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Abstract: A scalar—tensor theory of gravity was considered, wherein the gravitational coupling G
and the speed of light c were admitted as space-time functions and combined to form the definition
of the scalar field ¢. The varying c participates in the definition of the variation of the matter part
of the action; it is related to the effective stress—energy tensor, which is a result of the requirement
of symmetry under general coordinate transformations in our gravity model. The effect of the
cosmological coupling A is accommodated within a possible behavior of ¢. We analyzed the dynamics
of ¢ in the phase space, thereby showing the existence of an attractor point for reasonable hypotheses
on the potential V(¢) and no particular assumption on the Hubble function. The phase space analysis
was performed both with the linear stability theory and via the more general Lyapunov method.
Either method led to the conclusion that the condition G/G = ¢(¢/c), where ¢ = 3 must hold
for the rest of cosmic evolution after the system arrives at the globally asymptotically stable fixed
point and the dynamics of ¢ ceases. This result realized our main motivation: to provide a physical
foundation for the phenomenological model admitting (G/Gyp) = (¢/ c0)3, used recently to interpret
cosmological and astrophysical data. The thus covarying couplings G and ¢ impact the cosmic
evolution after the dynamical system settles to equilibrium. The secondary goal of our work was to
investigate how this impact occurs. This was performed by constructing the generalized continuity
equation in our scalar-tensor model and considering two possible regimes for the varying speed
of light—decreasing ¢ and increasing c—while solving our modified Friedmann equations. The
solutions to the latter equations make room for radiation- and matter-dominated eras that progress to
a dark-energy-type of accelerated expansion.

Keywords: dynamical analysis; covarying coupling constants; scalar—tensor theory; gravity; cosmology

1. Introduction

The possibility of the variation of fundamental physical constants has been long
explored as a means of solving some issues in the description of nature, especially in
astrophysics and cosmology. In spite of being a controversial idea, it has a deep connection
with scalar—tensor theories, themselves a popular candidate for viable modified theories of
gravity. This paper explored the possible interwoven variation of the couplings G and c
(while also accommodating the effects of A) in a Brans—-Dicke-like model. Our motivations
will be stated and the construction of our setup will begin during this introductory section,
which starts off with a brief perspective on the subject of varying fundamental constants.

The two most-studied constants for their potential variation on cosmological time
scales are the gravitational constant G and the fine structure constant «. While G is a
dimensionful constant, « is a dimensionless constant. Uzan [1,2] critically reviewed the
subject of the variation of fundamental constants and discussed it extensively. Some authors
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(Ellis and Uzan [3], Duff [4,5]) strongly argue against dimensionful varying fundamental
constants. In an attempt to avoid this criticism, we normalized the time derivative of the
physical coupling by the value of the associated quantity.

Variable fundamental constant theories can be traced back to at least the late 19th
Century, e.g., [6], and the first half of the last century, e.g., [7,8]. However, they gained
importance after Dirac [9,10] suggested the potential variation of the gravitational constant
G based on his large number hypothesis. Many observational methods were suggested
to constrain an eventual variation of G including neutron star masses and ages [11]; CMB
anisotropies, e.g., [12]; big bang nucleosynthesis abundances, e.g., [13]; asteroseismol-
ogy [14]; lunar laser ranging, e.g., [15]; the evolution of planetary orbits, e.g., [16]; binary
pulsars, e.g., [17]; Supernovae Type-la (SNela) luminosity evolution, e.g., [18]; and gravita-
tional wave observations from binary neutron stars [19]. Almost all of them have resulted
in constraints on G/G well below that predicted by Dirac. There has been significant
development on the theoretical side as well. Building on the work of Jordan [20], Brans
and Dicke [21] developed a scalar-tensor theory of gravitation, wherein 1/G was raised to
the status of a scalar field that could vary spatially and temporally. The Brans-Dicke (BD)
theory may be seen as one representative of the class of scalar-tensor theories in which
gravitation manifests itself by both the metric tensor and a scalar field of a geometrical
nature [22]. A more general example within this class is the scalar—tensor theory in the
Lyra manifold [23,24]. One of the reasons why scalar—tensor theories of gravity raise so
much interest (see [22,25] and the references therein) is their well-known equivalence
with some modified gravity theories [26], cf., e.g., [27,28]. Among these possible modifi-
cations of gravity, we mention the theories f(R) [29-31], f(R, V"R) [32], f(R,0"R) [33],
and f(T) [34,35], which have been proposed as attempts to deal with the GR quantization
problem [36,37], to realize inflationary models [38], and to address the dark energy prob-
lem [39]. References [40-42] studied the phenomenology of extended Jordan-Brans-Dicke
theories and their implication for cosmological datasets. Moreover, significant astrophysical
consequences can be found in the literature within the realm of modified theories of gravity
including those in [43-46].

The constancy of the speed of light is the foundation of the special and general relativity
theories, and arguably, its variation is the most contentious issue in physics. However,
even Einstein considered its possible variation [47]. There are several theories of the vari-
ation of the speed light, e.g., those by Dicke [48], Petit [49], and Moffatt [50,51]. Some of
these proposals break Lorentz invariance, e.g., [52-54]; others produce locally invariant
theories [55,56].

Attempts have also been made to consider the simultaneous variation of two or more
constants, e.g., Reference [57] considered varying G and A; the variation of G/ c? was
studied in [58]; G and &« changed concomitantly in [59]; covarying c, G, and A were the
subject of [60-62]; the set {c, G, a} was allowed to vary in [63]; finally, References [64,65]
suggested that all the couplings G, ¢, A, fi, and kp must covary.

After this contextualization of the subject of varying physical constants, let us concen-
trate on the topic to be explored here. Our focus in this paper was on the variation of ¢ and
G and the interrelationship of their variation. We will see that this interrelationship yields
naturally an effective cosmological constant. Gupta [66] introduced the general ansatz:

Z (T,' (1)

inspired by the general constraint appearing in the proposal by Costa et al. [61]. The quan-
tity o is a constant parameter. The value ¢ = 3 is strongly favored by several phenomeno-
logical applications of Equation (1) in cosmology [64,66—68] and astrophysics [65,69-71].
This preferred value for ¢ is corroborated by other authors, cf., e.g., [63]. For this reason,
we set off to investigate the fundamental reasons that might be underlying this fact.
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We did this by assuming a modification in the standard theory of gravity: General
Relativity (GR). This is justified by the fact that GR does not allow for varying physical
constants. In fact, the couplings G, ¢, and A showing up in the Einstein field equations:

8nG
Gpu/ + Agyv = T;u/ ()

do not vary in time or space. Recall the definition of the Einstein tensor: G,y = Ryy — % SR,
where Ry, is the Ricci tensor and R is the curvature scalar. We followed the metric
signature and Riemann tensor definition of [72], i.e., the Minkowski metric in Carte-
sian coordinates reads (17,,) = diag(—1,41,4+1,+1), Ry = RPWV with the curvature
tensor calculated by R’ o = 0ul e + pr ArAW — (< v), R = g"Ryy, and l"pw =
% g7 (av Sou + 8;, Qvo — 90, gw) stands for the Christoffel symbols built from the metric ten-
sor gy and its first-order derivatives. Covariant derivatives were built from the Christoffel,
eg, V,V'=09,V¥+ l"Vyp VP, for an arbitrary contravariant vector VV.

Our generalization of GR stems from an action integral that is inspired by the Einstein-

Hilbert action:
Sg = 16n/ /= [ (R — 2A} @3)

but with the couplings {G, ¢, A} being spacetime functions. At this point, we emphasize
the natural appearance of the couplings {G, c, A} explicitly in the action integral that is
supposed to describe gravity. We feel the urge to underscore this fact for two reasons.
The first is: in the ordinary approach of GR, both G and ¢ are only multiplicative constants
of the kernel (R —2A) and, as such, can be taken outside the integral with impunity.
In fact, people even go further to use units where ¢ = 1, the so-called natural units.
These practices are very dangerous here because both G and c are space-time-dependent
functions; accordingly, they are directly affected by the variation process soon to be carried
out. Second, the fact that (3) displays the set {G, c, A} justifies why we considered only
these three couplings, instead of bringing about other fundamental constants as well, such
as the Planck constant /i and the Boltzmann constant kg. Others works considered this
enlarged set from a phenomenological perspective—see, e.g., [64-68,71,73].

As usual, the four-volume in the action S is d*x = dx0d®x. Tt is worth stressing
that the time coordinate x° = ct encompasses the speed of light c, which is allowed to
vary in our context. Therefore, it is paramount to work with x° throughout. In this way,
covariance is guaranteed; caveats such as having to deal with the opened x’-differential
dx® = d(ct) = cdt + tdc are avoided; the speed of light will not appear in the metric
components g, explicitly. Consequently, the determinant of the metric tensor ¢ = g(x*)
will depend explicitly on x?, but not on c. The time component x° hides c in a convenient
form: if ¢ changes, then a time reparameterization t — t' compensates for this fact in each
reference frame. This strategy is somewhat different from the procedure of the c-flation
framework developed in [61]. Here, x” has dimensions of length, which explains the power
cube for the speed of light in (3); otherwise, the action would not bear the correct dimension
of angular momentum (energy x time).

Gupta’s proposal in Equation (1) indicates that the couplings G and c are intertwined.
In fact, it could be recast as

¢
p 0, @)
where
3
¢=:c ©)
is a scalar field comprising the gravitational coupling G and the speed of light c. The dot

d¢

on top of the quantity means a derivative with respect to x?, for instance ¢ = 0
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The simplest way to satisfy (1) is to admit that ¢ = —¢ [g - 3%} = 0 due to constant
couplings, in which case G = 0 and ¢ = 0. This is the way of GR, but it is not the
most-general possibility and not the one we adopted here. An earlier attempt to relax
the constancy of fundamental couplings in the context of a theory of gravity was the
Brans-Dicke (BD) scalar—tensor theory [21]. Aiming to fully realize the Machian principle
in a geometrical theory of gravitation, Brans and Dicke proposed a varying gravitational

coupling through the scalar field [22]:

¢BD = é (6)

Our proposal is to extend the scope of the BD field to include the spacetime cou-
pling c as part of its very definition. The presence of c changes the nature of the scalar
field ¢, as previously envisioned by Brans and Dicke (in fact, we geometrized not only
the gravitational coupling—through G—but also the causality coupling c). This is true
even from a dimensional point of view. In the Brans-Dicke picture, ¢pp is measured in
units of (mass) x (time)?/ (1ength)3. In our scalar-tensor gravity, ¢ has dimensions of
(mass) / (time).

The fact that a varying ¢ enters the scalar field ¢ in Equation (5) may be a cause for
concern to some. A common criticism upon varying speed of light proposals is that the
Maxwell electrodynamics should not be tempered with. This is a wise thought, however
one that can be bypassed by arguments such as that by Ellis and Uzan in [3]. There could
be different types of speed of light, viz. the spacetime speed of light csr related to Lorentz
invariance and causality and the electromagnetic speed of light cgy built from the couplings
in electromagnetism: the (vacuum) electric permittivity €y and the magnetic permeability
uo. Here, we interpreted c as the causality coupling cst and ensured that Lorentz invariance
(of Maxwell’s theory) is not broken locally by convenient reparameterizations of ¢ at each
time slice of the space-time manifold. Moreover, our approach deals with cosmology,
which makes room for a variation of ¢ with respect to the cosmic time in such a way that
csT = CgM = Cp currently.

The main goal of this paper was to investigate if the dynamics of ¢ can naturally lead
to G/G = 3(¢/c) as an attractor solution. This would give the fundamental reason for why
the value ¢ = 3 is preferred in several apparently different contexts, such as cosmology [66],
solar astrophysics [71], and solar system kinematics [70]. After the eventual relation
between G(x") and ¢(x?) is established, a natural question poses itself: “What are the
consequences of G = G(c) for the cosmic evolution?”. Our secondary goal in this paper
was to answer this question by investigating cosmological solutions attributable to different
epochs in the Universe’s thermal history (e.g., radiation-dominated era, dust matter era,
and the recent accelerated regime). We built our scalar-tensor model in a metric-compatible,
four-dimensional, torsion-free, Riemannian manifold. Approaches considering a richer
geometrical structure [24], higher-order derivatives of curvature-based objects [28,32], or
torsion-based invariants [35] are possible, but these cases shall be explored elsewhere.

The remainder of the paper is organized as follows. In Section 2, we state the action
of our scalar-tensor model and derive the equations of motion for the tensor field g,
and the scalar field ¢, which together build the gravitational field. The field equations are
specified for the FLRW metric [74], since our main interest was to study the dynamics of
¢ in the cosmological context. This study is carried out in Section 3, where it is shown
that an attractor solution leading to o = 3 is attainable under reasonable hypotheses for
the potential V(¢) and the dominant matter-energy content during the evolution of ¢
(both the linear stability theory and Lyapunov’s method are briefly reviewed in Section 3.1
for the sake of completeness of our presentation and convenience for the reader). This
finding comes from the linear stability analysis of our dynamical system—performed in
Section 3.2; the result is confirmed and strengthened in Section 3.3, where we used the
general Lyapunov’s method to show that the critical point ¢eq leading to ¢ = 3 is a globally
asymptotically stable fixed point. Section 3.4 gives some details about the system’s attractor
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point and emphasizes the consequences of our modified gravity. The cosmic evolution after
¢ reaches equilibrium is analyzed in Section 4, wherein it is shown that our scalar-tensor
model accommodates radiation- and matter-dominated eras evolving naturally to a de
Sitter-type accelerated expansion, possibly recognized as dark energy. This is true for the
two parameterizations we adopted for the function ¢ = c(x"), the first assuming a speed of
light that decreases as the Universe expands, while the second admits ¢ increasing with the
scale factor. Our final comments appear in Section 5.

2. Modified Gravity with ¢ = ¢*/G

The motivations in the previous section led us to describe gravity from a precisely
specified form for the action integral. In fact, this form is hinted at by the coefficient of the
curvature scalar R in Equation (7), namely (c®/G), which was defined as the scalar field ¢.
Accordingly, we introduce

o
=10 | d“xﬁ(w AL V<4>>)
v/ d4ijg(::Em>, )

where w is a dimensionless constant of order one (it is argued that the Brans-Dicke theory
recovers general relativity in the limit w — oo, cf., e.g., [74]. However, this is not always
the case: Reference [75] presented a counter-example) and ¢ is a scalar field. The constant
w appears as the coefficient of the kinetic term for the field ¢; the denominator of this term
includes ¢ for dimensionality consistency. The cosmological coupling A was not written
explicitly in (7) because it can be included in the potential V(¢). In fact, we will show that
a constant A can be realized in our framework. The reader can easily check that all terms
in (7) were crafted in order to give S the correct dimension of (energy) x (time). This
includes inserting the factor (1/c) explicitly inside the matter term integral containing the
matter Lagrangian density Ly, itself carrying dimensions of energy density.

The action (7) is formally the same as the Brans—Dicke action. While the Brans-Dicke
scalar field is usually interpreted as an effective G~ ! (see [22]), our ¢ includes both G and
c. Notice, moreover, that (7) is not the same as the actions in the Varying Speed of Light
(VSL) proposals—such as those in [50,52,53]—for reasons ranging from different modeling
to the basic fact that variations of the gravitational coupling were disregarded therein.
Additionally, it should be pointed out that (7) does not correspond to the same treatment
given in [61]; indeed, the covariant c-flation framework considers G and ¢ as independent
fields, while here, these varying couplings entered the form of a single scalar field; on top
of that, the very form of the action integral is different both in its gravitational part and in
the kinetic term for the scalar field(s).

The variation of the action in Equation (7) with respect to the metric g"” yields the
BD-like field equations for g, (it is a matter of interpretation to label the model explored
in this paper as a Brans—-Dicke theory. Our model is not Brans-Dicke if one considers
as Brans—Dicke a scalar-tensor theory where the scalar field ¢ is related strictly to 1/G.
Our model could be said to be Brans—Dicke if the latter is a scalar—tensor theory for ¢
regardless of its interpretations in terms of the fundamental couplings. We prefer the first
interpretation. However, even in the second interpretation, our paper showed that new
physics arises from defining ¢ in terms of both G and c: this novel perspective allows for
the entangled variation of G and c in a theoretical structure accommodating a consistent
variational principle, the covariant conservation of an effective energy momentum tensor,
and a fundamental explanation for recent enticing phenomenological results pointing
towards G/G = 3(¢/c).):
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1 14 181
Ryv - Eg;wR + ggpw = EjTyv
w 1 0
+ ra VupVud = 58uVFEPVop
1
+ ¢ (ViVp - guw9), 8
where 2 5 L)
T;u/ = §m (9)

Vg o
is the stress—energy tensor of ordinary matter. Notice that Ty, in (9) has the regular
dimensions of the energy density. However, it should be underscored that the variation of

the matter action: .
Sy = /d4x1/—g<cﬁm> (10)

with respect to ¢g'" is written as

5Sy = — /d‘*x\/fg(i) (;Tw>5gw (11)

in the context of our scalar-tensor model. Here, the factor (1/c¢) must participate in the
form of 6S,, within the integral sign. This is not the case in non-varying speed of light sce-
narios (including the pure BD theory). The factor (1/c) accompanying L, (or Ty) brings
about one of the interesting features in our scalar—tensor model: large-valued varying ¢
setups suppress the ordinary matter contribution to the action, in which case, the dynamics
is mostly determined by ¢ through its kinetic and potential terms. In Equation (9), no
dependence of L, on the field ¢ is assumed. However, it should be noted that we cannot
evade a non-trivial coupling with the (varying) speed of light within the functional deriva-
tive entering the definition of T),,. This feature will be dealt with later—see Section 4.1; it
is related to the definition of an effective stress—energy tensor including c. According to
Noether’s theorem [76], to every symmetry corresponds a conserved current; in theories
of gravity, the conserved current is its own stress—energy tensor, and the symmetry is the
invariance under general coordinate transformations (realized in practice by infinitesimal
translations involving Killing vectors [77,78]). In the paper [61], this delicate point sur-
rounding the underlying symmetry and the associated energy-momentum tensor appeared
in a different form: the covariant c-flation approach introduces T),, directly into the action
via a Lagrange multiplier.

The variation of S with respect to the scalar field ¢ leads to the Equation Of Motion
(EOM) for the scalar part of our scalar—tensor model:

2w w av 1 dc
?mp +R— PVPchp(p o 167rc—2%

This EOM says that “¢ is a dynamical field; it changes in space and time.” As a
consequence of the definition of ¢ in terms of G and c, the latter conclusion yields the
covarying character of the gravitational coupling and the causality coupling. We show
below that the simultaneous variation of G and ¢ occurs in such a way that the condition
G/G = 3(¢/c) is satisfied after the system evolves to the equilibrium stable point in the
phase space.

In the following, we specify our BD-like theory (in the Jordan frame) for cosmol-
ogy—see, e.g., [22]. The main hypothesis is that ¢ depends only on the cosmic “time”

L =0. (12)



Symmetry 2023, 15,709

7 of 29

x¥ = ct due to the requirements of homogeneity and isotropy. These requirements demand
the FLRW line element:
ds? = — (dxo) g (xo) e (d92 + sin6d 2) (13)
1 — kr? )

In this set of coordinates, the scale factor a (xo) bears the dimension of length. Con-
versely, the comoving coordinates {r, 6, ¢} are dimensionless quantities. The curvature of
the space section is determined by the parameter k = —1,0, +1, as usual [74]. The Hubble
function H is defined as

H= (14)

a
a
and has the dimension of inverse length.

The matter content appearing in both field Equations (8) and (12) shall be modeled by

the perfect fluid stress—energy tensor:

TV, = diag{—¢,p,p, v}, (15)

where p is the pressure and ¢ is the energy density (both with dimensions of energy per
unit volume).

Due to (15), the 00-component of the g, field Equation (8) reads (additional details on
how to calculate Equations (16)—(18) are given in Appendix A):

, 18n  w($\ ¢ Kk V

This is the (first) Friedmann equation of our scalar-tensor cosmology with covarying
G and c through the field ¢.

The second Friedmann equation (or acceleration equation) is calculated by taking the
trace of Equation (8), using the curvature scalar built from the metric in (13), utilizing the
trace of the stress energy tensor, and Equations (12) and (16). It reads:

| 2
H= 1&T[(w+2)e+wp]w<¢>

¢ (2w +3)¢ 2\ ¢
LS S A4 ¢ dc Lm
+2H¢ + o + 202w +3)9 (Pdgb 2V+167rc ip ¢ ) (17)
Moreover, in the cosmological context, Equation (12) reduces to
5+ 3Hp — Le—ap)— o™ 1 ov 16709 £n
¢+3H¢2w+3{87cc(8 3p) q>d¢+2V 167rcd¢ : } (18)

This equation determines the dynamics of ¢. It depends on H = H(x?), which means
that (16)—(18) should be solved simultaneously. The latter also depends on the matter content
through the factor (e — 3p), which demands us to specify the nature of the perfect fluid at
play in the cosmological era under scrutiny. Finally, Equation (18) exhibits a dependence on
the potential V(¢) and its derivative with respect to the field ¢. Ultimately, we will have to
say what is the form that we expect for potential ¢, which, in turn, is written to include the
physical couplings G and c. This challenge will be addressed next: In the following section,
we perform the phase space analysis of our model. With regard to dynamical systems
approach in cosmology, we refer the reader to the interesting papers [79-87].
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3. The Dynamics of ¢

The potential V(¢) is assumed to be analytical, but otherwise completely general. It
was taken as dominant over the contribution of the term involving the matter Lagrangian;
more specifically,

¢ dc Ly av
16m-—— —p—— +2V|. 1
‘6ncd¢c < ¢d¢+v (19)
This condition may be satisfied either for %—g; < lor %"‘ < ’—(/)—% + ZV’, We

shall consider the first terms of the expansion of V(¢) in a power series:
V() =Vo+Vig+ Vag?, (20)

where V; (i = 0,1, 2) are the first three constant coefficients in the truncated series. This
type of expansion up to second order in the power series is customary for the potential de-
scription around a local minimum of the function. It is usual practice in classical mechanics
and quantum mechanics to approximate the potential in the vicinity of a local minimum
for that of a harmonic oscillator—e.g., [88]. The usefulness of a power series expansion
of the potential up to its first-order terms is clearly noticeable in the inflationary context—
e.g., [89]—with the quadratic term being a useful example to illustrate the mechanism of a
slowly rolling scalar field [90]. The power series expansion of V has also applications in
classical field theories, such as in [91]. A power series expansion up to second-order can be
found in [89]; the interpretation of the different terms that participate in a truncated series
such as that in Equation (20) were discussed in [22,92], for instance. The form (20) encodes
a few cases of special interest:

1. LetVj =V, = 0. This realizes a constant potential that could be rescaled by setting
W =0.

2. For Vy = V, = 0and V; = 2A, one recovers the ordinary cosmological constant
(A = constant) already present in GR. The enticing feature here is that V(¢) = 2A¢
would exhibit all the fundamental couplings in gravity {G, ¢, A} when we substitute
¢ = 3/G. (Nevertheless, recall that A would still be a genuine constant here since it
defines V;.)

3. IfVp=Vi=0andV, = %mé, the potential accounts for a massive term in ¢’s field

equation. In fact, in this case, V(¢) = %mé(p and fi%/ = mé, thus corroborating the

interpretation. The delicate part is to interpret the role of this mass in ¢ = ¢3/G.
It could be conjectured that the source of ¢’s mass is either a massive photon or a
massive graviton.

In view of the above features, we considered the V(¢) in Equation (20) adequate
enough to allow for a sufficiently general dynamical analysis of our scalar-tensor theory of
covarying physical couplings in gravity.

Substitution of Equation (20) into (18) yields a form for the field equation of ¢ that does
not depend on V,. This is not the final possible simplification to this equation. The next
step is to consider periods in the cosmic history when

1 av
’C(e—Bp)‘<<‘<pd¢—2V, (21)

or, more specifically,
(e—3p)=0. (22)

The above constraints not only guarantee a great simplification of Equation (18), but
they are also very reasonable. Indeed, Equation (22) is consistent with a radiation-filled
Universe—described by the equation of state p = ¢/3. By abiding by Equation (22), we
assumed that the dynamics of the field ¢ takes place in this era.
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In standard cosmology, the radiation era spans from the period after inflation and
reheating all the way until the matter-dominated phase. It includes major events such as
electroweak unification, quark-hadron transition, neutrino decoupling, and nucleosynthe-
sis [93]. It is a key time period in the cosmic thermal history during which the dynamics of
¢ would have taken place.

In any case, the essential ingredient to the remainder of our analysis is that the condition
in Equation (21) is satisfied during all the dynamics of ¢. This means that the combination

(qb% - 2V> built from the potential V(¢) should dominate the matter-energy content

entering into play via %Tw. This configuration could be easily realized within varying c

frameworks during regimes where (c/cg) > 1, for example in the very early Universe,

before the phase transition of the decaying ¢ (x°) admitted by some VSL models [1].
Plugging (22) into (18) results in

A v W\
¢+3H¢_'<mu+3>¢_‘<mu+3>a (23)

A solution to this equation leads to ¢ = ¢(x°), which constrains the dynamics of
(c3/G). The physical solution to (23) must avoid the point ¢ = 0 since the notion of a
vanishing speed of light or of an infinitely large gravitational coupling is meaningless.
In order to realize this physical requirement, we displace the origin of the scalar field ¢
by defining

Vo
= 2— 24
where we admit V) # 0 and V; finite. In terms of this new field variable, Equation (23) reads
Vi
i +3H¢p — =0. 2
P = 53?0 @)

The solution to this equation is not so easy because H = H(x"), and this is given by
Equation (16). (Even after we solve Equation (25) for ¢ = ¢(x°) using H = H(x%), we
should have to justify a particular ansatz for ¢ = ¢(x?), which would lead to G(x°).)

3.1. Elements of Stability Theory for Dynamical Systems

We shall study Equation (25) from the point of view of dynamical systems. For this
reason, it is worth briefly reviewing the elements of standard phase space analysis most-
commonly used in modern gravity. This is given in the following subsections, whose
discussions are based on the papers [79,82] and the references therein. Check also [94].

3.1.1. Linear Stability Theory

Let us suppose a physical system can be described by 1 variables y = y',42,...,y".
Each of these variables is a real-valued function, so thaty € M C R". Now, consider that
the dynamics of this physical system can be described by a set of n differential equations of
first order:

y=1£(y), (26)
where the dot indicates the derivative with respect to a parameter representing the evolution
of this system, say a time coordinate (x’). Here, f(y) represents a set of 1 analytical functions
(which can be nonlinear) of the variables y. Whenever there is no explicit dependence of f
with respect to 1Y, the set of equations is called an autonomous system.

If there exists a point yg € M such that f(yo) = 0, then

Ily-yy = 0. 27)
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If there is a time x(() ) where y (x(() f)) = yo , then the dynamics of the system ceases

and y(x) = yj for any value of x° > x((’ ) This point is called a fixed point, critical point, or
equilibrium point.

Whenever a system has a fixed point, it is interesting to analyze the trajectories in a
neighborhood U C M of yp. Roughly speaking, if the trajectories in U diverge from the
fixed point, it is considered unstable; if the trajectories converge to yo, then it is stable.

The simplest stability analysis that can be carried out for such a system consists of
considering the equations in a small region U where f(y) can be expanded in a Taylor
series about yg and approximated to first order. The advantage of this method is that
it allows for an analytical solution for the approximated system (the drawback is that
the approximation by a Taylor series is not always a good approximation for a nonlinear
system). In U, we have

y~ f(yo) + (v —b) - ;yfi(y())
= [(y — yo) - grad]£(yo). (28)

A change of variable, z = y — yo, can always be proposed so that the equilibrium
point is the origin of the coordinate system in the new variable:

z ~ (z - grad)f(0), (29)
or in a matrix form:

z~M-z, (30)

oft  af! oft

g
(M) = | o e s (31)

a}‘ﬂ a}'ll ' a}‘n

ozl 9z2 " oz Yo

M is called the Jacobian matrix or stability matrix. As long as det M # 0, we can look for
a new transformation of variables z — Z where the transformed Jacobian matrix becomes
diagonal: the elements of the diagonal are actually the eigenvalues, A;, of the Jacobian
matrix. In this case, the set of differential equations will have the following solution:

7l = zieh™ (32)

If the real part of at least one eigenvalue is positive, then the trajectories will diverge
from the fixed point and the system is unstable; if the real part of all eigenvalues are
negative, then the trajectories converge to the equilibrium point and the system is stable.
If the real part of one of the eigenvalues is zero, then the system can be either stable or
unstable; in this case, each system has to be considered separately.

The eigenvalues of the Jacobian matrix are called Lyapunov coefficients, and the stability
analysis essentially consists of the study of their real parts. Notice that the Jacobian matrix
is composed of constant coefficients once f is not explicitly x’-dependent. The stability
that is characterized by the Lyapunov coefficients is restricted to a region where the linear
approximation for f is valid.

The above considerations shall be employed in Section 3.2.

When the components of the stability matrix are not constant or when the linear
approximation of the Taylor series is not a good approximation, other methods have to be
applied. For instance, a powerful method to establish the stability of a dynamical system
when the linear stability analysis fails is Lyapunov’s method, presented in the next section.
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3.1.2. Lyapunov’s Method

Section 3.1.2 follows closely the treatment given in [79]. This method is more powerful
and general than the one in Section 3.2 in the sense that it does not rely on linear stability: It
has the capability of investigating both local and global instability. In addition, Lyapunov’s
method applies to non-hyperbolic points as well, something the linear stability theory fails
to accomplish. A critical point (fixed point) y = yo € M C R”" of the dynamical system (26):

y = £(y), (33)

is classified as a hyperbolic point if all of the eigenvalues of the stability matrix have a
non-zero real part. Otherwise, it is said to be non-hyperbolic.

Lyapunov’s method for checking the stability of a dynamical system consists of finding
a Lyapunov function V (y), such that:

(i) V(y) is differentiable in a neighborhood U of yy;
@) V(y) > V(o)
(i) V<0, Vvyel

There is no known systematic way of deriving the Lyapunov function V(y). If a
Lyapunov function exists, the Lyapunov stability theorem establishes that the critical point
yo is a stable fixed point if the requirement V < 0 is fulfilled. The critical point y is
an asymptotically stable fixed point if there is a Lyapunov function V(y) satisfying the
criterion V < 0. In addition, if lim|y| o0 V(y) = o0, Vy € U, then the critical point yj is
classified as globally stable or globally asymptotically stable, respectively. See [79].

Notice that Requirement (iii) can be cast into the form:

, aV . oV .
VY1, Yn) = 5, 0t e = gradV - f(y) <0. (34)
Y1 Yn
Equation (33) was used in the last step. The relation in Equation (34) will be important
in Section 3.3 below.

3.2. Phase Space Analysis with H(x%) ~ H, via the Linear Stability Theory

We avoided the difficulty mentioned below in Equation (25) by assuming, in this
subsection, that the Hubble function is constant during the time interval in which the
dynamics of the field ¢ occurs. In other words,

H (x0> ~ H, = constant. (35)

It should be emphasized that this condition is not as restrictive as it may seem. It does
not mean that H(t) is always constant, but only during the time interval of ¢’s evolution.
We are not demanding the Universe to be stationary (with 4 = constant); we are essentially
assuming that H evolves slowly during the time it takes ¢ to reach an eventual attractor
point. Again, this is a first-order phase transition scenario common to several models of
the VSL [1].

In order to show that the picture described in the previous paragraph is achievable,
let us analyze the dynamics of ¢ in the phase space resorting to the linear stability the-
ory [79]. Let

Pp=¢ (36)

be the momentum associated with ¢. Then, Equations (25) and (36) become the following
coupled system of equations:

¢ = Pg . (37)
{ﬁfp = —3H.py + 239
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This pair of differential equations has the structure of an autonomous system [94].
The dynamical system (37) is already linear; consequently, the linear stability theory is
not just an approximation around the critical point(s), but rather an exact description,
completely adequate for the case in hand. The result stemming from this analysis should
not suffer from any pathologies, such as those mentioned, e.g., in [83]—see also [95].
A quick inspection of (37) revels the equilibrium point:

Ppo = ¢o = 0. (38)

The next step is to analyze the stability of the fixed point according to the Lyapunov
criterion [94]. The Lyapunov coefficients A; are the eigenvalues of the Jacobian matrix
(stability matrix) related to the autonomous system [79]. They are found by solving the
characteristic equation associated with this matrix and read:

3H, i1 2 \?
Ay = 1+, |1+ 55— . 39
T2 3 (1+3w) (3H*> )

The autonomous system can be considered stable if the real parts of both eigenvalues
satisfy [79]
Re[A+] < 0. (40)

The analysis of the direction fields in the phase space allowed us to double check if
stability is attained (in an enlarged region surrounding the equilibrium point [82]) and if it
is consistent with the Lyapunov criterion. Here, we assumed that

H, >0, (41)

i.e., our Universe is expanding.
We split our analysis to cover different possible ranges of values for the parameters V;
and w.

Case 1: Negative-valued V;

Here, we took V; < 0. There are two subcases to be analyzed according to the values
of the parameter w. These subcases are considered separately next.

Subcase 1.1: Negative-valued w with w < —%

In the instance V; < 0and w < — %, we may write

il 1
ERHTE
3
This condition is important to decide on the behavior of the square root showing up
in Equation (39). As a consequence,

3H, i1 2 \?
Ay = =1+ 1+ —| 5 > 0. 42
T2 3 (1+ 2w) (3H> +2)

We concluded that A is a positive real number, so that Re[A ] > 0 is always satisfied,
and the associated equilibrium point is unstable according to Equation (40). Since the
analysis of A already reveals instability, there is no need to proceed to the study of A_.
The direction fields for the autonomous system (37) in the case where V; < 0 and w < —%
are shown in Figure 1.
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Figure 1. Direction fields in the phase space associated with the dynamics of the field ¢ for V; <0
and w < — % The equilibrium point (¢, qu,o) = (0,0) is a repulsor of the trajectory lines. It is, thus,
classified as an unstable fixed point.

Figure 1 clearly shows that the trajectories diverge from the equilibrium point
(90, Pg,0) = (0,0), thus indicating its instability in the context of the subcase under scrutiny
here. This conclusion will guide us towards constraining the interval of values allowed
for the parameters V; and w if a reasonable physical interpretation for the dynamics of
¢ = c3/G is to be established. We will decide on that later on, after we conclude our
stability analysis.

Subcase 1.2: Values of w satisfying w > —%

Here, we need both V; < 0 and w > —%. Under this requirement, the eigenvalues
in (39) can be expressed as

3H, |V1| 1 ( 2 )2
Ay = 1+ 1-EH = : 43
T2 3 |1+ 3w| \3H. @)

The relevant part for deciding the nature (real or complex) of the eigenvalues A is
the second term within the square root. If it is greater than 1, then

3H. o1 <2>2
Ay = S O L T -
S 3 |1+ 2w| \3H.

and both eigenvalues A, become complex numbers with negative real parts. Therefore,
the equilibrium point is stable, cf. Equation (40).
On the other hand, if

\V1| 1 2 \?
P — <
0< 3 |1+ 2w|\3H:) ~ L “

the square root in (43) is a real number smaller than one, and both eigenvalues A are real
and negative. This automatically satisfies the criterion Re[A+ | < 0 for stability, leading us
to conclude, again, that the equilibrium point (¢g, py0) = (0,0) is stable.
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The direction fields in the plane (¢, p,) are analyzed in Figure 2. As we can see in the
graph, the trajectories in the phase space converge to the equilibrium point (¢, py,0) = (0,0),
indicating its stability. The physical interpretation of this key feature will be explored
momentarily. Before that, we need to address the case where V] is positive.

=
T

Figure 2. Direction fields representing the dynamics of the field ¢ in the phase space for V; < 0 and
w > — % Trajectories converge to (@, py,0) = (0,0), which is consequently a stable equilibrium point.

Case 2: Positive-valued V;

The stability analysis of the equilibrium point (¢g, py,0) in the case V; > 0 also
depends on the range of values assumed by w. The two subcases are again w < —3 and
3
w > —3.

Subcase 2.1: Negative-valued w with w < —3

The case w < —% yields

3H, i1 (2 >2
Ay =" -1+ |1- 2L ,
o 3 [Flel 1] \3H,

1 1

> 0. The analysis here follow exactly the same steps as for Subcase
w|—1‘

2
1.2 above. If %Plu}i\ﬂ (3%) > 1, the eigenvalues are complex numbers with neg-
§ — *

ative real parts, meaning that the equilibrium point is stable. On the other hand, if
%%Wlﬁ (ﬁ) < 1, the two eigenvalues are real negative numbers, implying that
the system has a stable fixed point.

The direction fields for the dynamics of ¢ when V; > 0 and w < —3 are displayed in
Figure 3. The trajectories converge to (9o, py,0) = (0,0); for this reason, it is classified as a
stable equilibrium point.
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Figure 3. Direction fields in the phase space for ¢ in the case where V; > 0 and w < —%. The point
(9o, pq,,g) = (0, 0) is stable due to the convergence of the trajectories.

Subcase 2.2: Values of w satisfying w > —%

In this situation, V; > 0 and w > —%, the eigenvalue A is a real positive number.
As a consequence, the stability criterion Re[A+] < 0 is violated irrespective of the behavior
of the eigenvalue A _. Hence, the equilibrium point (¢o, py0) = (0,0) is unstable. This

conclusion is confirmed by the direction fields in Figure 4 showing trajectories diverging
from the equilibrium point.
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Figure 4. Direction fields in the phase space for V; > 0 and w > —3. The direction field diverges
from the point (@, py0) = (0,0), which is then classified as unstable.

3.3. Phase Space Analysis with H = H (x°) via Lyapunov’s Method

Presently, we generalized the autonomous system studied in Section 3.2 by allowing
the Hubble function to be x’-dependent. In this case, the linear stability analysis may be
insufficient, or even misleading, as per [83] (and Ref. [79]). We were, thus, compelled to
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use other methods of dynamical analysis. In particular, Lyapunov’s method—reviewed in
Section 3.1.2—proved to be convenient in the present case.
The generalization of the system in Equation (37) that takes into account H = H (x%) is

¢ =Py
) . (45)
{qu = —3H(x") py + 250

The equilibrium point is the same as in Equation (38), namely:

o=( )= (5) w

The (vector) function f(y) that determines the dynamics reads

=1 )= ( 0 S () ) () “)

_( @
y_<P¢ >' @8

as is immediately concluded from the comparison of the system (45) with the definition (33).
Now, we propose the following Lyapunov function V (y):

where

V(y) = V(9. pp) = ag® + bp;, (49)

with a and b constants. These constants will be determined in accordance with the Lyapunov
stability theorem momentarily.
The function in Equation (49) immediately satisfies Property (i) in Section 3.1.2. More-
over, notice that
V(yo) = V(¢o, pgo) = V(0,0) =0. (50)

This fact is relevant for checking if Requirement (ii) is fulfilled Vy € U.
We can compute the first identity in Equation (34) for the specific case of our
dynamical system:

) 1% 1%
V=—¢+—py,=2a¢9¢+2bp,p
aqu) apq)P(p 4% PoPe

- o _ 0),2
2(a+2w+3b)p¢(p 6bH(x )pqo, (51)

where we made use of Equation (45). The constants a and b are arbitrary; we used this
freedom to choose

] B
(a + 2w+ 3b) =0, and b>0. (52)

Accordingly, Equation (51) yields
V= —6bH(x0)p; <0. (53)

The choice in (52) led us to satisfy Property (iii) in Section 3.1.2. This is so because the
Hubble function is always positive for an expanding Universe. Actually, we have V < 0
since H(x") > 0 and p7, > 0, for p, # 0. The equality in (iii) would only be achieved if
b = 0, but this choice would lead to V = 0, in which case Property (ii) in Section 3.1.2
would not be satisfied.
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Incidentally, now is the time to attempt to verify Property (ii). Plugging Equation (52)
into (49),

V;
V(e pg) = (—2w1+3¢2+10?p)b- (54)

Since b > 0 and ¢* > 0 and p%p > 0 in a neighborhood of the equilibrium point, the de-
cision on the fulfillment of Requirement (ii) depends entirely on the values of parameters
V1 and w. Essentially, the stability will be achieved if

Vi
2w+ 3

<0. (55)

We identify four possibilities:

(@ V3 <0and w < —3/2, then Condition (55) is not satisfied, and the system is not stable;

(b) V; <0andw > —3/2, then Condition (55) is satisfied, and the system is asymptotically
stable;

(@ Vi >0and w < —3/2, then the system is asymptotically stable;

(d Vi3 >0and w > —3/2, then the system is not stable.

These possibilities are consistent with those unveiled by the linear stability analysis
performed in Section 3.2. Here, however, the nature of the equilibrium point is kept even
when the Hubble parameter is allowed to change as a function of x. Figure 5 shows the
direction fields for different values of the Hubble function H (x°) and fixed values of w and
V1 under Condition (b).

[

Y ':\ RN
WAL LN
REER

Figure 5. Evolution of the direction fields toward the stable equilibrium point at (¢, qu,o) =(0,0)
in the instance V; < 0 and w > —3/2 for an x’-dependent Hubble parameter. The value of H(x?)
decreases progressively in the plots from left to right. The direction fields in the sequence of plots
are consistent with the decreasing H: the damping effect of the term containing H in the field
Equation (25) of ¢ is reduced in the sequence of plots from left to right. Consequently, the phase
space diagrams look more and more like that of a (undamped) harmonic oscillator.

If we restrict our parameter space (w, V1) to satisfy the conditions for stability, i.e., Con-
ditions (b) or (c) above, then we verify that the equilibrium point yo = (¢, py,0) = (0,0) is
globally asymptotically stable, since

lim V(q), p(p) — 00,

P oo

cf. the Lyapunov Stability Theorem—enunciated below Point (iii) in Section 3.1.2.

Finally, we plot the parameter space of the pair (w, V7). The stability of the system
depends solely on the values of V; and w, both when H ~ H, (Section 3.2) and when
H = H(x") (this section). The shaded region in Figure 6 displays the region of the
parameter space where the dynamical system is stable.
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Figure 6. Parameter space (w, V) and the classification of regions according to the stability of the
dynamical system. The shaded regions (in blue) highlight the values of the pair of parameters (w, V1)
rendering the fixed point (@, py,0) = (0,0) stable.

3.4. Discussion: The Meaning of Stability

The results that have physical interest are those where the equilibrium point is stable,
i.e., the case where V| < 0, w > —% and the case with V| > 0, w < —%. These different
ranges of values for V; lead to two different interpretations. Let us reconsider Equation (8)
and include the potential (20) explicitly:

1 Vi 187 (Vo + Vag?) 1
Ruw = 58w R+ 5 8w = co M fig”v
w 1
+ e (VM”VV(P - ngVPgprcp)
1
+5 (ViuVigp — gu09). (56)

As mentioned at the beginning of Section 3, we see that the parameter V; plays the
role of a cosmological constant even in the dynamical phase of ¢. It may be suggestive to
rename this parameter V; <+ 2A, in such a way that the left-hand side of Equation (56) is
formally the same as the geometrical side of Einstein field equations. Hence, the condition
V1 > 0 maps to A > 0, which indicates that the background solution to (56) is a de Sitter-
like spacetime [74]. Conversely, the condition V; < 0 would correspond to A < 0, thus
leading to an AdS-like background. (Of course, some conditions apply for achieving a strict
dS/AdS background: vacuum, derivatives of the field ¢ as null, etc.)

In both cases, as long as we have the stability of the equilibrium point, the sys-
tem will evolve so that the trajectories of field ¢ in the phase space (¢, py) converge to
(90, Pg,0) = (0,0). When this fixed point is reached, we have simultaneously

p— eq =0
{‘P Peq v : (57)
¢ = Peq = =2y, = constant
When the system arrives at the equilibrium point, then
‘Pa‘l’eq:[cf] =0, (58)
¢ Peq G €leq
as implied by Equations (5) and (57). This means that the condition:
G ¢
c= BE (59)

will necessarily be satisfied whenever the system is in equilibrium: Equation (1) holds true
precisely for the parameter value ¢ = 3. This value is exact here: the uncertainty of ¢ = 3
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is theoretically zero; it is a natural consequence of the definition of ¢ demanded by basic
dimensional analysis and out of the dynamics of ¢ in the phase space.

Another consequence of this dynamics of ¢ is that the system can start with arbitrary
initial conditions. The condition % = 3£ may not even be satisfied for this initial condition.
It is just a matter of time until the system evolves and converge to Equation (1).

We also point out the appearance of an effective cosmological constant when the dy-
namics of ¢ relax to the equilibrium point (regardless of the association V; <+ 2A suggested
above). In fact, the dynamics of the scalar field ceases at the equilibrium point, i.e., V¢ = 0
with ¢ — ¢eq = constant; in this situation, the gravitational field Equation (56) approaches

1 Vo + Vigeq + Vadig 87T, (eff)
R J— = —T , 60
nv 28%1/ < 2eq 8uv Peq Hv (60)
where T}Sle/ff) = %TPV is the conserved stress—energy tensor in our scalar—tensor model. The

term in the parenthesis above appears as an effective cosmological constant:

Vo + Vigeq + Vaga
AO = 0 1¢Eq Z(Peq , (61)
2¢eq
and the field ¢, which converges to ¢eq in Equation (57), can be set as
3
0
Peq = Go’ (62)

while Equation (60) assumes the form of GR’s field equation with the cosmological constant.
The quantities ¢y and Gy are constant values of the couplings, which might as well be
considered as their present-day values in cosmological terms. In fact, due to the last two
equations, Equation (60) assumes the following form at the present time:

1
Ryy — igva + Aoguv = TTPW’ (63)

which is the familiar form of the Einstein field equations, cf. Equation (2).

It is imperative that the following is crystal clear: the fact that ¢eq = ¢/ Go = constant
does not mean that G and c will be constants after the equilibrium is reached. All that is
required thereafter is (¢/¢) = —(G/G — 3¢/c) = 0. Accordingly, after the equilibrium is
attained, it could be ¢ = ¢of and G = Gy f?, where f = f(x°) is an arbitrary function of the
time coordinate: these time-dependent ansatzs for G and c satisfy both the requirements
¢eq = 3/ Goand (G/G —3¢/c) =0.

In the face of the comments above, one concludes that, if an astrophysical event takes
place after the equilibrium condition is attained, it is essentially impossible to identify
the dynamics of G separately from the dynamics of c. In order to identify the eventual
dynamics of G and c with g # 3£ (by taking into account only gravitational field equations,
as we have done here), one would have to consider situations out of the equilibrium for
¢. If we are currently in the equilibrium condition, then one would have to take into
consideration events in the past history of the Universe. How far in that past one should go
is still an open question, hinging on the amount of time that the system takes to converge to
the equilibrium point. In any case, the condition in Equation (21) must be preserved for the
dynamical analysis in Section 3 to hold. As an example of what is stated above, we mention
the solar system tests constraining the Brans-Dicke parameter w > 40,000 [96], while as
a dimensionless parameter, it would be expected to be of order w ~ 1. In these tests,
the parameterized post-Newtonian approximation is applied assuming that the dynamics
of the scalar field plays a role in the solar system evolution. In our case, the dynamics
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ceased in the radiation era, way before the solar system was formed. From this perspective,
it would be meaning]less to try and discard our model based on BD constraints.

From the discussion above, the global picture of the dynamics in our scalar—tensor
model should be within sight. The system begins with arbitrary initial conditions where
¢ = /G is out of equilibrium. In this phase, the functional form of G and c is not
constrained to any particular behavior being interwoven. There are two regions in the
parameter space of the pair (w, ;) enabling the system to reach a stable critical point,
cf. Figure 6. By restricting our model parameters to these regions, one guarantees that
the stable equilibrium is reached, ¢ — ¢eq, and the couplings G and ¢ are forced to
evolve respecting (G/G — 3¢/c) = 0 henceforth. The evolution of the Universe from this
point onward should be impacted by the fact that G scales as ¢®. In the next section, we
launch ourselves into the task of determining the background cosmological evolution
of our scalar—tensor model after the equilibrium. Our final goal is to solve for the scale
factor a as a function of the time coordinate x’. Along the way, we build the continuity
equation from the conservation of the effective stress—energy tensor mentioned below in
Equation (60)—see Section 4.1. We will show that this continuity equation differs from the
conventionally used in FLRW cosmology as it contains a term depending on ¢. The ensuing
VSL model is studied in Section 4.2 assuming radiation and dust matter content. In both
cases, the evolution of ¢ = a(x?) tends to an accelerated de Sitter-type solution. As it
happens, the latter is true for two classes of VSL models: those with a decreasing speed of
light and those with an increasing ¢ = ¢(x?).

4. Analysis of the Gravity Field Equation after ¢ Reaches Equilibrium

After ¢ reaches the equilibrium point, the field equation for the gravitational part of
our scalar—tensor model, Equation (60), reduces to

81
Gpv = ?ETPV - AO‘SPW (64)
eq

where ¢eq = constant. However, ¢ = ¢(x?) on the rh.s. accompanying T}, . In this section,
we investigate non-vacuum cosmological solutions stemming from this new feature.

The 00-component and the ii-component of Equation (64), under the FLRW metric
in (13), read
8t 1 Ao k

H? = == 65

34>eqc€+ 3  a? (65
and w1 A
HiH:= "2 20

+ 3¢eqc(€+3p)+ 3 (66)

which are the Friedmann equation and the acceleration equation, respectively. (Recall that
the definition H = a/a leads to i/a = H + H?2.)

4.1. The Covariance of the Effective Stress—Energy Tensor
By taking the covariant divergence of Equation (64) and by using the Bianchi identity
(Vp G, = 0) and the metricity condition, we conclude that

Vo CTPV) =0. (67)

This is the extended conservation law in our scalar-tensor gravity and justifies the

definition of Tp(,iff) = %T#V' which is actually covariantly conserved. The effective stress—
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energy tensor TP(,?,H) is Noether’s current related to the symmetry of (infinitesimal) general
coordinate transformations. When we specify Equation (67) for the FLRW metric, we obtain

¢+3H(e+p) = (E)s (68)

The term on the r.h.s. disappears for ¢ = 0 so that Equation (68) recovers the standard
continuity equation of background cosmology in GR in this particular case.

Equations (65), (66), and (68) form the essential set of equations of cosmology in our
scalar-tensor model allowing for the variation of c. Our proposal is to use the first and
the third equations in the set above to determine the cosmic evolution. For that goal, two
elements are necessary:

1. Anequation of state p = p(e);
2. A constitutive equation for ¢ = ¢(x?).

The EOS is taken as

0, dust matter

1

69
3, radiation (69)

p = we, where w:{

(Notice the distinction between w—the EOS parameter—and w—the scalar—tensor
constant parameter appearing in Equation (7) as the coefficient of the kinetic term of ¢.)
The continuity Equation (68) then becomes:

&+ [3H(1+w)—(i>}e—0. (70)

The first term in the square brackets is the common contribution in the standard GR
FLRW cosmology. The second term in the square brackets is the contribution from our
scalar-tensor model. The above equation cannot be solved explicitly without a constitutive
equation for ¢ = ¢(x%). That is what we will do next.

4.2. Modeling the Varying Speed of Light

In a few models realizing VSL scenarios, it is assumed that ¢ (xo) suffered a first-order
phase transition at the beginning of the thermal history of the Universe—see, e.g., [52].
According to this image, the speed of light would have decreased its magnitude as the scale
factor increased. This motivated the proposal in the next subsection.

Before moving to the next subsection, it is probably worth emphasizing that the
assumption of a particular ansatz for ¢ = ¢(a), which would be valid after the dynamics
of the field ¢ ceases, does not violate the equilibrium condition ¢ = ¢oq = constant. For

instance, if ¢ ~ 1/a, it suffices that G ~ 1/43 for maintaining ¢ = % = constant.

4.2.1. Speed of Light Scaling as the Inverse of A

Let us assume that
=co — ). 71
=) m
That is, the speed of light decreases as the Universe increases its size. The consequence
of (71) is [97]

o=-H. (72)

This is a reasonable choice that simplifies the continuity equation. In fact, plugging
(72) into Equation (70) enables immediate integration to

£e=¢p (%) (4+SW). (73)
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In particular, ¢ ~ a~% in a radiation-dominated era (w = 1/3). This violates the

Stefan-Boltzmann law ¢ ~ T* because a ~ T~!, with T representing the temperature. (Of

course, the violation of the Stefan-Boltzmann law by radiation in the model ¢ ~ a~! occurs

if we insist on a constant kp.) Curiously enough, dust-like matter (w = 0) does recover the

Stefan-Boltzmann law ¢ ~ a~* in our scalar-tensor model supplemented by the ansatz
-1

c~a .
Substituting (71) and (73) into Equation (65) with k = 0 and ¢eq = (CS/ GO) yields

Qg 7ag\3(1+w)  Ag
H> =2 (= = 74
a3 ( a ) + 3 (74)
under the definitions:
1 3c} €0
= d Oy = —, 75
8(:,0 (1% 87TGO an 0 EC’O ( )

where [e.o] = (energy)/ (length)® and () is dimensionless. Equation (74) integrates to

2/3(14w) 2/3(1+w)

{2 (@)3(l+w) exp l\/TO(xO — x8>] . (76)
a 3

In Equation (76), x8 is the value of the “time” coordinate x° today. Equation (76) is the
exact solution for the scale factor.

If Aga3 > Q (the cosmological constant dominates over the matter-energy content),
the above solution reduces to

a =~ agexp [\/?GCO - xg)] (Aoa% > Q()). (77)

This is a de Sitter-type accelerated expansion and could describe dark energy. This is
true regardless of the value of the parameter w, which means that both a radiation era and a
matter-dominated Universe accommodate a de Sitter acceleration in the regime Aoaé > 0.
Therefore, our scalar-tensor model with ¢ ~ a~! is a promising candidate for fitting the
observational data. It remains to be investigated how the values of its parameters (()g, Ag)
would be constrained by the data. Regardless, from the theoretical point of view, one
could imagine a cosmic evolution from a radiation-dominated era to a matter-dominated
Universe to a dark-energy-dominated cosmos. This last step would come as a natural
evolution of the scale factor in Equation (76).

The question that poses itself at this point is the following. The picture for the Uni-
verse’s evolution in the previous paragraph was obtained from our scalar-tensor model
and the particular ansatz ¢ ~ a~! in which the speed of light decreases as the Universe
expands. How dependent is this scenario on the particular choice of a decreasing c? To put
it another way: Could a different scenario with an increasing speed of light accommodate
radiation-dominated and matter-dominated eras, allowing for a subsequent dark-energy-
type evolution?

In order to answer this question, we have to choose an ansatz for ¢ = ¢(a) that is
different from that in Equation (71). We do this in the next section by assuming an ansatz
introduced by one of us (Gupta) in a series of papers [62,64-71].

4.2.2. Speed of Light Scaling as the Exponential of a

Gupta’s ansatz for an increasing speed of light has the form [66]:

c:coepr:())’X—l}, (78)
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with « a positive constant of order one. Therefore,
. w
¢ a
- = <) H. (79)
c ap

B ap 3(l+w) c

For the standard non-varying speed of light picture, ¢ = cy, the equation above recovers
the traditional result from the background FLRW cosmology of GR. This means that the
Stefan-Boltzmann law ¢ ~ a~# is recovered in the radiation era (w = 1/3), except for the
factor (c/cp). This is different from the case in the previous subsection, where ¢ ~ a~! and
¢ ~ a~* were realized only in the presence of dust-like matter.

Now, Equation (80) can be used in the first Friedmann Equation (65) to yield the
scale factor. Indeed, taking k = 0 and using the definitions of ¢,y and )y in Equation (75)
result in

Inserting (79) into (70),

= @(@)“”wuﬂ

2
ag 3

p (81)

Surprisingly, this is exactly the same equation for H derived in the previous model—see
Equation (74). Therefore, the solution devised in Section 4.2.1 for the model with ¢ ~ a1
is also valid in the present case, namely: Equation (76) leading to the same de Sitter-type
limiting case of Equation (77).

Now, we are able to answer the question raised at the end of the last section. A dark
energy phase is not a privilege of decreasing speed of light scenarios. In our scalar—tensor
model, an increasing speed of light also accommodates an accelerated expansion. Therefore,
there is enough freedom to imagine multiple eras of different kinematics for ¢ = ¢(x%),
just like one admits different functions of 2 = a(x?) for distinct eras of radiation or matter
domination. The Universe might as well choose a decreasing speed of light in the beginning
of its evolution, later evolving to a configuration where c increases as x” increases.

By “beginning of its evolution” in the previous sentence, we mean the period imme-
diately after ¢ reaches its equilibrium point ¢eq; after all, the whole formalism developed
in the present Section 4 assumes the validity of Equation (64), which is the BD-like field
equation for the gravitational field after ¢ approaches ¢req-

It should be emphasized that the model in this subsection (Section 4.2.2) was indeed
tested against a plethora of astrophysical and cosmological data with successes, including
SNe Ia data [64], BAO and CMB data [66], BBN data [67], quasar data [68], gravitational
lensing [69], orbital mechanics [70], and the faint young Sun problem [71].

5. Concluding Remarks

In this paper, we studied a scalar—tensor model for gravity in which both the gravita-
tional coupling G and the (causality) speed of light c were included in the scalar sector of
the model through the field ¢ = c3/G.

The field equations for g,, and ¢ were built and specified for the homogeneous and
isotropic cosmological background. The dynamics of our field ¢ was then analyzed in the
phase space under some working hypotheses. We took the curvature parameter of the
space sector k as null. We used the first three terms in the series expansion of the potential
V(¢). We assumed that the dynamics of ¢ happens in a radiation era. We then studied
the evolution of ¢ via linear stability theory (reviewed in Section 3.1) assuming that the
dynamical period of ¢ is short enough to ensure that the Hubble function is approximately
constant therein (Section 3.2). Finally, the dynamical system analysis was extended to
allow for a time-dependent Hubble parameter; this required the use of Lyapunov’s method
(Section 3.3).

The phase space analysis showed that two sets of conditions upon the free parameters
of the model led to trajectories converging to a globally asymptotically stable equilibrium
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point. These conditions were: (i) V; < 0, w > —% and (i) V1 >0, w < —% , where V] is the
constant coefficient of the linear term in the V(¢) series and w is the constant coefficient
of the kinetic term of ¢ in the model’s action. The physical interpretation of V; and w is
commented on momentarily.

We saw in Section 3.4 that V; could be understood as a type of cosmological constant
during the dynamical phase of ¢; therefore, its positivity (or negativity) could impact
this version of A. Moreover, V; appears in the effective cosmological constant Ay, which
turns up at the end of the dynamical evolution of ¢, when the trajectories of the phase
space converge toward the equilibrium point and stay there for the rest of the cosmic
history. The definition of A includes the other coefficients of the potential as well: Vj is
the constant term in the V(¢) series, and V; is the coefficient of the quadratic term of V
in ¢. Our treatment demands V) # 0, but otherwise unconstrained, while V) is totally
unconstrained. The equilibrium value of the field, geq = cg / Gy, also enters the definition of
Ag, which leads to the interesting conclusion that the cosmological constant could depend
on (Go, cp), the (constant) equilibrium values of the gravitational coupling and of the speed
of light.

The sign of the parameter w is related to the physical nature of the scalar field ¢.
Indeed, if % < 0, the sign of the kinetic term for ¢ in the action indicates that ¢ is a ghost
field. This means that its Hamiltonian is unbounded from below and it would be a source
of negative energy. The global sign of the potential V(¢) is also important: together with
the sign of the kinetic term, it determines if ¢ could also be an unphysical tachyon field
breaking causality. In the vicinity of the equilibrium point, ¢ > 0, so that w < 0 would
characterize the field as a ghost field—see, e.g., page 2 of [98] and the references therein.
This all means that we have to impose w > 0 for a physically meaningful behavior of ¢.

The big picture in our development is the following: After evolving to the equilibrium
stable point, the field ¢ reaches it equilibrium value ¢eq = c3/Gy and stays there. Then,
the dynamics of ¢ ceases, and two things happen: (i) the couplings G and c that are
covarying within ¢ assume the dependence G/ Gy = (c/ c0)3, where Gy and ¢y could be
interpreted as the numbers that we use as fundamental constants todays; (ii) the gravitational
field equation of our scalar-tensor model, involving both ¢, and ¢, degenerates to a field
equation that is formally the same as the Einstein field equation of general relativity,
but bears a time-dependent factor (1/c) alongside the ordinary energy momentum tensor.
At the present time c = ¢, and the field equation recovers exactly the Einstein equation of
GR. That could explain why GR is so successful in describing local and low-redshift data,
but should be generalized in a larger scope of application. The relaxation of our model
toward a field equation that is formally the same as that of GR is consistent with the works
by Damour and Nordtvedt [99,100]—see also [101] by Faraoni and Franconnet.

When the dynamics of ¢ ends, ¢ = 0, and the covarying G and c are forced to obey the
relation (G/G) = o(¢/c) with o = 3. This number is exact as far as the theoretical predic-
tion is concerned (under the hypotheses we have assumed, cf. the beginning of Section 3).
Our conclusion is that at least some astrophysical phenomena would be unchanged if G
and ¢ vary concurrently while respecting ¢ = 0. This fact was pointed out in [65,69,70],
in relation to orbital timing, the strong gravitational lensing of SNe Ia, and core-collapse
supernova events.

Our scalar-field model may be seen as a version of Brans-Dicke allowing for a varying
speed of light (alongside the varying G). Although the field equations in Section 2 look
like those in BD theory, it must be underscored that the varying c appears explicitly in the
term containing the energy momentum tensor. This forces the definition of an effective
stress—energy tensor, which is covariantly conserved, thus ensuring the general covariance
of the gravity equation. This was discussed also in Section 4, where we built the Friedmann
equations for the cosmology within our scalar-tensor gravity. These equations were solved
for two particular ansatzs of ¢ = ¢(x?): (i) a speed of light that decreases as a increases
and (ii) a c that increases as the Universe expands. It was shown that both ansatzs allow for
an accelerated expansion consistent with the effect of dark energy. The fact that we were
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able to fully resolve the field equation for our scalar-tensor gravity with varying coupling
constants shows that the generality of our model does not spoil practicality. The following
logical step in our research in the future will be to refine the details of the picture by
constraining the models with observational data.

Future perspectives include relaxing some of the hypotheses adopted in this manuscript.
One possibility is to let the dynamics of ¢ evolve in an era dominated by matter, for which
(e —3p) # 0 and the coupling of ¢ = c(x") with the matter Lagrangian comes into effect.
The eventual interrelation between the matter part of the action and ¢ = ¢(x°) brings forth
the possibility of c being an independent scalar field. In this context, one would have to
take G = G(x*) and ¢ = ¢(«x#) as scalar fields evolving on their own (not enclosed within
the field ¢). To put it another way, in the stability analysis performed in this paper, we
have one scalar degree of freedom, incarnated in ¢; this is true even as both G and c are
allowed to vary. In a future paper, we will consider two independent degrees of freedom,
namely G and c, with their own separate kinetic terms and potentials (with or without a
mutual interplay).

In this paper, the varying physical couplings were restricted to the set {G, c, A }—with
the first two forming the field ¢. Other works enlarge the set of possible varying fun-
damental constants to {G, ¢, A, 1, kg } and perform some phenomenological modeling in
astrophysics and cosmology [65,102]. Pursuing the fundamentals surrounding an eventual
variation of all five couplings from a field theory perspective is something that may be
performed in the future.
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Appendix A. Modified Gravity Field Equations in Cosmology

Herein, we give additional steps in the derivations of Equations (16)—(18) that are
useful in the cosmological context from the general field Equations (8), (9) and (12) of our
modified gravity with ¢ = ¢/ G—see Section 2.

Let us recall Equation (8):

1 |4 18 w 1
Ryv — Eg;wR + %gyv = E?Tﬂv + ? (VM‘PVV‘P - zg}va(PvP(P)
1
and Equation (12):
2w w av 1 dc
- — P - _ - —
5 Pt R= GVOOVep— o — 16 dgtm =0 (A2)

We take the trace of Equation (A1) by contracting with ¢g"¥. Since R = ¢g"" Ry, (and
similarly for T,,,) and gP¥ g, = oF v, it follows that
30¢ 2V

VFOV g+ —F + = A3
PVt ==+, (A3)

R—_187p @

co ¢
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This can be substituted into Equation (A2), yielding

1 av ¢ dc

O =
¢ 2w —+3

The spacetime homogeneity and isotropy requirements at the background level are
consistent with the FLRW metric, Equation (13):

2 dr?
2 _ (440 2(,0 2( 302 1 cin2 9 m2
ds? = (dx) +a(x>[1_kr2+r(d9 +sin f)d(p)] (A5)
wherein the scale factor 2 = a(x%) is a function of the “time” coordinate x* = ct alone.
For the same reasons (spacetime geometry symmetry properties), the scalar function ¢ will
also be a function exclusively of x: ¢ = ¢(x?). The line element (A5) leads to [22,72,90]

U d‘P ? £2
VEV 9 = — Y = —¢, (A6)
X
d*¢ d¢ . ; 1 d /5,
D¢—<dt2+3de0> ——(¢+3H¢)f—a—3@(a 9), (A7)
and
.. .. .0
Ry = —3% Ry = 242k 2 (aa' 422 +2k) — Ry3/sin20,  (AS)
a 1—kr2
R = 6(H+2H2 +k/a2), (A9)
with the Hubble function: 14 .
a a
“add (10

already defined in Equation (14). Recall that an over dot denotes the derivative with respect
to x¥ (and not simply a derivative with respect to t). Moreover, we have stated around

Equation (15) that
TVV = diag{—s(xo),p(x()),p(xo),p(xO) }, (A11)

the trace of which reads
T =T = (—e+3p). (A12)

With the above results, it is straightforward to write the 00-component of Equation (A1)

in the form: )

187 w (¢ ¢ k Vv

H2 _ - | —HL — — JE— Al

¢ 39 et ¢ ( ¢) +— (A13)
which we called the first Friedmann of our scalar-tensor cosmology and corresponds to

Equation (16) in the main text.
By making use of the result (A9) and Equation (A3), one obtains

: k 14m w($\* 109 V
2, > _ T r_ (X it SR
F2H = =T 6(4)) + v (A14)
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Plugging Equations (A4), (A12), and (A13) into (A14) gives

. 1 187 w ()
H=araye g @ 2eren -5 (7)
¢ 1 av ¢ dc
PG g (O Ggtn) 4

This is Equation (17) in the main part of the paper.
Finally, in the face of Equations (A7) and (A12), Equation (A4) reduces to

. . 1 ¢ dc
—(¢+3H¢) = % +3[ 8r(— s+3p)+¢>d¢ 2V +1ém 2dp ]
ie.,
. . 1 1 ¢ dc
¢+3Hp = 2w 13 [ 8m(e —3p) — gb@ +2V —16n d¢£m:| , (Al6)

thereby recovering Equation (18).
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