectively, (U, w) be coordinate
neighbourhoods centred at y, respectively, x, such that the covering is givenbyz, : V - U,z —
z". We have a local automorphism 7 : V — V,z — £z, where £ is a primitive nth root of unity.
This automorphism interchanging the sheets induces a local Z;-action on £ /o at y. The pullback
7 (E, ®) |y is invariant by this Z,-action. As explained in the proof of Proposition 2.12, we can
obtain a frame of 7% 7, (E, ® 7:M"~!, ®,) | =-1xx aty by extending

(F, %) = (E',®) | yx @ T*E", ®) | yx ® -~ & @) (E,®) |

to a t-invariant SL(2n, C)-Higgs bundle at y. This is the unique way to do so. Hence, the isomor-
phism extends over the branch points.

Finally, let us check that this isomorphism preserves stability. If X is irreducible, there are no
Higgs field-invariant subbundles of E, or E and hence all Higgs bundles in the corresponding
SL(2, C)-Hitchin, respectively, Sp(2n, C)-Hitchin fibre are stable. So let us assume X is reducible.
Being 31(2)-type the spectral curve has two irreducible components X = X, U %, interchanged
by 0. Let L C E, be an ®,-invariant line bundle, then V = 7, ,L @ 7:M"~! is a 7, ®,-invariant
isotropic subbundle of E = 7, . E, ® 7, M n=1 of degree

deg(V) = deg <Nm(L) ® M(n=1) ® det(”n*OZ/g)> — deg(L), M
where we used that
det(nn*Oz/U)z = O(—B) = Nm(=R) = M2"(1-n),

Hence, if (E, ®, w) is stable, (E,, ®,) is stable. Furthermore, all ®-invariant subbundles of (E, ®, w)
are of this form. (In other words, there are two of them corresponding to the irreducible compo-
nents of X.) Hence, the converse holds true as well. O

2.4 | Semi-abelian spectral data for 81(2)-type Hitchin fibres

In this section, we apply the results of [21] to Sp(2n, C)-Hitchin fibres of 8[(2)-type. Let us start by
defining the twisted Prym varieties, the abelian part of the spectral data.

Definition 2.16. Let p : Y — X be branched covering of Riemann surfaces. Let N € Pic(X).
Define

Prymy(p) 1= ngl(N),

where Nm IR Pic(Y) — Pic(X) is the norm map associated to p.
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Lemma 2.17. Prymy(p) is an abelian torsor over the Prym variety Pryme, (p) = ker(Nm,,), when-
ever it is non-empty. If p : Y — X is two-to-one and ¢ : Y — Y the involution interchanging the
sheets, then

Prymy C{L € Pic(Y) | L® o*L = p*N}.
If p is not unbranched, this is an equality.

Proof. The first statement is clear. For the second, see [21] Proposition 5.6. O

In the same vein as in [21] for SL(2, C), the semi-abelian spectral data will define a stratification
of the singular Hitchin fibres. The strata are indexed by so-called Higgs divisors.

Definition 2.18. Leta,, € H(X, K)Z(”). An associated Higgs divisor is a divisor D € Div(X), such
that supp(D) € Z(a,,) and for all x € Z(a,,,)

0<D, < %ordx(aZH).
Lemma 2.19. Leta € B,,(X,Ky) be of 8L(2)-type. Let (E,®) € Hitgp(Zn’C)(g) andx € Z(a,,) C X

a zero of order m. There exists a coordinate neighbourhood (U, z) centred at x and a frame of E | ;,
such that the Higgs field is given by

for some 0 <1, < % Here ¢ has pointwise non-zero eigenvalues. The Higgs divisor of (E, ®) is the
divisor

D=DE®)= Y I.

X€Z(ay,)

Proof. By assumption 0 is an eigenvalue of @, of algebraic multiplicity 2. Therefore, we can find a
coordinate neighbourhood (U, z) centred at x, such that (E, ®) | v =(Ey®E;,®,® D,), where
E, is of rank 2 with ®((x) nilpotent and E, is of rank 2n — 2 with @, having non-zero eigenvalues.
Moreover, by the anti-symmetry of @ the symplectic form w restricts to a symplectic form on E,
and E;. Now, we can bring (E,, @) in the desired form by [21] Lemma 5.1. O

For a,, € H'(X,K}"), let
Neven .= #{x € Z(a,,) | x zero of even order},

Noaq = #{x € Z(a,,) | x zero of odd order}.
For D € Div*(X) a Higgs divisor associated to a,,, let

ndiag(D) = #{x € Z(aZn) | Dx = %ordx(azn)}
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81(2)-TYPE SINGULAR FIBRES | 17

Theorem 2.20. Let a € B,,(X,Kx) be of 31(2)-type, such that T is irreducible and reduced. There
is a stratification

-1 _
HItSp(Zn,C)(g) = |3| Sp

by locally closed analytic sets Sy, indexed by Higgs divisors associated to a,,. If a,, has at least one
zero of odd order, every stratum Sy, is a holomorphic fibre bundle

(€)Y x(C)F = Sp — Prymﬂ:K;(D)(ﬁ'z)
with

Modd
I = Neyen = Naiag(D), 7+ 5 =2n(g — 1) — deg(D) — OT
Ifallzeros of a,,, have even order, 7, is unbranched and each stratum Spisa 2 : 1-branched covering
of a holomorphic (C*)" x (C)5-bundle over

Prymln;;K);l (D)(ﬁz).

with r, s given by above formulae. Here, I denotes the unique non-trivial line bundle on X /o, such
that ﬁ';I = Os. In both cases,

dim Sp = 2n? + n)(g — 1) — deg(D).

Proof. This is a direct consequence of Theorem 2.15 and the stratification result for singular fibres
of SL(2, C)-Hitchin systems with irreducible and reduced spectral curve in [21] Theorem 5.13. The
dimension of the twisted Prym varieties is given by

- n
dim Prym(7;) = 9(£) — 9(2/0) = n2n = 1)(g = 1) + == O
Theorem 2.21. Leta = (a,, ..., ay,) € B,,(X, Kx) be of 81(2)-type, such that a,, € H(X, K)Z(") has
only zeros of odd order. Then Hitgpl(zn 0:)(g) is a holomorphic fibre bundle over Prym_.. K (72,) with
fibres given by the compact moduli of Hecke parameters described in [21] Section 7.

Proof. This is a direct consequence of [21, Theorem 7.13]. O
Putting together [21, Corollary 7.14, 7.16 and Example 8.3, 8.5] we obtain:

Example 2.22. Let a = (a,, ..., a,,) € B,,(X,Kx) be of 81(2)-type. Let a,, have k; zero of order
I for I € {2,3,4,5} and at least one zero of odd order. Then up to normalization HitS_pl(Zn C)(g) is
given by a holomorphic fibre bundle

(Pl)k2+k3 x (P(1,1, 2))k4+k5 N Hitg;(Zn,C)(g) - Prymﬂ:K; (7).
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Theorem 2.23. The fibre bundles over abelian varieties appearing in Theorems 2.20, 2.21 and Exam-
ple 2.22 are smoothly trivial.

Proof. This will be proved in Section 5 using analytic techniques. [

Corollary 2.24. Let a = (a,,...,0,,) € B,,(X,Ky) of be 81(2)-type, such that a,, € H*(X,K}")
has at least one zero of odd order, then HitS_pl(Zn G3)(9) is an irreducible complex space. If all zero of a,,
-1

have even order, then HitSp an C)(g) is connected and has four irreducible components.

Proof. This follows from [21, Corollary 8.6 and Theorem 8.8]. O
Remark 2.25. Note that the identification of Hitchin fibres in Theorem 2.15 is not restricted
to 3[(2)-type Hitchin fibres with irreducible and reduced spectral curve. In particular,
the parametrization of singular Hitchin fibres with reducible spectral curve in [14, Sec-
tion 7] describes certain 81(2)-type Hitchin fibres of the Sp(2n,C)-Hitchin system, for all
neN.

3 | 8I(2)-TYPE FIBRES OF ODD ORTHOGONAL HITCHIN SYSTEMS
3.1 | The SO(2n + 1, C)-Hitchin system

Let G = SO(2n +1,C) and

80(2n +1,C) = {A € Mat(n X n,C) | A"J,,,; + 5,11 A =0},

where
0 id, 0
JZVH—l = idn 0 0 .
0 0 1

Then a Cartan subalgebra is given by
h ={H = diag(h,, ..., h,,, —hy,...,—h,,0) | h; € C}.
Define by e; € §¥ by e;(H) = h;. Then a root system is given by
A={t+e;te; |1<i,j<ni#jiu{te |1<i<n}

As before, the 30(2n + 1, C)-discriminant decomposes by the length of the roots

n
: _ 2 gi.~red rered _ 2
discg, = I | —e;discy,”, where discy;" = I I—(ei +ej).
i=1 i#]

85UB017 SUOWIIOD 3AIRR.1D 3|ed!|dde sy A pauleAof afe safole YO ‘&SN JO S9|nJ 1o} ARiqiauljuO A8|1M UO (SUORIPUOD-PUR-SWLBYWOD A8 1M ARIq 1 BUIUO//:SANY) SUORIPUOD PUR SWie | 81 89S *[7202/80/2T ] U0 Aridi8uluo A8|IM ‘9TZZT 0doY/ZTTT OT/I0p/0d A8 | 1M Ae.q 1 pul|uo-00syTewpuO /sy wo. pepeolumod ‘T ‘2202 ‘vZy8eS.T



81(2)-TYPE SINGULAR FIBRES 19

The characteristic polynomial of A € 80(2n + 1, C) has the form

AAP" + a, 4272 4 o 4 ay).

The coefficients a,, ..., a,,, form a basis of the invariant polynomials C[g]°.

Definition 3.1. An M-twisted SO(m, C)-Higgs bundle is a triple (E, ®,w) of a

(i) holomorphic vector bundle E of rank m with det(E) = Oy;
(ii) a holomorphic non-degenerate symmetric bilinear form w € H°(X, S?EY) and
(iii) a Higgs field ® € H°(X, End(E) ® M), such that w(®-,-) = —w(:,®").

(E, @, w) is called stable, if for all isotropic ®-invariant subbundles 0 # F C E
deg(F) <0
(see [13] for this simplified stability condition).

Let Mgo(m,c)(X, M) be the moduli space of stable M-twisted SO(m, C)-Higgs bundles on X. For
m = 2n + 1 the Hitchin map is given by

n

Hitso2n+1,0) * Mso@n+1,0) X M) = Bsooni1,0) (X, M) 1= @HO(X,MZi),
i=1

(E,®,w) + (ay(P),...,0a,,(D)).

In particular, we observe that Bspnny1c)X,M) =B,,(X,M). Let (E, ®,w)€
Hitgclxznﬂ, c)(aZ’ ..., 0yy,), then the characteristic polynomial of @ is given by
/’l(lzn + azn_zﬂ,zn_z + A + azn).

Hence, the spectral curve decomposes in two irreducible components 0 U X, where 0 is the image
of the zero section in M and X is the Sp(2n, C)-spectral curve associated to (a,, ..., a,).

Definition 3.2. An element of the Hitchin base a € Bsg(3,41,c)(X, M) is called of 81(2)-type, if
X /o is smooth. In this case, the corresponding Hitchin fibre Hitgcl)(zn ) G:)(g) is called of 31(2)-
type. A M-twisted SO(2n + 1, C)-Higgs bundles is of 3[(2)-type, if it is contained in a 3[(2)-type

Hitchin fibre.
From Lemma 2.3 and Proposition 2.7, we immediately have

Lemma3.3. Leta € B,,(X, M). Ifall zeros of discg,(a) € H(X, M?"*) are simple, then < is smooth.
Ifdisci2(a) € HO(X, M?""=V) has simple zeros, then a is of 81(2)-type.

Hence, the descriptions and properties of 3[(2)-type spectral curves in Section 2.2 carry over to
31(2)-type Hitchin fibres of the odd orthogonal Hitchin system by adding the irreducible compo-
nent 0.
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3.2 | 0Odd orthogonal 81(2, C)-type fibres as fibres of an
SO(3, C)-Hitchin map

Lemma 3.4. Let (E,®,w) € Msonn41,0) (X, M) be of 31(2)-type. Let p € Z(det(P)) be a zero of
order m, then there exists a coordinate neighbourhood (U, z) centred at p and an orthogonal splitting
(E,®) |y =,®V,, 0, ® ), such that Vy is of rank 3 and ®(p) is nilpotent, and V' is of rank
2n — 2 containing the eigenspaces to eigenvalues A with A(p) # 0. There exists a orthogonal frame of
Vo | v such that

0 1—2z"% 0
Dy(z) = Zh |z — 1 0 i(z" 2 + 1)] dz.
0 —i(z" % +1) 0

Proof. By construction (V,,, ®,) is a O(3, C)-Higgs bundle on U. Due to the exceptional isomor-
phism SO(3, C) = PSL(2, C) the Higgs field @, can be obtained as ad(¥) for a SL(2, C)-Higgs field
W (cf. Section 4). By [21, Lemma 5.1], we can find a local frame, such that

0 zlp
Y= dz.
Zm_lP 0

With respect to the induced local frame of V, the Higgs field ® is given by

0 -z 0
®=adW)=|-z"% o Zr|dz

and the orthogonal structure induced by the Killing form by

1

1

Choosing an orthogonal frame we obtain the desired form. O

Definition 3.5. Let (E, @, ®) € Msgz,11,0)(X, M) be of 8[(2)-type. The Higgs divisor of (E, @, )
is the divisor

D(E,®,0) := ). 1,
peZ(ay,)

where [, is defined by the previous lemma.
Lemma 3.6. Let (E, ®,w) € Mgo(au41,0)(X, M) be of 81(2)-type and D its Higgs divisor, then

(i) ker(®) = M~"(D) and w | ere) = ‘% € H°(X, M?"(-2D)), where s, denotes the canonical
D
section of O(D);
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(i)

(iii)

there is an exact sequence of coherent sheaves
0 — O(ker(®) @ ker(®)1) » O(E) > T - 0,

where T is a torsion sheaf with det(T) = O(A — 2D);
(E, @, w) is uniquely determined by D and

(ker(®)*, @ | ker(@)12 @ | ker(@)L)-

Proof.

@

(ii)

The proof of the first assertion is closely following an argument in [19, Section 4.1/4.2] using
the local form for the Higgs field describe in Lemma 3.4. Let x € X and (U, z) a coordinate
chart centred at x. Consider an orthogonal splitting E | ; =V, @V, @ --- @ V,,, such that
V, is as in the lemma and V; for i > 2 is rank 2 containing the eigenspaces to eigenvalues
+1; # 0. Let ey, e, e, be an orthogonal frame for V,;, such that &, has the form described in
the lemma and e,;_;, e,; an orthogonal frame of V; of eigen sections of ®. Then the induced
alternating bilinear form a := w(®-, -) is given by

a = izl(ey A ey +ie)) + z(-+)) + idy(e5 Aey) + -+ +id (st A €sp)-
Let us assume that with respect to our frame the volume form is given by vol = e; A --- A
e,, € HO(U, det(E)). Then, we can write \" a € H(U, A*" E @ M") as a contraction iy,vol
with

vy = =" 120, - A, (es + iey) + 2T1(-+-) € HO(U,E @ M™).
So v, defines a non-vanishing section of H(X, E ® M"(—D)) that spans the kernel of .
Hence, ker := ker(®) =~ M~"(D).

Furthermore, using the local form of the previous lemma one computes that for p € Z(a,,)
we have @ | o, = 2”7 ~*P»_ Hence (up to the right choice of sp)

a
@ [ er = 3 € HOX, M (=2D)).
D

kert C E is a ®-invariant subbundle of rank 2n, such that
E|y =ker @kert |,

for all open U C X, such that U n Z(a,,) = @. Hence, the inclusions define an exact
sequence of coherent sheaves

0 — Oker dkert) > O(E) > T - 0

with 7 a torsion sheaf supported on Z(a,,). Now, det(7) can be computed from the local
description in Lemma 3.4.
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(iii) Stated differently, (ii) tells us that E is a Hecke modification of ker @ ker* (see [2, Definition
1.1]). We need to show that there is a unique Hecke modification doing the job, that is, a
unique Hecke modification, such that

F =ker & kert
with its degenerate symmetric bilinear form
lg:w|ker®w|kerl

is transformed into an SO(2n + 1, C)-bundle (¥, §). At D € Z(a,,) we have an orthogonal
decomposition

(kert, @ | o) | v = (V2 ® Vs, @, ® @)

by restricting the orthogonal decomposition in Lemma 3.4. One the one side, V, is of rank
2 and ®,(p) is nilpotent, on the other, ®, has non-zero eigenvalues and w | v, is non-
degenerate. Thereby, we are left with showing that we can find a unique Hecke modification
twisting

a
<ker|U€BV2,S—2”®co|V2>

D

into a SO(3, C)-bundle.
Using the local description of the Higgs field in Lemma 3.4 one can show that there are local
frames e, of ker;; and e}, e, of V,, such that the non-degenerate bilinear form at p is given

by

Zm—ZZ 0 0
Aop _ -2l
—@wly,=| 0 " 0],

b 0 0 1

where m = ord,(a,,) and | = D,,. Hence, the Hecke modification can be assumed to take
place in span{e, e, }. If there were two Hecke modifications,

S R
kerlU eV, — F

\

F,

such that F,,F, are SO(3,C)-bundles with the induced orthogonal structure, then up
to choosing frames s;0s; ! reduces to a meromorphic SO(2, C)-gauge (an element of the
SO(2, C)-loop group). It is not hard to show, that such a gauge is automatically holomorphic.

Hence, the resulting SO(3, C)-bundles F;, F, are isomorphic. O
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Proposition 3.7. Let a € B,,(X, M) be of 81(2)-type and b, € H(Z /o, M 2) the induced section.
The pushforward induces a holomorphic map

Mso,0)(Z/0, T, M) D Hits_é@,@(bz) = Hitso2,41,0)(@) € Mson+1,0)X, M).

Proof. Let (E;, @5, w3) € Hitgé(3 o:)(b2)' The pushforward

L - _
nn*<ker(d>3) ® n:‘lM" 1 D, | ker(®;)L> (Bnnl)w3 | ker(¢3)i>

defines a M-twisted GL(2n, C)-Higgs bundle on X with
det (7, (ker(®3)* ® 7*M"')) = M~"(NmD),

and a symmetric bilinear form 7, ((87, )ews |ker(¢3) 1), which is non-degenerate away from
Z(a,,) by Proposition 2.13. Furthermore, 7, ®; is anti-symmetric with respect to this bilinear
form. Moreover, we have a induced Higgs divisor given by Nm(D) supported at Z(a,,,). Now there
is a unique way to recover a SO(2n + 1, C)-Higgs bundle (E, ®, w) by Lemma 3.6.

This reconstruction seems to depend on the Higgs divisor D. However, we saw in the proof
of Lemma 3.6 that the construction is local and only depends on the rank 2 subbundle of
7T (ker(@3)+ ® m:M"1), on which the Higgs field has vanishing eigenvalue. So for a trivially
covered neighbourhood U C X of x € Z(a,,,) it recovers (E;, ®5) | v, Where V C 7/ L(U) is the
unique connected component, such that 1 € HO(V, 7, K) has a zero. Hence, (E, ®, w) varies holo-
morphically with (E3, @5, ;).

Finally, we show that this map preserves stability. If X is irreducible, there are no ®-invariant
isotropic subbundles of (E, ®, w). Hence, it is automatically stable. If this is not the case, being
of 81(2)-type the corresponding Sp(2n, C)-spectral curve decomposes into two irreducible com-
ponents X = X, U X,. The ®;-invariant isotropic subbundles L, L, C ker(®;)* C E; are the eigen
line bundles corresponding to the irreducible components X,, X, of Z. Their pushforwards r,.L;
define 7, ®;-invariant isotropic subbundles of E. These are all ®-invariant isotropic subbundles
of E. Now, Equation (1) in the proof of Theorem 2.15. Shows that (E;, @5, ) is stable if and only
if (E,®D,w)is. O

Proposition 3.8. Let a € B,,(X, M) be of 81(2)-type and b, € H(E /o, 7} M?) the induced section.
The pullback along 7, : /o — X induces a holomorphic map

=1 =1 *
H'tso(2n+1,a:)(9) — H'tso(3,a:)(b2) C Mso,0)(Z/0, ,M).

Proof. Let (E,®,w) € Hit;éun ) G:)(g). The pullback of the characteristic polynomial to £ /o

AA" + a2+ e iay,)
factors through 1(4? + b,) and hence defines a generalized eigen bundle E; on /o by
0— Ey —» m'E 5 THE Q@ M®) > E; @ m:M>"! — 0,
where

W 1= w0707 + byidyp ).
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Here the cokernel of W is identified with E; ® 7% M>"*+! using the orthogonal form. The dual exact
sequence tensored with 777 M 3 results in

\p\/
0 E) @ ;M " > n'E¥ — 7i(EY @ M*) - EY @ m:M*> - 0.

The orthogonal bilinear form w identifies E with EY and from the anti-symmetry of the Higgs
field ¥ = —¥ under this identification. Hence, w induces an isomorphism E; = Ey ® 7:M 2=2n,
Finally, w restricts to a symmetric, non-degenerate bilinear form w; on E; ® 7, M "1 and the
induced Higgs field ®; on E; is anti-symmetric with respect to it. Hence, (E;, @) is a 7, M-
twisted SO(3, C)-Higgs bundle on X/o. It will become clear that this map preserves stability
by the proof of the following theorem stating that it is the inverse map to the one defined in
Proposition 3.7. O

Theorem 3.9. Leta € B,,(X, M) be of 8(2)-type and let b, € H(Z /o, ﬂ:Mz) the induced section.
The holomorphic map between the Hitchin fibres

L1 L1
H'tso(3,c)(b2) - H'tso(2n+1,c)(9)

defined in Proposition 3.7 is a biholomorphism of complex spaces.

Proof. We are left with showing that the maps defined in the previous propositions are inverse to

each other. We start with (E;, ®;) € Hitgé(3 n:)(bZ)' Consider the holomorphic map

ker(®3)" ® XM — ker(®3)" @ M
tensoring with s = 47, € H(Z/o, M 2n=2) This induces an embedding of locally free sheaves
0 - ker(@)' @ mIM' ™" - mim,,, (ker(®y)t @ wEM" ).

By construction its image is ker(ﬂZﬂn*®§ — b,id). Hence, we recover ker(®,)* by the map defined
in Proposition 3.8. This uniquely determines (E;, @5, w;) by Lemma 3.6(iii).
-1
For the converse, let (E, ®,w) € H'tso(2n+1,a:)(9)' Then
(B3, ®3) = (ker®, ® | yorp)

decomposes 7*(E, ®) into rank 3 subbundles. For U C X, such that
n
) =| |u,
i=1

these are the generalized eigenbundles to the eigenvalues 0, %A | u;- The pushforward of
ker(®;)+ @ 7 M"~! C E; reassembles the eigenbundles to +1 | U, for all i. By Lemma 3.6 this
uniquely determines a SO(2n + 1, C)-Higgs bundle. Hence, we recover (E, @, w). O

Remark 3.10 (Hitchin’s approach to regular fibres). Another way to attack to problem is trying to
generalize Hitchin’s approach in [19]. Hitchin describes the regular SO(2n + 1, C)-Hitchin fibres
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by relating them to the corresponding Sp(2n, C)-Hitchin fibreon X. Let (V, ®, g) € Hitgé@nﬂ, C)(g)
with a of 81(2)-type. Adopting Hitchin’s notation, let V, C V be the kernel line bundle and @’ :
V/V, = V/V, the induced Higgs field. It is easy to see that a := g(®'-, -) defines a holomorphic
anti-symmetric bilinear form on V' /V, that is non-degenerate, where ® has distinct eigenvalues. If
deg(D) =0 mod 2n, where D = D(V, ®), we can choose a square root L>"* = K "(D) and define

a symplectic Higgs bundle by
(E:=V/Vy®L,¢, ).

A" a € H(X, det(E)) is generically non-zero and det(E) = Oy by Lemma 3.6(i). Hence, « is non-
degenerate on E. For regular Hitchin fibres, D is always zero and therefore this defines a map
-1 -1
H'tso(2n+1,c)(9) - H'tsp(Zn,C)(E)'
Hitchin uses this map to study the regular SO(2n + 1, C)-fibres as covering spaces of symplectic
Hitchin fibres. The singular fibres are stratified by the Higgs divisors D. One the open and dense

stratum, we have D = 0 and we could apply the same argument. But for the lower strata deg(D)
mod 2n is unconstrained. Hence, this trick does not generalize.

4 | LANGLANDS CORRESPONDENCE FOR 3[(2)-TYPE HITCHIN
FIBRES

In this section, we compare the 81(2)-type Hitchin fibres for the Langlands dual groups Sp(2n, C)
and SO(2n + 1, C) projection to the same point in the Hitchin base. Concerning the abelian part of
the spectral data we will recover torsors over dual abelian varieties. This reproves and generalizes
the result for regular fibres in [19]. The non-abelian part of the spectral data will not change under
the duality. This is a new phenomenon. We will start with the rank 1 case.

For rk(g) =1, we can compare the Hitchin fibres using the exceptional isomorphisms
Sp(2,C) = SL(2,C) and SO(3, C) = PGL(2, C). The moduli space of PGL(2, C)-Higgs bundles can
be constructed as follows (see [15]). First recall that

MLa.0)X, M) = Pic(X) x H'(X, M)
is an abelian group with an action on Mg (, ¢)(X, M). Let
(L, ) € Mg 100X, M) and (E,®) € Mg 0)X, M),
then the proper, holomorphic action is given by
((L,A),(E,®)) —» (EQL,® + Aidp).
We define the PGL(2, C)-Higgs bundle moduli as the orbifold quotient

ML 2,0)X, M) = Mg 2,0)X, M)/ Mgq,0)X, M).
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Acting with H°(X, M), we can find a representative for each PGL(2, C)-Higgs bundles with tr(®) =
0. Hence,

Mg 2,00 X, M) = Hitgi(z’c)(BSL(z’C)(X,M)) /Pic(X),

where we think of B ; ¢y(X, M) C Bg| ,c)(X, M) by the obvious inclusion. For N € Pic(X)
define

MN

sl M) = {(E,®) € M (5,)(X, M) | det(E) = N, tr(®) = 0}.

The action of Pic(X) identifies ./\/lISVLI(2 G:)(X ,M) and MIS\]LZ(Z c)(X , M), whenever deg(N,) = deg(N,)
mod 2. Hence, fixing a line bundle N € Pic(X) of degree 1, we have

Ox

MpgLo,0) X, M) = (MSL(Z,C)

(M) UMY,, (X M) ) /JacCOL2] ®)

where Jac(X)[2] = Zig denotes the group of two-torsion points of Jac(X).
The isomorphism to the moduli space of SO(3, C)-Higgs bundles is defined using the adjoint
representation

MPGL(Z,C)(X’ M) - MSO(3,C)(X’M)
(B,®) > ((E Xpg 812, 0)) @ det(E) ™", ad(®), ).

Here, the orthogonal structure w is induced by the Killing form on 31(2, C). Topologically SO(3, C)-
Higgs bundles on a Riemann surface are classified by the second Stiefel-Whitney class

sw, € H*(X,Z,) = 7,.

This is the obstruction to lift a SO(3, C)-Higgs bundle to a Spin(3, C) = SL(2, C)-Higgs bundle.
Hence, under the isomorphism M?E‘(Z G3)(X ,M)/Jac(X)[2] is mapped onto the connected compo-

nent of SO(3, C)-Higgs bundles with sw, = 0 and ./’VlISVL(2 «:)(X ,M)/Jac(X)[2] onto the connected
component with sw, = 1.

The Hitchin map
HitegL 2,c) * MpoLz,o)X> M) = H(X, M?)
is defined in terms of the decomposition (2) by the SL(2, C)-Hitchin map on each connected com-
ponent.
For (E, ®) € Mpg (2,0)(X, M), there is a well-defined SL(2, C)-Higgs field @ by (2). In particular,

we can define a Higgs divisor D(E, ®) as we did in Lemma 2.19.

Theorem 4.1. Leta, € H O(X, M?), such that the spectral curve is irreducible and reduced, then
there is a stratification

=1 _
H|tPGL(2’C)(a2) = |3|SD
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by finitely many locally closed analytic sets Sy, indicated by Higgs divisors D associated to a,. If there
is at least on zero of a, of odd order, each stratum is a holomorphic (C*)" X C5-bundle over

(Prymy—1py (7)) L Prymyps-1(py (7)) /Jac(X)[2],
where

Nodd
I = Neyen = Naiag(D), 7+ 5 =2n(g — 1) — deg(D) — OT

If all zeros of a, are of even order, each stratum Sy, is a holomorphic (C*)" X C*-bundle over

(Prymypg—10p) () U Prymyyag—1(p)(7)) /Jac(X)[2],

with r, s given by above formulae. Here I is the unique non-trivial line bundle on X, such that 7*I =

Ox. A local trivialization of the fibre bundle S, C Hit;GlL(2 c)(a2) induces a local trivialization of the
fibre bundle structure of the corresponding stratum Sy, C Hitgl_l(2 C)(az) and vice versa.

Proof. Fix a SL(2, C)-representative (E, ®) of a Higgs bundle in

Ox

L1
Sp C Hitgg) (5.0y(@2) C (MSL(Z,C)

X MyuMY (X, M)) /Jac(X)[2]
By [21, Theorem 5.5], we can associate an eigen line bundle L on the normalized spectral cover 77 :
£ — X to(E, ®).If det(E) = Oy, itwill lie in Prymy—1 (%) and, if det(E) = N, in Prymy; -1 (7).
After choosing frames s of L at #71Z(a,) the SL(2, C)-Higgs bundle (E, ®) is uniquely determined
by its u-coordinate in (C*)" x C* with r, s as in the Theorem. The action by Jac(X)[2] lifts to the
normalized spectral curve and induces an action

Jac(X)[2] X Prymp(7) — Prymg(7), (J,L)» #*T®L

for F € Pic(X). For F = M~'(D) and F = NM~1(D), this is exactly the action on the eigen line
bundle induced by the action of Jac(X)[2] on (E, ®).

Recall, that in SL(2, C)-case for a, € H°(X, M?) having only zeros of even order, each stratum
is a 2-sheeted covering of a fibre bundle over the twisted Prym variety. This was due to the iden-
tification of (E, ®) and (E ® I, ®) via pullback. However, I € Jac(X)[2] and so

" 1 MpgLa,0) X, M) = Mg 2.0)(Z, 7*M)
is injective.
The non-abelian part of the spectral data decodes the local Hecke parameter at #~'Z(a,) and
does not change under the action of J € Jac(X)[2] on (E, ®). Choosing a collection of frames j

of J at Z(a,), we obtain a frame of #*J ® L at #~'Z(a,) by #*j ® s. The u-coordinate does not
depend on the choice of j by [21, Proposition 5.8]. This proves the last assertion. O

Theorem 4.2. Let a, € HO(X,M?), such that the spectral curve is locally irreducible, then the
PGL(2, C)-Hitchin fibre over a, is itself a holomorphic fibre bundle over

(Prymy—1(py(7) L Prymys-1py (7)) /Jac(X)[ 2]

with fibres given by the compact moduli of Hecke parameters.
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Proof. This is a direct consequence of the previous theorem and [21, Theorem 7.13]. O

Example 4.3. Example 2.22 carries over to the PGL(2, C)-case. Let a,,, have k; zeros of order [ for
l € {2,3,4, 5} and at least one zero of odd order. Then up to normalization Hit;GlL(2 c)(aZ) is given
by a holomorphic

(Pl)k2+k3 x (P(1,1, 2))k4+k5 _
bundle over

(Prymys—1(py(7) L Prymy -1y (7)) /Jac(X)[2].

Before we formulate the Langlands duality in rk(g) = 1, let us identify the abelian part of the
spectral data for PGL(2, C) as an abelian torsor over the dual abelian variety to the Prym variety.

Proposition 4.4 ([16, Lemma 2.3]). Let 7 : Y — X a s-sheeted covering of Riemann surfaces, then
Prym(rr)¥ = Prym(z)/Jac(X)[s].

Corollary 4.5. Leta, € H 0(X, M?), such that the spectral curve is irreducible and reduced. The

Hitchin fibres Hit;cl;L(z,a:)(%) and Hit;t(z,c)(aZ) are related as follows:

(i) The abelian part of the spectral data are torsors over dual abelian varieties.
(ii) The complex spaces of Hecke parameters are isomorphic.

Proof. Assertion (i) is immediate from the previous theorems and proposition. We showed in

Theorem 4.1 that a trivialization of the bundle of Hecke parameters of Hits_l_l(2 C)(az) induces
a trivialization of the bundle of Hecke parameters of Hit'jél_(2 C)(az). The identity with respect
to corresponding trivialization induces an isomorphism between the complex spaces of Hecke

parameters. [l
By Theorem 3.9, these results carry over to higher rank.

Theorem 4.6. Let a € B,,(X, Ky) be of 31(2)-type with irreducible and reduced Sp(2n, C)-spectral
curve. Fix N € Pic(Z/o) of degree 1. All the results from the previous section carry over to the SO(2n +
1, C)-case.

In explicit, there is a stratification

-1 _
H'tso(2n+1,a:)(9) = |3|SD

by fibre bundles over disjoint unions of abelian torsors indicated by Higgs divisors as described in
Theorem 4.1. If a,, € H'(X ,K)Z(”) has at least one zero of odd order, the disjoint union of abelian
torsors is given by

(PrYM s 1) () U PrYMy 1) () ) 021,
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If all zeros of a,,, are of even order, it is

(PrymIﬂZK};l(D)(ﬁ) u PrymINﬂZK;(l(D)(ﬁ)) /Jac(X)[2],

where I € Jac(Z/0) is the unique non-trivial line bundle, such 7251 = Os.

When a,,, has only zeros of odd order, we obtain a global fibreing of the SO(2n + 1, C)-Hitchin fibre
over this union of abelian torsors as described in Theorem 4.2. Replacing the union of abelian torsors
by the above, Example 4.3 describes the first degenerations of singular 3(2)-type Hitchin fibres for
SO(2n + 1, C) up to normalization.

Proof. This is immediate from the identification of 81(2)-type Hitchin fibres for SO(2n + 1, C)
with fibres of the 77 K -twisted SO(3, C)-Hitchin system on /o in Theorem 3.9. O

Remark 4.7. 1t follows from Theorem 2.23 and the last assertion in Theorem 4.1, that all these fibre
bundles are smoothly trivial.

Corollary 4.8. Leta € B,,(X, Kx) be of 8L(2)-type with irreducible and reduced Sp(2n, C)-spectral
curve. Then Hitgé@nﬂ C)(g) has two connected components. If a,, € H(X, Kf(”) has at least one
zero of odd order, these two connected components are irreducible. If all zeros of a,,, have even order,

then each connected component has two irreducible components.

Proof. For PGL(2, C), the Hitchin fibres in

(M, KD UM, (X, Ky ) Jac(XO[2]
have two connected components by [21, Corollary 8.6 and Theorem 8.8]. These results also prove
that the components are irreducible in the first case. When all zeros of a,,, have even order, each
connected component has two irreducible components stemming from the two connected com-
ponents of Prym(7,). In the difference to the SL(2, C)-case, the pullback of Higgs bundles along
7, is injective for PGL(2, C) (cf. [21, Proposition 3.12]). Now, the general result follows from The-

orem 3.9. [
In particular, Corollary 4.5 generalizes verbatim to higher rank:

Corollary4.9. Leta € B,, (X, Kx) be of 31(2)-type with the spectral curve is irreducible and reduced.

The Hitchin fibres Hitgé@n 0@ and Hitg;(mc)(g) are related as follows:

(i) The abelian part of the spectral data is a disjoint union of torsors over dual abelian varieties.
(ii) The complex spaces of Hecke parameters are isomorphic.

5 | SOLUTION TO THE DECOUPLED HITCHIN EQUATION
THROUGH SEMI-ABELIAN SPECTRAL DATA

In this last section, we will show how to use semi-abelian spectral data for 3((2)-type Hitchin
fibres to produce solutions to the decoupled Hitchin equation. In a series of works of Fredrickson,
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Mazzeo, Swoboda, Weiss and Witt [8, 22, 23] and independently Mochizuki [26], such singular
Hermitian metrics were established as limits of sequences of actual solutions to the Hitchin equa-
tion under scaling the Higgs field to infinity. We conjecture this to be true for the solutions to the
decoupled Hitchin equation that we will construct. In the SL(2, C)-case, this is a theorem by [26].

Let (P,¥) € M(X,M). A reduction of structure group h : X — P/K to a maximal compact
subgroup K; C G is called solution to the decoupled Hitchin equation, if the Chern connection
is flat and the Higgs field W is normal. By definition, the Higgs field ¥ is normal, if

0=[¥Q®t"(P)] € H(X,(P xpq 8) ® M?),
where 7" denotes the induced Cartan involution on P X4 g. For M = Ky this is equivalent to
F,=0, 0=[PAt"®)]eHYDX,Px,y0).

In most cases, there is no smooth solution to this equation. For SL(2,C) it is easy to check by
a local computations similar to [22, Section 3.2], that h is singular at all zeros of the determi-
nant of odd order (cf. Corollary 5.5). Global solutions to the decoupled Hitchin equation can be
constructed through the pushforward of a Hermitian-Einstein metric on the eigen line bundle
L € Prym_. K};I(D)(ﬁ). This method was applied for regular Hitchin fibres in [8, 22].

Remark 5.1. Usually the solutions of the decoupled Hitchin equation are not unique. They can
be modified by applying a Hecke modification — a meromorphic gauge — at a singularity of the
Hermitian metric. However, in the cases we consider, there are natural choices indicated by the
construction and the known approximation results of [8, 26].

51 | Sp(2n,C)

Before going to higher rank, we reproduce a result of Mochizuki for the SL(2, C)-case [26, Section
4.3.2] using the description of singular Hitchin fibres by abelian parameters and Hecke parameters
developed in [21]. The resulting Hermitian metrics agree by the uniqueness statement [26, Lemma
4.38].

Theorem 5.2 (cf. [26, Section 4.3.2]). Let (E, @) € Mgy (5,0)(X, M) with irreducible and reduced
spectral curve. Let a, = det(®), D its Higgs divisor and for x € Z(a,) letn, := ord,a, — 2D, € N,
Then there exists a Hermitian metric hy. = hy.(E,®) on E | X\Z(ay) SOWVing the decoupled Hitchin
equation and inducing a non-singular Hermitian metric on det(E). For all x € Z(a,) there exists a
coordinate (U, z) centred at x and a local frame of E | ;, such that the Higgs field is given by

0 zPx
= Zordya;—Dy 0 dz

and the Hermitian metric for ord,(a,) =1 mod 2 is given by

Ny 1—ny Ny
h = gzl 2 %z 2 |z| 2
de = long e e
HZ 2 |z|> g1zl 2
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with g, a real positive smooth function and ¢, a complex smooth function, such that 912 — g%zl = 1.
Forord,(a,) =0 mod 2 with respect to such frame, the Hermitian metric is given by

nx

nx il nx
HE $Z 2 |z|>

Nx nx _Ix
G272 |z|>2 qlz| 2

with ¢y, g, real positive smooth functions, such that gf - g22 = 1. In both cases, the smooth functions
91, 9 € Ay are determined through the u-coordinate of (E, ®) at x.

Proof. Let (E,®) € Hitgl_l(2 G:)(az) with Higgs divisor D. Recall the description of (E, ®) via the
semi-abelian spectral data developed in [21, Section 5]. Let A € H°(Z, #* M) the section solving the
spectral equation and A = div(4) its divisor. The abelian part of the spectral data is a line bundle

L € Prymy;—1(p)(7%) defined by
O(L) = ker(7*® — Aid g z+p))-
We recover 7*E as a Hecke transformation of
(Er,®@;) := (L & oL, diag(4, —1)).

Up to choices of frames of L at Z(7*a,) these Hecke transformations are parametrized by a so-
called u-coordinate. These u-coordinates are the non-abelian parameters of the spectral data.

For constructing the solution to the decoupled Hitchin equation let us fix an auxiliary parabolic
structure on L by introducing weights o, := %(A — 7#*D), forall p € Z(%*a,). Then the parabolic
degree pdeg(L, o) = 0. Hence, there exists a Hermitian metric h; adapted to the parabolic struc-
ture that satisfies the Hermitian-Einstein equation

Fp, =0
unique up to rescaling by a constant (see [4, 32]). This induces a flat Hermitian metric h; + o*h;
on E;, such that the Higgs field ®; is normal. Applying the Hecke transformation to (E;, ®;, h; +
o*h;) we obtain a Hermitian metric on 7*E | X\Z(ay) SOIVing the decoupled Hitchin equation. This
descends to the desired metric h,.

To show that it induces a non-degenerate Hermitian metric on det(E) = Oy, we compute its
local shape at Z(a,). Let x € Z(a,) be a zero of odd order and p € £ its pre-image. By [8, Propo-
sition 3.5], we can choose a frame s of L around p, such that h; = |z|2°‘P. Such frame is unique
up to multiplying with ¢ € U(1) and therefore defines a unique u-coordinate for (E, @) at p (see
[21, Proposition 5.8]). We want to change the frame of L, such that the Higgs bundle (E, ®) cor-
responds to u = 0 with respect to the new frame. This guarantees the desired local shape of ®.
The transformation rule for u-coordinates was given in [21, Proposition 5.8]. Choosing the frame

s’ = \/%s the u-coordinate for (E, ®) is u’ = 0. The Hermitian metric h; with respect to the
frame s’ is given by

1—u
14ul

h; = flz|** with f = ‘
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Applying the Hecke transformation the induced Hermitian metric on 7*FE at p is given by

(Fro Pl (ot ()
2a, _
F=aH(E)" o plar

There exists g, g, € Ay, such that
g =f+o'f and #g=z"'(f-0"f)

Hence, we obtain the desired local form of i, at x € Z(a,).

Using the description of the Hecke parameters at even zeros in terms of u-coordinates [21,
Proposition 8.1], one can adapt this argument to the zeros of a, of even order.

In the case of irreducible, locally reducible spectral curve Z, the proof works in the same way
as

Prymyp-1(py(7,) C{L € Pic(E | L@ o*L = M~ (D)},
where I is the unique non-trivial line bundle on X, such that #*I = Os. O

Remark 5.3. For the regular fibres of Mg (, o)(X, Kx), this resembles the construction of limiting
metrics in [8]. In difference to Fredrickson, we work with positive weights instead of negatives.
This is due to the fact that Fredrickson’s construction uses the line bundle L’ with the property
7, L' = E to reconstruct the Higgs bundle. In terms of L € Prymﬂ:;K)_(l(ﬁﬁ it is given by L' =:
L ® n*Ky. To every solution h; of the Hermitian-Einstein equation on (L, ), as defined in the
previous theorem, one obtains a solution of the Hermitian-Einstein equation on (L', —a) in a
canonical way by b’ := h; |1]72.

Remark 5.4. Similar to [8, Proposition 3.3], one can obtain solutions to the decoupled Hitchin
equation in the fixed determinant case. One first fixes a Hermitian-Einstein metric hge ) on
det(E). In this case, the eigen line bundle L will be an element of

{L ePic(E)|L QoL =#*det(E)M~ (D)}
and one can choose the Hermitian-Einstein metric h;, such that

=
T°a,
~k g2
T SD

hy @ 0*hy, = ¥ hgeyp)

s

where s, € H(X, Ox(D)) is a canonical section. Then the induced solution to the decoupled
Hitchin equation satisfies det(h,,) = hge-

Corollary 5.5. Let (E,®) € Mg 5 ¢)(X,Ky), such that det(®) € H°(X,K}) has no global square
root and @ is everywhere locally diagonalizable. Then the Hermitian metric hy, defined in Theo-
rem 5.2 is a smooth solution to the Hitchin equation on (E, ®).
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Remark 5.6. Let (E,®) as in the previous corollary. (E, ®) is stable by the irreducibility of the
spectral curve. Hence, the rescaled Hitchin equation

F, +)[DA®*h] =0, teC

decouples and the solutions is independently of ¢ given by the Hermitian metric h,.. Hence, this
Hermitian metric is the limit of a constant sequence of solutions to the Hitchin equation along a
ray to the ends of the moduli space.

Proof of Corollary 5.5. We have #*D,, = %ordp(ﬁ*az) = ord,,(4) for all p € Z(%*a,). Hence all
weights o, of the auxiliary parabolic structure are zero. In particular, the Hermitian-Einstein
metric h; is smooth and so is h; + o*h;. This Hermitian metric descends to h,,. By assump-
tion, (E, ®) is in the lowest dimensional stratum, that is, there are no Hecke parameters for this
stratum. Hence, the descend does not include a Hecke transformation and the smoothness is
preserved. O

Theorem 5.7 [26, Corollary 5.4]. Let (E, ®) € Mgy (5 c)(X, Ky) with irreducible and reduced spec-
tral curve, then the solution to the decoupled Hitchin equation h,, is a limiting metric. In explicit, let
h, be the solution to the rescaled Hitchin equation

F +[@A®7] =0, teR,,
then h, converges to h,, in C*® on any compact subset of X \ Z(det(®)) for t — oo.

Proof. For SL(2,C)-Hitchin fibres with irreducible and reduced spectral curve the auxiliary
parabolic structure is uniquely determined by the condition that the singular Hermitian metric
h., induces a non-singular Hermitian metric on det(E) (see [26, Lemma 4.8]). Hence, h_, coin-
cides with the limiting Hermitian metric constructed by Mochizuki and the approximation result
follows from [26, Corollary 5.4]. O

Applying the biholomorphism of Theorem 2.15, we can use Theorem 5.2 to construct solutions
to the decoupled Hitchin equation for Sp(2n, C)-Higgs bundles of 81(2)-type.

Theorem 5.8. Let (E,®,®) € Mgy, )X, Kx) with irreducible and reduced spectral curve of
31(2)-type. Let (E,, @,) € Mg (50)(2/0, 7, Kx) the corresponding SL(2, C)-Higgs bundle under the
biholomorphism of Theorem 2.15. The solution to the decoupled Hitchin equation on (E,, ®,) €
Mg 2.0/ /0, w:Ky) induces a Hermitian metric hy, on (E, ®, ) | X\Z(disc(E,b.w)) SOving the decou-
pled Hitchin equation.

Proof. Let h, be the solution to the decoupled Hitchin equation on (E,, ®,) defined in Theorem 5.2.
Then h' := h,|d7,| ! defines a Hermitian metric on E, ® ﬂ;K}’}_l singular on Z(det(®,)) U
suppR, where R = div(rr,) is the ramification divisor. Recall from Theorem 2.15, that 7, (E, ®
miK% 1) = E. Hence, 7,,,h’ defines a flat Hermitian metric on E singular on

Z(ay,) U m,(suppR) = Z(disc(E, @, w))

compatible with the symplectic form, such that [7,,,® A 7, @ ™' | = 0. OJ
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The local building blocks for these solutions to the decoupled Hitchin equation at its singulari-
ties were already considered before. Non-zero eigenvalues of the Higgs field of higher multiplicity
correspond to smooth ramification points of 7 : £ — X. Here the Sp(2n, C)-Higgs bundle locally
looks like a Higgs bundle in a regular SL(2n, C)-Hitchin fibre. Hence, the local approximation
problem is covered by [8, Section 4.1]. The singular points of X lie on the zero section of Ky and
are locally given by an equation of the form

22—z =o0.

These are exactly the singularities of SL(2, C)-spectral curves. In this case, the local approximation
result was proven in [26, Section 3]. This leads to the following conjecture.

Conjecture 5.9. Let (E,d,w) € MSp(Zn,C)(X ,Kx) with irreducible spectral curve of 31(2)-type.
Then the solution hy.(E, @, w) to the decoupled Hitchin equation is a limiting metric, that is, let h,
be the solution to the rescaled Hitchin equation

Fp +[@A®"] =0, teR,,

then h; converges to h, in C* on any compact subset of X \ Z(discq,(E, @, w)) for t — oo.

52 | SO(2n+1,0)
Theorem 5.10. Let (E,®,w) € Mso;0)(X,Kx) and a, = det(®), such that the associated
SL(2, C)-spectral curve is irreducible and reduced. Then there exists a metric on (E, ®, w) | X\Z(ay)

solving the decoupled Hitchin equation.

Proof. The adjoint representation Ad : GL(2,C) — SO(3, C) induces a commutative diagram:

0 s U(l) s s R+ 50

0 — U%m — GL2.C) — GL(2%)/U<2> —0
! I !

0 — SO3) — SO(3,C) — SO3, €)/SO3) — 0.

A metric on the SO(3, C)-Higgs bundle (E, ®, w) is a reduction of structure group to SO(3). Denot-
ing by P the SO(3, C)-frame bundle associated to E, it corresponds to a section of P Xso; )
SO(3,C)/S0O(3). Let (E', @) € Hitgﬁ(n’ a:)(O’ a,), such that its image under the map of Higgs bundle
moduli spaces

ML (n,0) X, Kx) = Mo 0)(X, Kx)

induced by the adjoint representation is (E, @, w). By the above diagram, any Hermitian metric on
(E',®")induces a metric on (E, ®, w). Let hy,, denote the Hermitian-Yang-Mills metric on det(E’).
By Remark 5.4, there exists a solution to the decoupled Hitchin equation k. on (E’, @), such that
det(hy,.) = hye unique up to scaling. This induces a solution to the decoupled Hitchin equation on
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(E, ®) by the above diagram. Furthermore, if we choose another representative (E’ ® L, ®') with
L € Pic(X). Then hy(E' ® L, ®") = hy (E',®")h;, where h; is the Hermitian-Einstein metric on
L. We see from the commutative diagram that the resulting metric on the SO(3, C)-bundle E does
not depend on this choice. O

Example 5.11. Fix a Higgs divisor D associated to a, € H(X,K3). Let

(B, ®,w) € Sp C Hitgy ; (ay)

be the Higgs bundle corresponding to the u-coordinate 0 with respect to the frames fixed in the
proof of Theorem 5.2. For x € Z(a,) there exists a coordinate (U, z) centred at x and a local frame
of E | iy, such that the Higgs field is given by

0 i\/2z0x 0
® = | —i/2z0dx(@)-Dy 0 —iv/22Px | dz,
0 l'\/zzordx(az)—Dx 0

the orthogonal structure by

e
Il
—

and the solution to the decoupled Hitchin equation is given by

IZlordx(az)—Dx 0 0
hdc = 0 1 0
0 0 |z|Px—ordx(az)

Applying Theorem 3.9, we can use this result to obtain solutions to the decoupled Hitchin equa-
tion for SO(2n + 1, C)-Higgs bundles of 31(2)-type.

Theorem 5.12. Let (E,®,®) € Msozn11,0)(X, Kx) be of 8L(2)-type with irreducible and reduced
spectral curve. Then the pushforward along 7, defines a solution to the decoupled Hitchin equation
Rge-

Proof. This proof is similar to the proof of Theorem 5.8. Let (E;, @3, ;) be the 7, Kx-twisted
SO(3, C)-Higgs bundle on £ /o corresponding to (E, ®, w) under the isomorphism of Theorem 3.9.
Recall, that we recover (E, ®, w) by a unique Hecke modification of

(B, &) := <ker((I>) ® 71, (ker(@3)" @ TKE),0@ @ | er(or )t )
where the perpendicular is taken with respect to the orthogonal structure w;. In Theorem 5.10,

we constructed a solution to the decoupled Hitchin equation k5 on (E;, @5, w;). h; induces a
singular Hermitian metric on ker(®;)*, which descends to a Hermitian metric 7,,,(h;|07,|™")
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on 7,,(ker(®;)* ® n;jK;_l) singular at Z(a,,,) U suppB. Here B denotes the branch divisor of

7, : Z/o — X. There is a canonical singular flat metric on ker(®) = K "(D) given by |iﬂ| sin-
D

gular at Z(a,,,). This defines a singular flat Hermitian metric

a
| 22| @ 7, (3107, |7
Sp

on (E, ®), such that the Higgs field is normal and which is compatible with the singular orthog-
onal structure. The Hecke modification at Z(a,,) desingularizes the orthogonal structure. The
induced Hermitian metric on (E,®,w) solving the decoupled Hitchin equation is singular at
Z(ay,) U supp(B) = Z(discgy(ay, ..., ayp))- O

Remark 5.13. In the previous proof, we used Lemma 3.6 stating that we can reconstruct a SO(2n +
1, C)-Higgs bundle in a unique way from

(B, ®) = (ker(®) @ ker(®)",0® @ | (o). )

through Hecke modification. For a SO(3, C)-Higgs bundle this gives another way to construct a
solution to the decoupled Hitchin equation. An easy, but tedious computation using the local
models of Theorem 5.2 shows that k. as constructed in Theorem 5.10 is equal to the solution of
the decoupled Hitchin equation obtain from the singular flat Hermitian metric

a
|S_| D hdc | ker(®)+
D

on (E, ®) in this way. This shows that the construction of solutions to the decoupled Hitchin equa-
tion in the previous proof is consistent.

Similar to the symplectic case, the approximation of the local models of these solutions
of the decoupled SO(2n + 1,C)-Hitchin equation follows from the work of Mochizuki [26]
and Fredrickson [8]. Applying the same argument as in the proof of Theorem 5.10 to the
solutions of the rescaled Hitchin equation in Theorem 5.7, one shows that the solutions to
the decoupled SO(3,C)-Hitchin equation are limiting metrics. In particular, the local mod-
els of the solution to the decoupled Hitchin equation for SO(2n + 1,C) are approximated.
At the branch points of 7, : £/0 — X the Higgs bundle looks like to copies of a SL(n, C)-
Higgs bundle interchanged by w plus the kernel. So the local models are described and
approximated by the work of [8]. This leads us to analogue of Conjecture 5.9 for SO(2n +
1,0).

Conjecture 5.14. The solutions to the decoupled Hitchin equation for SO(2n + 1, C) constructed in
Theorem 5.12 are limiting metrics.

Remark 5.15. In the light of the Langlands duality of Hitchin systems, it would be interesting
to compute, whether the induced L?-metrics on Hitg;(zn’c)(BWg) and Hitgc1)(2n+1,¢:)(Breg) define
the semi-flat hyperkdhler metrics associated to the Langlands dual algebraically completely inte-

grable systems. We hope to come back to this question in the future.

85UB017 SUOWIIOD 3AIRR.1D 3|ed!|dde sy A pauleAof afe safole YO ‘&SN JO S9|nJ 1o} ARiqiauljuO A8|1M UO (SUORIPUOD-PUR-SWLBYWOD A8 1M ARIq 1 BUIUO//:SANY) SUORIPUOD PUR SWie | 81 89S *[7202/80/2T ] U0 Aridi8uluo A8|IM ‘9TZZT 0doY/ZTTT OT/I0p/0d A8 | 1M Ae.q 1 pul|uo-00syTewpuO /sy wo. pepeolumod ‘T ‘2202 ‘vZy8eS.T



81(2)-TYPE SINGULAR FIBRES 37

5.3 | Smooth trivialization of semi-abelian spectral data

In Sections 2.4 and 4, we stratified the 31(2)-type Hitchin fibres by fibre bundles over abelian
torsors. Using the solutions to the Hermitian-Einstein equation discussed above, we can prove
that all these fibre bundles are smoothly trivial.

Proof of Theorem 2.23. We only need to show the triviality in the SL(2, C)-case. Then it follows in
all other cases by the identification of 8[(2)-type Hitchin fibres with fibres of an SL(2, C)-Hitchin,
respectively, PGL(2, C)-Hitchin map. In the proof of Theorem 5.2, we saw that a solution to the
Hermitian-FEinstein equation h; on the eigen line bundle L € Prym K py(7) with respect to some

auxiliary parabolic structure induces local frames s at p € #7'Z(a,), such that h; = |z|**». These
frames are unique up to multiplying by a constant and therefore define unique u-coordinates at
all p € Z(7*a,) (see [21, Proposition 5.8]). h; depends smoothly on L € PrymK;(l(D)(ﬁ) (see [24,
Proposition 3.3]). Furthermore, the choice of s depends smoothly on &; by the explicit argument
in [8, Proposition 3.5]. Hence, this defines a smooth trivialization in the SL(2, C)-case and hence
in all other cases. O
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