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Abstract: Drug repositioning is a less expensive and time-consuming method than the traditional
method of drug discovery. It is a strategy for identifying new uses for approved or investigational
drugs that are outside the scope of the original medical indication. A key strategy in repositioning
approved or investigational drugs is determining the binding affinity of these drugs to target proteins.
The large increase in available experimental data has helped deep learning methods to demonstrate
superior performance compared to conventional prediction and other traditional computational meth-
ods in precise binding affinity prediction. However, these methods are complex and time-consuming,
presenting a significant barrier to their development and practical application. In this context, quan-
tum computing (QC) and quantum machine learning (QML) theoretically offer promising solutions
to effectively address these challenges. In this work, we introduce a hybrid quantum-—classical
framework to predict binding affinity. Our approach involves, initially, the implementation of an
efficient classical model using convolutional neural networks (CNNs) for feature extraction and
three fully connected layers for prediction. Subsequently, retaining the classical module for feature
extraction, we implement various quantum and classical modules for binding affinity prediction,
which accept the concatenated features as input. Quantum predicted modules are implemented with
Variational Quantum Regressions (VQRs), while classical predicted modules are implemented with
various fully connected layers. Our findings clearly show that hybrid quantum-—classical models
accelerate the training process in terms of epochs and achieve faster stabilization. Also, these models
demonstrate quantum superiority in terms of complexity, accuracy, and generalization, thereby
indicating a promising direction for QML.

Keywords: quantum machine learning; quantum computing; protein-ligand binding affinity; quantum

neural network; quantum regression

MSC: 81-04; 81-05

1. Introduction

The drug discovery process is time-consuming and quite expensive. The development
of a new drug can take approximately 12 years, and it is estimated that its average cost, until
it reaches the market, is around EUR two billion. The time and cost associated are largely
due to the large number of compounds that fail at one or more stages of their development,
as it is estimated that only 1 in 5.000 compounds eventually reach the market [1]. Drug
repositioning is a less expensive and time-consuming method than the traditional method
of drug development. Drug repositioning (also called drug repurposing, reprofiling, or
re-tasking) is a strategy for identifying new uses for approved or investigational drugs that
are outside the scope of the original medical indication [2]. Given that a significant part of
research focuses on pharmaceuticals designed for prevalent diseases, such as cardiovascular
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diseases, cancer, and Alzheimer’s, the practice of drug repositioning assumes considerable
significance in the treatment of rare diseases.

A key strategy in repositioning approved or investigational drugs is determining the
binding affinity of these drugs to target proteins [3]. Drugs typically function as ligands,
interacting with target proteins. Binding affinity refers to the strength of the interaction
between a compound (such as a drug/ligand) and its target (such as a protein/receptor). It
quantifies how tightly the molecule binds to the target and is typically expressed by the
inhibition constant (Ki) or dissociation constant (Kd). Compounds with higher binding
affinities are more likely to produce therapeutic effects. Experimental methods for deter-
mining protein-ligand binding affinity are generally considered the most reliable. However,
the experimental determination of protein-ligand affinity is often time-consuming and
costly. Therefore, there is a growing interest in developing alternative computational meth-
ods to accurately estimate protein-ligand binding affinity. More specifically, estimating
binding affinity through computational methods can aid in prioritizing suitable targets
candidates from a vast pool for subsequent experimental testing, thereby accelerating the
drug discovery process.

Taking advantage of advancements in computer-aided drug design, several physics-
based computational techniques have emerged for the precise estimation of protein-ligand
binding affinity. These methods include molecular dynamics simulations [4] and free energy
simulations [5]. Nevertheless, screening large-scale protein-ligand complexes using these
methods remains a considerable challenge due to the substantial conventional overheads
involved. In contrast to physics-based approaches, numerous traditional machine-learning-
based computational methods have been developed to enhance the predictive accuracy
of protein-ligand binding affinity. Examples include RFscore, which employs random
forest [6], and Pred-binding, which uses Support Vector Machine [7]. However, the effective-
ness of such machine-learning-based techniques heavily depends on the creation of efficient
manually extracted features, requiring fundamental domain expertise [8]. Deep learning
(DL) methods, capable of autonomously learning feature representations from raw inputs
without domain expertise [9], have garnered significant interest. However, these methods
are complex and time-consuming, presenting a significant barrier to their development
and practical application. Furthermore, conventional deep learning models face several
challenges when handling data for drug discovery methods: firstly, the data dimensions
become significantly large, and, secondly, there is a growing volume of data that must be
processed, thereby substantially increasing the computational power requirements.

Quantum computing (QC) and quantum machine learning (QML) theoretically offer
promising solutions to effectively address these challenges. Superposition and entangle-
ment, fundamental principles of quantum computers, are used to solve efficiently complex
mathematical problems. QC has the potential to speed up machine learning algorithms by
executing specific computations, such as matrix inversions and eigen decompositions, at a
significantly faster rate compared to classical counterparts [10]. The quantum superposition
principle enables more efficient processing of high-dimensional data using fewer quan-
tum computing resources, due to the exponential scaling of the Hilbert space, reducing
the critical computational power lack currently faced by DL. Nevertheless, research on
QML for predicting binding affinity is significantly lacking, requiring further development.
Therefore, this study proposes classical and hybrid quantum-—classical neural networks to
predict binding affinity, along with corresponding evaluation procedures. The objective is
twofold: first, how to combine classical and quantum methods for regression problems;
second, how to combine them for binding affinity prediction.

The primary contributions of this study are as follows:

e A classical 1D convolutional neural network (CNN) is proposed to extract protein
and ligands features effectively. This does not predicate prior knowledge of complex
structures and learn the characteristics of entities in parallel.

e A classical model is proposed to predict binding affinity.
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e Three quantum regression modules (Variational Quantum Regression—VQR) com-
bined effectively with the classical 1D CNN to predict binding affinity.
e Anintegrated framework for implementing and evaluating classical and QML models.

The rest of this paper is structured as follows: Section 2 presents related work and
provides some preliminary concepts about quantum computing. Section 3 describes the
development of classical and hybrid quantum-—classical models. Section 4 introduces the
experiment, conducted using classical and hybrid models, evaluation, and results. Finally,
Section 5 concludes the paper and outlines future research directions.

2. Related Work—Preliminaries

In this section, the research advancements related to deep learning in binding affinity
prediction and the achievements of quantum neural network algorithms in drug discovery
and other fields are presented.

2.1. Deep Learning in Prediction of Binding Affinity

Some advancements have been made in the application of DL methods to binding
affinity prediction tasks. These DL approaches are categorized based on two types of input
data forms: complex-based inputs and non-complex-based inputs [11]. Complex-based
inputs include data directly encoded from protein-ligand complex structures, such as
feature-embedded 3D grid representations and graph representations of complex. These
models are based on experimentally obtained protein-ligand complexes, which are gener-
ated in the laboratory and are inherently limited. Consequently, this fact leads to a restricted
scope for these models. Non-complex-based inputs refer to data derived from separated
protein and ligand information. These methods do not necessitate prior knowledge of
complex structures and learn the characteristics of entities in parallel.

In approaches based on complex-based inputs, Cang and Wei [12] introduced Topolog-
yNet, using the element-specific persistent homology (ESPH) method (representing 3D
complex geometry with 1D topological invariants) alongside deep CNNs to establish a
multichannel topological neural network for predicting protein-ligand binding affinities
and protein stability changes upon mutation. Stepniewska-Dziubinska et al. [13] designed
the Pafnucy, which encodes the input structure as a 3D grid with 19 features in each voxel,
employs 3D convolution to generate a feature map of the representation, and subsequently
uses dense layers to predict the binding affinity score. Wang et al. [14] developed Deep-
DTAF, which employs sequences and structural properties (such as secondary structure
elements—SSEs [15]) for protein inputs and Simplified Molecular Input Line Entry Sys-
tem (SMILES) [16] for ligand inputs. Additionally, for protein-binding pockets, it uses
discontinuous sequence and secondary structure elements (SSEs). These input features
are fed into embedding layers and dilated or traditional convolution layers, followed by
three fully connected layers for prediction. Wang et al. [17] introduced a 2D CNN model
(OnionNet-2) that employs protein-ligand complexes for training and employs rotation-free
residue-atom-specific contacts in multiple distance shells to characterize the protein-ligand
interactions. The cloud-based neural network structures PointNet and PointTransformer
were used in PointTransformer model [18] for predicting protein-ligand affinity.

On the contrary, non-complex-based input methods do not necessitate prior knowl-
edge of complex structures and have consequently been used in many studies. The first
model employing this approach was introduced by Oztiirk et al. [19]. This deep learning
model, named DeepDTA, uses two CNNs to learn representations from protein sequences
and ligand SMILES. Rezaei et al. [20] developed a CNN model named DeepAtom. The
central component of DeepAtom lies in the 3D shuffle group, consisting of stacked 3D
convolutional layers featuring small kernel sizes and strides. This configuration reduces
the parameter count while simultaneously enhancing model depth and complexity. Abbasi
et al. [21] developed the DeepCDA model, which combines CNN and LSTM (Long Short-
Term Memory) layers into a unified framework for encoding local and global temporal
patterns. The model takes as input the protein sequences and SMILES representations
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of compounds. A two-sided attention mechanism is employed to fuse the compound
and protein descriptors, followed by a Multilayer Perceptron (MLP) for predicting the
affinity. Nguyen et al. [22] introduced a model known as GraphDTA. In this approach,
drugs are encoded as graphs with a feature map and an adjacency matrix. These represen-
tations are processed by Graph Neural Networks (GNNSs), including Graph Convolutional
Networks (GCNs), Graph Attention Networks (GATs), and Graph Isomorphic Networks
(GINs). Meanwhile, proteins are represented using convolutional blocks, and two fully con-
nected layers are employed to predict drug—target affinity. FusionDTA [23] encodes drug
molecules as SMILES strings and proteins as word embeddings. The encoder layer employs
LSTM layers as fundamental building blocks. Intermediate carriers of drug molecules and
proteins are fed into the fusion layer, producing an output carrier representation indicative
of binding affinity. MFR-DTA [24] uses amino acid embedding and word embedding to
represent protein features. For drug features, it employs functional-connectivity finger-
prints (FCFPs) and GNN. The proposed BioMLP and BioCNN modules assist the model
in extracting individual features of sequence and SMILES elements, respectively. A fully
connected neural network is used to predict drug—target affinity. Jin et al. [25] proposed
CAPLA, a model comprising two 1D dilated CNNss for the protein and the ligand, respec-
tively, along with a 1D CNN for the binding pocket. The input representation for a protein
and pocket includes the amino acid sequences, the protein’s SSEs, and the physicochemical
properties of residues. Meanwhile, SMILES represents the input for the ligand. A cross-
attention mechanism to jointly extract features from protein-binding pockets and ligands
is used. Two fully connected layers and an output layer are employed for predicting
binding affinity. Zhu et al. [26] introduced DataDTA, a model that utilizes descriptors
of predicted pockets from the third part of application, sequences of proteins, alongside
low-dimensional molecular features, and SMILES of compounds, as input variables. The
molecular representation of compounds based on algebraic graph features is gathered
to complement the input information of targets. A dual-interaction aggregation neural
network strategy is implemented to facilitate the effective learning of multiscale interaction
features. Additionally, an MLP is employed for predicting affinity.

2.2. Quantum Neural Networks
2.2.1. General Field

Quantum neural networks (QNNSs) leverage qubits and gates for computation and
learning within quantum-computing environments. The earliest study on QML can be
traced back to 1995, when Kak [27] introduced the concept of quantum neural computation.
Following this, a plethora of researchers have proposed models based on QNNSs. Since
then, many QNN studies with theoretical features have been carried out [28-32], resulting
in a lack of implementation at the current stage of quantum devices.

In the Noisy Intermediate-Scale Quantum (NISQ) era [33], variational quantum algo-
rithms (VQAs) [34] have emerged as an important research direction, with QNN based
on variational quantum circuits garnering widespread notice. One of the earliest imple-
mentations of a QNN is presented in [35], namely a quantum perceptron. This quantum
algorithm introduces the binary perceptron, demonstrating an exponential advantage in
storage resources. Zhao et al. [36] proposed a QNN model based on a swap test, where
inputs, outputs, and weights between neurons are all quantum states. The corresponding
circuit was designed, and experiments were conducted. Cong et al. [37] introduced a
quantum convolutional neural network (QCNN) capable of processing classical image data
while yielding results close to classical convolutions, thereby significantly broadening the
scope of QNN applications. Pesah et al. [38] demonstrated that by constructing appropriate
quantum circuits, QNNs would not be afflicted by the barren plateaus that afflict classical
neural networks, thereby showcasing the potential advantages of QNNs. Zhao et al. [39]
introduced a hybrid quantum-—classical model and multilayer neural network, employing
the quantum component to compute neural network parameters, while the output can
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be fed into a classical computer. This model achieves a high degree of accuracy in image
classification tasks.

Recent mathematical analyses indicate that certain properties of an n-qubit system can
be efficiently learned by a quantum machine, while the necessary number of conventional
experiments to achieve the same task increases exponentially with n [40]. Moreover,
experimental confirmation of this assertion was provided by [41]. They proved that for
some tasks, the number of experiments needed to learn a desired property from physical
systems using a Quantum Recurrent Neural Network (QRNN) is exponential in n with
the conventional strategy, but only polynomial in n using the quantum-enhanced strategy.
Abbas et al. [42] provided numerical evidence demonstrating that a specific class of QNNs
can undergo faster training, indicating an advantage for QML. This was subsequently
verified on real quantum hardware. They showed that, with the use of a specific feature
map, QNNs can be more trainable than classical NNs, raising high expectations for their
future progress. Xiao et al. [43] presented a hybrid quantum-—classical machine learning
algorithm consisting of a classical Artificial Neural Network (ANN) and Parameterized
Quantum Circuit (PQC) for the classification of images. They demonstrated through
practical experimentation that quantum feature encoding and learning operations are
hardware-efficient, making them implementable in NISQ devices. The suggested QML
model maps the bucket signals into a classical neural network to reduce dimensionality. The
PQC performs the clustering of features with the same class label while separating those
with different labels. A linear classifier classifies the bucket signals into their respective
categories. Qu et al. [44] proposed a hybrid model for diagnosis. The system consists of
a pre-trained QCNN to efficiently extract features from medical images. QCNN consists
of a convolutional layer, and all others are classical. The features extracted from the
QCNN are subsequently combined with features from other modalities (such as blood test
results or breast cell slices) and used to train an efficient Variational Quantum Classifier for
intelligent diagnosis. The system achieved better accuracy than its classical counterpart.
Forestano et al. [45] proved that the quantum Graph Neural Networks (QGNNs) seem to
exhibit enhanced classifier performance over their classical GNN counterparts based on
the best test AUC scores on an increasing size and complexity dataset from high-energy
particle collisions at the CERN Large Hadron Collider (LHC). Despite this result, quantum
algorithms require more time to train than classical networks.

2.2.2. Drug Discovery

Li et al. [46] proposed a QNN called the quantum Quanvolutional Neural Network
(QuanNN) to classify binding pockets into one of three groups of proteins. The results
showed that the QuanNN + MLP (hybrid) model outperformed single-layer CNN + MLP
in terms of training and validation accuracy. In a study conducted by Li et al. [47], the
researchers employed a Quantum Generative Adversarial Neural Network (QGAN) with
a hybrid generator to identify novel drug molecules. The findings of the study suggest
that a classical GAN cannot effectively learn molecule distribution. However, the proposed
QGAN-HG, with merely 15 additional quantum gate parameters, exhibits significantly
enhanced effectiveness in learning molecular tasks. Sagingalieva et al. [48] proposed a
hybrid QNN for drug response prediction based on a combination of CNN, GNN, and deep
quantum neural layers. The CNN learns features of cancer cell lines, GNN learns features
of SMILES of drug and deep QNN predicts the drug response prediction. Compared to
the classical model, the hybrid model can learn with fewer samples. Domingo et al. [49]
proposed a hybrid quantum—classical 3D CNN for predicting protein-ligand binding
affinity, which mitigates the complexity (the number of training parameters) compared
to the classical 3D CNNs, while maintaining optimal prediction performance. Despite
the quantum advantage, this model falls under complex-based input methods, relying on
experimentally obtained protein-ligand complexes, thereby limiting its utility. Furthermore,
3D CNNs, compared to 1D CNNss, exhibit significantly higher complexity, demanding the
learning of millions of training parameters. This reality increases the cost and the duration
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of the training process. It is important to highlight that numerous algorithms have been
developed with a hybrid approach in the field of drug discovery, exploiting the advantages
of both classical and quantum systems [50].

Although QML has seen rapid development, there has been relatively limited research
conducted on quantum regression, with most studies focusing on quantum classification.
Moreover, to date, we have encountered only one study on predicting protein-ligand
binding affinity using a hybrid model, and its limitations were presented in the preceding
paragraph. Hence, it is crucial to develop a hybrid quantum-—classical model for predicting
binding affinity that is applicable in the current application environment.

2.3. Preliminaries

For a comprehensive understanding of QML, it is important to provide detailed descrip-
tions of qubits, quantum gates, quantum algorithms, and variational quantum algorithms.

QC is a rapidly developing field that exploits the principles of quantum mechanics.
Data are stored in qubits (|0) |1)), which are quantum equivalents of classical bits. A
logical quantum gate is a fundamental building block within a quantum circuit, similar to
classical logic gates, which operate on a small set of qubits. Programs or algorithms consist
of quantum gates. Examples of gates include the rotation gates RX, RY, and RZ, which
rotate the state vector by an angle around the x-axis, y-axis, and z-axis on the Bloch sphere,
respectively. Another example is the CNOT gate, which operates on two qubits. If the first
qubit is |1), then the state of the second qubit will be flipped (Table 1).

Table 1. Logical quantum gates.

Matrix

Notation

RX(8) RY(0) RZ(0) CNOT
) —1sin(§> cos(g —sin<9> {e—ig } 1000
%) cos(‘zz) sm(gz cos 33 0 el? § (15 § g
RX(0) RY(6) RZ(0) é

The quantum algorithm or quantum circuit is a circuit composed of numerous quan-
tum gates, defined by three fundamental stages (Figure 1a). The initial stage converts
classical data into quantum data, known as quantum embedding/encoding. The second
stage involves a series of quantum gates applied to the quantum data, leading to quantum
computation/evolution. Finally, measurements are performed to extract classical infor-
mation from the quantum system. Variational quantum circuit (VQC) or VQA or PQC
represents a class of hybrid quantum-—classical optimization algorithms, where a function
is assessed through quantum computation [34]. Subsequently, the parameters of this func-
tion are refined using classical optimization techniques (Figure 1b). VQC is a prominent
technique within QML. Hybrid models, which combine quantum and classical machine
learning methodologies, can process variational quantum circuits and derive the gradients
of all observations with respect to each parameter through automatic differentiation of the
circuit using a QNN.
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Figure 1. Architecture of (a) quantum algorithm/circuit; (b) variational quantum algorithm/
circuit—(U(x) is the quantum routine of encoding classical data x to the quantum state, V is the
quantum evolution, and V(0) is the variational circuit block with trainable parameters 8) [50].

3. Materials and Methods
3.1. Overall Framework

We introduced a hybrid quantum-—classical framework to predict binding affinities
between ligands and protein targets. In general, our approach involved initially the
implementation of an efficient classical model, followed by developing hybrid models,
wherein we substituted the classical prediction module with various quantum modules
and, finally, their assessment was held (Figure 2). The framework includes several stages,
including data collection and preparation, input encoding, model construction, and model
evaluation. In the initial stage, datasets comprising protein and ligand structures were
collected for model training and performance evaluation. In the second stage, input
encoding involved converting protein sequences and ligand structures (SMILES) into
digital matrices to prepare the input data for the models. Each model consists of three
modules: feature extraction, fusion, and prediction of binding affinity. For both proteins and
ligands, the feature extraction module includes a word embedding layer followed by five
1D dilated CNN layers. In the fusion module, the outputs from the two feature extraction
modules are concatenated and inputted into the subsequent module. The prediction
module was implemented in two ways: first, using classical method, and second, using
quantum approaches. Three classic modules were implemented, each comprising three
fully connected layers of varying complexity. Additionally, five distinct quantum modules
were developed, based on different quantum embedding approaches: amplitude, angle,
and dense angle. Three of them used 8 qubits, while two used 4 qubits. In the fourth stage,
we evaluated the predictive performance of the models using test datasets.

3.2. Datasets

We trained and evaluated classical and hybrid models on the PDBbind dataset follow-
ing the methodology outlined in [13,14]. The PDBbind database [51] contains experimen-
tally verified protein-ligand binding affinities, typically expressed as —logKi and —logKd,
sourced from the Protein Data Bank [52]. Three datasets of the 2016 version of the PDBbind
database and two supplementary test datasets (Test105 and Test71) sourced from the PDB
were used in this study. A statistical summary of the datasets is presented in Table 2.
The general, the refined set, and the core 2016 have 13,283, 4057, and 290 protein-ligand
complexes, respectively. The collection of the PDBbind core set aims to offer a relatively
small yet high-quality collection of protein-ligand complexes for validating docking and
scoring methods. To ensure no data overlap, the PDBbind 2016 datasets underwent the
same preprocessing steps as in the prior studies [13,14]. The refined set (4057 protein-ligand
complexes) was subtracted from the general set (13,283 protein-ligand complexes), and
the 290 protein-ligand complexes in the core 2016 set were excluded from the refined set.
Moreover, to ensure a convenient model comparison, 82 protein-ligand complexes were
excluded from the refined set, along with 5 protein-ligand complexes from the general set.
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Hence, the final numbers of protein-target pairs were 9221, 3685, and 290 in the general set,
refined set, and core 2016 set, respectively. Subsequently, 1000 protein—target complexes
were randomly chosen from the refined set to form the validation set. The remaining
protein—target pairs in the refined set, along with the entire general set, were combined
and used as the training set. The complete core 2016 set was employed as the test dataset.
Additionally, two supplementary test datasets were used in this study as in [14]. The
first of these datasets, termed Test105, comprised 105 protein-ligand complexes. For each
protein sequence, the Smith-Waterman similarity was ensured to be at most 60% compared
to any sequence in the training set. The other test dataset, named Test71, consisted of
71 protein-ligand pairs. For each sequence, the sequence identity was kept below 35%
compared to the sequences in the training dataset.

Table 2. Statistical summary of the datasets.

Dataset Source Protein-Ligand Complexes Samples

Original Final Training Validation Test

General [51] PDBbind 13,283 9221 9221 0 0

Refined [51] PDBbind 4057 3685 2685 1000 0
Core 2016 [51] PDBbind 290 290 0 0 290
Test105 [14] PDB 105 105 0 0 105
Test71 [14] PDB 71 71 0 0 71
Total 17,806 13,372 11,906 1000 466

We extracted the protein sequences from the protein PDB files of the datasets while
gathering the SMILES strings from the ligand SDF files. Furthermore, because the lengths
of SMILES and protein sequence strings vary, it is essential to enforce fixed lengths to
produce an effective representation. The fixed lengths for protein sequences and SMILES
strings were determined based on the distributions illustrated in Figure 3.

The total samples from all sets are 13,372 (11,906 + 1000 + 466). In many studies,
the character length of SMILES strings and protein sequences is required to collectively
represent at least 90% of the dataset for efficient models [14,19]. The maximum length
of protein sequence is 4720 and the minimum length is 24. To cover approximately 90%
of the proteins, we choose 1000 as a fixed length of protein sequence. Respectively, the
maximum length of SMILES strings is 472 and the minimum is 6. To cover approximately
90% of the ligands, we choose 160 as a fixed length of SMILES string. Longer protein
sequences and SMILES strings were truncated, and shorter protein sequences and SMILES
strings were padded with zeros to the fixed lengths. Figure 4 shows the binding affinity
distribution, which follows a normal distribution with values ranging from a minimum of
0.4 to a maximum of 15.22.

3.3. Input Representation

All models in this study contain two inputs, as shown in Figure 2: the input represen-
tations of proteins and ligands. For the ligand representations, we used the widely used
1D chemical structure, the SMILES [16], which encodes information about atoms, bonds,
rings, and other molecular features. Specifically, the SMILES strings of compounds are
composed of 64 characters (Supplementary Table S1). The input representation of a protein
consists of amino acid sequence, which is a 1D structure. Protein sequences generally com-
prise 20 distinct kinds of amino acids. However, some proteins may contain non-standard
residues. In such cases, we treat these non-standard residues with yet another kind of
unknown amino acid. Hence, the total character sets for protein sequence representation
are 21 (Supplementary Table S2).



Mathematics 2024, 12, 2372 9 of 24
|
! N
| -
! ~
1 { .(T -
5 LR
c 1
- E Protein input (Sequence) Ligand input (SMILES)
: MLPGLALLL..... KWDSDPSGTK C(NCC1CC1)c1c(C)clnnc(ol)C
""" T O S
I
: Input Embedding Input Embedding
I
I
: l 1000x 128 l 160 x 128
= E 1D Dilated Convolution Layer 1D Dilated Convolution Layer
-28 | Dilated size = 1 Dilated size = 1
! v v
§ 1D Dilated Convolution Layer 1D Dilated Convolution Layer
‘g : Dilated size =2 Dilated size = 2
S v v
>
% | 1D Dilated Convolution Layer 1D Dilated Convolution Layer
S5 ) Dilated size = 4 Dilated size = 4
s v v
= 1D Dilated Convolution Layer 1D Dilated Convolution Layer
X Dilated size = 18 Dilated size = 18
; v v
: 1D Dilated Convolution Layer 1D Dilated Convolution Layer
: Dilated size = 16 Dilated size = 16
! v v
|
: 1D AdaptiveMaxPool 1D AdaptiveMaxPool
I
_____ D o i e e et e i e B e i
co! lus 1128
23! Concatenate
Z 3
..... }
i I 256
2 | l ’ l I }
= 1
< ! X
§: FC : 12345678 123415678 1234!5678
z Psaamne 10 LLUTETT 0 DLLIELEE  THEEL T
= 1
E = FC : ;E Amplitude Angle Dense Angle
;, '3 l T ' g Q. Embedding Q. Emfedding Q. Embedding
= > [ v v
2 '3 FC ' & Quantum Quantum Quantum
T '3 l 1 ' B Evolution Evolution Evolution
S 3 i ppr— :
g v | O  Measurement Measurement Measurement
g o '
< | ; I ¥ ¥

Figure 2. Overall framework architecture.




Mathematics 2024, 12, 2372

10 of 24

We used integer/label encoding, which employs integers to represent the categories
of ligands and proteins in their inputs. Previous published works have demonstrated the
effectiveness of this approach [14,23]. The integer encoding for SMILES is represented
as follows, XP = {x? ,x%’ P x?eo} € RYp, where Vp is the vocabulary sizes in the
format of SMILES. The integer encoding for protein sequence is represented as follows,
X5 ={x3,x5,... x3y00} € RYS, where V; is the vocabulary sizes in the format of amino
acids of protein.

6000
5000 80001
4000
6000
8 3
2 8
E 3000 4 g
# 4000
2000
2000
1000 4
o 0 - . -
o 1% 200 200 400 0 1000 2000 3000 4000
Length of the ligand's SMILES Length of the protein's Sequences
(a) (b)

Figure 3. Distribution of lengths for (a) ligand SMILES; and(b) proteins sequences; from all datasets.

4000 A

Samples

4 6 8 10 12 14
Binding affinity [—logKd/Ki]

Figure 4. Distribution of binding affinity from all data.

3.4. Architecture of the Models

All models consist of an input layer, a feature extraction module, a fusion module,
and a prediction module. The architecture of the models is depicted in Figure 2. The
model input is detailed in the preceding Section 3.3. The feature extraction module and the
prediction module are detailed as follows.

3.4.1. Feature Extraction Module

As illustrated in Figure 2, the feature extraction module includes two components: pro-
tein feature extraction and ligand feature extraction. Both parts follow the same structure,
an embedding layer and five dilated convolution layers.

Embedding layer: At the embedding level, we used the word embedding technique
commonly used in natural language processing (NLP) problems. That represents charac-
ters/words as dense vectors of real numbers in a continuous vector space. The size of each
embedding vector chosen for embedding the SMILES protein sequences and ligands is 128.
Hence, we obtain embedding matrices of sizes 1000 x 128 and 160 x 128 for each protein
and ligand, respectively.
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One-dimensional dilated CNN: Dilated convolution has been shown to be an effective
technique for capturing large-scale multiscale intramolecular interactions in protein and
ligand sequences, respectively [14,25,26]. The protein and ligand feature extraction parts
contain five dilated convolution layers with a kernel size of 3, and 1, 2, 4, 8 and 16 dilation
rates, respectively. Subsequently, the five dilated convolution layers are followed by an
adaptive pooling layer. The output of each part is a vector of size 128.

3.4.2. Fusion Module

The outputs of protein and ligand feature extraction components are concatenated
to create a vector of size 256. This vector serves as the input for both the classical and
quantum modules.

3.4.3. Classical Prediction Module

In the classical approach, the prediction module consists of three fully connected (FC)
linear layers. The final layer outputs the predicted binding affinity. Three classic modules
of varying complexity were implemented. (256, 512, 256, 1), (256, 128, 64, 1) and (256, 16,
8, 1) are the parameters of layers of the three modules, respectively.

3.4.4. Quantum Prediction Module

We selected the VQR approach with 4 and 8 qubits to predict the binding affinity. Five
quantum prediction modules were implemented based on different quantum embedding
approaches. Two of them are based on angle quantum encoding, two on dense angle quan-
tum encoding, and one on amplitude quantum encoding. To create quantum prediction
modules analogous to classical ones, we used three layers of repeating quantum gates.
These layers constitute the evolution part, as illustrated in Figure 5. Each layer consists
of three single qubit rotations (RZ, RY, RZ) and entanglers (CNOT). In the measurement
part, all qubits except the first apply a CNOT operation to the first qubit. Finally, we
used the expectation value of the Pauli Z gate on the first qubit to measure the predicted
binding affinity.
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Measurement
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Figure 5. Prediction module (VQR) with angle embedding.

Angle Embedding: In angle encoding, represented by Equation (1), also referred to
as qubit encoding or tensor product encoding, a single rotation R(x;) is applied for each
feature x;, where R—can be one of RX, RY, or RZ gate, which encodes a vector x € RN into
the rotation angles of n qubits, where N < n

|x) = @ R(x;)|0Y), )

where x; is the ith feature of x, and R can be one of RX, RY, or RZ gate.
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Angle encoding uses n qubits with a quantum circuit of constant depth, making it
suitable for NISQ computers. Commonly used quantum neural network architectures
typically use angle encoding [36,39,42—44]. In our module, encoding 256 features requires
256 qubits. However, encoding 256 features with this approach poses challenges for today’s
quantum engineers for two main reasons: (a) this qubit count exceeds the capacity of
fault-tolerant quantum simulators or readily accessible hardware, and (b) the noise-free
barren plateau problem [53] significantly impacts this area, making it impossible to train
the model. Instead, we drew inspiration from the data re-uploading method introduced
in [54] and further developed in [55]. We used 8 qubits and created 32 blocks to encode
256 (8 x 32) features. The first eight features {xi}?zl are encoded on the first block, the
second eight features {xi}}gg are encoded on the second block, and so on. Each block
consists of angle encoding of 8 features and 3 evolution layers. In this module, we used the
RX rotation gate for angle embedding. The prediction module with angle embedding is
presented in Figure 5.

Dense Angle Embedding: In dense angle encoding, rather than applying a single
rotation R(x;) for each feature x;, two features are encoded on the same qubit using a
combined rotation, as represented by Equation (2).

x) = @N2R, (x2:-1) Ry (x21)[0N), (2)

where x,; is the 2ith feature of x, x,;_1 is the 2i — 1th feature of x, and R, and R; can be
one of RX, RY, or RZ. The number of qubits (1) is halved compared to the number of
features (N) [56]. In the dense angle approach, we relied on the data re-uploading method,
such as angle encoding. We used 8 qubits and generated 16 blocks to encode 256 features
(8 x 16 x 2), with each qubit encoding 2 features. Each block consists of angle encoding
of 8 features and 3 evolution layers. In this module, we used the RX and RY rotation
gates for quantum embedding. Supplementary Figure S1 presents the prediction module
incorporating dense angle embedding.

Amplitude Embedding: The amplitude encoding of a vector x € RY is represented by
Equation (3).

xili), 3)

B
I
=
=

[
—

2

where x; is the ith feature of x, |i) is the ith computational basis state, and || x ||, is the
2-norm of x. In amplitude embedding, a quantum state comprising n = log, N qubits can
represent a data point with N features. Quantum amplitude prediction module encoded the
256 features using 8 qubits. The prediction module with amplitude embedding is presented
in Supplementary Figures S2 and S3.

3.5. Evaluation Metrics

In this study, six performance metrics were employed to evaluate and compare the
predictive performance of classical and hybrid models. These metrics included the Con-
cordance Index (CI), Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Pearson correlation coefficient (R), and Standard Deviation (SD)
in regression.

CI, represented by Equation (4), is derived from the probability between the predicted
values and the actual values for two randomly selected protein-ligand complexes in a
specified order. It serves to evaluate the model’s degree of fit. The CI value ranges from
0 to 1, with higher values indicating better prediction performance.

1
Cl== ) h(pi—ps) (4)

f,'>t]‘

where p; is the predicted value for the larger actual binding affinity value ¢; and p; is the
predicted value for the smaller actual affinity value ¢;. The normalization constant Z is
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the total number of protein-ligand complexes, and the step function h(x) is defined as

in Equation (5).
1 x>0
h(x) = ¢ 0.5 x=0, )

0 x <0

The MSE, represented by Equation (6), value evaluates the prediction accuracy of the
model, representing the difference between the predicted values and the actual values.
Lower MSE values indicate a better-performing model. MSE is differentiable, implying the
existence of a derivative at every point, enabling it to be used as a loss function.

e,
MSE_E;(t, pi), (6)

where 7 is the number of protein-ligand complexes, t; refers to the actual binding affinity
of the sample indexed with i, and p; refers to the predicted binding affinity of the sample
indexed with i. RMSE is the square root of MSE and is also used as loss function.

The MAE, represented by Equation (7), is calculated as the sum of all the differences
between the actual and predicted values divided by the total number of samples in the
dataset. In other words MAE is the absolute average distance of model prediction. Lower
MAE values indicate a better-performing model. This metric is also used as the metric of
prediction error and is calculated as follows:

1 n
MAE:EZ|ti—pi|, 7)
i=1

where 7 is the number of protein-ligand complexes, t; refers to the actual binding affinity
of the sample indexed with i, and p; refers to the predicted binding affinity of the sample
indexed with i.

The Pearson correlation coefficient, represented by Equation (8), is a measure that
calculates the linear correlation between the predicted value p; and the actual value ;.

Yy (i —1)(pi —P)

= — (8)
Y (=) VEL (P =)

where 7 is the number of protein-ligand complexes, t; refers to the actual binding affinity of
the sample indexed with i, p; refers to the predicted binding affinity of the sample indexed
with 7, f refers to the mean of the actual binding affinity of n samples, and p refers to the
mean of the predicted binding affinity of n samples. The range of R values is between —1
and +1. A value of +1 indicates perfect positive correlation between actual and predicted
values, while —1 indicates perfect negative correlation. A value of 0 indicates no correlation
between the experimental and predicted values.

The SD in regression quantifies the degree of imprecision [57] and is determined as
in Equation (9).

SD= |1 Y[t~ (axpi + D), ©)
n—14

where 7 is the number of protein-ligand complexes, t; and p; are the actual and predicted
binding affinities of the sample 7, respectively. a2 and b are slope and intercept of the function
line between actual and predicted values.

4. Experiment—Results

For the experiment, we followed the framework depicted in Figure 2. Initially, we
deployed various classical models using PyTorch [58] for predicting binding affinity and
subsequently assessed their performance to identify the most effective one, aiming to choose
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Min-Max Normalization

the optimal feature extraction module. Then, we developed hybrid quantum-—classical
models using PennyLane [59], wherein the classical prediction module was replaced with
quantum. Following this, an evaluation was conducted. For training, validation, and
testing all models, we used the respective datasets outlined in Section 3.2. All machine
learning was carried out in a quantum simulator. The specifications of the machine used
for conducting the experiments and the versions of the packages employed are detailed in
Supplementary Table S3.

4.1. Normalization in Regression Prediction Module

As discussed in Section 3.4.4, for evaluating the output of the quantum prediction
module, we used the expectation value of the Pauli Z gate, which yields potential output
values within the range of [-1, +1]. On the other hand, as mentioned in Section 3.2, the
binding affinity values fall within the interval [0.4, 15.22]. Therefore, preprocessing to
normalize the output variable within the interval [—1, +1] is required to ensure proper
training of the quantum regression module. Since binding affinity values are positive,
normalization to the interval [0, 1] is selected. In conclusion, to compare a quantum
regression module with any classical counterpart, it is imperative that the prediction values
be normalized to the output range of the quantum regression module.

Figure 6 illustrates three different normalization techniques using the scikit-learn [60]
package’s MinMaxScaler, StandardScaler, and RobustScaler. These functions were executed
using the following parameters: MinMaxScaler (feature_range = (0, 1)), StandardScaler
(with_mean = False, with_std = True), and RobustScaler (quantile_range = (25.0, 75.0)).
MinMaxScaler scaled and transformed the output values to be between zero and one.
StandardScaler transformed the output values to have a standard deviation of one. Ro-
bustScaler scaled the output values according to the quantile range between the 1st quartile
(25th percentile) and the 3rd quartile (75th percentile). MinMaxScaler normalized the
values to the range [0, 1], while StandardScaler and RobustScaler normalized the values to
the range [0.2, 8.0] and [—2.2, 3.2], respectively. Therefore, the MinMaxScaler function was
employed in our experiment.

Standard Normalization Robust Normalization
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Figure 6. MinMax, standard, and robust normalization.

4.2. Model Training

In all classical models, both convolutional and FC layers included the rectified linear
unit (ReLU) activation function, as defined by the formula presented in Equation (10).

x, x>0
R(x) = {0 Y (10)

In the hybrid model, the last ReLU activation function in the feature extraction module
was replaced by the Sigmoid activation function. The sigmoid function, represented by
Equation (11), maps the incoming inputs to a range between 0 and 1
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1
Cl4e

The output in a range of 0 to 1 is multiplied by 7 so that the input to the quantum
regression module falls within a range of 0 to 7. The crucial factor was the selection of the
RX gate for the initial gate in angle and dense embedding. The RX gate returns distinct
values when the rotation angle falls within the interval 0 to 7, while it can yield identical
values for different inputs within a more extended interval.

Additionally, to minimize the loss function, we optimized the model parameters using
the AdamW optimizer [61] with a maximum learning rate of 0.0001. We employed a weight
decay of 0.01 to update the model’s weights. We used the MSE loss function, which creates
a criterion to measure the mean squared error, thereby minimizing the difference between
the actual and prediction value during training. To optimize the parameters and define our
model, we used a batch size of 256 and trained for 30 epochs. Subsequently, we selected
the model with the lowest error on the validation set. The parameters for all experiments
are listed in Supplementary Table S4.

R(x) (1)

4.3. Choose Classical Feature Extraction Module

The initial objective was to select the classical feature extraction module with the
highest efficiency. We compared the feature extraction performance of five classical models,
as described in Section 3.4.1. These five models (C1-DTA, C2-DTA, C3-DTA, C4-DTA, C5-
DTA) were developed using varying numbers of 1D dilated convolution layers—ranging
from one to five layers—and dilation sizes of 1, 2, 4, 8, and 16, respectively.

The model’s accuracy is represented by CI, R, MSE, SD, MAE, and RSME in the
validation dataset. According to the comparison results presented in Figure 7, we conclude
that the model (C5-DTA) using five dilated convolution layers and dilation sizes of 1, 2, 4,
8, and 16, respectively, in the feature extraction module exhibits notable performance in
terms of all metrics for feature extractions. The C5-DTA model exhibits superior CI, R, and
lower MSE, RMSE, MAE, and SD values for the validation dataset. Examining the MSE
diagram, which also serves as the loss function, we observe that the C1-DTA model is not
learning in a stable and consistent manner.

While analyzing the training dataset evaluation (Supplementary Figure 54), although
C4-DTA outperformed the other models, we selected the model with the lowest error on
the validation dataset, which was C5-DTA. Hence, the feature extraction module of C5-DTA
was selected to proceed with the experiment.

4.4. Hybrid Quantum—Classical Models

Subsequently, we implemented five hybrid quantum-—classical models by substituting
the classical module of the prediction with a quantum. Meanwhile, we retained the classical
1D CNN:s (five 1D dilated convolution layers) for feature extractions, as assessed in the
previous experiment (Section 4.3). The only difference lies in the last activation function;
ReLU was replaced with sigmoid (Section 4.2). The primary distinction of the hybrid models
lies in the quantum embedding approach (Section 3.4.4). The three quantum embedding
approaches employed were amplitude (HQ-DTA-amQE-8), angle (HQ-DTA-anQE-8), and
dense angle (HQ-DTA-danQE-8), each using 8 qubits. Furthermore, considering the crucial
role of depth and number of gates in the quantum circuit, we introduced two additional
quantum prediction models using angle (HQ-DTA-anQE-4) and dense angle (HQ-DTA-
danQE-4) quantum embeddings, each employing 4 qubits. Notably, the implementation of
amplitude quantum embedding was blocked due to the limitation of 4 qubits.
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Figure 7. Evaluation metrics of C1-DTA, C2-DTA, C3-DTA, C4-DTA and C5-DTA in validation dataset.

4.5. Classical Models

The classical model C5-DTA and all quantum prediction modules differ significantly in
complexity, a contrast reflected in the quantity of trainable parameters they have (Table 3).
The classical prediction module of C5-DTA has hundreds of thousands of trainable parame-
ters (263,169), whereas the quantum modules of hybrid model have trainable parameters
from dozens to a few thousand (72 to 2304). For a more robust assessment of classical versus
quantum machine learning, we incorporated two extra classical prediction modules with
fewer parameters and three FC layers (Section 3.4.3). The C5-DTA-mc (256, 128, 64, 1) and
C5-DTA-Ic (256, 16, 8, 1) have 41,217 and 4256 trainable parameters, respectively. Despite
its higher complexity, the second module approaches the complexity level of quantum
prediction modules.

Table 3. Trainable parameters of classical and quantum prediction modules.

Model

Layers Qubits

Quantum Formula of Trainable Parameters Trainable Parameters of
Embedding of Prediction Module Prediction Module

C5-DTA

C5-DTA-mc

C5-DTA-Ic

HQ-DTA-amQE-8
HQ-DTA-anQE-8
HQ-DTA-danQE-8
HQ-DTA-anQE-4
HQ-DTA-danQE-4

(256 x 512 + 512) +

256, 512, 256, 1 (in_1 x out_1 + x out_1) + (512 x 256 + 256) +

(in_2 x out_2 + x out_2) + (256 x 1+ 1) =263,169
(in_3 x out_3 + x out_3) (256 x 128 +128) +

256,128, 64,1 (128 x 64 + 64) +

(64 x 1+1)=41,217
(256 x 16 + 16) +

256,16, 8, 1 (16 x 8 + 8) +

(8 x 1+1)=4256
Amplitude layers x qubits X rotation 3x8x3=72
Angle 32 x 3 x8x3=2304
Dense Angle blocks x layers x qubits x 16 x 3 x 8 x 3=1152
Angle rotation 64 x 3 x 4 x 3=2304
Dense Angle 32 x3x4x3=1152

= ¥ 00 0o
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4.6. Complexity

Table 3 lists the training parameters for the classical and quantum regression prediction
modules.

All modules maintain consistency in the number of layers, set at three. The in_x and
out_x represent the input and output features, respectively, of layer x, where x ranges
from 1 to 3. The qubit rotations involve three parameters: the rotation angles w, 6 and
¢ (Figure 5). The variable “blocks” denotes the number of blocks required to encode
256 features, 32 for angle encoding and 16 for dense angle encoding for the circuit with
8 qubits and 64 for angle encoding and 32 for dense angle encoding for the circuit with
4 qubits.

For the classical models, there exists a parameter scaling ranging from high (C5-DTA)
and medium (C5-DTA-mc) to low (C5-DTA-Iw) with 263,169, 41,217, and 4256 trainable
parameters, respectively. C5-DTA-Iw can be regarded as comparable in complexity to
quantum modules. The HQ-DTA-anQE-8 and HQ-DTA-anQE-4 have identical parameter
counts (2304), surpassing the other quantum modules in parameters, while HQ-DTA-
danQE-8 and HQ-DTA-danQE-4 have half that number (1152). Finally, HQ-DTA-amQE-8
has the fewest parameters (72).

4.7. Gates and Depth of Quantum Modules

The analysis of the quantum regression prediction module, considering the number
of gates and circuit depth, is detailed in Table 4. This enables conclusions to be drawn
regarding the performance of models.

Table 4. Gates and circuit depth of quantum regression prediction modules (red color: quantum
embedding, green color: evolution, blue color: measurement).

Model Blocks Layers RX RY RZ CNOT Total Gates Depth
HQ-DTA-amQE-8 1 3 255 + 24 255+24 x2 508+24+7 1121 10(14 ]+ +(§4:+1?) 42 3)
HQ-DTA-anQE-8 32 3 256 24 x 32 2x24x32 24x32+7 3335 33 :2(2;1; 31}(}9‘?
HQ-DTA-danQE-8 16 3 128 128+24x 16 2x24x16 24x16+7 1799 16 i ig-fz;:536;< 3)
HQ-DTA-anQE-4 64 3 256 12 x 64 2x12x64  12x64+7 3335 6;1 24(127+:31>2<2:3%)
HQ-DTA-danQE-4 32 3 128 128+12x 32 2 x 12x32 12x32+7 1799 32 z §2+_£172=+734;< 3)

As anticipated, quantum modules with identical encoding exhibit the same number of
gates. The module based on angle quantum embedding has the highest count (3335), while
the one based on dense angle possesses about half (1799), and the amplitude-based module
has the fewest (1121). This is due to the fact that in angle embedding, one qubit encodes one
feature, whereas in dense embedding, it encodes two features. When considering depth, the
situation is reversed for angle and dense angle embedding. In amplitude embedding, the
majority of gates and the greatest depth are associated with encoding rather than evolution.

4.8. Evaluation on Training and Validation Datasets

We evaluated the classical models (C5-DTA, C5-DTA-mc, C5-DTA-Ic) and the hybrid
models (HQ-DTA-amQE-8, HQ-DTA-anQE-8, HQ-DTA-danQE-8, HQ-DTA-anQE-4, HQ-
DTA-danQE-4). Figure 8 illustrates the evolution of the loss function (MSE) throughout the
training process for both the training and validation datasets.
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Figure 8. MSE loss function for classical (C5-DTA, C5-DTA-mc, C5-DTA-Ic) and hybrid (HQ-DTA-
amQE-8, HQ-DTA-anQE-8, HQ-DTA-danQE-8, HQ-DTA-anQE-4, HQ-DTA-danQE-4) models on
training and validation datasets.

We observe that the MSE loss function of hybrid HQ-DTA-danQE-4 outperforms all
the other models on the training dataset, while the equivalent in complexity, the classical
model (C5-DTA-Ic), exhibits volatile behavior. In the validation dataset, used for selecting
the optimal hyperparameters of the model, the classical C5-DTA shows that it slightly
outperforms the other models, whereas the C5-DTA-Ic consistently exhibits the poorest
performance. The MSE values show a greater deviation in the training dataset compared to
the validation dataset.

From the experimental findings presented in Figure 9, it can be concluded that the
C5-DTA model exhibits superior CI, R, and lower MSE, RMSE, MAE, and SD values for the
validation dataset. This is due to its substantial number of trainable parameters (263,169). It
is closely followed by the hybrid HQ-DTA-danQE-4 with 1152 trainable parameters, which
demonstrates speed learning in terms of epochs and faster stabilization compared to the
other models. Hybrid models based on angle and dense angle quantum embedding perform
better than C5-DTA-mc, with the latter having 1689% and 3478% more trainable parameters,
respectively. In the penultimate position is the hybrid HQ-DTA-amQE-8, with the quantum
equivalent C5-DTA-Ic ranking last. Therefore, comparing classical and quantum models
with approximately the same complexity (in terms of the number of trainable parameters),
we conclude that quantum models significantly outperform classical ones.

Among the hybrid models, the one based on dense angle quantum embedding exhibits
superiority in speed learning and faster stabilization in comparison. This suggests that the
dense angle quantum embedding is well suited for regression prediction tasks followed
by angle embedding. Finally, we recommend avoiding the use of amplitude embedding.
One of the primary advantages of dense angle embedding is its ability to be executed in
constant time with parallelism; each qubit goes through two rotation gates simultaneously.
Quantum systems are liable to errors arising from noise and decoherence. Table 4 reveals
that the quantum circuit employing dense angle (HQ-DTA-danQE-8, HQ-DTA-danQE-
4) embedding exhibits the shallowest depth and the fewest gates. Additionally, these
models have the smallest number of trainable parameters (Table 3), excluding HQ-DTA-
amQE-8. This configuration decreases the probability of error accumulation, enhancing the
reliability of the circuits. Moreover, shallow circuits like HQ-DTA-danQE-4 become more
cost-effective for NISQ devices, which face challenges related to scalability and coherence
time and for quantum simulators, which integrate few qubits.

The HQ-DTA-danQE-4 outperforms all other models across all metrics on the training
dataset (Supplementary Figure S5), followed by C5-DTA, while the classical analogue in
complexity (C5-DTA-Ic) has the lowest performance.
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Figure 9. Metrics for classical (C5-DTA, C5-DTA-mc, C5-DTA-Ic) and hybrid (HQ-DTA-amQE-
8, HQ-DTA-anQE-8, HQ-DTA-danQE-8, HQ-DTA-anQE-4, HQ-DTA-danQE-4) models on valida-
tion dataset.
4.9. Evaluation on Test Datasets
Comparisons of the Core 2016 test dataset, as well as the independent Test105 and
Test71 datasets, are presented in Table 5, Table 6, and Table 7, respectively.
Table 5. Metrics for core 2016 dataset (bold is the best value, | lower value is better, 1 higher value
is better).
Parameters of
Model Prediction MSE () RMSE ({) MAE (}) R®) CI(1) SD ()
Module
C5-DTA 263,169 0.0092 0.0963 0.0790 0.7605 0.7792 0.0954
C5-DTA-mc 41,217 0.0119 0.1094 0.0882 0.6995 0.7532 0.1049
C5-DTA-Ic 4256 0.0301 0.1737 0.1420 0.5927 0.7088 0.1183
HQ-DTA-amQE-8 72 0.0130 0.1138 0.0917 0.6511 0.7298 0.1115
HQ-DTA-anQE-8 2304 0.0105 0.1026 0.0822 0.7344 0.7690 0.0997
HQ-DTA-danQE-8 1152 0.0100 0.1003 0.0809 0.7367 0.7690 0.0992
HQ-DTA-anQE-4 2304 0.0108 0.1043 0.0843 0.7291 0.7664 0.1005
HQ-DTA-danQE-4 1152 0.0090 0.0953 0.0781 0.7699 0.7829 0.0937

Hybrid HQ-DTA-danQE-4 exhibited the best performance on the test core PDBind
2016 than all models in all metrics. Particularly, HQ-DTA-danQE-4 demonstrates an
enhancement in terms of R, with a value of (0.7699). Quantum superiority is observed not
only in model complexity but also in accuracy. The classical C5-DTA model, which has
a substantial number of trainable parameters, ranked second with an R value of 0.7605,
followed by HQ-DTA-danQE-8 with an R value of 0.7367, HQ-DTA-anQE-8 with an R value
of 0.7344, the HQ-DTA-anQE-4 (0.7291), the C5-DTA-mc (0.6995), HQ-DTA-amQE (0.6511)
and, last, the C5-DTA-Ic (0.5927). The ranking of the models remains the same across
the remaining metrics. All hybrid models exceed the classical equivalent in complexity
(C5-DTA-I¢).
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Table 6. Metrics for Test105 dataset (bold is the best value, | lower value is better, T higher value
is better).

Parameters of

Model Prediction MSE (|) RMSE () MAE () R (1) CI (1) SD ()
Module

C5-DTA 263,169 0.0116 0.1077 0.0888 0.6075 0.7210 0.0957
C5-DTA-mc 41,217 0.0108 0.1041 0.0852 0.6092 0.7209 0.0955
C5-DTA-Ic 4256 0.0132 0.1151 0.0906 0.6077 0.7177 0.0957
HQ-DTA-amQE-8 72 0.0114 0.1068 0.0854 0.6168 0.7180 0.0949
HQ-DTA-anQE-8 2304 0.0106 0.1028 0.0851 0.6275 0.7219 0.0939
HQ-DTA-danQE-8 1152 0.0115 0.1073 0.0890 0.5838 0.7100 0.0978
HQ-DTA-anQE-4 2304 0.0109 0.1045 0.0870 0.5984 0.7172 0.0965
HQ-DTA-danQE-4 1152 0.0119 0.1092 0.0897 0.5999 0.7146 0.0964

First, it can be observed that all models achieve substantially worse values on met-
rics in Test105 compared to those in the PDBind core 2016 test set. In the independent
Test105, another hybrid model (HQ-DTA-anQE-8) exhibits the highest performance, show-
ing quantum superiority in terms of complexity, accuracy, and generalization. Specifically,
HQ-DTA-anQE-8 achieves R values of 0.6275, following the HQ-DTA-amQE with an R
value of 0.6168. The C5-DTA-mc ranked third with an R value of 0.6092, followed by
C5-DTA-Ic with an R value of 0.6077. We conclude that encoding a feature into a qubit
enhances generalization.

Table 7. Metrics for Test71 dataset (bold is the best value, | lower value is better, 1 higher value
is better).

Parameters of

Model Prediction MSE (}) RMSE (]) MAE () R (1) CI (D SD ()
Module

C5-DTA 263,169 0.0066 0.0813 0.0684 0.4869 0.6600 0.0801
C5-DTA-mc 41,217 0.0065 0.0810 0.0684 0.4796 0.6532 0.0805
C5-DTA-Ic 4256 0.0138 0.1178 0.0930 0.3625 0.6205 0.0855
HQ-DTA-amQE-8 72 0.0076 0.0874 0.0746 0.3984 0.6149 0.0842
HQ-DTA-anQE-8 2304 0.0066 0.0810 0.0676 0.4788 0.6544 0.0806
HQ-DTA-danQE-8 1152 0.0088 0.0938 0.0815 0.2900 0.5861 0.0878
HQ-DTA-anQE-4 2304 0.0062 0.0790 0.0653 0.5143 0.6694 0.0787
HQ-DTA-danQE-4 1152 0.0069 0.0831 0.0661 0.4678 0.6431 0.0811

First, it can be observed that all models achieve substantially worse values on metrics
in Test71 compared to those in the TEST105 test set. The HQ-DTA-anQE-4 outperforms all
other models across all metrics, followed by all other models.

These comparison results suggest that the hybrid models exhibit significantly superior
accuracy, complexity, and generalization capabilities compared to the classical counterpart
on various test datasets. In summary, the benchmark test dataset and the independent
source tests demonstrate the superiority of hybrid models over the classical counterpart
model in binding affinity prediction.

4.10. Execution Time

According to Table 8, it is evident that the classical models have the shortest execution
time for 30 epochs. While quantum prediction modules have fewer training parameters
compared to their classical counterparts, the greater execution time is a result of the
experimental environment, using a quantum simulator instead of a real quantum device.
Among the quantum modules, HQ-DTA-amQE-8 shows the fastest execution time, and
this is due to the minimal number of parameters that the model needs to learn and the
reduced gradient computations. The remaining hybrids follow in terms of execution time.
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Table 8. Execution time (training, validation, and testing).

Model Time Epoch of Best Model
C5-DTA 3:36:51.821851 28
C5-DTA-mc 3:37:51.861312 30
C5-DTA-Ic 3:38:16.859586 19
HQ-DTA-amQE-8 3:42:06.893518 27
HQ-DTA-anQE-8 5:19:17.879674 28
HQ-DTA-danQE-8 4:33:20.657034 22
HQ-DTA-anQE-4 4:37:57.012041 28
HQ-DTA-danQE-4 5:47:38.876147 18

5. Conclusions and Future Work

Accurately predicting the binding affinity of a drug candidate can help the design and
optimization of new molecules that bind to a target protein with better affinity (hit identifi-
cation and optimization) as well as identifying new uses for approved or investigational
drugs that are outside the scope of the original medical indication (drug repositioning).
The drug repositioning technique is a less expensive and time-consuming alternative to
traditional drug discovery methods. Recently, it has garnered significant interest from
researchers due to the availability of millions of existing molecules. Deep learning methods
provide promising results in this area, as they can simultaneously learn the features of
ligands and proteins and subsequently predict their binding affinity. Unfortunately, two
of the biggest challenges of deep learning approaches are their high complexity, as they
require learning millions of training parameters, and the long training time. QC and QML
theoretically offer promising solutions to effectively address these challenges.

This study proposes a hybrid quantum-classical framework to predict protein-ligand
binding affinity. Initially, CNNs are selected for extracting and learning the features of
ligands and proteins. Then, retaining the classical module for feature extraction, we imple-
ment various quantum and classical modules for binding affinity prediction, which accept
the concatenated features as input. Quantum predicted modules are implemented with
VQRs and are based on different quantum embedding approaches, while classical predicted
modules are implemented with fully connected layers with different input and output
parameters. The experimental results demonstrate that hybrid quantum-—classical machine
learning methods accelerate the training process in terms of epochs and achieve faster sta-
bilization. The hybrid models consistently achieve superior accuracy across all conducted
tests. Also, all the hybrid models significantly outperform the classical ones in accuracy
with approximately the same complexity. Furthermore, hybrid models demonstrate signifi-
cantly superior generalization capabilities compared to classical models. Among the hybrid
models, the one based on dense angle quantum embedding demonstrates superiority in
terms of speed of training and faster stabilization, whereas the use of amplitude embedding
is not recommended. Overall, the hybrid quantum-—classical models demonstrate quan-
tum superiority in terms of complexity, accuracy, and generalization, thereby indicating a
promising direction for QML.

Running quantum algorithms on a quantum simulator is a limitation. Future research
should reconfirm these findings by running quantum algorithms on real, available quantum
devices. However, the availability of many quantum simulators facilitates the implementa-
tion of quantum algorithms, while the long wait times and costs of running them on real
quantum computers pose a significant obstacle for researchers.

Future work will focus on implementing quantum convolutional networks for feature
extraction, as well as incorporating additional features for ligands (such as physicochemical
properties) and proteins (such as secondary structure elements).
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