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Abstract. In this work, the method of multiple scales is applied to analysis of cosmological
dynamics. The method is used to construct solutions to the dynamic equations of the Universe
filled with a scalar field in the Friedman-Robertson-Walker metric. A general scheme is described
for choosing small dimensionless parameters of the expansion of model functions and applying
the method itself to the equations of cosmological dynamics. Solutions are given that are
constructed for two different types of a small parameter - a small field value and a small slow
roll parameter.

1. Introduction
At present time a scalar field cosmology is actively applied for studying early and later evolution
of the Universe. Cosmological dynamic equation of self-interacting scalar field in Friedmann
universe is described by the system of ordinary differential equations of the second order with
respect to a scale factor or to a scalar field itself [1].

Many attempts were devoted to investigation of the Scalar Cosmology Equations (SCEs) on
an inflationary stage by approximate methods (slow-roll and fast oscillation between them) in
the first works on inflation by Starobinsky (1980)[2], Guth (1981)[3] Linde (1982)[4], Albrecht
and Steinhardt (1982)[5]. Exact solution construction of SCEs is started in the works [6], [7],
[8], [9]. More detail about exact solutions and methods of construction of them can be found in
the monograph [1]. In the present article we propose new approach for searching approximate
solutions of SCEs using method of multiple scales or multi-scale analysis.

Effective methods of asymptotic analysis of models of cosmological dynamics are usually built
on the qualitative analysis of dynamical systems [10, 11, 12, 13]. Such methods provide useful
information of a general nature and make it possible to understand the limiting states of the
Universe evolution. Nevertheless, if it is necessary to obtain more accurate information about
the nature of the solutions under certain initial conditions, the methods of asymptotic analysis
turn out to be insufficiently effective. For solving problems of analyzing the current state of
systems, methods of approximate analysis, built on the expansion of solutions in series in a small
parameter, are much more useful. Among such methods, which is rarely used in investigation
of cosmological dynamic, is the method of multiple scales or multiple scale analysis.

The method of multiple scales (MoMS) is one of the effective methods for the approximate
analysis of the dynamics of various types of objects and processes. The initial field of application
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of MoMS, most likely, is the mechanics and theory of wave processes [14, 15, 16, 17]. The main
idea of the MoMS is reduced to the representation of the dependence of the initial process on time
& coordinates to the dependence on a wider range of variables, which are related to the initial
variable scale factors and containing small parameters of the model in various degrees. The
difference between the method of multiple scales and the standard method of a small parameter
is that the introduction of new “slow” or “fast” variables makes it possible to improve the
convergence of the series in this small parameter. To control the rate of convergence of series, the
MoMS contains a specific tool, which is often called a procedure for eliminating resonances. The
meaning of this procedure is that the introduction of additional independent variables (“slow”
or “fast”) generates a certain arbitrariness in the choice of the balance between the individual
terms of the equations obtained as a result of expansions in a series. This arbitrariness allows
the selection of dependence expansion elements in a series in such a way that the terms having a
power-law form in independent variables (secular terms), which significantly worsen the rate of
convergence of the series and reduce the radii of their convergence, are excluded from the series.

In this article, the MoMS is applied to analyzing dynamic of the Universe filled by the self-
interacting scalar field in the Friedman-Robertson-Walker space-time. Although this model has
been studied quite fully, it can be used as an example to show the features of the application of
the MoMS to problems of cosmological dynamics, which can subsequently be usefully applied
to more complex models.

The article is organized as follow. In Section 2 we derive cosmological dynamic equation in
dimensionless form. Section 3 devoted to obtaining approximate equations for small scalar field
by MoMS. In Section 4 we present solutions till the third order. Section 5 contain approximate
solution for a scale factor till the second order. In Section 6 we consider approximation based
on the first slow roll parameter and in Section 7 we derive equations and find solutions till the
second order. In Section 8 we represent the general solution including that for the scale factor.
In Section 9 we discuss obtained results.

2. Cosmological dynamic equations in dimensionless form
Let us study a cosmological dynamic of the self-interacting scalar field on the basis of MoMS.
Cosmological dynamic equations [1] are:

3H2 =
1

2
ϕ̇2 + V (ϕ), (1)

2Ḣ = −ϕ̇2, (2)

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0. (3)

Here H = ȧ/a = da
adt is the Habble parameter, a is a scale factor, ϕ is a scalar field, V (ϕ) is the

self-interacting potential of the scalar field, t is a cosmic time. Equations of gravitation dynamic
(1) and (2) have the field equation (3) as a consequence [1]. Therefore we may exclude this
equation from consideration.

To obtain dimensionless variables [11] we set ξ = H/H0, η = ϕ/Φ0, τ = t/T0. Here H0, Φ0

and T0 - some constants of the corresponding dimensions, which should be determined by the
choice of the required asymptotic of the the initial system solutions. As a result of substitution
in the initial system (1) and (2) of dimensionless variables, we arrive at a system of equations
in the following form:

3H2
0ξ

2 =
1

2
Φ2
0η̇

2 + V(η,Φ0), (4)

2H0T0ξ̇ = −Φ2
0η̇

2. (5)
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(a) (b)

Figure 1. The positions of the points of the expansion of the potential at the maximum (a)
and minimum (b) for the Higgs potential (8).

Equivalently, in another form:

α

β
ξ̇ + 3ξ2 =

1

H2
0

V(η,Φ0), (6)

ξ̇ = −1

2
βη̇2. (7)

Here V (ϕ) = V(η,Φ0) and:

α =
Φ2
0

T 2
0H

2
0

, β =
Φ2
0

H0T0
.

Dimensionless parameters α and β, under given form of the potential V (ϕ) and initial conditions,
define dynamic of cosmological process. Because the parameter γ = H0T0 is dimensionless by
definition, then Φ0 is dimensionless as well.

3. Expansion on a scale of the field Φ0 =
√
ε

Let us consider the first option for choosing a small parameter, setting γ = H0T0 = 1 and a
small parameter Φ0 =

√
ε. A small value of the field scale Φ0 means a small deviation of the field

from the point ϕ = 0, which can be placed by the transformation: ϕ′ = ϕ − ϕmin to any other
point. In this case, the position of the point ϕ = 0 can be both at the minimum and maximum,
as shown in Fig. 1, as well as at any other point on the ϕ axis. This fact is illustrated by the
figures with the positions of the points ϕ = 0 for the Higgs potential:

V = 1 + ϕ4 − ϕ2. (8)

To select the field scale of ϕ as a small parameter we have α = β. Using new variables, we
can formally write:

1

H2
0

V (ϕ) = V(η,
√
ε).

The assumed smallness of the parameter ε allows, in accordance with the general ideology of
multiple scales expansions, to seek solutions to the system (6)-(7) in the form of dependence on
the usual τ and slow variables, which will have the following form:

τ1 =
√
ετ, τ2 = ετ, . . . .
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Hence, for any function we have F (τ) = F(τ, τ1, τ2, . . .):

d

dτ
F (t) =

(
∂

∂τ
+
√
ε

∂

∂τ1
+ ε

∂

∂τ2
+ · · ·

)
F(τ, τ1, τ2, . . .).

Further we represent the potential V (ϕ) as an expansion series in ϕ:

V (ϕ) = V0 + V1ϕ+ V2ϕ
2 + · · · .

From here:
V(η,

√
ε) = v0 + v1η

√
ε+ v2η

2ε+ · · · ,

where vi = H−2
0 Vi, i = 0, 1, . . . are dimensionless parameters of the potential.

Similarly, the solution for ξ(t) and η(t) will be sought in the following form:

ξ = ξ0(τ, τ1, τ2, . . .) +
√
εξ1(τ, τ1, τ2, . . .) + εξ2(τ, τ1, τ2, . . .) + · · · , (9)

η = η0(τ, τ1, τ2, . . .) +
√
εη1(τ, τ1, τ2, . . .) + εη2(τ, τ1, τ2, . . .) + · · · . (10)

Substituting (9) and (10) into (6), with respect to the first three expansion elements we have:(
∂

∂τ
+

√
ε

∂

∂τ1
+ ε

∂

∂τ2
+ · · ·

)(
ξ0(τ, τ1, . . .) +

√
εξ1(τ, τ1, . . .) + εξ2(τ, τ1, . . .) + · · ·

)
+

+3
(
ξ0(τ, τ1, . . .) +

√
εξ1(τ, τ1, . . .) + εξ2(τ, τ1, . . .) + · · ·

)2
= (11)

= v0 + v1
(
η0(τ, τ1, . . .) +

√
εη1(τ, τ1, . . .)

)√
ε+ v2(η

2
0ε+ 2η0η1ε

3/2) + v3η
3
0ε

3/2 + · · · .

The first four equations of the system (11) in the expansion in orders of ε1/2 have the following
form:

ε0 :
∂ξ0
∂τ

+ 3ξ20 = v0, (12)

ε1/2 :
∂ξ1
∂τ

+
∂ξ0
∂τ1

+ 6ξ0ξ1 = v1η0, (13)

ε1 :
∂ξ2
∂τ

+
∂ξ1
∂τ1

+
∂ξ0
∂τ2

+ 6ξ0ξ2 + 3ξ21 = v1η1 + v2η
2
0, (14)

ε3/2 :
∂ξ3
∂τ

+
∂ξ2
∂τ1

+
∂ξ1
∂τ2

+
∂ξ0
∂τ3

+ 6(ξ0ξ3 + ξ1ξ2) = (15)

= v1η2 + 2v2η0η1 + v3η
3
0

· · ·

Similarly, we find the expansion of (7). After substitution of the series (9) and (10), we find:(
∂

∂τ
+
√
ε

∂

∂τ1
+ ε

∂

∂τ2
+ · · ·

)(
ξ0(τ, τ1, . . .) +

√
εξ1(τ, τ1, . . .) + εξ2(τ, τ1, . . .)

)
=

= −1

2
ε

(
∂η0
∂τ

+
√
ε
∂η0
∂τ1

+ ε
∂η0
∂τ2

+
√
ε
∂η1
∂τ

+ ε
∂η0
∂τ1

+ ε
∂η2
∂τ2

+ . . .

)2

. (16)

The first four equations of (7) for the expansion (44) in orders ε1/2 have the following form:

ε0 :
∂ξ0
∂τ

= 0, (17)
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ε1/2 :
∂ξ1
∂τ

+
∂ξ0
∂τ1

= 0, (18)

ε1 :
∂ξ2
∂τ

+
∂ξ1
∂τ1

+
∂ξ0
∂τ2

= −1

2

(
∂η0
∂τ

)2

, (19)

ε3/2 :
∂ξ3
∂τ

+
∂ξ2
∂τ1

+
∂ξ1
∂τ2

+
∂ξ0
∂τ3

= −1

2

∂η0
∂τ

(
∂η0
∂τ1

+
∂η1
∂τ

)
, (20)

. . .

Thus we can solve step by step the systems (12)-(15) and (17)-(20).

4. The solution of the system
From equation (12) and (17) one can find the following solution with respect to ξ0:

ξ0 = ±
√

v0
3

= ±Λ. (21)

Hereinafter, the notation is introduced: Λ =
√
v0/3. The solution (39) makes sense if

v0 ≥ 0. The last inequality is known the consequence of the energy dominance condition.
Since v0 = const, we have: ξ0 = const. As a result, the solution of (13) and (19) in the first
order looks like this:

ξ1 = ± v1
6Λ

η0(τ1, τ2, . . .). (22)

Moreover, the functions ξ1 and η0 depend only on slow variables: ξ1 = ξ1(τ1, τ2, . . .), η0 =
η0(τ1, τ2, . . .).

The solution of (14) and (19) in the second order can now be written like this:

ξ2 = ± 1

8
√
3v0

(
4v0v1η1(τ, τ1, . . .) + (4v0v2 − v21)η

2
0(τ1, τ2, . . .)

)
. (23)

In this case, from (20) for the function η1(τ, τ1, . . .) we obtain the equation:

∂η1
∂τ

+
∂η0
∂τ1

= 0.

From here we get:

η1 = −τ
∂η0
∂τ1

+ C1(τ1, τ2, . . .),

where C1(τ1, τ2, . . .) is an integration constant wrt τ . Note, the dependence η0 = η0(τ1, τ2, . . .)
on τ1 does not defined yet. This can be used to eliminate in the solution for η1 a term that grows
linearly together with τ . Such terms are often called resonant or secular. The presence of such
terms leads to a rapid divergence of the series in ε with increasing τ . By setting η0 = η0(τ2, . . .),
we eliminate the dependence of η1 on τ . This procedure is called the resonance elimination
procedure. In this case, ξ2 will also not depend on τ , but will depend on slow variables.

The third order scale factor equation can now be written in the following form:

ξ3 =
1

6

√
3

v0

(
v1η2 + 2v2η0η1 + v3η

3
0 − 6ξ1ξ2)

)
. (24)

In this case, the following relations are also fulfilled:

ξ2(τ1, τ2, . . .) = −τ1
∂ξ1
∂τ2

+ ξ
(0)
1 (τ2, . . .).
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The last relations define dependence ξ2 on slow variable τ1.
From the formal point of view, the linear dependence of ξ2(τ1, τ2, . . .) on τ1 can also be

considered as a ‘resonant’ term leading to an accelerated divergence of the series. Therefore, it
can also be eliminated by setting ξ1 = ξ1(τ2, . . .). In the next orders, one can continue to apply
further a similar procedure.

5. Solution for the scale factor
Since ξ0, ξ1 and ξ2 do not depend on the variable τ , it is possible to find out the character of
the cosmological expansion. From definition of ξ up to ε3/2 we have:

H = H0

(
ξ0 +

√
εξ1 + εξ2 + ε3/2ξ3 + . . .

)
= H0

ȧ

a
=

H0

a0 +
√
εa1 + εa2 + ε3/2a3 + . . .

(
∂a0
∂τ

+

+
√
ε

(
∂a0
∂τ1

+
∂a1
∂τ

)
+ ε

(
∂a0
∂τ1

+
∂a1
∂τ1

+
∂a2
∂τ

+ . . .

)
+ . . .

)
.

Using this expansion we arrive at the system of equations for calculating the evolution of the
scale factor a = a0 +

√
εa1 + εa2 + . . .. Thus, we have:

ξ0 =
∂ ln a0
∂τ

,

ξ1 =
1

a0

(
∂a0
∂τ1

− a1
a0

∂a0
∂τ

+
∂a1
∂τ

)
,

ξ2 = −∂a0
∂τ

(
a2
a20

− a21
a30

)
−
(
∂a0
∂τ1

+
∂a1
∂τ

)
a1
a20

+

(
∂a0
∂τ2

+
∂a1
∂τ1

+
∂a2
∂τ

)
1

a0
.

Using the solution for ξ0 (39) we find:

a0 = A0(τ1, τ2, . . .)e
τ
√

v0/3.

Thus, in the zero order, evolution is an inflationary expansion with the Hubble parameter
H = H0Λ at the sign of + in the exponent. It is this option that is discussed below.

In the first order, the equation for a1 is reduced to the form:

∂a1
∂τ

−
√
Λa1 = A0e

Λτ
(
v1
6Λ

η0 −
∂ lnA0

∂τ1

)
.

The condition for the absence of resonance in this equation is the vanishing of the right side
of this equation, which leads to the equation:

A0
v1
6Λ

η0 −
∂A0

∂τ1
= 0.

Hence, under the condition ξ1 = const (from (22) this means that η0 = const too) it follows:

A0 = A00 exp
( v1
6Λ

η0τ1
)
. (25)

Integration constant A00 may depend on τ2, . . .. Note that the sign of the exponent in (25) is
defined both the sign of v1 (i.e., by the sign of the coefficient of the Taylor series of the expansion
of the potential at zero) and the sign of the field itself in the zero order. Consequently, with the
opposite signs of η0 and v1, the inflation rate will decrease in comparison with the zero order.
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The solutions for the scale factor obtained in the first two orders can be represented as follows:

a = eΛτ
(
A00 exp

( v1
6Λ

η0τ
√
ε
)
+
√
εA10

)
+O(ε), (26)

where A10 is the constant of integration.

Considering η0 as a constant in (26) and expanding the exponent exp
(

v1
6Λη0τ

√
ε
)
in Taylor

series in
√
ε one can obtain the next form of the solution

a = eΛτ
(
A00 +

√
ε (η̃τ +A10)

)
+O(ε), (27)

where η̃ = v1
6Λη0. The solution in the form (27) corresponds to exponent power-law inflation,

considered, for example, in the work [18] (p.4, formula (14)).

6. Expansion on the slow roll parameter
Let us now consider the results of the analysis of equations in the case of choosing the scales in
accordance with the relations: Φ0 = 1, H0T0 = ε−1, where ε ≪ 1 is a new small parameter. In
dimensionless form, the slow roll parameter

p = − Ḣ

H2
,

will be like follows:

p = − 1

H0T0

ξ̇

ξ2
= −ε

ξ̇

ξ2
,

that is, it is a quantity of the first order of smallness in ε. This means that ε = (H0T0)
−1 can

be interpreted as a slow roll scale.
Passing to the dimensionless equations (6), we find in this case:

α = ε2, β = ε.

With this choice of parameters, the equations (6) take the following form:

εξ̇ + 3ξ2 =
1

H2
0

V(η), (28)

ξ̇ = −1

2
εη̇2. (29)

This system is singular, since in two equations the small parameter stands at the highest
derivative. To eliminate this drawback, we introduce a new time variable, setting θ = τε−1 =
H0t. For the new variable, the equations will look like this:

ξ̇ + 3ξ2 =
1

H2
0

V(η), (30)

ξ̇ = −1

2
η̇2. (31)

Hereinafter dot over the function means the derivative wrt new variable θ.
An unclear element of the last system of equations is the term on the right-hand side of (30)

associated with the potential. The crux of the problem is how the values of the V(η) function
relate to H2

0 . There are two possibilities. The first is that the values of H−2
0 V(η) are of order

1. The second is that T 2
0 V(η) is the order 1. In the first case, the equations do not contain
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the small parameter ε, and in the second, the term with the potential in the right-hand side of
(30) is of order ε2. In the general case, it can be assumed that the functional dependence of the
potential on η can be split into two parts. The first part is of order 1, according to the case of
H−2

0 V. The second part, corresponding to the case when T 2
0 V, is of order 1. Thus, we assume:

H−2
0 V = V0(η) + ε2U(η),

where V0(η) and U(η) are functions of order 1.

7. Model’s equations and their solutions
Let us study the case V0 = v0 = const. Under this condition v0 can be considered as cosmological
constant. We will construct an expansion in ε, assuming:

ξ = ξ0 + εξ1 + . . . , η = η0 + εη0 + . . . .

The dependence of the expansion coefficients on slow variables will be determined by the variables
θi = εiθ, i = 0, 1, 2, . . .. For this expansion, we restrict ourselves to only the first two orders. As
a result, we have the following system of equations in the orders of the equation (30):

ξ̇0 + 3ξ20 = v0, (32)

ξ̇1 +
∂ξ0
∂θ1

+ 6ξ0ξ1 = 0, (33)

ξ̇2 +
∂ξ1
∂θ1

+
∂ξ0
∂θ2

+ 6ξ0ξ2 + 3ξ21 = U(η0). (34)

Similarly, for the equation (31) we have:

ξ̇0 = −1

2
η̇0

2, (35)

ξ̇1 +
∂ξ0
∂θ1

= −η̇0

(
η̇1 +

∂η0
∂θ1

)
, (36)

ξ̇2 +
∂ξ1
∂θ1

+
∂ξ0
∂θ2

= −η̇0

(
η̇2 +

∂η1
∂θ1

+
∂η0
∂θ2

)
− 1

2

(
η̇1

∂η0
∂θ1

)2

. (37)

7.1. Zero order
The zero-order solution for ξ0 is constructed using the formal replacement:

ξ0 =
1

3

d lnu

dθ
. (38)

For new function u(θ) we have the equation:

ü = 3v0u.

General solution for u has the following form:

u = C1e
µθ + C2e

−µθ.

Here µ2 = 3v0. Solution for ξ0 is:

ξ0 =
µ

3

[
1− Ce−2µθ

1 + Ce−2µθ

]
.
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Here C = C2/C1. Since ξ̇0 < 0, then there are restrictions on the choice of C. For the function
ξ0 to be monotonically decreasing, it is necessary that C < 0. The value of C determines in this
case the position of the cosmological singularity. If we assume that the instant of time of the
cosmological singularity is chosen equal to t = 0, then C = −1. As a result, the solution for ξ0
can be written as follows:

ξ0 =
µ

3 tanh(µθ)
. (39)

From here:

ξ̇0 = − µ2

3 sinh2(µθ)
< 0, (40)

a0 = A0 sinh
1/3(µθ). (41)

In this formula a0(θ) is a scale factor in zero-order, A0 - the constant of integration. Note, that
such type of solution for arbitrary exponent α instead of 1/3 was presented in [1] (p.22, formula
(2.28).

Using (40), the zero-order field equation (35) can be reduced to the following form:

η̇0 = s

√
2µ√

3 sinh(µθ)
, s = ±1.

From here we find:

η0 = f0 +

∫
µdθ

sinh(µθ)
= f0 +

s
√
2√
3

∫
dz

z2 − 1
= f0 +

s√
6
ln

(
cosh(µθ)− 1

cosh(µθ) + 1

)
. (42)

7.2. First order
In order zero, the solution for ξ0 does not contain arbitrary constants that might depend on
slow variables. Therefore, from (33) in the first order for ξ1 we have the following equation:

ξ̇1 = − 2µ

tanh(µt)
ξ1.

From here we find:

ξ1 =
q1(τ1, . . .)

sinh2(µθ)
, (43)

where q1 = q1(θ1, . . .) is the integration constant depending on slow variables.
Unlike ξ0, the solution for η0 contains a constant of integration, which may depend on slow

variables. As a result, for η1 we have from (36) the following equation:

η̇1 = − 1

η̇0

(
ξ̇1 + η̇0

∂f0
∂θ1

)
=

2sq1√
3

cosh(µθ)

sinh2(µθ)
− ∂f0

∂θ1
. (44)

From here:

η1 = − 2sq1√
3µ

1

sinh(µθ)
− ∂f0

∂θ1
θ + f1(θ1, . . .). (45)

The second term in (45) is linear in θ and it is ‘resonant’. To exclude it, one need to put

∂f0
∂θ1

= 0, f0 = f0(θ2, . . .).

Thus, the solution for η1 is:

η1 = − 2sq1√
3µ

1

sinh(µθ)
+ f1(θ1, . . .). (46)
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7.3. Second order
The equation (34) for the scale factor in the second order, taking into account the first two: (39)
and (43), can be written as follows:

ξ̇2 +
∂q1
∂θ1

1

sinh2(µθ)
+

2µ

tanh(µt)
ξ2 + 3

q21
sinh4(µθ)

= U(η0). (47)

The solution of (47) depends on the form of the function U(η0). Therefore, to obtain its explicit
form, it is necessary to select a certain type of this dependence. However, to clarify the presence
of resonance terms in this equation, it is sufficient to consider only some components of the
Taylor series of the function U(η0) at zero. The eigenfunction of the equation (47), up to a
constant factor, coincides with sinh−2(µθ). Consequently, only the Taylor series component
quadratic in η0 is of interest to eliminate resonances, since η0 ∼ sinh−1(µθ). Denoting this term
by u2η

2
0, we find an equation for q0(τ1), which is equivalent to the condition for the absence of

resonances in the following form:
∂q1
∂θ1

= u2. (48)

From here:
q1 = u2θ1 + q10.

As a result, the final solution for ξ2 can be represented as follows:

ξ2 =
1

sinh2(µθ)

q2 + 3
(u2θ1 + q10)

2

sinh(µθ)
+

θ∫
0

(
U(η0(z))− u2η

2
0(z)

)
sinh2(µz)dz

 . (49)

Here q2 is the constant of integration, depending on slow variables.
The field equation in the second order (37) now has the following form:

1

η̇0

(
ξ̇2 +

u2

sinh2(µθ)

)
− 2su2√

3µ

1

sinh(µθ)
+

∂f1
∂θ1

+
∂f0
∂θ2

= −η̇2.

This equation is easy to integrate, but like the equation for ξ2, it depends on the form of the
function U(η). Therefore, to construct solutions in the second and subsequent orders, it is
necessary to clarify the general ideas about the form of the self-interacting potential. In the first
two orders, the form of the function does not matter, and the entire dynamics is determined
by the initial conditions, as well as the value of the constant v0, which plays the role of the
cosmological constant.

8. General solution
Combining the obtained solutions in the first two orders, we find:

ξ =
µ

3 tanh(µθ)
+ ε

u2θ1 + q10

sinh2(µθ)
+O(ε2), (50)

η = f0 +
s√
6
ln

(
cosh(µθ)− 1

cosh(µθ) + 1

)
− ε

(
2s(u2θ1 + q10)√

3µ

1

sinh(µθ)
− f1(τ1, . . .)

)
+O(ε2).(51)

Accordingly, the solution for the scale factor is:

a =

(
A0µ+ ε

(
A1 −A0(u2θ1 + q10)

1

tanh(µθ)

))
sinh1/3(µθ) +O(ε2). (52)
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Figure 2. Comparison of the Hubble parameter variation curve obtained numerically (a) and
using the expansion in a series in ε (b) for the Higgs potential in zeroth order (8).

Here A0 and A1 are integration constants.
To illustrate the nature of the obtained approximation in the zeroth order, let us compare the

numerical solution of the problem with the Higgs potential (8) and the solution obtained using
the MoMS. The corresponding curves are shown in Fig. 2. It can be seen that the zero order
in the considered model for the Hubble parameter is universal, i.e. depends only on the values
of the self-interacting potential at zero and does not depend on its specific form. Higher-order
corrections require certain calculations related to the satisfaction of the initial conditions, which
is beyond the scope of this work.

9. Conclusions
The calculations presented in this work demonstrate the general principles of using the method
of multiple scales in scalar field cosmology. As has been shown, dynamical systems used to
describe cosmological dynamics contain, as a rule, implicitly several dimensionless constants
that determine the type of solutions. In the considered model, such dimensionless constants are
the field scale Φ0 and the slow roll parameter: p = (H0T0)

−1. The use of MoMS allows one
to obtain approximate solutions for physical conditions corresponding to the smallness of these
parameters, with a correction of the convergence rate. In this case, the information about the
solution itself obtained with the help of MoMS supplements the general information that can be
obtained by numerical methods and methods of qualitative analysis of dynamical systems. The
results obtained indicate the possibility of using this approach in cosmology for more complex
models than that considered in this work.
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