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Abstract We advance in constructing a bottom-up holo-
graphic theory of linear meson Regge trajectories that gener-
alizes and unites into one logical framework various bottom-
up holographic approaches proposed in the past and scat-
tered in the literature. The starting point of the theory is a
quadratic in fields holographic five-dimensional action in
which the Poincaré invariance along the holographic coor-
dinate is violated in the most general way compatible with
the linear Regge behavior of the discrete spectrum in four
dimensions. It is further demonstrated how different Soft
Wall (SW) like holographic models existing in the literature
plus some new ones emerge from our general setup. Vari-
ous interrelations between the emerging models are studied.
These models include the known SW models with differ-
ent sign in the exponential background, the SW models with
certain generalized backgrounds, with modified metrics, and
No Wall models with 5D mass depending on the holographic
coordinate in a simple polynomial way. We argue that this
dependence allows to describe the effects caused by the main
non-local phenomena of strongly coupled 4D gauge theory,
the confinement and chiral symmetry breaking, in terms of
a local 5D dual field theory in the AdS space. We provide
a detailed comparison of our approach with the Light Front
holographic QCD, with the spectroscopic predictions of the
dual Veneziano like amplitudes, and with the experimental
Regge phenomenology. We apply our general approach to a
holographic study of confinement, chiral symmetry breaking,
and the pion form factor.
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1 Introduction

The modern bottom-up holographic QCD (AdS/QCD) repre-
sents a large set of phenomenological approaches inspired by
the gauge/gravity duality in string theory [1–3] and applies
the holographic methods developed for conformal field the-
ories to the case of real QCD. The holographic approach is
based on a conjecture that observables in strongly coupled
gauge theories, in the limit of a large number of colors, can
be determined from classical fields weakly coupled through
gravity in an Anti-de Sitter (AdS) space having one extra
dimension. The holographic approach to strong interactions
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includes also various top-down holographic models which
start from some brane construction within a string theory
and try to get a dual model useful for the QCD phenomenol-
ogy (see, e.g., [4–7]). A natural implementation of Regge
behavior in the hadron spectra and correct Operator Product
Expansion (OPE) of correlation functions in QCD, which is
in the focus of the present work, have still not been achieved
in the top-down approach, for this reason the top-down holo-
graphic models will not be discussed.

The first elements of AdS/QCD approach appeared in the
attempts to describe the glueball scattering and spectrum
using the methods of AdS/CFT correspondence [8–11]. Soon
after that the approach was finally formulated in [12–14]
and applied to description of spontaneous chiral symmetry
breaking and spectrum of light mesons. The incorporation
of Chern–Simons term allowed to describe baryons and the
physics related to the QCD chiral anomaly [15]. The overall
agreement of the bottom-up holographic approach with the
existing hadron phenomenology turned out to be surprisingly
good. This marked the birth of a new class of models describ-
ing the low-energy QCD and hadron spectra with an accuracy
comparable with old traditional approaches (effective field
theories, potential quark models, etc.). Since that time (2005)
a great number of various bottom-up holographic models for
strongly coupled QCD have been proposed and applied to
description of the hadron phenomenology. The number of
papers on this subject is enormous, among the most recent
developments one can mention the construction of various
new models partly describing the hadron spectrum [16–26],
hadron structure [27–35] including the deep inelastic scat-
tering [26,36–40], and a very large field of QCD thermody-
namics [41–52] in which even some elements of information
theory can be exploited (see, e.g., the recent Refs. [53,54]
and references therein). The important recent developments
also include holographic modeling of dense baryonic matter
for neutron stars (see the review [55]), holographic modeling
of hadronic light-by-light scattering for the muon anomalous
magnetic moment (reviewed in [56]), and some applications
of bottom-up holographic setup borrowed from the hadron
physics to other fields, such as the composite Higgs mod-
els [57] and the high-temperature superconductivity [58].
An interesting and quite fruitful branch of the AdS/QCD
approach is the Light-Front (LF) holographic QCD [59] in
which the holographic correspondence between the fields of
a dual 5-dimensional theory and those of the 4-dimensional
theory is realized at fixed light-front time.

Most of the aforementioned AdS/QCD models were built
on the base of the so-called Soft Wall (SW) holographic
model introduced in Refs. [60,61]. The mass scale c is incor-
porated into these models via the exponential scale factor
ecz

2
either in a 5D action of the dual theory [60] (and should

be then regarded as a part of Lagrangian) or in the 5D met-

ric of AdS5 space [61]. Here z is the fifth coordinate called
holographic which is interpreted as the inverse energy scale
(related to the quark–antiquark separation in the LF holo-
graphic QCD [59]). The given scale factor is often called
“dilaton background” or just “background” but it must be
emphasized that this is a slang (that will be used in the present
paper as well). This “background” should have a dynami-
cal origin, in particular, it was suggested to be a result of a
closed string tachyon condensation in the original paper [60].
We are not aware of any explicit realization of this proposal
but a bottom-up holographic model based on an open string
tachyon condensation (adopted in a simplified form from the
string theory) was constructed in Ref. [62] and worked out
further in Refs. [63–65]. Remarkably, the setup introduced in
[62] describes both the chiral symmetry breaking and asymp-
totically linear radial Regge trajectories.

The original SW model was designed to describe the phe-
nomenology of linear Regge trajectories in the large-Nc limit
of QCD [66,67] but it turned out successful in other areas
of hadron phenomenology, in many cases demonstrating an
intelligible interpolation between the low and high energy
sectors of QCD. The simplest SW holographic model can
be viewed as the most self-consistent way of rewriting the
infinite number of pole terms (expected in the large-Nc limit
of QCD [66,67]) with linear spectrum of masses squared,
in the pole representation of two-point Correlation Func-
tions (CFs), as some 5D gravitational model of free fields
[68,69]. Remarkably, the holographic recipe of Refs. [2,3]
for calculation of CFs follows in a natural way within such a
rewriting. This means, in particular, that the SW holographic
models are closely related with the planar QCD sum rules (in
a sense, they represent just 5D rewriting of those sum rules
[68]) which were widely used in the past to study the phe-
nomenology of linear radial trajectories in the meson sector
[70]. In descriptions of hadron electromagnetic form factors,
the holographic approach, especially the SW one, recovers
the old pre-QCD dual description with all its phenomeno-
logical successes [27]. But the holographic QCD is much
wider in scope – its strong advantage consists in the use of
Lagrangian formulation that enables more refined calcula-
tions and opens the door to many other applications.

A top-down derivation of SW like holographic models
from some brane construction in a string theory remains an
open problem. This problem, however, is purely theoreti-
cal and does not impede in building a rich holographic phe-
nomenology. It should be recalled that a similar situation
persists in non-perturbative QCD – there are various popular
phenomenological models for low-energy strong interactions
but no one of them has been derived from QCD. We believe
that the bottom-up holographic models will remain useful
and actively explored even if in future somebody proves
rigorously that the gauge/gravity duality cannot work for
non-conformal theories. Such a result would make outdated
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the holographic top-down approach and likely some bottom-
up models but the SW (and likely some elements of Hard
Wall) approach would survive because, as we mentioned
above, it became a useful language unifying into one logical
framework many elements of various old phenomenologi-
cal approaches (QCD sum rules in the large-Nc limit, light-
cone QCD, Regge physics, deep inelastic scattering, chi-
ral perturbation theory) and reproducing many results from
those approaches. For this reason, the further development
and accurate formulization of this 5D language for hadron
physics looks rewarding.

At present there is no systematics in the existing abun-
dance of various SW-like models. The numerous proposed
modifications of the SW holographic model are usually
aimed at improvement of phenomenological description in
some specific problem and the question how a proposed mod-
ification will work in other places often remains unaddressed.
For instance, many modifications suggested to improve
agreement with the experimental spectroscopy in some sec-
tor, in reality would lead to inadmissible analytical properties
of the corresponding correlation functions, if those functions
were calculated. One should not forget that the primary out-
come of the holographic approach is given by the CFs which
replace observables in the conformal field theories. The mass
spectrum represents a by-product. Using the known theorem
on the spectral decomposition of the Green functions (the
two-point CFs) one can bypass the calculation of a CF by
finding the discrete spectrum from the corresponding equa-
tion of motion, as is usually implemented in practice. But
this should not depreciate the importance of respecting the
correct analytical properties of underlying CF. This aspect
becomes especially problematic when non-linear corrections
to a Regge like spectrum are introduced, whether manually or
via a back-reaction of fields in dynamical AdS/QCD models.

The numerous practical applications show usually that the
approximation of a static dilaton background and of probe
limit (i.e., when the 5D metrics is not back-reacted nei-
ther by a dilaton background nor by the matter fields) is
more than enough for phenomenological purposes. Further-
more, we are not aware of any bottom-up holographic model
beyond this approximation or a top-down holographic model
for QCD that would reproduce correctly the analytical struc-
ture of OPE of correlation functions in QCD (i.e., the pertur-
bative logarithm plus power corrections). Nevertheless, the
construction of dynamical dilaton-gravity AdS/QCD mod-
els looks attracting theoretically. The study of such dynami-
cal models started in [62–64,71] and was followed by many
papers along this direction. In particular, one can fine-tune
the dilaton potential in such a way that a SW-like metric is
reproduced [62,64]. The dynamical AdS/QCD models are
more complicated than models with a static background and
may look more appealing theoretically. However, they are
not as successful in the QCD phenomenology, neither in

describing experimental data in hadron physics nor in repro-
ducing various old-known relations from other approaches
to strong interactions. It should be stressed that the bottom-
up AdS/QCD is a phenomenology-driven approach, so the
agreement with the known phenomenology should be in first
place in any judgement about “correctness” of a model.

From a conceptual viewpoint, the consistency of dynam-
ical holographic models with back-reaction is questionable
if the whole approach somehow follows from an underly-
ing string theory. Indeed, both the gravitational metric and
dilaton background are then determined by underlying string
dynamics, hence, the metric is back-reacted by dilaton (and
vice versa) indirectly, via this string dynamics, i.e., the given
back-reaction cannot be fully described just by a set of cou-
pled Einstein equations for the metric and dilaton. An instruc-
tive example of this point is given by an extensive analysis
of Refs. [62–65], where it was advocated that in exploring
improved holographic theories for QCD a seminal direction
is to think of the 5D bulk theory as a (non-critical) string
theory, not just gravity. It turns out that it is a gaussian
potential of scalar tachyon field that can give rise to a SW
like background. We see thus that the assumption that the
underlying string dynamics can be neglected in such a way
that some effective dynamical dilaton persists, as a matter
of fact, looks almost as poorly substantiated theoretically
as the assumption of effective static dilaton background. As
long as the underlying string dynamics is unknown, both the
dynamic and static dilaton background represent just work-
ing hypotheses for building bottom-up models. Only the phe-
nomenology can discriminate which hypothesis works bet-
ter, hence, is more “right”. To the best of our knowledge,
the most successful holographic model describing the Regge
physics, OPE of CFs, and hadron form-factors is the static
SW holographic model. There is no purely theoretical justi-
fication for this observation. In the pioneering paper [60], it
was assumed that it is a closed string tachyon condensation
that should lead to a static dilaton background. The form of
this background is dictated by the QCD phenomenology.

In the present paper, we develop a general theory of
bottom-up holographic models describing the linear Regge
and radial trajectories. The starting point of our theory will
be the most general quadratic in fields holographic 5D action
violating the Poincaré invariance along the holographic coor-
dinate z but which is compatible with the exactly linear Regge
behavior of the mass spectrum. After that we demonstrate
how various SW like holographic models existing in the lit-
erature plus some new ones emerge from our general setup
and study interrelations between the emerging models. We
make a detailed comparison of the standard SW holographic
approach with the LF holographic QCD, with the spectro-
scopic predictions of the dual Veneziano like amplitudes, and
with the experimental Regge phenomenology. The correct
analytical properties of CFs are guaranteed, the only trou-
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bling point appears in the case of vector correlation function,
where a unphysical massless pole arises in the general case.
We construct a renormalization recipe that allows to avoid
this problem and even, in a certain variant, to predict the
intercept of linear radial trajectory. The absence of massless
pole in the original SW model [60] turns out to be a par-
ticular case of this recipe which takes place for a particular
formulation of the model. We apply our general approach to
a holographic study of confinement, chiral symmetry break-
ing, and the pion form factor. We demonstrate, in particular,
that the exact vector meson dominance for the pion form
factor holds only in the case of the SW model with negative
exponential background e−|c|z2

, within other formulations,
all radially excited states contribute.

The bottom-up holographic theory that we develop in the
present paper encompasses and generalizes various ideas pro-
posed in the past and scattered in the literature. Such an
extensive analysis is performed for the first time since the
appearance of SW models in the pioneering paper [60]. The
original SW holographic model of Ref. [60] with the expo-
nential background e−|c|z2

was rapidly followed by numer-
ous extensions, including extensions with opposite sign of
exponential background, see the discussions and references
in Ref. [72]. It is interesting to remark in this regard that the
sign of c in the exponential background was opposite already
in the two pioneering papers [60,61].

An alternative to SW scenario for holographic descrip-
tion of linear Regge trajectories was proposed in Ref. [73].
The idea was to introduce an infrared (IR) correction to the
conformal dimension of operators, � → � + cz2, model-
ing the anomalous dimension. Using the holographic rela-
tion between the 5D mass m5 and �, this is tantamount
to introducing O(z2) and O(z4) IR modifications of m2

5 in
the holographic action. The O(z4) and O(z2) contributions
generate the slope and intercept of linear Regge trajectories,
correspondingly. An important advantage was that the given
approach could describe the linear Regge trajectories in light
baryons, while the usual SW model failed because the back-
ground can be factorized from the Dirac equation in the AdS
space. A very similar IR modification of m2

5 arises after a

special field redefinition absorbing the SW background ecz
2
,

this was first observed in Ref. [74] and coined the “No-wall”
holographic model. Some important aspects of interrelation
between the SW models with different sign of c in the SW
background ecz

2
were analyzed in Ref. [75]. The transition

from one form to the other was shown to be accompanied by
the appearance of z-dependent mass terms. Various effective
IR modifications of 5D mass also emerge or are introduced
in some other situations (see, e.g., the discussions and ref-
erences in Ref. [76]), for instance, in describing the higher
spin fields in the AdS space [59,77]. In an extensive study
of bottom-up holographic approach performed in Ref. [64],

the most general quadratic non-derivative term arising from
fluctuations of bulk fields was also a function of the fifth
coordinate that is tantamount to a z-dependent mass term.
Another one predecessor of our present paper is Ref. [78],
where it was shown how to introduce an arbitrary intercept
in the linear trajectories via a certain generalization of the
SW exponential background, the resulting model remains
closed-form solvable. Finally the present research was trig-
gered by our recent work [16] on a consistent holographic
renormalization of two-point correlators that leads to correct
low-energy predictions.

The paper is organized as follows. The SW model for arbi-
trary integer spin is recalled in Sect. 2. Our holographic the-
ory is introduced in Sect. 3. In Sect. 4, we derive a generalized
SW background for arbitrary integer spin. In Sect. 5, several
applications of our approach are considered. The obtained
results are used in Sect. 5.1 for analyzing some confinement
properties. The discussions on embedding the effects related
with the chiral symmetry breaking are given in Sect. 5.2. In
Sect. 5.3, we discuss in detail the two-point vector correlator.
The pion form factor is studied in Sect. 5.4. Various techni-
cal details are shifted to the Appendices A, B, and C. The
experimental phenomenology of linear Regge trajectories is
discussed in the Appendix D. The Appendix E is devoted
to a brief review of the spectroscopy of Veneziano like dual
amplitudes.

2 Some preliminaries

The action of SW model [60] for free 5D scalar fields is

S = 1

2

∫
d4x dz

√
g ecz

2
(
∂M�∂M� − m2

5�
2
)

. (2.1)

Here g = |detgMN | and a normalization constant for the 5D
fields VM will be omitted in what follows. The background
space represents the Poincaré patch of the AdS5 space with
the metric

gMNdx
MdxN = R2

z2 (ημνdx
μdxν − dz2), z > 0, (2.2)

where ημν = diag(1,−1,−1,−1), R denotes the radius of
AdS5 space, and z is the holographic coordinate. According
to the standard prescriptions of AdS/CFT correspondence
[2,3] the 5D mass m5 is determined by the behavior of 5D
fields near the UV boundary z = 0,

m2
5R

2 = �(� − 4), (2.3)

where � stands for the scaling dimension of a 4D operator
O(xμ) dual to the corresponding 5D field �(xμ, z). The term
“dual” means the identification [2,3] (exhaustive discussions
of this point are contained in Ref. [79]),

�(xμ, z)
∣∣
z→0 = z�O(xμ). (2.4)
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Sometimes one asks why should we use the AdS/CFT pre-
scription (2.3) in phenomenological bottom-up holographic
models? The matter is that (2.3) is a consequence of the
holographic identification (2.4) [79]. If we give the pre-
scription (2.3) up then an important connection with the
gauge/gravity correspondence would be lost and it would not
be clear why we call our models “holographic”. Also a devia-
tion from (2.3) results in a bad consequence for the two-point
correlation functions calculated using the AdS/CFT prescrip-
tions: The leading logarithmic behavior disappears. It should
be recalled that the logarithmic asymptotic of QCD correla-
tors emerges due to approximate scale invariance of strong
interactions at very high energies (the prescription (2.3) is
also rooted in the scale invariance). Consequently, if we want
to build a holographic model that interpolates QCD from low
to high energies, we must impose the relation (2.3), at least in
the UV limit z → 0. Some additional remarks on this issue
are given after a generalization of (2.3) to higher spins, the
relation (2.8).

The spectrum of 4D modes of the model (2.1) is discrete
and given by the relation (A.11) of Appendix A for spin
J = 0,

m2
n = 2|c|

(
2n + 1 +

√
4 + m2

5R
2 − c

|c|
)

,

n = 0, 1, 2, . . . . (2.5)

This spectrum has a Regge form due to the dilaton back-
ground ecz

2
in the 5D action (2.1).

The construction of SW action (2.1) contains an explicit
violation of scale and Lorentz invariance along the holo-
graphic coordinate z. Anticipating our discussion in the next
section, we notice that the given setup represents only a min-
imal possibility. Actually if we wish to describe a Regge-like
spectrum of the kind (2.5) within a closed-form solvable SW
holographic model, we may consider the following general
ansatz,

S = 1

2

∫
d4x dz

√
g ecz

2
[
∂M�∂M� − (m2

5

+a1z
2 + a2z

4)�2 + bgzz�z∂z�
]
, (2.6)

where the metric factor gzz originates from the covariant
term gMN�xM∂N�. This extension of SW model will be
analyzed below for arbitrary integer spin.

We recall briefly how the model (2.1) is generalized
to arbitrary 5D tensor fields �J

.= �M1M2...MJ , Mi =
0, 1, 2, 3, 4. These fields describe higher spin mesons if the
corresponding tensors are symmetric plus some additional
constraints are imposed. By assumption, the given tensor
fields are dual to QCD operators OJ

.= Oμ1μ2...μJ , μi =
0, 1, 2, 3, near the boundary z = 0. The holographic duality
entails the following generalization of the relation (2.4),

�J (xμ, z)
∣∣
z→0 = z�−JO(xμ), (2.7)

which generalizes the 5D mass (2.3) (see, e.g., Ref. [59]),

m2
5R

2 = (� − J )(� + J − 4). (2.8)

It is important to emphasize that the internal self-consistency
of the entire approach requires to follow the prescription (2.8)
because it guarantees the fulfilment of the duality condi-
tion (2.7). The constant part of a 5D mass, consequently,
cannot be taken arbitrary. The 5D mass of gauge higher spin
fields in the original SW model [60] does not satisfy (2.8)
since the condition of generalized gauge invariance in the
AdS5 space is incompatible with the prescription (2.8), at
least when the dimensions of quark fields or of derivatives
of gluon fields contribute to �. We will follow (2.8), some
additional arguments are given in Ref. [77].

Since a physical hadron has polarization indices along the
usual 3 + 1 physical coordinates, a projection to 4D parti-
cle states in holographic QCD is usually achieved via the
condition,

�z... = 0, (2.9)

i.e. the physical components are �μ1μ2...μJ , all other com-
ponents vanish identically. A generalization of action (2.1)
to the case of arbitrary integer spin reads

S = 1

2

∫
d4x dz

√
g ecz

2
(
DM�J DM�J − m2

5�
J�J

)
.

(2.10)

Two comments are in order. First, an action for free higher
spin fields contains many quadratic terms appearing from
many ways of contraction of coordinate indices. But the
condition (2.9) greatly simplifies the action leaving only
two terms explicitly shown in (2.10) [59,60,77]. Second,
the effect of AdS affine connections in the covariant deriva-
tives DM leads just to a constant shift of the mass term. In
the presence of z-dependent dilaton background, this shift
becomes also z-dependent. In the case of quadratic dilaton
of the action (2.10), the shift has a structure m2

5 → c1z2 +c2,
where c1 and c2 are certain constants [77]. As the given struc-
ture represents a particular case of more general ansatz (2.6)
we will consider, the covariant derivatives DM in (2.10) can
be replaced by normal derivatives.

The spectrum of the model (2.10) has the Regge form
in both the spin J and radial n directions but details of the
spectrum depend on additional assumptions [59,60,68,75].
If the 5D higher spin fields are treated as massive ones with
masses dictated by (2.8) and imposed constraint (2.9), the
spectrum of physical modes is determined from the equation
of motion

δS

δ�μ1μ2...μJ

= 0, (2.11)
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while the Euler–Lagrange equations

δS

δ�zM2...MJ

= 0, (2.12)

will give the kinematical constraints ∂μ�μ... = 0 and
ημν�μνμ3...μJ = 0 eliminating the lower-spin states and
thus providing the required 2J + 1 physical degrees of free-
dom [59,77]. The further Euler–Lagrange equations will not
appear due to the constraint (2.9).

The equation of motion (2.11) together with the condi-
tion (2.8) leads to the spectrum (see Appendix A),

m2
n,J = 2|c|

(
2n + � − 1 + c

|c| (J − 1)

)
. (2.13)

For the most interesting case of twist-2 operators,1 � =
J + 2, we obtain

m2
n,J = 2|c|

(
2n + J + 1 + c

|c| (J − 1)

)
, J > 0. (2.14)

This spectrum has the string form for c > 0,

m2
n,J = 4|c| (n + J ) , (2.15)

and formally does not depend on the spin J for c < 0.

3 “Maximally extended” closed-form solvable SW
model

Following the discussions of the previous section, let us add
to the SW action (2.10) (with covariant derivatives replaced
by the normal ones) the z-dependent terms shown for the
scalar case in the action (2.6),

S = 1

2

∫
d5x

√
gecz

2
gM1N1 . . . gMJ NJ

×
[
gMN ∂M�M1...MJ ∂N�N1...NJ

−
(
m2

5 + a1z
2 + a2z

4
)

�M1...MJ �N1...NJ

+bgzz�M1...MJ z∂z�N1...NJ

]
. (3.1)

To calculate the spectrum and find its parametric dependence
it is convenient to eliminate the exponential dilaton factor via
the field replacement,

�M1...MJ = e−cz2/2φM1...MJ . (3.2)

1 In the theory of deep inelastic scattering, the twist corresponds to the
number of parton constituents inside a hadron. Since a meson consists of
a quark–antiquark pair and the higher Fock components are suppressed
in the large-Nc limit of QCD [66], the case of twist-2 seems to be the
most relevant to the holographic approach.

Substituting (3.2) to (3.1) we get

S = 1

2

∫
d5x

√
ggM1N1 . . . gMJ NJ

[
gμν∂μφM1...MJ ∂ν

φN1...NJ + gzz
(
c2z2φM1...MJ φN1...NJ − 2czφN1...NJ ∂z

φM1...MJ + ∂zφM1...MJ ∂zφN1...NJ

)
+

(
m2

5 + a1z
2 + a2z

4
)

φM1...MJ φN1...NJ

+bgzzφM1...MJ z
(
∂zφN1...NJ − czφN1...NJ

)]
, (3.3)

or, combining the similar terms,

S = 1

2

∫
d5x

√
ggM1N1 . . . gMJ NJ

×
[
gMN ∂MφM1...MJ ∂NφN1...NJ

− (2cz − bz) gzzφN1...NJ ∂zφM1...MJ

−
(
m2

5 + a1z
2 + a2z

4 − gzzc2z2 + bgzzcz2
)

× φM1...MJ φN1...NJ

]
. (3.4)

Using the AdS metric factor (2.2) we obtain the final form
before variation,

S = 1

2

∫
d5x

(
z2

R2

)J−3/2 [
(∂Mφ...)

2 + z (2c − b) φ...∂zφ...

−
(
m2

5R
2

z2 + a1R
2 + z2

(
a2R

2 + c2 − bc
))

φ2
...

]
.

(3.5)

Here and below the lower contraction φ...φ... means the
usage of flat metric ηMN ≡ diag{1,−1,−1,−1,−1} when
contracting lower and upper indices.

The variation of action (3.5), after integrating by parts and
some simple algebra, leads to the expression,

δS

δφ...

=
∫

d5x

[
−∂M

((
z2

R2

)J−3/2

∂Mφ...

)

−
(
z2

R2

)J−5/2

m2
eff(z)φ...

]
, (3.6)

where the z-dependent effective mass is

m2
eff(z) = m2

5 + z2
(
a1 + (J − 1)(2c − b)

R2

)

+z4
(
a2 + c2 − bc

R2

)
. (3.7)

After obvious redefinitions, the effective 5D mass takes the
form

m2
effR

2 = m2
5R

2 + b̃z2 + c̃2z4. (3.8)
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It is seen now that although the original extended SW
action (3.1) contained 4 parameters, the spectrum will effec-
tively depend on 2 parameters.

The equation of motion stemming from (3.6) is

∂2
μφ... −

(
R

z

)2J−3

∂z

(( z

R

)2J−3
∂zφ...

)

+m2
effR

2

z2 φ... = 0. (3.9)

In the AdS/QCD models, the 4D particles are identified with
normalizable solutions in the form of 4D plane waves,

φμ1...μJ (xμ, z) = eipμxμv(J )(z)εμ1...μJ , (3.10)

where εμ1...μJ denotes the polarization tensor and v(J )(z) is
the profile function of physical 4D modes having the mass
squared m2 = p2

μ. By the standard substitution,

v(J ) =
( z

R

)3/2−J
ψ(J ), (3.11)

the Eq. (3.10) is converted into one-dimensional Schrödinger
equation

− ∂2
z ψ

(J ) + V (z)ψ(J ) = m2ψ(J ), (3.12)

with the potential of harmonic oscillator

V (z) = c̃2z2 + b̃ + (J − 2)2 + m2
5R

2 − 1/4

z2 . (3.13)

The normalizable spectrum of discrete modes,
n = 0, 1, 2, . . . , is

m2
n,J = 2|c̃|

(
2n + 1 +

√
(J − 2)2 + m2

5R
2 + b̃

2|c̃|

)
.

(3.14)

Using as before the condition (2.8) for the twist-2 dimension
� = J + 2, the spectrum simplifies to

m2
n,J = 2|c̃|

(
2n + 1 + J + b̃

2|c̃|

)
. (3.15)

Coming back to our original notations in the action (3.1), the
parameters are

b̃ = a1R
2 + (2c − b)(J − 1),

c̃ = a2R
2 + c(c − b). (3.16)

The spectrum has the Regge form and as it follows from
the derivation, the considered ansatz is the most general one
among closed-form solvable cases leading to exactly lin-
ear Regge trajectories. In the literature, one can find some
closed-form solvable extensions of SW model possessing an
arbitrary intercept [16,73,78]. The spectrum (3.15) is more
general – the slopes of the radial and spin trajectories can
be in arbitrary proportion. This proportion is regulated by

the parameter b, i.e., by the term linear in derivative in the
action (3.1). In some phenomenological analyses of light
meson spectra, these slopes turn out to be different indeed, as
in Ref. [80]. Our holographic theory thus can easily accom-
modate this scenario while for the standard SW holographic
models this would be problematic.

The standard SW holographic model is known to work
differently for different sign of mass parameter c in the dila-
ton background ecz

2
. Various aspects of this difference were

discussed in the past [59,68,72,75,81,82]. A particular man-
ifestation is the mentioned independence of spin in the spec-
trum (2.14) if c < 0. It is instructive to see how the transition
from c > 0 to c < 0 happens within our general case. For
the sake of definiteness, imagine that we want to obtain the
spectrum of Veneziano dual amplitude (see the relation (E.7)
in the Appendix E),

m2
n,J = 4λ2 (n + J ) , (3.17)

that was reproduced in the first SW holographic model [60].
As follows from (3.15) and (3.16), in the case of positive sign,
c > 0, this spectrum is reproduced if we set a1 = a2 = b =
0, c = λ2. In the case of negative dilaton background, c < 0,
the solution becomes more complicated: a1 = 0, b = 4c,
a2R2 = 4c2, c = −λ2. The transition from the model with
positive sign to the model with negative one can be achieved
via the field replacement,

�+
M1...MJ

= e−cz2
�−

M1...MJ
. (3.18)

A similar replacement was exploited in Ref. [75]. Our
approach yields automatically the form and magnitude of
additional terms which arise in the 5D action after such a
replacement. It should be also noted that if the higher spin
fields are described as pure gauge 5D fields, when the rela-
tion (2.8) near the UV boundary is not imposed, the situa-
tion is opposite – the simplest solution, a1 = a2 = b = 0,
c = −λ2, is achieved when c < 0. Exactly this description
was exploited in the original paper where the SW holographic
model was introduced [60].

Concluding the discussions of this section, it is worth men-
tioning the first AdS/QCD model where a z-dependent IR
modification of 5D mass was proposed [73]. The idea of
Ref. [73], in a somewhat reformulated version, was to intro-
duce a z-dependent IR modification for conformal dimension
� in the relation (2.8). The suggested ansatz is

� → � + cz2, (3.19)

that after substitution to (2.8) results in the following IR mod-
ification of 5D mass,

m2
5R

2 → m2
5R

2 + 2Jcz2 + c2z4, (3.20)

where we set � − 2 = J for the twist-two operators. The
z-dependent 5D mass (3.20) is a particular case of our gen-
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eral ansatz (3.8). The Regge spectrum of this model follows
immediately from (3.15), where we must substitute c̃ = c
and b̃ = 2cJ . For the physical case c > 0 we obtain

m2
n,J = 4c

(
n + J + 1

2

)
. (3.21)

It was also suggested to replace the total spin J in the
Regge spectrum (3.21) by the orbital momentum L of quark–
antiquark pair. The resulting spectrum becomes then very
similar to the spectra (D.2) or (D.4) in the Appendix D, which
were extracted from the experimental data. It is not surpris-
ing that the agreement with the data presented in Ref. [73]
looked impressive.

4 Relation between the SW background and
z-dependent 5D mass

Our previous analysis demonstrated that a closed-form solv-
able SW model with linear spectrum allows for 5D mass to
have two z-dependent contributions as is shown, for example,
in the relation (3.8). In the practical situations, theO(z4) con-
tribution can be absorbed by redefinition of the mass param-
eter in the SW exponential background. The given term con-
tributes to the slope of Regge trajectories. The O(z2) contri-
bution dictates the intercept. This contribution is very impor-
tant as it determines the mass of the ground state and also
may describe the mass shifts caused by the spontaneous chi-
ral symmetry breaking. A question appears whether an arbi-
trary intercept parameter can be also parametrized by some
correction to the SW background? A solution for such a back-
ground was found in Ref. [78]. It was erroneously concluded,
however, that this background is not fully equivalent to the
O(z2) contribution to 5D mass term and that the equivalence
appears in the infrared limit, z → ∞, only . We are going
to correct this error and show by an explicit calculation that
the two forms of SW model in question are fully equivalent.
We will begin with the vector case which was analyzed in
the original paper [78]. After that we generalize the result to
the tensor case and find the appropriate background for any
integer spin.

4.1 A simple vector model

Consider the following problem: How to reproduce the linear
Regge spectrum of vector mesons,

m2
n = 4c (n + 1 + b) , n = 0, 1, 2, . . . , (4.1)

with c > 0 and arbitrary intercept parameter b, within a
SW holographic model with massless 5D vector field? The
solution derived in Ref. [78] reads

S = �2(1 + b)
∫

d5x
√
ge−cz2

U 2(b, 0, cz2)gMRgNS

×
(

−1

4
FMN FRS

)
, (4.2)

where U is the Tricomi confluent hypergeometric function.
The case of c < 0 was not considered in Ref. [78] and will
be discussed later. Below we give a short proof of the state-
ment that the action (4.2) is fully equivalent to writing a
O(bz2) mass term in a theory without the Tricomi function
in the background. A more rigorous proof is presented in the
Appendix B.

Using the axial gauge (2.9) and omitting the Lorentz
indices, the term in (4.2) relevant to the problem under con-
sideration is (we set R = 1)

S(z) ∼
∫

dz
e−cz2

z
U 2(b, 0, cz2) (∂zV )2 . (4.3)

Let us eliminate the nontrivial background with the help of
the field redefinition

V = ecz
2/2

U
v. (4.4)

We do not write the arguments of the Tricomi function
U (b, 0, cz2) here and in what follows. The result is

S(z) ∼
∫

dz

z

[
(∂zv)2 + c2z2v2 +

(
∂zU

U

)2

v2

+2

(
cz − ∂zU

U

)
v∂zv − 2cz

∂zU

U
v2

]
. (4.5)

The equation of motion stemming from (4.5) is

∂z

(
∂zv

z

)
−

[
1

z

(
cz − ∂zU

U

)2

+ ∂z

(
∂zU

zU

)]
v = 0. (4.6)

Using the derivatives of Tricomi function,

∂zU (b, 0, cz2) = 2czU ′,
∂2
z U (b, 0, cz2) = 2cU ′ + 4c2z2U ′′, (4.7)

where U ′(b, k, x) .= ∂xU (b, k, x), the Eq. (4.6) takes the
form

∂z

(
∂zv

z

)
− c2

z

[
z2 + 4z2U

′′ −U

U

]
v = 0. (4.8)

The Tricomi function ω = U (b, k, x) is a solution of Kum-
mer’s equation (C.21) (see the Appendix C for the related
details),

xω′′ + (k − x)ω′ = bω. (4.9)

In our case of k = 0, the Eq. (4.9) yields x(U ′′ −U ′) = bU ,
that transforms the Eq. (4.8) into

∂z

(
∂zv

z

)
− 1

z

[
c2z2 + 4cb

]
v = 0. (4.10)
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After the transition to the form of a Schrödinger equation,
the term with b becomes the constant contribution in the
potential (3.13) which arises from the O(bz2) contribution
to the effective 5D mass (3.8). This proves our statement.

Consider now the case c < 0. Repeating the derivation
above it is seen that for arbitrary sign of c the Eq. (4.8) is
replaced by

∂z

(
∂zv

z

)
− c2

z

[
z2 + 4z2

U ′′ − c
|c|U

U

]
v = 0. (4.11)

For c < 0, the Kummer’s equation (4.9) can also be used if
we replace x by (−x). The solution formally becomes

c < 0 : ω = U (−b, 0,−|c|z2). (4.12)

The Tricomi function U (b, k, x), however, is complex for
integer k when its argument is negative, x < 0. The real-
valued solution formally is ω = M(−b, 0,−|c|z2), where
M denotes the Kummer function, the second solution of
Kummer’s equation (see the Appendix C). But the function
M(b, k, x) is not defined when k an integer less than 1, thus it
is also problematic in our case k = 0. A well defined solution
is given by (see the Appendix C)

ω = |c|z2M(1 − b, 2,−|c|z2). (4.13)

Unfortunately, this solution is not acceptable for our purpose:
since

M(b, k, x)|x→0 = 1 + O(x), (4.14)

we do not obtain the condition ω(0) ∼ 1 in the action (4.2)
(where ω = U ). The given restriction provides the necessary
asymptotics of AdS5 space near the boundary. In addition,
the infrared asymptotics of the function (4.13),

ωz→∞ ∼ e−|c|z2
z−2b, (4.15)

would forbid the positive exponent in the background of
action (4.2): As the background is proportional to e−cz2

ω2,
we would obtain e−|c|z2

at c < 0 and large z. We thus arrive
at the conclusion that the case c < 0 does not work in the
given situation.

One may try to cope with the complexity of solution (4.12)
replacing the factor U 2 in the background of action (4.2)
by UU∗ and writing a model for charged vector fields, this
would replace the term (4.3) by

S(z) ∼ ∫
dz

e−cz2

z
U (−b, 0,−cz2)U∗(−b, 0,−cz2)

×∂zV ∂zV
∗. (4.16)

But one can show that such a formulation does not work as
well.

4.2 Generalized SW model for tensor fields

Now we are ready to derive a generalization of background
in the SW action (B.1) to the case of arbitrary integer spin.
Consider a free action for massless tensor field in flat 5D
space,

S = 1

2

∫
d5x f 2(z)

(
∂M�M1...MJ

)2
, (4.17)

where f (z) is a background function which we intend to
find in this section. Following [78] we hide inside f 2 other
background-related factors such as

√
g and metrics that are

used to contract indices. The constant mass term can be easily
added at the end and will not change the result. In order to
get the AdS rules for contraction of Lorentz indices we must
impose the following UV asymptotics,

f (z) ∼
z→0

z(2J−3)/2. (4.18)

With this asymptotics, the action (4.17) can be formally writ-
ten in the form of action (3.1).

With the condition (2.9), the dynamical equation of motion
reads[
f 2(z)∂μ∂μ − ∂z

(
f 2(z)∂z

)]
�μ1...μJ = 0, (4.19)

where the indices are contracted using the flat metric

ηMN ≡ diag{1,−1,−1,−1,−1}. (4.20)

Using the notations (3.10), the equation takes the following
form,
[
f 2m2 + ∂z

(
f 2∂z

)]
v(J ) = 0. (4.21)

After the substitution

v(J ) = ψ(J )

f
, (4.22)

we get the Schrödinger equation

− ∂2
z ψ

(J ) + ∂2
z f

f
ψ(J ) = m2ψ(J ). (4.23)

We wish to obtain the Regge spectrum of massless tensor
fields in AdS5 space in the form of (A.11) (for m5 = 0) but
now shifted by the intercept parameter b, n → n + b, i.e.

m2
n = 2|c|

(
2n + 1 + |J − 2| + c

|c| (J − 1) + 2b

)
. (4.24)

According to Appendix A, the potential then must be

∂2
z f

f
= c2z2 + 2c(J − 1) + (J − 2)2 − 1/4

z2 + 4b|c|.
(4.25)
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This second-order differential equation for f (z) has two lin-
early independent solutions in terms of confluent hypergeo-
metric functions. As is well known from the theory of such
equations, a linear combination of these solutions can be cho-
sen in such a way that one of them is exponentially decreasing
in the (z → ∞) asymptotics, the second one will be exponen-
tially growing. Imposing the normalization condition (to pre-
serve the standard normalization factor in the action (4.17))

f 2(z)z3−2J =
z→0

1, (4.26)

these solutions can be written as follows,

f1(z) =
�

(
2 − J + (J − 1)

c+|c|
2|c| + b

)

�(2 − J )
e−|c|z2/2z(2J−3)/2

×U

(
J − 1

2

(
1 + c

|c|
)

+ b, J − 1, |c|z2
)

,

(4.27)

f2(z) = e|c|z2/2z(2J−3)/2M

(
J − 1

2

(
1 − c

|c|
)

−b, J − 1,−|c|z2
)

, (4.28)

where U is the Tricomi function and M is the Kummer func-
tion (which represents the confluent hypergeometric func-
tion 1F1). The latter can be expressed via the Laguerre func-
tion (the generalization to fractional powers of argument of
associated Laguerre polynomials) which appear as eigen-
functions of normalizable solutions, see Eq. (A.9), using the
relation: Lk

b(x) = (b+k
b

)
1F1 (−b, k + 1, x). These solutions

have different asymptotics. The first solution converges both
at z → 0 and z → ∞, while the second one converges
at z → 0 and diverges at z → ∞ due to U (b, α, x) ∼
Lβ

−b(x) ∼ x−b at x → ∞ for arbitrary α and β, related as
α = β + 1 in the case under consideration.

There are various subtle points with the solution of
Eq. (4.25) because of which the results obtained from popu-
lar software systems like Mathematica should be used with
care. Ignoring this can lead to (partly) incorrect statements
which can be met in some papers. In the Appendix C, we
find the solutions (4.27) and (4.28) analytically and discuss
the arising subtleties.

Now we should interpret (4.27) and (4.28) as generaliza-
tion of SW model with positive and negative dilaton back-
ground, SW± for brevity. The standard SW± model must
appear at zero intercept parameter b = 0. SinceU (0, α, x) =
M(0, α, x) = 1 for any α, it looks natural to choose c < 0
in the first solution (4.27) and interpret it as an extension of
SW− model. After that we cannot set c < 0 in the second
solution (4.28) because M(α, α, x) = ex , hence, we would
obtain the same SW− background. Thus we must choose
c > 0 in (4.28). The solutions

f1(z) = � (2 − J + b)

�(2 − J )
e−|c|z2/2z(2J−3)/2

×U
(
b, J − 1, |c|z2

)
, (4.29)

f2(z) = e|c|z2/2z(2J−3)/2M
(
−b, J − 1,−|c|z2

)
, (4.30)

would define then the backgrounds f 2
1 (z) and f 2

2 (z) of gen-
eralized SW− and SW+ models, correspondingly. However,
the Kummer function M(b, α, x) is not a solution (is not
defined as some entire function of x) if α is an integer less
than 1. This excludes the cases J = 0 and J = 1. To include
the scalar and vector cases we can use a linearly independent
solution or define a certain linear combination of them called
Tricomi function U (see the Appendix C). That was the rea-
son for writing the first solution (4.27) in terms of U , in this
form it suits for any spin. The functionU (b, α, x) is formally
undefined for integer α but can be analytically extended to
any integer α by continuity. This extension, however, results
in complex values at x < 0, so we cannot use it in the second
solution (4.28). It should be mentioned also that if we wrote
M instead ofU in (4.27) and chose the same sign of c in both
solutions, then the solutions (4.27) and (4.28) would not be
independent, they were related in this case via the Kummer’s
transformation M(b, α, x) = ex M(α − b, α,−x).

Further we notice that at c < 0 the mass spectrum (4.24)
does not depend on spin for tensor mesons. The choice of
c < 0 for J > 1 is thus unphysical in our approach (but
not necessarily if tensor fields are introduced in a different
way). Combining this observation with the discussion above,
we arrive at the conclusion that a self-consistent extension
of the exponential background of the SW model that pro-
duces an arbitrary intercept b exists only in the following
cases: For SW− if J = 0, 1 and for SW+ if J > 1. The
corresponding SW backgrounds are f −(z) = f 2

1 (z) and
f +(z) = f 2

2 (z), where f1(z) and f2(z) are given by the
relations (4.29) and (4.30).

Substituting the solutions (4.29) and (4.30) into the
action (4.17), moving the z2J−3 factor back into

√
g and in

the AdS contraction rule for Lorentz indices, we finally get
the extensions of SW holographic model to arbitrary inter-
cept b,

SJ≤1 = �2 (2 − J + b)

2�2(2 − J )

∫
d5x

√
ge−|c|z2

U 2

×
(
b, J − 1, |c|z2

)
∂M�(J )∂M�(J ), (4.31)

for J = 0, 1 (for J = 1, it reduces to the action (B.1) in the
Appendix B) and

SJ>1 = 1

2

∫
d5x

√
ge|c|z2

M2
(
−b, J − 1,−|c|z2

)

×∂M�M1...MJ ∂M�M1...MJ , (4.32)

for J > 1.
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The generalized background with the Kummer function
can be rewritten as the standard SW background following
the same steps as in the previous section for the vector case,
this also results in the appearance of O(z2) contribution to
the 5D mass.

It is not difficult to show that the inclusion of constant mass
does not change the result. Indeed, in the axial gauge (2.9),
the action (4.17) becomes

S = 1

2

∫
d5x f 2(z)

[(
∂M�M1...MJ

)2 − m2
5R

2

z2

(
�M1...MJ

)2

]
.

(4.33)

Repeating the same steps as above, we obtain the massive
extension of Eq. (4.23)

− ∂2
z ψ

(J ) +
(

∂2
z f

f
+ m2

5R
2

z2

)
ψ(J ) = m2ψ(J ), (4.34)

and require that its discrete spectrum must be given by the
“massive” extension of spectrum (4.24),

m2
n = 2|c| (2n + 1

+
√

(J − 2)2 + m2
5R

2 + c

|c| (J − 1) + 2b

)
. (4.35)

This leads to the condition

∂2
z f

f
+ m2

5R
2

z2 = c2z2 + 2c(J − 1)

+ (J − 2)2 + m2
5R

2 − 1/4

z2 + 4b|c|. (4.36)

The terms with m2
5 cancel and we arrive at the condi-

tion (4.25).

4.3 Brief summary

Let us briefly summarize the main points of Sects. 3 and 4.

(i) The general structure of closed-form solvable SW holo-
graphic model describing the linear Regge like spectrum
of spin-J mesons is

S = 1

2

∫
d4x dz

√
g e±|c|z2

f 2(b, J, z)

×
[
∂M�J ∂M�J − m2

5(b, J, z)�
2
J

]
, (4.37)

where �J denotes a spin-J field (Lorentz indices are
omitted), ± refers to the SW± variant of the model,
f 2(b, J, z) is a background function introducing the
intercept parameter b, andm2

5(b, J, z) is a mass function
that also can introduce the intercept b.

(ii) The dependence on b can be completely hidden in
f (b, J, z) only in two cases: (1) J = 0, 1 in the SW−
model; J > 1 in the SW+ model. The mass function
is then a constant, m2

5(b, J, z) = m2
5(J ), where m2

5(J )

is dictated by the usual AdS/CFT prescription for 5D
mass; the background function f (b, J, z) for both cases
was found in Sect. 4.2.

(iii) In all cases of SW± model, however, the intercept
parameter b can be introduced via the following phe-
nomenological z-dependence of mass function (in units
of R = 1),

SW± : m2
5(b, J, z) = m2

5(J ) + b|c|z2, (4.38)

and with trivial background function f (b, J, z) = 1.
(iv) In the No-wall variant of the model, i.e., when the whole

background is trivial, e±|c|z2
f 2(b, J, z) = 1, the mass

function must introduce also the slope, the correspond-
ing ansatz is

SW0 : m2
5(b, J, z) = m2

5(J ) + b|c|z2 + c2z4. (4.39)

5 Some applications

5.1 Warped metrics and confining behavior

Consider again the action for a 5D spin-J field �J

S = 1

2

∫
d4x dz

√
g B(z)

(
DM�J DM�J − m2

5�
J�J

)
,

(5.1)

with the metrics (see (2.2))

gMN = R2

z2 ηMN , (5.2)

and some z-dependent background B(z). It is straightforward
to see that this action can be formally rewritten as

S = 1

2

∫
d4x dz

√
g̃

(
DM�J DM�J − m2

5

×B−(3/2−J )−1
�J�J

)
, (5.3)

with the warped metrics

g̃MN = B(3/2−J )−1
gMN . (5.4)

In principle, one may speculate that the action (5.3) defines
a holographic model with certain z-dependent mass term (or
vice versa one can impose a z-dependence on m2

5 in (5.1) in
such a way that the mass term in (5.3) is constant) and that
this model can take the form of action (5.1) if one neglects
the affine connections in covariant derivatives.
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What can we gain in hiding the z-dependence into the met-
rics? A real advantage for the phenomenology is not clear.
But this form of writing the bottom-up holographic models is
known to be useful in discussions of confining aspects [59].
We recall that the gravitational potential energy for a body
of mass M is given by V = M

√
g00 in units where c = 1.

The confinement behavior can be qualitatively deduced from
following a particle in warped AdS space as it goes to the
infrared region, i.e. the region of large z, – in general relativ-
ity, this would correspond to falling an object by the effects
of gravity. If the potential V has an absolute minimum at
some z0 then one may speculate that a particle is confined in
a hadron within distances z ∼ z0 [59] (within the light-front
approach, the holographic coordinate z is proportional to the
interquark distance in a hadron [59]). This heuristic argument
can be substantiated by the Sonnenschein condition for Wil-
son loop-area law for confinement of strings: A background
dual to a confining theory should satisfy the condition [83]

∂z(g00)|z=z0 = 0, g00|z=z0 
= 0, (5.5)

which is nothing but the condition for extremum of the poten-
tial V .

Using Eq. (5.4) the time-time component of the warped
metric of the SW model with positive and negative dilaton
background, SW±, can be written as (we set R2|c| = 1 in
what follows)

g̃00 = e±|c|z2(3/2−J )−1

|c|z2 . (5.6)

In the vector case J = 1, the SW+ model looks confining.
The given observation underlies a traditional argument that
the SW− model lacks confinement (see [59] for a review).
This argument was substantiated by an explicit holographic
derivation of linear confining potential via the Wilson loop
in Ref. [84] using the warped metrics with positive expo-
nent. Actually the first SW model was introduced in Ref. [61]
exactly in this form. We note, however, that the given conclu-
sion formally changes to the opposite one in the tensor case,
for spins J > 1 (the exponent in (5.6) changes the sign).

The range of possibilities in confining behavior becomes
much wider in the case of generalized SW models introduced
in the previous section. The component g00 in (5.6) is then
generalized to

g̃00 =
[
e−|c|z2

U 2(b, J − 1, |c|z2)
](3/2−J )−1

|c|z2 ,

J = 0, 1, (5.7)

g̃00 =
[
e|c|z2

M2(−b, J − 1,−|c|z2)
](3/2−J )−1

|c|z2 ,

J > 1. (5.8)

The behavior of g̃00 at different J and b 
= 0 can be analyzed
graphically on a computer. Our analysis showed that there are
only two situations when a minimum appears, both happen
for b < 0.

The first situation takes place for the vector J = 1 case,
where a local minimum emerges in some range of intercept
parameter −1 < b < b0. If we set |c| = 1 then b0 ≈ −0.95.
When b → −1, the local minimum tends asymptotically to
a kind of absolute minimum situated at z0 → 0 and sepa-
rated from the global minimum at z → ∞ by a finite barrier,
see Fig. 1. In the exact limit b = −1, however, the sec-
ond condition in (5.5) is not fulfilled. On the other hand, the
action (4.31) cannot be extended to b = −1 since one has
no AdS5 space in the UV asymptotics (as a consequence of
U (b, 0, 0) = 1/�(1 + b)), hence, the holographic approach
is not justified.

The second situation arises in the tensor J = 2 case,
where there is a local minimum for −2 < b < −1. But in
this case it is separated from the global minimum at z →
∞ by an infinite barrier at some z0. This barrier emerges
due to a specific singularity: The Kummer function in (5.8)
stays in negative power but this function has a zero at z0,
M(−b, 1,−|c|z2

0) = 0. The root z0 tends to 1/
√|c| when b

tends to −2, see Fig. 1.
The limit b → −1 in the J = 1 case corresponds to the

limit of massless vector particle in the spectrum (A.14). As is
clear from the discussion above, we can find this particle only
by taking the limit b → −1, not just setting b = −1 (this
somewhat resembles the prescription ε → 0 in calculating
QFT Green functions) and only in a deep UV region z0 → 0.
The presented construction could thus serve as a basis for a
holographic realization of asymptotic freedom of gluons in
QCD.

In the limit of b → −2 of the J = 2 case, another
singularity gradually appears. In addition, this limit corre-
sponds to the limit of massless spin-2 particle in the spec-
trum (A.14). For this reason we do not discuss the minima
appearing at b < −2, they would be related to unphysical
tachyonic states in the spectrum (A.14). In the parametric
interval −2 < b < −1, we get a confinement of spin-2 par-
ticles with respect to propagation to deep infrared domain.

5.2 Chiral symmetry breaking

The strong interactions reveal two separated mass scales,
�QCD ≈ 0.2 GeV and �CSB ≈ 1 GeV. The scale �QCD

is related to confinement while �CSB characterizes the spon-
taneous Chiral Symmetry Breaking (CSB). The linear Regge
spectrum also depends on two parameters, the slope and inter-
cept. Experimentally, the meson slope is almost universal in
the light quark sector [85–93] while the intercept depends on
the spatial parity of radial meson trajectory [90–93], a short
review is given in the Appendix D. It is thus natural to assume
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Fig. 1 The time-time component of metrics with |c| = 1: (5.7) with J = 1 and b = −0.99; (5.8) with J = 2 and b = −1.99

that the slope is proportional to �2
QCD while the intercept is

somehow connected to �CSB.
A satisfactory description of the CSB within the SW

approach and its extensions is an open problem. One can
approach this problem by gradually reproducing various
effects and features of CSB. The first effect is a generation of
almost massless pion. The second effect consists in a large
mass splitting between chiral partners. The given two effects
must be somehow related. This can be easily tuned in the gen-
eralized SW model under consideration. Indeed, consider,
e.g., the mass spectrum (4.35) and take c > 0. Since both
the vector and scalar quark operators in QCD have minimal
dimension � = 3, the relation (2.8) yields m2

5 = 0 for vec-
tors and m2

5R
2 = −3 for scalars. The spectrum (4.35) then

takes the form

J = 1 : m2
n = 4c(n + 1 + b), (5.9)

J = 0 : m2
n = 4c(n + 1/2 + b). (5.10)

One can further assume that due to some mechanism the
intercept parameter b is different for mesons possessing neg-
ative and positive parity, b− 
= b+, and that b− ≈ −1/2. We
then get approximately massless pion and simultaneously
obtain the radial spectrum (5.11) for the ρ-mesons which is
often encountered in the literature, see the comments below.
If b+ ≈ 0 we arrive at the well-known pattern of CSB in
the meson spectrum (see, e.g., discussions in Refs. [75,94]).
In particular, for isospin-one light non-strange vector and
axial-vector mesons this pattern yields the following radial
spectrum,

m2
ρ(n) = 2m2

ρ

(
n + 1

2

)
, m2

a1
(n) = 2m2

ρ (n + 1) , (5.11)

where mρ is the mass of the ground ρ-meson. For the ground
states, n = 0, the mass splitting between the opposite parity
vector mesons can be matched to a prediction of low-energy
quark models based on the effective four-fermion interactions
[95] (in the framework of which the concept of spontaneous

CSB first emerged)

m2
ρ = m2

a1
− 6M2

q = 2m2
ρ

(
1 − 6M2

q

2m2
ρ

)
, (5.12)

where

Mq ∼ −〈q̄q〉, (5.13)

is the constituent quark mass, Mq ≈ 320 MeV. Strictly speak-
ing, Mq ∼ −〈q̄q〉/�2, where � represents the UV cutoff in
a model. If b+ ≈ 0 then we get

b− ≈ −3M2
q

m2
ρ

≈ −1

2
. (5.14)

The given numerical agreement substantiates the assumption
that the intercept b arises from the spontaneous CSB.

Digressing for a moment, we should mention that the
relations (5.11) are very old and were emerging in various
approaches in the past. First they appeared in the extensions
of Veneziano dual amplitude for π + π → π + π scattering
to the reactions π + A → B + C , the obtained positions of
poles were [96–98]

ρ-trajectory : m2
(ρ) = 2m2

ρ(n + J − 1/2), J = 1, 2, . . . ,

(5.15)

π -trajectory : m2
(π) = 2m2

ρ(n + J ), J = 0, 1, . . . .

(5.16)

where n = 0, 1, 2 . . . enumerates the daughter Regge trajec-
tories (see the Appendix E). For J = 0 in the spectrum (5.15),
one has to substitute J = 1, i.e. the scalar and vector mesons
turn out to be degenerate in mass (the given prediction is not
unreasonable, see Fig. 6 in the Appendix E). The shift of
Regge trajectories corresponding to opposite parities arises
from the Adler self-consistency condition [96–98] imposed
on the Veneziano amplitude – the amplitude of ππ scatter-
ing must be zero at zero momentum transfer. This condition
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incorporates the CSB at the amplitude level and automati-
cally removes degeneracy between the ρ and a1 spectra. The
corresponding ideas are briefly reviewed in the Appendix E.

Also the relations (5.11) were derived in the framework of
finite energy QCD sum rules in Ref. [99]. Later it was shown
that the vector spectrum (5.11) represents a general result of
QCD sum rules when the large-Nc limit is taken and linear-
ity is imposed [94]. The values of intercept b = 0, b = 1/2
and b = 1 turned out to be distinguished by the property
that a half of condensates disappears in the OPE of two-
point vector correlators. Various aspects of this result were
analyzed in Refs. [100,101]. Remarkably, the ρ-spectrum
in (5.11) realizes a minimum of non-perturbative contribu-
tions from condensates to the parton model logarithm in the
OPE, in this sense, it is maximally dual to the perturbative
continuum2 [102]. Recently the spectral relations (5.11) were
reported in the extended quark model of Ref. [105]. In a par-
ticular case of n = 0, J = 1, the spectrum (5.11) leads to
the famous Weinberg relation [106], m2

a1
= 2m2

ρ . The given
relation expresses the fact of maximal mixing of longitudinal
component of axial a1-meson with the pion after CSB, while
between the vector and scalar states such a mixing is absent
[107,108].

Returning to our subject matter, the next step should be
an explicit incorporation of the aforementioned CSB effect
into the holographic SW approach in a form of some dynam-
ical mechanism. An interesting variant for such a mechanism
was suggested within the Light-Front (LF) holographic QCD
[59]. The LF holographic approach prescribes � = L+2 for
the twist-two QCD operators, where L represents the max-
imal value of the z component of the quark orbital angular
momentum in the LF wave function. Substitution of this pre-
scription into the relation (2.8) yields

LF : m2
5R

2 = L2 − (J − 2)2. (5.17)

This prescribes
√

(J − 2)2 + m2
5R

2 = L in the holographic
bound state equation (A.11) leading finally to the spectrum

LF : m2
n = 4c

(
n + J + L

2

)
. (5.18)

The spectrum (5.11) follows immediately as a particular case
of Eq. (5.18) [59,75].

In reality, however, the experimental spectrum of light
mesons is not well fitted neither by the standard SW rela-

2 If the Regge behavior (linearity of masses squared) is not imposed,
the parton model logarithm is approximated by an infinite sum of poles
in the “best possible way” when these poles are given by zeros of Bessel
function J0 [103]. It looks astonishing that this spectrum obtained by
Migdal in 1978 from a kind of quark-hadron duality requirement was
reproduced by the first Hard Wall holographic models [12,13], see dis-
cussions in Ref. [104].

tion (2.15), even in our extended variant,

Extended SW : m2
n = 4c (n + J + b) , (5.19)

nor by the LF one3 (5.18). A good fit of data within the linear
ansatz for masses square is given by the relation [92,93]

Experiment : m2
n = a (n + L + b) ,

a ≈ 1.1 GeV2, b ≈ 0.6, (5.20)

see the Appendix D for a more detailed discussion. It looks
like in Eq. (5.19) we should take the intercept parameter

b = L − J + 1/2. (5.21)

We do not know how to derive this prescription, but at least
a way for further development can be delineated clearly: A
SW like holographic model correctly describing the global
CSB effect in the meson spectrum should lead to an intercept
close to (5.21). For instance, for vector and axial mesons the
prescription (5.21) gives b± = ±1/2. It is interesting to note
that the generalized SW model with non-zero intercept after
matching to the Operator Product Expansion of two-point
correlators results in the pattern |b+| = |b−| [78] (but quan-
titatively one obtains |b±| ≈ 1/3 from the phenomenological
value of gluon condensate [78]).

Consider a concrete phenomenological example – the non-
strange isosinglet states in the vector and axial-vector chan-
nels, the ω and f1 mesons (the experimental spectrum of
ρ-meson resonances contains some contradictory superflu-
ous states [109], we wish to avoid complications). The Par-
ticle Data [109] reports three well-established ω-mesons:
ω(782), ω(1420), and ω(1650). Taking their masses from
[109] and ascribing them the radial numbers n = 0, 1, 2, we
get the fit (in GeV2): m2

ω(n) ≈ 1.1(n+0.7). The axial sector
contains only one well-established state f1(1285) (another
one, f1(1420), consists mostly of the strange quarks). Let us
use the non-confirmed states f1(1970) and f1(2230) [109]
as a guess. We ascribe them the radial numbers n = 2, 3
(a state corresponding to n = 1 – the isoscalar partner of
a1(1640) [109] – is not established). This results in the fit:
m2

f1
(n) ≈ 1.1(n+ 1.5). The slopes in the obtained linear fits

agree with (5.20), the magnitudes of intercepts are close to
the aforementioned pattern b± = ±1/2.

The CSB is probably responsible for a specific phe-
nomenon which is not reflected in the mass formula (5.20):
The ground states in the vector and pseudoscalar channels
lie significantly below the corresponding linear radial Regge
trajectories. It means that if a radial trajectory is fitted using
only the excited states and after that the mass of ground state

3 When L is interpreted as the orbital momentum of an quark–antiquark
system following the standard assignments of Particle Data [109], as
in the fit (5.20). We carried out a phenomenological analysis with the
aim of testing the relation (5.18), the results of our global fit were
unsatisfactory.
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is predicted, the prediction will appreciably overestimate the
real mass (see, e.g., the discussions in Ref. [110] and the
Fig. 6 in the Appendix E). It is interesting to remark that in
the vector mesons, where there are many data both in the
light and heavy quark sectors, this effect is almost indepen-
dent of quark mass [111,112]. As a result, the spectrum (5.11)
does not give a good fit for the radially excited ρ-mesons –
the ground state must be separated and the intercept should
be taken noticeably larger. This is visualized in Fig. 6 of
the Appendix E for the case of ω-mesons. The same can be
repeated for pseudogoldstone bosons. For instance, the spec-
trum

m2
π (n) = 2m2

ρn, (5.22)

which would naively follow from the Eq. (5.18), does not fit
well the masses of radially excited pions.

The ground state n = J = L = 0 in the Eq. (5.18), which
is associated with massless pion in the LF holographic QCD,
deserves a special comment: The Schrödinger equation (A.7)
(where s = L in the given case) does not have a discrete
spectrum for L = 0 as the potential is not bounded from
below. The spectrum (5.18) therefore cannot be extrapolated
to the massless case.

As far as we can see, the problem is rooted in the change
of constant part of 5D mass when the prescription (5.17) is
imposed. This would physically mean that the CSB is a local
effect occurring in the deep UV domain. But the effect of
spontaneous CSB is known to be essentially non-local. The
non-local effects are naturally incorporated in our general-
ized SW model via the effective z-dependent mass (3.8), let
us write once more its structure,

m2
5(z) = A + Bz2 + Cz4. (5.23)

The constant part A is given by the AdS/CFT prescrip-
tion (2.8) in the deep UV domain z → 0 and should not
be changed. At some non-zero distances, certain non-local
effects appear which are modeled by the O(z2) term and
supposedly related to the spontaneous CSB. At even larger
distances, the O(z4) term comes into play and describes con-
finement (leading to universal linear Regge trajectories). The
intercept parameter b in (5.9) and (5.10) originates both from
A and B in the effective mass (5.23). An advantage of the
proposed generalized SW approach is that we can keep A
constant and vary B. We believe that this gives a physically
more plausible direction for description of CSB due to incor-
porated non-locality and, as a consequence, absence of seri-
ous problems with having a massless scalar state.

The traditional way for phenomenological description of
the CSB in the bottom-up holographic approach is based on
condensation of a scalar field which dynamically acquires
a z-dependent “vacuum expectation value” in a form of
non-normalizable and momentum-independent solution to
the scalar equation of motion [12,13]. The pseudogoldstone

mesons are introduced, in essence, in the same way as in the
chiral perturbation theory and related effective low-energy
models.4 It is known, however, that this scheme cannot be
directly realized in simple SW models [60]. The underly-
ing reason is that one of two solutions to the equation of
motion has incompatible divergent behavior and should be
discarded.5 But this leads to a wrong pattern of CSB (the
quark condensate is proportional to the current quark mass6).
A more realistic description of CSB in the SW models is usu-
ally achieved at the cost of various extensions with new free
parameters.

In the present holographic setup, the standard description
of the CSB may be outlined as follows. As we have demon-
strated in our analysis above, the most general and compact
(i.e., not including any additional fields) SW model lead-
ing to exactly linear spectrum is defined by the z-dependent
effective mass (5.23). All other formulations can be regarded
as its derivatives. If one introduces a 5D scalar field X dual
to the quark condensate, nothing precludes to set C = 0 and
(but not necessary) B = 0 in (5.23). One may try then to con-
struct the description of CSB in the same way as in the Hard
Wall holographic model [12,13] (the GOR relation for pion
mass, mass splittings, various decay constants and constants
of chiral perturbation theory). In terms of the exponential
dilaton background, this would mean the following: A SW
model incorporating the field X should have the form

SX =
∫

d4x dz
√
g

(
ecz

2L + ∂MX∂MX − m2
X X

2
)

, (5.24)

where the Lagrangian density L contains all fields under
study and their interactions with X . The effect of confinement
described by the background ecz

2
and the effect causing the

CSB (occurring at substantially smaller distances) become
clearly separated in the first approximation. It is worth men-
tioning in passing that a similar to (5.24) construction with
ecz

2
replaced by eϕ and X by ϕ,

Sϕ =
∫

d4x dz
√
g

(
eϕL + ∂Mϕ∂Mϕ − m2

ϕϕ2
)

, (5.25)

4 Within the Hard Wall holographic models, there exists an alternative
approach, in which the mass splitting between vector and axial mesons
arises from different boundary conditions imposed on the corresponding
5D fields and the pion represents the fifth component of 5D axial field
[14]. Phenomenologically the given approach was less successful than
the traditional one.
5 It is interesting to mention a recent solution proposed in Ref. [33]
which was based on embedding O(z2) corrections to the 5D masses,
the given proposal is in line with our more general approach.
6 An alternative solution can consist in the assumption (see Ref. [116])
that if an IR modification is incorporated into an AdS/QCD model then
the corresponding source term, the first term in the Eq. (5.28), may be
interpreted as the constituent quark mass which is proportional to the
quark condensate, see the relation (5.13).
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was often used in the literature to motivate the origin of dila-
ton background: If � = 2, i.e. m2

ϕR
2 = −4 in the Eq. (5.26)

for dilaton field ϕ, this equation has a solution ϕ ∼ z2.
Following the original papers [12,13], one should consider

the equation of motion for X in the absence of other fields
and independent of usual 4D coordinates (equivalently, 4D
momentum q),

− ∂z

(
∂z X

z3

)
+ m2

X R
2X

z5
= 0. (5.26)

The scalar quark bilinear operator q̄q in QCD has canon-
ical dimension � = 3, the UV prescription (2.8) dictates
m2

X R
2 = −3 that results in the solution

X = c1z + c2z
3. (5.27)

According to general AdS/CFT rules, the near-boundary
solution of the equation of motion for a field �O dual to
an operator O with dimension � is given by [113]

�O(z, q)z→0 = z4−�−J�O
0 (q) + z�−J 〈O〉

2� − 4
, (5.28)

where �O
0 (q) represents the source for O and 〈O〉 is the cor-

responding condensate (the one-point correlation function).
The comparison of prescription (5.28) for � = 3 and J = 0
with the solution (5.27) leads, as usual, to interpretation of
c1 as a constant proportional to the current quark mass mq

and c2 becomes proportional to the quark condensate 〈q̄q〉.
As was demonstrated in Refs. [114,115], the further phe-

nomenology can be developed in line with the pioneering
papers [12,13] if the SW dilaton background is negative,
c < 0. Actually, the form of solution (5.27) was taken in
[114] by hand and in [115] it was shown that numerical devi-
ations from exact form in typical extended versions of SW
model (with c1 and c2 being independent) are small due to
arising exponential damping. Thus a somewhat speculative
analysis of Ref. [114] becomes completely justified if the
ansatz (5.24) is accepted. The cases of c > 0 and c = 0 (the
No-wall model with a z-dependent 5D mass) are problematic
since the Langrangian for normalizable mode of X diverges.
It seems that some extra assumptions or modifications are
needed in order to advance in these cases. We left this as a
possible work for the future.

It should be emphasized that the outlined standard way
for the description of CSB is very limited in scope: It can
describe the CSB in the vector and axial channels but the
phenomenology shows that the same phenomenon of CSB
recurs for higher spin mesons. In the Appendix D, we recall
the known observation that not only the ρ and ω mesons but
also all mesons belonging to the leading ρ and ω Regge tra-
jectories do not have parity partners. The spontaneous CSB
affects the whole Regge trajectory! For instance, it leads to a
splitting m2

a3
− m2

ρ3
which is approximately the same as the

splitting m2
a1

− m2
ρ described in the standard CSB scenario.

Note in passing that the LF holographic QCD describes this
important feature automatically, see the spectrum (5.18). An
extension of the standard scenario to the tensor mesons, how-
ever, becomes problematic because this would involve local
interactions of the field X with the higher spin fields. But this
would lead to a notorious problem with violation of causal-
ity, a universally applicable self-consistent theory for locally
interacting tensor fields is not known.

Within our phenomenological approach, we can avoid this
problem by simply postulating an effective infrared O(bz2)

contribution to the 5D mass. The most economical possibility
is to take a universal intercept parameter for all mesons with
equal parity, i.e. to introduce two new parameters, b− and
b+ (one of them can be zero). We get then a universal shift
of the whole Regge trajectory caused by the CSB. Exactly in
this way the CSB affects the spectrum in the Veneziano like
dual amplitudes, see the Appendix E.

On the phenomenological level, the O(z2) contribution to
the 5D mass can be introduced via the interaction term

Lint ∼ bX2
non�

M1...�M1..., (5.29)

where Xnon denotes the non-normalizable O(z) solution.
Since non-normalizable solutions in the holographic appro-
ach correspond to some background, one can speculate that
the term (5.29) describes a non-local interaction of tensor
fields with a background responsible for the CSB. Choosing
a proper normalization of 5D fields, the intercept parame-
ter b becomes a coupling. A simple requirement that this
coupling is different for different parities would lead to the
scenario discussed above. It should be added finally that the
O(z4) contribution to the 5D mass can be introduced along
the same line – in this case, Xnon should correspond to some
dimension-two condensate as in the scenario of Ref. [74].

5.3 Two-point vector correlator

The central objects in the holographic approaches based
on the AdS/CFT correspondence are correlation functions
of various operators. The famous AdS/CFT prescription of
Refs. [2,3] provides a recipe of calculating these functions
from a dual gravitational theory. Perhaps the most remark-
able aspect is that when the dual higher dimensional theory
can be treated semiclassically, i.e. as just a classical field
theory in a curved space, the obtained correlation functions
correspond to the strong coupling regime of 4D gauge theory
due to the strong-weak nature of duality in the gauge/gravity
correspondence.

The two-point correlation function of vector currents Jμ
is defined in the Euclidean space as∫

d4xeiqx 〈Jμ(x)Jν(0)〉 = (qμqν − q2gμν)�V (Q2),

Q2 = −q2. (5.30)
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Applying the standard AdS/CFT prescription [2,3] to the
bottom-up holographic models, the vector two-point corre-
lator �V (Q2) is determined by the expression [12,13] (we
set to unity the general normalization constant)

�V (Q2) = −∂zV (Q2, z)

Q2z

∣∣∣∣
z→0

. (5.31)

where V (Q2, z) represents the so-called bulk-to-boundary
propagator. Such propagators are of primary importance in
the holographic approaches because they determine the cor-
relation functions. In the vector case under consideration, the
function V (Q2, z) is defined as the solution of equation of
motion for spin-one mesons in the Euclidean domain satis-
fying the boundary condition

V (Q2, 0) = 1. (5.32)

Within the standard SW holographic model with the back-
ground ecz

2
, the corresponding solution reads [72]

V (Q2, z) = �
(

1 + Q̃2
)
e−(c+|c|)z2/2U

(
Q̃2, 0, |c|z2

)
,

(5.33)

where the dimensionless momentum,

Q̃2 ≡ Q2

4|c| , (5.34)

is introduced for simplicity. Actually after extracting the pref-
actor e−cz2/2√z the finding of this solution just repeats the
finding of generalized background function f1(z) in (4.29)
with b replaced by Q̃2, i.e., V (Q2, z) can be written
from (4.29) by setting J = 1, b = Q̃2 and multiplying
by that prefactor. The expansion of (5.33) near z = 0 reads

V (Q2, z)z→0 = 1

+
{
Q̃2

[
ln(|c|z2) + ψ

(
1 + Q̃2

)
+ 2γ − 1

]

−1

2

(
1 + c

|c|
)}

|c|z2. (5.35)

The vector two-point correlator of the SW model (first
derived for general c in [72]) follows from substitution (5.35)
into (5.31),

2�V (Q2) = 1 + c
|c|

2Q̃2
− ψ

(
1 + Q̃2

)
+ const, (5.36)

where ψ denotes the digamma function that can be repre-
sented as a sum of pole terms,

ψ
(

1 + Q̃2
)

= −
∞∑
n=0

1

Q̃2 + n + 1
+ const. (5.37)

The poles

− Q̃2 = m2
n

4|c| = n + 1, n = 0, 1, . . . , (5.38)

of this function yield the mass spectrum that can be also found
by solving the corresponding equation of motion. A conve-
nient visualization of the origin of pole structure is given by
the following representation of bulk-to-boundary propaga-
tor (5.33) derived in Ref. [118],

V (Q2, z) = 4c2z2e−(c+|c|)z2/2
∞∑
n=0

L1
n(|c|z2)

Q2 + 4|c|(n + 1)
.

(5.39)

The poles and residues in (5.39) yield directly the spec-
trum (A.11) and eigenfunctions (A.12) for J = |s| = 1.

As was emphasized in Ref. [72], the choice of positive
dilaton background, c > 0, leads to unphysical massless
pole in the vector correlator (5.36), the physical choice is
the sign c < 0. This conclusion is in accord with our result
found by shifting the intercept parameter b from zero value
(assumed by default in the standard SW models) with the
help of modification of SW background: The generalized
background in SW action (4.31) reducing to the SW− model
at b = 0 is well defined for the scalar and vector case only.

On the other hand, we can redefine the SW model intro-
ducing the O(c2z4) infrared modification of 5D mass (5.23)
instead of the exponential background ecz

2
. This is equiv-

alent to setting c = 0 but keeping |c| 
= 0 in all relevant
relations including (5.33) as was first shown in Ref. [74].
This is qualitatively clear – the results cannot depend on the
sign of c within such a “No-wall” formulation of the SW
model. Below the given formulation will be referred to as
SW0 model. The definitions can be briefly summarized as

SW± : Background e±|c|z2
, m2

5R
2 = 0. (5.40)

SW0 : Background e0, m2
5R

2 = c2z4. (5.41)

It is seen that the massless pole remains in the SW0 model and
already cannot be removed. In addition, if we introduce arbi-
trary intercept parameter b with the help of O(bz2) infrared
modification of 5D mass (5.23), the massless pole emerges
even for the negative sign c < 0 [16], see below. All this looks
troublesome as long as the proportionality of two-point func-
tion (5.30) to q2 = −Q2 is necessary for gauge invariance.
The crux of the problem is that the Q2�V (Q2) defines the
hadronic vacuum polarization and would enter a dressed pho-
ton propagator, making photons massive if it does not vanish
at Q2 = 0. In other words, we must have the condition

Q2�V (Q2)

∣∣∣
Q2=0

= 0. (5.42)

The condition (5.42) is quite non-trivial in the general
case. The direct substitution of bulk-to-boundary propaga-
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tor (5.33) to (5.31) leads to a UV divergent expression. The
divergent constant is usually ignored together with a finite
constant in (5.36) because only the pole structure is typi-
cally of interest. In the simple SW− model, this is justified
by a rigorous holographic renormalization [119]. We recall
that the correlator �V (Q2) is defined in such a way that the
transverse projector in the polarization operator (5.30) is pro-
portional to Q2 = −q2. This definition is usually accepted
keeping in mind the property (5.42) due to the gauge invari-
ance. But following the holographic prescriptions one finds
originally an expression for the object “Q2�V (Q2)”. Let us
“restore” the general factor Q2 and write the explicit answer
for the renormalized two-point correlator in the usual SW
model,

Q2�V (Q2) = |c|
{

1 + c

|c| − 2Q̃2
[
ψ

(
1 + Q̃2

)

+2γ − 1 + Cct

]}
, (5.43)

where the constant Cct stems from the local counterterm
required for cancelation of UV divergence. Since this term
is proportional to the square of the gauge invariant field
strength, it can appear only with a factor Q2. The constant
2γ − 1 appears from the expansion (5.35). This constant
plusCct give the constant contribution “Const” in the expres-
sion (5.36). It is seen that the counterterm contribution Cct

cannot cancel the constant 1 + c
|c| . The latter constant is

zero only in the SW− model, the renormalization of sim-
ple SW+ and SW0 models cannot remove the unphysical
massless pole.

The situation becomes more interesting if the expres-
sion (5.43) is extended by inclusion of the intercept parameter
b. Following our results summarized in Sect. 4.3, the arbitrary
intercept can be introduced into any variant of SW model by
adding O(bz2) infrared modification of 5D mass (5.23), this
is equivalent just to the shift Q̃2 → Q̃2+b in the correspond-
ing equation of motion (in our normalization of intercept, i.e.
as in the Eq. (4.35)). Neglecting the counterterm, the direct
extension of (5.43) reads then as follows

Q2�V (Q2) = |c|
{

1 + c

|c| − 2(Q̃2 + b)

[
ψ

(
1 + Q̃2 + b

)
+ 2γ − 1

] }
. (5.44)

The poles of this correlator are situated at

− Q̃2 = m2
n

4|c| = n + 1 + b, n = 0, 1, . . . . (5.45)

Adding the counterterm contribution (which as usual is pro-
portional to Q2) the extension (5.44) can be written as

Q2�V (Q2) = −2|c|Q̃2
[
ψ

(
1 + Q̃2 + b

)
+ 2γ − 1 + Cct

]

+ |c|
{

1 + c

|c| − 2b
[
ψ

(
1 + Q̃2 + b

)
+ 2γ − 1

]}
.

(5.46)

Now the condition (5.42) can be satisfied at certain values of
intercept b, namely given by the algebraic equation

2b
[
ψ (1 + b) + 2γ − 1

] = 1 + c

|c| . (5.47)

The Eq. (5.47) has the following numerical solutions satisfy-
ing b ≥ −1 (this restriction excludes tachyonic states in the
spectrum (5.45)),

SW− : b−
1 = 0; b−

2 ≈ 0.31. (5.48)

SW0 : b0
1 ≈ −0.38; b0

2 ≈ 0.94. (5.49)

SW+ : b+
1 ≈ −0.52; b+

2 ≈ 1.31. (5.50)

The solution b−
1 corresponds to the known situation of

absence of pole at zero momentum in the correlator (5.36).
But as we see, a simple extension of the SW model to free
intercept in the linear spectrum gives rise to five new possi-
bilities. It turns out that the SW+ and SW0 holographic mod-
els can be constructed for vector mesons without unphysical
massless pole. This solves, in particular, the longstanding
problem of SW+ model pointed out in Ref. [72] (and noticed
even earlier – in the pioneering paper [60] where the SW−
model was introduced).

A question appears about a possible physical meaning of
the second solution in (5.48)—(5.50). One can interpret the
second solution as a prediction of the second radial trajec-
tory with a larger intercept. Such an additional trajectory for
vector mesons is well known in the phenomenology – it cor-
responds to the D-wave vector resonances [85,86]. In the
light non-strange mesons, the ground states on these trajec-
tories are ρ(1700) for isotriplet and ω(1670) for isosinglet
mesons [109]. Since the spectrum of light mesons reveals the
global behavior (5.20), m2

n ∼ n+ L , the expected difference
of intercept between the S-wave and D-wave trajectories is
�b = 2. The prediction (5.50) of SW+ model, �b+ ≈ 1.83,
is close to this expectation. One can further suggest that the
deviation of �b+ from �b is due to a lower value of slope
of angular trajectories with respect to the slope of radial tra-
jectories. We get then a holographic prediction of this effect
together with its magnitude. The latter is comparable with
the fits of light meson spectra performed in Ref. [80] (10%
in the SW+ model vs. 20% in [80]).

The solution b+
1 is remarkably close to the intercept (5.21)

in the vector case (i.e., when J = 1 and L = 0) which is
favored by the phenomenology and by other approaches. And
it turns out to be fully consistent with the fact that both (5.21)
and the LF holographic spectrum (5.18) were derived within
the framework of SW+ holographic model.
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In the general situation of arbitrary intercept parameter,
the holographic renormalization of extended SW model is
problematic because of appearance of longitudinal part in
the two-point vector correlator as in the SW+ variant of
the model at zero intercept. Thus, the extended SW holo-
graphic model should be used in phenomenological applica-
tions keeping in mind this problem.7 On the other hand, the
given problem may give impetus to further development. For
instance, one can try to construct a physical mechanism for
cancelation of longitudinal contribution to the polarization
operator. Or propose a clear physical interpretation for the
longitudinal contribution (perhaps the most obvious option
is that the photon excitations are prone to exist in a strongly
interacting medium in the form of massive vector mesons).

5.4 Pion form factor

The electromagnetic form factors are important character-
istics of stable hadrons and have been extensively studied
experimentally. These quantities encode information on the
distribution of quarks and gluons within hadrons, the knowl-
edge of these distributions is crucial for understanding the
transition of QCD from long to short distance scales.

Within the bottom-up holographic approach, a form fac-
tor of a state � is given by a certain overlap integral in the
fifth coordinate z with external probe described by a bulk-
to-boundary propagator [117,118,120] (a short review and
many references can be found in a recent Ref. [28]). For
instance, if �0(z) is the holographic wave function of ground
scalar state in the standard SW model with background ecz

2
,

the space-like electromagnetic form factors of this state (i.e.,
when the corresponding particle is probed by a virtual pho-
ton) is given by [59]

F(Q2) = e

∞∫

0

dz

z3 ecz
2
V (Q2, z)�2

0(z), (5.51)

where Q is the Euclidean momentum, the constant e must
be chosen such that F(0) = 1 to satisfy the charge con-
servation in Minkowski space at Q2 = 0 (or, alterna-
tively, this can be achieved by appropriate normalization of
�0(z)), and V (Q2, z) is the vector bulk-to-boundary prop-
agator (5.33). In other words, the form factor in AdS is
represented as the overlap in the holographic coordinate of
the normalizable modes dual to the incoming and outgoing
hadrons with the non-normalizable mode dual to the external
source. The weight factor 1/z3 originates from the contrac-
tion

√
g εM∂M ∼ 1/z3, where εM is the polarization vector

of external photon (with the condition (2.9), εz = 0) and ∂M
stems from the Noether scalar current.

7 We note, however, that in numerous phenomenological applications
of SW+ model, this problem is ignored.

The expression for �0(z) follows from the wave func-
tion (A.12),

�0(z) ∼ e−(c+|c|)z2/2z2+|s|−J , (5.52)

with |s| given by (A.13). This function depends on the mass
of corresponding mode only via |s|. If the constant part in
the effective mass (5.23) is fixed, �0(z) is not changed if
we perform a general shift in the spectrum with the help of
O(z2) contribution in (5.23). In principle, we can equate the
mass of the ground state to zero and try to interpret �0(z) for
J = 0 as the holographic wave function of pion. The expres-
sion (5.51) has then the interpretation of electromagnetic pion
form factor. Substituting (5.33) and (5.52) into (5.51) we get

F(Q2) = e�
(

1 + Q̃2
) ∞∫

0

dz z1+2(|s|−J )e−(3|c|+c)z2/2

×U
(
Q̃2, 0, |c|z2

)
. (5.53)

Since |s| ≥ J this expression is convergent for any sign
of c. If the pion corresponded to twist-two QCD operator,
we would have |s| = J (see a comment after Eq. (A.13)).
The expression (5.53) can be then integrated completely for
c < 0, i.e. in the case of standard SW− holographic model, as
shown analytically in Ref. [118]. Taking e = 2|c| to provide
F(0) = 1 and introducing the variable

y = |c|z2,

the electromagnetic pion form factor takes the form

Fπ (Q2)=�
(

1+ Q̃2
) ∞∫

0

dy e−yU
(
Q̃2, 0, y

)
= 1

1+ Q̃2
,

(5.54)

remarkably reproducing the result of exact Vector Meson
Dominance (VMD): 4|c| is the mass of the lightest vector
meson in the standard SW model, (see the relation (5.38)

and we recall the notation (5.34), Q̃2 ≡ Q2

4|c| ).
In the LF holographic approach, one obtains the result

(5.54) due to the imposed condition (5.17) which means
|s| = L = 0 for pions. But as we commented in the pre-
vious section, there is no solution with discrete spectrum for
L = 0.

Within the standard AdS/QCD approach, we should take
� = 3 for the pion states because it is the canonical dimen-
sion of the scalar quark bilinear operator in QCD. This leads
to |s| = 1 for scalars and the result (5.54) does not take
place (scales as 1/Q̃4 [59,120]) if we act in a straightfor-
ward manner. This should mean that we do something wrong
when associating �0(z) with physical pion. Our error seems
to lie in neglecting the fact that the straightforward non-
normalizable solution φ(z) of scalar equation of motion for
� = 3 has the behavior φ(z) ∼ z near the AdS boundary,
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this also follows from the general UV asymptotics (5.28). For
this reason, the physical source for scalar particles, which is
finite at the UV boundary, must be associated with φ(z)/z
as is always accepted in holographic calculations of relevant
scalar correlation functions. But this also imply that the phys-
ical pion state should be associated8 with �π(z) = �0(z)/z,
hence, it is �π(z) that should be substituted into (5.51)
in place of �0(z). Technically this is tantamount to taking
|s| = 0 in (5.52) and the result (5.54) is reproduced.

Perhaps a more physical argument consists in interpreting
the pion as the longitudinal component of the axial-vector
field A||(z), as is usual in the chiral effective field theories
and in many AdS/QCD models starting from Refs. [12,13].
Then indeed �0(z) ∼ z2 for the pion as it arises from a
component of vector field corresponding to a twist-two QCD
operator, A||(z) ∼ z2, but the pion mass does not follow
from an equation of motion for scalar particles. In the usual
descriptions of spontaneous CSB, the fields �π(z) and A||(z)
are mixed, the details of mixing are not important for us since
the main property is the resulting scaling O(z2), all arising
factors will be absorbed into the normalization Fπ (0) = 1.

Another phenomenological difficulty encountered in the
LF holographic approach is that the poles of vector bulk-to-
boundary propagator (5.39) (interpreted as “dressed vector
current”) do not match the LF vector spectrum (5.18) for the
S-wave mesons, L = 0. The experimental data on Fπ (Q2)

are well described for the vector spectrum with the behavior
of radially excited states [120],

m2
ρ(n) ∼ n + 1/2, (5.55)

as in (5.18) or (5.11). As a result, the vector meson masses
must be shifted manually to their physical location to obtain
a good agreement with data [59].

Let us demonstrate how one can proceed within the present
approach. Introduction of non-zero intercept parameter b in
the spectra with the help of O(z2) contribution in (5.23), as
was mentioned above, does not change the holographic pion
wave function. In the bulk-to-boundary propagator (5.33),
this leads to the shift Q̃2 → Q̃2+b and one gets (5.44). Con-
sequently, the expression for the form factor can be readily
obtained from (5.54) by doing the same shift and appropri-
ately choosing the constant e (to provide F(0) = 1),

Fπ (Q2) = 1 + b

1 + b + Q̃2
= 1

1 + Q2

4|c|(1+b)

. (5.56)

The form factor (5.56) can be compared with existing exper-
imental data on the space-like pion form factor at different
choices of parameter b and an optimal fit can be found. The

8 Remotely similar arguments (but leading to a more complex identifi-
cation of the pion) were used in Ref. [118] for a holographic calculation
of the pion form factor.

best fit is close to b = −1/2, see Fig. 3 below. Since the
radially excited vector spectrum of SW model behaves as

m2
ρ(n) ∼ n + 1 + b, (5.57)

the value of

b = −1

2
, (5.58)

for the intercept parameter results in the behavior (5.55).
The cases c = 0 but formally |c| 
= 0 and c > 0 in (5.53)

correspond to the SW0 (“No-wall”) and SW+ holographic
models. The form factor (5.54) for these models can be com-
pactly written as

Fπ (Q2) = e(k)�
(

1 + Q̃2
) ∞∫

0

dy e−(1+k)yU
(
Q̃2, 0, y

)
,

(5.59)

SW+: k = 1; SW0: k = 1

2
. (5.60)

The integral in (5.59) at k 
= 0 can be solved with the help
of the same trick as was used in Ref. [118] to derive (5.54)
and (5.39). The trick consists in exploiting a known integral
representation of the Tricomi function [121] to rewrite the
bulk-to-boundary propagator (5.33) of SW− model (i.e., c <

0) as

V−(Q̃2, y) = y

1∫

0

x Q̃
2
dx

(1 − x)2 e
− yx

1−x . (5.61)

Substituting this representation into (5.51) for any sign of c
and choosing the pion wave function as before, we get

Fπ (Q2) = e(k)

1∫

0

x Q̃
2
dx

(1 − x)2

∞∫

0

dy y e
−

(
1

1−x +k
)
y

= e(k)

1∫

0

x Q̃
2
dx

(1 − x)2

(
1

1 − x
+ k

)−2

= e(k)

1∫

0

x Q̃
2
dx

(1 + k − kx)2 . (5.62)

For k = 0 the integral is elementary and one arrives at the
known relation (5.54). At k 
= 0 the emerged integral can-
not be solved in terms of elementary functions but can be
expressed through the Lerch transcendent function �(t, s, ξ)

[121]. Setting e(k) = k + 1 to satisfy Fπ (0) = 1, we obtain
the final answer for the normalized pion form factor,

Fπ (Q2) = 1 + 1

k
− Q̃2

k
�

(
k

1 + k
, 1, Q̃2

)
. (5.63)
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Fig. 2 The pion form factors (5.54) (solid) and (5.63) for k = 1/2
(dashed) and k = 1 (dotted). The scale parameter 4|c| = 1.1 GeV2, as
in Fig. 3

An important caveat: The normalization Fπ (0) = 1 is under-
stood as the limit,

lim
Q2→+0

Fπ (Q2) = 1, (5.64)

because if we set Q2 = 0 in (5.63) we would obtain Fπ (0) =
1+1/k. This mathematical subtlety of Lerch function � must
be taken into account – we make use of the physical limit at
zero Euclidean momentum.

It is interesting to notice in passing that the appearance of
Lerch transcendent function looks intriguing since this func-
tion generalizes the polylogarithm, Lis(t) = t�(t, s, 1), that
at positive integer s arises in the calculations of higher-order
Feynman diagrams in quantum electrodynamics. Within the
framework of SW holographic models, this function emerges
in gravitational form factors of nucleons [39].

One can write an alternative to (5.63) expression in a form
of convergent for k > 0 series in terms of Euler digamma
and Beta functions,

Fπ (Q2)

= 1 +
∞∑
n=0

ψ
(
Q̃2 + n + 1

)
− ψ (n + 1) − ln(1 + k)

(1 + k)n+1B
(
Q̃2, n + 1

) .

(5.65)

The plots for (5.54) and (5.63) are displayed in Fig. 2.
It is qualitatively seen that enlarging k we get progressively
slower fall-off with Euclidean momentum. This happens due
to a contribution of radially excited vector mesons. The given
effect can be analytically visualized using the definition of
function �(t, s, ξ) [121],

�(t, s, ξ) =
∞∑
n=0

tn

(n + ξ)s
, (5.66)

in the expression (5.63),

Fπ (Q2) = 1 − Q̃2

k

∞∑
n=1

(
k

1 + k

)n 1

Q̃2 + n
, (5.67)

where the n = 0 contribution canceled the term 1/k in (5.63).
The obtained representation can be further simplified writing
Q̃2 = Q̃2 + n − n in the numerator and making use of the
summation

∞∑
n=1

(
k

1 + k

)n

= k, (5.68)

that results in the following pole expansion,

Fπ (Q2) = 1

k

∞∑
n=1

(
k

1 + k

)n n

Q̃2 + n
. (5.69)

The obtained relation shows explicitly how the contributions
of highly excited states are damped depending on a model. In
the SW+ model, k = 1, the damping factor is 1

2n . In the No-
Wall model, k = 1

2 , the damping factor becomes stronger,
1
3n . The SW− model, k = 0, corresponds to the extreme case
of infinite damping when only the first term survives leading
to the well known result (5.54).

An alternative way to get the results above is to substi-
tute the representation for the bulk-to-boundary propaga-
tor (5.39) to the holographic definition of pion form fac-
tor (5.51) and use the following property of the Laguerre
polynomials [121],

∞∫

0

dy y e−y L1
n(y) = δn0. (5.70)

This relation is responsible for the absence of contribution
of higher modes, n > 0, in the SW− model, thus realizing
the exact VMD. In the case of SW+ and SW0 models, the
exponent is replaced by e−(1+k)y that invalidates the given
relation for k 
= 0. The use of Lerch transcendent function,
however, looks nicer since it directly yields the rate of damp-
ing of contribution from the excited states.

The nonzero intercept parameter b can be simply intro-
duced in the form factor (5.63) via the shift Q̃2 → Q̃2 + b,
as before. This changes the normalization factor, e = e(k, b)
(that was previously normalized as e = e(k, 0) = 1), the
final result is

Fπ (Q2) = e(k, b)

[
1 + 1

k

− Q̃2 + b

k
�

(
k

1 + k
, 1, Q̃2 + b

) ]
, (5.71)

e(k, b) =
[

1 + 1

k
− b

k
�

(
k

1 + k
, 1, b

)]−1

. (5.72)
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Fig. 3 The pion form factor (5.56): b = 0 (solid) and b = −1/2
(dashed). The dotted line depicts the form factor (5.71) for k = 1 and
b ≈ −0.7324. Everywhere the scale parameter |c| is fixed from the phe-
nomenological slope 4|c| = 1.1 GeV2 (see the text). The experimental
data is taken from: diamonds – Ref. [122], circles – Ref. [123], squares
– Ref. [124], triangles – data compiled in Ref. [125]

Now one can try to get an optimal fit for b by comparing
the relation (5.71) with the experimental data for Fπ (Q2)

in the space like region. A couple of examples is displayed
in Fig. 3. The mean slope 4|c| of Regge and radial Regge
trajectories in the spectra of light non-strange mesons was
fitted in reviews [86,92], the result was 4|c| ≈ 1.1 GeV2

(see a brief review in the Appendix D). We use everywhere
this input value for the slope of meson trajectories.

In the case of SW− model, the best fit is achieved at

b− ≈ −0.51. (5.73)

This value perfectly matches the expected pattern of CSB
in the light meson spectrum mentioned after Eq. (5.10) and
agrees with the previous fit (5.58) for the SW− model. The
global fit (5.20) of Regge spectrum in the light non-strange
mesons also resulted in a mean intercept value close to (5.73).
It is also interesting to note that the numerical solution b+

1
in (5.50) providing a self-consistency of SW+ model practi-
cally coincides with (5.73).

In the case of SW+ models, the best fit is achieved at
b+ ≈ −0.73. For the best fits, the curves in Fig. 3 lie very
close. In order to estimate a variation of b we show in Fig. 3 a
curve for the SW+ model that provides the best fit of data in
the interval 0.5 � Q2 � 2.5 GeV2. This curve corresponds
to b+ ≈ −0.77 (for the SW− model, such a fitting would give
b− ≈ −0.58). Unfortunately, with such small intercept the
SW+ model predicts the mass of the first ρ-meson in (5.57)
near 0.5 GeV, somewhat away from the experimental value
of 0.77 GeV [109].

We observe thus that the SW− describes both the spec-
troscopy and pion form factor with a universal intercept
b− ≈ −1/2, while the SW+ is not so successful. The situa-
tion with fits in the SW0 model lies in between. Recalling that

the SW− model reproduces the exact VMD, we just redis-
cover once more an old phenomenological wisdom about the
VMD concept.

The physical value of intercept b can be independently
estimated from the mean pion charge radius squared. This
quantity appears in the small Q2 expansion of the electro-
magnetic pion form factor [109],

Fπ (Q2) = 1 − 1

6
〈r2

π 〉Q2 + O(Q4). (5.74)

This relation should be matched to the small Q2 expansion
of our theoretical prediction (5.71).

As a warm-up exercise, let us first match (5.74) to the small
Q2 expansion of (5.56). The result can be written immedi-
ately,

〈r2
π 〉 = 6

4|c|(1 + b)
. (5.75)

Experimentally 〈r2
π 〉 = 0.6592 fm2 with a high precision

[109]. Using our value 4|c| = 1.1 GeV2 for the slope and the
conversion factor 1 fm = (0.197 GeV)−1 we obtain exactly
the estimate (5.73). The correct prediction of 〈r2

π 〉 means the
correct prediction of the experimental slope of pion form fac-
tor at small Q2. So the overall phenomenological consistency
of the SW− model looks almost perfect.

For the small Q2 expansion of the full answer (5.71) one
can use an identity [121]

∂ξ�(t, s, ξ) = −s�(t, s + 1, ξ)

that leads to the following expression for 〈r2
π 〉,

〈r2
π 〉 = 6

4|c|e(k, b)k
[
�

(
k

1 + k
, 1, b

)

−b�

(
k

1 + k
, 2, b

)]
. (5.76)

It should be remarked that the limits k → 0 andb → 0 are not
completely interchangeable in (5.76) . The first limit can be
taken using a series representation for the Lerch transcendent
function [121],

�(t, s, ξ) = 1

1 − t

∞∑
n=0

( −t

1 − t

)n n∑
i=0

(−1)i
(
n

i

)
(ξ + i)−s,

(5.77)

from which we get

�

(
k

1 + k
, s, b

)
k→0

= 1

bs
+ k

(1 + b)s
+ O(k2), (5.78)

for s = 1 and s = 2. Making use of this expansion we
reproduce both e(0, b) = (1 + b)−1 in (5.56) from (5.72)
and (5.75) from (5.76), i.e. the transition to the SW− model
is analytically smooth (but this is not the case for all software
systems).
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Substituting to the Eq. (5.76) the experimental value of
〈r2

π 〉 and our phenomenological value for the slope 4|c|,
we obtain an equation for the intercept b which can be
solved numerically. For the SW+ model, k = 1, the result
is b+ ≈ −0.64; for the No-Wall model, k = 1/2, we get
b0 ≈ −0.59, lying as expected between b+ and b− in (5.73).
The obtained estimates are noticeably closer to b = −1/2
than the estimates above based on a global fit to the experi-
mental data on Fπ (Q2).

6 Conclusions

We have substantially advanced in construction of a general
bottom-up holographic theory of linear meson Regge trajec-
tories. Many Soft Wall (SW) like holographic models and
their relatives proposed in the literature can be obtained as
particular cases within our framework. The proposed theory
is based on the most general quadratic in fields action in the
AdS5 background in which the Poincaré invariance along
the fifth coordinate is violated in such a way that the mass
spectrum of normalizable 4D modes has the Regge form.
The form of this action is not unique and we scrutinized
various interrelations between different forms. Perhaps the
simplest form arises when the action is written in the pure
AdS5 space without any z-dependent background (here z is
the holographic coordinate). In this case, the 5D mass term
contains O(z2) and O(z4) contributions which are responsi-
ble for the intercept and slope of linear Regge trajectories,
correspondingly. We argued that these contributions describe
the effects caused by the most important non-local phenom-
ena of strongly coupled 4D gauge theory – the confinement
and spontaneous chiral symmetry breaking – in terms of a
local 5D dual field theory formulated in the AdS5 space.
In addition, the most general quadratic in fields holographic
action can contain a z-dependent contribution of another sort,
namely which is linear in derivative ∂z of a field. This con-
tribution regulates the ratio of slopes of radial and angular
trajectories and, to the best of our knowledge, was never
explored before.

We performed a detailed comparison of the proposed holo-
graphic theory with some other approaches describing the
linear Regge trajectories – the Light Front holographic QCD,
Veneziano like dual amplitudes, and string like phenomeno-
logical spectra.

We considered several application of the constructed holo-
graphic theory. The first application was a study of confining
behavior using a certain formulation of holographic Wilson
criterion. It was found that this criterion can be satisfied for
the spin-one and spin-two particles. These two cases have
interesting massless limits.

As the second application, some effects of chiral symme-
try breaking in the meson spectra were discussed. We drew

attention to the fact that this phenomenon seems to affect
the whole leading trajectories, not just the low-spin states
as in the standard descriptions. A possible direction for a
holographic modeling of this phenomenon was outlined.

The third considered application concerned the vector
two-point correlator. This correlator has a notorious prob-
lem of unphysical massless pole which is absent only in the
special case of simple SW holographic model with negative
exponential background that was introduced in the original
paper [60]. We constructed a general recipe how to avoid
this problem if a different form or an extended version of
SW model is used. The requirement of absence of massless
pole is converted into a prediction of intercept of the radial
Regge trajectory. The prediction turns out to be different for
different forms of SW model.

The fourth application was devoted to the electromag-
netic form factor of charged pion. We highlighted differences
between the results produced by various forms of holographic
SW models. Most notably, the exact vector meson dominance
takes place only in the case of the SW model with negative
exponential background, within the framework of other for-
mulations, all radially excited states contribute. We derived a
model-dependent damping rate of the contribution of radial
excitations.

Let us outline other possible applications and develop-
ments. Following the calculation of Ref. [84], the results of
Sect. 5.1 (where consistent corrections to the AdS metrics
within the constructed general theory were discussed) can be
used to extract the precise forms of heavy-quark potentials.
Also the models in this form can be explored for analysis
of holographic thermodynamics. Our general discussion of
holographic modeling of chiral symmetry breaking should
be further elaborated and concrete models should be con-
structed. Concerning the hadron structure, many problems
can be addressed – the anomalous form factor of neutral pion,
the electromagnetic and gravitational nucleon form factors
together with related problems of various generalized quark
and gluon distributions and with electroproduction of heavy
vector mesons.

Finally we should mention that the linearity of radial
Regge trajectories guarantees the expected analytical form
of Operator Product Expansion (the parton logarithm plus
polynomial in inverse Euclidean momentum squared correc-
tions) of two-point correlation functions. The required ana-
lytical properties of correlators are spoiled immediately if
nonlinear corrections are introduced, both manually and via
a back-reacted geometry. Whether the proposed theory can
be extended to non-linear case in a self-consistent way is an
open problem.
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Appendix A

Consider the following action for tensor fields,

S = 1

2

∫
d5x

√
gecz

2
gMN gM1N1 . . . gMJ NJ

×∂M�M1...MJ ∂N�N1...NJ . (A.1)

The equation of motion with the condition (2.9) is

[
∂μ∂μ − z3−2J e−cz2

∂z

(
z2J−3ecz

2
∂z

)]
�μ1...μJ = 0.

(A.2)

We set R = 1 in this Appendix. Within the plane wave
ansatz (3.10) for the discrete spectrum of 4D particles, the
equation takes the form

z2J−3ecz
2
m2

nv
(J )
n + ∂z

(
z2J−3ecz

2
∂zv

(J )
n

)
= 0. (A.3)

Making the substitution

v(J )
n = z(3−2J )/2e−cz2/2ψn, (A.4)

we get after a straightforward algebra

−ψ ′′
n +

[
c2z2 + 2c(J − 1) + (J − 2)2 − 1/4

z2

]
ψn

= m2
nψn . (A.5)

After adding the mass term m2
5�

...�... to (A.1), this equation
is extended to

−ψ ′′
n +

[
c2z2 + 2c(J − 1) + (J − 2)2 + m2

5 − 1/4

z2

]
ψn

= m2
nψn . (A.6)

This equation has a form of one-dimensional Schrödinger
equation

− ψ ′′
n +

[
x2 + s2 − 1/4

x2

]
ψn = Enψn, (A.7)

which arises in the quantum-mechanical problem of two-
dimensional harmonic oscillator with orbital momentum
s. The corresponding spectrum of discrete modes is well
known,

En = 4n + 2|s| + 2, n = 0, 1, 2, . . . , |s| > 1/2, (A.8)

with the normalized eigenfunctions

ψn =
√

2n!
(|s| + n)! e

−x2/2x |s|+1/2L |s|
n (x2), (A.9)

where L |s|
n (x2) are associated Laguerre polynomials. The

first two polynomials are

L |s|
0 (x2) = 1, L |s|

1 (x2) = 1 + |s| − x2. (A.10)

This allows to write immediately the spectrum of Eq. (A.6),

m2
n,J = 2|c|

(
2n + 1 + c

|c| (J − 1) +
√

(J − 2)2 + m2
5

)
.

(A.11)

The relations (A.4) and (A.9) dictate the corresponding
eigenfunctions,

v(J )
n = e−(c+|c|)z2/2z2+|s|−J L |s|

n (|c|z2), (A.12)

where

|s| =
√

(J − 2)2 + m2
5, (A.13)

and m2
5 is given by the relation (2.8), m2

5 = (� − J )(� +
J − 4). In the case of dimensions of twist-two operators,
� = J + 2, we obtain |s| = J .

The incorporation of non-zero intercept normalized as in
the text (e.g., as in Eq. (4.35)) is equivalent to adding the
constant 4b|c| to the potential of Schrödinger equation (A.6).
This does not change the eigenfunction (A.12). For |s| = J
the spectrum (A.11) becomes

m2
n,J = 4|c|

[
n + 1

2

(
J + 1 + c

|c| (J − 1)

)
+ b

]
. (A.14)

Appendix B

In this Appendix, we provide a more rigorous version of the
analysis of Sect. 4.1 and extend this analysis to the tensor
case using the generalized background derived in Sect. 4.2.
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Consider the following 5D action,

S = 1

2

∫
d5x

√
ge−cz2

U 2(b, 0, cz2)gMRgNS∂MVN ∂RVS,

(B.1)

where U is the Tricomi confluent hypergeometric function
and a general normalization factor is omitted. Actually the
antisymmetric tensor field was discussed in [78] but the SW
model in the form written in (B.1) is more convenient for
further generalization to symmetric tensor fields and to scalar
fields. The result does not depend on the chosen form, but
for completeness below we will repeat our analysis for the
antisymmetric case.

Let us eliminate the “generalized” background with the
help of appropriate field redefinition,

VM ≡ CvM , C ≡ ecz
2/2U−1(b, 0, cz2). (B.2)

In what follows, we omit the arguments of the Tricomi func-
tion, since they are always the same in our consideration.
This transformation changes the derivative with respect to
the holographic coordinate z,

∂zVM = czecz
2/2U−1vM − ecz

2/2U−2U ′2czvM
+ecz

2/2U−1∂zvM , (B.3)

whereU ′ denotes the derivative with respect to the third argu-
ment. Let us introduce another notation,

G ≡
(

1 − 2
U ′

U

)
cz, (B.4)

which we use to rewrite the field derivative as

∂zVM ≡ C∂zvM + CGvM . (B.5)

Consider in detail the kinetic term,

gMRgNS∂MVN ∂RVS

= gμρgNS∂μVN ∂ρVS + gzzgN S∂zVN ∂zVS

= C2gμρgNS∂μvN ∂ρvS + gzzgN S (C∂zvN + CGvN )

× (C∂zvS + CGvS)

= C2gMRgNS∂MvN ∂RvS + C2gzzgN S

×
(

2GvN ∂zvS + G2vNvS

)
. (B.6)

Substituting this expression back into the action, the factor
C2 is canceled out,

S = 1

2

∫
d5x

√
g

[
gMRgNS∂MvN ∂RvS

+gzzgN S
(

2GvN ∂zvS + G2vNvS

)]
. (B.7)

The variation of the action reads

δvS =
∫

d5x
√
g

[
gMRgNS∂MvN ∂RδvS + gzzgN SGδvN

× ∂zvS + gzzgN SGvN ∂zδvS + gzzgN SG2vN δvS

]
.

(B.8)

After integrating by parts,

δvS =
∫

d5x
[
−∂R

(√
ggMRgNS∂MvN

)
+ √

ggzzgN SG

× ∂zvN − ∂z

(√
ggzzgN SGvN

)
+ √

ggzzgN SG2vN

]

× δvS, (B.9)

a part of the third term (with derivative acting on the field)
cancels the second term, the resulting variation is

δvS = 1

2

∫
d5x

[
−∂R

(√
ggMRgNS∂MvN

)
−

−
(
∂z

(√
ggzzgN SG

)
− √

ggzzgN SG2
)

vN

]
δvS,

(B.10)

from which the equation of motion follows[
−∂R

(√
ggMRgNS∂M

)

−∂z

(√
ggzzgN SG

)
+ √

ggzzgN SG2
]
vN = 0. (B.11)

After substituting various metric-related factors,

√
ggMRgNS = R

z
ηMRηNS,

√
ggzzgN S = − R

z
ηNS,

(B.12)

and multiply by z/R we get

[
−∂μ∂μ + z∂z

(
∂z

z

)
+ z∂z

(
G

z

)
− G2

]
ηNSvN = 0.

(B.13)

Let us expand the second z-derivative,

[
−∂μ∂μ + z∂z

(
∂z

z

)
+ ∂zG − G

z
− G2

]
ηNSvN = 0,

(B.14)

and examine the last three terms separately. The first term
reads

∂zG = c − 2c∂z

(
zU ′

U

)

= c − 2c

[
U ′

U
+ 2cz2U

′′

U
− 2cz2U

′2

U 2

]
. (B.15)

The Tricomi function U (b, k, x) is a solution of the differ-
ential equation (C.21)

x
d2U

dx2 + (k − x)
dU

dx
= bU. (B.16)
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In our case of k = 0 and x = cz2, this means

cz2U ′′ − cz2U ′ = bU, (B.17)

and we can write

∂zG = c − (2c + 4c2z2)
U ′

U
− 4cb + 4c2z2U

′2

U 2 . (B.18)

The last two terms are

G

z
= c − 2c

U ′

U
, (B.19)

G2 = c2z2 − 4c2z2U
′

U
+ 4c2z2U

′2

U 2 . (B.20)

Substituting the expressions (B.18), (B.19), and (B.20) into
the Eq. (B.14), it is easy to arrive at the final version of the
equation of motion,
[
∂μ∂μ − z∂z

(
∂z

z

)
+ c2z2 + 4cb

]
ηNSvN = 0. (B.21)

This equation represents a particular case of Eq. (3.9) with
J = 1 and m2

effR
2 = c2z4 + 4cbz2, the spectrum of discrete

normalizable modes is given by (3.15) which for b̃ = 4|c̃|b
under consideration is the spectrum (4.1) that we wanted to
obtain. This proves our statement.

The analysis above can be simply extended to the case of
antisymmetric tensor field which was used in the generalized
SW vector model of Ref. [78]. Consider the 5D action

S = −1

4

∫
d5x

√
ge−az2

U 2(b, 0, az2)gMRgNSFMN FRS,

(B.22)

where FMN = ∂MVN −∂NVM and we preserve the notations
of Ref. [78]. A general normalization factor is omitted. Our
goal is to eliminate the generalized SW background by doing
a field substitution

VM ≡ CvM , C ≡ eaz
2/2U−1(b, 0, az2). (B.23)

We also define the equivalent of the antisymmetric tensor for
the transformed field vM

fMN ≡ ∂MvN − ∂NvM . (B.24)

The z-derivative acts as (the arguments of the Tricomi func-
tion is omitted in what follows)

∂zVM = azeaz
2/2U−1vM − eaz

2/2U−2U ′2azvM
+eaz

2/2U−1∂zvM , (B.25)

whereU ′ denotes the derivative with respect to the third argu-
ment. For the sake of convenience we repeat the notation,

G ≡
(

1 − 2
U ′

U

)
az, (B.26)

in terms of which the field derivative is

∂zVM ≡ C∂zvM + CGvM . (B.27)

The 5D derivative can be written as:

∂MVN ≡ C∂MvN + CGvN δzM . (B.28)

The integrand in the action is

gMRgNSFMN FRS

= gMRgNSC2 (
fMN + GvN δzM − GvMδzN

)
× (

fRS + GvSδ
z
R − GvRδzS

)
= gMRgNSC2 [

fMN fRS + G fMN
(
vSδ

z
R − vRδzS

)
+G fRS

(
vN δzM − vMδzN

)
+ G2 (

vSδ
z
R − vRδzS

) (
vN δzM − vMδzN

)]
. (B.29)

The second and the third term in the square brackets are equal
since we can rename contracted indices M ↔ R and N ↔ S,

gMRgNSFMN FRS

= gMRgNSC2 [ fMN fRS

+2G fMN
(
vSδ

z
R − vRδzS

)
+ G2 (

vSδ
z
R − vRδzS

) (
vN δzM − vMδzN

)]
. (B.30)

We can further simplify the second term using the antisym-
metry of fMN and renaming indices again (we temporarily
omit the 2GC2 factor),

gMRgNS fMN
(
vSδ

z
R − vRδzS

)
= gMRgNS fMNvSδ

z
R − gNSgMR fNMvSδ

z
R

= 2gMRgNS fMNvSδ
z
R

= 2gMzgNS fMNvS = 2gzzgN S fzNvS . (B.31)

The last term can be rewritten as (now we omit the G2C2

factor)

gMRgNS (
vSδ

z
R − vRδzS

) (
vN δzM − vMδzN

)
= gzzgN SvSvN − gzRgNzvRvN − gMzgzSvSvM

+gMRgzzvRvM =
= 2gzzgMNvMvN − 2gMzgNzvMvN . (B.32)

Combining all this together, we get the following transfor-
mation for the integrand

gMRgNSFMN FRS

= C2
[
gMRgNS fMN fRS + 4GgzzgNS fzNvS+

+ 2G2gzzgMNvMvN − 2G2gMzgNzvMvN

]
. (B.33)

Substituting this expression back into the action we see that
the factor C2 cancels with the generalized background and
we get

S = −1

4

∫
d5x

√
g

[
gMRgNS fMN fRS + 4GgzzgNS fzNvS
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+ 2G2gzzgMNvMvN − 2G2gMzgNzvMvN

]
. (B.34)

Since we use the axial gauge for the field, i.e. vz = 0, the
second term in the new action is simplified and the last term
is eliminated,

S = −1

4

∫
d5x

√
g

[
gMRgNS fMN fRS

+4GgzzgNSvS∂zvN + 2G2gzzgMNvMvN

]
. (B.35)

The variation of the action reads

δvS = −
∫

d5x
√
g

[
gMRgNS fMN ∂RδvS

+GgzzgNSvS∂zδvN

+ GgzzgNSδvS∂zvN + G2gzzgN SvN δvS

]
. (B.36)

Integrating by parts,

δvS = 1

�2

∫
d5x

[
−∂R

(√
ggMRgNS fMN

)

−∂z

(√
ggzzgN SGvN

) √
ggzzgN SG∂zvN

+ +√
ggzzgN SG2vN

]
δvS, (B.37)

the variation is further simplified to

δvS = 1

�2

∫
d5x

[
−∂R

(√
ggMRgNS fMN

)

−∂z

(√
ggzzgN SG

)
vN

+ √
ggzzgN SG2vN

]
δvS . (B.38)

The equation of motion follows

−∂R

(√
ggMRgNS fMN

)

−∂z

(√
ggzzgN SG

)
vN +√

ggzzgN SG2vN =0. (B.39)

The expansion of the first term results in

∂R

(√
ggMRgNS fMN

)

= ∂ρ

(√
ggμρgνS fμν

)
+ ∂ρ

(√
ggμρgzS fμz

)

+∂z

(√
ggzzgνS fzν

)
. (B.40)

Here the first contribution is

∂ρ

(√
ggμρgνS fμν

)

= R

z
∂ρ

(
ημρηνσ ∂μvν

) − R

z
∂ρ

(
ημρηνσ ∂νvμ

)

= R

z
∂μ∂μηνσ vν − R

z
ηνσ ∂ν∂ρvρ = R

z
∂μ∂μηνσ vν.

(B.41)

In the last step, we used the usual Lorentz condition ∂ρvρ =
0. With this condition, the term (B.40) is simplified to

∂R

(√
ggMRgNS fMN

)
= R

z
∂μ∂μηνσ vν

−∂z

(
R

z
∂zη

νσ vν

)
. (B.42)

Substituting the last two expressions into the equation of
motion we get

− R

z
∂μ∂μηνσ vν + ∂z

(
R

z
∂zη

νσ vν

)

−∂z

(√
ggzzgN SG

)
vN + √

ggzzgN SG2vN = 0, (B.43)

or, multiplying by z/R and using again vz = 0,

[
−∂μ∂μ + z∂z

(
∂z

z

)
+ z∂z

(
G

z

)
− G2

]
ηνσ vν = 0.

(B.44)

We thus arrived at the Eq. (B.13). This proves that the con-
sidered generalized background is fully equivalent to the
infrared O(z2) correction to the 5D mass.

The analysis for symmetric vector case can be generalized
to the case of tensor fields. As we discussed in the Sect. 4.2,
for spin J > 1 only the SW+ model can be generalized, and
it has the following action,

S = 1

2

∫
d5x

√
ge|c|z2

M2(−b, J − 1,

−|c|z2)∂M�M1...MJ ∂M�M1...MJ . (B.45)

We follow the same procedure as above. First, we introduce
a field redefinition to eliminate the generalized background,

�M1...MJ ≡ CφM1...MJ ,

C ≡ e−|c|z2/2M−1(−b, J − 1,−|c|z2). (B.46)

After introducing a familiar notation,

G ≡
(

−1 + 2
M ′

M

)
|c|z, (B.47)

we can write the field z-derivative as

∂z�M1...MJ = C∂zφM1...MJ + CGφM1...MJ . (B.48)

Thus, the action for φM1...MJ is

S = 1

2

∫
d5x

√
g

[
gMN gM1N1 . . . gMJ NJ ∂MφM1...MJ

∂NφN1...NJ + gzzgM1N1 . . . gMJ NJ
(
2GφM1...MJ

∂zφN1...NJ + G2φM1...MJ φN1...NJ

)]
. (B.49)

After performing the variation of the action in the same way
as in the vector case, substituting various metric-related fac-
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tors we get

√
ggMN gM1N1 . . . gMJ NJ

= R3−2J

z3−2J ηMNηM1N1 . . . ηMJ NJ , (B.50)

√
ggzzgM1N1 . . . gMJ NJ

= − R3−2J

z3−2J ηM1N1 . . . ηMJ NJ , (B.51)

and multiplying by z3−2J/R3−2J we obtain the equation of
motion[

−∂μ∂μ + z3−2J ∂z

(
∂z

z3−2J

)

+∂zG − (3 − 2J )
G

z
− G2

]
φN1...NJ = 0. (B.52)

Kummer’s function M(−b, J − 1,−|c|z2) is a solution to
the differential equation

|c|z2 M
′′

M
= (J − 1 + |c|z2)

M ′

M
+ b. (B.53)

After the same transformations that we did before when we
used this equation, we arrive at the final version of the equa-
tion of motion,
[
∂μ∂μ − z3−2J ∂z

(
∂z

z3−2J

)

+4b|c| − |c|(2 − 2J ) + c2z2
]
φN1...NJ = 0. (B.54)

This equation represents a particular case of Eq. (3.9) with
m2

effR
2 = c2z4 + |c|z2(4b − 2 + 2J ).

Finally we notice that the action used in this procedure
is a special case of a more general action Eq. (4.31), it is
straightforward to extend the analysis above to the scalar J =
0 case replacing (as it is dictated by the results of Sect. 4.1)
the Kummer’s function M by the Tricomi one U .

Appendix C

In this paper, we encounter many times the differential equa-
tion

ψ ′′(y) =
(
a1

y2 + b1 + c1y
2
)

ψ(y), (C.1)

for various real parameters a1, b1 and c1. This equation looks
simple to solve with the help of popular software systems like
Mathematica or Maple but for arbitrary parameters the pro-
duced results are not always trustworthy. In order to escape
a confusion and better understand what is going on with the
solutions at different parameters, below we find the exponen-
tially decreasing and increasing solutions analytically.

In the limit y → ∞, we have the following approximate
equation

ψ ′′ ≈ c1y
2ψ, (C.2)

which has the approximate solution

ψ = Ces
√
c1y2/2, s = ±1, (C.3)

where C is an arbitrary constant. Since we may be interested
both in solutions that are convergent at y → ∞ as well
as divergent solutions, the sign of the exponent can be either
plus or minus. Based on this observation we use the following
ansatz,

ψ(y) = esc2 y2/2
∞∑
j=0

t j y
j+l , (C.4)

where c2 ≡ √
c1, and s ≡ ±1 depending on the convergence

requirements at y → ∞. After substituting into the Eq. (C.1)
and simple manipulations we get

sc2

∞∑
j=0

(
2 j + 2l + 1 − b1

sc2

)
t j y

j+l

+
∞∑
j=0

(( j + l)( j + l − 1) − a1) t j y
j+l−2 = 0. (C.5)

Next, we change the index in the first sum j → j − 2 to get
the same power of y in both sums

sc2

∞∑
j=2

(
2( j − 2) + 2l + 1 − b1

sc2

)
t j−2y

j+l−2 +

+
∞∑
j=0

(( j + l)( j + l − 1) − a1) t j y
j+l−2 = 0. (C.6)

Then we extract first two terms from the second sum to get
the same starting index as in the first sum

sc2

∞∑
j=2

(
2( j − 2) + 2l + 1 − b1

sc2

)
t j−2y

j+l−2

+ (l(l − 1) − a1) t0y
l−2 + (l(l + 1) − a1) t1y

l−1

+
∞∑
j=2

(( j + l)( j + l − 1) − a1) t j y
j+l−2 = 0. (C.7)

Since the powers of y are linearly independent, to satisfy
the equation we need to make each series coefficient equal
to zero. The equality to zero of coefficients of two middle
terms results in the following two conditions,

l(l − 1) = a1, (C.8)

t1 = 0. (C.9)
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In general, we could have resolved the requirement the other
way, by setting t0 = 0 and l(l+1) = a1, but this is equivalent
to redefining l to l + 1.

The Eq. (C.8) is called indicial equation. Since a1 > 0
(otherwise the potential in the Eq. (C.1) is not bounded from
below), the two solutions of Eq. (C.8) will have opposite sign.
Depending on its roots we can get different linearly indepen-
dent solutions of the original differential equation (C.1). The
most complicated case is when the difference between the
roots of the indicial equation is an integer (see also the com-
ments at the end of this section).

The remaining sums in our case provide us with recurrent
relation between the series coefficients

t j = −
sc2

(
2( j − 2) + 2l + 1 − b1

sc2

)

( j + l)( j + l − 1) − l(l − 1)
t j−2. (C.10)

We change the indices j → k + 2,

tk+2 = −
sc2

(
2k + 2l + 1 − b1

sc2

)

(k + 2)(k + 2l + 1)
tk . (C.11)

Next, we change the indices k → 2n−2 and continue apply-
ing the relation up until t0,

t2n = −
sc2

(
4n + 2l − 3 − b1

sc2

)

2n(2n + 2l − 1)

t2n−2 =
(−1)nsncn2

n∏
k=1

(
4k + 2l − 3 − b1

sc2

)

2nn!
n∏

k=1
(2k + 2l − 1)

t0. (C.12)

Then using the rising factorials notation,

x (n) ≡
n∏

k=1

(x + k − 1), (C.13)

we rewrite our expression as

t2n =
(−sc2)

n
n∏

k=1

(
k + l

2 − 3
4 − b1

4sc2

)

n!
n∏

k=1

(
k + l − 1

2

) t0 =

=
(
l
2 + 1

4 − b1
4sc2

)(n)

(−sc2)
n

(
l + 1

2

)(n)
n!

t0. (C.14)

So the solution to the equation takes the form

ψ(y) = esc2 y2/2yl
∞∑
n=0

(
l
2 + 1

4 − b1
4sc2

)(n)

(
l + 1

2

)(n)
n!

(−sc2y
2)n,

(C.15)

where we also set t0 = 1, which is equivalent to dividing an
undetermined integration constant by t0. This power series is

actually a generalized hypergeometric series, which defines
Kummer’s function,

M(a, b, z) = 1F1(a, b, z) ≡
∞∑
n=0

a(n)

b(n)n! z
n . (C.16)

Thus, the final form of the solution is (we also substitute
c2 = √

c1)

ψ(y) = es
√
c1y2/2ylM

(
l

2
+ 1

4

− b1

4s
√
c1

, l + 1

2
,−s

√
c1y

2
)

, (C.17)

where l is the solution of the indicial equation (C.8). If we are
interested in a solution converging at y → 0 then we should
pick the positive root of the indicial equation; otherwise, we
should choose the negative root.

If we want to have a solution that diverges at y → ∞ it
is enough to set s = +1. However, to get a convergent at
infinity solution, besides choosing s = −1 we need to take
extra measures, since in principle the sum in (C.15) can be
infinite. The recurrent relation on series coefficients (C.11)
has the following asymptotics at large k,

tk+2 ∼ tk
k

. (C.18)

Thus, if the series is infinite we will have a divergent solution.
A series can be finite only if the series coefficients are equal
to zero starting from some kmax. This can only happen if
the numerator of (C.11) is equal to zero. This gives us an
equation for kmax and other parameters,

2kmax + 2l + 1 − b1

sc2
= 0. (C.19)

After introducing a new parameter kmax = 2n and recalling
that c2 = √

c1, we get a condition

b1 = s
√
c1(4n + 2l + 1), (C.20)

which has to be true in order to have a solution that is con-
vergent at infinity.

For the sake of completeness, we should mention that the
Kummer function in (C.16) is a solution of Kummer’s equa-
tion,

x
d2ω

dx2 + (b − x)
dω

dx
− aω = 0. (C.21)

The two independent solutions of second order differential
equation (C.21) can be written in the form [121]

ω1 = M(a, b, x),

ω2 = x1−bM(a + 1 − b, 2 − b, x). (C.22)

Unfortunately, these solutions are not defined at any real val-
ues of parameters: ω1 is a solution so long as b is not an
integer less than 1 while ω2 is a solution so long as b is not
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an integer greater than 1 [121]. Since in our case b = J − 1
with spin J = 0, 1, 2, . . . , these exceptions become prob-
lematic. It is known that one can build a solution defined at
any integer b by taking the following linear combinations of
ω1 and ω2,

U (a, b, x) = �(1 − b)

�(a + 1 − b)
ω1 + �(b − 1)

�(a)
ω2. (C.23)

The function U is called Tricomi function. This function
formally is not defined at integer b but can be analytically
continued to any integer b [121]. The Tricomi function (C.23)
can be also uniquely determined as the solution of (C.21)
satisfying the property [121],

U (a, b, x) ∼ x−a, x → ∞. (C.24)

In the most of cases, the solutions ω1 and U are linearly
independent. When they are not, it is known [121] that instead
of ω1 one can use ω2 or

ω̃2 = M(a, b, x) ln x + x1−b
∞∑
k=0

tk x
k, (C.25)

as a second solution. This is a direct consequence of situations
when the difference between roots of the indicial equation is
an integer.

Thus, the second solution for ψ(y) can be written in terms
of the Tricomi function with the same arguments as in (C.17),

ψ(y) = e−√
c1y2/2ylU

(
l

2
+ 1

4
− b1

4s
√
c1

, l + 1

2
,
√
c1y

2
)

.

(C.26)

Appendix D

The holographic models considered in this work are supposed
to describe, in the first instance, the Regge phenomenology
of light mesons in the large-Nc limit and in the chiral limit.
For the sake of completeness of our exposition, we will give
a short survey on the linear Regge trajectories in the sector of
light predominantly non-strange mesons (for which the chi-
ral limit is the most applicable) in which the quark–antiquark
component of their Fock state seems to dominate according
to the known data. We should make a caveat from the very
beginning that this issue is rather controversial in the liter-
ature. But we hope that even if some states are identified
incorrectly or missed, this would not change significantly
the general picture presented below, thanks to the statistical
reasons.

The spectrum of the mesons under consideration is dis-
played in Fig. 4, the relevant details are discussed in
Refs. [91–93].

The global spectrum reveals two remarkable features:
The clear-cut clustering of resonances near certain almost

equidistant values of energies squared and a specific pattern
of parity doubling – the states lying on the leading Regge
trajectories do not have parity partners while all daughter
Regge trajectories are parity doubled. The clustering and par-
ity doubling was also observed in light baryons, a review of
the history of these observations and of proposed explana-
tions is given in Ref. [126]. The parity doubling of meson
Regge trajectories is geometrically visualized in Fig. 5.

It is well seen, in particular, that the leading ρ and ω Regge
trajectories have the intercept near J = 1

2 . For instance, if
we use the masses of the most reliable states ρ and ρ3 [109]
on the ρ-trajectory to make the linear fit, we obtain

Jρ ≈ M2

1.13 GeV2 + 0.52. (D.1)

The states possessing identical quantum numbers and
lying on a (approximately equidistant) sequence of daugh-
ter Regge trajectories form the “radial” trajectories, they
represent direct analogues of the radial excitations in non-
relativistic potential models. The ground states below the
CSB scale, about 1 GeV, lie appreciably below the positions
predicted by the radial trajectories. A couple of examples is
shown in Fig. 6.

Taking the experimental masses from the Particle Data
[109] one can make a global fit of the data using the linear
Regge ansatz and find the positions of clusters in Fig. 4. The
first such analysis was performed in Ref. [91], the result was
(in GeV2)

M2
exp ≈ 1.14(N + 0.54), (D.2)

where the integer N = 0, 1, 2 enumerates the clusters. One
can further add the numerous resonances observed in the
Crystal Barrel experiment on the proton–antiproton annihila-
tion in flight in the energy range 1.9–2.4 GeV, from which the
spectrum of light non-strange mesons was carefully extracted
[85,86]. The observed resonances populate the last two clus-
ters in Fig. 4 and allow to extend (D.2) to N = 3, 4. It turned
out that the adding of many new resonances does not change
noticeably the slope and intercept in (D.2) [91]. The aver-
aged slope found in the compilation [86] coincides with the
slope in (D.2). It was proposed soon after (independently in
Refs. [87,89,92]) that the integer N represents nothing but an
analogue of the principle quantum number in the Hydrogen
atom,

N = L + n, (D.3)

where n denotes the radial number and L is the orbital
momentum of quark–antiquark pair dictating also its spa-
tial parity, P = (−1)L+1. All meson states in Fig. 4 can be
classified with the help of (L , n) assignment [92,93]. The
resulting fit obtained in Ref. [92] was (in GeV2)

M2 ≈ 1.10(L + n + 0.62). (D.4)
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Fig. 4 The spectrum of light non-strange quark–antiquark resonances
in units of M2

ρ(770). The data is taken from the Particle Data [109] and
the Crystal Barrel Collaboration [86] (many states in the last two tow-
ers). The experimental errors are indicated. The circles stay when the
experimental errors are negligible on the plot. The dashed lines denote

the positions of mean (mass)2 in each cluster of states. The open strips
and circles are used when the dominance of a quark–antiquark com-
ponent is partly in question [109]. Two states on the top of each tower
do not have the parity doublets and form the leading Regge trajectories
(see the next plot)

The slope from the fit (D.4) is used in the present work.
Actually a very close slope for the orbital meson trajectory

typically emerges in other works, for instance, in the old
phenomenological analysis of Ref. [129].
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Fig. 5 The Regge trajectories of isovector (left) and isoscalar (right)
non-strange mesons. Each trajectory actually consists of two degener-
ate Regge trajectories corresponding to even and odd spins. The filled
circles (squares) denote the states contained in the Particle Data [109].
The open circles (squares) are the resonances observed in the Crys-
tal Barrel experiment [86] (they are usually cited by the Particle Data
in the section “Further States”). The parity doubling of trajectories is

visualized via the reflection (the design of the plot is inspired by the
MacDowell reflection symmetry of fermion Regge trajectories leading
to the parity doubling of the baryon trajectories, the relevant details are
contained in Ref. [127]). The dashed line is a phantom image of the
absent parity partner for the leading trajectory. The dotted line imitates
the distortion caused by the CSB

Fig. 6 A possible radial spectrum of light non-strange ω (circles) and
f0 (crosses) mesons according to the Refs. [110,128]. The horizontal
lines are drawn to distinguish better the position of scalar resonances
[109]

The relations like (D.3) and (D.4) look non-relativistic
since the orbital momentum L cannot be separated from
the total angular momentum J in a Lorentz-invariant way.
It looks thus surprising why these relations work for light
mesons which should represent ultrarelativistic systems. It
seems that this question is relative to the old question why the
constituent quark model works. Actually we still do not know
how the strong coupling regime in QCD settles the physical
degrees of freedom, they may well be non-relativistic – large
effective quark and gluon masses are widely used in various

phenomenological approaches. In addition, we can always
rewrite (D.4) in terms of the total momentum J , the price to
pay will be the need to split (D.4) into several relations for
different sorts of mesons. For instance, the states lying on the
leading Regge trajectory have L = J − 1 within the quark
model. In this case, the spectrum (D.4) becomes close to the
spectrum (E.1) in the next Appendix.

Appendix E

It is interesting to compare the experimentally motivated
spectrum (D.4) or (D.2) with the old predictions of dual
Veneziano like amplitudes derived in the framework of the
Regge theory [98], the relations (5.15) and (5.16) in the main
text,

m2
(ρ) = a(n + J − 1/2), J = 1, 2, . . . , (E.1)

m2
(π) = a(n + J ), J = 0, 1, . . . . (E.2)

Such a comparison is relevant to the present work since the
spectra like (E.1) and (E.2) emerge in the SW holographic
models.

First of all, we should remind the reader the origin of
spectra (E.1) and (E.2) from the Veneziano like amplitudes.
The original Veneziano dual amplitude for π + π → π + π

scattering has the following general structure [98],

A(s, t) ∼ B(1 − α(s), 1 − α(t))

= �(1 − α(s))�(1 − α(t))

�(2 − α(s) − α(t))
. (E.3)

123



Eur. Phys. J. C           (2022) 82:195 Page 33 of 36   195 

The given ansatz possesses nice analytical properties dictated
by the relativistic Regge theory, in particular, the amplitude
has poles at positive integer α = J , where J is interpreted
as the spin of a resonance, according to the Regge theory of
complex angular momentum.

Consider resonances in the s-channel, where s means the
center-of-mass energy squared in a scattering process. The
requirement of linearity of Regge trajectories entails the lin-
ear relation,

α(s) = s

a
. (E.4)

The poles arise at

s

a
= J, J = 1, 2, . . . . (E.5)

If the first pole at J = 1 corresponds to s = m2
ρ we get

the slope a = m2
ρ . The analytical properties of the ampli-

tude (E.3) are preserved if we add the same terms but with
shifted α,

α(s) → α(s) + n, n = 0, 1, 2, . . . . (E.6)

The poles of resulting amplitude are then situated at

s = m2(J, n) = m2
ρ(J + n), (E.7)

giving rise to the leading, n = 0, and daughter, n = 1, 2, . . .

Regge trajectories. Exactly this spectrum was reproduced in
the original SW holographic model [60]. Such a spectrum is
typical for various string approaches – this is not surprising
as the Veneziano amplitude gave rise to the whole modern
string theory.

The amplitude (E.3), however, has a serious deficiency for
the pion physics: A(s, t) 
= 0 as s, t → 0. Indeed, if pions are
the Goldstone bosons, they must interact only via derivatives
(an important consequence of the Goldstone theorem) which
become momenta in the momentum space, so at vanishing
momentum the amplitude of ππ scattering must vanish as
well. The given soft pion theorem is known as the “Adler self-
consistency condition” [98]. This condition can be satisfied
if we replace (E.3) by the following ansatz (the so-called
“Lovelace–Shapiro dual amplitude” [98]),

A(s, t) ∼ �(1 − α(s))�(1 − α(t))

�(1 − α(s) − α(t))
, (E.8)

supplemented by the condition

α(s) = 1

2
+ s

a
, (E.9)

and the same for α(t). The obtained amplitude incorporates
the spontaneous CSB but now does not correspond to any
string theory – embedding the CSB into a string approach
still remains an open problem. Repeating the steps above
(s = m2

ρ at J = 1, etc.), we arrive at the spectrum

s = m2(J, n) = 2m2
ρ(J + n − 1/2), (E.10)

which is the spectrum (E.1) for a = 2m2
ρ or the spec-

trum (5.15) in the main text.
As was shown in Ref. [96], the extension of this approach

to more general reactions π + A → B + C leads to the
appearance of a quantization condition for Regge trajectories
generalizing the condition (E.9) and this results in emergence
of the pion Regge trajectory with the spectrum (E.2), in which
a = 2m2

ρ (the spectrum (5.16) in the main text).
The discussion above refers to the exact chiral limit,m2

π =
0. With non-zero pion mass, we should replace the Adler
condition α(0) = 1

2 in (E.9) by the condition α(m2
π ) = 1

2 ,
i.e. we need to subtract the contribution of pion mass, α →
α − m2

π

a , in the r.h.s. of the condition (E.9). This shifts the
slope of all trajectories to a lower value [96–98],

a = 2(m2
ρ − m2

π ). (E.11)

It should be noticed that the given shift improves the agree-
ment with the mean experimental slope: Setting mρ =
0.769 GeV (the mass of neutral ρ-meson seen in the pho-
toproduction of this resonance and in reactions with pions
[109]) and mπ = 0.14 GeV, we get a = 2m2

ρ ≈ 1.18 GeV2

in the chiral limit and a = 2(m2
ρ −m2

π ) ≈ 1.14 GeV2 in the
real world. The latter value coincides with the fit (D.2) and
with the mean slope extracted in the compilation [86].

Finally we should emphasize that the spectrum (E.1)
and (E.2), despite all its theoretical elegance, does not
describe the behavior of experimental spectrum of light
mesons, rather it yields a reasonable description only for
the states corresponding to n = 0, i.e. belonging to the lead-
ing Regge trajectories. This was demonstrated in the phe-
nomenological analysis of Ref. [90]. Actually the need to
find a working relation lead to the model (D.4).
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