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Nonlinear Optics

Landau damping is a way to mitigate beam
instabilities. This is the use of tune spread to
lower sensitivity to instabllities. To generate a
tune spread nonlinear forces are required, such

The McMillan System

The McMillan system is a nonlinear, integrable
system. It constitutes a linear transport with 0.25
phase advance followed by a radial nonlinear kick.
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