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Introduction

On August 14, 2017, the Advanced Virgo detector and the two Advanced LIGO
detectors coherently observed a transient gravitational-wave signal (GW170814) pro-
duced by the coalescence of two stellar mass black holes (Abbott et al. 2017a). A few
days later, on August 17, 2017, a new gravitational wave (GW) signal (GW170817) was
detected (Abbott et al. 2017b). GW170817 was produced by two neutron stars (NSs)
spiraling closer to each other and finally merging, and it’s the first GW observation
confirmed by non-gravitational means. In fact, a short gamma-ray burst (GRB), desig-
nated GRB 170817A, was detected by the Fermi and INTEGRAL spacecraft beginning
1.7 seconds after the GW merger signal (Abbott et al. 2017c). This observation has
set a real milestone in the history of multi-messenger astronomy. The GW spectrum,
extending from attohertz to kilohertz frequencies, provides a fertile ground for explor-
ing many fundamental questions in physics and astronomy (Bailes et al. 2021). The
amplitude and frequency of the wave depend on the amount of mass that remains after
the merger as well as how compact the remnant object is. For this reason, the detection
of a post-merger signal could provide insight into the properties of the original system
that would be difficult to explore in other ways, such as the nuclear equation of state. In
fact, NSs are the smallest and densest stars in the Universe, with a radius of the order
of 10 km and a mass between about 1.4 and 2.17 solar masses. Under these conditions,
matter reaches densities very close to those of an atomic nucleus.

The post-merger GW emission also depends on the magnetic field strength of the
remnant. Indeed, intense magnetic fields can deform the star, making it more or less
oblate (Dall’Osso et al. 2009, Mastrano et al. 2013), and give observable signals of
GWs. The star deformation (and thus the post-merger emission) also depends on the
multipole order of the magnetic field (Mastrano et al. 2015). However, the processes
that give rise to the strong magnetic fields of NSs (between 10® and 10'® times stronger
than Earth’s one) are a matter of controversy and many evolutionary scenarios have
been proposed so far.

To study the post-merger phase of a Binary Neutron Stars (BNS) system, several
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2 Introduction

numerical codes have been developed to date, such as GRHydro (Mdsta et al. 2013),
I11inoisGRMHD (Etienne et al. 2015), and Spritz (Cipolletta et al. 2020). All of these
codes work in the so-called Ideal Magnetohydrodynamical (IMHD) condition, which
assumes that the fluid has so little resistivity that it can be treated as a perfect conduc-
tor. However, the combination of fast rotations and intense magnetic fields can generate
anisotropies in the distribution of currents, thus dropping the IMHD regime’s validity
conditions. This can lead to the development of instabilities that can increase the ef-
fective resistivity of the plasma. The enhanced resistivity is usually the result of the
formation of small-scale structures like current sheets or fine-scale magnetic turbulence.
However, General-Relativistic-Resistive-Magneto-Hydrodynamics (GRRMHD) requires
numerical methods different from those used to study the Ideal MHD regime. An opti-
mal choice is to use the IMEX (IMplicit EXplicit) scheme, which can guarantee stability
in reasonable computation times (Pareschi and Russo 2005, Palenzuela et al. 2009). To
further reduce computation times, numerical simulations must be performed using par-
allel systems, which subdivide the numeric domain in a predetermined number of equal
subdomains, each entrusted to a different processor. To evaluate the non-viscous flows,
shock-capturing methods are required. These methods are a class of techniques for
calculating non-viscous shock wave flows. In these methods the equations governing
the evolution of flows are expressed in a conservative form and the shock waves and
discontinuities are calculated as part of the solution. Modern shock capture schemes
use upwind schemes to solve hyperbolic partial differential equations, which discretize
the differential equations in the direction determined by the sign of the characteristic
velocities (Londrillo and Del Zanna 2000, Del Zanna and Bucciantini 2002, Del Zanna
et al. 2003).

In many numerical simulations, the spatial resolution - constrained by available com-
putational resources - is insufficient to capture fine details or high-frequency features
of the phenomenon being studied. To resolve all relevant scales, extremely fine grids
would be required, leading to prohibitive computational costs. Moreover, the MHD
equations are hyperbolic in nature and tend to develop discontinuities, such as shocks
and tangential discontinuities. If not addressed with proper numerical methods, these
features can introduce spurious oscillations, due to the Gibbs phenomenon, and nu-
merical instabilities, thereby compromising the accuracy of the results. The absence of
physical dissipation in the Ideal MHD equations allows magnetic structures to collapse
into increasingly smaller scales, beyond the resolution of the numerical grid. This leads
to an accumulation of kinetic and magnetic energy, a process known as the "energy cas-
cade towards small scales", which inevitably causes the numerical solution to diverge.
Furthermore, numerical discontinuities or shock waves can become excessively steep,
resulting in unstable behavior such as spurious oscillations or non-physical solutions.
To address these numerical challenges and ensure the stability of the simulations, artifi-
cial viscosity, such as the fifth-order Kreiss-Oliger dissipation (Kreiss and Oliger 1973),
is added to IMHD simulations. This artificial term, which does not exist in nature,
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serves the purpose of dissipating energy on the smallest scales. However, choosing the
appropriate value for the artificial viscosity coeflicient requires a delicate balance: an ex-
cessively high value overly smooths out physical structures, while a value that is too low
fails to ensure numerical stability. Incorporating physical dissipation mechanisms, such
as physical viscosity or electrical resistivity, helps to dampen small-scale discontinuities
or instabilities, thereby eliminating the need for artificial dissipation. Furthermore, in
nature, there are always some dissipative mechanisms (albeit very small) acting on the
smallest scales. Therefore, the inclusion of physical dissipation not only aids numerically
but also adds physical realism to the simulation.

Up to now, IMEX schemes have been implemented in two-dimensional codes and
applied to investigate the effects of electrical resistivity in relativistic jets (Mattia et al.
2023), accretion disks (Tomei et al. 2019, Del Zanna et al. 2022), and isolated neutron
stars (Franceschetti and Del Zanna 2020, Del Zanna et al. 2022) in axial symmetry, the
latter specifically in the presence of the dynamo mechanism, a process through which
a rotating, convecting, and electrically conducting fluid can generate a magnetic field
by self-inductive action converting kinetic energy into magnetic energy (e.g., Moffatt
1983, Biskamp 1997, Brandenburg and Subramanian 2005). Notable are the works of
Dionysopoulou et al. 2015 and Shibata et al. 2021, which carried out resistive simulations
of neutron star mergers, the latter incorporating the dynamo term used in the previously
cited two-dimensional studies. However, the codes used in those works are not publicly
available; therefore, we have been unable to analyze, test, or employ them to meet our
specific research objectives.

In this Ph.D. thesis, we present a new code, MIR (an acronym for "Magnetoldrod-
inamica Resistiva", i.e., resistive magnetohydrodynamics in Italian; Franceschetti and
De Pietri 2024a). Developed from scratch, MIR is capable of solving the equations of
general relativistic resistive magnetohydrodynamics in a three-dimensional dynamical
spacetime. The code can, therefore, be used to perform numerical simulations in three
different regimes (Hydrodynamics, Ideal MHD, and Resistive MHD) to study the tem-
poral evolution of astrophysical systems that require a general relativistic framework,
such as accretion disks, neutron stars, and binary systems of compact objects. MIR
will provide the community with the first publicly available code capable of perform-
ing resistive magnetohydrodynamic simulations within the EinsteinToolkit framework
(Loffler et al. 2012).

This thesis is organized as follows. In the first chapter, we briefly present the astro-
physical sources and their associated emissions where electrical resistivity is expected
to play an important role. In the second chapter, we provide an overview of the main
mechanisms proposed to explain the origin and evolution of the magnetic fields of these
sources, particularly those of neutron stars, both isolated and in binary systems. In
the third chapter, we review the equations of resistive magnetohydrodynamics in both
the covariant approach and the 341 formalism, which is the most commonly used in
numerical relativity. In the fourth chapter, we introduce the MIR code, describing the
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numerical methods employed and their implementation. Finally, in the fifth chapter,
we present the results of several numerical tests and a first study of a bar-mode insta-
bility in the resistive regime, which is useful for understanding the effects of electrical
resistivity in a post-merger-like configuration and the evolution of the magnetic field
during strongly dynamic evolution of the matter component.



Units and conversion factors

In this work we make use of geometrized units (G = ¢ = Mg = 1) combined with
the Lorentz-Heaviside units (eg = po = 1) for the electromagnetic quantities. The
assumed signature for the spacetime metric tensor is (—,+,+,+). Greek indices run
from 0 to 3, while latin spatial indices run from 1 to 3. In addition, the Einstein
summation notation is used.

The table below shows the values of the conversion parameter x from geometrized
to physical (cgs) units (i.e. fegs = Kfgeom for any quantity f, where the subscript c¢s
denotes the cgs system of units while the subscript geom denotes the geometrized units).
Recall that pressure has the dimensions of an energy density, while an electric field has
the dimensions of the product of a magnetic field and velocity.

Quantity Physical dimensions K
Length L G Mg c 2
Time T GMgp c3
Mass M Mg
Velocity LT ! ¢
Angular velocity T-! G! M(_Dl c3
Energy ML2T—2 Mg c?
Energy density ML~tT—2 G3 MéQ c®
Density ML3 C= M(_Dz b
Magnetic field MT—217! Var G3/2 Mél ct




6 Introduction

Here physical constants G, ¢ and My are in cgs units. Moreover, it results to be
convenient to convert the electric field in statV/cm. This because an electric field of
1statV/cm has, in a vacuum, the same electromagnetic energy density of a magnetic
field of 1 G. In this case, the conversion factor x for the electric field is, from a numerical
point of view, the same of the magnetic field.



Chapter

Astrophysical sources and their emissions

Modern astrophysics devotes a significant portion of its research to the analysis of
phenomena associated with compact objects, such as neutron stars, black holes, and
white dwarfs, which offer a unique perspective for understanding the extreme physical
processes of the universe. These objects, in addition to serving as natural laboratories
for studying the laws of physics under extreme conditions of density and gravity, are
often linked to violent processes and highly intense energetic emissions. In particular,
the presence of accretion disks and the emission of relativistic jets, as seen in the case of
gamma-ray bursts, represent some of the most spectacular examples of such phenomena.

This chapter aims to explore the variety of compact astrophysical sources and their
emissions, analyzing the physical processes underlying the formation and evolution of
their magnetic fields, as well as the role of gravitational waves. Understanding these
emissions is crucial not only for their influence on the surrounding environment, but
also for the valuable insights they provide into the fundamental processes that govern
the universe.

1.1 Compact objects

(Main references: Shapiro and Teukolsky 1983, Lipunov 1992, Glendenning 1997, Ca-
menzind 2007, Ghosh 2007)

Compact objects represent a category of celestial bodies characterized by extremely
high density and intense gravitational attraction concentrated within a relatively small
volume. These objects are characterized by their intense gravitational force. When
the degeneracy pressure of electrons or neutrons is able to balance gravity, a degenerate
star (white dwarf or neutron star) is formed. However, if the gravitational force exceeds
even these degeneracy pressures, the object collapses into a black hole.

To be considered compact, objects must posses a density greater than approximately
103 g/cm?, where electron can be treat as free particle, with the important distinction
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Figure 1.1: An illustration depicting potential evolutionary pathways for stars based on their
initial masses (Adapted from NASA 2019).

that when the density is greater than approximately 10°g/cm?, where their energy
is greater than their rest mass and indeed there is a reason of relativistic degeneracy.
Above this critical density threshold, matter begins to behave in radically different ways
compared to more common celestial bodies.

The formation of compact objects occurs through complex evolutionary processes,
typically at the end of the life cycle of massive stars. When a star exhausts its nuclear
fuel, its core can collapse under the influence of gravity, leading to the emergence of
dense structures such as white dwarfs, neutron stars, or black holes. Mass and density
play crucial roles in determining a star’s ultimate fate; sufficiently massive objects can
reach states of such high density that collapse into extremely dense forms is possible
(Figure 1.1).

The investigation of these celestial bodies not only deepens our understanding of
stellar evolution but also contributes to a broader understanding of the fundamental
forces governing the cosmos. Compact objects, with their extreme physical conditions,
provide unique opportunities to explore and test the laws of physics, pushing the bound-
aries of our understanding of the universe.
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1.1.1 White Dwarfs

When stars with masses between approximately 0.08 and 8 solar masses exhaust
their nuclear fuel and are no longer able to sustain nuclear reactions in their cores, they
collapse under their own gravity, forming extremely dense objects with sizes comparable
to that of Earth but with masses similar to that of the Sun, known as white dwarfs.
Under these conditions, the electrons are compressed into a very small volume, exert-
ing a pressure (known as electron degeneracy pressure) that counteracts gravity and
prevents further collapse. A fundamental aspect of white dwarfs is the Chandrasekhar
limit (Chandrasekhar 1931), which defines the maximum mass a white dwarf can pos-
sess. This limit, approximately 1.4 solar masses, indicates that if a white dwarf exceeds
this mass, it will no longer be able to maintain the balance between the gravitational
force and the electron degeneracy pressure. As a result, the star would undergo further
collapse.

White dwarfs are characterized by a composition predominantly of carbon and oxy-
gen, which are remnants of the nuclear fusion that occurred in the progenitor star’s
core. However, a thinner outer layer composed of hydrogen or helium may be present.
The internal structure of a white dwarf is stratified, with a dense core of carbon and
oxygen surrounded by shells of lighter elements.

Their luminosity (i.e. the total energy radiated by the star per unit time), although
faint, is a result of residual heat, gradually released into the surrounding space. The
luminosity of a white dwarf is described by the Stefan-Boltzmann law:

L=cAT* (1.1)

where L represents the luminosity of the white dwarf, expressed in erg/s, o is the Stefan-
Boltzmann constant, A indicates the surface area of the white dwarf, expressed in cm?,
T represents the effective temperature of the white dwarf, expressed in Kelvin, and
corresponds to the temperature of the stellar surface. This formula implies that a small
increase in temperature results in a significant increase in luminosity. Therefore, hotter
white dwarfs are also more luminous. The luminosity-temperature relationship has
made white dwarfs indispensable tools for determining cosmic distances. By measuring
the temperature of a white dwarf and knowing its surface area (which can be estimated
based on its mass), it is possible to calculate its intrinsic luminosity. By comparing
this luminosity with the apparent luminosity, i.e. that measured from Earth, one can
determine the distance at which the white dwarf is located.

However, it is important to emphasize that the Stefan-Boltzmann law represents a
simplification. However, it is important to emphasize that the Stefan-Boltzmann law
represents a simplification. The luminosity of a white dwarf also depends on other
factors, such as the chemical composition of its atmosphere, the presence of magnetic
fields, and its age. More sophisticated astrophysical models are required to accurately
describe the thermal evolution and luminosity of these objects. Despite these complex-
ities, the study of the luminosity-temperature relationship of white dwarfs remains an
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active field of research, with significant implications for understanding stellar evolution
and the structure of the universe. In fact, white dwarfs are true "stellar fossils", allow-
ing us to study the properties of intermediate-mass stars and obtain information about
the history of the universe.

Over time, white dwarfs gradually cool down as they no longer produce energy
through nuclear fusion. During this cooling process, the outer layers of the white dwarf
can undergo gravitational settling. In this process, lighter elements such as hydrogen
and helium tend to rise to the surface, while heavier elements like carbon and oxygen re-
main confined in the core. Despite the gradual cooling, the core maintains its structural
stability due to electron degeneracy pressure. However, cooling leads to a progressive
crystallization of the core, a process in which the material inside the white dwarf tran-
sitions from an ionized plasma state to a solid phase, similar to the formation of a giant
carbon-oxygen crystal (Tremblay et al. 2019). This crystallization phenomenon further
slows down the cooling process. Over time, the white dwarf becomes less luminous as
it emits its last reserves of thermal energy in the form of radiation. Over an extremely
long timescale, the white dwarf could theoretically become a black dwarf, a completely
cold and dark celestial body. However, since the age of the universe is not yet sufficient,
no white dwarf has had enough time to reach this final stage.

White dwarfs can also possess significant magnetic fields, generated during the for-
mation process. Some examples of white dwarfs exhibit magnetic fields that can range
from a few kilogauss to millions of gauss. These magnetic fields can influence their evo-
lution and interact with the surrounding environment, particularly when white dwarfs
are part of binary systems. The interaction between a white dwarf and a compan-
ion star can generate complex magnetic phenomena and even contribute to supernova
explosions.!

LA supernova is a catastrophic event that marks the death of a star, characterized by a
sudden and violent explosion that can outshine an entire galaxy for a brief period. Supernovae
are fundamental in astrophysics, as they not only signify the end of a star’s life, but also
contribute to the creation and dispersal of heavy elements in the universe, thereby influencing
the formation of new stars and planets.

There are primarily two types of supernovae, classified according to their light curves and
the absorption lines of different chemical elements that appear in their spectra. If the spectrum
contains lines of hydrogen, the supernova is classified Type II; otherwise it is Type I. In partic-
ular, Type Ia supernovae occur in binary star systems, where a white dwarf accretes material
from a companion star. When the mass of the white dwarf exceeds the Chandrasekhar limit,
the electron degeneracy pressure is no longer sufficient to counteract gravitational forces. This
leads to a rapid collapse, followed by a thermonuclear explosion that completely destroys the
white dwarf. Type Ia supernovae are particularly important as cosmic indicators, since their
peak brightness is fairly uniform, allowing astronomers to calculate cosmic distances. On the
other hand, Type Ib/c and Type II supernovae occur when massive stars (with masses greater
than about eight solar masses) exhaust their nuclear fuel. In this case, the star’s core collapses
under its own gravity, causing a sudden explosion. Type II supernovae are characterized by the
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A significant fraction of white dwarfs is indeed found in binary or multiple systems
(e.g., Holberg 2009, Toonen et al. 2017). In these cases, interactions with companion
stars can have important effects on their evolution. When a white dwarf is in a binary
system, it may accrete material from the companion star, which can lead to dramatic
events such as novae or, in extreme cases, Type la supernovae, when the white dwarf
exceeds the Chandrasekhar limit.

1.1.2 Neutron stars

When a massive star, with an initial mass between 8 and 25 solar masses, exhausts
its nuclear fuel, the core collapses under its own gravity. This contraction generates
extreme temperatures and pressures, triggering a series of nuclear reactions that lead
to a supernova explosion, expelling the outer layers of the star and leaving behind a
compact core. During the collapse, the electrons (e~) and protons (p) present in the
star’s atoms combine, converting protons into neutrons (n) and simultaneously resulting
in the emission of an electron neutrino (1) through electron capture:

pt+e —n+r, (1.2)

For this reason, this object is known as a neutron star.

The hallmark of a neutron star is its extreme density: a neutron star can have a mass
equal to that of the Sun but compressed into a diameter of only 20-30 kilometers. This
means that a single teaspoon of neutron star material would weigh billions of tons on
Earth. Another remarkable characteristic of neutron stars is their intense gravitational
field, which is about 2 billion times stronger than that of Earth. This means that, if
one were to stand on a neutron star, any object would fall to the surface in a fraction of
a second at speeds approaching the speed of light. The gravitational field is so powerful
that it distorts spacetime around the star, causing gravitational lensing effects.

As with white dwarfs, it is possible to determine the Chandrasekhar limit for neu-
tron stars, which is approximately four times that of white dwarfs. However, this limit
was originally derived using the Lane-Emden theory, which describes the hydrostatic
equilibrium of a self-gravitating polytropic fluid with spherical symmetry and no ro-
tation, without accounting for general relativity. Incorporating general relativity, one
arrives at the Tolman-Oppenheimer-Volkoff (TOV) limit for a cold, non-rotating star,
which is approximately 0.7 solar masses. Considering the strong nuclear repulsive forces
between neutrons, modern works yield significantly higher estimates, ranging from 1.5
to 3 solar masses. Observations of GW170817 (Abbott et al. 2017b), the first gravita-
tional wave event detected from the merger of two neutron stars, suggest that this limit
is close to 2.17 solar masses (Margalit and Metzger 2017).

presence of hydrogen in their spectra, indicating that the star had an outer layer of hydrogen
prior to the explosion. During this event, enormous amounts of energy are released, and the
expelled materials enrich the universe with heavy elements.
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Figure 1.2: Toy model for the rotating neutron star and its magnetosphere (not drown in
scale). The light cylinder is an imaginary surface centered on the star and aligned with the
rotation axis at whose radius the co-rotating speed of the magnetic field lines equals the speed
of light. The closed field lines are the magnetic field lines closed inside the light cylinder,
while the open field lines, which are centered on the magnetic axis, are those which would close
outside the light cylinder but cannot since plasma would exceed the speed of light. Acceleration
gaps are the two main regions from which the pulsar high-energy radiation should come. The
inner (or polar) gap region is located in the open field line region above the magnetic polar
cup, while the outer gap is located between the outer and the inner field lines close to the light
cylinder. (Lorimer and Kramer 2005).

The theoretical existence of neutron stars was proposed by Baade and Zwicky 1934,
which came shortly after Sir James Chadwick’s discovery of the neutron, just under
two years prior (Chadwick 1932). In their research on supernovae, Baade and Zwicky
hypothesized that neutron stars are formed from the explosive remnants of massive
stars with masses exceeding 6 to 8 times that of the Sun.

The first neutron star was identified in 1967 by Jocelyn Bell Burnell and Antony
Hewish, who detected regular radio pulses of 1.337 seconds from the pulsar known as
PSR B1919+21.
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1.1.2.1 Pulsars and magnetars

A pulsar (from "pulsating star", Figure 1.2) is a particular class of neutron star
that emits narrow, regular beams of electromagnetic radiation from its magnetic poles.
These beams are observable only if they are directed toward Earth, and as the star
rotates, the beams appear to switch on and off, resembling the behavior of a lighthouse.
This periodic emission generates regular radio signals, which is the origin of the pulsar’s
name.

One of the most distinctive features of pulsars is the remarkable regularity of their
pulses. Some are so precise that they are considered among the most reliable natural
clocks in the universe. This precision has led to pulsars being used in various scientific
contexts, including the study of gravitational waves and the measurement of subtle
variations in spacetime. Some pulsars, known as millisecond pulsars, rotate at extraor-
dinarily high speeds, completing hundreds of rotations per second. Their rapid rotation
is often enhanced by the transfer of matter from a companion star in a binary system.

Canonical pulsars have periods ranging from P ~ 0.003s to a few seconds and
exhibit dipole magnetic fields of ~ 10° — 10 G. Millisecond pulsars, on the other
hand, are characterized by very short periods P < 10ms, and weak dipole magnetic
fields B < 10' G. Such rapid rotations deform the star, leading to the emission of
gravitational waves and deviations from the mass-radius relationship predicted for non-
rotating stars. In particular, rotation increases the maximum mass of the star by
10 — 20%, expands the equatorial radius by 15 — 20%, and reduces the central density
by approximately 20%.

Pulsars occasionally experience glitches, during which the star abruptly accelerates
its rotation due to internal adjustments. The star then gradually returns to its original
spin rate over a period of days to weeks. Glitches can excite oscillations within the star,
which in turn may produce burst-like emissions of gravitational waves.

Pulsars can also experience pulse nulling, a sudden cessation of their regular radio
emissions that can last for up to ~ 10%*s. An extreme form of nulling is observed in
Rotating Radio Transients (RRATS), a distinct class of pulsars where no pulsed emission
is detected between individual, sporadic radio bursts.

If a neutron star possesses a magnetic field on the order of 10'* —10'> G - among the
strongest known in the universe - it is classified as a magnetar (from "magnetic star").
Magnetars typically rotate more slowly than regular pulsars, with rotation periods in
the range ~ 2 — 125, and their characteristic spin-down ages are on the order of 101 yr.

Magnetars are known for their extreme instability. Due to their tremendously pow-
erful magnetic field - which completely governs the star’s behavior, influencing not only
radiation emission but also its internal structure and long-term evolution, and whose
origin is still a matter of controversy (see Chapter 2) - the star’s crust can undergo vio-
lent "starquakes" and other instabilities that release vast amounts of energy over short
periods. These events lead to magnetic flares, explosive outbursts that can release, in
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just a few seconds, as much energy as the Sun emits over tens of thousands of years.

The magnetar class encompasses two distinct types of neutron stars, characterized
by persistent X-ray emissions with luminosities in the range of Lx ~ 1033 — 1030 erg/s:
Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs). SGRs are known
for their violent outbursts, called giant flares, during which they release an immense
amount of energy, approximately 10%* — 10%6 erg, in less than one second. AXPs, on
the other hand, exhibit modulation in their X-ray emissions, with a significant pulsed
fraction.

If an event such as a starquake or a rotational instability were to cause an asymmet-
ric deformation in the shape of a magnetar, it could potentially release gravitational
waves. Although direct detection of gravitational waves from magnetars has not yet
occurred, these extreme stars are considered promising sources for future gravitational
wave detectors like LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015).

1.1.2.2 Internal structure

The internal structure of neutron stars is characterized by extreme physical condi-
tions and extraordinarily high densities, reaching up to approximately 4 x 10 kg/m?3.
Today, neutron stars come in various flavors depending on the composition of the core,
where all atomic nuclei have been dissolved into their fundamental constituents: neu-
trons and protons. Migdal, in 1959, pointed out that the neutron liquid within a
neutron star must necessarily be in a superfluid state (Migdal 1959). This state of mat-
ter exhibits a division into bound pairs, analogous to Cooper pairs in a superconductor.
Ginzburg and Kirzhnits, in 1964, observed that vortices must exist in the superfluid
components of a rotating neutron star (Ginzburg and Kirzhnits 1964).

Within the core of a neutron star, the density is so high that it allows for the
emergence of heavier particles, such as hyperons and baryon resonances (X, A, Z, Q).
Under these conditions, the core may also contain a gas of free quarks, including up,
down, and strange quarks, potentially in a state of color superconductivity. In this
context, we distinguish traditional neutron stars, or hadronic stars, where the core
is predominantly composed of neutrons, protons, and electrons, from hyperon stars,
in which, at high densities, heavier baryons are excited. Figure 1.3 illustrates the
theoretical predictions regarding the compositions of neutron stars. The notations 25C
and CFL refer to color-superconducting quark condensates, which represent specific
states of matter within these stars at extremely high densities.

Given that the density within a neutron star reaches nuclear densities, it is natural to
compare such matter with nuclear matter. Although both forms of matter are composed
of baryons, the similarities and differences between nuclear matter and that of neutron
stars are significant and profoundly influence the properties of these cosmic objects.

The similarities primarily lie in the fact that both forms of matter are composed of
nucleons, namely protons and neutrons, and their densities are comparable. However,
differences arise from two fundamental aspects. Firstly, both atomic nuclei and neutron
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Figure 1.3: Neutron star compositions predicted by theory. (Weber et al. 2009).

stars are bound systems, but they are held together by different forces. Atomic nuclei are
bound by the strong nuclear force, whereas neutron stars are stabilized by gravitational
forces. In nuclear matter, the number of neutrons (N) tends to be similar to the number
of protons (Z); however, in a neutron star, the net charge is essentially zero, since the
repulsive Coulomb force is significantly stronger than the gravitational force. Notably,
in a neutron star, the net charge satisfies the relationship

Znet < 107354 (1.3)

where Z,.; is the net charge of the star and A is the atomic mass number.

The second profound difference concerns the strangeness of the particles. Matter in
atomic nuclei has a zero net strangeness, whereas neutron stars can contain hyperons,
resulting in a non-zero net strangeness. Due to the high density of matter within neutron
stars and the Pauli exclusion principle governing the behavior of baryons, it becomes
energetically favorable for nucleons at the top of the Fermi sea to convert into other
baryons, including strange ones, such as hyperons, in order to lower the Fermi energy.

When we refer to "neutron star matter", we mean a cold nuclear matter that is
electrically neutral, in its lowest energy state, and generally in beta equilibrium, defined
as cold-catalyzed matter.

Further information can be found in Glendenning 1997 and Weber et al. 2009.

1.1.3 Black Holes

A star with an initial mass exceeding 25 solar masses undergoes gravitational col-
lapse at the end of its life cycle. The resulting compact object, known as a black hole,
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possesses a gravitational field so intense that its escape velocity exceeds the speed of
light.

A black hole is commonly defined by its event horizon, the boundary beyond which
nothing can escape. This horizon is not a physical surface, but rather a threshold
marking the point of no return. Objects approaching this limit are irresistibly drawn
in and, as they near the horizon, may emit radiation, particularly X-rays, due to the
compression and heating of the surrounding material.

The geometry of spacetime surrounding a black hole undergoes a dramatic trans-
formation as an object is drawn toward it. This results in remarkable phenomena such
as gravitational time dilation. Distant observers perceive time as passing more slowly
for an object approaching a black hole, an effect with profound implications for our
understanding of the very nature of time.

Black holes can be classified primarily by their mass. Stellar black holes, with masses
ranging from 3 to several tens of solar masses, are the most common. Supermassive black
holes, which can have masses equivalent to millions or even billions of solar masses, are
found at the centers of most galaxies, including the Milky Way. Their formation and role
in galactic evolution are subjects of intense research. Finally, there are intermediate-
mass black holes, which fall within a mass range between stellar and supermassive black
holes, but their existence and formation remain poorly understood.

Black holes are not merely isolated objects; they play a crucial role in the dynamics
of galaxies and the evolution of the universe. Supermassive black holes are thought to
influence star formation and the distribution of matter within galaxies. Their presence
can also shape the evolution of galaxies themselves, making their understanding essential
to cosmology.

Black holes have been the subject of numerous theoretical and observational exper-
iments. In 2019, the Event Horizon Telescope collaboration obtained the first image of
a supermassive black hole located at the center of the galaxy M87, providing visual evi-
dence of their existence and corroborating the predictions of general relativity (Akiyama
et al. 2019). This image has opened new avenues for the study of black holes and for
understanding the dynamics of astrophysical systems. Additionally, projects such as
the Laser Interferometer Gravitational-Wave Observatory (LIGO) have opened a new
window on the universe, allowing scientists to detect gravitational waves generated by
the merger of black holes. These waves provide valuable information about the mass
and spin of interacting black hole pairs, thereby contributing to our understanding of
their formation and evolution.

Black holes have stimulated philosophical and theoretical discussions, particularly
regarding the nature of information. The black hole information paradox, for example,
raises questions about what happens to the information that enters a black hole. Ac-
cording to quantum theory, information cannot be destroyed, but it seems that a black
hole destroys it. This apparent contradiction has led to new theories, such as Malda-
cena’s conjecture, which seeks to reconcile general relativity and quantum mechanics
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Figure 1.4: FEvent horizon of the supermassive black hole at the center of Messier 87.
(Wikipedia (https://en.wikipedia.org/wiki/Black_hole) and Akiyama et al. 2019).

(Maldacena 1998).

1.1.3.1 Classification of Black Holes

Black holes can be categorized into three primary classes based on their physi-
cal characteristics and solutions to the Einstein field equations. These classes are:
Schwarzschild black holes, Kerr black holes, and Reissner-Nordstrom black holes.

Schwarzschild black holes are non-rotating, uncharged black holes. Their solution
represents the simplest case of a black hole, where the mass is concentrated at a point,
and the event horizon is spherical. Schwarzschild black holes are described by the
Schwarzschild metric and are characterized by a single event horizon located at

2GM
rg =

(1.4)

2
where G is the gravitational constant, c is the speed of light, and M is the mass of the
black hole.

Kerr black holes, endowed with angular momentum, exhibit a more intricate space-
time geometry compared to their non-rotating counterparts. The Kerr metric, which
accounts for rotation, reveals two important surfaces: an outer horizon at

Ts—i-\/r%—éloﬂ

rg = 9 (1.5)
and an inner horizon at
rs + 4/r% — 4a? cos? 0

= 1.6
rE 5 (1.6)

where J denotes the black hole’s angular momentum, 6 the polar angle, and

J

a (1.7)

~ Mc
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The region enclosed by the two radii is known as the ergosphere. Within this region, par-
ticles are compelled to co-rotate with the inner mass. These black holes are considered
to be more realistic models of the black holes observed in the universe.

Reissner-Nordstrom black holes are electrically charged and can be regarded as a
generalization of the Schwarzschild solution to include an electric charge. Reissner-
Nordstrom black holes also possess an event horizon, but their structure additionally
includes an inner horizon.

In addition to these three main classes, there are also other more complex solutions,
such as Kerr-Newman black holes, which combine rotation and electric charge.

Electrically charged black holes were introduced to explore the theoretical implica-
tions of general relativity in the presence of electric fields. However, to date, astronom-
ical observations and gravitational wave measurements have led to the conclusion that
black holes are predominantly considered uncharged.

1.2 Accretion disks
(Main references: Frank et al. 2002, Carroll and Ostlie 2017)

Accretion disks are lenticular structures that form around a source of gravitational
field. They arise when material, such as gas, dust, and plasma, is attracted toward this
central object due to its gravitational pull. However, because of the angular momentum
of the material, it does not fall directly onto the object but instead begins to spiral
around it, forming a flattened disk.

These disks are crucial for understanding the process of "accretion", the phenomenon
through which material gradually falls towards the central object. As this occurs, the
gas and dust within the disk progressively lose energy and angular momentum, leading
to a gradual inward movement. As the material approaches the central object, collisions
between particles cause the disk to heat up. The temperature of the disk rises as it nears
the central object, converting gravitational energy into thermal energy, which is then
radiated and can be observed across various wavelengths, such as X-rays or ultraviolet
radiation.

An extreme example of an accretion disk is found around black holes. Here, material
can reach extremely high speeds and temperatures as it approaches the event horizon,
resulting in the production of intense X-ray emissions. These X-rays are one of the
primary observable signatures of black holes with active accretion disks. In cases where
the black hole is supermassive, such as those found at the centers of galaxies, and
is attracting large amounts of matter, a phenomenon known as a quasar is created.
Quasars are among the most luminous objects in the universe, powered by accretion
disks that emit extraordinary amounts of energy.

Neutron stars and white dwarfs can also host accretion disks, with similar charac-
teristics, although the radiation emitted differs due to the differences in mass and the
physical conditions of the surrounding region. Moreover, accretion disks are not lim-
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Figure 1.5: Schematic of the innermost regions around the supermassive black hole in an
AGN. (Credit: D. Wilkins (https://danwilkins.net/research)).
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Figure 1.6: Simplified schematic diagram of an AGN SED (Collinson et al. 2016).

ited to compact and extremely massive objects: protostars, or newly formed stars, can
also have disks of gas and dust that fuel their growth, contributing to the formation of

planets and solar systems.
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1.2.1 Active Galactic Nuclei

An Active Galactic Nucleus (AGN) can be defined as a nucleus that produces a
significant amount of non-stellar energy, with a spectral distribution ranging from radio
to X-ray and gamma-ray wavelengths.

In the spectrum of AGNs, an X-ray component is observed, which can only be
explained through Inverse Compton scattering? of photons emitted by the disk by ran-
domly distributed hot electrons forming what is known as the "corona" (Figure 1.5).
The cooling due to Inverse Compton scattering occurs extremely quickly, indicating
that there must be some mechanism by which the disk supplies energy to the corona.
The exact nature of this mechanism is still unknown; one hypothesis suggests that there
may be a magnetic connection between the disk and the corona.

Observing the Spectral Energy Distribution (SED) of AGN (Figure 1.6), it is evi-
dent that these objects exhibit a peak in emission in the ultraviolet (UV) range at an
energy approximately equal to that of hydrogen ionization. A closer examination of the
spectrum reveals the presence of several emission lines, which vary in width and require
a strong continuous source of UV radiation.

Upon closer examination of the X-ray spectrum of an AGN, several emission lines
can be observed. Among these, the most prominent is the Ka line of iron at approxi-
mately 6.4keV, which arises from fluorescence emission in the inner region of the disk.
The profile of this line allows for the determination of both the Doppler effect and
gravitational redshift.

1.3 Gamma-Ray Bursts
(Main references: Meszaros 1992, Carroll and Ostlie 2017)

Gamma-ray bursts (GRBs) are brief and intense flashes of gamma radiation, lasting
from a few milliseconds to several minutes. These explosions are highly directional,
with energy emitted along narrow cones or jets rather than uniformly in all directions.

There are two primary categories of GRBs based on their duration. Long GRBs,
lasting more than two seconds, are associated with the explosive death of massive stars
when their core collapses into a black hole or neutron star. During the process, a
relativistic jet is formed, traveling at nearly the speed of light and emitting intense
radiation, which is observed as a GRB. Short GRBs, on the other hand, last less than
two seconds and are linked to the merger of two compact objects, such as neutron stars
or a black hole and a neutron star.

2The inverse Compton scaltering is a physical phenomenon in which a low-energy photon
interacts with a high-energy electron, resulting in a transfer of energy from the photon to the
electron. Unlike the direct Compton scattering, where the photon loses energy and increases
its wavelength, in this process, the photon gains energy and shifts to shorter wavelengths,
becoming a high-energy photon, such as X-rays or gamma rays.
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An indirect but significant role in the processes leading to GRB emission is played
by the plasma’s electrical resistivity, which measures the plasma’s ability to oppose the
flow of electric currents. n a plasma with non-zero resistivity, magnetic reconnection
can occur. This is a process in which opposing magnetic field lines break and reconnect
in a different configuration, releasing large amounts of energy suddenly and violently.
Magnetic reconnection has been proposed as one of the key mechanisms for accelerating
particles and producing the highly energetic gamma-ray emission observed in GRBs
(Drenkhahn and Spruit 2002, Zhang and Yan 2011).

In the relativistic jets expelled during a GRB, the plasma’s resistivity can affect the
efficiency with which magnetic energy is converted into the energy of charged particles,
which in turn generate electromagnetic radiation, including gamma rays. If the plasma
were perfectly conductive (i.e., with zero resistivity), magnetic reconnection would not
occur or would be much less efficient. However, in the presence of some resistivity,
reconnection can rapidly release energy, contributing to the acceleration of particles to
relativistic speeds and the collimation of the jets.

Additionally, plasma resistivity may also play a role in the Kelvin-Helmholtz insta-
bility (Section 2.4), which occurs when the plasma within the jet interacts with the
surrounding material. This type of instability can promote turbulence and contribute
to energy dissipation, thereby affecting the final gamma-ray emission (Lazarian and
Vishniac 1999).

1.4 Gravitational waves
(Main references: Priz 2009, Maggiore 2007, Maggiore 2018)

Gravitational waves (GWs) are perturbations of spacetime caused by cataclysmic
cosmic events, such as the coalescence of black holes or neutron stars. Propagating at
the speed of light, these waves traverse the cosmos undeterred by intervening matter or
energy. Their detection was achieved for the first time in 2015 by the LIGO and Virgo
collaborations (Abbott et al. 2016), confirming a century-old prediction of Einstein’s
general theory of relativity.

Their detection heralds a new era in astronomy, providing a novel window into the
universe and enabling the observation of phenomena otherwise invisible through tra-
ditional electromagnetic means. These signals provide fundamental insights into the
nature of gravity, the structure of spacetime, and extremely compact objects such as
black holes and neutron stars. Furthermore, gravitational waves allow for the explo-
ration of distant cosmological events, such as the Big Bang and the early universe,
while also confirming key aspects of general relativity and demonstrating that they
carry energy through space in the form of gravitational radiation.

While the merger of compact objects is among the most powerful and easily de-
tectable sources of gravitational waves, these waves are not exclusively emitted during
such events. In fact, any accelerating mass can generate gravitational waves, at least in
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theory. However, the intensity and strength of these waves are strongly influenced by
the mass of the object and the speed of its acceleration. For detection, it is essential
that the object involved possesses a significant mass and undergoes high accelerations.

Gravitational wave emission from isolated objects requires an asymmetry in their
motion. Perfectly symmetric objects, such as a uniformly rotating sphere, do not emit
gravitational waves. However, objects with deviations from spherical symmetry can
produce gravitational waves, particularly when they are rapidly rotating. The defor-
mation of these objects and their rotational motion provide the necessary conditions
for gravitational wave emission. It is believed that certain neutron stars, characterized
by structural irregularities, are sources of continuous gravitational waves due to their
rapid rotation and surface deformations.

At frequencies lower than the Keplerian limit, instabilities driven by gravitational
radiation can arise, limiting the rotation of stars. These instabilities, moderated by
the star’s viscosity, are both caused by and contribute to the emission of gravitational
waves. Given the temperature dependence of stellar viscosity, neutron stars born with
high initial rotation rates near the Keplerian limit are likely to experience a rapid spin-
down due to these instabilities. The resulting gravitational waves, though weak, provide
a valuable probe into the internal structure and evolution of these compact objects. The
asymmetry in the mass distribution and the rapid rotation of neutron stars create the
necessary conditions for the generation of continuous gravitational wave signals, offering
unique insights into the physics of ultra-dense matter.

Like most objects, stars exhibit normal modes of vibration. In non-rotating stars,
viscosity effectively suppresses all vibrational modes. However, in rotating stars, certain
modes can become unstable, even in the presence of viscosity. These unstable modes
are particularly prone to excitation at higher rotation frequencies. Such instabilities
can lead to non-axisymmetric deformations, resulting in the emission of gravitational
waves. The energy carried away by these waves feeds back into the instability, causing
the star to spin down more rapidly. The interplay between centrifugal and tidal forces
plays a crucial role in triggering and sustaining these instabilities, which can be further
influenced by the viscosity of the stellar material.

Objects that approach a black hole, without necessarily merging with it, can also
emit gravitational waves, such as an object orbiting a supermassive black hole. How-
ever, the most intense gravitational waves are usually generated by binary systems,
such as merging black holes or neutron stars. Although, in theory, any object under-
going accelerated motion emits gravitational waves, in the case of relatively small mass
objects, such as planets and normal stars, the produced waves are so weak as to be
virtually undetectable. Only events involving enormous masses and high accelerations,
like mergers of compact objects or the rotations of deformed neutron stars, generate
waves sufficiently powerful to be detected with current technologies.
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1.4.1 The geometric approach

Gravitational waves are purely transverse waves, characterized by two polarization
states, denoted as "4+" and "x", which differ by a 45° rotation around the propagation
axis, reflecting the quadrupolar nature of the gravitational field.

A linearized form of general relativity is often used to describe gravitational waves
in terms of a small perturbation to the spacetime metric, h,,. In this framework, the
metric tensor is written as

Guv = Nuv + huu (18)
where 7, is the Minkowski metric of flat, unperturbed spacetime, and |h,,| < 1

represents the gravitational wave perturbation. In vacuum, the Einstein field equations
are reduced to

TT _
ohyr =0 (1.9)

a wave equation for h,, propagating through flat spacetime. Here?
O=-0}+V? (1.10)

is the d’Alembert operator, and hEE refers to the perturbation expressed in the transverse-
traceless (TT) gauge, a choice of coordinates that ensures the perturbation is transverse
(orthogonal to the propagation direction) and traceless (does not compress or expand
spacetime).

In the TT gauge, a plane gravitational wave propagating along the z-axis can be
written as®

0 0 0 0

TT T oy |0 Ry Ak O
huy (t,2) = hy, (t —2) = 0 hy —h, 0 (1.11)

0 O 0 O

where hy « (t — z) are the two polarizations of the wave.
The emission of gravitational waves is well-described by the quadrupole formula®

2 ..
it = ;Q;ET(t —7) (1.12)

3We remind the reader that in this work, we are using the signature (—,+, +,+) for the
metric tensor, and we have set ¢ = 1. In physical units, we would have had

O=—(1/c%)0; + V?

4We remind the reader that in this work, we have set ¢ = 1. In physical units we would
have had A (t,z) = hj) (t — z/c).

®We remind the reader that in this work, we have set ¢ = G = 1. In physical units we would
have had
2G

AIT —
t rct

i (t=r/c)
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where r is the distance to the source, accounting for the time delay, and the dots denote
time derivatives. The tensor );; represents the mass-quadrupole moment of the source,
which for sources with weak internal gravity can be expressed as

Qij = /p(t,x) (901'90]' - 7:9)251']‘) d®z (1.13)

where p(t,x) is the mass density.

The energy emission rate (or, in notation commonly used in astrophysics, the total
gravitational luminosity of the source) Loy in gravitational waves can be expressed in
the quadrupole formalism as®

Low = % <QU Q”> (1.14)

where Q” must be evaluated at the retarded time ¢ — r, and (...) denotes the time
average over several characteristic periods of the gravitational wave. This equation
highlights that the gravitational luminosity is dependent on the dynamics of the mass
distribution, specifically how it changes over time. Thus, sources with significant vari-
ations in their mass quadrupole moment will emit gravitational waves more effectively,
resulting in a higher total gravitational luminosity.

1.4.2 Continuous gravitational waves from neutron stars

Continuous gravitational waves are long-lasting, quasi-monochromatic signals char-
acterized by slowly varying intrinsic frequencies. Three primary mechanisms are typi-
cally considered for the emission of continuous GWs from spinning neutron stars within
the frequency range of current ground-based detectors (approximately 20 Hz to 2kHz).

The first mechanism involves non-azisymmetric distortions on the neutron star’s
surface. Such distortions, often referred to as "mountains", cannot exist in idealized
perfect fluid stars. However, in realistic neutron stars, these deformations can be sup-
ported by either elastic stresses in the crust or by magnetic fields. The degree of
deformation is commonly quantified by the equatorial ellipticity

oo Jae = Ly (1.15)

IZZ
where I;; are the three principal moments of inertia of the star. A spinning, non-
axisymmetric neutron star located at a distance d and rotating with a frequency v

6We remind the reader that in this work we have set ¢ = G = 1. In physical units we would
have had

Lew = 5% <Qu Q”>

and the delayed time would correspondingly be ¢ — r/c.
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around the I, axis emits monochromatic GWs at a frequency f = 2v with an amplitude
given by
1672102

ho = "¢ (1.16)

The relevant question is what actual deformations are likely to exist in real neutron
stars. For example, a strong dipolar magnetic field that is misaligned with the rotation
axis could lead to deformations of up to ¢ < 107 in the case of a type-I superconduct-
ing” core. These non-aligned deformations would typically result in gravitational wave
emission at both the first and second harmonics of the rotation rate, i.e., f = v and
f = 2v. Another possibility is that the differential rotation present after the formation
of a neutron star could "wind up" large toroidal magnetic fields. Dissipation would
then drive the symmetry axis of a toroidal field toward the star’s equator, resulting
in ellipticities on the order of ¢ ~ 1076 for toroidal magnetic fields of approximately
Bior ~1075.

The second mechanism for the emission of continuous gravitational waves from spin-
ning neutron stars involves non-azisymmetric instabilities. These instabilities, driven
by hydrodynamic and gravitational forces, can arise in rapidly rotating neutron stars,
particularly in newly formed stars or during accretion phases. If a newly born neutron
star has a sufficiently high rotation rate (typically if T'/|W| 2 0.24, where T is the rota-
tional kinetic energy and W is the gravitational binding energy), it may be subject to
dynamical instability driven by hydrodynamics and gravity. This instability can deform
the star into a bar shape, which would be a strong source of gravitational waves, albeit
likely short-lived (on the order of a few rotations).

The third mechanism for the emission of continuous gravitational waves from spin-
ning neutron stars is free precession. This occurs when a neutron star’s rotation axis
is misaligned with its symmetry axis, causing the star to "wobble" like a spinning top.
Generally, free precession leads to gravitational wave emission at approximately the
rotation rate v and at twice the rotation rate, specifically at frequencies f = v + vprec
(where Vprec is the precession frequency) and f = 2v.

"The interior of a bulk superconductor cannot be penetrated by a weak magnetic field,
a phenomenon known as the Meissner effect (Meissner and Ochsenfeld 1933). Bulk type-T
superconductors remain in the Meissner state with no field inside the sample if the external
field is below a critical value H.. They suddenly become normal metals when the external field
is above H..






Chapter

Magnetic fields: origin and evolution

The astrophysical sources discussed in Chapter 1 exhibit extremely strong magnetic
fields. The origin and evolution of these magnetic fields, particularly those of magne-
tars, are not fully understood. The magnetic fields of these stars are so intense that
they significantly impact both their internal structure and their emissions, whether
electromagnetic or gravitational.

Such intense fields physically deform the star (e.g., Mastrano et al. 2013, Mallick and
Schramm 2014, Mastrano et al. 2015), inducing anisotropic forces causing a deviation
from the spherical symmetry typical of a neutron star. Consequently, magnetars may
assume an ellipsoidal shape, either elongated or flattened along the magnetic axis. The
resulting internal stresses can lead to fractures in the star’s crust, triggering explosive
events known as "starquakes", which release enormous amounts of energy in a very short
time. These events are often associated with violent gamma-ray and X-ray emissions.

In terms of electromagnetic emissions, magnetars are among the most powerful as-
trophysical sources. The physical processes occurring within these extremely intense
magnetic fields generate extremely violent energy bursts, particularly visible in X-rays
and gamma-rays. Events such as soft gamma repeaters (e.g., Thompson and Duncan
1995) are caused by magnetic reconnection, a process in which the magnetic field reor-
ganizes itself and releases explosive energy. Moreover, electromagnetic emissions from
a magnetar can be strongly polarized due to the interaction with the magnetic field,
providing valuable information about its geometry. In such extreme environments, the
properties of the quantum vacuum are modified: phenomena such as vacuum birefrin-
gence (Heisenberg and Euler 1936), typical of quantum electrodynamics, can alter the
propagation of photons, changing the appearance and polarization of the emissions
(Mignani et al. 2016).

A crucial role in the emissions of magnetars is played by the synchrotron process,
which occurs when charged particles, such as electrons or protons, are accelerated to
relativistic speeds within the extremely powerful magnetic fields of the magnetar. As
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these particles move along curved trajectories induced by the magnetic field, they emit
synchrotron radiation, which manifests across a wide spectrum of frequencies, from
radio waves to X-rays and gamma rays. The synchrotron emissions of magnetars are
particularly intense due to the strength of the magnetic field and are highly polarized.

Gravitational waves can also be produced by the immense magnetic field of a mag-
netar. The anisotropic deformations of the star can lead to the continuous emission of
gravitational waves, albeit with lower intensity compared to more cataclysmic events
such as the merger of black holes or neutron stars. Additionally, during starquakes,
the fracturing of the star’s crust can generate impulsive gravitational waves associated
with these violent events. The detection of such signals using instruments like LIGO or
Virgo is a primary goal in astrophysical research, despite the extreme difficulty posed
by the weakness of the signal and the very high frequencies involved.

Beyond physical deformations and emissions, such an intense magnetic field can trig-
ger magnetohydrodynamic instabilities within the magnetar. Magnetic reconnection, a
phenomenon where field lines reorganize abruptly, can cause intense particle acceler-
ation, increasing synchrotron radiation production and leading to flares observed as
gamma-ray bursts or X-ray flares. These explosive processes are a direct consequence
of the complex interaction between the magnetic field and the matter that composes
the star.

Over time, the magnetic field of a magnetar tends to decay in a process known
as magnetic decay. The energy stored in the field is gradually dissipated as radiation
and heat, contributing to the cooling of the star. Even during this decay phase, the
magnetar continues to emit radiation, especially in the soft X-ray band, although less
violently than in the earlier stages of its life.

As previously mentioned, the origin of these intensely strong magnetic fields, as well
as the processes underlying their evolution, remains a subject of ongoing discussion. In
this chapter, we present an overview of the processes that have been proposed to date.

2.1 The fossil hypothesis

The fossil field hypothesis, also known as the "flux conservation hypothesis", was
initially proposed by Woltjer 1964. According to this model, magnetic fields are merely
remnants of the fields of their main sequence (MS) progenitors. However, this model
faces several challenges.

Firstly, assuming a relatively uniform field, the flux contained within a neutron star’s
core would be insufficient to explain the intense magnetic fields observed in magnetars.
Even if the progenitor star had a magnetic field as strong as 10* G, the strongest known
in main sequence stars, the resulting field in the neutron star would only be around
101 G.

Secondly, only a small fraction of main sequence stars have magnetic fields as strong
as 10* G. Yet, the birth rate of magnetars is comparable to that of normal neutron stars.
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This suggests that magnetars may have a different origin than normal pulsars. However,
this raises the question of why a process capable of generating such intense magnetic
fields in magnetar progenitors does not also operate, albeit at a lower strength, in the
progenitors of normal pulsars.

2.2 Dynamo mechanism

The dynamo mechanism is a process through which a rotating, convecting, and
electrically conducting fluid can generate a magnetic field by self-inductive action, con-
verting kinetic energy into magnetic energy and maintaining it over astronomical time
scales. (e.g., Moffatt 1983, Biskamp 1997, Brandenburg and Subramanian 2005).

When a conductor moves through a magnetic field, an electric field is induced. This
electric field, in accordance with Ohm’s law, generates a current. According to Ampére’s
law, this current produces a magnetic field. This newly generated magnetic field can,
on the one hand, induce a new electric field through Faraday’s law. On the other hand,
it can oppose the motion of the conductor due to the Lorentz force. This is a highly
nonlinear system.

However, for a lasting magnetic field to be established, the dynamo process must
be self-sustaining. his means that the generated electric currents must reinforce the
preexisting magnetic field rather than dissipate it. This is known as the "self-sustaining
dynamo effect". The initial magnetic field (which can be very weak or even the result
of magnetic remnants from the body’s formation phase) deflects internal fluid motions,
inducing new electric currents that, in turn, create or amplify the existing magnetic
field. This creates a continuous cycle where the magnetic field and electric currents
mutually sustain each other.

For the dynamo mechanism to be triggered, a certain degree of complexity in the
motions of the conducting fluid is necessary. Specifically, there must be irregularities
or deviations from axial symmetry. This means that three-dimensional, turbulent fluid
motions, such as convective or differential motions, must break perfect symmetry to gen-
erate and sustain a long-lasting magnetic field. If a system were perfectly axisymmetric,
the motions of the conducting fluid would be too regular to generate a self-sustaining
magnetic field. The outcome would be the gradual dissipation of the magnetic field as
a result of resistive effects, since, in a symmetric system, the field lacks the opportunity
to "wrap around" and reinforce itself. In contrast, the breaking of axial symmetry al-
lows the generation of vortices, irregular flows, and differential regions of motion, all of
which enable electric currents to continually feed the magnetic field and keep it active.
This is a well-known result of dynamo theory, often associated with the so-called "anti-
dynamo theorem" (or Cowling’s theorem), which states that axisymmetric magnetic
fields cannot generate a self-sustaining dynamo.

This asymmetry can arise from various factors such as differential rotation, turbu-
lent fluid motions, or variations in temperature and composition within the celestial
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body. Even small perturbations or deviations from symmetry can trigger the dynamo
mechanism.

Of particular importance is the so-called mean-field dynamo. This theory separates
the total magnetic field and fluid motions into large-scale (mean) and small-scale (fluc-
tuating) components. In this way, the observed magnetic field, which is generally the
large-scale one, is modeled by accounting for the average influence of turbulent motions.
In other words, the magnetic field (B) and fluid velocity (U) are rewritten as:

B=By+b <b>:0 b < By (2.1)

U=Uy+u <u>:0 u << Uy (2.2)

where By and U represent the mean values, and b and u are the turbulent fluctuations.
From a classical (i.e., non-relativistic) perspective, the evolution of the magnetic
field is described by the equation:

0By =V X (Uo X Bg + 8) + TIV2B0 (2.3)

where 7 is the magnetic diffusivity (or electrical resistivity, assumed to be constant
here), and
€ =aBy—- 8V X By (2.4)

is the mean electromotive force (EMF) representing the overall effect of turbulent fluc-
tuations on the electric currents. Here

1
QR = Teor (u-V xu) (2.5)

is the so-called dynamo parameter, and

/8 ~ %Tcor <11 . u> (26)

is the turbulent magnetic diffusivity, with 7., is the correlation time of the turbulence.

Mean-field dynamos are typically classified into two types (Figure 2.1). In the o?-
dynamo, turbulent fluctuations and rotation generate a poloidal field from a pre-existing
toroidal field. Subsequently, the same a-effect converts part of this poloidal field back
into a toroidal field. In the af2-dynamo, the a-effect is responsible for generating the
poloidal field, while the Q-effect (resulting from differential rotation) transforms the
poloidal field into a toroidal field.

In the case of the Sun, the (af2-)dynamo mechanism occurs in the transition zone
between the inner radiative layer and the outer convective layer, in a region known as
the "tachocline". In this region, the conductive plasma moves under the influence of
the Sun’s differential rotation, generating a magnetic field that varies cyclically, thereby
elucidating the 11-year solar cycle characterized by the periodic increase and decrease
of sunspots.
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Figure 2.1: Mutual regeneration of poloidal and toroidal fields in the case of the a{2-dynamo
(left) and the a?-dynamo (right) (Brandenburg and Subramanian 2005).

A tachocline is hypothesized to exist within proto-neutron stars, at the boundary
between two unstable zones (e.g., Bonanno et al. 2003, Naso et al. 2008). In the
inner convectively unstable region, hydrodynamic instabilities are driven by negative
entropy gradients, while in the neutron-finger unstable region, they are driven by lepton
gradients. The neutron-finger instability (NFI) operates in the outer regions of the
proto-neutron star and is expected to evolve by generating finger-like downflows when
the neutrinos are still confined. The presence of the NFI and the tachocline in proto-
neutron stars remains a matter of ongoing investigation and controversy within the
scientific community.

2.3 Magnetorotational instability

The magneto-rotational instability (MRI, Figure 2.2) occurs when an electrically
conducting fluid, subjected to a magnetic field, rotates. Under these conditions, in-
stabilities can arise, leading to the formation of vortices and turbulent motions. This
instability was initially observed by Evgeny Velikhov in 1959 while studying the stabil-
ity of Couette flow in an ideal hydromagnetic fluid (Velikhov 1959). This work was later
generalized by Chandrasekhar 1960. Although these studies focused on phenomena in
non-astrophysical contexts, their significance became apparent when D. J. Acheson and
Raymond Hide proposed in 1973 that the instability could play a role in the Earth’s
geodynamo problem (Acheson and Hide 1973). Despite some subsequent work in the
following years, the general understanding and power of the instability were not fully
appreciated until 1991, when Steven A. Balbus and John F. Hawley provided a relatively
simple explanation and physical description of this crucial process in an astrophysical
context (Balbus and Hawley 1991).

The magnetorotational instability has become a key concept for understanding tur-
bulence in accretion disks, where the magnetic field and rotation interact in complex
ways. Its significance is evident in the study of phenomena such as the accretion of mat-
ter onto black holes and the emission of radiation from the accretion disks surrounding
neutron stars and young stars.

In an accretion disk, matter moves toward a central object, and the gravitational
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Figure 2.2: Magnetorotational instability for a perturbed vertical magnetic field in ideal
magnetohydrodynamics (Armitage 2022).

force acts to pull it in. If the disk is sufficiently hot, the matter within it can conduct
electricity. As the disk rotates, the magnetic field lines present can interact with the mo-
tion of the plasma, leading to instabilities. This interaction is particularly pronounced
when the rotational velocity of the disk decreases with distance from the center, creating
a situation where magnetic pressure can contribute to destabilizing the flow.

The mechanism of magnetorotational instability is characterized by the presence of
magnetic fields and the disk’s ability to transport angular momentum. In this context,
the disk’s rotation and the magnetic field generate a configuration that allows for the
exponential growth of small perturbations in the plasma. Once amplified, these pertur-
bations can lead to the formation of turbulence, which in turn increases the efficiency
with which the material can lose angular momentum and fall towards the central body.

As highlighted in Reboul-Salze et al. 2021, MRI may function as a promising mech-
anism for amplifying the magnetic field in fast rotating proto-neutron stars, facilitating
the formation of magnetars.

2.4 Kelvin—Helmholtz instability

The Kelvin-Helmholtz instability is a phenomenon that occurs when two fluids with
differing velocities come into contact, creating waves that can lead to the formation of
complex structures.

The underlying principle of the Kelvin-Helmholtz instability is the velocity shear
between two fluid layers. When one layer moves faster than the other, the interface
between them becomes unstable. Small perturbations at this interface amplify, giving
rise to waves that can grow into vortices or other turbulent structures. This process
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is often accompanied by energy release, enhancing turbulence and promoting mixing
between the two fluids.

The Kelvin-Helmholtz instability can occur during the merger of two neutron stars
(e.g., Obergaulinger et al. 2010, Kiuchi et al. 2015). As the neutron stars approach
each other, gravitational interactions can strip away their outer atmospheres, forming
an accretion disk around the binary system. The material from each star moves at
different velocities within this disk, leading to velocity shear that can trigger Kelvin-
Helmholtz instabilities, resulting in waves and turbulence.

Furthermore, the presence of strong magnetic fields can amplify these instabilities.
The interplay between differential fluid motion and magnetic interactions can generate
vortices and complex structures, contributing to the turbulent dynamics of the merger
event. These structures can influence the emission of electromagnetic radiation, such as
radio waves or gamma-rays, making neutron star mergers a source of explosive events
like gamma-ray bursts.

The Kelvin-Helmholtz instability can play a significant role as a seed to both the
dynamo process and the magnetorotational instability.






Chapter

Mathematical Framework

The study of the evolution of a system in general relativity (GR) represents a com-
plex challenge, as it requires the simultaneous solution of Einstein, Euler and Maxwell
equations. These equations govern spacetime dynamics, fluid dynamics, and electro-
magnetism, respectively, thus representing the theoretical foundations necessary to de-
scribe complex astrophysical phenomena.

In this chapter, we focus on the equations of magnetohydrodynamics (MHD), a
theory that combines the principles of hydrodynamics with those of electromagnetism
to describe the behavior of conducting fluids in the presence of magnetic fields. In
particular, resistive magnetohydrodynamics (RMHD) extends the idealized theory of
MHD to include the effects of electrical resistivity, which are crucial for accurately
describing plasma dynamics under realistic astrophysical conditions.

We begin by presenting the equations in the covariant approach, which offers a com-
pact and elegant description of the laws of physics in tensor form, making evident the
invariance of the equations under coordinate transformations. This formalism is par-
ticularly useful for highlighting the geometric properties of equations. However, from
a numerical point of view, the covariant approach has significant disadvantages. Its
completely four-dimensional formulation does not lend itself easily to the separation
of spatial and temporal variables, making the implementation of effective numerical
methods complex. In addition, the abstract nature and intricate structure of tensor
equations make it difficult to define boundary conditions and stable and accurate nu-
merical schemes of temporal evolution.

To overcome these limitations, we present the so-called 3+1 formalism, the most
widely used method in numerical relativity. This approach makes it possible to de-
compose covariant equations into a form more suitable for numerical solving, explicitly
separating spatial and temporal variables. The 3+1 formalism allows a more direct
treatment of initial conditions and evolutionary equations, facilitating the numerical
simulation of the time evolution of astrophysical systems in GR.

35
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3.1 Covariant approach

The relativistic Euler equations are a set of quasi-linear partial differential equations
governing inviscid flow taking into account the effects of GR. This set of equations
consists of the baryon number (or equivalently mass) conservation

V.Nt =0 (3.1)
and the energy-momentum conservation
vV, T" =0 (3.2)

where N” is the 4-vector number current, T#” the energy-momentum tensor, and V,
the geometric covariant derivative associated to the metric tensor g,,, i.e. Vg, = 0.
The energy-momentum tensor is a symmetric tensor, source of the gravitational field in
the Finstein field equations

1
R, — §ng, = 87T}, (3.3)
or, equivalently,
1
Ry, =87 <TW — 2TgW> (3.4)

where Ry, is the Ricci curvature tensor, R = R"”g,, the scalar curvature (correspond-
ing to the trace of the Ricci tensor), and T' = T""g,,,, the trace of the energy-momentum
tensor.
The energy-momentum tensor consists of two terms which are not conserved when
considered separately:
v,V = -V, Tt = -1, F*" (3.5)

where T} is the contribution to the energy-momentum tensor due to matter, Tt that
due to the electromagnetic field, I* the 4-current, and F*” the Faraday (antisymmetric)
electromagnetic tensor. The relation between T¢,, and FH is

1
Tl = P\ P — o (F’\”FM) g (3.6)
The electromagnetic field obeys Mazwell equations
V,F* = -1" (3.7)

V=0 (3.8)

where F** = %SWMF \.. is the dual of the Faraday tensor, with e**** the spacetime
Levi-Civita tensor density, related to the standard Levi-Civita symbol [urAk] via the

relation M/ = ﬁ[,uy)\/{] (and €0k = /—g[purAk]) with g = det (g,
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Given a timelike® 4-vector u* normalized as utu,, = —1, each quantity defined above
can be decomposed into a parallel timelike and an orthogonal spacelike part:

N* = pu* + N (3.9)
FH = ylte? — el + MRy, (3.10)
FHHY — bty — yV b — et ey, (3.11)
I* = gou* + j# (3.12)
TH = (ph — p)utu” + pAFY + ¢*u” + ¢"ut + TH (3.13)
TEY = uemut'u” + p'u” + p"ub + uen A" — et'e” — bHb” (3.14)
with
N, = etuy, = buy, = jHu, = ¢"uy = pHu, =0 (3.15)
and
APy, = 7MYy, =0 (3.16)

Here p is the rest mass density, p the thermal pressure, h = 1 + € + p/p the specific
enthalpy - with € the specific internal energy -, Nﬁ the 4-vector particle current, ¢* the
4-vector energy flow, 7" the viscous stress-tensor, A = ¢gM 4+ uFu” the projection
operator, e the 4-vector electric field, b* the 4-vector magnetic field, j# the 4-vector
conduction current density, uey, = (62 + b2) /2 the electromagnetic energy density, go
the proper electric charge density, and p# = e*Meyb, - with et = elMTy - the
Poyting 4-vector. All these quantities are measured by the observer with 4-velocity u*.
This implies the presence of an ambiguity in their definition. Three possible frames are

e Fckart or material or comoving frame (Eckart 1940): the particle current vanishes,
ie. N/ =0.
i

e Landau-Lifshitz or energy frame (Landau and Lifshitz 1987): the energy flow van-
ishes, i.e. g = 0.

e Jittner or thermometer or 8 frame: the thermometer is at local equilibrium with the
system; 5 = ut /T, where T is the temperature and B* is the Lagrange multiplier
emerging in the Maxwell-Boltzmann distribution.

Other flow frames are also possible. For a perfect (or ideal) fluid - assumed in this work
- we have N ﬁ = gt = 7" = 0, the frames coincide and Equation (3.13) becomes

TH = (ph — p)utu” + pA* (3.17)

8 A 4-vector is said to be timelike if its norm is negative, spacelike if its norm is positive,
and lightlike if its norm is zero.
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3.2 3-+1 decomposition

In the covariant approach described in the previous section, there is no distinction
between space and time coordinates. While this "covariance" is mathematically im-
portant and elegant, the covariant formulation is difficult to use in numerical analysis.
Indeed, numerical methods require the separation of time and space. The most used
approach to decompose the spacetime into "space" + "time" is the 3-+1 decomposition
(Alcubierre 2008, Baumgarte and Shapiro 2010, Gourgoulhon 2012). The 4D spacetime
is foliated into non-intersecting space-like hypersurfaces (3;),cp, i.e., hypersurfaces with
a time-like unit normal vector n”, which is the 4-velocity of the observer moving along
the worldline orthogonal to the hypersurface, called Eulerian observer.

3.2.1 341 decomposition for the metric

The 4D line element is written as
ds? = (—a2 + ﬂ’ﬂi)dtQ + 2B;dtdz’ + 'yz-jdwidxj (3.18)

where a(t, xj) € (0,1] is called lapse function, 3 (t,xj) is called shift vector, and ~;; is
the 3D induced metric (or spatial metric), with Riemannian signature (+,+,+). The
lapse function relates the "coordinate time" dt to the proper time d7 measured by the
Eulerian observer: dr = adt. The shift vector is the relative velocity between the
Eulerian observer and the lines of constant spatial coordinates: z’(t+ dt) = x'(t) —
B(t,z7)dt. Notice that o and 3% are not unique but depend on the arbitrarily chosen
foliation. These quantities, therefore, contain information about the chosen coordinates.
The 4D metric is then

I et N W e ot B VL
o K Bj ‘ Yij } ’ \ B /a? ‘ Vij*ﬁiﬁj/agj

The 4D volume element is therefore given by \/—g = a,/7, where v = det [y;;]. The
unit vector components are

(3.19)

n" = (1/a, —B"/a) ny = (—o, 0;) (3.20)
Its covariant derivative can be written as
Vun, = =K —n,n“Vany, (3.21)

where the symmetric tensor K, is known as extrinsic curvature. The extrinsic cur-
vature should not be confused with the intrinsic curvature: the former measures how
the normal vector n* changes along the hypersurface under parallel transport, while
the latter one describes the curvature at a point on the surface and is given by the 3D
Riemann tensor, which is defined in terms of 7;;. The extrinsic curvature is such that
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t+dt

Figure 3.1: Schematic representation of the 3+1decomposition (Rezzolla and Zanotti 2013).

n*K,, = 0. This means that K 00 = K% =0 (but Ko and K;q are in general not zero).
The extrinsic curvature also measures how the spatial metric changes in time as seen
by the Eulerian observer:

Lnvij = —2Ki; (3.22)
where £, is the Lie derivative along n*, or, equivalently,
Ovij = —20K;5 + D85 + DB (3.23)

where Z; is the 3D covariant derivative (i.e. associated with the 3-metric v;;, Z5vi; = 0).
Finally, Equation (3.21) gives

o = VA (—aK + 2;8") (3.24)

where K = W’inz'j = =V, n* is the trace of Kj;.
A schematic representation of the 3-+1decomposition is shown in Figure 3.1.

3.2.2 341 decomposition for vectors and tensors

We can now decompose vectors and tensors into parallel timelike and orthogonal
spacelike components to n*. A vector V# can therefore be written as

VH = Nnt+ VI (3.25)
with NV = —n,V# and an# = 0, while a tensor T"” can be written as

T = Tntn” + Q¥n” + P'n* + WH (3.26)



40 Mathematical Framework

with T' = T*"n,n,, Q'n, = Ptn, = 0, and WH'n, = WHn, = 0. For a symmetric
tensor we have P* = @Q*, while for an antisymmetric tensor we have P* = —Q* and
T =0.

It is important to note that - for each vector V# and tensor T#" - conditions V#n, =
0 and T"n, = T""n, = 0 imply

VO=1% =70 = (3.27)

but, in general, Vp, Tp,, and T}, are not zero. In fact

Vo=BV" V=V (3.28)
and
T,u,u = Gui Gvj T (329)
that is - - '
Too = B: BT Two = WilBTY =T, B; (3.30)
Tok = Bk TV = BT T = iy T (3.31)

Finally, for each 3-vector V we have

1

V-V=9Vi=—"¢ Vi 3.32
i ii 1 ..
(V x V) =£ikg, v = ﬁ[wk]ajvk (3.33)

with 0; = 9/02" and % = —e0ikp, = %[Uk} (and g4 = /[ijk]).

3.2.3 341 decomposition for Euler and Maxwell equations

At this point it is possible to decompose all quantities introduced in Section 3.1 as

ut = Wnt + Wot (3.34)
N = Dnt + F* (3.35)
TH = Entn” + SFnY + SYn# 4 SH (3.36)
FH = nlEY — EFpY + e Byn, (3.37)
F*H — pltBY — BhpY — et AR B, (3.38)
I* = gn* + J# (3.39)
el =W [(E V)t + EF 4 sﬂA%ABa} (3.40)
W=W [(B )t + BH — EMAJU)\EU} (3.41)
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" = (¢ — @W)n* + J* — ggWo# (3.42)
G =W(g—J3-v) (3.43)
where
W =1/V1-v? (Lorentz factor) (3.44)
D=Wp (rest mass density) (3.45)
E=Er+Uep (total energy density) (3.46)
St =M+ P (total momentum) (3.47)
E (electric field) (3.48)
B (magnetic field) (3.49)
J (current density) (3.50)
q (electric charge density) (3.51)
F' = Wpv' (3.52)
59 = phW?v'v) — E'E? — B'B? + (p + Uep )v" (3.53)
with
7 =o' — B (3.54)
Ep = phW? —p (fluid energy density) (3.55)
M = phW?'! (fluid momentum) (3.56)
Pl =R E By, (Poynting vector) (3.57)
Uem = (E2 + BQ)/2 (electromangetic energy density) (3.58)
With this decomposition, Euler and Maxwell equations become
oD + 0 (D*) =0 (3.59)
OE + Oy (agk - Sﬁk’) = ay/7 S Koy — S* 00 (3.60)
0:5; + Oy (a\ﬁ Sk~ /3’“53) - O‘\Tﬁslmaifnm 150,88 — £, (3.61)
0B + [ijk)0; (aEk + [kim] 5@’”) =0 (3.62)
OE" — [ijk)0; (aBk - [k:lm]ﬁlEm) = —a /AT + T8 (3.63)
q=DFE (3.64)
ZiB' =0 (3.65)
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where A = /7 A for each quantity A. The last two equations can be rewritten as

VY q=OF (3.66)
9B =0 (3.67)

The vector form of Euler and Maxwell equations is”

0(AD) + AV - (D¥) =0 (3.68)
B(\VAE) + AV + (aS — EB) = \Fy(a§ . K-S- Va) (3.69)
9(VAS) + VIV - (a§ - BS) =\ AlS - (VB) — £Va) (3.70)
h(VAB)+ 1V X (cE+B3xB)=0 (3.71)
H(VYE) =7V X (aB = B X E) = —\/v(aJ — ¢B) (3.72)
¢=V-E (3.73)
V.B=0 (3.74)

This is not a complete set of equations, but requires some additional constraints to
admit a unique solution: a relation between pressure, density and internal energy, and
an expression for the current density. Possible choices are described below.

3.3 Equation of State

To close the system, we need a way to relate pressure, density, and internal energy.
The most used way is to give a relationship between these three quantities, the so-called
Equation of State (EoS). The equation of state is a fundamental relation that describes
the behavior of a physical system in terms of its thermodynamic variables. It plays
a crucial role in understanding the propagation of sound waves within a fluid. The
speed of sound, defined as the rate at which a pressure wave propagates, is intimately
connected to the EOS through the partial derivatives of physical quantities. Specifically,
the speed of sound ¢; in a relativistic fluid can be expressed as (Alcubierre 2008)

o1 0p

G =3 5 ) (3.75)
This formula indicates that the speed of sound is determined by the variation of pres-
sure with respect to energy density e = p(1 + €), while keeping the entropy s of the
system constant. This connection highlights how the properties of the fluid influence
the propagation of sound waves: a change in pressure in response to a variation in
energy density directly affects the speed at which perturbations propagate through the

9Here the notation T denotes a second-order spatial tensor.
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fluid. Therefore, the equation of state provides an essential theoretical framework for
analyzing and understanding the behavior of sound waves in a relativistic context.
Equation (3.75) can be rewritten as

1/0p p Op
2_+(9p  POp
“Th <8p p? 86) (3.76)

Calculating the pressure derivatives is straightforward for analytical equations of state.
One of the simplest is the polytropic, in which the pressure is a function only of the
density:

p=Kp" (3.77)

where K > 0 is the polytropic constant and I" > 1 the polytropic index. The specific

internal energy results to be
K 1,
€= —— 3.78
1 (3.78)
This is a one-dimensional EoS, and it is known that this type of equation is unable to
conserve both density and total energy simultaneously. Nonetheless, one-dimensional
equations of state, in which a fixed relationship exists between density and energy,
are typically used in the absence of dynamic evolution and may be regarded as fixed-
temperature (zero-temperature) equations.

The polytrope is a particular case of the Ideal fluid EoS (also known as I'-law EoS):
p= (Ltn — 1)pe (3.79)

The parameter Iy, depends on the heat capacity of the fluid. For example, for a
non-relativistic ideal monatomic gas, we have I'y;, = 5/3, while for a relativistic one,
Ty = 4/3.

A third analytical equation, particularly appropriate for astrophysical jets, is the
so-called Taub EoS (Mignone and McKinney 2007, Mattia et al. 2023):

_ge—l—Q
p= 3e+1

(3.80)

Unlike the Ideal Fluid and Taub equations of state, the polytropic EoS is a zero-
temperature equation. To address this limitation, it has been proposed to modify it by
adding a thermal term derived from the Ideal Fluid as follows (Douchin and Haensel
2001):

b= Fthp(6 - 6cold) (381)
where €.1q is the specific internal energy given by the polytropic expression. How-

ever, within objects such as neutron stars, density varies drastically from the surface
(where densities approach atomic levels) to the core (where densities are extremely high,
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exceeding nuclear levels). In each density region, matter exhibits very different char-
acteristics, requiring a specific description. The polytropic EOS is unable to capture
these significant structural changes. To overcome this limitation, piecewise polytropes
have been proposed as a replacement for the polytropic EoS (Read et al. 2009). This
model describes the pressure-density relation in a fluid through a series of polytropic
segments, each valid within a specific density interval:

Peold = Kip"i for  pi1<p<pi (3.82)

for each segment . The parameters K; are chosen to ensure continuity of pressure and
internal energy, given by

K; .
€cold = €; + T, _z lprl ! (3'83)
with
K; o
€ = €cold(pi—1) — T : 105111 (3.84)
T

While piecewise polytropes offer the advantage of better adapting to the varying prop-
erties of matter at different densities, they suffer from the drawback of having a discon-
tinuous sound speed, defined piecewise (Appendix C of De Pietri et al. 2020).

More realistic equations of state, which account for nuclear and subnuclear interac-
tions, relativistic effects, and long-range interactions, lack a true analytical expression
and are instead provided as numerical tables in online repositories like CompOSE'? (Typel
et al. 2015). These tables include specific values for density, temperature, and sometimes
electron fraction, allowing for the description of various matter states under different
conditions. The data points are organized into grids of density and temperature values.
Even if the values needed for simulation do not align precisely with grid points, they
can be calculated via interpolation, typically linear or spline-based. This grid-based for-
mat is essential for numerical applications and enables simulations to explore realistic
conditions without the need to calculate properties from scratch at every state change.

Despite their widespread use in simulations, tabulated equations of state exhibit
several inherent limitations that can compromise accuracy and efficiency. Firstly, the
discrete nature of the data, due to the fixed grid of density and temperature values,
limits resolution and can lead to a loss of information, especially in critical regions
such as phase transitions. Interpolation, employed to estimate values between grid
points, inevitably introduces errors, particularly in regions where physical properties
vary rapidly. These errors can propagate through the simulation, resulting in inaccu-
rate outcomes. Secondly, the size of the tables poses a significant challenge. To ensure
sufficient accuracy, a large number of grid points must be included, leading to increased
table size and memory consumption. This can substantially slow down simulations,

Onttps://compose.obspm.fr
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especially three-dimensional simulations of complex astrophysical objects that require
frequent access to the table data. Finally, tabulated EoS are constructed for a specific
range of density and temperature. If simulation conditions reach values outside of this
range, the representation provided by the table becomes inadequate, potentially leading
to calculation errors or unreliable results. This inadequacy arises because the thermo-
dynamic properties of matter are not well-defined beyond the pre-calculated range in
the table: without data covering these conditions, interpolation cannot reliably estimate
the physical properties. Consequently, the simulation loses precision and reliability in
regions not covered by the table and one needs to use an extended version of the table
able to cover the whole range of density that is going to be simulated.

3.3.1 Taub’s inequality

In the most general case, p, € and p lie in ranges
p € [0,00) e€(—1,00) p € [0,00) (3.85)

although the upper and lower bounds may change depending on the EoS. However,
in 1948 it was proved by Taub that to ensure consistency with the kinetic relativistic
theory p, € and p must respect the so-called Taub’s fundamental inequality (Taub 1948):

(h— ©)(h—40) > 1 (3.86)

where © = p/p is the temperature function. Taub EoS (3.80) is obtained by imposing
the equal sign in the previous inequality.

The Ideal Fluid EoS satisfies Taub’s inequality for all values of € if T'y, < 4/3. In
contrast, it does not satisfy this inequality for any value of € when I'y;, > 5/3, while in
the intermediate range 4/3 < I'y;, < 5/3 the inequality holds only if

5— 3 . 4 5
< — th r -, = 3.87
E_SFth_4 w1 th € <373> ( )
from which
(56— 3Tn)(Fen — 1) . 45
< th T B 3.88
P 3rp—4 7 M wE\33 (3.88)

3.4 Closures for Maxwell equations

To close the system in the magnetized case we need a way to derive the electric
field. The most used closure is given by the so-called Ideal MHD (IMHD) (e.g., Duez
et al. 2005, Shibata and Sekiguchi 2005, Ciolfi et al. 2017, Ciolfi et al. 2019, Ciolfi 2020,
Endrizzi et al. 2016, Giacomazzo et al. 2011a, Sur et al. 2022, Rezzolla et al. 2011
and Baiotti and Rezzolla 2017, where the authors reviewed the amount of work on the
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post-merger phase available up to 2017, and references therein)*:

)11
E=-vxB (3.89)

This is a particular case of the Resistive MHD (RMHD) closure, given by the Ohm’s
law:
gt =d"e, (3.90)

where
oM = U(g‘”’ + &2 + 56“”)‘”1@\1)5) (3.91)

is the electric conductivity tensor (Bekenstein and Oron 1978, Zanotti and Dumbser
2011). Parameters o and & are related to the microphysics of the plasma via

o)y neezTc

eT
=5 (3.93)
Me
with n, the electron density, e the electron’s charge, m,. the electron’s mass, and 7, the
collision time. In this work we consider the isotropic case, in which o = oy and

ot = og" = opgh” (3.94)

therefore
jH = oet (3.95)

The 3+1 split gives the following expression for the electric current (e.g., Bucciantini
and Del Zanna 2012, Dionysopoulou et al. 2013, Del Zanna and Bucciantini 2018, Tomei
et al. 2019, Franceschetti and Del Zanna 2020, Del Zanna et al. 2022):

WE+v xB—(E-v)v]
n

J=¢qv+ocW[E+vXB—-(E-v)v]=¢v+ (3.96)

where nn = 1/0 is the electrical resistivity. The IMHD regime corresponds to the limit
og—o00=1n—0 (3.97)

and e* = 0.

1A general discussion about general relativistic magnetohydrodynamics simulations and
their applications to binary neutron star mergers can be found in https://doi.org/10.48550/
arXiv.2405.10081.
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3.5 Extracting gravitational waves

In an asymptotically flat spacetime, such as that expected in regions far from
an astrophysical source of gravitational waves, the spacetime metric approaches the
Minkowski metric as one moves away from the source. In such a scenario, to extract
gravitational waves, it is convenient to introduce the Newman-Penrose quantity Wy,
which, at asymptotically large distances, is related to the metric perturbation Ay, (in-
troduced in Section 1.4.1) through the relation

Uy = hy — ihy (3.98)

where i denotes the imaginary unit. From this, it follows that:

hy = Re{W4} and hy = —Im{®y} (3.99)

Integrating twice in time yields the gravitational wave polarizations. During the in-
tegration, two constants of integration arise for each polarization. These constants
correspond to:

e The initial conditions for hy and hy (potential time shifts);

e The initial velocities of the polarizations (i.e., the first time derivatives of the polar-
izations at the initial moment).

In many cases, it is assumed that at a sufficiently large time interval far from the source,
the gravitational wave behaves in such a way that these constants are zero (i.e., the
gravitational wave is considered to be "switched off" at an earlier time).

In order to evaluate the quantity Wy, it is useful to introduce the Weyl tensor

C,ul/po = R,LLI/pO' - %(g,upsza - g,uaRz/p + gyoR,up - gupR,uo) + %(g,upgua - g,uaglzp)
(3.100)

where R, is the Riemann tensor, R, is the Ricci tensor, and R is the scalar cur-
vature. The Weyl tensor has the same symmetries as the Riemann tensor. The Weyl
tensor represents the "free curvature" of spacetime. It is the part of the Riemann ten-
sor that remains after subtracting the influences of matter, as represented by the Ricci
tensor. This means that the Weyl tensor is associated with gravitational effects that
can be perceived even in the absence of matter. In an asymptotically flat spacetime,
the Weyl tensor provides a description of the spacetime curvature far from sources of
matter.

It is also useful to define the so-called null tetrad, a set of four null vectors (I#, g*,
m#t, m#) that form a local basis for spacetime. These vectors are characterized by being
null vectors, which means that they satisfy the following conditions:

9ul"'l” = 94"q" = gum*m” = g mtm” (3.101)
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Furthermore,
gumtm” =1 and gult'q” = -1 (3.102)

The four-vectors [* and ¢* are real and represent an outgoing null vector and an in-
coming null vector, respectively. In contrast, the four-vectors m# and m* are complex
(with m* being the complex conjugate of m*) and represent spatial directions. The
null tetrad can be chosen in various ways, depending on the geometry of spacetime
and the present symmetries. Moreover, the tetrad can be modified through Lorentz
transformations, thus allowing a great deal of flexibility in its definition.

The quantity W4 is defined as one of the five complex components of the Weyl tensor
projected onto the null tetrad:

v, = Cuupaq#ml/qpmg (3103)



Chapter

The MIR code

The equations presented in Chapter 3 cannot be solved analytically, but numerical
methods are required. For this purpose, several codes have been developed to date, both
public - such as GRHydro (Mdsta et al. 2013), I11inoisGRMHD (Etienne et al. 2015), and
Spritz (Cipolletta et al. 2020), Athena++ (Cook et al. 2023), and AsterX (Kalinani
et al. 2024) - and private - such as ECHO (Del Zanna et al. 2007), GRaM-X (Shankar et al.
2023), and the SACRA variant of Kiuchi et al. 2022. However, all these codes work in
the ideal regime.

Numerically solving this system of highly nonlinear and strongly coupled partial dif-
ferential equations represents a significant computational challenge, particularly when
considering the resistive regime. Compared to the ideal regime, the presence of dissi-
pative terms requires the use of different numerical schemes to guarantee stability and
accuracy. For this purpose, we have developed a new numerical code, MIR (an acronym
for "Magnetoldrodinamica Resistiva", i.e., "resistive magnetohydrodynamics" in Ital-
ian), developed within the Einstein Toolkit framework (Loffler et al. 2012), a powerful
freely accessible computational infrastructure which provides a collection of computa-
tional tools (called "thorns") for numerical simulation. Written in Fortran90, MIR is
capable of solving the GRMHD equations in 3D Cartesian coordinates and on a dy-
namical spacetime using the 3+1 Eulerian formalism, in both the ideal and resistive
regimes, filling a crucial gap in the toolkit’s capabilities.

The initial sections of this chapter are dedicated to providing an overview of the
various numerical methods employed (main reference: Press et al. 2007), while the later
sections focus on their implementation and application within our code.

4.1 Definitions and structure of the code

The equations presented in Chapter 3 are written in the form
U+ F =8 (4.1)

49
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1
Conservative to Primitive Conversion
u" — p-
[
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Reconstruct Primitive Variables
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jt3
Calculate Source Terms Calculate Flux Terms
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Assemble PDE
MU+F =8
Time Integration
un N u’/’L+1

Figure 4.1: Typical structure of a code based on high-resolution schemes.

where U is the vector of evolved variables, F* are the fluz vectors, and 8 is the source
vector. An equation written in form (4.1) is said to be written in conservative form,
because it explicitly expresses the conservation principle of the physical quantity U
within a control volume, accounting for the fluxes of this quantity through the surfaces
of the volume and the sources within the volume itself. In fact, this form ensures that
in the absence of sources & = 0) and in a closed system (without fluxes through the
boundaries), the total amount of U in the control volume remains constant over time.
For this reason, evolved variables are sometimes called conserved or conservative.

Evolved variables, fluxes, and sources are built out of the so-called primitive vari-
ables P, i.e., those physical quantities that describe the local state of the system. In
our case: .
]

Uu=.~D,8S;& B E (4.2)

and .
]

P = [p, e,p,v', B, E" (4.3)

where the superscript 7 denotes the transposed vector. As we shall see later, the deriva-
tion of primitive variables from conservative ones is one of the challenges of numerics.

To solve the system of equations written in form (4.1), the MIR code operates on
a discretized grid of the computational domain, dividing the space into cells. Each
variable, defined at the cell center, is then reconstructed at each cell boundary using
high-resolution shock capturing methods. his reconstruction is essential for capturing
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spatial variations of the solution, especially in the presence of steep gradients or discon-
tinuities. At this point, the code calculates the numerical fluxes at the cell interfaces
via a Riemann solver. These fluxes represent the amount of a physical quantity crossing
the interface within a given time interval. Flux calculation is crucial, as the exchange of
information between cells is what enables the simulation of the system’s evolution over
time. Finally, once the numerical fluxes and source terms, the latter as a function of
cell-centered variables, have been computed, the variable values are passed to the MoL
(an acronym for "Method of Lines") thorn, which uses them to advance the solution
in time through a time integrator. Figure 4.1 illustrates the typical structure of a code
based on high-resolution schemes, such as MIR.

In the following Sections 4.2 to 4.6, we describe the general operation of each nu-
merical method used within the MIR code, before focusing on the presentation of the
specific numerical schemes we have implemented.

4.2 Finite differences

To solve an equation written in form (4.1), so-called grid-based methods are used,
which are based on discretizing the solution domain in a grid of discrete points and
approximating the solution of the equation at each point on the grid. The first method
we present is the so-called finite difference method (FDM), in which derivatives are
replaced by finite incremental ratios, i.e.

of _Af
or Az
The accuracy of these approximations depends on the grid spacing and the order of the
method.
The forward FDM uses the point of interest and subsequent points to approximate
the derivative, and the n-th derivative is given by

(4.4)

n

FO(2) = len Y (- <T;> f(x+ih)  (forward) (4.5)
=0

On the contrary, the backward FDM uses the point of interest and preceding points to
approximate the derivative, and the n-th derivative is given by

£ (2) = ;Tln S (=1 (”) Fz—ih)  (backward) (4.6)

- 1
=0

Finally, a third commonly used method is the central FDM, which uses points both
before and after the point of interest to approximate the derivative:

£ () = % i(_l)i (j) f(a; _ (g — z)h) (central) (4.7)

=0
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The order of accuracy is O(h) for forward and backward differences, and O(h?) for
central differences. Higher-order differences can also be used to construct better ap-
proximations. However, these use a larger number of points to compute the derivative,
thus requiring the function to be smooth over a wider range. For example, the second-
order central differences for the first derivative is given by

f/(a:) _ f(x + h) ; f(x — h) + O(h2) (4.8)

while the fourth order is given by

o flx—2h) —8f(x —h) +8f(x+h) — f(z +2h)
fiz) = 2h

Simple and easy to implement, FDMs require the derived function to be sufficiently
smooth within the domain of interest. This implies difficulties in treating problems
with discontinuities or strong gradients. It is, therefore, convenient to reconstruct the
function at cell faces x jal using one of the methods described in Section 4.3 below and

+0(h") (4.9)

compute the derivative using the second-order central differences:

fle 1) —flz, 1
<3+2)hj (J 2) (4.10)

fwg) =

4.3 Reconstruction and high-resolution shock capturing methods

To estimate the value of a function at the cell faces of the numerical grid, we need
to "reconstruct” the function at those points. Reconstruction consists in finding a new
function, often simpler or with desired properties, that approximates the original one.

To evaluate the quality of a reconstruction, it is essential to consider several aspects
that measure the accuracy, stability, and efficiency of the method used. A fundamental
parameter in this evaluation is the reconstruction error, which represents the discrep-
ancy between the reconstructed values and the exact values of the function. This error
can be measured in different ways, including absolute error, which corresponds to the
difference between the reconstructed and exact values at a specific point, and relative
error, which expresses this difference as a fraction of the exact value.

An important criterion for evaluating the quality of the reconstruction is the smooth-
ness or regqularity of the reconstructed function. This aspect refers to the continuity of
the function and its derivatives, as a well-reconstructed function should be free of un-
wanted oscillations. Analyzing the derivatives of the reconstructed function is useful for
identifying any discontinuities or irregularities, which indicate low reconstruction qual-
ity. In certain numerical contexts, especially with high-order interpolation methods,
spurious oscillations may occur, which degrade the reconstruction quality.

In many cases, the reconstruction must also preserve certain physical properties of
the original function. For example, it may be crucial that the method conserves the
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integral of the function, representing quantities such as mass or energy. Similarly, the
method should respect the monotonicity of the function, avoiding the introduction of
new maxima or minima that were not present in the original function.

Another essential parameter in evaluating the quality of reconstruction is the order
of accuracy of the method, which describes how quickly the error decreases as the grid
resolution increases. A method of order p has an error that decreases proportionally
to hP, where h is the grid spacing. Verifying that the error decreases consistently with
the predicted theoretical order is a clear indicator of the reconstruction quality. This
property is particularly important for high-accuracy methods used in solving partial
differential equations, as it ensures the precision of the results.

In contexts where discontinuities are present, such as in hyperbolic equations or
problems involving shock waves, it is crucial that the reconstruction is robust and does
not introduce spurious oscillations near these discontinuities.

Alongside accuracy, an equally important aspect is computational efficiency. In
practice, it is often necessary to strike a balance between the precision of the recon-
struction and the associated computational cost. A more complex and precise method
can involve a higher computational cost, which is not always justified in terms of per-
formance improvement compared to a simpler method.

Reconstruction methods are a key component of high-resolution shock capturing
methods, a class of numerical techniques designed to capture discontinuities with the
highest possible accuracy, while avoiding the occurrence of spurious numerical oscilla-
tions that could compromise the quality of the solution. There are several methods in
the literature. In our code, we decided to implement two methods: the TVD and the
WENO-Z method.

4.3.1 Total Variation Diminishing (TVD) methods

Total Variation Diminishing (TVD) methods (Harten 1983, Toro 2009) are numer-
ical techniques that guarantee the total variation (TV)

TV(f) =D _|fir = fi (4.11)

of the numerical solution does not increase over time, preventing the formation of non-
physical oscillations and preserving the monotonicity of the exact solution. In other
words, a TVD scheme satisfies the inequality

TV (") < TV (™) (4.12)

where f and f"*! denote the approximate solutions at time steps ¢, and t,1, respec-
tively.

A common approach to achieving the TVD property is through the use of flux lim-
iters, which adapt the scheme’s behavior based on the local smoothness of the solution.
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Flux limiters are functions designed to control the slope of the numerical solution near
discontinuities. These limiters reduce the steepness of the solution in regions where
discontinuities or sharp gradients occur, thereby preventing unwanted oscillations.
A typical flux-limited form of the flux is
1 high 1
Fir= .7-‘;’+W% + é(r;) <.7-' N J-';fé) (4.13)

i+3
where F, 1 =F ( Jip1 ) represent edge flux for the i-th cell, F°¥ is the flux computed
2 2

using a low order scheme, F"# is the flux computed using a high order scheme, o(ri)
is the flux limiter, and the parameter

py= S i1 (4.14)

fiv1 — fi

measures the regularity of the solution in neighboring cells. In this way, the flux limiter
determines how much of the high-order scheme should be used relative to the low-order
scheme: in smooth regions (i.e., r; &~ 1), the limiter allows the high-order scheme to be
fully utilized, while near discontinuities or steep gradients (i.e., when r; is very large
or small), the limiter reduces the contribution of the high-order scheme, favoring the
more diffusive and stable low-order scheme. In MIR, we implemented the following two
limiters:

e minmod limiter:

¢(r) = max {0, min {1, r}} le p(r)=1 (4.15)
e monotonized central (MC) limiter:

1
¢(r) = max {0, min {21", i, 2}} lim ¢(r) =2 (4.16)
2 r—00
The minmod limiter is quite aggressive in limiting the slope to avoid oscillations, but it
may also significantly reduce accuracy in smooth regions, while the MC limiter strikes
a balance between accuracy and monotonicity.

4.3.2 The WENO-z method

A WENO (Weighted Essentially Non-Oscillatory) method is a high-resolution nu-
merical scheme that, through a weighted combination of different stencils (groups of
points used to approximate spatial derivatives), aims to maintain accuracy in smooth
regions and avoid oscillations near discontinuities. The formula to compute the flux is

Fivr =D wnFi (4.17)
k=0
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where 7 is the number of stencils used, F f 1 is the flux computed using the k-th stencil,

and wy, is the weight associated with the k—2th stencil.

However, the classical WENO scheme suffers from a loss of accuracy in smooth
regions, where the approximations computed using the different stencils should yield
very similar results. This occurs because the weights are not optimally tuned, reducing
the overall accuracy of the method. The WENO-Z scheme (Borges et al. 2008) was
introduced to address this limitation. The key difference from the classical WENO
scheme is the introduction of a correction term 75 in the formula for computing the
nonlinear weights. This correction factor represents a global measure of the smoothness
of the high-order polynomial constructed using all possible stencils. The formula for
the weights in the WENO-Z scheme is given by

_ Y%
Z}Lo @;j

with dj the linear weights associated with each stencil, 8y the smoothness indicator of
each stencil, and € a very small positive value used to avoid division by zero.

In smooth regions, 75 reduces the influence of the nonlinear weights, thus maintain-
ing optimal accuracy, while in regions with discontinuities, it has no significant effect,
preserving the essential non-oscillatory properties of the method.

W = where o = dg <1 + 75 ) (4.18)

Br + €

4.4 Riemann solvers

Once the fluxes on the right and left sides of each cell interface have been recon-
structed, it is necessary to compute the flux that crosses it. This is computed using a
so-called Riemann solver. Given a left and right state of the cell interface, the Riemann
solver computes the resulting flux using different techniques, depending on the required
level of accuracy and complexity.

There are different types of Riemann solvers. FEzact solvers offer a precise solu-
tion but are often computationally expensive. Alternatively, approximate solvers are
commonly used, which allow for a significant reduction in computational costs while
maintaining good accuracy.

To compute the numerical flux across the cell interface, a Riemann solver requires the
computation of characteristic waves, which describe how discontinuities or perturbations
propagate through the fluid. The resulting flux depends on the direction in which the
waves propagate, their velocity, and the amplitude of the variations associated with
each wave.

The first solver implemented in MIR is the Harten-Laz-van-Leer-Einfeldt (HLLE)
solver (Harten et al. 1983), where, for each component i and each direction 7,

J

Lt Fri—da (Up; —UY ;) (4.19)

J

) a
G
g aj—i—aj
+ —
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where the subscript g (1) means that the quantity is computed at the right (left) side
of the cell interface and (Del Zanna et al. 2007)

oty = max {0, ), +X, 1} (4.20)

and Ay are the characteristic speeds.
The HLLE solver demonstrates good numerical stability, effectively mitigating the
risk of spurious oscillations that can occur near shock waves. This stability is crucial for
ensuring reliable results in regions with high gradients, where the behavior of the flow
can be unpredictable. Furthermore, it exhibits robust performance across a wide range
of compressible flow scenarios, effectively handling discontinuities and shock waves,
which are common in fluid dynamics applications. Another significant advantage of the
HLLE solver is its favorable cost-accuracy trade-off. It provides an acceptable balance
between computational efficiency and the accuracy of results, enabling the simulation
of large-scale problems without compromising the integrity of the findings.
The second solver implemented in our code is the Lax—Friedrichs (LF) solver (Toro
2009):
Fi_ Frit Fhy—cUn; —Ui;)
J 2

(4.21)

where ¢ = max ai, a’ } The LF solver is highly diffusive, which means it introduces
a certain degree of smoothing in the solutions. This characteristic makes it useful in
cases of strong jumps in pressure, as the numerical diffusion helps stabilize the solution
and prevent spurious oscillations around discontinuities. However, it is important to
note that while this smoothing can improve stability, it may also reduce accuracy in
capturing very fine features of the flow.
To compute the characteristic speeds A+ we follow the approach presented in Gam-
mie et al. 2003, where
Ny =)l — B (4.22)

with

(e fe(1-2) [0y (1-a2) ()]

Ny =
+ 1 —v2a?

In the hydro (i.e., in the absence of electromagnetic fields) and IMHD regimes, we set
(Gammie et al. 2003, Del Zanna et al. 2007)

(4.23)

2

_ 2 2 2
a” =c; +c, —C

c? (4.24)
- with ¢4 the sound speed and ¢, the Alfvén speed

b2 B? — E?
= = (4.25)
ph+b2  ph+ B2 — E?
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- while in the resistive regime we assume a?> = 1 as in Del Zanna et al. 2007 and
Bucciantini and Del Zanna 2012, so
L =day/yil - (resistive regime) (4.26)

4.5 Time integrators

Time integrators are numerical methods used to approximate the solutions of ordi-
nary differential equations (ODEs) and partial differential equations (PDEs), i.e. equa-
tions of the form
dy _ t 4.27)
iR ACY) (4.
These methods are essential for approximating the solution of differential problems
when an exact analytical solution is difficult or impossible to find. Time integrators
work by stepping through time and providing discrete solutions at specific time intervals
for time-varying equations. They are divided into explicit and implicit methods. The
choice between these types of methods has significant implications for stability, accuracy,
and computational cost.

In explicit methods, the solution at the next time step depends only on information
from the current or previous time steps. In other words, given an equation of the form

(4.27), an explicit method computes the next value y,4+1 as

Yn+1 = Yn + At - f(tm yn) (4'28>

Since there are no equations to solve at each time step, these methods are computa-
tionally efficient and easy to implement. They can also be conditionally stable, meaning
they are only stable if the time step At is sufficiently small. For certain problems,
particularly stiff equations, the required time step may be prohibitively small, making
these methods inefficient or impractical.

In smplicit methods, the solution at the next time step depends not only on the
current state but also on the unknown future state. This creates an implicit equation
that must be solved at each time step, usually through iteration or by solving a system
of equations. In other words, given an equation of the form (4.27), an implicit method
computes the next value y,41 as

Yn+1 = Yn + At - f(tn-i-h yn-i-l) (4'29)

This equation is called "implicit" because y,41 appears on both sides, and solving it
often requires a root-finding algorithm (see Section 4.6 below). These methods are gen-
erally unconditionally stable, meaning they can handle much larger time steps without
becoming unstable, even for stiff systems. This makes them the preferred choice for
stiff problems.

Since implicit methods cannot always be applied to every type of differential op-
erator, it is sometimes advisable to rewrite the differential operator as the sum the
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differential operators, where one is handled explicitly and the other implicitly. Usually,
the implicit term is chosen to be linear, while the explicit term can be nonlinear. This
combination is called IMEX (IMplicit-EXplicit) method.

4.5.1 IMEX Runge-Kutta methods

Among the most widespread iterative methods for numerically solving initial value
problems for ordinary differential equations, Runge-Kutta (RK) methods stand out,
providing a solid foundation for accurate approximations. They are popular for their
ability to achieve high accuracy without requiring higher-order derivatives, making them
more efficient and easier to implement compared to other methods.

The core idea behind Runge-Kutta methods is to approximate the solution of an
ODE over a small interval by taking a weighted average of several slopes calculated at
different points within that interval. This weighted average is then used to advance the
solution to the next time step. Here we describe how the IMEX Runge-Kutta (IMEX-
RK) scheme (Pareschi and Russo 2005, Palenzuela et al. 2009) works, following the
prescription presented in Tomei et al. 2019, itself based on Bucciantini and Del Zanna
2012 and Del Zanna and Bucciantini 2018. The usual explicit method can be easily
obtained by setting the implicit terms to zero.

Conserved variables can be split as U = {X, Y}, where X is the set of conserved
variables with stiff source terms and Y refers to the remaining ones. It is then convenient
to rewrite system (4.1) as

X = OxU] +RxU] 8y = OylU] (4.30)

with Q the right-hand side (RHS) without stiff terms (including flux derivatives) and R
the RHS containing the stiff terms. Let At be the time interval in which the conserved
variables is updated from U™ to U™, The IMEX-RK scheme consists in the following
steps:

e First, for each stepi =1,2,...,s (with s the number of IMEX-RK substeps) we have

i—1 i—1
A =2+ Ay ayQx [UY| + ALY ayRa [UY)| (4.31)
j=1 Jj=1
and -
Y=y Atz ai; Qy {u(j)} (4.32)
j=1

where a;; and a;; are lower triangular matrices with dimensions s X s.

)

e Second, for j = ¢ variables X Sf
ai; # 0:

undergo an extra implicit evolution with a; = 0 and

X0 =20 1 a;ARx [X(i), yii)} yi =y (4.33)
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Notice that for ¢ = 1 only the implicit step is needed.

e Finally, the conserved variables are updated as
U =un ALY [Big [u@} + bﬂz[u@H (4.34)
=1

where l;, and b; are additional coefficients required by the scheme.

In Appendix A we describe our implementation of the SSP2(2,2,2) scheme (i.e. an IMEX
extension of the second-order RK (RK2) scheme) presented in Pareschi and Russo 2005
and Palenzuela et al. 2009 in the MoL thorn.

4.6 Root-finding algorithms

A root-finding algorithm is a computational method used to determine the zeros (or
"roots") of a function, i.e. the values of x such that f(x) = 0. Root-finding algorithms
work iteratively, progressively refining the estimate of the root with each step. As
the iterations proceed, the approximation becomes more accurate, continuing until a
specified level of precision is achieved. Typically, these algorithms assume the function
is continuous within a certain interval or that specific conditions are satisfied to ensure
convergence toward the root. Nevertheless, the rate at which they converge and their
reliability can differ depending on the method used. Additionally, most algorithms
rely on either an initial guess or an initial interval to begin the search. The selection
of this starting point or interval can impact both the likelihood of success and the
speed of convergence. As a result, there is a balance to be struck between how quickly
an algorithm converges on a root and how consistently it can do so across different
scenarios. In this section, we briefly describe the functioning of the two algorithms that
were implemented in our code.

4.6.1 Bisection method

One of the simplest and most intuitive algorithms used is the bisection method. It
is based on the intermediate value theorem, which states that if a continuous function
changes sign over an interval [a,b] (i.e., f(a)- f(b) < 0), then there is at least one root
within that interval. Thus, the method always guarantees convergence to a root, as
long as the function is continuous and the initial interval contains a root. However, if
the function has multiple roots in the initial interval, the method will find only one.
Additionally, the method is simple to implement and does not require the derivative
of the function. However, it has linear convergence, which means that the number of
correct digits increases slowly compared to other methods. Bisection method works as
follow:

1) Given an initial interval [a,b] such that f(a) - f(b) < 0, calculate the midpoint
m = (a+b)/2.
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2) Evaluate the faction at the midpoint.

o If f(m) =0, m is the root we are looking for and the algorithm terminates.

o If f(m) # 0 and f(a) - f(m) < 0, the root lies in the interval [a,m], so we set
b =m and return to step 1.

o If f(m) # 0 and f(a) - f(m) > 0, the root lies in the interval [m,b], so we set
a = m and return to step 1.

This process is repeated iteratively, until the length of the interval becomes sufficiently
small or until the absolute value of f(m) becomes less than a predefined tolerance.

4.6.2 Newton-Raphson method

Another widely used method is the Newton-Raphson (NR) method. The basic idea
of the NR method is to use the tangent to the curve of the function to approximate the
root. Starting from an initial point zg, the method iteratively refines the approximation
using the derivative of the function, following the formula

In+1 = Tn — f’(l‘ )
n

where f’(x,) is the first derivative of the function evaluated at x,. The calculation is
repeated until the value of x,, is sufficiently close to the root. The algorithm stops when
|Zp41 — | is smaller than a predefined tolerance or when the value of f(x,) is close
to zero.

If the initial guess o is sufficiently close to the root, the NR method exhibits
quadratic convergence, which means that the number of correct digits in the approxi-
mation increases exponentially with each iteration. As a result, the method often needs
significantly fewer iterations to reach an accurate solution. However, if the initial guess
is too distant from the root or if the function behaves problematically (e.g., a zero or
changing derivative), the method may fail to converge or might converge to a different
root.

The NR method can be naturally extended to the multidimensional case, that is,
to solve systems of nonlinear equations. In this case, instead of dealing with a single
function, we work with a vector of functions f(x), where x is a vector of variables. n
this context, the most direct generalization involves replacing the first derivative with
the inverse of the Jacobian matrix

(4.35)

of;
Jij(x) = 8$; (4.36)
The iterative formula of the multidimensional NR method becomes
Xn+1 = Xp — J_I(Xn) : f(Xn) (437)

The calculation of the Jacobian matrix and its inverse at each iteration can be compu-
tationally expensive.
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4.7 The Conservative-to-Primitive (C2P) scheme

One of the challenges in numerical methods is the recovery of primitive variables
from conserved ones. This is due to several factors, including the non-linearity of the
relations, the possible presence of unstable, unphysical, or multiple solutions, and the
potential dependence on the imposed initial conditions, which may affect the conver-
gence of the iterative methods used to solve the problem. To this end, many schemes
have been proposed to date. Many of them use the Newton-Raphson method (e.g.
Del Zanna et al. 2007, Dionysopoulou et al. 2013, Mésta et al. 2013). However, the
requirement to compute pressure derivatives means that this algorithm works well with
analytical equations of state, but it can return inaccurate results with tabulated equa-
tions of state. For this reason, in hydro and IMHD regimes, algorithms based on the
bisection method have also been used (e.g., Galeazzi et al. 2013, Kastaun et al. 2021),
which, as we have seen earlier, do not require any derivative computation. However, the
implicit step required in the resistive case greatly complicates matters. For this reason,
until now, the algorithms proposed in this regime have relied on 3D Newton-Raphson
(e.g., Tomei et al. 2019, Mattia et al. 2023). In this section, we describe the scheme
implemented in our code MIR, which, by combining the bisection method with the 3D
Newton-Raphson method, extends the scheme proposed by Kastaun et al. 2021. The
reasons that motivated us to develop a new scheme, rather than using one of those
already available in the literature, will be discussed later at the end of this section,
specifically in Section 4.7.8.

After each MoL step, we have available the values of the following fluid variables:

D S £ (4.38)
and, in the magnetized case, the following electromagnetic variables:
B E. (4.39)

Here, E, is the value of the electric field that must undergo the implicit step, and is
therefore available only in the resistive case. From the values of these conservative
variables, we need to derive the primitive variables. Since the number of variables
available to us is insufficient, we must use an equation of state to derive the pressure.

4.7.1 Definitions

Firstly, it is useful to define the following variable

1
-~ Wh
- with W the Lorentz factor and h the specific enthalpy -, the following renormalized
quantities

i (4.40)

S
== 441
r== (441)
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o = U ar) = ) (1.42)
o Er(p)
a(w) = =5 (4.43)

and the modified velocity
() = VW2 (0) — 1 (4.44)

In the resistive case, it is also helpful to introduce the following renormalized vectors

B E E.
b:ﬁ e:ﬁ e>,<:\/5 (4.45)

and the following coefficients for the computation of the electric field:

Ul
Ay = —1-A 4.46
R g L (4.46)
W 1
A — _ 4.47
Lm0 w14y (4.47)
W2p 1
Ay = ! —A1- 4.48
2 (I+Wn)(n+W) 1( 1+z> ( )
where .
7 1/ =1 =Wy (4.49)

n= aiiAt y= w
with a;; the coefficient for the implicit step of the IMEX-RK scheme, At the time step,
71 the electrical resistivity, and « the lapse function.

We recall that the fluid variables are related to the conserved variables and the
electromagnetic fields through the following relations:

S hydro case
M(y) = (4.50)
S —E(u) X B otherwise
£ hydro case
Er(p) = B2 2 (4.51)
E— +7(M) otherwise

Note that the electric field also depends on the variable u. In fact, as mentioned earlier,
the electric field is not known after the MoL step, even in the resistive case, as it is
subject to the implicit step.

Variable p plays a central role in the bisection algorithm, and it is not difficult to
prove that

1
O<p<— (4.52)
ho

where hg is the lower bound for the specific enthalpy, which depends on the chosen EoS.
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4.7.2 Upper limits

Before proceeding with the execution of the C2P scheme, it is essential to calculate
the following upper limits. These limits are necessary to ensure both the convergence
of the numerical scheme and the compliance with physical constraints.

The first bound is the maximum of the conserved momentum S:

Sax = (£ BVEE) (4.53)

The second bound is the maximum of the fluid momentum M:

Mo = Mg:,f) resistiv.e case (4.54)
S otherwise
where

MUE) = Ao BB+ \[ 43 0 BB + 57 (4.55)

with - 1

n

A =——=1- 4.56
0,max ,’7/ 1 1 T 77 ( )

the maximum of coefficient Ag. Detailed calculations for the derivation of these two
upper limits can be found in Appendix B.
The third bound is the maximum of the fluid velocity:

Umax = Min {Umax,la Umax,Q} (457)

where

Umax 1

1

Umax,1 = = Umax,2 = -
v/ 1+ u%lax Wr%ax

with Winax the maximum allowed value for the Lorentz factor (a free parameter, typi-
cally set to 2000), and

(4.58)

fmax Mmax

Tmax = e Frax = (4.59)

D
This limit is necessary to prevent the fluid velocity from exceeding the speed of light.
4.7.3 The scheme

The purpose of the scheme is to determine the value of u for which the function

1

f(p) =p— am) - (4.60)
W () + W ()72 ()

equals zero in the interval (O, hy 1] using the bisection method. This is achieved through
the following steps:
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1) Following the prescription described in Section 4.7.4 below, compute the electric
field E(x) in the magnetized case.

2) For the magnetized case, isolate the fluid variables M(u) and Er by removing the
electromagnetic contributions from the conserved quantities.

3) Derive the hydro primitive variables

pla) = ma i min {5(0) s}y 90) = (4.61)

(1) = max {emin, min {E(0), emaxth &) = W) — 7()a(w) — 1 (4.62)
pl) = plp(), e) (4.63)

v(p) = min {47 (1), Umax } (4.64)

Here, pmin (Pmax) and €min (€max) represent the lower (upper) limits for the density
and internal energy, respectively, both of which depend on the chosen EoS.

4) Evaluate the specific enthalpy
h(p) =1+ €e(p) + p() (4.65)

After determining the zero of Equation (4.60) and the associated primitive variables
[p, €, p], we can compute the fluid velocity as

M
-~ phW?

v (4.66)

4.7.4 Electric field

To compute the electric field in step 1, the fluid velocity is needed. However, this
quantity is not yet known at this point. Nevertheless, it can be expressed as a function
of the parameter 1 and the electric field by inverting the expression for the conserved
momentum:

v =p(r—eXxDb) (4.67)
This expression can be substituted into the electric field equation, thereby eliminating
the dependence on velocity. In the IMHD regime, this yields the expression

1

- ¥=b-b 4.
x e (4.68)

E=—prr xB

In the resistive case, the electric field undergoes the implicit step
WE+v xB—(v-E)v|
1

E=E, — (4.69)
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which can be rewritten as
E=AE,—AivxB+ AI(V . E)V (470)

where, as a reminder, the coefficients A; are themselves functions of the velocity, and
therefore of the electric field. A 3D root-finding algorithm is thus necessary to solve the
equation. Therefore, we define the function

fi (ej) = Apes; — A1o' ™ + pA; (rkek)vi —e; (4.71)

The Jacobian matrix is

_0fi _ 04 AV Lym
Jij = 9l — el [u (rke )v@ — €xi — €ilmV'b } 72)
k 8%‘ 2 '
+ Alﬂ[”ﬂ'j + (Tke )@ + bibj — ;b } = Vij
where
0A;  0A0W Ay OW (4.73)
ded — OW Oel  fj+ W Oel '
ZZ = W31, 0™ (4.74)
and 5
V; m
el —€ijmb (4.75)

Note that, since the value of u is given by the bisection step, the pressure derivatives
do not appear.

Once all fluid quantities (including velocity) are determined in step 4 of the bisection,
it is convenient to recompute the electric field to ensure consistency between the electric
field and the velocity. To do this, we rewrite expression (4.70) as

E=AE.— AivxB+ AQ(V . E*)V (476)

It is important to note that there is no implicit step to perform during the final step
of the MoL (Equation (4.34)). This means that, in this case, we simply have E = E,.

4.7.5 Artificial atmosphere

In order to ensure numerical stability and the accuracy of calculations in simula-
tions involving low-density fluids, it is necessary to impose an artificial atmosphere.
This measure prevents the density, or other physical variables, from dropping to values
close to zero, thereby avoiding numerical instabilities and computational errors, such
as divisions by zero. Additionally, the artificial atmosphere allows for more effective
management of boundary conditions in the simulation, stabilizing outgoing flows and
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preventing non-physical behaviors from arising. Furthermore, it simplifies the physi-
cal model, as introducing an artificial minimum density helps avoid the complexity of
dealing with a vacuum, which would require a more advanced treatment. Finally, the
use of an artificial atmosphere facilitates the convergence of numerical solutions, as it
prevents the computation of extreme values of physical variables, making the system
of equations more stable and better conditioned. Therefore, the imposition of an arti-
ficial atmosphere proves essential for ensuring stability, consistency, and reliability in
numerical simulations in the presence of low-density regions.
The atmosphere is imposed when the density value falls below a certain threshold
Peut, 1-€. when
D < peut(1+6,) or p < peut(1+6,) (4.77)

where 9§, is a tolerance necessary to account for potential numerical errors. In this case,
we set

P = Patm < Peut (478)

and set the fluid velocity to zero, i.e. v = 0 and W = 1. The internal energy and
pressure are set using a polytropic equation:

pl“fl
€= €qtm = Kraiml (4.79)
P = K paim (4.80)

Typically, K = 100 and I' = 2 are assumed. Therefore, the atmosphere is assumed to
have a uniform temperature at every point in space.

In the points corresponding to the artificial atmosphere, which is assumed to be non-
resistive, the electric field can be computed in several ways. The first method involves
imposing the ideal MHD condition, which implies E = 0 since v = 0. The second
method consists of deriving the electric field by inverting the equation for conserved
momentum, following the approach presented in Paschalidis and Shapiro 2013, i.e.

_BxS (E-B),

E B? B?

(4.81)

Following Paschalidis and Shapiro 2013, we enforce the orthogonality of the electric and
magnetic fields (E - B = 0), typical of IMHD and Force-Free Electrodynamics (FFE)
regimes, S0

B xS
B2
With zero fluid velocity, the conserved momentum is orthogonal to the magnetic field
(i.e., S+ B = 0). This constraint is satisfied by adjusting the conserved momentum

according to

E= (4.82)

~B-S

S—S 2

B (4.83)
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Then, to guarantee a physically admissible norm for S, we impose

S = Smin{l, fs} (4.84)

4
fs= \/<1 - Wéﬂ) % (4.85)

We now present the error policy that delineates the conditions under which un-
physical values of the evolved variables are corrected, as well as the methods used for
these corrections. Most of these errors occur at the stellar surfaces, where the densities
are low; therefore, the corrections have a minor (though not negligible) impact on the
overall dynamics. In detail, we distinguish the following cases:

where

4.7.6 Error handling

o If D < peut(1+9,), we set the artificial atmosphere (see Section 4.7.5).
o If 71 =E— D < Taim, With Taum = patm€atm, adjust € = 1apm + D.

o If $2 > 52 with S given by Equation (4.53), adjust

SZ
S =8/ ~g5 (4.86)

Furthermore, the C2P algorithm may occasionally yield unphysical values for the prim-
itive variables. Once these primitive variables are obtained, we evaluate whether any
corrections are required:

o If p < peut(1+6,) set the artificial atmosphere (see Section 4.7.5).

e In the IMHD regime, if £ > B adjust

pom(1-ph )2 (s7)

max

following the idea presented in Paschalidis and Shapiro 2013. This adjustment is
carried out only in the ideal regime because in the resistive regime it is possible to
have F > B (Dionysopoulou et al. 2013).

4.7.7 Kinematic approximation

In MIR, we have also implemented the so-called kinematic approximation, which
assumes that the fluid is in stationary hydrodynamic equilibrium, allowing only elec-
tromagnetic quantities to evolve over time. This approximation has been utilized, for
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instance, in Bugli et al. 2014, Franceschetti and Del Zanna 2020, Del Zanna et al. 2022 to
investigate the dynamo action in accretion disks and proto-neutron stars. Since all hy-
drodynamic quantities are predetermined, the C2P algorithm is significantly simplified,
as only the electric field needs to be computed. In the IMHD regime, this is achieved
using Equation (3.89), while in the RMHD regime, it is done using Equation (4.76).
However, within the kinematic approximation, we can replace the evolution of the elec-
tric field with that of the conserved momentum S, as in Paschalidis and Shapiro 2013.
In this approach, we first compute

P=EXxB=S-M=S - phWW? (4.88)
and then compute the electric field using Equation (4.82), with the substitution S — P.

4.7.8 Development decisions: from literature to a custom approach

At the beginning of this section we briefly mentioned that several schemes have
been proposed in the literature for recovering primitive variables from conservative
ones. Now, we provide a general overview of the advantages and disadvantages of the
various existing schemes, without analyzing each one individually. We also present the
reasons why we chose to develop a new algorithm for the resistive case, rather than
using one of the previously established methods.

The system of evolution equations, comprising two scalar equations (density and en-
ergy) and three vector equations (momentum and electromagnetic fields), is incomplete.
To complete the system, constitutive relations are required to link thermodynamic quan-
tities (such as pressure, described by the equation of state) and electromagnetic quan-
tities (such as current density) to the other variables of the system. The equation of
state provides a relation between pressure, density, and temperature, while an additional
constitutive relation is necessary to describe the current density as a function of other
variables, such as the electric field. The functional form of these constitutive relations
limits the physical phenomena that can be modeled. Processes that significantly mod-
ify the EoS or the electromagnetic constitutive relations are not permitted within this
formalism. The algorithms used to convert conserved variables into primitive ones are
strongly dependent on the adopted functional relations. As a result, an algorithm that
is robust in a specific physical regime may become unstable under different conditions,
or even fail entirely when applied to a different EoS or physical regime.

Bracketing methods, such as bisection, are known for their robustness but exhibit
slow convergence. In contrast, Newton-Raphson method converges rapidly but requires
an accurate initial guess and the computation of pressure derivatives. The latter rep-
resents a significant challenge, especially for tabulated equations of state. Tabulated
equations of state contain a finite number of data points, limiting the accuracy with
which derivatives can be computed. In particular, as the number of equation of state
parameters increases, the density of points in the table decreases for each parameter
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combination. Consequently, estimates of derivatives, obtained through finite differences
or interpolation, are subject to increased numerical noise. To overcome these difficul-
ties, bracketing methods are preferred in ideal hydro and MHD regimes, as they do not
require the computation of derivatives. Although convergence is slower, their robustness
and the ability to reformulate the problem in terms of a single scalar parameter make
them a reliable choice in these cases (e.g., Galeazzi et al. 2013, Kastaun et al. 2021).

The presence of the implicit step in the resistive regime prevents the reformulation
of the problem in terms of a single scalar parameter, due to the presence of three
additional unknowns (namely, the components of the electric field). The application
of multidimensional bisection becomes thus unfeasible. The problem of bisection in a
space of dimension N > 1 is primarily characterized by geometric complexity and the
management of subsections. Unlike lower dimensions, where subdivision is relatively
straightforward, in N dimensions one works with hyper-rectangles, and each subdivision
generates an exponential number of subregions. This exponential growth makes it
challenging to monitor the boundary surfaces and the interactions between the various
volumes. Moreover, creating very small subsections, while it may seem an effective way
to approach the solution, introduces the risk of converging to a root different from the
one sought. Excessive subdivision of the volume can lead to local fluctuations that do
not represent the true trend of the function, as well as potential rounding errors and
inaccurate estimates. In the case of multiple roots, the algorithm may also ignore other
valid solutions or halt in insignificant regions. The management of subsections thus
becomes a complex task, increasing the computational load and making it difficult to
interpret the results.

This is why in Bucciantini and Del Zanna 2012, Del Zanna and Bucciantini 2018,
Tomei et al. 2019, Mattia et al. 2023 and other works, a 3D Newton-Raphson method has
been preferred for recovering primitive variables. However, even this scheme presents
several significant challenges. First, the calculation of the Jacobian matrix is essential,
as it represents the partial derivatives of the functions with respect to the variables.
Nevertheless, this calculation can be computationally expensive and complex, especially
when the functions are intricate. Additionally, local convergence is a critical issue.
Although the method is known for its rapid convergence when close to a root, this
characteristic is not guaranteed throughout the entire space. If the starting point is too
far from the solution, the iteration may diverge or even converge to an incorrect root.
The presence of multiple roots or complex nonlinear behaviors further complicates the
situation, as the method may oscillate between different solutions, making it challenging
to identify the desired one. Numerical stability also plays an important role; numerical
errors can arise from the computation of derivatives and the resolution of the system
of equations, potentially amplifying and compromising the final accuracy. Finally, the
choice of the initial point is crucial for the success of the method. In a three-dimensional
space, identifying an appropriate starting point near the desired root can be challenging.
An inappropriate choice can lead to slow convergence or, worse, divergence.
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As is evident from the preceding discussion, the optimal scheme for converting
conservative variables into primitive variables remains elusive, given the advantages
and disadvantages of various numerical methods and the increasing complexity of the
equations employed as the physical regime of the simulation varies.

In developing the numerical scheme outlined in this section, we sought to leverage
the strengths of various numerical methods and to mitigate their weaknesses, fully aware
that complete elimination is not possible. By employing the Newton-Raphson method
for electric field calculations, we achieved relatively rapid convergence for the field
components. The disadvantage associated with computing the derivatives of pressure
is avoided by performing this step within a bisection carried out on a parameter p that
includes the pressure itself. Therefore, the calculation of the electric field is performed
at a fixed u, eliminating the need to calculate the pressure derivatives. The bisection
algorithm offers additional advantages, including robustness and the ability to handle
the failure of the inner Newton-Raphson 3D scheme. In this case, an incorrect electric
field leads to an incorrect i, causing the bisection to adjust its bounds rather than failing
outright. Consequently, the overall scheme can better accommodate the failure of the
3D component without jeopardizing the entire calculation. Moreover, the method is
compatible with both analytical and tabulated equations of state, as it does not require
the computation of pressure or other thermodynamic variable derivatives.

The challenge of computing pressure derivatives for tabulated equations of state is
not confined to the recovery of primitive variables, but also extends to the calculation
of flux terms. Riemann solvers, in particular, require the computation of characteristic
velocities, including the speed of sound, which is directly linked to pressure derivatives.
Consequently, the issues outlined above also impact other parts of the code. This is why
tabulated equations of state are not currently implemented in the MIR code, despite
their greater realism compared to the analytical equations presented in Section 3.3.

4.8 Electric charge

The computation of the electric current density (3.96) requires the computation
of the electric charge density, given by the divergence of the electric field. We have
implemented two distinct methods to achieve this. The first method employs finite
differences, which is the approach utilized in the ECHO code. The second method employs
a Riemann solver to determine the divergence. In this case, the flux is represented
by the electric field and can be calculated at each cell interface using, for instance,
Equation (4.19) with Ll’é,j = LliL’j = 0 (see Appendix C for the proof).
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Numerical results

During the development of a numerical code, it is essential to verify that the ob-
tained solutions are both correct and reliable. In the case of magnetohydrodynamics,
this requirement is particularly crucial due to the complexity of the system of equations
describing the interaction between conductive fluids and magnetic fields. However, the
necessity of testing a code is not limited to ensuring the correct solution of the magne-
tohydrodynamics equations but rather concerns the code’s ability to address complex
numerical problems while maintaining precision, stability, and physical consistency.

A numerical code must undergo rigorous testing for several reasons. Firstly, it is
essential to verify that the implemented algorithms are correct and that the obtained
solutions are consistent with theoretical expectations. Additionally, tests allow for the
identification and correction of any implementation errors that could compromise the
validity of the results.

In this chapter, we present the results of a series of standard tests from the literature,
used to evaluate the performance of our code. These tests, designed to probe various
critical aspects of numerical behavior, such as the handling of discontinuities, the con-
servation of physical quantities, and robustness with respect to initial and boundary
conditions, provide fundamental validation. Rigorous testing of the code is an indispens-
able step to ensure that it can be successfully applied in practical scenarios, providing
reliable and physically accurate results even in complex and realistic contexts.

Subsequently, we present the results of a specific physical application of our code,
focusing on the first simulations of bar-mode instability in the resistive regime. This
instability, which emerges in highly distorted rotating systems, represents a phenomenon
of great interest as it closely mirrors the post-merger phase in binary neutron star
systems. In the post-merger scenario, in fact, the strong deformations and present
magnetic fields play a crucial role in the system’s dynamical evolution.

The simulations conducted have a twofold purpose. On the one hand, we aim to
study in detail the influence of resistivity in these astrophysical contexts, assessing how

71



72 Numerical results

it may affect the growth and dynamics of bar-mode instability. Resistivity, in fact,
can play a significant role in the dissipation of the magnetic field and the alteration
of the fluid-structure of the system. On the other hand, these simulations allow us to
verify the ability of our code to maintain its accuracy and reliability in the presence of
asymmetries and complex phenomena. In particular, verifying the convergence of the
code in asymmetric situations is essential to guarantee its accuracy and robustness in
highly dynamic scenarios such as those in astrophysics.

Therefore, the following results represent a critical benchmark for gaining a better
understanding of the physical processes associated with bar-mode instability in the
resistive regime and for demonstrating the effectiveness and reliability of our numerical
approach in realistic and strongly asymmetric contexts.

The tests presented in this chapter are presented in four sections. In the first two
sections, concerning one-dimensional and two-dimensional tests, the numerical grids
present only one refinement level. In the last two sections, concerning three-dimensional
tests and the study of the bar-mode instability in the resistive regime, the numerical
grids present different refinement levels, to take into account the boundary conditions
around the stars. Local resolution is increased using the Fixed Mesh Refinement (FMR),
also known as Box-in-Box, where each refinement level has size and grid spacing in each
direction half that of the previous one. Therefore, for grids with four refinement levels,
the size of the coarsest grill is eight times that of the finest grid. For these simulations,
we report the dimensions and grid spacing of the finest grid, in which the physics is
simulated.

5.1 One-dimensional tests

First, we present the result of two standard one-dimensional (1D) tests. Performing
1D tests for a numerical code, even when it is designed to simulate more complex phe-
nomena in two (2D) and three (3D) dimensions, is essential for several reasons. Firstly,
one-dimensional tests provide simpler, well-controlled cases, often accompanied by an-
alytical or semi-analytical solutions, allowing for an easier verification of the accuracy
of the code’s results. This is a crucial step to ensure that the implementation of the
physical equations is accurate. Reduced complexity is another significant advantage of
1D tests. Simulating phenomena in a single dimension requires fewer computational
resources and allows for faster simulations. This makes it easier to identify and correct
errors, as the amount of data to analyze is limited, and it’s simpler to verify if each com-
ponent of the code is working correctly. Furthermore, problems identified in 1D tests
often signal underlying systematic errors that can propagate into higher-dimensional
simulations. Resolving these issues early in the 1D phase can save significant time and
effort in the long run. Finally, 1D tests provide a means to directly assess the numerical
stability of the code. By identifying and addressing stability issues early in the 1D
phase, we can prevent them from propagating into higher-dimensional simulations and
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compromising the overall accuracy of the results.

5.1.1 Self-similar current sheet

The self-similar current sheet is a configuration of magnetic field and electric current
that evolves over time while maintaining a proportionally invariant structure. In other
words, although the configuration changes, for instance, by elongating or thinning, its
overall shape remains similar to itself during temporal evolution. This type of behavior
is referred to as "self-similar" and occurs when a system evolves according to scaling
laws that preserve the proportional relationships among the various physical quantities
involved. A current sheet is a very thin region of space where electric current is highly
concentrated. This is often associated with discontinuities in the magnetic field, creating
conditions favorable for magnetic reconnection phenomena (e.g., Cassak and Drake
2013). The self-similar property of the current sheet greatly simplifies the description
of the phenomenon. Even as the current sheet expands or evolves over time, the profiles
of current density and magnetic field always maintain the same shape, which allows for
the analysis of the system’s evolution using analytical or semi-analytical methods.

The numerical problem was first proposed by Komissarov 2007. Following the same
prescription, it has been presented also by Palenzuela et al. 2009, Dumbser and Zanotti
2009, and Bucciantini and Del Zanna 2012. The exact solution for the y—component
of the magnetic field in the limit of infinite pressure is

BY(z, ;1) = By erf <2j%> (5.1)

where erf is the error function. The initial conditions for the numerical test are p = 1,
p=>50,v=0,E=0,B=(0,BY(z,t;n),0), with ¢; the initial time. We have chosen
By = 1 and an adiabatic coefficient I'y;, = 4/3. The computational domain spans the
range x € [—1.5,1.5] and is structured using a uniform grid consisting of 200 cells. In
Komissarov 2007 and subsequent works, simulation results with n = 1072, t; = 1, and
ty = 10 (where t7 is the final time) were presented. In this work, we report the results
obtained with 4 different values of 7, keeping the initial and final products nt; and
nt rconstant. Specifically, the values of the times ¢; and ¢y were chosen based on the
value of 1 such that nt; = 0.01 and nt; = 0.1. The four tercets used are, therefore:

(n,ti, tp) = (1071,0.1,1) (5.2)
(n.ti,tg) = (1072,1,10) (5.3)
(n,ti ) = (107,10, 100) (5.4)

(n,ti,t¢) = (107%,100, 1000) (5.5)



74 Numerical results

1.0

0.5 A

0.0 A

—0.5 A1

-1.0

1.0

0.5 1

0.0 A

—0.5 A1

-1.0 T T T T T T T T T T
-1.5-1.0-0.5 0.0 0.5 1.0 1.5 -1.5-1.0-0.50.0 0.5 1.0 15

s w1 jnitial  e—— numerical == == 1 analytical

Figure 5.1: Evolution of the y—component of the magnetic field in a self-similar current sheet
for different values of electrical resistivity 7. The red dot-dashed line represents the initial
condition. The blue solid line depicts the numerical solution, which is indistinguishable from
the green dashed line representing the exact solution given by Equation (5.1). The initial and
final times for each simulation are detailed in the text (Equations (5.2) to (5.5)).

Despite the evolution being predominantly resistive (theoretically, in the limit of
infinite pressure, only the magnetic field evolves, and only the induction equation needs
to be solved), the problem is treated within the fully dynamical regime. The CFL
factor!? was set to 0.125.

By maintaining the spatial numerical grid unchanged, we were able to assess the

12The CFL factor (derived from the Courant-Friedrichs-Lewy condition) is a parameter
used to ensure numerical stability in simulations that solve partial differential equations. The
CFL condition establishes a limit on the time step At based on the spatial resolution Az and
the characteristic velocity of the system vy, (such as the speed of sound or fluid flow speed).
This condition is crucial for the stability of numerical solutions, particularly when using explicit
time integration methods like Runge-Kutta. The CFL condition can be written as:

Ax

Umax

At <

The CFL factor (denoted as C') is a multiplier applied to this theoretical maximum, typically
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impact of numerical viscosity on our simulations. The initial and final configurations
are, in fact, theoretically the same regardless of the value of 7, while the evolution
depends on the electrical resistivity. Substantial differences between the analytical and
numerical solutions would imply a significant impact of numerical viscosity. However,
as shown in Figure 5.1, there is excellent agreement between the two solutions (with
the numerical solution represented in blue and the analytical solution in green, while
the red line indicates the initial configuration). his indicates that, at this resolution,
the intrinsic resistivity of the scheme is less than 1074,

5.1.2 Shock Tube

The second test is the shock tube problem presented in Dumbser and Zanotti 2009.
The shock tube problem is a well-established numerical test used to evaluate the per-
formance of computational codes, particularly in the context of fluid dynamics and
magnetohydrodynamics. It involves the simulation of discontinuities, such as shock
waves, contact discontinuities, and rarefaction waves, which arise from an initial imbal-
ance between two regions of fluid or plasma.

From a numerical perspective, shock tube simulations provide insight into the code’s
ability to handle sharp gradients and discontinuities without introducing unphysical
oscillations. Additionally, the problem reveals the effectiveness of the flux solvers and
reconstruction schemes in maintaining accuracy and stability under extreme conditions.
Overall, successful results in shock tube simulations are a strong indicator of a code’s
robustness and reliability in solving more complex physical scenarios.

The test was conducted on a stationary Cartesian grid (i.e., Minkowski spacetime).
This simulation was performed under both ideal and resistive magnetohydrodynamic
conditions, employing the Lax-Friedrichs flux solver. The TVD MC2 scheme was em-
ployed as the reconstruction method. The time integrator used is the second-order
Runge-Kutta (RK2) scheme in the IMHD regime and the Strong Stability Preserving
(SSP2(2,2,2)) scheme in the resistive regime. The CFL factor was set to 0.125 in both
regimes, and the electrical resistivity remained constant throughout the domain. The
results of our tests should be compared with those presented in Bucciantini and Del

chosen so that 0 < C' < 1. The time step used in the simulation is then determined by:

Az

Umax

At=C"

If C is close to 1, the time step is near the maximum allowed by the stability condition. If C' is
less than 1, the time step is reduced, improving numerical stability at the cost of requiring more
time steps to complete the simulation. A CFL factor set to 0.125 means that the time step
used in the simulation is 12.5% of the theoretical maximum allowed for stability. This choice
ensures greater numerical stability, although it requires more computational time to complete
the simulation.
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Figure 5.2: Results of the shock tube problem at the final time ¢t = 0.55. The left panel shows
the density, while the right panel shows the y—component of the magnetic field. The blue line
corresponds to the case n = 0, the orange line to 7 = 0.1, and the green line to = 1000.

Zanna 2012.
The initial conditions were given by '3

(p,p,v",vY,v*, B*, BY, B*) = (1.08,0.95,0.4,0.3,0.2,2.0,0.3,0.3) forx <0 (5.6)
and

(p,p,v*, 0¥, v*, B*, BY, B*) = (1.0,1.0,—-0.45,-0.2,0.2,2.0, —0.7,0.5) for x > 0

(5.7)
while the initial electric field was set equal to the IMHD value. The z-coordinate
spanned the range [—15,15], and a uniform grid with 400 cells was employed. The final
time was set to t = 0.55. To investigate the effects of electrical resistivity, the test
was repeated for three different values: n = 0, n = 0.1, and n = 1000. The adiabatic
index for the Ideal Fluid EoS was T'y;, = 5/3. The results, illustrated in Figure 5.2,
demonstrate exact correspondence with those presented in Bucciantini and Del Zanna
2012 in all cases.

IBWe remind the reader that in this work we have set G = Mo =c=¢ = p = 1.
Therefore, in the absence of physical units and/or unless otherwise explicitly stated, numerical
values in this chapter should be understood to be in geometrized units.
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5.2 Two-dimensional test: magnetic rotor

We now present the results of a standard two-dimensional (2D) test: the magnetic
rotor. Testing a code using two-dimensional configurations offers several advantages. In
particular, 2D simulations require fewer computational resources compared to 3D sim-
ulations, allowing tests to be conducted more quickly and with lower memory require-
ments. This facilitates a more frequent and timely verification process. Furthermore,
the results of 2D simulations are often easier to visualize and interpret, which aids in
the rapid identification of errors or anomalies within the code. The simplicity of the
two-dimensional system also allows for more straightforward control of variables and
parameters, enabling the isolation and testing of specific aspects of the code without
the additional complexities associated with three-dimensional (3D) simulations. Addi-
tionally, two-dimensional configurations facilitate the rapid identification of potential
numerical instabilities or convergence issues, enabling preliminary validation of the code
within a controlled environment before advancing to more complex simulations. Finally,
for certain physical phenomena, a 2D simulation may be sufficiently representative, fa-
cilitating the analysis of specific dynamics without the burden of 3D complexities.

The numerical test was initially proposed in its relativistic IMHD formulation by
Del Zanna et al. 2003. The resistive version was subsequently introduced by Dumbser
and Zanotti 2009. It was conducted on a stationary Cartesian grid (i.e., Minkowski
spacetime). This simulation was performed under both ideal and resistive magneto-
hydrodynamic conditions, employing the Lax-Friedrichs flux solver. The TVD MC2
scheme was employed as the reconstruction method. The time integrator used is the
second-order Runge-Kutta (RK2) scheme in the IMHD regime and the Strong Stability
Preserving (SSP2(2,2,2)) scheme in the resistive regime. The CFL factor was set to
0.125 in both regimes, and the electrical resistivity remained constant throughout the
domain. The results of our tests should be compared with those presented in Bucciantini
and Del Zanna 2012.

The initial configuration consisted of a circular region with a radius of » = 0.1 and a
density of p = 10, rotating with a uniform angular velocity of {2 = 8.5. This region was
embedded within a static medium characterized by a density of p = 1. A uniform pres-
sure of p = 1 and a magnetic field (B*, BY, B¥) = (1,0,0) were maintained throughout
the domain. The adiabatic index for the Ideal Fluid EoS was set at I'y, = 5/3, and the
initial electric field was assigned the IMHD value. The simulation concluded at a final
time of t = 0.3. The computational domain spanned z = [0, 1] and y = [0, 1], with the
center of the circular region located at (x,y) = (0.5,0.5). A uniform grid comprising
400 x 400 cells was employed. This test was executed in both the IMHD regime and
the resistive regime, with the resistivity set to n = 0.1. The results, as illustrated in
Figure 5.3, demonstrate exact correspondence with those presented in Bucciantini and
Del Zanna 2012 for all cases.
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Figure 5.3: Results of the magnetized rotor problem at the final time ¢t = 0.3. The upper
panels illustrate the pressure, while the lower panels depict the z—component of the electric
field. The left column corresponds to the IMHD case (n = 0), while the right column represents
the resistive case with n = 0.1.

5.3 Three-dimensional tests

After validating the code through tests in both one and two dimensions, we now
present the results of several standard three-dimensional (3D) tests. While 2D sim-
ulations offer valuable insights, many physical phenomena exhibit inherently three-
dimensional behaviors that cannot be fully captured in two dimensions. Testing the
code in 3D configurations is thus essential to ensure its robustness and accuracy in
more realistic and complex scenarios.

Three-dimensional simulations introduce additional degrees of freedom, allowing for
a more comprehensive exploration of physical systems, particularly when dealing with
phenomena such as turbulence, instabilities, or interactions that depend on spatial vari-
ation in all three dimensions. However, this increased complexity comes with the need
for greater computational resources, both in terms of processing power and memory.
Consequently, 3D simulations require more time and computational effort, but they are
crucial for accurately replicating the full dynamics of many astrophysical and physical
systems.
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Moreover, 3D tests provide a more rigorous validation of the numerical methods and
algorithms used in the code. They are particularly effective in uncovering any issues
related to dimensional scaling, boundary conditions, or numerical stability that may not
have surfaced in 2D configurations. The ability of the code to handle these challenges
in 3D is a key indicator of its reliability and applicability to real-world simulations.

5.3.1 TOV star

The first 3D test we present is that of a non-rotating star in hydrostatic equilibrium,
a condition described by the Tolman-Oppenheimer-Volkoff (TOV) equation!:

dp(r) — [e(r) +p(r)][m(r) + 47r°p(r)]
dr r2[1 — 2m(r)/r] (58)

where p(r) and e(r) = p(r)[1 + €(r)] are pressure and energy density, respectively, at
radius r, m(r) is the total mass within radius r, and the term [1 — 2m(r)/r] accounts
for the curvature of spacetime around the star, as described by general relativity. This
equation represents a relativistic generalization of the classical hydrostatic equilibrium
equations for spherically symmetric celestial objects.

Testing the code with a star in equilibrium provides an ideal verification environ-
ment: the expected physical behavior is simple (the star should not evolve significantly),
allowing us to focus on potential issues related to numerical stability and solution accu-
racy. In this way, any errors related to the numerical method or approximations can be
efficiently identified and corrected before tackling more complex or dynamic problems.

The initial configuration was generated using the RNS code!® (Font et al. 2000) for
a polytropic star with adiabatic index I' = 2, polytropic constant K = 100, and initial
central rest-mass density p. = 1.28 x 1073, The subsequent evolution was carried out
with the Ideal Fluid EoS, maintaining the same value of I". The test was performed on
a cubic Cartesian grid with four refinement levels. The x—, y—, and z—coordinates of
the finest grid spanned the range [—15, 15] with grid steps dz = dy = dz = 0.375. The
simulation ran for 8 milliseconds using the WENO-Z reconstruction method, the HLLE

14We remind the reader that in this work we have set ¢ = G = 1. In physical units we would

et e G p(r) axp(r)\ ( 2Gm(r)\ "
-8+ 2+ £229) 12220

c? rc?

15The RNS (Rapidly Rotating Neutron Star) code is a numerical tool designed to compute
equilibrium configurations of rapidly rotating neutron stars in general relativity. It assumes
axisymmetry and solves both the Einstein field equations and the hydrostatic equilibrium equa-
tions for rotating stars in a two-dimensional framework.
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Figure 5.4: Results of the TOV star simulations. Top panel: Time evolution of the average
values of the rest-mass density normalized to its initial value (left), internal energy normalized
to its initial value (center), and pressure normalized to its initial value (right). Bottom panel:
As in the top panel, but for the three components of the velocity normalized to the speed of
light.

flux solver, and the fourth-order Runge-Kutta (RK4) time integrator with a CFL factor
of 0.25.

To assess the accuracy of our code, we compared the results with those obtained
using the GRHydro code. Figure 5.4 illustrates the time evolution of the average values
of the rest-mass density, internal energy, pressure, and the three components of the fluid
velocity, demonstrating strong agreement between the two codes.

Despite the star being initially in a stable equilibrium and non-rotating, the average
velocity is found to be non-zero. This can be attributed to several factors, such as
numerical truncation, grid resolution, and numerical instabilities introduced by the time
integration algorithm, which can generate spurious velocities. However, the primary
contribution is due to the presence of the so-called "numerical wind". Numerical wind
is a phenomenon in fluid simulations, referring to artificial material flow caused by
numerical errors or instabilities. It is not a physical phenomenon but rather a result
of limitations and approximations inherent in the numerical methods used to solve
the fluid dynamics equations, particularly in the treatment of the atmosphere. As
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discussed in Section 4.7.5, numerical codes commonly model the atmosphere as a layer
of low-density gas to avoid computational issues in near-vacuum regions. However, this
artificial atmosphere is still governed by fluid dynamics equations, meaning that even
small perturbations can generate artificial flows or non-physical motions within it. These
motions can manifest as numerical wind interacting with the stellar surface, resulting
in non-zero velocities. The interface between the star and the artificial atmosphere is
a region where significant numerical errors can arise, particularly if the stellar density
is much greater than that of the atmosphere. These errors can generate spurious flows
in the atmosphere, which may subsequently be transmitted to the star, resulting in
artificial motions that manifest as non-zero velocities.

5.3.2 Magnetized rotating star in the ideal regime

We now present the results of a time evolution simulation of a uniformly rotating
magnetized star in equilibrium, carried out in the IMHD. The initial configuration
was constructed using the XNS!® (Bucciantini and Del Zanna 2011, Pili et al. 2014)
code, employing the same parameters as in the previous test for the equation of state,
i.e., a polytropic EoS with adiabatic index I' = 2, polytropic constant K = 100, and
initial central rest-mass density p. = 1.28 x 1073, The star’s rotation rate was set to
Q = 1.1 x 1072. The magnetic field is dipolar, with a maximum strength of Bpax ~
2.63 x 10'2 G. The numerical grid, flux solver, reconstruction method, time integrator,
and CFL factor are identical to those employed in the previous test.

As mentioned in the introduction to this thesis, IMHD simulations are subject to the
"energy cascade towards small scales" due to the absence of physical dissipative terms,
inevitably leading to the divergence of the numerical solution. To address this issue,
Maxwell’s equations, specifically the equation describing the evolution of the magnetic
field, are modified by adding term that aim to dampen spurious numerical oscillations,
thereby acting as dissipative terms. One of the most commonly used prescriptions is
the fifth-order Kreiss-Oliger dissipation'” (Kreiss and Oliger 1973). However, choosing
the appropriate value for the dissipation parameter €45 is not straightforward; it must
be chosen theoretically to eliminate numerical errors while simultaneously preserving

16The XNS code is a numerical tool designed to compute equilibrium configurations of rotating
and magnetized neutron stars in general relativity. It assumes axisymmetry and solves both the
Einstein field equations and the magnetohydrostatic equilibrium equations for neutron stars in a
two-dimensional framework, doing so under the so-called eXtended Conformally Flat Condition
(XCFC; Cordero-Carrion et al. 2009).

1"The n-th order Kreiss-Oliger dissipation added to the right-hand side of evolution equations

is a(nJrl) a(nJrl) 8(n+1)
2 26':+1 < z v +h )U

is
Dgo = (-1)™*¥

T g (n+1) + Y ay(n+l) Z §y(n+1)

where hg, hy, and h, are the local grid spacings in each Cartesian direction. The evolution
equations then become O;:U — U + Dko.



82 Numerical results

{e)/{e)o (p)/{p)o
1.08 A «\ -
1.02 1.06 [V‘} 1.02
) '&‘ |
| "-wf’\'” VAT A
P 1.044 /7MWY [V
1014 | P o1y
[ 1.02 4./ |
1.00 -: T T T T 1.00 -: T T T T 1.00 -: T T T T
le-3 (v)/c
1.50 A 1504 s A KR 0.8
‘ N v ‘,m’v '5"."‘«* T
1251 4 N 1254 4 ' 0.6
/ /
1.00 4/ 1.00 4/ 0.4 1
0.75 0.75 0.2 4
T T T T T T T T 0.0 1 T T T T
1e10 (B“) [G] 1e10 (BY) [G] 1e10 (B?) [G]
6 6 ]
/ i
L 0.9 r\/
41 / 41 / N
/'" 0.8 1
2 ' 2 - [
N
0.7 4’
0 — 0 — —
01 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
time [ms] time [ms] time [ms]
= GRHydro MIR = GRHydro MIR = GRHydro MIR

Figure 5.5: Results of the IMHD simulations for the magnetized rotating star. Top panel:
Time evolution of the average values of the rest-mass density normalized to its initial value
(left), internal energy normalized to its initial value (center), and pressure normalized to its
initial value (right). Central panel: As in the top panel, but for the three components of the
velocity normalized to the speed of light. Bottom panel: As in the central panel, but for the
magnetic field in gauss.

physical instabilities. In the test presented here, we have set €4, = 1072.

To compare the simulation results with those obtained using the GRHydro code, we
enforced the magnetic field to be zero in the atmosphere, even when using the MIR
code. Additionally, the initial electric field was evaluated using the IMHD relation and
evolved using the same prescription.

The results of the simulation are illustrated in Figure 5.5. As can be seen, there
is good agreement between the results of the two codes. The results presented are
restricted to the first 5 milliseconds due to the onset of numerical wind effects, which,
as we will see later, can significantly alter the evolution of the electromagnetic fields.
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Figure 5.6: Comparison of IMHD simulation results for a magnetized rotating star, showing
the effects of artificial dissipation on the magnetic field components. Top panel: average values.
Bottom panel: maximum values.
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Consequently, different simulation regimes and error-handling procedures for recovering
primitive variables can introduce discrepancies in the solutions.

To substantiate the aforementioned claim regarding the necessity of artificial dis-
sipation in the ideal regime, we have repeated the simulation without including this
term. Figure 5.6 shows the resulting time evolution of the mean (upper panels) and
maximum (lower panels) values of the magnetic field components. As can be seen,
in the absence of artificial dissipation (blue solid line), the magnetic field undergoes a
rapid growth after approximately 3 ms. Over time, this growth leads to the simulation’s
failure. However, the density remains unaffected by this divergence, as illustrated in
Figure 5.7. Therefore, artificial dissipation in the ideal regime is indeed essential to
prevent an uncontrolled growth of the magnetic field.

5.3.3 Magnetized rotating star in the resistive regime

We now consider the same star as in the previous test, but this time in a resistive
regime. We employed the SSP2(2,2,2) time integrator, an IMEX extension of the RK2
method. To ensure stability, the CFL factor was halved to 0.125. A constant electrical
resistivity was assumed throughout the stellar interior, while the exterior was considered
non-resistive. The atmosphere was thus treated as Ideal MHD, and the electric field
was evaluated accordingly.

To the best of our knowledge, the effectiveness of introducing electrical resistivity in
suppressing the spurious oscillations and numerical errors that commonly arise in ideal
MHD simulations has not been rigorously tested in the resistive regime. This study
aims to determine whether: 1) artificial dissipation can be entirely removed in resistive
simulations; and 2) if artificial dissipation is still necessary, whether it should be added
only to the magnetic field equation, as in the ideal case, or also to the electric field
equation, despite the presence of a resistive term.

We begin by comparing the results of simulations in the resistive regime with ar-
tificial dissipation added to both electric and magnetic fields to those where artificial
dissipation was added only to the magnetic field (in both ideal and resistive regimes).
The electrical resistivity inside the star was set to 10710, while the artificial dissipation
parameter was set to 1072, as in the previous test. The average values of the electric
and magnetic field components are illustrated in Figure 5.8. The blue line corresponds
to the simulation in the ideal regime, the orange line to the simulation in the resistive
regime with artificial dissipation applied only to the magnetic field, and the green line
to the simulation in the resistive regime with artificial dissipation applied to both fields.
The enhanced fields represented by the green line are a numerical artifact introduced
by the artificial dissipation in the electric field equation. This indicates that the artifi-
cial dissipation term acts as a source of amplification, which is not expected. Artificial
dissipation is generally introduced to suppress numerical instabilities and spurious os-
cillations, not to amplify them. Therefore, the observed amplification suggests that the
dissipation parameter might be incorrectly applied, leading to non-physical behavior in
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Figure 5.8: Comparison of simulation results for the magnetized rotating star in the ideal
and resistive regimes with artificial dissipation (e4;s = 10~2) applied to the magnetic field only
(blue and orange lines) and to both the magnetic and electric fields (green line). Top row:
components of the magnetic field in gauss. Bottom row: components of the electric field in
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the simulation.

Further confirmation of this is provided in Figure 5.9, , which shows the time evo-
lution of the average values of the magnetic and electric field components for a resistive
simulation without artificial dissipation (blue line), compared to the resistive simula-
tions where artificial dissipation was applied either to the magnetic field alone (orange
line) or to both the magnetic and electric fields (green line). As can be seen, there
is a perfect overlap between the blue and orange lines, whereas the green line clearly
diverges from the other two.

Having established that artificial dissipation should not be applied to the electric
field, it is essential to verify that the same holds true for the magnetic field in the resistive
regime. While Figure 5.9 suggests that artificial dissipation of the magnetic field is un-
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Figure 5.9: Comparison of resistive MHD simulation results for a magnetized rotating star
with 7 = 107!°. The blue line represents a simulation without artificial dissipation, while
the lime and orange lines correspond to the same simulations as in Figure 5.8. Top row:
components of the magnetic field in gauss. Bottom row: components of the electric field in
statvolt per centimeter. Left column: x—component. Central column: y—component. Right
column: z—component.

necessary, given the perfect overlap between the blue and orange lines, it is possible that
this result is specific to our choice of dissipation parameter €4;s. To further investigate
this, we repeated the simulations for two distinct sets of values for 1 and €y, applying
artificial dissipation exclusively to the magnetic field. The results are illustrated in Fig-
ure 5.10, where the average values of the electric and magnetic fields components are
reported. The blue line corresponds to the pair (1, €4;5) = ( 10710, 10_2), the orange line
to the pair (1, €4;5) = (10*3, 10*5), and the red line to the pair (1, e4;5) = (10*3, 10*2).
The orange and red lines overlap, showing that the results are unaffected by the artifi-
cial dissipation parameter. The difference from the blue line is due to resistivity. Thus,
applying dissipation to the magnetic field alone is unnecessary in the resistive regime.
Our results suggest that artificial dissipation is not required in the resistive regime. As
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Figure 5.10: Comparison of simulation results for the magnetized rotating star in the resistive
regime for different pairs (7, €4;5) with artificial dissipation applied only to the magnetic field.
Top row: components of the magnetic field in gauss. Bottom row: components of the electric
field in statvolt per centimeter. Left column: z—component. Central column: y—component.
Right column: z—component.

we will see later, the code converges smoothly without the need for artificial dissipation
in the resistive regime, even in the presence of instabilities, in contrast to the ideal
regime.

Starting from a 2D axisymmetric equilibrium configuration in the ideal regime and
evolving the system on a 3D grid by introducing an additional term (artificial dissi-
pation or resistivity) that was not initially present constitutes a perturbation to the
system. This perturbation propagates through the numerical grid, influencing the den-
sity distribution. This is evident in the left panel of Figure 5.11, which shows the same
as Figure 5.8 but for the density. The influence of the perturbation manifests as a
peak at around 0.1 ms. Subsequently, the system relaxes, leading to the dissipation of
this perturbation. Figure 5.11 further confirms that the addition of artificial dissipa-
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Figure 5.11: Time evolution of the maximum rest-mass density normalized to its initial value
for magnetized rotating star simulations. Legend is the same as in Figure 5.8 (left panel) and
Figure 5.9 (right panel).

tion is unnecessary in the resistive regime. In fact, the same matches observed for the
components of the fields are evident here as well.

5.4 A physical application: bar-mode instability simulations in ideal
and resistive regimes

With the successful validation of our code and the demonstration that artificial
dissipation is redundant in the resistive regime, we are now able to present, to our
knowledge, the first simulation results of bar-mode instability in a resistive regime.

The bar-mode instability is a physical phenomenon observed in rapidly rotating as-
trophysical objects, such as neutron stars or other compact stellar configurations. This
type of instability arises when a self-gravitating body rotates fast enough to undergo
non-spherical deformations. Specifically, bar-mode instability refers to the situation
where an initially symmetric object becomes unstable and assumes an ellipsoidal or
"bar-like" shape (hence the name "bar-mode"), rather than maintaining its axial sym-
metry.

The phenomenon is closely related to the rotational conditions of the system. When
the rotational velocity of a self-gravitating body exceeds a certain critical limit, the cen-
trifugal force becomes dominant over the gravitational force that maintains the object
in equilibrium, leading to deformation. The instability can be analyzed through the de-
velopment of perturbations of the equilibrium configuration. A key characteristic of the
bar-mode instability is the transition from spherical or quasi-spherical symmetry to an
elongated or elliptical shape resembling a "bar", with the principal axes of deformation
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aligning in a way that lowers the system’s energy.

Theoretically, this phenomenon has been extensively studied in astrophysics, both
through analytical methods and numerical simulations, as it has significant implications
for the stability of dense, rapidly rotating systems. Bar-mode instability can lead to the
emission of gravitational waves, as the change in shape results in a variation in the mass
quadrupole of the system, which is the primary source of gravitational waves. For this
reason, such phenomena are of particular interest to astronomers studying gravitational
waves, as they may provide valuable insights into the internal structure and dynamics
of neutron stars or other rotating compact objects.

A central element in understanding bar-mode instability is the parameter 8, which
represents the ratio of rotational kinetic energy to the total gravitational energy of
the body. If this parameter exceeds a certain critical value, typically around 0.24 (in
general relativity or 0.27 in Newtonian gravity), the system becomes unstable to bar-
mode type perturbations. Below this threshold, the system remains stable and tends
to maintain a symmetric shape. However, when this critical threshold is reached or
exceeded, centrifugal forces begin to dominate, and the body may undergo a transition
to an elongated or distorted configuration.

Bar-mode instability has been observed in various simulations of neutron stars and
binary systems (e.g., Shibata et al. 2000, Baiotti et al. 2007, Cerda-Duran et al. 2007,
Franci et al. 2013, Passamonti and Andersson 2020, losif and Stergioulas 2021, LofHer
et al. 2015, De Pietri et al. 2014, Corvino et al. 2010, Manca et al. 2007), providing a
unique window into understanding the processes that govern the dynamics and stability
of these objects under extreme conditions.

The bar-mode instability, by breaking axial symmetry and inducing non-axisymmetric
deformations, could create the necessary conditions to favor the action of a dynamo. The
deformations resulting from the bar-mode instability generate plasma motions within
the celestial body. These motions, in turn, can "stretch" and "twist" the lines of the
pre-existing magnetic field, thereby enhancing its intensity. A more intense magnetic
field further influences plasma motion, thereby generating a self-reinforcing cycle that
can lead to the formation of a large-scale magnetic field.

5.4.1 Initial data

The initial configuration, built using the XNS code, was based on the magnetized U13
model presented in Franci et al. 2013. This is an unstable configuration that extends the
sequence of models presented in Stergioulas et al. 2004 and Dimmelmeier et al. 2006. It
consisted of a polytropic star with adiabatic index I' = 2, polytropic constant K = 100,
and initial central rest-mass density p. = 0.599 x 10~%. The star exhibited differential
rotation, characterized by the traditional constant specific angular momentum law ("j-
constant" or KHE law; e.g., Komatsu et al. 1989, Friedman and Stergioulas 2013)

j=A%Q —Q) (5.9)
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where A is a positive constant, and €. is the central rotation rate. Differential rotation
was essential, as a considerable amount of it was required to achieve the large angular
momentum necessary to trigger the dynamical bar-mode instability. Therefore, we have
set

Q. = 1.8 x 1072 ~ 3654 rad/s (5.10)

and A% = 500, resulting in a polar-to-equatorial ratio of rp/Te = 0.200. The resulting
star - with a mass of M ~ 1.5 M) and equatorial radius of

re = 22.55 >~ 33.30 km (5.11)

- is stable against gravitational collapse according to Giacomazzo et al. 2011b. A purely
toroidal vector potential Ay, given by

Ay = Ap(max {p — peut, 0})? (5.12)

where pey: was 4% of the maximum pressure, and A, was chosen to have a maximum
magnetic field on the order of 10° gauss, was added to the initial equilibrium models to
introduce an initial poloidal magnetic field perturbation, while the initial electric field
was set equal to the IMHD value. The simulation was carried out for 25 ms. For the
ideal regime, simulations were performed with €4;; = 0.1 (as in Franci et al. 2013) and
€gis = 0.05. For the resistive regime, simulations were run with n = 10712, n = 1079,
n=107% and = 1073. The lowest value corresponds to

n=10""2~50x10"®¥s~56x 107" Q-m (5.13)

whereas the value 7 = 1075 corresponds to the electrical resistivity at the base of the
lower solar atmosphere (Chae and Litvinenko 2021).

5.4.2 Magnetic field decomposition

To gain a deeper understanding of the magnetic field’s influence on bar-mode insta-
bility dynamics, we have augmented our diagnostic variables to quantify and character-
ize the magnetic field’s evolution explicitly. In axisymmetric configurations, the mag-
netic field is typically decomposed into toroidal and poloidal components for separate
analysis. However, when axisymmetry is broken, this straightforward decomposition is
no longer available. Despite the loss of axisymmetry, there is still a useful decompo-
sition that can be defined, one which reduces to the traditional poloidal-toroidal form
in the axisymmetric and stationary case. The key idea behind this decomposition is to
separate the magnetic field into components that are aligned with and perpendicular
to the fluid motion. For an Eulerian observer, we can split the magnetic field as

B:BJ_"‘BH:BJ_“FB” (5.14)

v
Il
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where the "perpendicular" component, B, is defined by the condition
B, -v=0 (5.15)
and the "parallel" component, B, is a scalar, simply defined as

B-v

B = —
v

(5.16)
Initially, when the flow is predominantly azimuthal, B | corresponds to the poloidal
component of the magnetic field, and B represents the toroidal component. Through-
out the analysis, we will refer to these as the "poloidal" and "toroidal" components,
respectively, though this terminology is used loosely outside of strictly axisymmetric
configurations.

5.4.3 Bar deformation diagnostics

An important set of diagnostic quantities focuses on detecting bar deformations,
which can be conveniently quantified in terms of the distortion parameters given by
(Saijo et al. 2001, Franci et al. 2013)

21

H=,/H? +H? (5.19)

The quadrupole moment of the matter distribution, I/, can be computed in terms of
the conserved density D as

k= /dSmﬁDacjxk (5.20)

It’s important to note that all quantities in Equations (5.17) to (5.19) are expressed in
terms of the coordinate time ¢. Therefore, they do not represent invariant measurements
at spatial infinity. However, for the simulations presented here, the length-scale over
which the lapse function varies at any given time consistently exceeds twice the stellar
radius at that time. This condition guarantees that events occurring on the same time
slice are also closely aligned in terms of proper time.

5.4.4 Results

Let’s begin by analyzing the results of the simulations conducted in the ideal regime,
represented by the blue lines (solid and dashed) in Figure 5.12, which illustrates the
time evolution of the maximum values of the magnetic and electric field norms. The
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Figure 5.12: Results of the bar-mode instability simulations. Time evolution, in base-10
log scale, of the maximum values of the norms of the magnetic field (left) and the electric field
(right). The black dotted vertical line indicates the time when the simulation (7, €4;5) = (0,0.05)
failed.

blue solid line corresponds to the simulation with €4, = 0.1, while the blue dashed line
represents the simulation with e4;; = 0.05. As depicted in the left panel of Figure 5.12,
a marked divergence between the two curves becomes evident from approximately 4 ms
onwards. The simulation employing €4;s = 0.05 exhibits a more rapid growth of the
magnetic field and experienced a premature termination at approximately 18 ms (black
dotted vertical line), suggesting potential numerical instabilities. This value of ey
was, therefore, insufficient to dissipate the spurious oscillations arising from numerical
errors. However, despite reaching a conclusion, the value €4,; = 0.1 was also unable to
completely eliminate all numerical errors. As a result of numerical errors, the magnetic
field exhibits an unphysical growth in regions close to the stellar surface, where it was
initially zero and where no source terms are present. This phenomenon can be observed
in the left columns of Figures 5.13 and 5.14, which display the spatial distributions
on the xz—plane of the magnetic field (top row) and its poloidal component (bottom
row) at 7 and 15 milliseconds, respectively. At 7 milliseconds, weak spurious fields
begin to appear near the stellar surface, indicating the onset of numerical instability.
At 15 milliseconds, during the exponential growth, these spurious fields have amplified
significantly, and the maximum magnetic field strength is now located at the stellar
surface, confirming the dominant role of numerical errors in the late-time evolution of
the magnetic field. However, the exponential growth depicted in Figure 5.12 occurs not
only for these spurious fields but also for the genuine magnetic field confined within the



5.4 A physical application: bar-mode instability simulations in ideal and
resistive regimes 93

Bar-mode instability, xz-plane, t=7 ms
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Figure 5.13: Results of the bar-mode instability simulations. Spatial distribution of the
magnetic field norm (top row) and its poloidal component (bottom row) on the zz—plane at
t = 7ms. The simulations include an Ideal MHD case with €4;s = 0.1 (first and second columns)
and two resistive cases with 7 = 10712 (third column) and n = 107% (fourth column). The
second column shows the ideal simulation with the surface masked to reveal the internal field
distribution. The values of the fields are normalized to their maximum value, displayed in the
white box in the lower right corner.

star. This is illustrated in Figure 5.15, which shows the time evolution on the masked
xz-plane (i.e., considering only the internal region of the star) of the maximum values
of the norms of the magnetic field (left panel), its poloidal component (central panel),
and the electric field (right panel). As depicted in Figure 5.16, the distortion parameter
H also experiences exponential growth before saturating at approximately 20 ms, in
accordance with Franci et al. 2013. This behavior is precisely what we expect from
a stellar model that is unstable to the dynamical bar-mode instability (Baiotti et al.
2007).

Let us now focus on the electric field. As depicted in Figures 5.12 and 5.15, the
electric field remains nearly constant for the first 7 to 8 milliseconds, before experiencing
an exponential increase. This behavior is consistent with the ideal relation

E=-vXxB=-vXxB, (5.21)

which links the electric field to the poloidal component of the magnetic field. Figure 5.15
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Bar-mode instability, xz-plane, t=15 ms
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Figure 5.14: The same as Figure 5.13, but at t = 15 ms.

confirms that the poloidal component also remains constant until approximately 7-8
milliseconds, thus explaining the initial constancy of the electric field. Furthermore,
this implies that the initial growth of the magnetic field is attributed to the formation
and growth of a toroidal component.

In conclusion, the bar-mode instability appears to trigger the dynamo mechanism
once axial symmetry has been broken. However, the results of the simulations in the
ideal regime are highly dependent on the chosen value of the artificial dissipation pa-
rameter. This dependence is non-physical due to several reasons. First, in a physical
context, the dynamics should not be sensitive to arbitrary parameters introduced to
mitigate numerical instabilities. The choice of artificial dissipation should ideally not
alter the fundamental behavior of the system being modeled. Second, as we have ob-
served, the presence of spurious oscillations indicates that the numerical scheme may
not accurately capture the true dynamics, leading to misleading results.

We now turn our attention to the results of the resistive simulations with n =
10712 and n = 107%. As shown in Figures 5.12 and 5.15, the fields exhibit significant
damping. This is consistent with the findings of Dionysopoulou et al. 2015 for the
post-merger phase of a binary neutron star system in a resistive regime with n = 1076,
Furthermore, the electrical resistivity has successfully mitigated numerical errors near
the stellar surface, as can be seen in Figures 5.13 and 5.14 (third and fourth panels).
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Figure 5.15: Results of the bar-mode instability simulations. Time evolution, in base-10 log
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Figure 5.16: Results of the bar-mode instability simulations. Time evolution of the distortion
parameters H (left panel; base-10 log scale) and H (right panel) in both Ideal and resistive

regimes.

distortion parameter H.

In the right panel, dashed lines represent the Hy« parameter, while solid line the

Additionally, the fact that these simulations did not require artificial dissipation is
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further confirmation of the results obtained in previous tests. However, it is noteworthy
that there are no significant differences observed between the results of the resistive
simulations when varying 7, even when considering the results of simulations with n =
1072 and n = 1073, which are not shown here. The chosen functional relationship for
n (i.e., constant within the star) may be a contributing factor, as it remains the same
at every point in the star, regardless of the local density. However, we do not have
sufficient information to confirm this hypothesis, and other reasons cannot be ruled
out. Future studies will be conducted to investigate the underlying causes.

It is noteworthy that the distortion parameter remains insensitive to variations in 7.
In fact, it proves to be unaffected by the regime in which the simulation was conducted
(Figure 5.16). This implies that the fluid component evolves identically regardless of
the considered regime, further corroborating the results of Dionysopoulou et al. 2015,
which demonstrate that the evolution of the maximum density is unaffected by the
simulation regime up until shortly before the collapse into a black hole.



Conclusions

This thesis presents a new numerical code, named MIR, designed to simulate the time
evolution of complex astrophysical systems, with a particular focus on magnetohydro-
dynamic phenomena. Based on the general relativistic magnetohydrodynamics (MHD)
equations in the 3+1 formalism (Alcubierre 2008, Baumgarte and Shapiro 2010, Gour-
goulhon 2012), the code can operate in three distinct regimes: purely hydrodynamic,
Ideal MHD, and resistive MHD. Developed within the Einstein Toolkit framework (Lof-
fler et al. 2012), the code represents a significant advancement in the numerical study
of these systems, as it is the first publicly available resistive code within this powerful
platform. The inclusion of the resistive regime enables a more realistic investigation
of various astrophysical phenomena compared to previous codes, which were limited to
the hydrodynamic and ideal MHD regimes.

The study of electromagnetic fields in astrophysical sources is of fundamental im-
portance for understanding numerous processes of cosmic relevance. Magnetic fields, in
particular, play a crucial role in various astrophysical phenomena, including the accre-
tion of matter onto black holes and neutron stars, the triggering of powerful relativistic
jets, and the evolution of accretion disks. In the ideal regime, magnetohydrodynamics
assumes that magnetic fields and matter are tightly coupled, without energy dissipation
due to electrical resistance. However, this assumption is often unrealistic, as resistive
effects are present in many astrophysical contexts, allowing for magnetic reconnection,
energy dissipation, and the conversion of magnetic energy into thermal and kinetic en-
ergy. These processes underlie phenomena such as solar flares, gamma-ray bursts, and
other highly energetic observable events.

Incorporating resistive terms into our numerical code enables more accurate simu-
lations of these phenomena, offering a more complete representation of the underlying
physics. The capability to model magnetic reconnection and other magnetic instabili-
ties allows us to investigate how magnetic field evolution influences the system’s overall
dynamics and observable emission. This can aid in interpreting data from astrophysical
observations, thereby expanding our understanding of complex phenomena.
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The inclusion of electrical resistivity introduces two significant differences compared
to the ideal case. First, it necessitates the evolution of the electric field as well, adding
three new equations (one for each component) to the system. Second, it requires the use
of so-called IMEX schemes (Pareschi and Russo 2005, Palenzuela et al. 2009), which
combine implicit and explicit methods. This entails two substantial modifications. The
first modification is that the right-hand side (RHS) of the equations comprising our
system must be split into two parts, a stiff and a non-stiff part, complicating the
method of lines (MoL). The second modification involves the evolved variables (also
known as conserved or conservative variables) that exhibit stiff terms in their RHS.
These variables undergo an implicit step during the recovery of the so-called primitive
variables (those that describe a system from a physical perspective, such as density,
pressure, velocity, and so on). This implicit step significantly complicates the conversion
from conservative to primitive variables.

The code has been rigorously tested against a suite of standard benchmarks in
one, two, and three dimensions, demonstrating a robust capability to solve complex
problems. It has consistently exhibited stability and accuracy, even under demanding
physical conditions. These benchmarks, well-established in the literature, have been
employed to validate the code’s implementation by comparing its results against existing
solutions. The high accuracy achieved confirms the robustness of the numerical method
and the reliability of the code in handling resistive scenarios. Our numerical results have
also validated theoretical expectations, demonstrating that the resistive regime does not
necessitate the introduction of artificial dissipation. This finding contrasts with the ideal
regime, where artificial viscosity is essential to suppress spurious numerical oscillations
that naturally arise in ideal simulations.

A significant result of this thesis work is the first study of bar-mode instability in
the resistive regime. The inclusion of resistivity effects has enabled the exploration of
new scenarios beyond those considered in previous studies, which were limited to the
ideal regime. This critical dependence renders the results obtained in this regime par-
ticularly challenging to interpret, as even small variations in the dissipation parameter
can lead to qualitatively different outcomes, including simulation failure. The difficulty
in determining an optimal value for the artificial viscosity, capable of damping spuri-
ous numerical oscillations without compromising the underlying physics, represents an
intrinsic limitation of such simulations. While resistive simulations have effectively sup-
pressed spurious oscillations, our findings indicate that varying the electrical resistivity
does not substantially alter the simulation outcomes. The reasons for this unexpected
behavior remain unclear, as we lack sufficient information to make definitive statements,
and warrant further investigation. The assumption of a constant electrical resistivity,
independent of density, may limit the model’s ability to capture the complex physics of
stellar interiors. Additional studies are required to explore more sophisticated resistivity
models and to assess their impact on simulation outcomes.

Future work will focus on extending the code to incorporate tabulated equations of
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state for simulating fluids with complex properties. We also aim to utilize the MIR code
to study binary neutron star mergers in the resistive regime, investigating the impact
of non-ideal effects on post-merger remnants and associated electromagnetic and grav-
itational emissions. Finally, we aim to propose the inclusion of the MIR code in future
releases of the Einstein Toolkit framework for broader accessibility and utilization.

The code used in this thesis, including the updated MoL thorn with the IMEX
SSP2(2,2,2) scheme, is open-source and available for download, enabling researchers to
build upon our work and explore further applications.






Download

The MIR code is publicly available on Zenodo (Franceschetti and De Pietri 2024b)
at the following link:

https://doi.org/10.5281/zenodo. 13986384

In addition to the MIR code, the downloaded folder contains two essential thorns:
ElectroBase (which defines the variables necessary for the evolution of the electric
field) and MIR_InitData (used to configure the initial conditions). The downloaded
folder also includes updated files for the MoL thorn, featuring the newly implemented
IMEX SSP2(2,2,2) scheme. Thorough reading of the README and CHANGELOG
files is strongly recommended before utilizing this software.

To access the comprehensive documentation for the code and thorns, please visit:

https://einstein.pr.infn.it/gravity/MIR/doc/intro.html
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Appendix

Implementation of the SSP2(2,2,2) scheme in the
Einstein Toolkit framework

By default, the MoL thorn included in the Einstein Toolkit requires the registration
of only one RHS. However, the IMEX-RK scheme described in Section 4.5.1 requires
splitting the RHS into two distinct terms and, therefore, the registration of two RHSs.

As shown in Section 4.5.1, the set of Equation (4.1) can be rewritten as

OU=Q+R=L (A1)

where U is the vector of conserved variables, Q is the RHS without stiff terms (including
the flux terms), R is the stiff term of the RHS, and L is the total RHS.

In this appendix, we present the implementation of the SSP2(2,2,2) scheme (Pareschi
and Russo 2005, Palenzuela et al. 2009), whose Butcher tableau (Butcher 1987) is shown
in Table A.1, in the MoL thorn. This implementation uses so-called scratch variables,
i.e., temporary variables defined within MoL itself, which we will denote as U.

For the SSP2(2,2,2) scheme, the following three steps are required (one more than
the second-order Runge-Kutta method):

e For ¢ = 1 only the implicit step is needed. Then the explicit step performed by the
MoL results to be

u —ur  u=o (A.2)

and the implicit step is
u® =u') + AR, (A.3)

e For i = 2 the explicit step is
— At

u? —sur —ou® L are,  u? = 5L (A.4)

and the implicit step is
u® =u? 4 yArR, (A.5)
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0| O 0 % 0% 0
1

1
1 0 11—~ 112y 0% y=1——

11/2 1/2 |12 1)2 V2

Table A.1: Tableau for the explicit (left) implicit (right) IMEX-SSP2(2,2,2) L-stable scheme
(Pareschi and Russo 2005, Palenzuela et al. 2009).

e The third and final step is
— At
zlS”:u"+u(”+_5c2 (A.6)

utt =y (A7)

Here, Z/L(j) is the value of the conserved variable U returned by the MoL thorn after the
i-th explicit step. Note that since R; depends on U (i), the implicit step must be carried
out during the inversion from conservative to primitive variables by MIR. With this
scheme, we can register only the total RHS L, allowing us to use the existing structure
of the MoL thorn without requiring significant modifications.



Appendix

Upper limit for the conserved momentum

Equations (4.53) and (4.55) represent, respectively, the maximum values that the
total conserved momentum (S) and the fluid conserved momentum (M = DhWv) can
attain in the most general case possible, namely the resistive magnetized case. In this
appendix, we will derive these upper limits.

B.1 Maximum for M

Recall that the total momentum is defined as

S=M+EXxB (B.1)
From this equation we have
$? =M%+ |E x B> +2M - (E x B) (B.2)
therefore
S%> M?*+2M - (E x B) (B.3)

Now consider Equation (4.70). By taking the cross product with B and then the dot
product with M, we obtain

M- (E x B) =AM - (E, X B) + A{DhW||v X B||?> > A)M - (E, x B)  (B.4)

where we recall that the coefficients Ag > 0 and A; > 0 are given by Equations (4.46)
and (4.47), respectively. Given that

M- (E. xB)>—-E.BM (B.5)
the previous inequality becomes

M- (E x B) > —AyE,BM (B.6)
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Furthermore, given that Ay < Agmax - which implies —Ag > —Apmax, With Ag max
given by Equation (4.56) - it follows that

M - (E X B) > — Agmax B BM (B.7)
The inequality (B.3) thus becomes

M? — 240 max BE.M — S% <0 (B.8)
Solving it for M, we obtain Equation (4.55).

B.2 Maximum for S

If the dominant energy condition holds - i.e. if p? < p?(1 + 6)2 - one has (Etienne
et al. 2012)
M?* < & (B.9)

where we recall that
Er =€ —Ugy >0 (B.10)

is the conserved fluid energy, with £ > 0 the total conserved energy and Ug,, > 0 the
electromagnetic energy density. From this relation follows that

Er<&=Er< &2 (B.11)

therefore
M? < &2 (B.12)

As a result, inequality (B.2) can be rewritten as

5?2 <&+ |E x B|*+2M - (E x B) (B.13)
Since
|E x B||? < E2B? (B.14)
and
M- (ExB)<M|E x B|| < MEB < £EB (B.15)

the previous inequality becomes

S? < &2+ E*B* 4+ 26EB (B.16)
From the definition of the electromagnetic energy density we have

E? = 2U,,, — B® < 2U.p, (B.17)

But
Upn=E —Ep <& (B.18)
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therefore
E%<2€ (B.19)
As a result, we have
2
S2 < £2 4 26 BV2E + 26B% = (5 + B\/25) (B.20)

that is Equation (4.53).






Appendix

Computing the electric charge using a Riemann
solver

As discussed in Chapter 4, computing divergences necessitates the use of a Riemann
solver. To accomplish this, it is essential to reconstruct both the flux terms and the
corresponding conserved variables at both sides of the cell interfaces. However, the
Maxwell equation for electric charge

¢q=V-E (C.1)

does not involve any time derivatives of conserved variables. Consequently, electric
charge is typically computed using finite difference methods. "In this appendix, we
prove that it is possible to use a Riemann solver for electric charge, with the conserved
variable set to zero.

In the 3+1 formalism, Equation (3.7) becomes

VP = —qn’ — J” (C.2)

The time projection gives
7—1/23M(WEH) =q (C.3)
that is
8t(ﬁE0) + 8,(ﬁEl) =.7q (C.4)
Since E° = 0, we have

90+ 0;(vAE") = /¢ (C.5)

Since 9;0 = 0 we obtain Equation (C.1). However, Equation (C.5) can be interpreted
as the equation governing the evolution of the conserved variable Y = 0. Consequently,
we can compute the spatial derivative 0; using a Riemann solver with Llﬁé’j = ZLJ = 0.

The same argument can be made for the computation of the divergence of the
magnetic field.
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