

Deformed nuclear shapes around N, Z = 28 in A = 50 - 60 region

S. Basu^{1,2*}, G. Mukherjee^{1,2}, S. Nandi^{1,2}, S. S. Nayak¹, S. Bhattacharyya^{1,2}, Soumik Bhattacharya¹, Shabir Dar^{1,2}, Sneha Das^{1,2}, S. Basak^{1,2}, D. Kumar^{1,2}, D. Paul^{1,2}, K. Banerjee^{1,2}, Pratap Roy^{1,2}, S. Manna^{1,2}, Samir Kundu^{1,2}, T. K. Rana^{1,2}, T. Bhattacharjee^{1,2}, R. Pandey¹, S. Samanta³, S. Chatterjee³, R. Raut³, S. S. Ghugre³, H. Pai⁴, A. Karmakar⁴, S. Chattopadhyay⁴, S. Das Gupta⁵, P. Pallav⁵, R. Banik⁶, S. Rajbanshi⁷, S. Ali⁸, Q.B. Chen⁹, C. Bhattacharya^{1,2}

¹Variable Energy Cyclotron Centre, I/AF Bidhannagar, Kolkata- 700064, India

²HBNI, Training School Complex, Anushaktinagar, Mumbai-400094, India

³UGC-DAE CSR, Kolkata Centre, LB-8, LB Block, Sector III, Bidhannagar Kolkata 700098, India

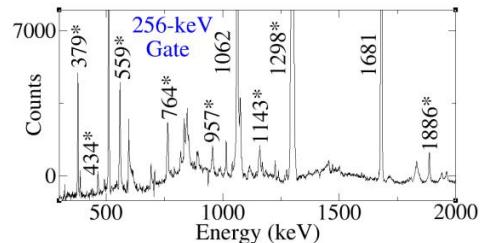
⁴Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700064, India

⁵Victoria Institution (College), Kolkata-700009, India

⁶Institute of Engineering and Management, Kolkata-700091, India

⁷Department of Physics, Presidency University, Kolkata-700073, India

⁸Government General Degree College at Pedong, Kalimpong, India


⁹East China Normal University, Shanghai 200241, China

*s.basu@vecc.gov.in

Introduction

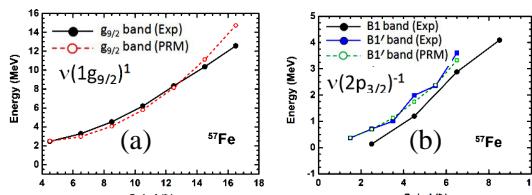
The odd-A and odd-odd nuclei with proton (neutron) number below (above) Z = 28 shell closure, in the A = 50 - 60 mass region, are experimentally studied by γ -ray spectroscopy method. The N = Z = 28 shell closure is the first (lowest) one originated specifically due to the effect of $\ell.s$ coupling and the doubly magic nucleus ^{56}Ni is considered as a softer core [1]. The high-j $1\text{f}_{7/2}$ and $1\text{g}_{9/2}$ neutron orbitals, lying below and above this shell closure, have shape driving effects leading to deformed collectivity. Consequently, in the neighboring isobar ^{56}Fe , in which the proton Fermi level lies below Z = 28 and neutron one above it, evidence of prolate-oblate shape coexistence are reported [2]. On the other hand, the introduction of GXPF1 effective interaction [3] predicts new subshell gaps at N = 32, 34 for the neutron rich nuclei in this region. The unique-parity $\text{vg}_{9/2}$ orbital also observed to play significant role for the higher spin states in the nuclei in this region [4]. Another important aspect is the possible presence of octupole correlation due to the $1\text{g}_{9/2}$ and $2\text{p}_{3/2}$ orbitals. These make it very interesting to study the excited states in nuclei in this region. For such study, we have a program for experimental investigation of odd-A and odd-odd nuclei (^{57}Fe , $^{54,55}\text{Mn}$) around N, Z = 28. The observation of rotational bands indicated onset of deformation

in ^{55}Mn and ^{57}Fe but, in contradiction to the previous study [5], no band structure has been observed in ^{54}Mn [6]. The detailed results on the odd-N ^{57}Fe are being presented here.

Fig. 1 γ -ray spectrum gated by 256 keV of ^{57}Fe . The newly observed transitions are marked by *.

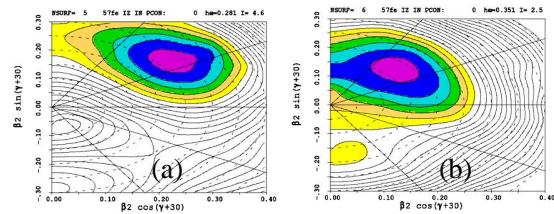
Experiment

The excited states in the nuclei of interest were produced using $^4\text{He} + ^{55}\text{Mn}$ fusion evaporation reaction. The 34-MeV α beam was delivered from K-130 cyclotron at VECC. The target (MnO_2) thickness was 6 mg/cm² and was backed by 0.5 mg/cm² Mylar. The prompt γ rays from de-excited nuclei were detected using an array of 11 CS clover and 1 LEPS detectors placed at 3 different angles (125°, 90° and 40°). The data acquisition system was based on PIXIE-16 digitizer and processed by IUCIPIX package developed by UGC-DAE-CSR, Kolkata [7]. Further data analysis was done by using RADWARE software.


Analysis and Results

The energy calibrations of all the crystals of all the runs were done using known in-beam γ -lines and ^{152}Eu source. To analyze coincidence relation, DCO ratio and polarization, several symmetric and asymmetric γ - γ matrices were constructed. Fig. 1 shows a representative gated spectrum for ^{57}Fe .

Discussion


The known positive parity rotational band [8] in ^{57}Fe , based on $vg_{9/2}$ orbital, has been extended beyond band crossing. Several new γ -rays have been observed in the negative parity sequence, built on $vp_{3/2}/f_{5/2}$ orbitals, and it has been extended up to ~ 6.3 MeV. Earlier these states were interpreted as single-particle excitations. However, in the present work the non-yrast sequence (B1') is found to form a rotational-like band, which decays to the yrast sequence (B1), more like a γ -band.

The band diagrams are well reproduced by particle-rotor model (PRM) calculations [9] as shown in Fig. 2, except for the yrast óve parity states which may be originated from single-particle excitations. The deformation parameters, (β_2, γ) , used in the PRM calculations are $(0.29, 0^\circ)$ and $(0.23, 7.5^\circ)$ for +ve and óve parity bands, respectively. These are determined from the covariant density functional theory (DFT).

Fig. 2 Expt. and calculated (PRM) band diagrams of (a) +ve and (b) -ve parity sequences.

The Total Routhian Surface (TRS) calculations are also performed in ^{57}Fe and are shown in Fig. 3. It shows minima at $\beta_2 = 0.28$, $\gamma = 5^\circ$ and $\beta_2 = 0.18$, $\gamma = 19^\circ$ for the +ve and -ve parity configurations, respectively. The deformation parameters match well with DFT for +ve parity but differ for the óve parity configuration. The triaxiality for the óve parity band supports the possible occurrence of γ -band for the óve parity configuration in ^{57}Fe .

Fig. 3 TRS plots for the +ve (a) and the óve (b) parity configurations in ^{57}Fe .

Several $\Delta J = 0$ and $\Delta J = 1$, E1 transitions are also observed from the first few states of the $g_{9/2}$ band to the negative parity, $p_{3/2}$, states in ^{57}Fe . This indicates the presence of octupole correlation in ^{57}Fe due to $g_{9/2}$ and $p_{3/2}$ single particle orbitals.

Conclusion

The odd-A and odd-odd nuclei in mass region $A = 50 \rightarrow 60$ have been experimentally investigated using α -induced fusion evaporation reaction. The results of ^{57}Fe nucleus show rotational bands build on both positive ($g_{9/2}$) and negative ($f_{5/2}$ / $p_{3/2}$) parity configurations. The experimental data are well reproduced by PRM calculations. Both DFT and TRS calculations predict deformed shape for both configurations. Several observed E1 transitions indicate octupole correlation in ^{57}Fe .

Acknowledgement

We thank the cyclotron operators and target lab staff at VECC for good α beam and MnO_2 target. S. Basu acknowledges the financial support of UGC, Govt. of India.

References

1. K. Arnswald, et al., Phys. Lett. B **820**, 136592 (2021).
2. D.E. Appelbe et al., Phys. Rev. C **62**, 064314 (2000).
3. M. Honma, et al., Phys. Rev. C **65**, 061301(R) (2002).
4. A. Deacon et al., Phys. Rev. C **76**, 054303 (2007).
5. G Kiran Kumar et.al., J. Phys. G: Nucl. Part. Phys. **35**, 095104 (2008).
6. S. Basu et al., Proc. DAE-NP Symp. Vol. **64**, 66 (2019).
7. S. Das et al., Nucl Inst Meth Phys Res. **A893**, 138 (2018).
8. P. Banerjee et al., Nuovo Cim. **85A**, 54 (1985).
9. S. Frauendorf and F. Dönuau, Phys. Rev. C **89**, 014322 (2014).