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ABSTRACT
High fidelity target control over quantum systems has been realized in noisy environments. However, with the development of quantum
science and technology, much higher requirements have been placed on the control precision. Meanwhile, the open system dynamics can
also be modulated via engineering the reservoirs. In this work, on a basis of high fidelity control over systems, we investigate the further
enhancement of the fidelity via squeezing the reservoirs. Taking the adiabatic evolution of an open spin system as an example, we find that the
squeezing direction determines whether the improvement of adiabatic fidelity occurs, while the squeezing strength determines how much the
fidelity is improved. Therefore, a significant enhancement in fidelity can be obtained by choosing suitable squeezing parameters. In addition,
squeezing is able to slow down the decline trend that the fidelity degrades with a longer evolution time, a larger system–bath interaction
strength, or a more pronounced bath Markovianity. Our work shows that squeezing enables the further improvement of high fidelity and uses
a combined strategy that simultaneously controls the system and its environment, which will have potential applications in various quantum
information processing tasks.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0253494

I. INTRODUCTION

In reality, a quantum system is inevitably exposed to its envi-
ronment, and consequently, the interaction between them not
only complicates the system dynamics but also results in decoher-
ence,1 dissipation,2 and disentanglement.3 Precise control of system
dynamics4 against noise is a fundamental topic in quantum infor-
mation processing. It normally refers to finding strategies to steer
the quantum state evolution from an initial state toward a desired
one. Control can roughly be divided into two methods: modulat-
ing the system directly or engineering its environment. For the first
method, numerous schemes have been proposed, such as the leak-
age elimination operator (LEO),1,5,6 quantum error correction,7 and
counter-diabatic driving.8,9 LEO has been applied in closed or open
systems and has been proven to be effective in adiabatic speedup,10

quantum state transfer,11 and environmental noise elimination.1
Reservoir engineering and related techniques, adopting the second

method, have been developed and earned ever-growing attention
in recent years.12–15 For instance, engineering certain Markov pro-
cesses is capable of creating entangled states as stationary asymptotic
states of the dynamics.16–18 In addition, squeezing the reservoirs also
provides an effective means for the quantum control.19–24

The environments in open quantum systems can be modeled
as ensembles of harmonic oscillators in some cases, which in most
situations are considered initially stationary. In other words, these
oscillators are initialized in stationary states, for instance, coherent
states.25–27 If instead the oscillators are prepared in squeezed states,28

the reservoirs will become non-stationary. The differences between
coherent and squeezed states can be identified by the Heisenberg
uncertainty principle: ⟨(Δx)2

⟩⟨(Δp)2
⟩ ≥ h2

/4. Coherent states sat-
urate this principle with equal variances ⟨(Δx)2

⟩ = ⟨(Δp)2
⟩ = h/2 in

both quadratures of baths, which makes them closest to points in
phase space and, therefore, the most classical quantum states. While
for squeezed states, one of the variances can be reduced below the
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symmetry limit h/2, along with the other one growing to saturate
the uncertainty principle. Therefore, squeezing can influence quan-
tum fluctuations, providing more adjustable parameters to modulate
the system dynamics. Theoretical research has already demonstrated
that squeezing the baths can inhibit the phase decay of a two-
level atom.29 From an application perspective, LIGO represents a
remarkable achievement, where optical squeezed states are utilized
to reduce quantum noise and improve the accuracy of gravitational
wave detection.30–32

In general, solving the dynamics of open quantum systems is an
intractable task. In the Markov regime, the Lindblad master equa-
tion33 has been proposed and extensively adopted, which assumes
the Born–Markov approximation and ignores the memory effects of
the environments. Then some memory-related properties might be
lost, involving quantum entanglement, inhibited spontaneous emis-
sion, quantum transport, and quantum tunneling.34–39 The memory
effects of the baths will introduce new challenges for the solution to
system dynamics. Fortunately, there have been several methods that
provide insights into solving the non-Markovian dynamics, such as
hierarchical equations of motion (HEOM),40 the quantum state dif-
fusion (QSD) equation,41,42 etc. Moreover, non-Markovian dynam-
ics with squeezed initial states have also been investigated,22,23,43

providing better understandings of both non-Markovianity and
squeezing.

Recently, an accelerated adiabatic quantum search algorithm
has been demonstrated, employing pulse control on the quantum
system in a non-Markovian environment.44 The results disclose that
while a high success probability is achievable, it degrades with the
increasing system–bath coupling strength or bath Markovianity. Is it
possible for the adiabaticity to be further improved by squeezing the
reservoirs? In this work, we investigate the effects of squeezing when
the system is under pulse control. By combining the two methods,
pulse control on the system and squeezing on the reservoirs, a better
control quality has been obtained.

II. MODEL AND METHOD
A. Non-Markovian master equation

When a quantum system suffers from its environment, the total
Hamiltonian Htot then includes three parts

Htot = Hs +Hb +Hint, (1)

which symbolize Hamiltonians of the system, bath, and their inter-
action, in order. Without loss of generality, the bath is modeled as
independent bosonic modes,

Hb =
N

∑
j=1

H j
b =∑

j,k
ω j

kb j†
k b j

k, (2)

whereω j
k denotes the frequency, and b j†

k (b
j
k) represents the creation

(annihilation) operator of the kth mode in the jth individual bath,
respectively,

Hint =∑
j,k
(g j∗

k L†
jb

j
k + g j

k Ljb j†
k ), (3)

suggests that the system is linearly coupled to its bosonic baths
through the Lindblad operator Lj with associated coupling constant

g j
k . In this work, we consider L = L† following the instructions from

Refs. 22, 23, and 43.
In the context of two mode squeezed states,22,23 a unitary

squeezing operator S is used to squeeze the vacuum state: ∣ϕ⟩
= S∣0⟩, which describes the environmental initial state. The squeezed
state ∣ϕ j

⟩ of the jth bath can be characterized by the following
correlations:

⟨ϕ j
∣b j

k∣ϕ
j
⟩ = 0, (4)

⟨ϕ j
∣b j

kb j†
k′ ∣ϕ

j
⟩ = u2

jδkk′ , (5)

⟨ϕ j
∣b j†

k b j
k′ ∣ϕ

j
⟩ = ∣vj ∣

2δkk′ , (6)

⟨ϕ j
∣b j

kb j
k′ ∣ϕ

j
⟩ = −vjujδk′ ,2k0−k, (7)

where k0 denotes the mode associated with the center frequency
ω0. The squeezing parameters uj, vj must adhere to u2

j − ∣v j ∣
2
= 1,

ensuring the unitarity of squeezing operator S. We also assume
the broadband squeezing as in Refs. 22 and 23, i.e., the squeezing
parameters are identical for all the environmental modes, and then
uj = cosh(rj), vj = sinh(rj)exp(iθj). The squeezing strength rj ∈

[0, 1], and θj represents the squeezing direction. When rj = 0, the jth
bath remains unsqueezed, resulting in an vacuum initial state ∣0 j

⟩.
Moreover, θj = 0 (π) corresponds to squeezing the p (x) quadrature
of the jth bath.

The non-Markovian master equation is introduced to treat the
system dynamics,22,23,45 which reads

∂

∂t
ρs = −i[Hs, ρs] +∑

j
{[Lj , ρsO j†

1 (t)] − [Lj , O j
1(t)ρs]

+ [Lj , ρsO j†
2 (t)] − [Lj , O j

2(t)ρs]}. (8)

It should be noted that within the non-Markovian master equation,
the system Hamiltonian Hs is permitted to be time-dependent.46

Here, the memory kernels O j
1,(2)(t) = ∫

t
0 dsα j

1,(2)(t − s)O j(t, s, z∗),
with the bath correlation functions

α j
1(t, s) =

γjΓj

2
(u2

j − vjuje−2iw j
0 s
)e−iw j

0 (t−s)−γj ∣t−s∣, (9)

α j
2(t, s) =

γjΓj

2
(∣vj ∣

2
− v∗j uje2iw j

0 s
)eiw j

0 (t−s)−γj ∣t−s∣, (10)

and the operators Oj (for details see Refs. 47 and 48). Note that the
correlation functions depend on not only the time difference t − s
but also the historical time s, indicating the initial non-stationarity
of squeezed vacuum states. In the theoretical derivation, the weak
system–bath coupling approximation (Γj ≪ 1)49,50 and the spec-

trum with a Lorentzian form J(ω j
) = 1

2
Γ jγ2

j

(ω j
0−ω j)2+γ2

j
are assumed.33,51

Among these, Γj symbolizes the system–bath coupling strength, and
γj denotes the bandwidth of the spectral density. The associated
environmental memory time γ−1

j characterizes the memory capacity.
γj →∞ (γj → 0) corresponds to a white (colored) noise situation,
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and the environment reaches the Markovian (non-Markovian)
limit.

The non-Markovian master equation in (8) can be numerically
solved with the assistance of two closed equations23

∂

∂t
O j

1 = α
j
1(0, 0)Lj − (iw0 + γj)O j

1 +∑
j
[−iHs − LjO j

1 − LjO j
2, O j

1],

(11)

∂

∂t
O j

2 = α
j
2(0, 0)Lj − (−iw0 + γj)O j

2 +∑
j
[−iHs − LjO j

1 − LjO j
2, O j

2].

(12)
In the Markov limit (i.e., γj →∞), from the consistency con-

dition ∂t
δ∣ψt⟩
δz∗s
= δ

δz∗s
∂t ∣ψt⟩, the operator Oj = Lj. Here, z∗s (or z∗t )

represents a complex Gaussian stochastic process, and the func-
tional derivative δ

δz∗s
describes the influence of environmental noise

z∗s on the system state ∣ψt⟩ or its instantaneous variation ∂t ∣ψt⟩

(for more details see Refs. 41 and 47). Therefore, the mem-
ory kernels are O j

1 =
Γ j
2 (u

2
j − v ju j)L j and O j

2 =
Γ j
2 (∣v j ∣

2
− v∗j u j)L j .

Accordingly, the master equation in (8) reduces to the Lindblad
form23

∂

∂t
ρs = −i[Hs, ρs] −∑

j
Γj(u2

j − vjuj)(
1
2
{L†

jLj , ρs} − LjρsL†
j)

−∑
j
Γj(∣vj ∣

2
− v∗j uj)(

1
2
{L†

jLj , ρs} − LjρsL†
j). (13)

B. System Hamiltonian
In this work, we take the adiabatic evolution of a time-

dependent Hamiltonian as an example to analyze the roles of
squeezing and its synergy with pulse control. Adiabaticity is always
required in adiabatic quantum computation,52–55 which is polyno-
mially equivalent to circuit quantum computation, aiming to solve
NP-hard and NP-complete problems from its inception. In virtue
of the quantum adiabatic theorem, a computational problem can be
transformed into the task of finding the ground state of a quantum
system. The considered Hamiltonian reads

Hs(t) = (1 −
t
T
)H0 +

t
T

HT. (14)

Here, H0 = 𝟙 − ∣ψ0⟩⟨ψ0∣ is the initial Hamiltonian with the uni-
form superposition state ∣ψ0⟩ =

1√
N∑

N−1
x=0 ∣x⟩ as its ground state. In

addition, the final one

HT = σz
1 − σ

z
2 + σ

z
3 + σ

z
1σ

z
2 − σ

z
1σ

z
3 + σ

z
2σ

z
3 − σ

z
1σ

z
2σ

z
3. (15)

The ground state ∣ψT⟩ of the problem Hamiltonian HT actually
encapsulates the solution to a 3-SAT problem,52–54,56 the details of
which are as follows.

A Boolean formula Φ depends on n literals, xi ∈ {0, 1} or their
negations ¬xi

Φ = C1 ∧ C2 ∧ ⋅ ⋅ ⋅ ∧ Cm, (16)

with the clauses Ci = (¬)
s1 x1 ∨ (¬)

s2 x2 ∨ ⋅ ⋅ ⋅ ∨ (¬)
sk xk. Here, si = 1

if xi is negated in its clause; otherwise, it is 0. The Boolean satisfia-
bility problem52 is to decide whether there exists an assignment of

values to the literals that satisfies the Boolean formula, i.e., Φ = 1.
If such an assignment exists, then the problem is satisfiable; other-
wise, it is unsatisfiable. It has significance in not only in industrial
optimization but also the theoretical foundation of computer sci-
ence.57 Specifically, the problem with k = 3, also called 3-SAT, is
NP-complete. Since any NP-hard problem can be transformed to a
3-SAT, it is often employed in complexity theoretical proofs.56

In general, a literal in a 3-SAT can be mapped to a Pauli
operator through the relation58

(¬)
si xi ↔

𝟙 + (−1)siσz
i

2
. (17)

For instance, we consider the following 3-SAT problem:

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)

∧ (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x1 ∨ ¬x2 ∨ ¬x3). (18)

Correspondingly, the problem Hamiltonian reads HT = σz
1 − σ

z
2

+ σz
3 + σ

z
1σ

z
2 − σ

z
1σ

z
3 + σ

z
2σ

z
3 − σ

z
1σ

z
2σ

z
3 , i.e., the Hamiltonian in Eq. (15).

To summarize, from an easily prepared ∣ψ0⟩ as our system’s
initial state, the dynamical evolution process is expected to con-
clude with a state sufficiently close to the target state ∣ψT⟩.
Here, the adiabatic fidelity evolution is monitored as F(t)
=
√
∣⟨ψs(t)∣ρs(t)∣ψs(t)⟩∣, where ρs(t) is the reduced density matrix

and ∣ψs(t)⟩ denotes the instantaneous ground state, derived from
Hs(t)∣ψs(t)⟩ = E0(t)∣ψs(t)⟩.

III. RESULTS AND DISCUSSIONS
In this section, we will first analyze the roles of squeezing, i.e.,

how it affects the free evolution of the system. Then we simultane-
ously control the system and squeeze its reservoirs to investigate
whether squeezing enables the further enhancement of adiabatic
fidelity on a basis of LEO control. Throughout the work, EVIS (ESIS)
stands for environments with vacuum (squeezed) initial states.
The Lindblad operator L j = σx

j describes the linear coupling type
between the system and the jth bath. To simplify, we also assume all
the individual baths share the identical environmental parameters:
Γj = Γ, γj = γ, rj = r, and θj = θ.

A. Free evolution
We first analyze the free evolution case, and in Fig. 1, we

plot the fidelity F vs rescaled time t/T without and with environ-
ments (EVIS) for given total evolution times T = 5, 100, respectively.
Other parameters, system–bath interaction strength Γ and non-
Markovianity parameter γ, are annotated in Fig. 1. First, for the
closed system, the final fidelity F(T) ≈ 1 with T = 100 implies that
the system is in an adiabatic regime. F(T) ≈ 0.566 with T = 5 implies
a non-adiabatic regime. Second, in the presence of baths, adiabatic-
ity is destroyed, and the fidelities drop dramatically. Meanwhile, the
fidelities also decrease with increasing Γ and γ as expected.10 Fur-
thermore, the fidelities F(t/T) with T = 100 are less than those with
T = 5, suggesting the accumulative deleterious effects of baths on the
adiabatic evolution. This is in line with the intuition that the baths
will destroy more adiabaticity when the system is exposed to the
baths for a longer time.
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FIG. 1. Fidelity F of free evolutions vs rescaled time t/T in the closed and open
(EVIS) systems for T = 5, 100.

From now on, we fix the total evolution time T = 5 and inves-
tigate adiabaticity improvement via squeezing in the non-adiabatic
regime. To clearly illustrate to what extent the fidelity F can be
boosted via squeezing, we define the fidelity enhancement as

ΔF(t) = Fs(t) − Fv(t), (19)

where Fs(t) (Fv(t)) denotes the fidelities obtained in ESIS (EVIS).
Next, we explore the effects of squeezing on fidelity enhance-

ment ΔF in the free evolution cases. Figure 2(a) shows the trend of
ΔF changing with evolution time t and squeezing direction θ. Here
the interaction strength Γ = 0.05, spectrum width γ = 5, and squeez-
ing strength r = 1. Recall that θ = 0 (π) corresponds to squeezing the
p (x) quadrature of the baths. Reference 23 has elucidated that when
0 < θ < π/2 (π/2 < θ < π), squeezing the p (x) quadrature predom-
inates. Evidently, in Fig. 2(a), a longer evolution time t or a smaller
squeezing direction θ corresponds to a more distinct ΔF. That is to

say, the fidelity enhancement provided by squeezing becomes more
pronounced when the system is exposed to its baths for a longer
evolution time t and when squeezing on their p quadrature pre-
vails. On the one hand, a circumstance with a longer interaction
time can provide more scope for squeezing to improve the adia-
baticity, due to the terrible performances in EVIS. On the other
hand, Refs. 22 and 23 have already revealed that the squeezing on
p quadrature of baths is more favorable for maintaining the system’s
quantumness, as it weakens the system–bath interaction, resulting
in a reduction in their effective interaction strength. In Fig. 2(b),
we proceed to adjust the squeezing strength r and investigate the
collaborative implications of squeezing strength and direction on
the final fidelity enhancement ΔF(T) under free evolution. It turns
out that whether the squeezing is overall supportive depends on the
squeezing direction θ and the degree of support on the squeezing
strength r.

A natural question comes that to what extent is squeezing the
baths able to improve the adiabaticity of our system? In Fig. 3, we
demonstrate the maximal final fidelity enhancement ΔFmax(T) that
can be implemented by squeezing the baths over all possible choices
of squeezing parameters. On the bright side, as reported earlier,
ΔFmax(T) becomes more pronounced as the system–bath interac-
tion strength Γ and the spectrum bandwidth γ grow. Nonetheless,
even with the assistance of squeezing, the final fidelity F(T) is still
not sufficiently satisfying. It should be emphasized is that in this
work, we consider a simple case, i.e., fixed squeezing parameters in
the whole evolution, and explore whether bath squeezing can have
positive effects on the overall evolution process. If the squeezing
parameters are allowed to change in some way, a better improve-
ment will be achieved, as we can speculate. For example, Ref. 32
has reported that the fluctuations in the amplitude quadrature and
phase quadrature contribute to the quantum noise differently at dif-
ferent frequencies and, therefore, making the squeezing direction
frequency dependent would optimize the detector sensitivity. In this

FIG. 2. (a) Fidelity enhancement ΔF vs rescaled time t/T and squeezing direction θ in free evolutions. r = 1. (b) Final fidelity enhancement ΔF(T) via squeezing vs
strength r and direction θ in free evolutions. Γ = 0.05, and γ = 5.
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FIG. 3. Maximal final fidelity enhancement ΔFmax(T) via squeezing vs the
system–bath interaction strength Γ and spectrum bandwidth γ in free evolutions.

case, the squeezing direction is determined by the relative phase
between the carrier of the main interferometer and the pump field,
which produces the squeezed light.

B. Controlled evolution
As mentioned before, the pulse control technique5,6,44 has been

applied to speed up the adiabatic evolution process, and conse-
quently, the detrimental effects of the baths can be partially elim-
inated. Its main idea is to introduce an LEO Hamiltonian to the
system one,

Hc(t) = Hs(t) +HLEO(t), (20)

where HLEO(t) = c(t)Hs(t), and it can be implemented by a
sequence of fast pulses, denoted as c(t). In this work, we assume
finite pulse intensity and duration time, which is more realistic for
the sake of experimental implementations. The pulse conditions

for effective control have been theoretically derived by the P-Q
partitioning technique in closed systems.11 For instance, considering
such pulses

c(t) =
⎧⎪⎪
⎨
⎪⎪⎩

I, nτ < t < (n + 1)τ, n is even,

−I, otherwise,
(21)

the pulse condition is

Iτ = 2πm, m ∈N, (22)

where I is the pulse intensity and τ is the half period. In addition,
when the energy gap between the ground state and first excited state
ΔE10 is time dependent, instead of constant, the control intensity
I needs further modulations,10

I(t) =
I

ΔE10(t)
. (23)

Notice that integrating such pulses in (22) and (23) over a
period yields zero, i.e., the zero-area condition as in Refs. 10, 11,
and 44.

In what follows, we will first analyze the adiabaticity improve-
ment via pulse control in EVIS, then collaborate on it with squeezing
to make further enhancements. In Fig. 4(a), we plot the free and
controlled fidelity time evolution F(t) in closed systems, EVIS, and
ESIS, respectively. For squeezing the baths, the strength is r = 1, and
direction θ = 0. Other parameters, system–bath interaction strength
Γ and non-Markovianity parameter γ, are annotated in Fig. 4(a). In
the closed cases, LEO supports the system in achieving an adiabatic
evolution even in its non-adiabatic regime. In all EVIS situations,
a significant fidelity enhancement ΔF can be achieved via pulse
control.10 However, even in such controlled evolutions, the fidelity
F still declines evidently with increasing t, Γ, or γ, which shows again
the deleterious powerful influences of environmental noise as in free
evolutions. Fortunately, the green dashed line in Fig. 4(a) show-
cases that squeezing the baths is able to slow down this declining

FIG. 4. (a) Fidelity F of free and controlled evolutions vs rescaled time t/T in closed systems, EVIS, and ESIS. For the squeezing, r = 1, and θ = 0. (b) Modulated pulses
in (a). τ = T/4, and m = 1.
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FIG. 5. (a) Final fidelity enhancement ΔF(T) via squeezing vs strength r and direction θ in controlled evolutions. Γ = 0.05, and γ = 5. (b) Maximal final fidelity enhancement
ΔFmax(T) via squeezing, vs system–bath interaction strength Γ and spectrum bandwidth γ in controlled evolutions.

trend. In other words, as the evolution time t, interaction strength
Γ, and spectrum bandwidth γ increase, the decline degree of adi-
abatic fidelity F(t) of controlled evolutions becomes smaller with
the help of squeezing. Finally, LEO is also able to visibly reverse the
environmental consequences in ESIS as we desire. In Fig. 4(b), the
modulated pulses are illustrated. Here, the pulse half period τ = T/4,
and m = 1 in (22).

Subsequently, as in free evolution scenarios, we plot the final
fidelity enhancement ΔF(T) vs squeezing strength r and direc-
tion θ under control in Fig. 5(a). Here, mutual interaction strength
Γ = 0.05, and non-Markovianity parameter γ = 5. Identical trends
with the free evolutions are observed: squeezing effectiveness relies
on the squeezing direction θ, and the level of effectiveness is deter-
mined by the strength r. In Fig. 5(b), we explore the maximal
enhancement available ΔFmax(T) via squeezing in controlled evo-
lutions. A precedent conclusion once again gets illustrated that an
ESIS with a larger Γ or γ leads to a more significant enhancement in
fidelity. In addition, note that the environmental parameter region
in Fig. 5(b) is the same as that in Fig. 3, but the attainable maxi-
mal improvement becomes clearly amplified. This implies that the
pulse control also plays a helpful role for fidelity enhancement via
squeezing.

Finally, we consider the Markov limit (i.e., γ→∞) when the
dynamics are governed by (13). In Fig. 6, we present the final fidelity
F(T) in EVIS and the attainable maximal final fidelity Fmax(T) in
ESIS vs the system–bath interaction strength Γ. In both scenarios, we
study the free and controlled evolutions and find that the pulse con-
trol keeps its efficacy in the Markov limit, regardless of EVIS or ESIS.
In addition, squeezing the Markov baths also allows for a distinct
fidelity enhancement compared with free and controlled evolutions
in EVIS. Meanwhile, this enhancement becomes more pronounced
as Γ grows. It is also visible that F(T) and Fmax(T) decrease with the
increasing Γ for all cases, but the decrease decline in ESIS is observ-
ably reduced. Furthermore, a same bath squeezing results in a more
significant fidelity improvement in controlled evolution processes.
This proves again the mutual support between bath squeezing and
pulse control.

FIG. 6. Final fidelity F(T) in Markov EVIS and the attainable maximal final fidelity
Fmax(T) in Markov ESIS vs system–bath interaction strength Γ. The blue (orange)
lines indicate the EVIS (ESIS), and the dots (crosses) mark the free (controlled)
evolutions.

IV. CONCLUSIONS
In this work, we analyze the roles of bath squeezing in the open

quantum system dynamics and apply it to further improve the adi-
abatic fidelity on a basis of LEO control. Specifically, the adiabatic
evolution process of an open spin system is taken for a demonstra-
tion, and the non-Markovian QSD equation is employed to treat the
system dynamics. For both free and controlled evolutions, we find
that the squeezing direction determines whether the improvement
of the adiabatic fidelity occurs or not, while the squeezing strength
determines how much it improves. Therefore, with suitable strength
and direction, the adiabatic fidelity can be enhanced via squeezing.
In addition, the fidelity enhancement available via squeezing is more
significant for a longer system–bath interaction time, a larger inter-
action strength, and a stronger bath Markovianity. It is also worth
mentioning that the integration of squeezing and LEO can offer
improved performance compared to their individual applications.
Squeezing can help LEO slow down the fidelity degradation trend as
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the evolution time, interaction strength, and Markovianity increase,
and LEO can in turn amplify the helpful roles of bath squeezing in
fidelity improvement. It should be noted that in this work we only
consider a simple case, i.e., fixed squeezing in the whole evolution.
If squeezing is allowed to vary with, for example, frequency, there
are supposed to be better performances. Our study not only demon-
strates the efficacy of squeezing in further fidelity enhancement but
also provides ideas of combined control. We believe that this com-
bined control strategy will have potential applications in performing
quantum information processing tasks.
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