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Abstract In this study, we investigate a new relativistic
anisotropic Einstein field equations solution for compact
stars under embedding class 1 conditions. In order to do
this, we apply the Karmarkar condition and the embedding
class one technique. By taking Buchdahl type metric poten-
tial grr into consideration, the precise analytical solution has
been investigated. We have studied physical characteristics
of various compact star using this analytical solution. Central
singularities are absent from the solution. We have explored
thermodynamic observables inside the stellar models, such
as radial and tangential pressures, matter density, anisotropic
factor, energy conditions, TOV, red-shift, and the speed of
sound, etc., after establishing this space-time geometry for
the stellar models. From the graphical representation of vari-
ous physical characteristics, it is demonstrated that our model
meets all the specification for ultra-high density compact
bodies.

1 Introduction

Compact objects are astronomical objects with an extremely
high density. For a long time, the study of general relativistic
compact objects has been of great interest. Some important
parameters, such as mass, radii, internal composition etc.,
remain difficult to measure because they cannot be inferred
directly from the observational data. Many of these physical
parameters of compact objects are predicted using theoret-
ical relativistic stellar models. A compact star model pro-
vides a detailed understanding of the compact stars that it
represents. Modeling compact stars is one of the most chal-
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lenging tasks in relativistic astrophysics because we know
very less about the constituent matter of an ultra-compact
star. Schwarzschild had discovered the exact solutions to
Einstein’s Field Equations (Efes), since then the theoreti-
cal modeling of stellar structure has been a field of active
research astrophysical bodies [1]. Oppenheimer and Volkoff
were the first to derive computational solutions of Efes for
a degenerate neutron gas. It was previously assumed that
the nature of a spherically symmetric substance is similar
to that of a perfect fluid, in which the radial pressure coin-
cides with the tangential pressure. However, in 1922 the
authors [2] proposed that anisotropy should be given impor-
tance in studying the nature of matter distribution due to
the extreme and unusual conditions that exist in the inte-
rior of compact objects. Anisotropy generally describe the
direction-dependent properties of materials. In the context of
compact stars, however, anisotropy refers to the difference in
radial and tangential pressures. When dealing with relativis-
tic fluids, anisotropy must be taken into account. According
to Mak and Harko [3], and Sharma et al. [4], anisotropy is suf-
ficient for studying compact stars with dense nuclear matter.
Works such that [5–10] clarified our understanding of highly
dense spherically symmetric fluid spheres with anisotropic
pressure. Anisotropy may occur in a compact star due to the
presence of a mixture of different types of fluids, rotation,
the presence of superfluid, the presence of a magnetic field
or an external field, or phase transitions, etc. The primary
anisotropic version with tangential stress and consistent den-
sity was modeled by Leimatre [11]. Ruderman [6] proposed
in 1972 that compact structures are generally anisotropic in
nature due to their excessive density (> 1015 gm/cc). Later,
Bowers and Liang [5] conducted extensive research in the
field of anisotropic spheres in general relativity and discussed
the causes and effects of anisotropy in compact objects. In
his work, de Leon [12] obtained two new exact analytical
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solutions to Einstein’s field equations for a static fluid sphere
with anisotropic pressures. Furthermore, Herrera and Santos
[8] provided an in-depth review on anisotropic fluids. Her-
rera along with his colleagues [13–16] studied and analyzed
the stability of the self-gravitating system in the presence of
local anisotropy.

An example of a physical system with anisotropic pressure
is a scalar field with a nonzero spatial gradient. Anisotropy
comes naturally to self-bound systems made up of scalar
fields, “boson stars” and the energy–momentum tensor of
electromagnetic and fermionic fields [17,18]. Gravastars and
wormholes are likewise regarded as anisotropic objects. The
existence of a solid core, several forms of phase transi-
tions [19], pion-condensation [20], slow rotation [21], a
strong magnetic field [22], a mixing of two fluids [23,24],
among other factors, have all been shown to cause pres-
sure anisotropy. Additionally, local anisotropy may come
from viscosity. Barreto et al. [25,26] give some numerical
calculations on the impact of viscosity-induced anisotropy.
The authors in [27] provides an extensive list of the phys-
ical processes that cause pressure anisotropy. Herrera [28]
recently came to the conclusion that pressure anisotropy will
always tend to be produced, even if the system is initially
assumed to be isotropic due to physical processes like dissi-
pative fluxes, energy density inhomogeneities, or the appear-
ance of shear in the fluid flow that are anticipated in stellar
evolution. Since any equilibrium configuration is the cul-
mination of a dynamic regime, anisotropy acquired during
this dynamic process will not vanish in the final equilib-
rium state. Although the initial configuration had isotropic
pressure, but the resulting configuration should always (the-
oretically) exhibit pressure anisotropy. This is why pressure
anisotropy must be taken into account whenever relativistic
fluids are involved.

Dev and Gleiser [29,30] confirmed the significance of
physical parameters such as mass, structure, and so on, in
presence of anisotropic fluid. Bohmer and Harko [31] made
a claim that anisotropic compact stellar-type objects can be
much more compact than isotropic ones, with radii that are
close to their corresponding Schwarzschild radii. The role of
pressure anisotropy has been extensively studied in the con-
text of stability of compact objects. Recently, considering the
Tolman VII form for the gravitational potential grr together
with the linear equation of state, Bhar et al. [32] studied the
behavior of relativistic objects with locally anisotropic mat-
ter distribution. Also, Bhar [33] proposed a new model for an
anisotropic strange star which admits the Chaplygin equation
of state. In this connection some other useful solutions for a
compact star in a different context have been obtained by sev-
eral authors in [34–39]. Certain assumptions like considering
barotropic equation of state, [40,41], pressure anisotropy in
(3 + 1)D spacetime [33,42,43], quadratic equation of state
for stellar interior [44], quadratic envelope [45] and so on are

made in order to modeled anisotropic stellar objects. Some
other remarkable models for the anisotropic compact stars
can be found in [46–48]. In this paper, we present a viable and
stable anisotropic compact star model in the class-one met-
ric that can describe such ultra-compact stars. The idea about
the class one metric is that if we embed our space-time into a
higher dimensional flat space-time then this extra dimension
will be the class one metric [49]. The beauty of class-one con-
dition is that both the metric functions are dependent on each
other. Thomas [50] provided the necessary and sufficient con-
ditions for embedding class one in 1936. These conditions,
however, concern extremely heavy algebraic manipulations
and have not been widely explored. Although understanding
this is still an open problem in astrophysics, the nature and
precise structure of ultra-compact neutron stars have become
a focus of recent research. The proposal of Randall and Sun-
drum [51] and discussions by Anchordoqui and Perez Berglia
[52] has reignited interest in the concept. Some recent works
on anisotropic compact stars of embedding class one can be
found in [53,54].

The paper is organized in the following manner:
In Sect. 2, we calculated Einstein’s field equations and the
general solution of the class one Metric. In Sect. 3, we discuss
the parameters of our model and a comparison with relevant
observational data. In Sect. 4, we discuss the boundary con-
ditions. Where in Sect. 5, we define the physical properties
of the Anisotropic solution. Finally, we concluded our work
in Sect. 6.

2 Basic field equations and the general solutions of the
class 1 metric

In curvature coordinates, consider the static spherically sym-
metric spacetime metric:

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) + eν(r)dt2. (1)

The gravitational potential for the interior anisotropic fluid
distribution is represented by eλ(r) and eν(r). The anisotropic
fluid distribution’s energy momentum tensor takes the form

− κT i
j = Ri

j − 1

2
Rδij

= −κ
[
(c2ρ + pt )ν

iν j − ptδ
i
j + (pr − pt )u

iu j
]

(2)

where Ri
j and δij being respectively the Ricci and the metric

tensors, and R being the Ricci scalar (with the assumption of
natural units G = c = 1), the contravariant quantity νi is the
four-velocity vector and ui is the unit spacelike vector in the
radial direction. Here pr ,pt and ρ denote the radial pressure,
tangential pressure and matter density for anisotropic matter

with κ = 8πG

c4 . With the metric (1) together with the energy
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momentum (2) Einstein’s field equations take the form

ν′

r
e−λ − (1 − e−λ)

r2 = κpr (3)
(

ν′′

2
− λ′ν′

4
+ ν

′2

4
+ ν′ − λ′

2r

)
e−λ = κpt (4)

λ′

r
e−λ + (1 − e−λ)

r2 = κc2ρ. (5)

The differentiation with regard to the radial coordinate r is
denoted by the term prime. According to Herrera and Leon
[14], Δ = pt − pr is the anisotropy factor, which measures
the fluid’s pressure anisotropy. It should be emphasised that
Δ = 0, i.e. pt = pr = p, is a special instance of isotropic
pressure at the start of the stellar configuration. We obtain
the basic form of anisotropic factor using Eqs. (3) and (4):

Δ = κ (pt − pr )

= e−λ

[
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r
− 1

r2

]

+ 1

r2 , (6)

where Δ = κ[pt (r) − pr (r)]. As a result, a force owing to
anisotropic pressure is represented by Δ/r , which is repul-
sive if pt > pr of the stellar model and attractive if pt < pr .
In comparison to the isotropic fluid sphere, assuming mat-
ter dispersion when pt > pr permits the development of
more compact objects [55]. This is a three-equation system
with five unknowns. As a result, the system of equations is
undetermined, and we must limit the number of unknown
functions by selecting appropriate conditions.

2.1 Class-one conditions

As is well known, the manifold Vn may always be embed-
ded in the m-dimensional pseudo-Euclidian space Em with
m = n(n + 1)/2 [49]. The class of the manifold Vn is
the least additional dimension Kof the pseudo-Euclidian
space with regard to embedding Vn in Em , and it must be
less than or equal to the number (m − n) or the same as
n(n − 1)/2.In the instance of relativistic space-time V4, the
embedding classK turns out to be 6. Spherically symmet-
ric space-time belongs to class 2, whereas plane symmetric
space-time belongs to class 3. The external and interior solu-
tions of the Schwarzschild are classified as class 2 and 1,
respectively. Moreover the renowned Friedman–Robertson–
Lemaitre space-time [56–58] is of class 1, while the famous
Kerr metric [59] is of class 5. Higher-dimensional embedding
space has no physical value according to general relativity’s
postulates. It does, however, give novel characterizations of
the gravitational field, which may be linked to basic particle
physics’ inherent symmetries [60]. Extrinsic gravity, threads
and membranes, and the new brain world are all examples of
embeddings (Pavsic and Tapia [61]).

If the Karmarkar condition [62] is satisfied, the metric (1)
may now be used to describe the space-time of embedding
class one in a more concise form as

R0202R1313 = R0101R2323 + R1202R1303. (7)

For the postulated interior spacetime Eq. (1), the needed Rie-
mannian symbols are

R0101 = −1

4
eν(−ν

′
λ

′ + ν
′2 + 2ν

′′
), (8)

R0202 = −1

2
rν

′
eν−λ, (9)

R1202 = 0 = R1303, , (10)

R1313 = −1

2
rλ

′
sin2θ, (11)

R2323 = −r2sin2θ(1 − e−λ). (12)

Substituting Eqs. (8)–(12) in (7) we get differential equation

eλλ
′
ν

′ − eλν
′2 − 2eλν

′′ + ν
′2 + 2ν

′′ = 0. (13)

2.2 A new class of solution for anisotropic compact stars

Now find the anisotropic solution of model, we adopt a spe-
cific metric potential grr [63] which is given by

λ = ln{K (1 + Cr2)} − ln(K + Cr2). (14)

Here discuss about Buchdahl metric.
By using the Eq. (14) in the Eq. (13) we get the metric

potential ν as follows

ν = 2 ln

[
A + B√

C

√
(K − 1)(K + Cr2)

]
. (15)

Using the Eqs. (14) and (15), we obtain the density (ρ), radial
pressure(pr ), transverse pressure (pt ) and anisotropy (Δ) as

ρ = C(K − 1)(3 + Cr2)

8π K (1 + Cr2)2 (16)

pr = 1

8π K (1 + Cr2)

×
⎡

⎢
⎣

(
2
√
C (K − 1)(K + Cr2)

)

(
A
B + 1√

C

√
(K − 1)(K + Cr2)

) − C(K − 1)

⎤

⎥
⎦ (17)

Δ =
8π A

B C
2r2(K − 1) + C3/2r2(K − 2)

√
(K − 1)(K + Cr2)

K (1 + Cr2)2
[
A
B + 1√

C

√
(K − 1)(K + Cr2)

]

(18)

pt = pr + Δ. (19)

We can see from Figs. 1, 2, 3 that the density and pressures are
both monotonically decreasing, as would be predicted. We
also see that as the radius increases, the anisotropic factor
increases monotonically (Fig. 4).
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Fig. 1 Behaviour of ρ are shown vs. fractional radius r/R

Fig. 2 Behaviour of pr are shown vs. fractional radius r/R

Fig. 3 Behaviour of pt are shown vs. fractional radius r/R

Fig. 4 Behaviour of Δ are shown vs. fractional radius r/R

3 The parameters of our model and a comparison with
relevant observational data

In this section, we created data plots to compare our model
parameters to some of the star candidates. These data points
values will be utilized to determine the physical properties of
theoretical compact objects and to draw their graphs in the
sections above and below.
In Table 1, we selected some realistic values for (C, K , A,

and B) that assisted in estimating the value of M
R for this

model and Table 2 displays several physical quantities rep-
resented numerically in different units.

4 Boundary conditions

It is necessary that the interior solution should connect
smoothly with vacuum exterior Schwarzschild solution and
is given by

ds2 = −
(

1 − 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2M

r

)
dt2 (20)

where M represents the mass of compact stars. Now impos-
ing the continuity of metric function at the boundary (r = R)

and vanishing radial pressure at boundary, we get

e−λ = 1 − 2M(R)

R
and eν = 1 − 2M(R)

R
(21)

pr (R) = 0. (22)

For continuity of the first derivative:
(

∂g−
t t

∂r

)

r=R

=
(

∂g+
t t

∂r

)

r=R

(23)
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Table 1 The estimated, observed and chosen values of the mass M , radius R and parameters for the star candidates

Compact Star and Ref. M (M�) R (km) C K A B M
R (< 4

9 )

(estimated) (estimated) (chosen) (chosen) (observed) (observed) (estimated)

4U 1820-30 [64] 1.58 9.1 0.014384857 17.295 −4.992014 0.357840 0.256098

PSR J1903+327 [65] 1.667 9.43 0.013985959 16.891 −4.804505 0.361072 0.260745

4U 1608-52 [66] 1.69 9.3 0.0153775 16.4301 −4.573765 0.366085 0.268038

Vela X-1 [65] 1.77 9.56 0.015380727 15.3207 −4.149986 0.369520 0.273091

PSR J1614-2230 [65] 1.97 9.69 0.019388452 14.1201 −3.517621 0.387215 0.299871

Cyg X-2 [67] 1.71 8.31 0.027382085 13.902 −3.417055 0.389563 0.303520

PSR B1913+16 [68] 1.44 6.66 0.053402204 12.551 −2.850796 0.401134 0.321818

Table 2 The numerical representations of several physical quantities (central density (ρc), surface density (ρs), central pressure (pc), surface
anisotropic factor (Δs), surface redshift (Zs) and value of �cri tical )

Compact Star and Ref. ρc ρs pc Δs Zs �cri tical

(in g/cm3) (in g/cm3) (in Pas.) (in Pas.)

4U 1820-30 [64] 2.82751 × 1016 8.22723 × 1015 2.70884 × 1035 1.05224×1035 1.050013 1.565041863

PSR J1903+327 [65] 3.16544 × 1016 8.89462 × 1015 3.18506 × 1035 1.17303×1035 1.089824 1.569245443

4U 1608-52 [66] 3.28658 × 1016 8.73774 × 1015 3.58231 × 1035 1.20774×1035 1.155513 1.575843574

Vela X-1 [65] 3.65336 × 1016 9.27051 × 1015 4.18673 × 1035 1.33104×1035 1.203523 1.58041567

PSR J1614-2230 [65] 4.8321 × 1016 9.76011 × 1015 7.72245 × 1035 1.65869×1035 1.498384 1.604645191

Cyg X-2 [67] 3.68679 × 1016 7.19201 × 1015 6.19175 × 1035 1.25125×1035 1.54477 1.607946536

PSR B1913+16 [68] 2.8371 × 1016 4.55276 × 1015 6.25872 × 1035 8.94779×1034 1.806115 1.624502165

and

g−
t t = eν, g+

t t =
(

1 − 2M

R

)
. (24)

Now from Eqs. (23) and (24) we get,

eν(R) ν
′
(R) = 0 + 2M

R2

ν
′
(R) = 2M

R2 × 1

eν(R)

ν
′
(R) = 2M

R2 × 1

(1 − 2M
R )

(
Since eν(R) =

(
1 − 2M

R

))

ν
′
(R) = 2M

R(R − 2M)
. (25)

Now we have pr (R) = 0

e−λ(R)
(ν

′
(R)

R
+ 1

R2

)
− 1

R2 = 0

ν
′
(R)

R
= 1

R2e−λ(R)
− 1

R2

ν
′
(R)

R
= 1

R2(1 − 2M
R )

− 1

R2

(
Since e−λ(R) =

(
1 − 2M

R

))

ν
′
(R)

R
= R

R2(R − 2M)
− 1

R2

ν
′
(R) = 2M

R(R − 2M)
. (26)

From Eqs. (25) and (26) shows the continuity of the first
derivative at r = R.

Now using the boundary conditions (21) and (22) we get
the values of constant of integration as follows

A

B
= (3 − K )

√
(K − 1)(K + CR2)

(K − 1)
√
CR2

. (27)

Now differentiating equations (16)–(19) we get the den-
sity, radial and transverse pressure gradient as

dρ

dr
= C2r(1 − K )(5 + Cr2)

4π K (1 + Cr2)3 (28)

dpr
dr

=
Cr

√
C(K−1)(1−2K−Cr2) f (r) − 2Cr (1+Cr2)(K−1)

√
K + Cr2

4π K
(
(1+Cr2) f (r)

)2

+ C2 r(K − 1)

4π K (1 + Cr2)2 (29)

dpt
dr

=
A
B (1 − K )C3r3

32π K (K + Cr2)(1 + Cr2)2 f (r)
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+
Cr

[
A
B

√
C(K − 1)(K − 2)

√
(K − 1)(K + Cr2)

]
g(r)

8π K (K + Cr2)
(30)

where

f (r) = A

B
+

√
(K − 1)(K + Cr2)

C
,

g(r) = f (r) (3Cr2 + 2K )(1 + Cr2)2√
C − Cr2(1 + Cr2)

×
(

4 f (r)
√
C(K + Cr2) + (1 + Cr2)

√
(K − 1)

)
.

5 Physical properties of the anisotropic solution

5.1 Singularity at the center

From Eqs. (14) and (15),We observe eλ(0) = 1 and eν(0) =
[
A + B√

C

√
K (K − 1)

]2

. This demonstrates that the met-

ric potentials are positive and singularity-free at the origin.
Additionally, they monotonically increase as the star’s radius
increases. Because of the energy density at the centre, r = 0,

it is implied that ρ(0) = 3C(K − 1)

8π K
.Since density at the

center should be positive,then K > 1 and K < 0.

5.2 Causality condition

We will determine the subconscious velocity of sound in
this part. The radial and transverse sound velocities must be
less than 1, or what is known as causality conditions, for an
anisotropic fluid sphere model to be physically viable.The
speed of sound propagation V 2

s , denoted by the formula
V 2
s = dp/dρ, is a crucial factor that has to be examined. It

goes without saying that sound cannot travel faster than light.
As we fix c = 1 here, the behavior of the sound speed is thus
always smaller than unity. We look into the sound’s speed in
both radial and transverse directions to examine the situation.
This should always fulfil 0 < V 2

r < 1 and 0 < V 2
t < 1 for

an anisotropic fluid distribution and a stable equilibrium con-
figuration, as in [13] for a subluminal sound speed. Canuto
[69] suggested that with an ultrahigh distribution of matter,
the speed of sound should decrease monotonically towards
the surface of the star. In our study, an anisotropic fluid distri-
bution has been graphically shown while studying the sound
velocity. We have drawn some figures for the strange star
candidates 4U 1820, PSR J1903+327, 4U 1608-52, Vela X-
1, PSR J1614-2230, Cyg X-2 and PSR B1913+16 in order to
see this (Figs. 5, 6).

5.3 Adiabatic index

The adiabatic index affects the relativistic anisotropic star’s
stability as well. According to Heintzmann and Hillebrandt

Fig. 5 The nature of the radial velocity of sound is shown on the versus
of the fractional radius (r/R)

Fig. 6 The nature of the tangential velocity of sound is shown on the
versus of the fractional radius (r/R)

[70], anisotropic equation of state neutron star models are
stable if γ > 4/3. The isotropic neutron star model, however,
has no upper mass limit for the adiabatic index γ > 4/3 [71],
according to Newton’s theory of gravity (Fig. 7).
The adiabatic index � is described by

�r =
(

ρ + pr
pr

)(
dpr
dρ

)
. (31)

The collapsing scenario is described by for an anisotropic
fluid [72],

�r <
4

3
+ max

(
− 4

3

pr − pt
r |p′

r |
+ κ

3

rρpr
|p′

r |
)

. (32)

Later Moustakidis [73], discovered the adiabatic index
(�cri tical) critical value

�cri tical = 4

3
+ 19

21

M

R
. (33)

123



Eur. Phys. J. C           (2023) 83:476 Page 7 of 11   476 

Fig. 7 Adiabatic index for compact stars vs. fractional radius r/R

5.4 Energy conditions

The energy–momentum tensor has to conform to the follow-
ing energy conditions in order to have a physically reasonable
anisotropic solution:

1. According to the null energy condition (NEC), the local
mass-energy density cannot be negative, i.e. (NEC): ρ ≥
0.

2. According to the weak dominant energy condition
(WDEC), a star’s internal energy flow cannot be greater
than the speed of light, i.e. (WDEC): ρ − pr ≥ 0,
ρ − pt ≥ 0.

3. According to the strong dominant energy condition
(SDEC), the star’s internal energy flow cannot be greater
than one-third the speed of light, i.e. (SDEC): ρ −3pr ≥
0, ρ − 3pt ≥ 0.

With regard to the radial coordinate r/R, which has been
displayed for several compact stars, we illustrate various
energy conditions in this graph from top to bottom. Figures 8,
9, 10, 11, 12 depicts how these energy situations behave. This
picture unequivocally shows that the interior portion of the
spherical distribution satisfies all of the energy conditions in
our model.

5.5 Hydrostatic equilibrium through generalized
Tolman–Oppenheimer–Volkoff (TOV) equation

The Tolman–Oppenheimer–Volkoff (TOV) equation in the
presence of charge is given by

− MG(c2ρ + pr )

r2 e
λ−ν

2 − dpr
dr

+ 2(pt − pr )

r
= 0 (34)

Fig. 8 Nature of NEC is shown versus the fractional radius (r/R)

Fig. 9 Nature of WECr is shown versus the fractional radius (r/R)

Fig. 10 Nature of WECt is shown versus the fractional radius (r/R)
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Fig. 11 Nature of SECr is shown versus the fractional radius (r/R)

Fig. 12 Nature of SECt is shown versus the fractional radius (r/R)

where, MG is the effective gravitational mass given by:

MG(r) = 1

2
r2ν′e(ν−λ)/2. (35)

From the Eq. (35) the value of MG(r) we get

− ν′

2
(c2ρ + pr ) − dpr

dr
+ 2(pt − pr )

r
= 0. (36)

The Eq. (36) can be expressed into three different elements
gravitational (Fg), hydrostatic (Fh) and electric (Fe), which
are defined as:

Fg = −ν′

2
(c2ρ + pr ) (37)

Fh = −dp

dr
(38)

Fa = 2Δ

r
. (39)

Fig. 13 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for 4U 1820-30

Fig. 14 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for PSR J1903+327

Fig. 15 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for 4U 1608-52
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Fig. 16 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for Vela X-1

Fig. 17 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for PSR J1614-2230

Fig. 18 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for Cyg X-2

Fig. 19 Variation of the three forces-gravitational force (Fg), hydro-
static force (Fh), and anisotropic force (Fa) versus radial fraction r/R
for compact star candidates

Figures 13, 14, 15, 16, 17, 18 and 19 represents the behav-
ior of the generalized TOV equations. We can observe from
these figures that the system is counterbalanced by the com-
ponents the gravitational force (Fg), hydrostatic force(Fh)
and anisotropic force (Fa) and the system attains a static
equilibrium.

5.6 Redshift

It is required for a stable spherically symmetric anisotropic
fluid sphere that the redshift function should gradually
decrease inside the star. The gravitational redshift z within
the static line element is given by

z = |eν(r)|−1/2 − 1 = 1

|√eν(r)| − 1. (40)

The surface redshift also establishes the following relation-
ship

zs = |eν(R)|−1/2 − 1 =
(

1 − 2M

R

)−1/2

− 1. (41)

Additionally, we were able to determine the surface red-
shift values for various compact stars, which are displayed
in Table 2. In our case, the gravitational redshift z is mono-
tonically decreasing from center to surface.

6 Conclusion and discussion

Einstein’s field equations can be solved by embedding class
one spacetime using Karmarkar’s condition, which has been
demonstrated to be an effective and straightforward method.
Despite its simplicity, the developed model for anisotropic
fluid spheres satisfies all necessary conditions to qualify as
a valid mathematical and physical solution. In this article,

123



  476 Page 10 of 11 Eur. Phys. J. C           (2023) 83:476 

Fig. 20 Variation of redshift and fractional radius r/R

we have calculated relevant values of parameters for com-
pact stars such as 4U 1820-30, PSR J1903+327, 4U 1608-52,
Vela X-1, PSR J1614-2230, Cyg X-2, and PSR B1913+16
and obtained some agreeable results. We have also analyzed
all physical features in detail and provided figures to sup-
port our data. The mass, redshift, and compactness factors
are within optimal ranges while the model is stable under the
action of hydrostatic, anisotropic, and gravitational forces.
The subliminal velocity of sound and the adiabatic index
reconfirms the stability of our model. Our analysis in this
study demonstrates that masses and radii that are consistent
with observations indeed produced when curved geometries
are embedded in higher dimensional flat spacetime. The Kar-
markar embedding condition was used to find a new solution
to the field equations when a specific form of one of the
potentials was generated. We have looked at the energy con-
ditions, mass function, compactness, stability, and equilib-
rium conditions of the stellar model, among other properties,
to investigate the physical agreeability of our anisotropic stel-
lar structure. The characteristics of energy density, pressures
(radial and tangential), and anisotropic force are shown in
Figs. 1, 2, 3, 4 respectively, in Fig. 5 velocity of sounds, in
Fig. 7 adiabatic index, in Figs. 8, 9, 10, 11, 12 energy condi-
tions, in Figs. 13, 14, 15, 16, 17, 18 and 19 TOV conditions,
and in Fig. 20 redshift etc. We propose that this model is
compatible with the compact objects based on the Table 1,
and it is free from the central singularity. Therefore, we can
state that the physical characteristics of our model are quite
realistic and feasible.
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