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Zusammenfassung

In der vorliegenden Arbeit werden Antikaonen und Hyperonen in kalter
Kernmaterie sowie endlichen Kernen behandelt.

Die Antikaonspektralfunktion und die K̄N -Streuamplituden werden im
Rahmen einer selbstkonsistenten und kovarianten Vielteilchentheorie
berechnet, basierend auf einer relativistischen Meson-Nukleon Wechsel-
wirkung und dem chiralen SU(3) Lagrangian. Die K̄N -Wechselwirkung
bei niedrigen und mittleren Energien ist bemerkenswert komplex auf-
grund der Hyperonresonanzen Λ und Σ im Bereich der Antikaon-Nukleon
Schwellenenergie. Systematisch untersucht werden insbesondere die Aus-
wirkungen von nuklearer Saturierung, implementiert in Form eines skalaren
und vektoriellen Mean-Field des Nukleons. Dabei wird das Auftreten
von Divergenzen und kinematischen Singularitäten durch Anwendung eines
neuen Renormierungsschemas vermieden. Desweiteren wird ein Winkelmit-
telungsverfahren untersucht, das den numerischen Rechenaufwand deutlich
verringert. Die Antikaonspektralfunktion sowie s-Wellen Streuamplituden
werden mit Hilfe des Verfahrens zufriedenstellend reproduziert. Die An-
tikaonspektralfunktion zeigt unter Berücksichtigung des Nukleon Mean-
Fields eine deutlich verringerte Breite, während die Auswirkung auf die
Hyperonresonanzen und insbesondere das Λ(1405) moderat ausfällt. Nur
das Λ(1520) wird in Kernmaterie bei Saturierungsdichte fast vollständig
aufgelöst. Wir erzielen eine Attraktion von rund 30MeV für das Λ(1405)
und 40MeV für das Σ(1385).

Die exotischen Kaonischen Atome bieten sich als Test der K̄N -
Wechselwirkung in Materie bei typischen Dichten bis zur Saturierungs-
dichte an, jedoch vermag bisher keine mikroskopische Theorie die vorhan-
denen Messungen zufriedenstellend zu reproduzieren. Im zweiten Teil der
Arbeit wird ein nichtlokaler Ansatz entwickelt, der nichtlokale Beiträge
zur Antikaonselbstenergie berücksichtigt. Letzere sind auf die Impuls- und
Dichteabhängigkeit der K̄N -Streuamplituden sowie die endliche Kernaus-
dehnung zurückzuführen. Die atomaren Niveaus der Kaonischen Atome
werden mit Hilfe der Klein-Gordon-Gleichung berechnet, in die ein nicht-
lokales optisches Potential basierend auf der nichtlokalen Antikaonselb-
stenergie eingeht. Eine erste nichtlokale Rechnung für Kohlenstoff wurde
durchgeführt. Es zeigen sich signifikante Implikationen einer nichtlokalen
Behandlung Kaonischer Atome, die eine weitergehende Untersuchung auf
Grundlage einer verbesserten Vielteilchentheorie, wie sie im ersten Teil der
Arbeit entwickelt wurde, erforderlich machen.
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Chapter 1
Introduction

The present work deals with antikaons and hyperons in cold nuclear matter from two comple-
mentary points of view. The first subject is antikaons and hyperons in nuclear matter based
on a self-consistent and covariant many-body approach. The effects of nucleon scalar and
vector mean-fields are examined systematically. The second subject is a novel approach for
the description of the various data on kaonic atoms using a non-local ansatz for the potential,
calculated from microscopic in-medium K̄N scattering amplitudes.

The description of the properties of mesons and hyperons at low energies in infinite nuclear
matter has been the subject of many theoretical investigations, some of which agree qualita-
tively but exhibit discrepancies in detail. These discrepancies suggest a further improvement
of the theoretical models. In our analysis a self-consistent and covariant many-body ap-
proach is used to determine the antikaon spectral function and the in-medium K̄N scattering
amplitudes. The microscopic description is based on a relativistic free-space meson-nucleon
interaction [4], complying with chiral SU(3) symmetry. The K̄N interaction at low and inter-
mediate energies is remarkably complex and rich due to different resonances in the vicinity of
the antikaon-nucleon threshold energy. Furthermore, there are two baryons which are stable
with respect to strong interactions, the Λ and Σ hyperons. At threshold energy the πΛ and
the πΣ channels are open for a K̄N system. The Λ(1405) resonance is widely interpreted as
a K̄N bound state and thus cannot be addressed by simple perturbation theory.

It should be mentioned that there is further room for improvement of the free-space
coupled-channel approach [4] because of the caveat arising from the recent measurement of
the K−p scattering length by the DEAR collaboration [6] and the older K−p low energy
scattering data [7]. Both measurements cannot be described simultaneously by the existing
theoretical calculations. We will not go into detail concerning the free-space interaction and
focus on the derivation of an effective in-medium interaction. The major aspects of the
antikaon nucleon scattering in vacuum, that have to be considered from the point of view of
an effective antikaon and hyperon in-medium interaction, will be summarized briefly later on.

We turn to the in-medium dynamics of antikaons and hyperons and summarize the major
aspects that enter this work. When examining antikaons in cold nuclear matter the in-medium
effects and in particular the density dependence of the K̄N interaction are dominated by the
Pauli-blocking effect on the one hand and by the interaction of all baryons and mesons with
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the Fermi-sea of the nucleons on the other hand. The importance of Pauli-blocking was first
pointed out in [8–10]. It prevents scattering into intermediate states that are already occupied
by nucleons of the Fermi-sea. It leads to a broadening and repulsive mass shift of the Λ(1405)
resonance, that couples strongly to the K̄N channel. Self consistency proved to be another
important aspect for the description of antikaons in nuclear matter, which means that the
antikaon self-energy is calculated from an in-medium scattering amplitude that depends by
itself on the self-energy. It was shown in [1] that a self-consistent approach is necessary,
since a reduced antikaon mass has an effect on the Λ(1405) resonance. While Pauli-blocking
pushes the resonance to higher mass a self-consistent treatment counteracts and the resonance
position stays almost unchanged. The aforementioned findings were qualitatively confirmed
in [2], utilising a different approach. The next important point is the inclusion of p-wave
interactions, see [11] and [12], which is of particular concern in connection with the p-wave
Σ(1385) resonance and kaonic atoms.

Our fully self-consistent and covariant many-body approach is based on [5], where s-,
p- and d-waves are taken into account by means of an in-medium projector algebra. The
applied on-shell reduction scheme is based on this algebra, which allows for a proper mixing
of different partial waves in the medium. The inclusion of p-wave scattering leads to additional
attraction for the Λ(1405) resonance, and also for the Σ(1385) p-wave and the Λ(1520) d-wave
resonances. Different results were obtained by [13] within a partially self-consistent scheme
and a quasiparticle ansatz for the antikaon spectral function.

We will explore the effects of nuclear saturation on the antikaon and hyperon properties
by means of scalar and vector mean-fields for the nucleons. For the implementation of the
nucleon mean-fields the in-medium projector algebra approach of [5] has to be modified.
First attempts to allow for a nucleon mean-field within a non-relativistic approach were made
in [2,9,13–15] and the effects were found to be negligible. However, the latter results assume
an attractive nucleon mean-field potential of about 50MeV and the possibility of large scalar
and vector mean-fields has never been studied. Our new approach is supplemented by a
critical inspection of the angular average approximation applied in [2] and [14].

A realistic treatment of antikaon and hyperon in-medium dynamics requires a proper
renormalization scheme in order to avoid medium-induced power-divergent structures. Es-
pecially as soon as p-wave interactions are considered the in-medium meson-baryon loop
functions have to be renormalized in a systematic way. Furthermore, particularly for the case
of large vector mean-fields our approach would be significantly affected by singular structures
without a proper renormalization. We introduce a novel renormalization scheme that system-
atically avoids the occurrence of power-divergent terms as well as kinematical singularities.
This renormalization scheme is a crucial issue of the improved many-body approach.

The subject of in-medium K̄N dynamics has recently gained new interest because of
the prediction of exotic systems where the antikaon can be deeply bound by nuclei, see [16]
and [17]. These analysis requires not only an antikaon-nucleon interaction that is reliable at
high densities, but also sophisticated calculations for finite nuclei. We point out that only
moderate attraction in the antikaon spectral function is found in the present analysis, which
does not support the scenario of deeply bound states in heavy nuclei.

Parts of this work concerning the self-consistent and covariant many-body approach for
the calculation of the antikaon and hyperon properties in cold nuclear matter are documented
in the preprint [18].
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The antikaon properties in nuclear matter between zero and saturation density can par-
tially be extracted from the energy level shifts and widths of kaonic atoms. Since a long
time the description of kaonic atoms data by a microscopic theory remains a challenge. In
this work we apply the many-body approach of K̄N scattering in a novel way to describe
kaonic atoms within a non-local framework. The energy eigenvalue of the atomic levels can
be calculated from the Klein-Gordon equation. Besides the Coulomb potential for finite size
nuclei leading order contributions from vacuum polarization have to be considered because
of the smallness of the antikaon orbit. The vacuum polarization corrections are of the same
size as the strong interaction effects, that is up to several keV compared to typical binding
energies of about 1MeV. The strong interaction of the antikaon with the nucleus is described
by an optical potential. The eigenvalues of the atomic levels become complex because of the
absorptive part of the optical potential. The actual form of the optical potential is widely
controversial.

The large collection of experimental data on kaonic atoms indicates that the K− feels an
attractive potential, which appears to contradict the negative sign of the empirical K−p scat-
tering length aK−p, caused by the presence of the Λ(1405) resonance below the threshold. The
scattering length enters the optical potential derived from the low density theorem (LDT),
which describes the K̄N interaction in a dilute nucleon gas. The LDT should be reproduced
by any theoretical model for the antikaon optical potential in the low density limit. However,
addressing bound state problems with the simple LDT is an unjustified approximation. Fur-
thermore the empirical scattering length contradicts the leading order series expansion of the
chiral Lagrangian, known as the Weinberg-Tomozawa term [19].

Experimentally it is difficult to draw any conclusion from the existing scattering data, as
the antikaon self-energy probes the K̄N interaction below the kaon-nucleon threshold. The
quoted shortcomings of a simple constant scattering length ansatz can be tackled promisingly
within a microscopic approach by an effective nonlinear density dependent scattering length
aeff (kF ) [1–3, 20]. The scattering length changes sign around kF = 100MeV, which corre-
sponds to nuclear densities at the nuclear surface. Consequently it complies both with the
LDT and the attraction scenario from experiment. The density dependence of the scattering
length in the microscopic approaches is mainly due to the propagation of the Λ(1405) reso-
nance in nuclear matter. The importance of the low density region for the antikaon-nucleus
interaction is emphasized by the small overlap of the antikaon wave function with the nu-
cleus density profile and suggested the consideration of gradient terms, acting on the density
profile of the nucleus as well as on the antikaon wave function [3]. However, all the existing
non-local approaches based on gradient terms are phenomenologic, the gradient ordering is
not unique and a momentum expansion of the antikaon self-energy is not well justified. The
presence of subthreshold resonances would require a partial resummation of gradient terms
and a self-consistent approach for finite nuclear matter.

There are of course purely phenomenologic descriptions successfully reproducing the kaonic
atom data [21], but a quantitative microscopic description is still lacking. Especially the mea-
sured level widths are significantly underestimated by the microscopic theories. Whereas the
phenomenologic models favour a large attractive optical potential of about 200MeV at satu-
ration density, the microscopic theories suggest a rather shallow potential of about 40MeV.

The analysis of kaonic atoms can be improved from the point of view of the underlying
coupled channel dynamics and many-body theory. On the other hand the determination of
the optical antikaon potential and the calculation of the atomic levels has to be improved.
We will calculate a self-energy based on given K̄N in-medium scattering amplitudes, that
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covers non-local contributions due to the density dependence of the K̄N interaction and the
finite size nucleus. The non-local potential can be determined straightforwardly by applying
Feynman rules in coordinate space, but as already mentioned it is known from infinite nuclear
matter calculations that a self-consistent approach is required. An analogous calculation for
finite nuclear matter would be a horrendous task and we need an approximated, but well
justified model, where the non-local self-energy and potential can be evaluated from existing
K̄N scattering amplitudes for infinite nuclear matter.

Taking into account the momentum dependence of the K̄N interaction does not only result
in an non-local potential. It also provides the opportunity to study the influence of higher
partial waves on kaonic atoms explicitly, that is particularly the p-wave with the Σ(1385)
resonance. Higher partial waves enter the effective scattering length aeff (kF ) derived from
s-wave K̄N scattering amplitudes only indirectly via its effect on the Λ(1405) resonance.
Additionally to the full non-local microscopic theory we present a semi-microscopic non-local
model that allows to study the subtle cancellations between the different partial waves and
the influence of the resonance properties – mass and width – on the energy level shifts and
widths in an explicit and intuitive way.

In contrast to the scheme suggested in [22] we will treat the antikaon wave function
exactly, because an expansion of the wave function proved to be a questionable approximation.
Consequently we have to iterate the antikaon wave function until it converges.

The work is organized as follows: Chapter 2 starts with a brief introduction to the free-
space meson-nucleon interaction [4]. The covariant projector algebra and the recoupling of
the vacuum scattering amplitudes is introduced. The renormalization procedure of the loop
functions is supplemented by a review of the angular average approximation. The technical
part of the chapter is completed by the definition of the antikaon self-energy. Numerical
results for the antikaon spectral function, self-energy and in-medium hyperon properties are
shown for the various approximations without and including nucleon mean-fields at full, half
and 1.5 saturation density.

In Chapter 3 a review of the phenomenology of kaonic atoms is given. We comment on
the solution of the Klein-Gordon equation and present the relevant electromagnetic potential
contributions. Several existing theoretical models are compared for a variety of nuclei.

Our non-local framework for kaonic atoms is established in Chapter 4. The non-local
self-energy, that can be calculated from K̄N scattering amplitudes, is linked to the non-
local optical potential entering the Klein-Gordon equation. The approach is approved by
comparison of calculations in the local limit within a simplified semi-microscopic model. The
first full non-local calculation is done for carbon.



Chapter 2
Antikaons and hyperons in nuclear matter

2.1 Free-space antikaon-nucleon scattering

The self-consistent, covariant microscopic approach to antikaons and hyperons in cold nuclear
matter, that will be developed in the present chapter, is based on a relativistic coupled-channel
dynamics and a chiral SU(3) Lagrangian in [4]. We rewrite the Bethe-Salpeter equation, so
that the free-space K̄N scattering amplitudes from [4] can be used as the interaction kernel
for the in-medium scattering equation. The renormalization scheme of [4] will also be used
and extended to the in-medium case. We will briefly describe the major aspects of [4] in the
context of K̄N scattering.

The analysis of [4] includes s-, p- and d-waves with total angular momentum JP = 1
2
±
, 3

2
±

and parity P . Apart from the pseudo-scalar meson octet field with JP = 0− and the baryon
octet field with JP = 1

2

+
the relativistic chiral SU(3) Lagrangian from [4] covers explicitly

the JP = 3
2

+
baryon decuplet field. The baryon nonet of d-wave resonances with JP = 3

2

−

is included phenomenologically. When applied to KN and especially K̄N systems the kaon-
nucleon dynamics is non-perturbative due to the large kaon mass and a partial resummation
by means of the Bethe-Salpeter equation is necessary. The Bethe-Salpeter equation in [4]
contains interaction kernels up to chiral order Q3. By using an appropriate on-shell reduc-
tion scheme these amplitudes are made independent of the choice of the interpolating fields.
Renormalization is done with the help of of a minimal chiral subtraction scheme within di-
mensional regularization, compatible with the standard chiral counting rules. It is emphasized
that no cutoffs are involved in [4]. The parameters in the chiral Lagrangian of [4] are adjusted
to reproduce the empirical scattering cross sections of πN , KN and K̄N .

Finally for antikaon-nucleon scattering a system of coupled channels K̄N, πΣ, πΛ, ηΛ, ηΣ
and KΞ is obtained. It is particularly complex due to the open inelastic πΣ and πΛ channels.
The Λ(1405) resonance, which can be interpreted as a K− p bound state, is situated right
below the antikaon-nucleon threshold and its dynamics strongly determines the antikaon-
nucleon scattering amplitude. There is not only the s-wave Λ(1405) resonance, but also the

p-wave Σ(1385) J = 3
2

+
resonance below the K̄N threshold and the d-wave Λ(1520) J = 3

2

−

resonance not far above the threshold. Therefore the resonance structure is remarkably rich.
The in-medium antikaon self-energy, which will be a key result of the subsequent chapter, is
influenced strongly by these resonances.

The results of [4] for the antikaon-nucleon scattering are shown in Figures 2.1 and 2.2
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Figure 2.1: Reduced amplitudes M 1
2

± for I = 0 and I = 1 over
√
s in GeV, real (solid)

and imaginary (dotted) part. The vertical line marks the antikaon-nucleon threshold at√
s = mK +mN .
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Figure 2.2: Reduced amplitudes M 1
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s in GeV, real (solid)

and imaginary (dotted) part. The vertical line marks the antikaon-nucleon threshold at√
s = mK +mN .
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in terms of the invariant free-space amplitudes M
(I)

JP (
√
s) for isospin I = 0, 1, total angular

momentum J and parity P . The latter amplitudes provide a detailed picture especially of the
higher partial waves because the phase-space factor is pulled out. We illustrate the convention
by providing the total cross section for K−p→ K−p scattering including s- and p-waves:

σK−p→K−p(
√
s) = 4π

[

|f (0)

K−p,J= 1
2

(
√
s)|2

+|f (1)

K−p,J= 1
2

(
√
s)|2 + 2|f (1)

K−p,J= 3
2

(
√
s)|2
]

(2.1)

with the reduced partial wave amplitudes f
(l)

K−p,J=l± 1
2

given by

f
(0)

K−p,J= 1
2

(
√
s) =

1

16π
(Ep +mp)

(

M
(I=0)
1
2

− +M
(I=1)
1
2

−

)

,

f
(1)

K−p,J= 1
2

(
√
s) =

1

16π
(Ep −mp)

(

M
(I=0)
1
2

+ +M
(I=1)
1
2

+

)

,

f
(1)

K−p,J= 3
2

(
√
s) =

p2
cm

16π
(Ep +mp)

(

M
(I=0)
3
2

− +M
(I=1)
3
2

−

)

(2.2)

with the baryon massmp and Ep denotes the baryon energy and pcm the relative momentum in
the center of mass frame. For any other channel similar expressions in terms of the amplitudes

M
(I)

JP (
√
s) can be obtained and for further details we refer to [4].

Figures 2.1 with J = 1
2 and 2.2 with J = 3

2 are separated for I = 0 on the left and I = 1
on the right hand side. In Figure 2.1 the Λ(1405) resonance can clearly be seen in the upper
left panel, the ground state Λ(1115) is shown in the lower left panel. The antikaon-nucleon
threshold is marked by a vertical line. In the lower right panel the Σ(1195) ground state
can be seen and the Σ(1385) resonance in the upper right panel of Figure 2.2. The Λ(1520)
resonance is present in the lower left panel above the threshold. We want to call attention to
the different scales of each panel in both figures when comparing the relative heights.

2.2 Self-consistent dynamics of antikaons in nuclear matter

The properties of antikaons and hyperons in nuclear matter will be described self-consistently
within a relativistic many-body framework based on the Bethe-Salpeter equation. The for-
mulation of the scattering process in terms of the Bethe-Salpeter equation guarantees Lorentz
invariance and unitarity. This approach is based on [5] and will be extended developing a
novel renormalization scheme. We also deal with the systematic application of nucleon mean-
fields, from which we expect sizeable repercussion on the microscopic treatment of kaonic
atoms.

The vacuum antikaon-nucleon scattering amplitude is defined by

〈K̄j(q̄)N(p̄)|T |K̄i(q)N(p)〉 = (2π)4δ4(q + p− q̄ − p̄)

× ū(p̄)T ij(q̄, p̄, q, p)u(p), (2.3)

with the Dirac isospin-doublet spinor u(p) of the nucleon, initial and final four-momentum
of antikaon q, q̄ and nucleon p, p̄ and δ4(. . .) assuring energy-momentum conservation. The
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antikaon isospin doublet is K̄ = (K−, K̄0). By the use of appropriate isospin projectors P ijI=0

and P ijI=1 the vacuum scattering amplitude is decomposed into its isospin channels

T ij(q̄, p̄, q, p) = T (I=0)(k̄, k, w)P ij(I=0) + T (I=1)(k̄, k, w)P ij(I=1) (2.4)

with

P ij(I=0) =
1

4

(

δij 1 +
(

τ
)ij
τ
)

, P ij(I=1) =
1

4

(

3 δij 1 −
(

τ
)ij
τ
)

(2.5)

and

w = p+ q = p̄+ q̄, k =
1

2
(p− q), k̄ =

1

2
(p̄− q̄). (2.6)

The scattering amplitudes T
(I)

K̄N
follow as the solutions of the Bethe-Salpeter integral equation

T (k̄, k, w) = K(k̄, k, w) +

∫

d4l

(2π)4
K(k̄, l, w)G(l, w)T (l, k, w) (2.7)

with the two-particle propagator

G(l, w) = −iSN
(

1

2
w + l

)

DK̄

(

1

2
w − l

)

(2.8)

and the kernel of the Bethe-Salpeter equation K(k̄, l, w). The free-space nucleon and kaon
propagator are given by

SN (p) =
1

/p−mN + iǫ
, DK̄(q) =

1

q2 −m2
K + iǫ

. (2.9)

In order to calculate the antikaon self-energy we have to evaluate the in-medium modification
of the K̄N scattering amplitude in nuclear matter. The scattering process can readily be
generalized to the infinite nuclear matter case, where we will use a simplified notation with
T = T (k, k̄, w, u) and G = G(l, w, u). The in-medium scattering amplitude T and the in-
medium two-particle propagator G now depend on the four-velocity uµ of the nuclear matter.
The Bethe-Salpeter equation in short notation now reads

T = K + K · G · T . (2.10)

Medium modifications of the interaction kernel will not be considered, hence we approximate
K = K. For nuclear matter moving with velocity u we have

uµ =





1
√

1 − u2

c2

,
u
c

√

1 − u2

c2



 and u2 = 1. (2.11)

The density dependence of the K̄N interaction is due to the interaction of all baryons and
mesons with the Fermi sea of the nucleons, this manifests itself in a self-energy contribution
to the in-medium propagators. However, in addition Pauli blocking prevents scattering into
intermediate states already occupied by nucleons from the Fermi sea. Pauli blocking is real-
ized by an in-medium nucleon propagator in the loop integral of the Bethe-Salpeter equation.
In generalization to the previous work [5] the effect of nuclear saturation will be included by
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means of a general nucleon mean-field ΣN . The nucleon mean-field can be a function of mo-
mentum and bulk matter velocity ΣN = ΣN (p, u), here we choose a simple parameterization
with a real scalar and vector contribution,

ΣN = ΣV /u− ΣS , ΣV = ΣV (ρ), ΣS = ΣS(ρ), (2.12)

parameterized in terms of the nuclear density ρ. The mean-field strength is estimated from
surveys [23–28] and chosen to be

ΣV = 290MeV
ρ

ρ0
, ΣS = 350MeV

ρ

ρ0
. (2.13)

Neither the scalar nor the vector nucleon mean-field can directly be related to observable
quantities. They are used as a phenomenological tool to address nuclear saturation effects
in a manifestly covariant manner and they are inherently scheme dependent. The density
dependence of the scalar mean-field ΣS and vector mean-field ΣV is model dependent, we use
the mean-fields as given by (2.13) at saturation density ρ0.

The in-medium modified two-particle propagator G can now be written as

G(l, w, u) = −iSN
(

1

2
w + l, u

)

DK̄

(

1

2
w − l, u

)

. (2.14)

The modified propagators for nucleon and antikaon are

SN (p, u) =
1

/p− ΣV /u−mN + ΣS + iε
+ ∆SN (p, u),

∆SN(p, u) = 2π iΘ
[

(p · u) − ΣV

]

δ
[

(p− ΣV u)
2 − (mN − ΣS)2

]

×
(

/p− ΣV /u+mN − ΣS

)

Θ
[

k2
F + p2 − (p · u)2

]

(2.15)

and

DK̄(q, u) =
1

q2 −m2
K − Π(q, u)

. (2.16)

The Fermi momentum kF in (2.15) parameterizes the nucleon density ρ for isospin symmetric
matter according to

ρ = −2 · Tr γ0

∫

d4p

(2π)4
i∆S(p, u) =

2 k3
F

3π2
√

1 − u 2/c2
(2.17)

and in the rest frame of the bulk matter with uµ = (1,0) from (2.17) one recovers the standard
result

ρ =
2k3
F

3π2
. (2.18)

The self consistency is accommodated by evaluating the self-energy Π(q, u) in terms of

the isospin averaged in-medium scattering amplitudes T̄ (I)

K̄N
defined as

T̄K̄N =
1

4
T (I=0)

K̄N
+

3

4
T (I=1)

K̄N
, (2.19)
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which by itself implies propagators with self-energy contributions. The in-medium antikaon
self-energy is

Π(q, u) = 2 · Tr

∫

d4p

(2π)4
i∆SN (p, u)T̄K̄N

(

1

2
(p− q),

1

2
(p− q), p + q, u

)

. (2.20)

For solving the self-consistent set of equations (2.10), (2.15), (2.16) and (2.20) we rewrite the
Bethe-Salpeter equation as follows

T = K +K · G · T = T + T · ∆G · T , ∆G = G −G, (2.21)

where the vacuum scattering amplitude T and its corresponding self-energy Π are used as the
input for the self-consistent problem. Basic aspects of the vacuum scattering amplitude were
discussed in Section 2.1.

2.2.1 Covariant projector algebra

Prior to establishing the projector algebra for in-medium scattering amplitudes that will
be used throughout this work we recall the definitions of the projectors introduced in [4] for
kaon-nucleon vacuum scattering. The amplitudes are decomposed into their components with
angular momentum J = n+ 1

2 and parity ± according to

T (k̄, k, w) =
∑

±
P

1
2

±

(w)M 1
2

±(
√
s)

+
∑

±
q̄µP

3
2

±

µν (w)qνM 3
2

±(
√
s) + . . . , (2.22)

w = p+ q = p̄+ q̄, k =
1

2
(p− q), k̄ =

1

2
(p̄− q̄),

with s = w2 and the scalar on-shell amplitudes MJP (
√
s) that have been introduced in (2.2).

In (2.22) we suppressed the isospin index I and restricted the algebra to J = 1
2 ,

3
2 . Note

that the notation in (2.22) differs slightly from the one used in [4]. The lowest order vacuum
projectors are given by

P
1
2

±

(w) =
1

2

(

/w√
w2

∓ 1

)

P
3
2

±

µν (w) =
3

2

(

/w√
w2

± 1

) {

wµ wν
w2

− gµν +
1

3

(

γµ −
/wwµ
w2

)

(

γν −
/wwν
w2

)

}

, (2.23)

with P
1
2

−

projecting onto s-wave, P
1
2

+

and P
3
2

+

onto p-wave and P
3
2

−

onto d-wave.

In [5] a generalization of the projector algebra of (2.22) to the medium case, containing
Dirac structures /w, /u and /w · /u was developed. Taking the free-space scattering of [4], the
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in-medium scattering amplitude T has the form:

T =
2
∑

i,j=1

T
(p)
ij (v, u)Pij(v, u)

+

2
∑

i=1

8
∑

j=3

(

T
(p)
ij (v, u)Pµij(v, u) qµ + T

(p)
ji (v, u) q̄µ P

µ
ji(v, u)

)

+

8
∑

i,j=3

T
(p)
ij (v, u) q̄µ P

µν
ij (v, u) qν +

2
∑

i,j=1

T
(q)
ij (v, u) q̄µQ

µν
ij (v, u) qν , (2.24)

with

T
(p)
ij (v, u) = M

(p)
ij (v, u)

[

1 − ∆J
(p)
ij (v, u)M

(p)
ij (v, u)

]−1
,

T
(q)
ij (v, u) = M

(q)
ij (v, u)

[

1 − ∆J
(q)
ij (v, u)M

(q)
ij (v, u)

]−1
. (2.25)

The matrix of loop functions ∆J
(p,q)
ij will be discussed in Section 2.3 in detail and the matrix of

free-space scattering amplitudes M
(p,q)
ij will be specified in Section 2.2.2. The representation

(2.24) is analogous to the one established in [5]. In (2.24) and (2.25) we introduced a new
convenient four-momentum

vµ = wµ − ΣV uµ (2.26)

that accounts for a nonzero vector mean-field as defined in (2.12) and considerably simplifies
the notation throughout this work. The index p and q in (2.24) and (2.25) refers to two
different helicity states in so-called P- and Q-space. The generalized projectors Pij and Qij ,
which do not mix among each other, form a complete algebra with the properties

Pik · Plj = δklPij , Pµik · P̄ νlj = δklP
µν
ij , P̄µikgµνP

ν
lj = δklPij ,

Qµαik gαβP
βν
lj = Pµαik gαβQ

βν
lj = 0, Qµαik gαβP

β
lj = P̄αikgαβQ

βν
lj = 0,

Qµαik gαβQ
βν
lj = δklQ

µν
ij , Pµαik gαβP

βν
lj = δklP

µν
ij . (2.27)

The projectors Pij and Qij are specified in Appendix A.1 in detail. As they cover the whole
Dirac structure of the underlying theory the solution of the Bethe-Salpeter equation is sim-

plified to the integration of loop functions ∆J
(p,q)
ij (v, u) and reconstruction of the amplitudes

from a matrix equation. The form of the projector algebra given in (2.24) and (2.25) com-
pletely agrees with the one established in [5], except for the fact that we use the argument
vµ rather than wµ. Due to the completeness of the projector algebra these representations
are equivalent. In Section 2.2.2 we will address the problem of changing the representation,
that is expressing quantities in terms of the ’physical’ external momentum wµ in the basis
spanned by the vµ dependent projectors and vice-versa.

2.2.2 Recoupling of the vacuum scattering amplitudes

Before we proceed with the definition and discussion of the matrix loop functions ∆J
(p,q)
ij (v, u)

used in (2.25) we will focus on the interaction kernel given in terms of the K̄N vacuum
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scattering amplitude as defined in (2.21). Due to the use of the projectors with arguments
vµ and uµ instead of wµ this is slightly involved and we have to specify the recoupled free-

space scattering amplitudes M
(p,q)
ij (v, u) that will be linear combinations of the scalar on-shell

amplitudesM 1
2

±(
√
s) and M 3

2

±(
√
s) as introduced in (2.22). The recoupled vacuum scattering

amplitude T now reads

T (k̄, k, w) =
2
∑

i,j=1

M
(p)
ij (v, u)Pij(v, u)

+

2
∑

i=1

8
∑

j=3

(

M
(p)
ij (v, u)Pµij(v, u) qµ +M

(p)
ji (v, u) q̄µ P

µ
ji(v, u)

)

+

8
∑

i,j=3

M
(p)
ij (v, u) q̄µ P

µν
ij (v, u) qν +

2
∑

i,j=1

M
(q)
ij (v, u) q̄µQ

µν
ij (v, u) qν ,

w = p+ q = p̄+ q̄, k =
1

2
(p− q), k̄ =

1

2
(p̄− q̄),

which is analogous to the representation of (2.24). The free-space amplitudes M
(p,q)
ij (v, u) can

be decomposed by using appropriate recoupling coefficients C
1
2

±

p,ij(v,w, u) and C
3
2

±

q,ij(v,w, u)
according to

M
(p)
ij (v, u) =

∑

±
C

1
2

±

p,ij(v,w, u)M 1
2

±(
√
s ) +

∑

±
C

3
2

±

p,ij(v,w, u)M 3
2

±(
√
s ) ,

M
(q)
ij (v, u) =

∑

±
C

3
2

±

q,ij(v,w, u)M 3
2

±(
√
s ) . (2.28)

Due to the orthogonality properties of the projectors the recoupling coefficients are determined
by calculating traces over products of the vacuum and in-medium projectors. By comparison
of the expressions (2.22) and (2.28) the recoupling can be formulated by writing relations
between the vacuum (2.23) and in-medium projectors Pij and Qij :

P
1
2

±

(w) =
2
∑

i,j=1

C
1
2

±

p,ij(v,w, u)Pij(v, u),

P
3
2

±

µν (w) =
8
∑

i,j=3

C
3
2

±

p,ij(v,w, u)Pij,µν(v, u)

+

2
∑

i,j=1

C
3
2

±

q,ij(v,w, u)Qij,µν(v, u). (2.29)
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Finally we obtain three groups of recoupling coefficients,

C
1
2

±

p,ij(v,w, u) =

{

1
2 Tr

[

Pij(v, u)P
1
2

±

(w)
]

for i, j = 1, 2

0 else,

C
3
2

±

p,ij(v,w, u) =







1
2 Tr

[

Pµνij (v, u)P
3
2

±

νµ (w)

]

for i, j = 3, . . . , 8

0 else,

C
3
2

±

q,ij(v,w, u) =







1
2 Tr

[

Qµνij (v, u)P
3
2

±

νµ (w)

]

for i, j = 1, 2

0 else.
(2.30)

When decomposing the vacuum projectors in terms of the in-medium projectors [5] according
to

P
1
2

−

(v, u) = P11(v, u),

P
1
2

+

(v, u) = −P22(v, u),

P
3
2

+
,νµ(v, u) = −3 [Qµν11 (v, u) + Pµν77 (v, u)] ,

P
3
2

−
,νµ(v, u) = 3 [Qµν22 (v, u) + Pµν88 (v, u)] (2.31)

one observes a decoupling between P- and Q-space even for different arguments v and w, that

is terms like Tr
[

Pµνij (v, u)Qklνµ(w, u)
]

and Tr
[

Qµνij (v, u)P klνµ(w, u)
]

vanish. The normalization

factor in (2.30) is obtained by calculating the traces

Tr
[

Pij(v, u)P
1
2

±

(v)
]

, Tr

[

Pµνij (v, u)P
3
2

±

νµ (v)

]

(2.32)

for the same argument v of the vacuum and in-medium projectors, ensuring that

C
1
2

−

p,11(v,w, u) = C
1
2

+

p,22(v,w, u) = C
3
2

+

p,77(v,w, u) = C
3
2

−

p,88(v,w, u) = 1 (2.33)

for the ’diagonal’ elements in P-space and

C
3
2

+

q,11(v,w, u) = C
3
2

−

q,22(v,w, u) = 1 (2.34)

in Q-space. The ’off-diagonal’ elements have to vanish for v = w. The only normalization

factor turns out to be 1
2 . A complete list of all the recoupling coefficients C

1
2

±

p,ij(v, u) and

C
3
2

±

q,ij(v, u) is given in Appendix A.2.

2.3 Loop functions

The form of the reduced loop functions ∆J
(p,q)
ij (v, u) in (2.25) is determined by the two-

particle propagator ∆G in (2.21). The finite imaginary part can be taken from [5] except for
a novel renormalization scheme eliminating power divergences and avoiding the occurrence
of kinematical singularities, which is of special importance as soon as p-wave scattering and
finite nucleon mean-fields are considered.
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The two-particle propagator ∆G is split into two parts, the in-medium G and the vacuum
contribution G:

∆G = −i (SNDK̄ − SNDK̄) . (2.35)

Accordingly the reduced loop functions can be split into an in-medium and vacuum contri-
bution,

∆J
(p,q)
ij (v, u) = J

(p,q)
ij (v, u) − J

(p,q),vac
ij (v, u), (2.36)

which will be reviewed separately further on.

The in-medium loop function matrix J
(p,q)
ij (v, u) is explicitly defined by

−i
∫

d4l

(2π)4
1

/l −m∗
N + iε

1

(v − l)2 −m2
K − Π(v − l, u)

=

2
∑

i,j=1

J
(p)
ij (v, u)Pij(v, u),

−i
∫

d4l

(2π)4
(vµ − lµ)

1

/l −m∗
N + iε

1

(v − l)2 −m2
K − Π(v − l, u)

=

8
∑

j=3

[

J
(p)
j1 (v, u)Pµj1(v, u) + J

(p)
j2 (v, u)Pµj2(v, u)

]

=
8
∑

j=3

[

J
(p)
1j (v, u)P̄µ1j(v, u) + J

(p)
2j (v, u)P̄µ2j(v, u)

]

,

−i
∫

d4l

(2π)4
(vµ − lµ) (vν − lν)

1

/l −m∗
N + iε

1

(v − l)2 −m2
K − Π(v − l, u)

=
8
∑

i,j=3

J
(p)
ij (v, u)Pµνij (v, u) +

2
∑

i,j=1

J
(q)
ij (v, u)Qµνij (v, u). (2.37)

Note that for simplicity of presentation in (2.37) we suppress the Pauli-blocking term from
(2.15), later on it will be restored. We have vµ = wµ − ΣV uµ and we will use the short

notation m∗
N = mN − ΣS. The loop functions J

(p,q)
ij (v, u) are Lorentz scalar and can further

be expressed in terms of the propagator part g(l, v, u),

g(l; v, u) = − i

l2 −m∗
N

2 + iε

1

(v − l)2 −m2
K − Π(v − l, u)

+2πΘ (l · u) δ(l2 −m∗
N

2)
Θ
(

k2
F +m∗

N
2 − (l · u)2

)

(v − l)2 −m2
K − Π(v − l, u)

, (2.38)

and scalar kernels K
(p,q)
ij (l, v, u). These kernel functions contain powers of l2, l · v, l · u, v · u,

v2 and are implicitly defined via the loop functions J
(p,q)
ij . With the help of g(l, v, u) and the

kernel functions K
(p,q)
ij the in-medium loop functions now read

J
(p,q)
ij (v, u) =

∫

d4l

(2π)4
g(l, v, u)K

(p,q)
ij (l, v, u). (2.39)

Detailed results will be derived in the subsequent section.
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We turn to the second term in (2.36). In order to apply the same projector algebra in
terms of v instead of w for the vacuum contribution of the two-particle propagator it has
to be written in terms of Pij(v, u), etc. The vacuum contribution does not depend on the

nucleon mean-fields. We shift the nucleon momentum according to l̆µ = lµ − ΣV uµ and the

vacuum loop functions J
(p,q),vac
ij (v, u) acquire the form

−i
∫

d4 l̆

(2π)4
1

/̆l + ΣV /u−mN + iε

1

(v − l̆)2 −m2
K + iε

=
2
∑

i,j=1

J
(p),vac
ij (v, u)Pij(v, u),

−i
∫

d4 l̆

(2π)4

(

vµ − l̆µ
) 1

/̆l + ΣV /u−mN + iε

1

(v − l̆)2 −m2
K + iε

=

8
∑

j=3

[

J
(p),vac
j1 (v, u)Pµj1(v, u) + J

(p),vac
j2 (v, u)Pµj2(v, u)

]

=
8
∑

j=3

[

J
(p),vac
1j (v, u)P̄µ1j(v, u) + J

(p),vac
2j (v, u)P̄µ2j(v, u)

]

,

−i
∫

d4 l̆

(2π)4

(

vµ − l̆µ
)(

vν − l̆ν
) 1

/̆l + ΣV /u−mN + iε

1

(v − l̆)2 −m2
K + iε

=

8
∑

i,j=3

J
(p),vac
ij (v, u)Pµνij (v, u) +

2
∑

i,j=1

J
(q),vac
ij (v, u)Qµνij (v, u). (2.40)

From the latter definition it is follows that the vacuum loop functions do not depend on
the vector mean-field ΣV , so that it can always be written as a linear combination of the
tensor structures wµ, γµ, /wwµ, /wγµ and scalar amplitudes depending on w2. This implies

that the free-space loop function matrix J
(p,q),vac
ij can be composed from non-vanishing master

functions JVi (w2) that will be established in Section 2.3.1. The vacuum loop functions J
(p,q),vac
ij

in (2.40) can be split into two contributions, the matrix structure of the first one is identical

to the in-medium case (2.37) but with ΣV = 0, ΣS = 0 and Π = 0, denoted as J
(p,q)
ij,V . The

second contribution ∆J
(p,q)
ij,V proportional to ΣV arises from /l = /̆l + ΣV /u in the denominator

of (2.40) and will add up to the vacuum loop functions:

J
(p,q),vac
ij (v, u) = J

(p,q)
ij,V (v, u) + ΣV ∆J

(p,q)
ij,V (v, u)

=

∫

d4l

(2π)4
gvac(l, v, u)

[

K
(p,q)
ij,V (l, v, u) + ΣV ∆K

(p,q)
ij,V (l, v, u)

]

. (2.41)

The vacuum propagator part is given by

gvac(l, v, u) = −i 1

l2 −m2
N + iε

1

(v − l)2 −m2
K + iε

(2.42)

and the kernel functions K
(p,q)
ij,V (l, v, u) are identical to the in-medium ones K

(p,q)
ij (l, v, u) from

(2.39) in the free-space limit. The free-space loop functions J
(p,q),vac
ij (v, u) will be elaborated
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on in Appendix A.3. The Kernels ∆K
(p,q)
ij,V are implicitly given via the definition of the loop

functions ∆J
(p,q)
ij,V in Appendix A.4.

Finally the loop functions with the subtracted vacuum contribution are

∆J
(p,q)
ij (v, u) = J

(p,q)
ij (v, u) − J

(p,q),vac
ij (v, u)

=

∫

d4l

(2π)4

[

g(l, v, u)K
(p,q)
ij (l, v, u) − gvac(l, v, u)K

(p,q),vac
ij (l, v, u)

]

,

K
(p,q),vac
ij (l, v, u) = K

(p,q)
ij,V (l, v, u) + ΣV∆K

(p,q)
ij,V (l, v, u). (2.43)

Up to now the expressions (2.43) are ultraviolet divergent. We will develop a new renormal-
ization scheme that accounts for the vacuum limit proposed in [4].

2.3.1 Renormalization of the loop functions

Recall the in-medium loops function matrix

J
(p,q)
ij (v, u) =

∫

d4l

(2π)4
g(l, v, u)K

(p,q)
ij (l, v, u). (2.44)

Causality requires that all diagonal loops of (2.44) have a positive imaginary part everywhere,
which does not have be the case for the off-diagonal matrix elements. This issue can be used as
an important consistency check of the projector algebra approach presented in the preceding
sections and utilising the on-shell reduction scheme established in [5] and [4]. The matrix of
loop functions in (2.44) can be composed out of thirteen independent scalar loop functions

Ji(v, u) =

∫

d4l

(2π)4
g(l, v, u)Ki(l, v, u), (2.45)

this has been shown in [5]. We will stick to the transparent representation

K0 = 1 , K1 =
(l · v)√
v2

,

K2 = − (v · u)√
v2
√

(v · u)2 − v2

[

(l · v) − v2

(v · u) (l · u)
]

,

K5 = − 2 (v · u)
√

(v · u)2 − v2
K1K2 −

(v · u)2
(v · u)2 − v2

K2
1 +

v2 (l · u)2
(v · u)2 − v2

,

K11 = − (v · u)2
(v · u)2 − v2

[

(v · u)
√

(v · u2) − v2
K1 + 3K2

]

K2
1

− 3 (v · u)
√

(v · u)2 − v2
K1K5 +

(v2)3/2 (l · u)3
√

(v · u)2 − v23 ,

K3 = 1
2

[

l2 −K2
1 +K5

]

, K4 = K2
1 ,

K6 = K1K2 , K7 = K1K3 , K8 = 1
2

[

(l2 −K2
1 )K2 +K11

]

,

K9 = K3
1 , K10 = K2

1 K2 , K12 = K1K5 . (2.46)

for the thirteen loop kernel functions Ki(l, v, u) that are linearly combined to form the matrix

of loop functions J
(p,q)
ij (l, v, u) in conjunction with the propagator (2.38) according to (2.39) in
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P- and Q-space. The matrix elements J
(p,q)
ij are listed in Appendix A.5. The renormalization

will be done with respect to these thirteen loop kernel functions.
The imaginary parts of the loop functions behave like vn0 for large v0 with n not always

smaller than or equal to zero. Hence when calculating the real part of the loops by an
(unsubtracted) dispersion integral, such as

ReJi(v0,w) =

+∞
∫

−∞

dv̄0
π

ImJi(v̄0,w)

v̄0 − v0
, (2.47)

power divergencies will arise that have to be eliminated. The regularization of (2.45) could be
done by a momentum cutoff λ in the imaginary part of the loops and λ has to be adjusted to
match the K̄N scattering data. Nevertheless a three-momentum cutoff introduces a frame-
dependent result and the Lorentz invariance of the scattering amplitude would be destroyed.

We continue with the subtraction scheme to render the real part of the loops finite and
eliminate all power divergent terms. As the physical part of a consistent field theory has to
be finite all such divergencies have to be absorbed into counter terms. Since we do not want
to cope with such counter terms explicitly it is crucial to set up a proper renormalization. We
require the in-medium loop functions Ji(v, u) to approach the free-space form of the loops in
the zero-density limit as introduced in [4]. It is imposed by

Ji(v, u)
ρ=0−→ Ni(v)

∫ +∞

−∞

d v̄2

π

v2

v̄2

ρ(v̄)

v̄2 − v2 − i ǫ
,

ρ(v) =
Θ
[

v2 − (mN +mK)2
]

16π
√
v2

√

v2 − 2 (m2
N +m2

K) +
(m2

N −m2
K)2

v2
, (2.48)

where the Ni are parts of the free-space loop functions and are given by [4]

N0 = 1, N1 =
v2 +m2

N −m2
K

2
√
v2

, N2 = N6 = N8 = 0,

N3 = −N5 = −
[

(mN −mK)2 − v2
] [

(mN +mK)2 − v2
]

12v2
, N4 = N2

1 ,

N7 = −N12 = N1N3, N9 = N3
1 , N10 = N11 = 0. (2.49)

With (2.48) the loop functions (2.45) are finite in the zero-density limit. We recall that
the representation (2.48) was motivated by properties of the loop functions manifested within
dimensional regularization [4]. Its form follows from the Passarino Veltman representation [29]
supplemented by a subtraction of reduced tadpole contributions. The occurrence of power
divergencies is avoided by the subtraction scheme defined by (2.48).

When changing to the in-medium case we cannot simply proceed with the aforementioned
scheme, as we have to address the fact that the in-medium projectors exhibit singularities at
v2 = 0 and v2 = (v · u)2. This behaviour imposes certain correlations on the loop functions
(2.45) at the singular points that have to be considered. Ignoring such correlations of the loop
functions would show up in artificial structures in the self-energy that contradict causality.
This matters especially since the critical point at v2 = (w−ΣV u)

2 = 0 is within the scope of
this work. Sufficient and necessary constraints on the loop functions which prevent kinemat-
ical singularities can be derived from the projector properties and lead to the requirements
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that

JR1 +
(v · u)
√

(v · u)2
JR2 = O

(√
v2
)

,

JR7 +
(v · u)
√

(v · u)2
JR8 = O

(√
v2
)

,

JR7 + JR5 + 2
(v · u)
√

(v · u)2
JR6 = O

(√
v2
)

,

JR10 + JR11 + 2
(v · u)
√

(v · u)2
JR12 = O

(√
v2
)

,

(v · u)
√

(v · u)2
JR9 + 3JR10 + JR11 + 3

(v · u)
√

(v · u)2
JR12 = O

(√
v2
)

(2.50)

at v2 = 0. Furthermore we need

JR2 = JR3 + JR5 = JR6 = JR8 = JR7 + JR12 = 0 (2.51)

at v2 = (v · u)2. Condition (2.51) leads to the decoupling of partial waves carrying different
total angular momentum for v2 = (v · u)2, which is in general no longer true for v2 6= (v · u)2
in the nuclear medium [5] because total angular momentum is not conserved. The free-space
limit (2.48) proves to be incompatible with the requirements (2.50) and (2.51) and we have
to generalize expression (2.48) to

JRi (v, u)
ρ=0−→ JVi (v) ≡ Ni(v)

+∞
∫

−∞

dv̄2

π

v2

v̄2

ρ(v̄)

v̄2 − v2 − iε

+ ∆
(4)
i (v)

+∞
∫

−∞

dv̄2

π

(

v2

v̄2

)2

ρ(v̄) + ∆
(6)
i (v)

+∞
∫

−∞

dv̄2

π

(

v2

v̄3

)2

ρ(v̄) (2.52)

in order to fulfill constraints (2.50) and (2.51). The additional minimal subtraction terms

∆
(4)
i and ∆

(6)
i are

∆
(4)
3 = −∆

(4)
5 =

(m2
N −m2

K)2

3(v2)2
,

∆
(4)
9 =

1

8

(m2
N −m2

K)3√
v2(v2)2

,

∆
(4)
7 = −∆

(4)
12 = −

(

N1

12
− N1N5

v2
− (m2

N −m2
K)2

8
√
v2

3

)

,

∆
(6)
7 = −∆

(6)
12 =

(

(m2
N −m2

K)2N1

12 (v2)2
+

(m2
N −m2

K)2

8
√
v2

3 +
(m2

N −m2
K)3

24
√
v2

5

)

. (2.53)

All remaining ones are zero. With the additional subtractions we now fulfill conditions (2.50)
and (2.51). The generalization of (2.52) from vacuum to in-medium is hindered by the fact
that some loops vanishing in the vacuum take finite values in the medium.
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We proceed with the dispersion integral representation of the renormalized in-medium
loop functions in terms of spectral weight functions ImJRi (v0, v̄0,w) relying on the definition
of external energies v0 = w0 − ΣV and internal ones v̄0. The renormalized in-medium loop
functions in the nuclear matter rest frame with u = 0 denoted by JRi (v0,w) are introduced
as

JRi (v0,w) =

+∞
∫

−∞

dv̄0
π

sign(v̄0 − µ)ImJRi (v0, v̄0,w)

v̄0 − v0 − iε(v̄0 − µ)
+ JCi (v0,w) (2.54)

with the chemical potential µ =
√

m∗
N

2 + k2
F . The imaginary part of the loop functions is

ImJRi (v0, v̄0,w) =

∫

d3l

2(2π)3
1

E∗
N

×
{

KR
i (l+, v0, v̄0,w)ρK(v̄+,w − l) [Θ(+v̄+) − Θ(kF − |l|)]

+KR
i (l−, v0, v̄0,w)ρK(v̄−,w − l)Θ(−v̄−)

}

,

lµ± = (±E∗
N , l),

v̄± = v̄0 ∓ E∗
N (2.55)

with E∗
N =

√

m∗
N

2 + l2. The antikaon spectral function is given by

ρK(ω,q) = − 1

π
Im

1

ω2 − q2 −m2
K − Π(ω,q)

. (2.56)

The scalar functions KR
i (l±, v0, v̄0,w) that comply with the vacuum limit (2.52) and con-

straints (2.50) and (2.51) are listed in Appendix A.6. The loop function kernels (A.21) depend
on ’external’ and ’internal’ variables vµ = (v0,w) and v̄µ = (v̄0,w) and in the limit v̄0 = v0
the functions Ki(l, v, u) (2.46) are reproduced. By construction the dispersion integral (2.54)
is finite, as for large energies v̄0 the spectral weight functions ImJRi are bounded. We assume
that the antikaon in-medium self-energy approaches zero at large energies.

The subtraction terms JCi (v0,w) in (2.54), necessary for compliance with the free-space
limit (2.52) and the decoupling of all partial waves at w = 0 as dictated by (2.51), are given
in Appendix A.7 in terms of the integrals

C̄ijka,n(w) =

+∞
∫

−∞

dv̄0
π

∫

d3l

2(2π)3
1

E∗
N

×
{

(v̄ · u)a (l̄+ · v̄)i(l̄+ · u)j(l̄2+)k

(v̄2)n
ρK(v̄+,w − l) [Θ(+v̄+) − Θ(kF − |l|)]

+(v̄ · u)a (l̄− · v̄)i(l̄− · u)j(l̄2−)k

(v̄2)n
ρK(v̄−,w − l)Θ(−v̄−)

}

(2.57)

and

l̄µ± = lµ± − 1

2
v̄µ, uµ = (1,0). (2.58)
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By inspecting the asymptotic behaviour of the integrand (2.57) for large v̄0 we observe that

all coefficients C̄ijka,n that are needed in JCi (v0,w) are finite. In the limit w = u = 0 we have

(l̄± · v̄) → m2
N −m2

K

2
, (l̄± · u) → m2

N −m2
K

2v̄0
, l̄2± → m2

N +m2
K

2
− v̄2

0

4
(2.59)

and consequently the integrals in (2.57) prove to be finite for

a− j + 2k − 2n ≤ −2 if a+ j = odd,

a− j + 2k − 2n ≤ −1 if a+ j = even. (2.60)

Indeed, all the coefficients C̄ijka,n that contribute to the subtraction terms JCi in Appendix A.7
are compatible with conditions (2.60).

The interpretation of JCi in (2.54) as counter terms requires that the underlying coefficients

C̄ijka,n exhibit polynomial behaviour as functions of the three-momentum w. However, this is
not necessarily the case for n > 1. In this case the coefficients are proportional to (v̄2)−n may

be ill behaved at v̄0 = ±|w|. Considering that in the vacuum limit all C̄ijka,n become constants
independent of momentum, which is a direct consequence of covariance, would suggest using a
polynomial ansatz for the coefficients C̄ijka,n. The antikaon spectral function (2.56) is non-zero

for ω < −mK and ω > mΛ −
√

m∗
N

2 + k2
F −ΣV with the Λ ground state mass mΛ. Therefore

at sufficiently low momenta w the integral (2.57) is well behaved, because the troublesome

region around v̄0 = ±|w| is excluded. Thus we define well behaved coefficients Cijka,n by means
of a Taylor expansion in momentum according to

Cijka,n(w) = C̄ijka,n(0) +
1

2
w2 (∇w · ∇w) C̄ijka,n(0). (2.61)

It has already been pointed out that the subtraction terms JCi are predominantly needed
to cancel kinematical singularities at vanishing three-momentum and to obtain the proper
vacuum limit, hence we have to keep the minimal order in (2.61) to be consistent with (2.51)
and (2.52). It can be shown by further investigation that higher orders than in expression
(2.61) are not necessary to fulfill the constraints.

We remark that for sufficiently small three-momenta w both contributions to (2.54) can
be summarized to the loop functions JMi (v0,w), which are detailed in Appendix A.8. By
inspecting expressions (A.26) it is obvious that the latter comprise higher subtraction terms
∝ 1

(v̄2)2 and ∝ 1
(v̄2)3 that are not properly defined using a dispersion integral ansatz. The

higher subtraction terms were shifted to the JCi (v0,w) in (2.54). Nevertheless, in a numerical
calculation at sufficiently low three-momenta w the higher order subtractions do not con-
tribute and representation (A.24) is used. It is favourable due to the more closed expressions,
whereas the decomposition (2.54) involves subtle cancellation effects.

2.3.2 Loop functions in the center of mass frame and angular average ap-
proximation

We close this section by describing an angular average approximation for the calculation of
the loop functions, which in a different manner is also applied in [2] and [14]. Nevertheless,
we cannot directly compare our angular average procedure with the cited calculations as the
treatment of the J = 3

2 partial waves is different. The most striking advantage of the angular
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average approximation is the simple angular dependence which can be integrated analytically
and for the in-medium loops it is about 100 times faster in computing time.

The description of self-consistent K̄N in-medium scattering and the loop functions as
introduced in this work are manifestly covariant and we may evaluate the loops in any frame.
They depend on the scalars v2 and v · u, for the angular average approximation we have to
calculate the imaginary part of the loops in the center of mass frame. The latter frame will
be denoted as ’cm-frame’ in the following, whereas ’lab-frame’ refers to the nuclear matter
rest frame used so far. The external momentum v in the cm-frame is given by

vcm
µ =

(

v0
|v0|

√
s,0

)

with s = v2
0 − w2, (2.62)

but the bulk matter three-velocity u will be nonzero. Note the sign change of
√
s for negative

energies in (2.62). Recall in the lab-frame we have

vlab
µ = (v0,w) and ulab

µ = (1,0). (2.63)

Hence the angular dependence of the loop functions is now contained in terms like l ·u instead
of l · v. The covariant variables in the cm-frame that the loop functions depend on are u2 and
v · u, which read

u2 = 1 = u2
0,cm − u2

cm, ⇒ u0,cm =
√

1 + u2
cm =

√

s+ w2
lab

s
=
v0,lab√
vlab

(2.64)

and
v · u =

√
s u0,cm =

√
s
√

1 + u2
cm = v0,lab (2.65)

with

u2
cm =

s+ w2
lab

s
− 1 =

w2
lab

s
. (2.66)

The antikaon self-energy can be formulated in terms of the two invariants

(v − l)2 = (
√
s− l0)

2 − l2 = (v2
0,lab − l20)

2 − (w2
lab − l2)2 (2.67)

and
(v − l) · u = (

√
s− l0)u0,cm + l · ucm = v0,lab − l0. (2.68)

Thus the arguments of the self-energy in the cm-frame are

ω = q · u = (v − l) · u = (
√
s− l0)

√

1 + u2
cm + l · ucm (2.69)

and

q2 = (q · u)2 − q2 = [(v − l) · u]2 − (v − l)2

=
[

(
√
s− l0)

√

1 + u2
cm + l · ucm

]2
− (

√
s− l0)

2 + l2. (2.70)

Both the upper momentum cutoff as well as the Pauli-blocking realized with appropriate Θ-
functions have to be formulated in the cm-frame. Numerically we have to use a cutoff lmax

in (2.55) and (2.57). Once the momentum cutoff is chosen high enough we can apply the
same cutoff in the lab- and cm-frame which proved to be well justified. Otherwise we would
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have to calculate a new cutoff constrained by (l·v)2
v2 − l2 < lcmmax

2 if we require the momentum
cutoff to be independent of the angle in the cm-frame. On the other hand according to

(l ·u)2 − l2 < llabmax
2

a cutoff independent of the angle in the lab-frame would imply an angular
dependence in the cm-frame.

Pauli blocking is implemented by means of a modified Heaviside function in the cm-frame,

Θ

(

k2
F +m∗

N
2 −

(

l0
√

1 + u2
cm − l · ucm

)2
)

, (2.71)

as compared to
Θ
(

k2
F − l2

)

(2.72)

in the lab-frame. Pauli blocking now acquires an angular dependence z = cos θ(l,w) that is
also implemented by [2] and [14].

In analogy to (2.55) the representation of the in-medium loops in the cm-frame is derived:

ImJRi (v0, v̄0,w) =

∫

d3l

2(2π)3
1

E∗
N

×
{

KR
i (l+, v0, v̄0,w)ρK(v̄+,k+)

[

Θ(+v̄+) − Θ(kcut
F )
]

+Ki(l−, v0, v̄0,w)ρK(v̄−,k−)Θ(−v̄−)
}

,

lµ± = (±E∗
N , l),

v̄± =
(

±
√
s− l±0

)
√

1 + u2
cm + l · ucm,

k2
± = l2 + (l · ucm)2 + u2

cm

(

±
√
s− l±0

)2

+2(l · ucm)
(

±
√
s− l±0

)
√

1 + u2
cm,

kcut
F = k2

F +m∗
N

2 −
(

l+0
√

1 + u2
cm − l · ucm

)2
, (2.73)

see (2.71) for Θ(kcut
F ). The derivation of the coefficients C̄ijka,n (2.57) of the subtraction terms

JCi in the cm-frame is straightforward, the form of the antikaon spectral function and its
arguments lµ±, v̄± and k2

± can be taken over from (2.73). To be more explicit we state the
building blocks

(l̄ · v) = E∗
Nv0,lab −

v2
0,lab − w2

lab

2
− l ·wlab, (l̄ · u) = E∗

N − v0,lab
2

(2.74)

in the lab-frame and

(l̄ · v) =

(

E∗
N −

√
s

2

)√
s, (l̄ · u) =

(

E∗
N −

√
s

2

)

√

1 + u2
cm − l · ucm (2.75)

in the cm-frame for the first contribution in (2.73) ∝ [Θ(+v̄+)−Θ(kcut
F )]. By explicit numerical

simulations we confirm that (2.55) and (2.73) agree identically. Consequently also the real
part of the loop function matrix coincides.

Our angular average approximation consists of omitting all terms linear in (l · ucm) and

averaging (l ·ucm)2 by 2
3(|l| · |ucm|)2 due to the integration

1
∫

−1

dz (|l| · |ucm|z). The full angular

dependence of the Pauli-blocking (2.71) is kept. Additionally we assume the factorization of
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the Pauli-blocking Θ-function and the loop kernel part when performing the angular integra-
tion:

∫

dz

4π
KR
i ρKΘ(kcut

F ) −→
(
∫

dz

4π
KR
i ρK

)(
∫

dz

4π
Θ(kcut

F )

)

. (2.76)

The same approximation is also applied when calculating the coefficients Cijka,n in (2.57) for
the subtraction terms JCi . The vacuum loop matrix (2.41) is unchanged. Note that in [14]
all terms (l · ucm)2 are also omitted and in addition the correction term

√

1 + u2
cm for ω is

neglected. The simplest scalar loop function J0 in the cm-frame with an angular average
approximation after energy integration reads

J0(
√
s,ucm) =

∫

d3l

16π3

1

E∗
N

1

(
√
s− EN )2 − l2 − 1

3 (|l| · |ucm|)2 −m2
K − Π(ω, |q|)

Θ

(

k2
F +m∗

N
2 −

(

E∗
N

√

1 + u2
cm − l · ucm

)2
)

. (2.77)

for the first contribution in (2.73) ∝ [Θ(+v̄+)−Θ(kcut
F )]. The arguments ω and |q| of the self-

energy Π in the cm-frame are determined by (2.69) and (2.70). In order to examine the effect
of the angular average approximation it is sufficient to calculate the thirteen loop functions
in the cm-frame, tabulated as functions of v0. The matrix of loop functions (2.43) involves
just factors containing powers of

√
v2, v · u and (v · u)2 − v2, which are identically the same

in both reference frames by construction.
One of the reasons why the angular average approximation is widely used in nuclear many-

body theory is the prevention of the coupling of different partial waves. Indeed we checked
analytically and observe also numerically that for the in-medium loops

J2 = J6 = J8 = J10 = J11 = 0 (2.78)

for each external momentum w and not just for w = 0. Additionally we fulfill

J3 + J5 = J7 + J12 = 0 (2.79)

for each w.

2.3.3 Analytic angular integration for the angular average approximation

The major benefit of the angular average approximation that has been described in the
previous sections is that the angle z = cos θ(l,w) appears nowhere else but in the Θ-function
from Pauli-blocking (2.71). Hence the angular integration can be evaluated analytically and
what remains is a one-dimensional momentum integral that has to be computed numerically.
As the angular integration just involves the propagator part of the in-medium loop functions
we will state as an example the result from the analytic angular integration in terms of J0, the
simplest loop function. The superscript JR0 is omitted, because we refer to the imaginary part
of the loop and the renormalization procedure stays identically the same in lab- and cm-frame.
The additional phase space factors (l̄ ·v) and (l̄ ·u) do not depend on z in the angular average
approximation. All the following expressions just apply for the first contribution in (2.73)
∝ [Θ(+v̄+) − Θ(kcut

F )]. For the second contribution ∝ Θ(−v̄−) Pauli-blocking is inactive and
the angular integration is trivial and evaluates to a factor of two from the angular integration.
For the analytic solution we have to define J0 in sections. We recall

kcut
F = k2

F +m2
N −

(

E∗
N

√

1 + u2
cm − |l| · |ucm| · z

)2
. (2.80)
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and

ω = (
√
s− E∗

N )
√

1 + u2
cm, q2 = ω2 − (

√
s− E∗

N )2 + l2 +
1

3
(|l| · |ucm|)2 . (2.81)

We present the result of the analytic angular integration exemplary for the simplest scalar
loop function J0(

√
s,ucm) in terms of the angular independent integral kernel J0(

√
s,ucm, l):

J0(
√
s,ucm) =

lmax
∫

0

dl J0(
√
s,ucm, l). (2.82)

Taking into account (2.80) we have J0(
√
s,ucm) = 0 for ω > 0 ∧ kcut

F ≥ 0 or ω ≤ 0 ∧ kcut
F < 0.

For the analytic integration we have to distinguish several cases both for ω > 0 and ω < 0
and we will give the resulting expressions separately. We define three new objects

A =
√

k2
F +m∗

N
2, A > 0,

B = E∗
N

√

1 + u2
cm, B > 0,

C = |l| · |ucm|, C ≥ 0. (2.83)

With (2.83) the angular integrated loop function J0(
√
s,ucm, l) for ω ≥ 0 reads

J0(
√
s,ucm, l) =



















































































J̆0(
√
s,ucm, l), A−B = 0 ∧ A− B − C < 0

∧ A + B − C ≥ 0

2 J̆0(
√
s,ucm, l),

[

A− B = 0 ∧ A− B − C = 0
]

∨
[

A−B < 0 ∧ A− B + C ≤ 0
]

2 J̆0(
√
s,ucm, l)

C−A
C ,

[

A− B ≤ 0 ∧ A + B − C < 0
]

∨
[

A + B − C < 0
]

J̆0(
√
s,ucm, l)

C+B−A
C ,

[

A− B < 0 ∧ A− B + C > 0

∧ A + B − C ≥ 0
]

∨
[

A− B > 0

∧ A + B − C ≥ 0 ∧ A− B − C < 0
]

0, else

(2.84)

and for ω < 0 analogously

J0(
√
s,ucm, l) =







































































2 J̆0(
√
s,ucm, l),

[

A− B = 0 ∧ C = 0
]

∨
[

A− B > 0 ∧ A− B − C ≥ 0
]

2 J̆0(
√
s,ucm, l)

A
C ,

[

A− B ≤ 0 ∧ A + B − C < 0
]

∨
[

A + B − C < 0
]

J̆0(
√
s,ucm, l)

A−B+C
C ,

[

A− B = 0 ∧ C > 0 ∧ A + B − C ≥ 0
]

∨
[

A− B < 0 ∧ A + B − C ≥ 0

∧ A− B + C > 0
]

∨
[

A− B > 0

∧ A + B − C ≥ 0 ∧ A− B − C < 0
]

0, else.

(2.85)



26 CHAPTER 2. Antikaons and hyperons in nuclear matter

In (2.84) and (2.85) the angular dependence is eliminated and a one-dimensional integral
remains. The kernel J̆0(

√
s,ucm, l) is given by

J̆0(
√
s,ucm, l) =

1

8π2

1

E∗
N

l2

(
√
s− E∗

N )2 − l2 − 1
3(|l| · |ucm|)2 −m2

K − Π(ω, |q|) (2.86)

with ω and q2 from (2.81).

2.4 Antikaon self-energy

The in-medium self-energy is evaluated in terms of the properly isospin averaged in-medium
scattering amplitudes T̄ (k̄, k, w, u),

T̄ =
1

4
T (I=0) +

3

4
T (I=1), (2.87)

as

Π(q, u) = 2 · Tr

∫

d4p

(2π)4
i∆S(p, u)T̄

(

1

2
(p− q),

1

2
(p− q), p+ q, u

)

. (2.88)

The in-medium scattering amplitude is decomposed with the help of the projector formalism
and thus the trace in (2.88) comprises the Dirac contribution of the nucleon propagator and

the projectors. The trace results in coefficients c
(p,q)
ij (q, w, u) of the invariant amplitudes

T̄
(p,q)
ij (v, u) and the integrand of the self-energy can be written as

1

2
Tr

[

(/p+m∗
N )T̄

(

1

2
(p− q),

1

2
(p− q), p+ q, u

)]

=

8
∑

i,j=1

c
(p)
ij (q, w, u)T̄

(p)
ij (w, u) +

2
∑

i,j=1

c
(q)
ij (q, w, u)T̄

(q)
ij (w, u). (2.89)

In the nuclear matter rest frame it holds that

Π(q, u) = −
8
∑

i,j=1

kF
∫

0

d3p

(2π)3
2

E∗
N

c
(p)
ij (q, w, u)T̄

(p)
ij (w, u)

−
2
∑

i,j=1

kF
∫

0

d3p

(2π)3
2

E∗
N

c
(q)
ij (q, w, u)T̄

(q)
ij (w, u). (2.90)

The scalar coefficients c
(p,q)
ij (q, w, u) are listed in Appendix A.9 and exactly coincide with

the ones published in [5] even for a non-vanishing nucleon mean-field. Evaluating the trace
in (2.89) over the Dirac part of propagator and the projector algebra in terms of v instead

of w is identical to taking the coefficients c
(p,q)
ij (q, w, u) as functions of w and substitute

pµ → p̆µ + ΣV uµ. Therefore we can write the coefficients in terms of w and shift the scalar
amplitudes entering the self-energy calculation by ΣV .

Expression (2.90) together with (2.38), (2.39), (2.42), (2.43) and (2.24), (2.25) form a
self-consistent set of equations defining the antikaon self-energy. Given the free-space partial
wave scattering amplitudes MJP (

√
s) along with a renormalization scheme for the in-medium
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loop functions the antikaon self-energy can be calculated by iteration. The Bethe-Salpeter
equation (2.21) reduces to a simple matrix equation

T
(p)
ij (v, u) = M

(p)
ij (v, u) +

8
∑

l,k=1

M
(p)
ik (v, u)∆J

(p)
kl (v, u)T

(p)
lj (v, u),

T
(q)
ij (v, u) = M

(q)
ij (v, u) +

2
∑

l,k=1

M
(q)
ik (v, u)∆J

(q)
kl (v, u)T

(q)
lj (v, u). (2.91)

We emphasize that the kaon self-energy Π(ω,q) given by (2.90) is only trustworthy for
positive energies. In this case the self-energy describes the propagation of antikaons. The
properties of kaons are determined for negative energy arguments ω < 0 according to our
convention. In this region – covered by the second term in (2.55) with Θ(−v̄−) – the self-
energy could be approximated by an energy and momentum independent term linear in the
nuclear matter density ρ. The self-energy has to be adjusted so as to reproduce the well
established kaon mass shift of about 20MeV at saturation density. In our calculations the
effect of this contribution is of minor importance and the loop functions are largely dominated
by the first term in (2.55) for negative energies. Furthermore we have to take care of the
imaginary part of the loop functions at v̄0 < µ, when the in-medium mass of the antinucleon
is probed.

2.5 Numerical results

The previously discussed renormalization scheme in principle renders the in-medium dynamics
independent of a momentum cutoff. However, since the input vacuum amplitudes are not
available at all energies and the computation of the in-medium amplitudes in practice will
also be restricted to a certain range, the antikaon self-energy can only be evaluated on a finite
grid in energy ω and momentum q. This grid has to be chosen carefully [5] both in antikaon
energy ω and momentum q. The self-energy is calculated in Tρ approximation according
to (2.90) and the free-space scattering amplitude is taken from [4]. The self-energy grid is
restricted by 0 ≤ ω ≤ 1.2GeV and 0 ≤ |q| ≤ 1.0GeV. The finite grid of the self-energy enters
into the calculation of the loop functions. It is well justified to substitute the in-medium
propagator with the free one outside the region of the self-energy grid, as for high energies
the K̄N interaction will be very weak. However, one has to take care that the numerically
inevitable momentum cutoff for the imaginary part of the in-medium loops is high enough
not to generate further peculiarities. We choose |lmax| = 1.5GeV, guaranteeing convergence
of the loops.

In the iterative process the in-medium modification of the loops ∆JRij (v0,w) is calculated,
whereas the real part is subjected to the reviewed renormalization scheme from Section 2.3.1.
The loops are also evaluated in the angular-average approximation from Section 2.3.2 and
we will compare to the results obtained with the full calculation. Afterwards the antikaon
self-energy is calculated again from the in-medium modified loops and from experience the
iteration converges rapidly after 4 to 5 iterations.
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Figure 2.3: Antikaon spectral function at nuclear saturation density ρ0 as a function of energy
ω and momentum q. The upper (lower) panels show calculations with switched off (on) mean-
fields. On the left hand side only s-wave interactions are considered, on the right hand side
s-, p- and d-waves are included.

2.5.1 Spectral function and self-energy

The plots shown for the antikaon spectral function ρK(ω,q) (Figure 2.3) and the self-energy
Π(ω,q) (Figures 2.4, 2.5) at nuclear saturation density ρ0 = 0.17 fm−3 comprise four panels.
In the upper row for the case without nucleon mean-fields ΣS = ΣV = 0 and in the lower row
including the nucleon mean-fields (2.13). On the left hand side the results were obtained with
exclusively taking into account s-wave interactions, on the right hand side also the J = 1

2 and
J = 3

2 p-waves and the J = 3
2 d-wave were included. For the spectral function we joined two

plots in each panel, one at antikaon momentum |q| = 0GeV and one at |q| = 0.45GeV. Note
that there is a different scale plotted in the left and right row.

Figure 2.3 shows a quite broad spectral function with a distinct two-peak structure at
|q| = 0GeV without mean-fields in the upper panels. Switching on p- and d-waves moves
strength from the lower peak to the higher one. The spectral function we obtain is quite
different compared to the latest results from [14]. Especially the effect of the p-waves is much
more pronounced in our calculation. To our experience the obvious differences cannot be
traced back solely to the angular average approximation applied in [14]. The dashed lines in
Figure 2.3 correspond to the angular average approximation described in Section 2.3.2 and
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the repercussion on the spectral function compared to the full calculation proves to be small.
Also for finite |q| there is no appreciable effect of the approximation that could explain the
difference to [14]. Nevertheless, we have to object that our angular approximation is different
to the one used in [14], in particular for p- and d-waves. The results in Figure 2.3 for the
spectral function do not rule out the angular average approximation as an improper tool
at all. Notable differences for the approximation are only seen for switched off mean-fields
including p- and d-waves.

Switching on scalar and vector mean-fields has a dramatic implication on the spectral
function. At zero momentum the pronounced lower mode is significantly pushed upwards,
also for the pure s-wave interaction. We predict significant strength in the soft modes for q = 0
at energies around 0.2−0.3GeV. The latter modes are due to the presence of hyperon nucleon-
hole states. For finite antikaon momenta the effect on the soft modes is less pronounced.
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Figure 2.4: Antikaon self-energy at nuclear saturation density ρ0 as a function of energy ω at
momentum |q| = 0GeV. The upper (lower) panels show calculations with switched off (on)
mean-fields. On the left hand side only s-wave interactions are considered, on the right hand
side s-, p- and d-waves are included.
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The Figures 2.4 and 2.5 for the self-energy Π(ω,q) as a function of energy and momentum
permit a more quantitative comparison of the full and angular averaged calculation. Figure
2.4 is showing results for zero antikaon momentum, Figure 2.5 for |q| = 0.45MeV. Still the
angular averaging coincides quite well with un-approximated self-energy, except for the case
including p- and d-waves at finite antikaon momentum, depicted in Figure 2.5. Especially for
switched off mean-fields the approximation significantly deviates from the full computation.
The influence of the nucleon mean-fields is less important for the self-energy at higher antikaon
momenta, but at zero momentum there is a strong enhancement of the two modes around
ω = 0.2GeV. It is in compliance with the findings stated for the spectral function. This effect
is not observable with the s-wave interaction only but finite mean-fields. For finite antikaon
momentum the inclusion of p- and d-waves leads to a drastic enhancement of the self-energy
by a factor of two.

A comparison of the self-energy with [14] confirms the important and obvious differences
also found for the spectral function. Particularly the effect of p-waves in our case manifests
itself in an significantly enriched structure. However, the differences of our results compared
to [14] may to a large extent presumably not be due to the angular average approximation.
The use of different interactions and a possibly strong cutoff dependence in [14] could also
give reason to the deviations in the spectral function and self-energy.

2.5.2 In-medium properties of the J =
1
2

±
hyperons

The in-medium properties of the JP = 1
2

±
hyperons, that are the ground states Λ(1115),

Σ(1195) and the Λ(1405) resonance, will be discussed in a different way than the JP = 3
2

hyperons. The latter ones are presented in two different helicity states corresponding to the
P- and Q-space (2.25). In P-space there is a mixing of the JP = 1

2
±

and JP = 3
2
±

states as
can be seen from (2.25) and (2.91), which is by construction not present in Q-space. However,

the influence of the JP = 3
2

±
amplitudes on the JP = 1

2

±
amplitudes is found to be negligible.

In a given isospin channel the scattering amplitude is given by (2.24) and (2.25), which

is in the basis of v0 = w0 − ΣV . In this basis the off-diagonal matrix elements of T
(p,q)
ij (v, u)

gain sizeable contributions due to the recoupling of the free-space amplitudes in Section
2.2.2 for finite w. The physical interpretation of the resonance structures in this basis is
not straightforward and misleading. Hence, the amplitudes will be presented in the basis
of w0 analogous to [5]. This can be accomplished by expanding the in-medium scattering
amplitudes (2.24) with the help of the recoupling scheme established in Section 2.2.2. The
associated scalar amplitudes MJP (w0,w) reflect the structure of the free-space amplitudes
introduced in (2.22) and have well defined angular momentum and parity. They are used for

illustration of the hyperon in-medium properties. For the JP = 1
2

±
amplitudes we have to

sum four contributions in P-space:

M 1
2

±(w0,w) =
1

2

(

v0w0 − w2

√

v2
0 − w2

√

w2
0 − w2

∓ 1

)

T
(p)
11 (v0,w)

−1

2

(

v0w0 − w2

√

v2
0 − w2

√

w2
0 − w2

± 1

)

T
(p)
22 (v0,w)

−1

2

i|w|(v0 − w0)
√

v2
0 − w2

√

w2
0 − w2

(

T
(p)
12 (v0,w) + T

(p)
21 (v0,w)

)

(2.92)
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Figure 2.6: Λ(1405) mass distribution as a function of energy w0 and momentum w at
nuclear saturation density ρ0. The results are given for full calculation and for angular
average approximation. For the upper panels only s-wave interactions are considered, the
lower panels include s- ,p- and d-waves.

in a given isospin channel.

The isospin zero s-wave K̄N amplitude M 1
2

− at saturation density is shown in Figure 2.6.

The results plotted in the upper part are obtained by considering s-wave interactions only,
in the lower part also p- and d-waves are taken into account. For s-wave interactions only
the Λ(1405) resonance gets substantially broadened by switching on nucleon mean-fields and
the central mass is basically unchanged. For vanishing external momentum w the effect on
the resonance mass is less pronounced. The angular average approximation works quite well
for the s-wave only case. Including p- and d-wave interactions in the lower part of Figure
2.6 the resonance mass is shifted downwards by about 30MeV and a further broadening is
observed. Note the different scales of the upper and lower panels in Figure 2.6, which differ by
a factor of 1.5. The angular average approximation is still doing well for switched on nucleon
mean-fields and p- and d-waves, but without mean-fields there is some sizeable deviation from
the full calculation.

The mixing effects between the JP = 1
2± amplitudes can be seen at finite external mo-

mentum w in Figure 2.6, because for vanishing |w| = 0 the contribution from the JP = 1
2

+

is phase-space suppressed. The mixing effects are significantly enhanced once nucleon mean-



34 CHAPTER 2. Antikaons and hyperons in nuclear matter

fields are included, but were already present in [5]. On the left hand side in the lower right
panel there are is a distinct contribution from the Λ(1115) ground state for the full and
angular averaged computation.

The mixing of the partial waves is much more pronounced in the basis of v due to the
recoupling of the vacuum amplitudes. In Figure 2.7 we illustrate the recoupling by showing
the matrix elements T11, T12 and T22 as functions of energy v0 with switched on nucleon
mean-fields. One can clearly see the contribution of Λ(1115) in T11 and T12. Note that T12

has an additional factor i. The expansion (2.92) introduces a summation over the diagonal
and off-diagonal matrix elements Tij and thus causes a partial cancellation of the strong
mixing effects once nucleon mean-fields are included. The mixing also explains the striking
structure at low antikaon energies in the self-energy, see Figure 2.4 in the lower right panel.
The structure almost disappears for the case without mean-fields.

Additionally to the Λ(1405) resonance we plot the isospin I = 1 s-wave amplitudes in
Figure 2.8. This may be important to estimate the change of a K̄N density dependent
scattering length for the use with kaonic atoms.

The hyperon ground states with JP = 1
2

+
are the Λ(1115) in the isospin I = 0 and the

Σ(1195) in the isospin I = 1 channel. The full and angular average approximated calculations
with and without nucleon mean-fields are given in Figures 2.9 and 2.10. For the calculation
without and with switched on mean-fields we add a repulsive mass shift of 36MeV to the
Λ(1115) in order to reproduce the attractive shift of 25−30MeV at nuclear saturation density
demanded by hyper-nuclear spectroscopic data [30]. The same shift is applied for the angular
average approximation, which leads to a somewhat smaller mass shift of the Λ(1115) by a
few MeV. Without this ’intrinsic’ shift the attraction of the Λ(1115) would be overestimated
by about 40MeV. The mass shift of the Λ(1115) is not affected much by the presence of the
nucleon mean-fields.

The Σ(1195) ground state in Figure 2.10 experiences a relatively small attractive mass
shift of 25MeV in the medium, the deviation of the various calculations is relatively small.
The attraction for the angular averaged results is lowered by a few MeV both with and
without mean-fields.

2.5.3 In-medium properties of the J =
3
2

±
hyperons

In analogy to the representation (2.92) for the J = 1
2 partial waves the higher partial waves

with J = 3
2 are presented with respect to the tensor structure present in vacuum. In P-space

we have to sum a large number of contributions and the amplitudes at finite momenta w are
given separately in P- and Q-space. We identify the amplitudes

M
(p)
3
2

±(w0,w) =
1

9

8
∑

i,j=3

C
3
2

±

p,ij(v0,w)T
(p)
ij (v0,w),

M
(q)
3
2

±(w0,w) =
1

9

2
∑

i,j=1

C
3
2

±

q,ij(v0,w)T
(q)
ij (v0,w) (2.93)

with the coefficients C
3
2

±

p,ij and C
3
2

±

q,ij tabulated in Appendix A.2. In the free-space limit of the
latter expression (2.93) the vacuum amplitudes M 3

2

±(
√
s) of (2.28) are recovered.

The Σ(1385) p-wave resonance in Figure 2.11 receives an attractive mass shift of 40MeV
in the medium for the full calculation including nucleon mean-fields and almost 10MeV less
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Figure 2.7: Matrix elements T
(I=0)
11 , T

(I=0)
12 and T

(I=0)
22 in the basis of Pij(v, u) as functions of

v0, including nucleon mean-fields at finite momentum |w| = 0.4GeV. Due to the recoupling
of the vacuum scattering amplitudes from Section 2.2.2 contributions of the Λ(1115) ground
state can seen below the λ(1405) in T11 and the off-diagonal T12.
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Figure 2.9: Λ(1115) mass distribution as a function of energy w0 and momentum w at
nuclear saturation density ρ0. The results are given for full calculation and for angular
average approximation. The results are given for full calculation and for angular average
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Figure 2.11: Σ(1385) mass distribution as a function of energy w0 and momentum w at nu-
clear saturation density ρ0. The results are given for full calculation and for angular average
approximation. The results are given for full calculation and for angular average approxima-
tion. For vanishing momentum w = 0 the P- and Q-space amplitudes are degenerate and for
finite w the results are given separately on the right hand side.

without mean-fields. In contrast to the Λ(1405) and Λ(1520) resonances the Σ(1385) gets
broader when the mean-fields are switched off. There is sizeable deviation of the angular
average approximation from the full computation without mean-fields. At finite external
momenta w the degeneracy between the two helicity states in P- and Q-space is rather low,
but the difference of the angular average results increases. The attractive mass shift and
width of the Σ(1385) resonance is found to be considerably larger than in [14]. With switched
on mean-fields our results agree with [5], whereas in [14] a much smaller mass shift of only
7MeV is found.

The most striking impact of the nucleon mean-fields and the angular average approxima-
tion can be seen in Figure 2.12 for the Λ(1520) d-wave resonance. While without mean-fields
the Λ(1520) is attracted by almost 200MeV by doing the angular approximation for switched
off mean-fields the shift by is reduced by about 80MeV. We conclude that for higher partial
wave amplitudes the angular average approximation fails. The approximation is less reliable
the higher the partial waves are. Switching on the mean-fields the resonance gets very broad
and almost dissolves in the medium.
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Figure 2.12: Λ(1520) mass distribution as a function of energy w0 and momentum w at nu-
clear saturation density ρ0. The results are given for full calculation and for angular average
approximation. The results are given for full calculation and for angular average approxima-
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Figure 2.13: Antikaon spectral function (upper panels) and self-energy (lower panels) as a
function of energy ω and momentum q. Comparison of three different mean-field strengths
at nuclear saturation density ρ0.

2.5.4 Comparison of different mean-field strengths at saturation density

We estimate the effect of different mean-field strengths by comparing the already presented
calculation based on (2.13), denoted as ’medium mean-fields’, with two different mean-field
strengths. The ’weak mean-fields’ are

ΣV = 220MeV
ρ

ρ0
, ΣS = 280MeV

ρ

ρ0
(2.94)

and the ’strong mean-fields’

ΣV = 350MeV
ρ

ρ0
, ΣS = 400MeV

ρ

ρ0
. (2.95)

The results shown are all computed at saturation density ρ0 and no angular average approx-
imation is used.

Figure 2.13 summarizes the spectral function in the upper part and the self-energy in
the lower part as a function of antikaon energy ω and momentum q. The spectral function
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Figure 2.14: Mass distribution of Λ(1405) as function of energy w0 and momentum w. Com-
parison of three different mean-field strengths at nuclear saturation density ρ0.

is affected only slightly by the variation of the mean-field strengths, especially at finite mo-
menta q basically the same spectral function is obtained. The self-energy shows some notable
differences, but the qualitative behaviour stays the same.

The hyperon properties are compared in Figure 2.14 for the Λ(1405) s-wave and in Figures
2.15 and 2.16 for the J = 3

2 Σ(1385) p-wave and Λ(1520) d-wave. We omit to show the
Λ(1115) and Σ(1195) ground states, as the Λ(1115) is shifted in each calculation and appears
at exactly the same position according to the experimental data. Also the Σ(1195) is basically
located at the same mass position. The central mass of the ground states proves to be rather
independent of the chosen mean-field strengths.

By increasing the mean-field strengths the attractive shift of the Λ(1405) is reduced and
the resonance is broadened significantly, as can be seen in Figure 2.14. Within the chosen
mean-fields range the effect on the Λ(1405) scales almost linearly. Similarly the Σ(1385)
and Λ(1520) move upwards with a larger mean-field strengths, but while the Λ gets broader
the Σ(1385) width is reduced. Also the central mass shift of the Σ(1385) is smaller. The
Λ(1520) dissolves very rapidly when mean-fields are switched on. The effect seems to be less
pronounced when the mean-fields strengths is further increased.

2.5.5 Comparison of large scalar and vector mean-fields to a weak scalar
mean-field only

The work of [14] assumes an attractive mean-field of 50MeV, but does not take into account
large scalar and vector mean-fields. However, we expect sizeable implications from our ap-
proach considering both scalar and vector mean-fields explicitly. The latter ansatz with (2.13)
can be compared to a more simple model just allowing for a weak scalar mean-field with

ΣV = 0MeV
ρ

ρ0
, ΣS = 60MeV

ρ

ρ0
. (2.96)
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Figure 2.15: Mass distribution of Σ(1385) as function of energy w0 and momentum w. Com-
parison of three different mean-field strengths at nuclear saturation density ρ0.
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Figure 2.16: Mass distribution of Λ(1520) as function of energy w0 and momentum w. Com-
parison of three different mean-field strengths at nuclear saturation density ρ0.
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Figure 2.17: Antikaon spectral function (upper panels) and self-energy (lower panels) as a
function of energy ω and momentum q. Comparison at nuclear saturation density ρ0 of
calculations with mean-fields, zero mean-fields and scalar mean-field of ΣS = 60MeV only.

The scalar ΣS corresponds to the difference of scalar and vector contribution in (2.13). The
results for scalar mean-field only are compared to the results with switched off and also
switched on (2.13) mean-fields. Significant deviations between the two runs with mean-fields
can already be observed in the spectral function and self-energy in Figure 2.17. With large
scalar and vector mean-fields for zero antikaon momentum considerably more strength is
moved to the lower peak and the soft modes. The strong enhancement of the two lower
modes in the self-energy at q = 0 can only be seen in the case of large scalar and vector
mean-fields. For finite antikaon momenta the spectral function is less sensitive to the mean-
field strengths, but the self-energy still shows significant deviations, which will also be present
in the hyperons.

The Λ(1405) is plotted in Figure 2.18, the Σ(1385) in Figure 2.19 and the Λ(1520) in
Figure 2.20. With weak scalar mean-field only the Λ(1405) is attracted by almost 50MeV
with respect to the zero mean-fields case, whereas with both mean-field contributions the
central mass shift is reduced. For scalar mean-field only further attractive shift can also
be observed for the Σ(1385) in Figure 2.19. Contrary the Λ(1520) feels an attractive mass
shift of roughly 170MeV for scalar mean-field only, which is 30MeV less than without mean-
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Figure 2.18: Mass distribution of Λ(1405) as function of energy w0 and momentum w. Com-
parison at nuclear saturation density ρ0 of calculations with mean-fields, zero mean-fields and
scalar mean-field of ΣS = 60MeV only.

fields. The huge difference to the Λ(1520) in Figure 2.20 with switched on scalar and vector
mean-fields is obvious.

We conclude that the effects of large scalar and vector mean-fields cannot be modeled
by a more simple ansatz with a weak scalar mean-field only, as has been done in [14]. Huge
deviations are already observed for the spectral function and self-energy and manifest itself
in the hyperon properties. In order to study the implications of nuclear saturation one has
to take into account both scalar and vector mean-fields.

2.5.6 Spectral function, self-energy and hyperons with nucleon mean-fields
at half and 1.5 saturation density

Spectral function, self-energy and scattering amplitudes are computed at half and 1.5 nuclear
saturation density including nucleon mean-fields, in each case compared to the results with
zero mean-fields. At half saturation density we scaled the mean-field strengths linearly with
density according to (2.13) and choose

ΣV = 150MeV, ΣS = 175MeV, ρ =
ρ0

2
. (2.97)

The results for 1.5 saturation density were calculated with

ΣV = 400MeV, ΣS = 450MeV, ρ = 1.5 ρ0, (2.98)

where the choice of ΣS accounts for saturation of the scalar mean-field with increasing density
[31]. For comparison the results at saturation density are also shown.

The spectral function and self-energy are given as a function of antikaon energy ω and
momentum q in Figures 2.21 and 2.22. At half saturation density the lower soft modes are
strongly suppressed, while at 1.5 saturation density they become very broad and feel sizeable



2.5. Numerical results 47

1.3 1.4 1.5
-400

0

400

800

 w = 0.0 GeV

 w
0
   [GeV]

T
K

N
 [
G

e
V

 -
3
]

Re

Im

 w = 0.400 GeV

 P
-s

p
a
c
e

 

 

Re Im

1.3 1.4 1.5
-400

0

400

800

 Zero mean-fields

 With mean-fields

 Only scalar mean-field

 Q
-s

p
a
c
e

 

w
0
   [GeV]

Re
Im

Figure 2.19: Mass distribution of Σ(1385) as function of energy w0 and momentum w. Com-
parison at nuclear saturation density ρ0 of calculations with mean-fields, zero mean-fields and
scalar mean-field of ΣS = 60MeV only.
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parison at nuclear saturation density ρ0 of calculations with mean-fields, zero mean-fields and
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Figure 2.21: Antikaon spectral function as a function of energy ω and momentum q at half
(upper panels), full (middle panels) and 1.5 (lower panels) nuclear saturation density. Each
calculation includes s-, p- and d-waves for the full computation (no angular average).
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Figure 2.23: Mass distribution of Λ(1405) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average).

attraction. Both in spectral function and self-energy there is considerably more structure
with switched on mean-fields than for zero mean-fields.

At half saturation density the Λ(1405) in Figure 2.23 is only slightly affected by switching
on mean-fields, which can be seen by comparing the upper and lower panels. In contrast the
large mean-fields at 1.5 saturation density have a dramatic effect. Whereas for switched off
mean-fields the Λ(1405) is attracted by about 100MeV, including mean-fields it is pushed
upwards again by the same amount and stays at almost the vacuum position.

The Λ(1115) and Σ(1195) ground states are shown inn Figures 2.24 and 2.25. The 36MeV
repulsive mass shift of the Λ(1115) including mean-fields at saturation density has been scaled
linearly with density for the case of half saturation density and for 1.5 saturation density is
has been adjusted so that the Λ(1115) mass shift is slightly less than for saturation density.
For 1.5 saturation density the self consistency causes a large attractive mass shift for the
Σ(1195) ground state, which is also significantly broadened at 1.5 saturation density. Again
we see that the central mass position of the ground states is quite insensitive to the nucleon
mean-fields.

For ease of demonstration the J = 3
2 hyperons are splitted into separate figures for zero

and with nucleon mean-fields. At half saturation density the mass shift of the Σ(1385) is
30MeV without and 25MeV including mean-fields, see Figures 2.26 and 2.27. Switching on
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Figure 2.24: Mass distribution of Λ(1115) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average).
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Figure 2.25: Mass distribution of Σ(1195) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
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Figure 2.26: Mass distribution of Σ(1385) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average). Zero nucleon mean-fields.

mean-fields at 1.5 saturation density the Σ(1385) is attracted by 40MeV, comparable to the
results at saturation density. For zero mean-fields the resonance is broadened and receives an
attractive shift of 60MeV.

Inspecting Figures 2.28 with zero mean-fields and 2.29 with mean-fields for the Λ(1520)
the resonance mass shift increases with the density if mean-fields are switched off. Contrary
is it shifted upwards with increasing density including mean-fields. The Λ(1520) gets broader
in both cases, but with mean-fields the resonance strength is reduced by a factor of 5 and
even more at 1.5 saturation density.
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Figure 2.27: Mass distribution of Σ(1385) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average). With nucleon mean-fields.
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Figure 2.28: Mass distribution of Λ(1520) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average). Zero nucleon mean-fields.
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Figure 2.29: Mass distribution of Λ(1520) as function of energy w0 and momentum w at half
(dotted), full (dashed) and 1.5 (solid) nuclear saturation density. Each calculation includes
s-, p- and d-waves for the full computation (no angular average). With nucleon mean-fields.





Chapter 3
Present status of kaonic atoms –

Phenomenology

In [22] various phenomenological and microscopic approaches for the description of kaonic
atom data were compared. None of the models has the ability to sufficiently describe the
measured level shifts and widths. This motivates us to try an alternative non-local treatment
of kaonic atoms based on microscopic K̄N in-medium scattering amplitudes [5]. Some of
the microscopic models even introduce non-local aspects utilising gradient terms acting on
the wave function and density distribution. Still these approaches are not yet unique and
call for a more systematic treatment of non-local effects. In this section we summarize the
comparison of the different models and comment on their advantages and disadvantages. The
experimental data on kaonic atoms can be found in [32–42], covering the range from lithium
up to uranium.

The parameters for the density distributions of the nuclei are based on [43], the nu-
clear binding energies Enuc necessary for calculating the nuclear masses mnuc = ZmP +
(A − Z)mN − Enuc are taken from [44], where A and Z denote the number of nucleons
and protons respectively. The proton and neutron masses are mP = 938.271998MeV and
mN = 939.565330MeV. For A ≤ 16 the density distributions are parameterized by a modi-
fied harmonic-oscillator distribution (MHO),

ρMHO(r) = ρ0

[

1 + a
( r

R

)2
]

e−( r
R)

2

(3.1)

with a mean radius R. Note that in the MHO case the ’border width’ a is a dimensionless
quantity. For nuclei with A > 16 a two-point Fermi distribution is used:

ρ2pF(r) = ρ0

[

1 + e(
r−R

a )
]−1

. (3.2)

The normalization constant ρ0 is fixed by the condition

A = 4π

∞
∫

0

ρ(r)r2dr. (3.3)

The neutron and proton density distributions – ρN (r) and ρP (r) – add up to the total density
distribution ρ(r) = ρN (r)+ ρP (r). For heavier neutron-rich nuclei we do not correct the neu-
tron density distribution and have ρN (r) = ρP (r) as these corrections prove to be negligible.
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ρ(r) Transition Nuclear mass [MeV] R [fm] A [fm]

12
6 C MHO 3d → 2p 11174.862215 1.516 2.234
32
16S 2pF 4f → 3d 29773.616592 3.218 0.502

35
17Cl 2pF 4f → 3d 32564.590103 3.451 0.497

Table 3.1: Measured transition, nuclear mass and parameters of the density distribution.

The relevant parameters for the discussed nuclei carbon, sulphur and chlorine are given in
Table 3.1.

The third column of Table 3.1 refers to the measured transition between the antikaon
orbits in standard atomic physics notation. For all the relevant levels we have n − l = 1.
As the upper levels are practically unaffected by the strong antikaon-nuclei interaction the
hadronic energy shifts ∆E = ∆Eexp − ∆Eem can be determined by comparing the measured
energy levels ∆Eexp to those solely determined by the electromagnetic contributions ∆Eem.

3.1 Solution of the Klein-Gordon equation

We will briefly summarize the methods used for solving the Klein-Gordon equation. Special
issues arising in connection with non-local potentials will be addressed later on. There are
two possibilities for solving operator equations of the type Dy(x) = λ y(x) with an operator
D containing derivative operators and an eigenvalue λ. Firstly the operator equation can be
regarded either as an eigenvalue problem or a differential equation. Secondly the operators will
be uniquely defined by applying appropriate boundary conditions to y(x). The Klein-Gordon
equation is formulated as a boundary condition problem with one parameter, the (complex)
energy eigenvalue λ, reflecting the correlation between eigenvalue problems and the solution
of differential equations subjected to boundary conditions. The task is to determine the
eigenvalues λ corresponding to nontrivial solutions y(x) 6= 0.

In general the Klein-Gordon equation for a spin-0 particle bound by an energy dependent
local optical potential Uopt(ω − Vem, r) takes the form

(

∇2 − µ2 + (ω − Vem(r))2
)

φ(r) = 2µUopt(ω − Vem, r)φ(r). (3.4)

Here µ is the reduced mass of the antikaon-nucleus system, the energy ω = µ+E − i
2Γ gives

the binding energy E and the level width Γ, while φ(r) denotes the wave function of the
antikaon. Both determine the electromagnetic potential Vem(r) which is radially symmetric.
Besides from the Coulomb potential for a finite size nucleus there are also vacuum polarization
corrections which have to be considered due to the high kaon mass. Details will be described
in Section 3.2.

In Appendix B.1 we summarize the asymptotic and analytic solutions of the Klein-Gordon
equation (3.4) for vanishing optical potential and restricting the electromagnetic potential to
the Coloumb contribution for a point-like charge. These solutions have to be applied as
boundary conditions for the numerical solution of the Klein-Gordon equation when taking
into account optical potentials. The numerical solution of the Klein-Gordon equation in
coordinate space will be determined by using two different methods, for bound states with
l < 4 and lower mass nuclei (A ≤ 35) the scheme [45] and for l ≥ 4 bound states a shooting
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method based on a two point boundary condition problem. The latter schemes are suitable
for solving bound state problems with real and complex eigenvalues. We briefly describe the
main features and the implementation of both methods in Appendix B.2.

3.2 Electromagnetic potential

The electromagnetic potential Vem(r) entering the Klein-Gordon equation (3.4) is made up
of the Coulomb potential for a finite size nucleus and three leading vacuum polarization
corrections, the leading order αZα [46], order α(Zα)3 [47] and order α2(Zα) [48]. For the
vacuum polarization contributions analytic expressions based on a series expansion are used.
As the finite size effects for the vacuum polarization involve highly divergent terms [49] that
are difficult to handle numerically and their contributions are just significant for heavy nuclei,
they will be neglected.

3.2.1 Coulomb potential for finite size nuclei

The radially symmetric Coulomb potential VC(r) = −Zα
r for a point-like particle with charge

Z has to be folded with the charge distribution ρ(r),

V FS
C (r) = −

∫

d3r′
ρ(r′)
|r− r′| , (3.5)

which is specified by the normalization condition

4π

∞
∫

0

r2ρ(r)dr = Zα (3.6)

for a radially symmetric potential. Analogously V FS
C (r) can be derived from the solution ψ(r)

of the Poisson equation
∇2V FS

C (r) = −4πρ(r) (3.7)

which avoids the singular integrand in (3.5). For the radial component of V FS
C (r) with the

radial Laplace operator in spherical coordinates △radψ = 1
r2

∂
∂r

(

r2 ∂ψ∂r

)

we have

d2

dr2
(r · V FS

C (r)) ≡ d2

dr2
ψ(r) = −4πρ(r). (3.8)

The boundary conditions of the differential equation (3.8) are ψ(r) = 0 at r = 0 and ψ(r) =
Zα for r → ∞. The charge distribution ρ(r) is parameterized in the same way as the density
distribution according to (3.1) and (3.2), but the normalization is given by (3.6).

3.2.2 Vacuum polarization

The strong overlap of the antikaon wave function and the Coulomb field near the nucleus re-
quires the consideration of vacuum polarization corrections when dealing with kaonic atoms.
The contribution from vacuum polarization can reach up to several keV which is of the same
order as the strong interaction shift. In Table 3.2 we summarized the different vacuum polar-
ization contributions as well as the Coulomb energy (B.21) from the Klein-Gordon equation
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KG [MeV] FC αZα [eV] α2(Zα) [eV] α(Zα)3 [eV]
∑

em [MeV]

12
6 C 0.113327 -6 441 3 0 0.113765
32
16S 0.368040 -15 1566 11 -1 0.369601

35
17Cl 0.416101 -27 1837 13 -2 0.417923
58
28Ni 0.638895 -6 2663 19 -6 0.641565
238
92 U 2.272314 -10 9778 69 -223 2.281928

Table 3.2: Electromagnetic potential contributions for different nuclei, Coulomb potential
for a point-like charge (KG), finite size Coulomb potential (FC) and leading order vacuum
polarization corrections.

(KG) and the finite size correction (FC) for our sample of nuclei. For comparison we also
included nickel and uranium. The energies correspond to the lower levels given in Table 3.1.

The classification of vacuum polarization corrections is done perturbatively in terms of
the effective coupling Zα and α respectively, at which for heavy elements Zα can no longer
be considered as ≪ 1. In principle vacuum polarization could also involve exotic parti-
cle/antiparticle pairs apart from e+/e−, but these effects are usually not considered because
of the high energies necessary for exotic pair creation. Also polarization of the nucleus and
electron screening is neglected, as the heavy antikaon is effectively subjected to a charge
Zα. A summary of the relevant vacuum polarization corrections and their convenient series
expansions in the context of exotic atoms can also be found in [50].

The leading so-called Uehling potential [46] is derived from a one loop correction where the
e+/e− pair is propagating freely, unaffected by the Coulomb field of the nucleus in contrast
to the α(Zα)3 correction. It is widely used for the Rutherford scattering cross section near
the Coulomb barrier and fusion cross sections at energies below the Coulomb barrier. Note
that for the following easy to handle series expansions, me = 1 for the electron mass is used,
hence r̂ = mer. The Uehling potential is given by

VUeh(r) =
αZα

πr

[

5

9
+

2

3
(log r̂ + C) − π

2
r̂ + r̂2 − 2

9
πr̂3

+
7

18
r̂4 +

1

6
(log r̂ + C)r̂4 +

127

8100
r̂6 − 1

135
(log r̂ + C)r̂6 + O(r̂7)

]

(3.9)

with the Euler constant

C = −
∞
∫

0

dt e−t ln t = 0.577215665. (3.10)

The expressions for all the vacuum polarization potentials are expansions in 2r
λe

, which means

that the approximations are valid for r < λe = ~

mec
≈ 386 fm with λe the electron Compton

wave length. For the Uehling potential in [49] an approximation applicable in the region
0 ≤ r ≤ ∞ is derived. The asymptotic Uehling potential for r ≫ ~

mec
reads

VUeh(r) = − α

4
√
π
Zα

e−mer

r(mer)
3
2

(3.11)
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with its characteristic exponential decrease.

The correction of order α(Zα)3 [47] – denoted by ’Wichmann-Kroll’ – takes into account
the interaction of the e+/e− pair with the nucleus Coulomb field to all orders in the effective
coupling constant Zα. In lowest order the Uehling correction αZα reappears, further contri-
butions of order α(Zα)n with n ≥ 3 were calculated in [47]. For even power n there is no
contribution according to the Furry theorem [51]. For kaonic atoms the term ∝ α(Zα)3 is of
relevance with its series expansion

VWK(r) =
α(Zα)3

πr

[(

−2

3
ζ(3) +

1

6
π2 − 7

9

)

+ 2πζ(3)r̂ − 1

4
π3r̂

+

(

−6ζ(3) +
1

16
π4 +

1

6
π2

)

r̂2 +
2

9
π(ln r̂ + C)r̂3

+

(

2

3
πζ(3) +

4

9
π ln 2 − 31

27
π

)

r̂3 +
1

12
(ln r̂ + C)2r̂4

+

(

5

54
π2 − 19

36

)

(ln r̂ + C)r̂4 +

(

13

18
ζ(3) − 109

432
π2 +

859

864

)

r̂4

+ O(r̂5 ln r̂)

]

. (3.12)

and ζ(x) is the Riemann zeta function defined as

ζ(x) =

∞
∑

k=1

k−x (3.13)

with ζ(3) ≈ 1.20206. Note that VWK(r) is repulsive ∀ r and the energy shift ∆EWK is negative
in contrast to the other electromagnetic corrections. For large distances the asymptotic
behaviour is given by

VWK(r) = −α(Zα)3

πr

32

225

1

(2mer)4
+ . . . (3.14)

and shows a power law behaviour. The aforementioned asymptotic Uehling potential (3.11)
decreases exponentially, for this reason the order α(Zα)3 correction dominates at distances
of several λe, that is for highly bound levels. It reflects a somewhat peculiar phenomenon in
QED, as effects of higher order in perturbation expansion are expected to be suppressed. The
first exact calculation was done in [52], nevertheless based on [47], whereas [53] consideres
finite size effects.

The polarization correction of order α2 can be split into a reducible two-loop diagram and
an irreducible one-loop vacuum polarization with self-energy insertion of the fermion loop.
The two-loop polarization can be ascribed to the one-loop Uehling correction. In [48] the
remaining self-energy insertions linear in (Zα) for point-like nuclei are derived and the series
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expansion – denoted by ’Källen-Sabry’ –

VKS(r) =
α2(Zα)

π2r

[

−4

9
(ln r̂ + C)2 − 13

54
(ln r̂ + C) +

(

ζ(3) +
1

27
π2 +

65

648

)

+
13

9
π2r̂ +

32

9
(π ln 2)r̂ − 766

135
πr̂ +

5

3
(ln r̂ + C)r̂2 − 65

18
r̂2

+

(

14

27
π2 − 80

81
π

)

r̂3 − 5

18
(ln r̂ + C)2r̂4 +

323

216
(ln r̂ + C)r̂4

+

(

1

6
ζ(3) − 5

216
π2 − 6509

2592

)

r̂4 + O(r̂5)

]

(3.15)

can be found in [50]. The derivation was extended to the case of finite radially symmetric
charge distributions in [49].

3.3 Phenomenologic and microscopic models

We will give a brief review of the results obtained in [22] and summarize the different repre-
sentative models, their benefits and shortcomings. The most simple ansatz is based on the low
density theorem (LDT), where the optical potential Uopt(ω, r) of the Klein-Gordon equation
(3.4) is parameterized in terms of the isospin-averaged s-wave scattering length,

2µUopt(ω, r) = −4π

(

1 +
mK

mN

)

1

4

(

a
(I=0)

K̄N
+ 3a

(I=1)

K̄N

)

ρ(r) + O(ρ4/3). (3.16)

The LDT describes the K̄N interaction in a dilute nucleon gas and thus represents the low
density limit of other theoretical models. It connects the leading in-medium modification
of the antikaon self-energy to the antikaon-nucleon scattering length and can be derived
from non-relativistic many-body theory [54] as well as from quantum field theory [55]. The

empirical scattering lengths in the isospin channels are a
(I=0)

K̄N
= (−1.70 + i 0.68) fm and

a
(I=1)

K̄N
= (0.37 + i 0.60) fm respectively. The isospin averaged

aK̄N =
1

4

(

a
(I=0)

K̄N
+ 3a

(I=1)

K̄N

)

≈ (−0.18 + i 0.67)fm, (3.17)

leads to a repulsive mass shift. On the other hand data of kaonic atoms demand a sizeable
attraction at typical nuclear densities. Furthermore (3.17) is in conflict with the leading
order term of the chiral Lagrangian, known as the Weinberg-Tomozawa term [19]. As an
attractive antikaon self-energy probes the K̄N interaction below the threshold there is no
straight experimental access to this problem. Compliance with the LDT at low densities
and a changeover from repulsion to attraction in the vicinity of the nuclear surface can be
accomplished by a nonlinear effective density dependent scattering length aeff (kF ). The
density dependence is mainly due to the propagation of the Λ(1405) resonance in nuclear
matter, see for example [1–3,20]. Because of the mentioned deficiencies of the LDT it is not
considered in [22].

Despite the manifold efforts of the latter microscopic theories a simple χ2-fit of the optical
potential

2µUopt(r) = −4π

(

1 +
mK

mN

)

aeffρ(r) (3.18)
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was done in [21] and the strongly attractive scattering length – denoted by ’Gal’ –

aeff = (0.63 + i 0.89)fm (3.19)

leads to a fairly good agreement with the experimental data, thus violating (3.17). The
overlap of the antikaon wave function and the nucleus covers a large range of densities and
the existence of the Λ(1405) just 27MeV below the K−p threshold also suggests a density
dependent scattering length aeff (ρ(r)). First attempts to address this question were made
in [56] and [21] and the latter phenomenologic ansatz – denoted as ’Gal DD-term’ – gives

aeff → b0 +B0

[

ρ(r)

ρ(0)

]α

(3.20)

with α positive so that the second term vanishes for ρ(r) → 0 and the LDT is reproduced
if b0 ≈ (−0.15 + i 0.62)fm. A fit to the data gives B0 ≈ (1.66 − i 0.04)fm and α ≈ 0.24, but
there is no physical interpretation of the purely phenomenologic parameters entering (3.20).
Ansatz (3.20) leads to a deep attractive potential of about Re[Uopt] ≡ 200MeV in the nuclear
interior. Microscopic theories favour a shallow potential of about Re[Uopt] ≡ 40MeV.

Non-Local terms with gradients acting on the density distribution ρ(r) of the nucleus and
the antikaon wave function φ(r) were considered in [57] for the first time. In [58] the potential
– denoted by ’∇ Mizoguchi’ –

2µUopt(r,∇) = −4π

(

1 +
mK

mN

)

(aK̄Nρ(r) − b∇ρ(r)∇) , (3.21)

is used, using b ≈ (0.47 + i0.30)fm3 by fitting to the data. For aK̄N the empirical scattering
length (3.17) is used.

Microscopic theories of the antikaon self-energy in nuclear matter Π(ω,q, kF ) imply a
density dependent effective scattering length aeff (kF ) via

2µUopt(ω, r) = Π(ω = mK ,q = 0, kF (r)), (3.22)

where the density is parameterized by the Fermi momentum kF . The first approach is based
on the publication [1]. The antikaon self-energy is derived from a self-consistent many-body
theory with microscopic K̄N interaction. The Lagrangian density includes not only the
isospin doublet K† = (K−, K̄0) and N = (p, n) but also pions and the hyperon ground states
Λ(1115) and Σ(1195). The channels πΣ and πΛ couple strongly to the K̄N system and
the resummation of the ladder diagrams is done by means of the Bethe-Salpeter equation.
The free parameters were fitted to the empirical scattering data. The resulting scattering
length aeff (kF ) is shown in figure (3.1) on the left side. The rather shallow optical potential
of 40MeV at ρ0 is counter-balanced by a large absorptive imaginary part of 80MeV. The
complex energy dependence of the Λ(1405) resonance near the threshold is reproduced, as
self consistency leads to a compensation of the attractive K− mass shift with the repulsive
Pauli-blocking. The resonance stays just below the threshold near the vacuum position. The
obtained scattering length was applied to kaonic atoms via

2µUopt(ω, r) = −4π

(

1 +
mK

mN

)

aeff (kF (r))ρ(r) (3.23)

in [3] – denoted by ’Lutz’ – for the first time.
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Figure 3.1: Effective scattering lengths aeff (kF ) of [1] on the left and of [2] on the right hand
side.
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Figure 3.2: Slope parameter beff (kF ) on the left and ceff (kF ) on the right hand side, see [3].

The second microscopic model [59] – denoted by ’Oset’ – is based on a s-wave meson-
nucleon interaction with strangeness −1 and a Lippmann-Schwinger coupled channel formal-
ism. The interaction comprises the leading order terms of the chiral Lagrangian. The latter
interaction [59] is used for the self-consistent microscopic calculation of the K− self-energy in
nuclear matter [2]. Resummation is done by means of a Lippmann-Schwinger equation and
the nucleon propagator involves Pauli-blocking and a linearly density dependent mean-field
potential. The in-medium modification of π and K̄ mesons is taken into account via their
self-energies and as in [1] the dynamics of the Λ(1405) resonance is reproduced qualitatively.

The effective scattering lengths from [1] and [2] are depicted in Figure 3.1. The real part
of the scattering length from [2] changes from repulsion to attraction at about 100MeV,
corresponding to a density of ρ ≡ 0.04 ρ0. The impact of a dressed pion propagator on the
scattering length was found to be small, but the change of sign 25MeV below the corre-
sponding Fermi momentum in the scattering length of Lutz is expected to lead to larger level
widths.

The third and last microscopic model compared in [22] was published in [3] and is an
extension of the density dependent scattering length (3.23) by gradient terms. An expansion
of the self-energy in momentum q and energy ω induces additional terms with gradients acting
on the density distribution ρ and the wave function φ(r). The ansatz of handling non localities
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in [3] is more systematic than the purely phenomenologic ones, because the expansion of the
self-energy Π(ω,q, kF ) for small q and ω around mK leads to a replacement q → −i∇ in the
self-energy and the optical potential

2µUopt(ω, r) = Π(ω = mK ,q = 0, kF (r)). (3.24)

Note that the the antikaon momentum for a typical binding energy of 0.5MeV is |q| ≡
20MeV < kF for densities where the optical potential is of relevant order. The expansion of
the self-energy up to second order is given by

Π(ω,q, kF ) = − 8

3π

(

1 +
mK

mN

)

(

aeff (kF )k3
F + beff (kF )k2

Fq2
)

+
8

3π

(

1 +
mK

mN

)

ceff (kF )k2
F (ω −mK)

+ O
(

q4, (ω −mK)2,q2(ω −mK)
)

, (3.25)

where the slope parameter beff (kF ) and ceff (kF ) are corrections to the scattering length aK̄N
and can be stated analytically, see [20]. The numerical results for the slope parameters related
to the effective scattering length (3.24) are shown in Figure 3.2. Based on the expansion (3.25)
there are several combinations for non-local terms in the Klein-Gordon equation (3.4) induced
by a heuristic replacement q → −i∇. We emphasize that the gradient arrangement of ∇ and
∇2 acting on ρ and the wave function is not unique and an expansion of the self-energy for
small momenta is not valid anymore in the border region of the density profile. Apart from
this the self-energy is obtained self-consistently, thus the meaning of an expansion of the very
same seems to be questionable. In [3] consequently only linear gradients were considered,
affecting the density distribution, the wave function as well as beff (kF ). As the gradients act
on the full wave function φ(r) the radial part ul(r) has to be renormalized and finally we end
up with the Klein-Gordon equation

Z(r)

(

d2

dr2
− l(l + 1)

r2

)

ul(r) = Z̄(r)

{

µ2 −
(

µ− E − i
Γ

2
− Vem(r)

)2
}

ul(r)

+ U1(r)ul(r) + U2(r)

(

d

dr
ul(r)

)

(3.26)

with the potentials

U1(r) = − 8

3π

(

1 +
mK

mN

){

aeff (kF (r))k3
F (r) +

d

rdr
beff (kf (r))k

2
F (r)

}

,

U2(r) =
8

3π

(

1 +
mK

mN

)

d

dr
beff (kF (r))k2

F (r) (3.27)

and the renormalization functions

Z(r) = 1 − 8

3π

(

1 +
mK

mN

)

beff (kF (r))k2
F (r),

Z̄(r) = 1 − 8

3π

(

1 +
mK

mN

)

k2
F (r)

2mK
ceff (kF (r)). (3.28)
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12
6 C 32

16S
35
17Cl

aeff Gal 598 462 897

DD-term Gal 487 549 1057

∇ Mizoguchi 451 440 813

aeff (kF ) Oset 639 629 1140

aeff (kF ) Lutz 607 618 1101

aeff , beff , ceff Lutz 565 555 995

Experiment 590 ± 80 494 ± 38 1000 ± 170

Table 3.3: Level shifts ∆E [eV] for different phenomenologic and microscopic approaches,
compared with experimental value.

3.3.1 Comparison of phenomenologic and microscopic models

The phenomenologic and microscopic models briefly reviewed in the preceeding section were
compared in [22] based on N = 24 measurements with different nuclei over the whole mass
region from Lithium to Uranium. For the nuclei from Table 3.1 we give the detailed results
for the level shift ∆E in Table 3.3 and the level width Γ in Table 3.4. The spreading for
different isotopes of one nuclei was found to be small. If more than one measurement exists
for one nuclei the experimental value given corresponds to a mean value identical with [60].
We emphasize that the tendencies for the different models stay basically the same over the
whole range of nuclei and the predictable power does not change with the nuclear mass and
the parameters of the density distribution. For the whole range of nuclei we state the χ2/N in
Table 3.5 separately for the level shift and width, because the largest deviation is manifestly
due to a significant underestimation of the level width.

Still the best agreement with the experimental values can be achieved with the simple
phenomenologic ansatz (3.18) and (3.20). A remarkable feature is the good reproduction of
the level width, which is an effect of the deep potential compared to the shallow microscopic
ones. Even though the model (3.21) is fitted to the experimental data it systematically
underestimates the level width. Of special interest is a comparison of the two microscopic
density dependent scattering lengths, see Figure 3.1. As already mentioned the change from
repulsion to attraction appears at lower Fermi momentum for the scattering length from [2],
which indeed leads to a better agreement for the level width compared to aeff (kF ) from [1].
Nevertheless it is still below the values of the phenomenologic models by Gal. The energy
shift is overestimated by both effective scattering lengths. Taking into account the gradient
terms and wave function renormalization of (3.26) does not only improve the level width, but
still reproduces the energy shift quite well. Hence a further understanding of the non-local
nature of kaonic atoms is demanded.

Concerning the survey especially of heavy nuclei it is questionable if such rudimentary
descriptions of the nuclei properties based on a Thomas-Fermi theory density distribution is
still applicable. As soon as deformations and low lying nuclear excitations come into play one
should think about a more sophisticated theoretical description. This objection in particular
applies as soon as deeply bound states and hyper-nuclei are considered.
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12
6 C 32

16S
35
17Cl

aeff Gal 1360 1968 3181

DD-term Gal 1501 2053 3276

∇ Mizoguchi 1187 1615 2622

aeff (kF ) Oset 1314 1636 2621

aeff (kF ) Lutz 1024 1328 2149

aeff , beff , ceff Lutz 1093 1439 2332

Experiment 1730 ± 150 2187 ± 103 2910 ± 240

Table 3.4: Level widths Γ [eV] for different phenomenologic and microscopic approaches,
compared with experimental value.

aeff Gal DD-term Mizoguchi a(kF ) Oset a(kF ) Lutz a, b, c

χ2/N Shift ∆E 1.41 1.06 1.61 3.74 3.96 1.84

χ2/N Width Γ 2.07 1.73 6.31 5.70 14.75 11.11

χ2/N Mean value 1.74 1.40 3.96 4.72 9.36 6.47

Table 3.5: χ2-test of level shifts ∆E and widths Γ for N = 24 nuclei.





Chapter 4
Non-Local approach for kaonic atoms

Due to the presence of subthreshold resonances in the K̄N system a conventional gradient
expansion for the calculation of kaonic atom levels is inappropriate. The following ansatz for
a non-local optical potential rests on the developments of [22]. It accounts for the momen-
tum dependence of the underlying scattering amplitudes and exhibits an approximation-free
treatment of the non-local wave function. For brevity we will use the notation ’non-local
wave function’ for any wave function that has been calculated from a Klein-Gordon equation
including a non-local optical potential as introduced below. We will also include nucleon
mean-field potentials as discussed in Chapter 2.

We start from the Klein-Gordon equation

(

∇2 − µ2 + (ω − Vem(r))2
)

φ(r) = 2µ

∫

d3r′ U(ω − Vem(r), r, r′)φ(r′) (4.1)

for the antikaon wave function φ(r). It includes a non-local optical potential U(ω−Vem(r), r′, r).
One may introduce an effective local potential satisfying

Uopt(ω − Vem(r), r) =

∫

d3r′ U(ω − Vem(r), r′, r)
φ(r′)
φ(r)

, (4.2)

referred to as ’Trivially Equivalent Local Potential’ (TELP) in the literature. We will also
make use of (4.2) for a descriptive discussion and comparison of the potentials. However, we
will not solve the integro-differential equation (4.1) in terms of an TELP, as it does not allow
for roots of the wave function φ(r) and therefore restricts the behaviour of its solution.

The non-local potential in (4.1) is linked to the non-local antikaon self-energy Π(ω, r′, r)
via

2µU(ω, r′, r) = Π(ω, r′, r). (4.3)

Our aim is to establish an approximate expression for Π(ω, r′, r) in terms of the in-medium
K̄N scattering amplitudes TK̄N that have been calculated in Chapter 2. We proceed with the
inverse Wigner-transform of the self-energy in Wigner-representation, ΠW (ω,q,R) defined as

Π(ω, r′, r) =

∫

d3q

(2π)3
e−iq(r′−r)ΠW (ω,q,R) , R =

r + r′

2
. (4.4)
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In the course of this chapter we will use the Wigner representation A(q,R) of any two-point
function A(r′, r) as follows:

A(r′, r) =

∫

d3q

(2π)3
e−iq·(r−r′)A (q,R) . (4.5)

The actual form of the correlator ΠW (ω,q,R) which may attain also negative values is yet
unknown. One may raise the question whether a local-density identification with the antikaon
self-energy

ΠW (ω,q,R)
?
= Π(ω,q, kF (R)) (4.6)

is justified and sufficient. Here kF (R) is the local Fermi momentum of the nucleons.

4.1 Non-Local antikaon self-energy

The computation of the non-local optical potential (4.3) from a given self-energy is straightfor-
ward once we have defined a systematic way of how a self-consistent K̄N scattering amplitude
relates to a non-local antikaon self-energy. The nucleon propagator is

i SN (p,R) =

∫

d4x〈N |T Ψ(R+
x

2
)Ψ̄(R − x

2
)|N〉e−ix·p

=
i

/p−mN − ΣN (p,R)
(4.7)

with a nucleon field Ψ and the energy eigenstate |N〉 describing a (ground state) nucleus
localized around the origin. We assume the nucleon self-energy ΣN in (4.7) to be of the form

ΣN (p,R) = −ΣS(R) + ΣV (R)γ0

+iε [Θ(|p| − kF (R)) − Θ(kF (R) − |p|)] Θ(p0) (4.8)

with scalar and vector mean fields that do not depend on time. Since the antikaon in our
case is not probing details of the nuclear structure the rough approximation (4.8) should
be sufficient. Furthermore the nucleon self-energy modeled by scalar and vector mean fields
proved to be well suited for modeling the ground state of finite nuclei with good accuracy [23].
We have to require that the choice of (4.7) and the energy and momentum independent self-
energy (4.8) reproduces the nuclear density distribution ρ of the nucleus, that is

ρ(R) = −iTr

∫

d4p

(2π)4
∆SN(p0,p,R) =

2k3
F (R)

3π2
. (4.9)

The in-medium nucleon propagator ∆SN in (4.9) is given by

∆SN (p0,p,R) =
2πi

2E∗
N

(

/p+mN − ΣS(R) − ΣV (R)γ0

)

Θ (kF (R) − |p|)

× δ (p0 − ΣV (R) −E∗
N ) (4.10)

with E∗
N =

√

(mN − ΣS(R))2 + p2.
From previous studies it is known that a self-consistent treatment of the antikaon self-

energy is essential. The numerical evaluation of an in-medium antikaon self-energy for finite
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nuclei is a formidable task. Therefore we have to propose and prove certain simplifications
that allow to use a self-energy determined for infinite nuclear matter as established in Chapter
2 or [5].

Let us start with a generic, properly isospin averaged vacuum scattering amplitude in
coordinate space T̄ (p0,y,y

′, ω, r, r′). It depends on the two nucleon coordinates y′ and y and
the antikaon coordinates r′ and r, and the corresponding energies p0 and ω, respectively. The
non-local antikaon self-energy in coordinate space is then given by

Π(ω, r′, r) = iTr

∫

d3y′
∫

d3y

∫

dp0

2π
T̄ (p0,y,y

′;ω, r′, r)∆SN (p0,y
′,y) (4.11)

and does not depend on the time component t− t′ for a stationary, bound K̄N system. Hence
ω and p0 are the only energy components. The in-medium nucleon propagator ∆SN (p0,y

′,y)
is given by the inverse Wigner transform of (4.10),

∆SN(p0,y
′,y) =

∫

d3p

(2π)3
∆SN

(

p0,p,
y + y′

2

)

e−ip(y′−y). (4.12)

The free-space scattering amplitude T̄ (p0,y,y
′, ω, r, r′) is translational invariant. By per-

forming a Fourier transformation it can be connected to a momentum dependent amplitude
T̄ (q̄, q, w) with the antikaon initial and final four-momenta qµ = (ω,q) and q̄µ = (ω,q′):

T̄ (p0,y,y
′;ω, r′, r) =

∫

d3q′

(2π)3

∫

d3q

(2π)3

∫

d3w

(2π)3
T̄ (ω,q′,q;ω + p0,w)e−iq·reiq

′·r′eiw(y′−y).

(4.13)
The external momentum w = p + q = p̄ + q̄ assures momentum conservation, with the
nucleon four-momenta pµ = (p0,p) and p̄µ = (p0,p

′). We proceed with the Wigner transform
Π(ω,q,R) of the self-energy Π(ω, r′, r) (4.11) analogous to (4.4),

Π(ω,q,R) = iTr

∫

d3zΠ
(

ω,R +
z

2
,R − z

2

)

e−iq·z (4.14)

with r′ = R + z
2 and r = R − z

2 . After combining (4.11), (4.12), (4.13) and (4.14) we can
carry out the integration in y and y′ by using the identity

∆SN

(

p0,p,
y + y′

2

)

= e
y+y′

2
∂

∂R ∆SN(p0,p,R). (4.15)

Here the differentiation with respect to R in (4.15) acts excusively on ∆SN (p0,p,R). Com-
bining all remaining exponents we can perform all momentum integrations besides d4p and
arrive at the expression

Π(ω,q,R) = iTr

∫

d4p

(2π)4
T̄

(

ω,q − i

2

∂

∂R
,q +

i

2

∂

∂R
;ω + p0,w, kF (R)

)

∆SN (p0,p,R),

(4.16)
at which w = p+q does not contain any derivative in R. Equation (4.16) for the antikaon self-
energy is valid without approximation for a free-space amplitude. The differential operator
∂
∂R probes the R-dependence of the nucleon propagator (4.12) due to the finite size of the
nucleus.
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Up to now in (4.16) we were considering a vacuum scattering amplitude T̄ but matters
turn more complicated once in-medium modifications are taken into account. We have to
analyze to what extent expression (4.16) is still valid.

First let us have a look at a toy interaction in leading order g of some coupling strength.
For simplicity we suppress the energy argument ω of the self-energy. The exact expression
for the self-energy in coordinate space is

Π(r′, r) = i gTr
[

∆SN (r′, r)δ3(r′ − r)
]

+ O(g2). (4.17)

With (4.8) and (4.9) the Wigner transform of the self-energy (4.17) is given by

Π(q,R) = g ρ(R) + O(g2, k5
F ). (4.18)

The second order contribution in the coupling constant g in coordinate space looks like

Π(r′, r) = g2DK̄(r′, r)Tr
[

SN (r′, r)∆SN (r, r′)
]

(4.19)

with the Wigner-transform of SN (r′, r) and ∆SN (r, r′) of (4.7) and (4.10) respectively. For the
antikaon propagator we allow for an effective antikaon self-energy Πeff (q,R). After defining
the loop function

J(w,R) = −i
∫

d4l

(2π)4
DK̄(l,R)SN (w − l,R) (4.20)

with

DK̄(q,R) =
1

q2 −m2
K − Πeff (q,R)

(4.21)

we can state the self-energy in Wigner representation up to second order:

Π(q,R) = iTr

∫

d4p

(2π)4
[

g + g2J(p + q,R) + O(g3)
]

∆SN (p,R). (4.22)

Result (4.22) is even valid at order g2 if used with the in-medium scattering amplitude

T (w,R) =
g

1 − g J(w,R)
= g + g2 J(w,R) + O(g3), (4.23)

where T (w,R) corresponds to an amplitude calculated for infinite nuclear matter, thus
T (w,R) = T (w, kF (R)). This also holds if an antikaon self-energy Πeff = Π(q, kF (R))
is used in (4.21).

A continuation of the derivation to higher orders in the coupling g turns out to be more
and more complex and for a further investigation we refer to [61]. The evaluation of the
non-local higher order corrections – given an in-medium scattering amplitude – turns out to
be a tedious task and we will restrict our analysis to the form given by (4.16), which is exact
up to second order also for (effective) in-medium scattering amplitudes.

4.2 Non-Local optical potential

We parameterize the full wave function φ(r) in terms of the radial wave function ul(r) with
r = |r| given as solution of the radial Klein-Gordon equation. The subscript l denotes the
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angular dependence of the radial wave function and the non-local potential. The angular
behaviour of the full wave function is determined by Ylm(ϑ,ϕ):

φlm(r) =
ul(r)

r
Ylm(ϑ,ϕ) (4.24)

with

ul(r) = rl+1 for r → 0 (4.25)

from phase-space considerations. The angular behaviour of the potential Ul(ω−Vem(r), r′, r)
is yet unknown, but because of the intrinsic radial symmetry it should depend only on l,
which is indicated by the subscript l. From applying a Taylor expansion to the wave function
φ(r′) around r′ = r it is obvious that the right hand side of the Klein-Gordon equation

2µUl(ω, r
′)φlm(r′) ∝ Ylm(ϑ′, ϕ′) (4.26)

with

2µUl(ω, r)φlm(r) = 2µ

∫

d3r′ Ul(ω, r, r
′)φlm(r′) (4.27)

holds. Thus we can project on the proper angular dependence by acting with

l
∑

m=−l

1

2l + 1

∫

dϑ′dϕ′Y ∗
lm(ϑ′, ϕ′) (4.28)

on

2µUl(ω, r) =

∫

d3r′
∫

d3q

(2π)3
e−iq(r−r′)Π

(

ω,q,
r + r′

2

)

φlm(r′). (4.29)

The product of Ylm(ϑ,ϕ) and Y ∗
lm(ϑ′, ϕ′) can be reduced to a Legendre polynomial by the use

of the addition theorem

1

2l + 1

l
∑

m=−l
Y ∗
lm(ϑ′, ϕ′)Ylm(ϑ,ϕ) =

1

4π
Pl(cos θ), (4.30)

whereas the argument of the Legendre polynomial denotes the cosine of the angle between r

and r′:

cos θ =
r · r′

|r| · |r′| . (4.31)

Finally we arrive at

2µUl(ω, r) =

∫

d3r′
∫

d3q

(2π)3
e−iq(r−r′)Π

(

ω,q,
r + r′

2

)

Pl(cos θ)
ul(|r′|)
|r′| (4.32)

for the right-hand-side of the Klein-Gordon equation.

After the non-local potential (4.32) has been specified in terms of the non-local self-energy
(4.16) relying on the approximation scheme described in the previous section we have to cal-
culate the optical potential from a given in-medium isospin averaged scattering amplitude
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T̄ (q̄, q, w,R). For a detailed review of the self-consistent treatment of K̄N in-medium scat-
tering we refer to Chapter 2, here we recall the generic structure of the amplitude decomposed
in terms of the projector algebra Pij and Qij specified in Section 2.2.1:

T̄ (q̄, q, w, kF ) =

2
∑

i,j=1

T̄
(p)
ij (v0,w, kF )Pij(v0,w)

+
2
∑

i=1

8
∑

j=3

(

T̄
(p)
ij (v0,w, kF )Pµij(v0,w) qµ + T̄

(p)
ji (v0,w, kF ) q̄µ P

µ
ji(v0,w)

)

+
8
∑

i,j=3

T̄
(p)
ij (v0,w, kF ) q̄µ P

µν
ij (v0,w) qν

+

2
∑

i,j=1

T̄
(q)
ij (v0,w, kF ) q̄µQ

µν
ij (v0,w) qν (4.33)

where the density dependence via kF is also contained in

v0 = w0 − ΣV (kF ). (4.34)

Given the amplitude (4.33) we can calculate the antikaon self-energy Π(ω,q,R) according
(4.16). It holds

Π(ω,q,R) = iTr

∫

d4p

(2π)4
T̄

(

ω,q − i

2

∂

∂R
,q +

i

2

∂

∂R
;ω + p0,w, kF (R)

)

∆SN (p0,p,R)

= −2

8
∑

i,j=1

∫

d3p

(2π)3
1

E∗
N

C
(p)
ij (∇R, ω,q, w0,w)T̄

(p)
ij (v0,w, kF (R))Θ(kF (R) − |p|)

−2

2
∑

i,j=1

∫

d3p

(2π)3
1

E∗
N

C
(q)
ij (∇R, ω,q, w0,w)T̄

(q)
ij (v0,w, kF (R))Θ(kF (R) − |p|)

(4.35)

with w0 = ω + E∗
N , w = p + q and E∗

N =
√

m∗
N

2 + p2. The coefficient functions C
(p,q)
ij

generalize the corresponding functions c
(p,q)
ij derived in [5] for the case of infinite nuclear

matter to the case of finite nuclei and can be decomposed into four contributions,

C
(p,q)
ij (∇R, q, w) = c

(p,q)
ij,0 (q, w) +

1

4
∇2

Rc
(p,q)
ij,1 (q, w)

+
1

4
(w · ∇R)2 c

(p,q)
ij,2 (q, w)

+
1

4
(w · ∇R) (p · ∇R) c

(p,q)
ij,3 (q, w), (4.36)

in which the first term exactly coincides with the coefficients given in [5], c
(p,q)
ij,0 (q, w) =

c
(p,q)
ij (q, w). The remaining three contributions account for the non-local nature of the self-

energy (4.35) and are inherently frame-dependent. They can be derived by simple substitu-

tions from general covariant frame-independent coefficient functions c
(p,q)
ij (q, v, u). The latter
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coefficients c
(p,q)
ij (q, v, u) are defined by:

c
(p)
ij (q, v, u) =

1

2
Tr
[

(/p− ΣV /u+m∗
N )Pij(v, u)

]

for i, j < 3,

c
(p)
ij (q, v, u) =

1

2
Tr
[

(/p− ΣV /u+m∗
N )Pµij(v, u)qµ

]

and

1

2
Tr
[

(/p− ΣV /u+m∗
N )q̄µP

µ
ij(v, u)

]

for i < 3,

c
(p)
ij (q, v, u) =

1

2
Tr
[

(/p− ΣV /u+m∗
N )q̄muP

µν
ij (v, u)qν

]

for i, j > 2,

c
(q)
ij (q, v, u) =

1

2
Tr
[

(/p− ΣV /u+m∗
N )q̄µQ

µν
ij (v, u)qν

]

. (4.37)

Note that the aforementioned expressions correspond to the old coefficients [5] in terms of wµ

by substituting pµ → pµ + ΣV uµ, therefore we will state the coefficients in terms of wµ and

shift the scalar amplitudes T̄
(p,q)
ij entering the self-energy calculation (4.35) and (4.33). The

covariant coefficient functions c
(p,q)
ij (q, w, u) are given in Appendix B.3. The frame dependent

coefficient functions for finite nuclear matter are defined via

1

2
Tr

[

(/p +m∗
N )T̄

(

ω,q− i

2
∇R,q +

i

2
∇R;ω + p0,q + p, kF (R)

)]

=

8
∑

i,j=1

c
(p)
ij;1(ω,q,p)T̄

(p)
ij (w0,w, kF (R)) +

2
∑

i,j=1

c
(q)
ij;1(ω,q,p)T̄

(q)
ij (w0,w, kF (R))

+
1

4
∇2

R

(

8
∑

i,j=1

c
(p)
ij;2(ω,q,p)T̄

(p)
ij (w0,w, kF (R))

+
2
∑

i,j=1

c
(q)
ij;2(ω,q,p)T̄

(q)
ij (w0,w, kF (R))

)

+
1

4
(w · ∇R)2

(

8
∑

i,j=1

c
(p)
ij;3(ω,q,p)T̄

(p)
ij (w0,w, kF (R))

+

2
∑

i,j=1

c
(q)
ij;3(ω,q,p)T̄

(q)
ij (w0,w, kF (R))

)

+
1

4
(w · ∇R) (p · ∇R)

(

8
∑

i,j=1

c
(p)
ij;4(ω,q,p)T̄

(p)
ij (w0,w, kF (R))

+

2
∑

i,j=1

c
(q)
ij;4(ω,q,p)T̄

(q)
ij (w0,w, kF (R))

)

(4.38)

in terms of wµ. The coefficients c
(p,q)
ij,0 (q, w) = c

(p,q)
ij (q, w) are detailed in Appendix A.9. They

can be derived from (4.37) with

q̄ · q → q · q, q̄ · ŵ → q · ŵ, q̄ · u→ q · u, p · q̄ → p · q (4.39)
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and
ŵµ = wµ/

√
w2, w = p+ q, u = (1,0), p = (EN ,p), q = (ω,q). (4.40)

The ’non-local’ coefficients c
(p,q)
ij,a (q, w) with a = 1, 2, 3 follow by q̄ ≡ q′, q ≡ q and

q′ → q− i

2
∇R, q → q +

i

2
∇R. (4.41)

It is observed that the gradient ∇R appears only quadratically in (q · q′), (q ·w)(q′ ·w) and
(q ·p)(q′ ·w). The ’non-local’ coefficients are listed in Appendix B.4 and enjoy the symmetry

relation c
(p,q)
[ij],a = c

(p,q)
[ji],a. In P-space we have c

(p)
[1j],a = 0, c

(p)
[2j],a = 0 and c

(p)
[i1],a = 0, c

(p)
[i2],a = 0

respectively for a = 1, 2, 3. All the coefficients which are not given explicitly or by symmetry
relation are identically zero. For the complete matrix structure also coefficients linear in ∇R

will arise, ∝ (p · ∇R) and ∝ (w · ∇R). Still there are no such contributions in Q-space and in
P-space for terms involving Pij and q̄µP

µν
ij qν . We don’t have to take into account these terms,

as the corresponding coefficient matrix turns out to be antisymmetric, c
(p)
ij = −c(p)ji . Hence all

such contributions vanish as the amplitude matrix T̄
(p)
ij is symmetric and the summation for

the self-energy over all matrix elements will not contribute. From (4.35) and (4.36) we derive

Π(ω,q,R) =

∫

d3p

(2π)3

[

Π0(q, p,R) +
1

4
∇2

RΠ1(q, p,R) +
1

4
(w · ∇R)2Π2(q, p,R)

+
1

4
(w · ∇R)(p · ∇R)Π3(q, p,R)

]

Θ(kF (R) − |p|) (4.42)

where we defined the integral kernels

Πa(q, p,R) = −
8
∑

i,j=1

2

E∗
N

c
(p)
ij,a(q, w)T̄ij(p)(w, kF (R))

−
2
∑

i,j=1

2

E∗
N

c
(q)
ij,a(q, w)T̄ij(q)(w, kF (R)), (4.43)

with a = 0, . . . , 3. Now with (4.9), (4.32), (4.42) and (4.43) we have a rule on how to calculate
the non-local optical potential Ul(ω, r, r

′), given an in-medium K̄N scattering amplitude

T̄
(p,q)
ij .

Rather than performing the fault-prone derivatives on the scattering amplitudes in (4.42)
numerically we apply a partial integration with respect to R. All terms that are of the
form [u(R)v(R)]R→∞

R=0 , R = |R| and that are not included in the integral do not contribute,
as for R = 0 because of the phase-space element R2 in spherical coordinates it gives zero.
For R → ∞ we impose the optical potential to vanish. Hence after partial integration the
self-energy for a rotationally symmetric system (R = |R|) reads

Π(ω,q,R) =

kF (R)
∫

0

d3p

(2π)3

[

Π0(q, p,R) − q2Π1(q, p,R) − (w · q)2Π2(q, p,R)

−(w · q)(p · q)Π3(q, p,R)

]

Θ(kF (R) − |p|) (4.44)
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and it is evident that (4.44) depends on R only via kF (R).

The one-dimensional radial Klein-Gordon equation is given by

(

d2

dr2
− l(l + 1)

r2

)

ul(r) −
[

µ2 − (ω − Vem(r))2
]

ul(r)

=

∞
∫

0

dr′ r′ Ul(ω − Vem(r), r, r′)ul(r
′) (4.45)

with the optical potential

Ul(ω, r, r
′) =

∞
∫

0

dq q

+1
∫

−1

d cos θ
sin(q|r − r′|)
π|r − r′| Pl(cos θ)Π(ω, q,R) (4.46)

after the angular integration has been carried out. Note that the potential (4.46) depends on
l via Pl(cos θ) and thus has to be calculated for each atomic level separately.

4.3 Non-Local semi-microscopic approximation and numerical
results

We continue our investigation of non-local effects in kaonic atoms with a simplified semi-
microscopic model. Writing the non-local potential in terms of some isospin-averaged scat-
tering amplitudes T̄K̄N rather than in terms of a self-energy Π allows a more transparent and
amenable survey. Recalling that expression (4.16) is exact as long as only vacuum scattering
amplitudes are considered we can test out non-local ansatz by just taking into account free-
space scattering [4]. It will provide a first impression of the requirements for a full non-local
calculation.

4.3.1 Non-Local optical potential in the Π = −ρt approximation

Our approximation for the semi-microscopic model relies on the assumption that we can
neglect the momentum dependence p = 0 of the nucleon in (4.35). Furthermore we set
the antikaon energy ω to be constant, ω = mK . The non-local self-energy Π ≡ Π(ω =
mK ,q, kF (R)) that enters the right hand side of the Klein-Gordon equation (4.1)

2µ

∫

d3r′Ul(ω, r, r
′)φ(r′) =

∫

d3r′
∫

d3q

(2π)3
e−iq·(r−r′)Π(ω,q, kF (R))φ(r′) (4.47)

follows from (4.42) and (4.43). For simplicity in the following we will write r = |r|, r′ = |r′|,
q = |q|. Projection on proper angular momentum will be carried out by applying (4.28) and
(4.30) to (4.47) as has been done before in Section 4.2.

With the former assumptions the self-energy in our semi-microscopic model is given by

Π(ω = mK , q) = −ρ T̄ (q) (4.48)
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and

T̄ (q) =
1

2

(

1 +
mK +mN√

s

)

M̄ 1
2

−(q) +
1

2

(

−1 +
mK +mN√

s

)

M̄ 1
2

+(q)

+q2

[

m2
N ((mK +mN +

√
s))

√
s
3 +

(

1 +
mK +mN√

s

)(

q2

s
− 1

)

]

M̄ 3
2

+(q).

(4.49)

The density dependence kF (R) of the self-energy in (4.47) is suppressed, because we are
dealing with free-space scattering amplitudes exclusively. The projector decomposition of the
vacuum scattering amplitude T̄ (q) follows (2.22) and (2.23). A more precise derivation of
(4.48) and (4.49) is deferred to Appendix B.6. The isospin index I is suppressed, as all the
expressions will be of the same type for I = 0 and I = 1 and we are dealing with isospin
averaged objects T̄ = 1

4

(

T (I=0) + 3T (I=1)
)

. For brevity the scalar amplitudes M̄J± are given
in terms of antikaon momentum q instead of

√
s as we approximate s = (mK +mN )2 − q2.

Also the argument kF of the self-energy (4.47) can be suppressed, because at the moment we
are considering free-space amplitudes exclusively. In (4.49) the J = 1

2 s- and p-wave as well
as the J = 3

2 p-wave contributions are taken into account. Because the Λ(1520) resonance is
located above the antikaon-nucleon threshold the J = 3

2 d-wave is neglected.

The reduced vacuum amplitudes M
(I)

JP for s-wave, J = 1
2 p-wave and J = 3

2 p-wave
and d-wave were shown in Figures 2.1 and 2.2 as functions of

√
s for isospin I = 0 and

I = 1, respectively. The J = 1
2 p-wave reduced vacuum amplitude contains the Λ(1115) and

Σ(1195) ground states. The structure of the real part given on a finite grid cannot be resolved
sufficiently, furthermore the imaginary contribution to the self-energy integral (4.48) has to
be evaluated analytically. On the other hand we expect the contribution of the poles to the
self-energy integral (4.50) to be negligible. In the Appendix B.5 we describe how to handle
the pole structure of the J = 1

2 p-wave vacuum amplitude analytically in order to examine its

effect on the non-local self-energy. For the determination of the CJ
±

(q) we refer to Appendix
B.6.

With the substitution Π = −ρ T̄ (q) we obtain from (4.47) and (4.48)

2µ

∫

d3r′Ul(r, r
′)φ(r′) =

= −
∫

d3r′
∫

d3q

(2π)3
e−iq(r−r′)T̄ (q)ρ

(

∣

∣

∣

r + r′

2

∣

∣

∣

)

Pl(cos θ)
u(r′)
r′

= −
r′max
∫

0

dr′
1
∫

−1

d cos θ

qmax
∫

0

dq

π
q r′

sin (q|r − r′|)
|r− r′| T̄ (q)ρ

(

∣

∣

∣

r + r′

2

∣

∣

∣

)

Pl(cos θ)u(r
′).

(4.50)

In the latter expression the angular integration for cos θ′ = q·a
q·a , a = r − r′ has been done

analytically by using
∫ 1

−1
dz′e−iqaz

′

= 2
sin qa

qa
. (4.51)

The integration in cos θ and q has to be done numerically.
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4.3.2 Implementation notes, local limit benchmark and iteration procedure

For our studies a momentum cutoff of qmax = 700MeV is used in (4.50). The optical po-
tential Ul(r, r

′) is highly oscillatory, whereas the oscillation frequency is determined by the
momentum cutoff qmax and thus the momentum cutoff has to be chosen carefully. We checked
the momentum cutoff and the necessary grid size and spacing of Ul(r, r

′) by examining the
local limit

T̄ (q)
loc→ T̄ (q = 0). (4.52)

The latter condition should reproduce the level shifts and widths from a scattering length
calculation. In the local limit the integration in dr′ can be done analytically and should
coincide with the full numerical solution from the non-local model. For the right hand side
of the Klein Gordon equation (4.47) it follows

2µ

∫

d3r′Ul(r, r
′)φ(r′) =

= −T̄ (0)

∫

d3r′
∫

d3q

(2π)3
e−iq(r′−r)ρ

(

∣

∣

∣

r + r′

2

∣

∣

∣

)

Pl(cos θ)
u(r′)
r′

= −T̄ (0)

∫

d3r′ δ3
(

r′ − r
)

ρ

(

∣

∣

∣

r + r′

2

∣

∣

∣

)

Pl(cos θ)
u(r′)
r′

= −T̄ (0)ρ(r)
u(r)

r
(4.53)

with proper normalization δ(x) = 1
2π

∫

dqeixq. The latter expression can be compared to the
effective potential from the local density theorem:

2µU(r)ϕ(r) → 2µU(r) = −T̄ (0)ρ(r) ⇔ 2µU(r) = −4π

(

1 +
mK

mN

)

ρ(r)a. (4.54)

Recall that the s-wave scattering amplitude determines the scattering length a via

a = T̄ (0)

(

4π

(

1 +
mK

mN

))−1

. (4.55)

For q = 0 only the s-wave contributes to T̄ (q) due to phase-space arguments. The local bench-
mark calculations can easily be done using conventional methods for local wave equations,
see the previous Chapter 3.

For illustration of the non-local wave functions we will show the reduced wave function
uredl ,

uredl (r) =
ul(r)

rl+1
, (4.56)

where the dominating phase space factor has been divided out. The complex wave function
is given in terms of the modulus |uredl (r)| and the phase ϕ(r) with uredl (r) = |uredl (r)|eiϕ(r),
which is between −π and +π and should converge to a constant for large radii. For non-
local potentials we show the TELP potential Ul(r)

TELP already introduced in (4.2) and for
a radially symmetric potential it is given by

Ul(r)
TELP =

1

ul(r)

∫

Ul(r, r
′)ul(r

′)dr′. (4.57)
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Note that the latter expression fails as soon as the non-local wave function exhibits any roots.
An equidistant grid with a spacing of 0.1 fm and a range between r, r′ = 20 fm for carbon and
up to r, r′ = 40 fm for nickel ensures a stable local potential (4.57) within the typical range
of about 10 fm. Due to the finite grid size in r′ the optical potential starts oscillating further
out. The integral in (4.45) is approximated by a Riemann sum.

In Figure 4.1 we compare the wave function based on a local LDT calculation with a
constant scattering length (3.16) obtained from [5],

aK̄N = (−0.25 + i 0.71) fm, (4.58)

and the non-local wave function iterated from the corresponding non-local potential in the
local limit (4.52), thus corresponding to the constant scattering length (4.58). The results
were obtained for sulfur. In the lower left panel the local optical potential (3.16) and the
TELP potential from the iterated solution are shown. The density distribution in terms
of the nucleon Fermi momentum kF (r) of sulfur is plotted in the lower right panel. The
agreement of the local and non-local wave function is excellent, also the local and iterated
TELP potential agree very well. The deviation below 1 fm is due to the numerical error of the
wave function, by which the non-local potential has been divided. The TELP potential is just
used for illustration and does not enter further calculations. Both calculations agree on the
same energy level shift ∆E = 496 eV and width Γ = 1025 eV and the numerical techniques of
our non-local calculations are approved.

Performing the iteration procedure of non-local potentials appeared to be a tedious task
in some cases and requires a modifications of the straightforward ansatz (4.45) for the Klein-
Gordon equation. Recall the non-local Klein-Gordon equation with the non-local optical
potential (4.62)

[

d2

dr2
− l(l + 1)

r2
− µ2 + (ω − Vem(r))2

]

ul(r) =

r′max
∫

0

dr′ U int
l (r′, r)ul(r

′). (4.59)

Equation (4.59) is solved by iteration, starting with an initial wave function u
(0)
l (r′). The

potential kernel potential kernel U int
l (r′, r) is calculated once and the remaining spacial inte-

gration dr′ is performed after each iterative step to obtain the right-hand-side of the Klein-
Gordon equation. The iteration should converge to a wave function φ(r) and eigenvalue ω.

If no initial wave function is given explicitly we require u
(0)
l (r′) = 0 and the first iterative

step will yield the pure electromagnetic solution. It turned out that we have to modify (4.59)
in order to guarantee the convergence of the iteration procedure. We rewrite the integro-
differential equation (4.59) according to

[

d2

dr2
− l(l + 1)

r2
− µ2 + (ω − Vem(r))2

]

u
(n+1)
l (r) =

r′max
∫

0

dr′ kaU
int
l,a (r′, r)ũ(n)

l (r′). (4.60)

with the n-th wave function ũ
(n)
l (r′) being the average over K former wave functions with

weights wk:

ũ
(n)
l (r′) =

K
∑

k=1

wku
(n−1−k)
l (r′) (4.61)
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Figure 4.1: Comparison of the reduced wave function uredl (r) and potential Ul(r) from a
local potential with a constant scattering length and the iterated non-local wave function and
TELP potential utilising a corresponding non-local potential in the local limit. The results
are shown for sulfur.
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12
6 C 32

16S
35
17Cl

∆E [eV] Γ [eV] ∆E [eV] Γ [eV] ∆E [eV] Γ [eV]

S-wave only 211 112 232 186 381 417

S-wave and

J = 3
2 p-wave 197 77 218 152 364 350

Experiment 590± 80 1730± 150 494± 38 2187± 103 1000± 170 2910± 240

Table 4.1: Level energy shifts and widths from non-local calculations with the free-space
scattering amplitude [4].

and
∑K

k=1wk = 1. Note that averaging over a number K of previous wave functions sig-
nificantly slows down the convergence of the iteration. On the other hand it turned out to
be suitable for stabilizing especially the early stage of the iteration. It also helps to stick to
an given initial wave function. The prefactor ka = 0, . . . , 1 in (4.60) in conjunction with the
index a for the potential U int

l,a (r′, r) is introduced for switching on the potential adiabatically.
The solution wave function for a certain potential strength ka will be the initial wave function
for the next iterative step with increased ka.

Exemplary, four typical iterations for carbon are shown in Figure 4.2. The calculations
are based on different non-local optical potentials from the preceeding results sections. The
negative level width −Γ and binding energy E is plotted versus the number of iterative steps.
The upper left an lower right example describes the ideal case, it is converging within a few
iterations and does not oscillate at all. On the upper right side the convergence is poor, even
after a large number of steps. On the lower left hand side the iteration in unstable at the
beginning, but finally converges sufficiently.

4.3.3 Numerical results for the semi-microscopic model with free-space
scattering amplitude

The free-space scattering case described in Section 4.3.1 will be the first test and benchmark
of our non-local approach to kaonic atoms. All the following tabulated results for carbon,
sulfur and chlorine are calculated with s-wave contribution (4.49) only and in combination
with the J = 3

2 p-wave. The J = 1
2 p-wave was included using the scheme described in

Appendix B.5 and its contribution is less than 5 eV for each calculation. The results confirm
our conjecture that the J = 1

2 p-wave can be neglected within our simplified semi-microscopic
ansatz.

Table 4.1 summarizes the energy level shifts and widths for the different nuclei with non-
local optical potentials calculated from the free-space scattering amplitudes of [4]. Remarkable
is the huge underestimation of the energy level shift and especially the width. It is a strong hint
for the importance of the in-medium dynamics of the Λ(1405) resonance. The contribution
from the J = 3

2 p-wave is relatively small, nevertheless in a full microscopic calculation
the structure is more complex and there could be strong nonlinear cancellation effects from
the non-local treatment. Obviously taking only the vacuum scattering amplitudes does not
reproduce empirical kaonic atom spectra in the non-local approach.

To get an idea of the results changing due to in-medium modified amplitudes we redo
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Figure 4.2: Iteration of binding energy E and level width Γ for carbon versus the number of
iterative steps for different non-local potentials U intl (r′, r).
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Figure 4.3: Modulus and phase of the reduced wave functions uredl (r) from non-local calcula-
tions with free-space scattering amplitude (upper panels) and in-medium scattering amplitude
(lower panels) at half saturation density, s-wave only for carbon.
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12
6 C 32

16S
35
17Cl

∆E [eV] Γ [eV] ∆E [eV] Γ [eV] ∆E [eV] Γ [eV]

S-wave only 539 435 251 1579 389 2691

S-wave and

J = 3
2 p-wave 369 166 362 976 593 1610

Experiment 590± 80 1730± 150 494± 38 2187± 103 1000± 170 2910± 240

Table 4.2: Level energy shifts and widths from non-local calculations with the in-medium
scattering amplitude [5] at half saturation density.

the latter calculations, with the in-medium scattering amplitudes calculated in [5]. We take
the amplitudes at a nucleon Fermi momentum of kF = 215MeV, which roughly corresponds
to a nuclear matter density of ρ = ρ0

2 . The increase of the energy level shifts and widths
in Table 4.2 for the s-wave contribution is quite remarkable. The influence of the J = 3

2 p-
wave in conjunction with the s-wave increases significantly, but the level width is consistently
smaller than for the s-wave only calculations. One has to keep in mind that the results in
Table 4.2 are based on a rather crude modification, as the average nuclear density probed by
the antikaon is presumably lower than ρ = ρ0

2 . For carrying out a detailed analysis of the
density dependence of the K̄-nucleus interaction a model covering the whole range from zero
to saturation density is required.

Figure 4.3 shows the modulus and phase of the reduced wave functions uredl (r) of the
latter calculations with free-space and in-medium scattering amplitude for carbon and s-wave
only.

4.3.4 Semi-microscopic model with interpolated in-medium scattering am-
plitude

In order to get an intuitive impression how the outcome of a non-local optical potential calcu-
lation is influenced by the in-medium modifications of the underlying scattering amplitudes
we can utilise the semi-microscopic model from Section 4.3.1. Instead of the vacuum scat-
tering amplitudes any kF -dependent in-medium scattering amplitudes can be used as input.
We substitute the vacuum amplitude T̄ (q) in (4.50) by an adequate interpolation, utilising

the vacuum MJP and in-medium M
(p,q)
ij amplitudes [4] and [5] at different Fermi momenta

kF . Any reasonable interpolation of the scattering amplitudes should satisfactorily match the
effective density dependent scattering length (3.23) at q = 0. Due to the little overlap of the
antikaon wave function with the nucleus density distribution one may naively expect the con-
tribution from the high-density (ρ > ρ0

2 ) region of the density-dependent scattering length to
be rather low. From the first point of view the low density behaviour of the scattering length
is dominating for kaonic atoms, particularly the change-over from repulsion to attraction of
Re[aeff (kF )], that typically happens around kF = 100− 125MeV. In general a crossing from
repulsion to attraction at lower kF leads to a larger level width.

The interpolated density dependent amplitude T
1
2

−
, 3
2

+

int (kF , q) is given in Appendix B.7 and

comprises contributions from JP = 1
2

−
s-wave and JP = 3

2

+
p-wave, which can be switched on
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Figure 4.4: Interpolated scattering length aint
eff (kF ) from (B.56) in [fm] (thin lines), compared

to the effective scattering length of [3] (thick lines).

separately. The corresponding effective scattering length based on (B.56) is shown in Figure
4.4, compared to the effective scattering length of [3] that has already been shown in Figure
3.1. The crossing from repulsion to attraction happens around the same Fermi momentum.

The isospin-averaged interpolated scattering amplitude (B.58) for s-wave only is shown in
Figure 4.5 as a function of Fermi momentum kF and antikaon momentum q. The smoothness
of the interpolating function T J

±

int is well enhanced by doing the interpolation in terms of the
inverse reduced amplitudes according to (B.56). One can clearly see density dependence of
the Λ(1405) resonance structure. The non-local optical potential with interpolated density
dependence U int

l reads

U int
l (r′, r) =

1
∫

−1

d cos θ

qmax
∫

0

dq

π
q r′

sin
(

q
√

r2 + r′2 − 2rr′ cos θ
)

√

r2 + r′2 − 2rr′ cos θ)

×T
1
2

−
, 3
2

+

int (kF (R), q)ρ (R)Pl(cos θ) (4.62)

in the framework of our semi-microscopic model. For illustration we show the s-wave only
optical potential (4.62) in Figure 4.6 for carbon. For reasons of convergence the non-local
potential for carbon is calculated up to 20 fm in r and r′, here we plot a smaller region near
the origin.



4.3. Non-Local semi-microscopic approximation and numerical results 89

0

200
0

200

400

600

800

0

0.05

0.1

100

S-wave Re[TKN,int (kF, q)]     [MeV -1]

kF   [MeV] q   [MeV]

0

100

200
0

200

400

600

800

0

0.1

0.2

S-wave Im[TKN,int (kF, q)]     [MeV -1]

kF   [MeV] q   [MeV]

Figure 4.5: S-wave T
1
2

−

K̄N,int
(kF , q) inverse interpolation, real and imaginary part.

0

2

4

6
0

2

4

6

 - 10 

 - 5 

0

5 

10 

Re[Ul
int

(r',r)] [a.u.] for carbon

r   [fm] r'   [fm]

0

2

4

6
0

2

4

6

 - 5

0

5

10 

r   [fm] r'   [fm]

Im[Ul
int

(r',r)] [a.u.] for carbon

Figure 4.6: Real and imaginary part of the non-local optical potential U int
l (r′, r) (4.62) for

carbon, including both s- and p-wave contributions.
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12
6 C 32

16S
35
17Cl

∆E [eV] Γ [eV] ∆E [eV] Γ [eV] ∆E [eV] Γ [eV]

Local calculation

aint
eff (kF ) 541 1173 553 1480 980 2211

Non-Local s-wave

only calculation 683 836 281 560 483 1120

Non-Local s-wave

and J = 3
2 p-wave 687 791 321 283 270 801

Table 4.3: Local calculations with the effective scattering length aint
eff (kF ) and non-local

calculations with the interpolated scattering amplitude T
1
2

−
, 3
2

+

int for carbon, sulfur and chlorine.

4.3.5 Numerical results of the semi-microscopic model with interpolated
in-medium scattering amplitude

We applied our semi-microscopic non-local approach with the interpolated density depen-
dence of the scattering amplitudes to the nuclei carbon, sulfur and chlorine. The non-local
calculations are compared to corresponding local ones by taking the local limit q = 0 in

T
1
2

−

int (kF , q = 0) and we obtain an effective scattering length aint
eff (kF ).

In Table 4.3 the numerical results for energy level shifts ∆E and widths Γ are given for

our set of three nuclei, the non-local potential comprises the s-wave T
1
2

−

int contribution only

as well as the s-wave and p-wave T
3
2

+

int contributions. In addition the results for a calculation

in the local limit of T
1
2

−

int are given, corresponding to the effective scattering length aint
eff (kF )

shown in Figure 4.4. The results for the effective scattering length aint
eff (kF ) agree quite well

with the calculations based on the microscopic effective scattering length aeff (kF ) from [3],
see Tables 3.3 and 3.4. The measured energy level shifts can be reproduced satisfactorily,
whereas the level widths are significantly underestimated. Nevertheless, the results confirm
our interpolation scheme on the level of a density dependent scattering length. As we will see
later on the values for carbon agree quite well with the results of a full non-local calculation
and thus approve the approximations of our semi-microscopic model from Section 4.3.1 and

the interpolation scheme of T
1
2

−
, 3
2

+

int . By comparing the non-local calculations in Table 4.3
with the effective scattering length results we observe that especially the level widths are
considerably smaller. This tendency is continued by switching on p-wave contributions, but
the effect from the p-wave is less pronounced than for the density independent results of Table
4.2.

The modulus and phase of the reduced wave functions for the calculations of Tables 4.1 and
4.1 are plotted in Figure 4.7 for carbon. Compared to the density-independent calculations
in Figure 4.3 the qualitative behaviour of the wave functions changes significantly.
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Figure 4.8: Modulus and phase of non-local reduced wave function for carbon, full non-local
calculation.

12
6 C

∆E [eV] Γ [eV]

Ul(ω, r, r
′) 545 1030

Ul(ω = mK , r, r
′) 566 1047

Experiment 590± 80 1730± 150

Table 4.4: Level shift ∆E and width Γ [eV] for carbon, full non-local calculation.

4.3.6 Full non-local calculation

After testing our non-local approach for the optical potential with a simplified, semi-micros-
copic model based on the vacuum scattering amplitudes of [4] and a suitable density dependent
interpolation we perform a full non-local calculation according to (4.44), (4.45) and (4.46).
Based on the self-consistent in-medium hyperon and antikaon framework of [5] we calculate
the non-local optical potential Ul(ω, r, r

′) at first instance for carbon. The local wave function
based on an effective scattering length was likewise taken as the starting point for the iteration
of the non-local solution.

Figure 4.8 shows the modulus and phase of the non-local reduced wave function (4.56).
Qualitatively the wave function is similar to the one obtained within our semi-microscopic
model in Figure 4.7. In Table 4.4 the results and the experimental values are listed. The
numbers suggest a further survey of non-local effects for a larger set of nuclei. The system-
atically underestimated level widths indicate the need for an improved in-medium dynamics.
For comparison we state a calculation where the energy-dependence of the optical potential
has been neglected, that is Ul(ω = mK , r, r

′).
The full non-local calculation for carbon does still not improve the agreement with the

experimental data, which may be due to shortcomings of the underlying in-medium antikaon
and hyperon dynamics [5]. We observe significant effects from a non-local treatment of kaonic
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atoms. We deduce that a non-local treatment of kaonic atoms is much more sensitive to the
hyperon in-medium dynamics than a local effective scattering length framework and the non-
local ansatz for the optical potential is capable to distinguish even small variations of the
complex hyperon in-medium dynamics. We expect further improvement on the description
of kaonic atoms data by utilising our non-local potential approach, with self-consistent in-
medium amplitudes developed in Chapter 2.





Chapter 5
Summary and outlook

In this work we studied the properties of antikaons and hyperons in infinite cold nuclear
matter. The in-medium antikaon-nucleon scattering amplitude and self-energy has been cal-
culated within a covariant many-body framework in the first part. Nuclear saturation effects
have been taken into account in terms of scalar and vector nucleon mean-fields. In the second
part of the work we introduced a non-local method for the description of kaonic atoms. The
many-body approach of K̄N scattering can be tested by the application to kaonic atoms, as
a satisfactory microscopic investigation of kaonic atoms is still missing in literature.

A self-consistent and covariant many-body approach has been used for the determination
of the antikaon spectral function and K̄N scattering amplitudes. It considers s-, p- and d-
waves and the application of an in-medium projector algebra accounts for proper mixing of
partial waves in the medium. The on-shell reduction scheme is also implemented by means of
the projector algebra. The Bethe-Salpeter equation has been rewritten, so that the free-space
K̄N scattering of [4] can be used as the interaction kernel for the in-medium scattering equa-
tion. The latter free-space scattering is based on a realistic coupled-channel dynamics and
chiral SU(3) Lagrangian. Our many-body approach is generalized from [5] for the presence of
large scalar and vector nucleon mean-fields. It is supplemented by an improved renormaliza-
tion scheme, that systematically avoids the occurrence of medium-induced power-divergent
structures and kinematical singularities. A proper renormalization scheme is a matter of par-
ticular interest especially when p- and higher partial waves are included. A modified projector
basis has been introduced, that allows for a convenient inclusion of nucleon mean-fields. The
description of the results in terms of the ’physical’ basis is done with the help of a recoupling
scheme based on the projector algebra properties.

We found relevant effects by considering scalar and vector nucleon mean-fields. The
antikaon spectral function becomes significantly more narrow and strength is moved to the
lower soft modes due to hyperon nucleon-hole states. The enhanced soft modes are also present
in the self-energy at vanishing antikaon momentum, whereas at finite antikaon momenta the
effects of the nucleon mean-fields are less pronounced. The structure of both spectral function
and self-energy is enriched by including p-wave interactions. The hyperon properties are
affected moderately by the mean-fields, with the exception of the Λ(1520) d-wave resonance,
that almost completely dissolves already at nuclear saturation density. The p-wave ground
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states Λ(1115) and Σ(1195) central mass positions are basically unaffected by the nucleon
mean-fields. For the Λ(1405) s-wave resonance we obtain an attractive shift of about 30MeV,
which is in agreement with the results of [5]. Without mean-fields the attractive shift increases,
but the resonance is considerably broadened by including mean-fields. The opposite behaviour
in resonance central mass position and width can be observed for the p-wave Σ(1385), which
is attracted by 40MeV at saturation density. To recapitulate our results do not support the
strong interaction scenario of [16] and [17], where the existence of deeply bound and highly
compressed strange nuclear systems is predicted.

We confirmed that the inclusion of a weak scalar mean-field only, whose strength corre-
sponds to the difference of large scalar and vector mean-fields, does even qualitatively not
reproduce our findings from incorporating both mean-fields. We conclude that a weak scalar
mean-field, as it has been used in [14], is not sufficient for modeling implications from nuclear
saturation.

The calculations at nuclear saturation density with and without mean-fields have been
compared to results that rest on an angular average approximation, that in a similar manner
is applied in [2] and [14]. It can be implemented within our covariant framework easily
and is most advantageous from the point of view of numerical effort. The approximation
turned out to be suitable for the computation of the antikaon spectral function and s-wave
in-medium scattering amplitude, but it fails partly for describing the hyperon properties and
particularly the Λ(1520) d-wave resonance. For the latter resonance we obtain deviations more
than 50MeV in central mass position compared to the full calculation. The p- and d-wave
phase-space cannot be reproduced accurately within an angular average approximation.

Kaonic atoms data provide a meaningful benchmark for any many-body approach to
in-medium antikaon and hyperon properties. However, up to now the data could only be
described by phenomenological optical potentials. Non-Local corrections to the optical po-
tential have not been considered in a systematic way, as a simple momentum expansion of
the antikaon self-energy is questionable because of the presence of subthreshold resonances.
Our approach comprises non-local contributions to the self-energy that are caused by the mo-
mentum and density dependence of the K̄N in-medium scattering amplitudes and the finite
size nucleus. In our approximation the non-local self-energy is computed from K̄N scattering
amplitudes for infinite nuclear matter. The non-local optical potential that enters the Klein-
Gordon equation for the calculation of atomic level shifts and widths can be evaluated from
the non-local self-energy in a straight forward way. But for all that the treatment of non-local
wave equations and the solution via an iteration process requires special care.

The non-local ansatz we have proposed is exact as long as free-space scattering is consid-
ered. Our approach has been approved by performing benchmark calculations in the local
limit of a simplified semi-microscopic non-local model. This model allows to study the inter-
play of different partial waves, either by using free-space scattering amplitudes [4] exclusively
or an appropriate density dependent interpolation of in-medium scattering amplitudes [5].
In the local limit the latter interpolation has been compared to existing density dependent
effective scattering lengths successfully.

For the nuclei carbon, sulfur and chlorine considering free-space scattering amplitudes
only fails. Both energy level shifts and widths are largely underestimated. With a density de-
pendent semi-microscopic model we improve significantly on the agreement with experiment,
but the non-local calculations including s-wave contributions only systematically lead to lower
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level widths than a local calculation with the corresponding effective scattering length. We
observe that the in-medium properties of the s-wave Λ(1405) resonance predominantly affect
the calculation of kaonic atoms level shifts and widths. However, for our semi-microscopic
model the inclusion of p-wave contributions has sizeable impact on the calculations, but it
does not improve on the agreement with experiment.

For carbon a calculation with the full non-local self-energy has been done, based on the
in-medium amplitudes of [5]. We have significant effects from a non-local treatment, but the
results are still inconclusive and demand further investigation. The non-local approach is
very sensitive to in-medium properties of the hyperon resonances in s- and p-waves. A simple
local ansatz either using a constant or a density dependent scattering length seems to be
inadequate for the description of kaonic atoms. Hence, we expect a better agreement with
the experimental data from the application of our improved many-body approach including
nuclear saturation effects within our non-local framework. A future issue will be to elaborate
on the reliability of our assumptions made for finite size nuclei. An extended survey of non-
local effects for a larger number of nuclei will also provide further insight to kaonic atoms and
the underlying antikaon and hyperon in-medium properties.





Appendix A
Appendix: Antikaons and hyperons in

nuclear matter

A.1 Projector algebra

The projectors Pij and Qij introduced in (2.2.1) can be expressed in terms of appropriate
building blocks P±, U±, Vµ and Lµ, Rµ:

P±(v) =
1

2

(

1 ± /v√
v2

)

,

U±(v, u) = P±(v)
−iγ · u

√

(v · u)2/v2 − 1
P∓(v),

Vµ(v) =
1√
3

(

γµ −
/v

v2
vµ

)

,

Xµ(v, u) =
(v · u)vµ − v2uµ

v2
√

(v · u)2/v2 − 1
,

Rµ(v, u) =
1√
2

(U+(v, u) + U−(v, u)) Vµ(v) − i

√

3

2
Xµ(v, u),

Lµ(v, u) =
1√
2
Vµ(v) (U+(v, u) + U−(v, u)) − i

√

3

2
Xµ(v, u) (A.1)
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Note again that (A.1) is equivalent to the algebra used in [5] except for the argument vµ instead
of wµ. The building blocks P±, U±, Vµ and Lµ, Rµ enjoy the following useful properties:

P± · P± = P± = U± · U∓, P± · P∓ = 0 = U± · U±,

V · L = 0 = R · V, L · V = −
√

8

3
(U+ + U−) = V · R,

V · V = L ·R = R · L = 1, R · R = L · L =
1

3
,

P± · Vµ = Vµ · P∓, P± · Lµ = Lµ · P±, P± · Rµ = Rµ · P±,

U± · Lµ = Rµ · U±, U± ·Rµ = Lµ · U±,

U± · Vµ = −1

3
Vµ · U∓ −

√
8

3
Lµ · P∓,

Vµ · U± = −1

3
U∓ · Vµ −

√
8

3
Rµ · P∓. (A.2)

With v̂µ = vµ/
√
v2 the Q-space projectors are

Qµν11 = (gµν − v̂µv̂ν)P+ − V µ · P− · V ν − Lµ · P+ · Rν ,
Qµν22 = (gµν − v̂µv̂ν)P− − V µ · P+ · V ν − Lµ · P− · Rν ,

Qµν12 = (gµν − v̂µv̂ν)U+ +
1

3
V µ · U− · V ν

+

√
8

3
(Lµ · P+ · V ν + V µ · P− · Rν) − 1

3
Lµ · U+ · Rν ,

Qµν21 = (gµν − v̂µv̂ν)U− +
1

3
V µ · U+ · V ν

+

√
8

3
(Lµ · P− · V ν + V µ · P+ · Rν) − 1

3
Lµ · U− · Rν . (A.3)

Using the properties of the building blocks (A.2) reveals that the objects Qµν[ij] indeed form
a projector algebra. The P-space projectors have similar transparent representations, where
the P-space algebra now includes objects without Lorentz index, one or two Lorentz indices:

P11 = P+, P12 = U+, P21 = U−, P22 = P−,

Pµ31 = V µP+, Pµ32 = V µU+, P̄µ13 = P+V
µ, P̄µ23 = U−V

µ,

Pµ41 = V µU−, Pµ42 = V µP−, P̄µ14 = U+V
µ, P̄µ24 = P−V

µ,

Pµ51 = v̂µP+, Pµ52 = v̂µU+, P̄µ15 = P+v̂
µ, P̄µ25 = U−v̂

µ,

Pµ61 = v̂µU−, Pµ62 = v̂µP−, P̄µ16 = U+v̂
µ, P̄µ26 = P−v̂

µ,

Pµ71 = LµP+, Pµ72 = LµU+, P̄µ17 = P+R
µ, P̄µ27 = U−R

µ,

Pµ81 = LµU−, Pµ82 = LµP−, P̄µ18 = U+R
µ, P̄µ28 = P−R

µ,

Pµνij = Pµi1P̄
ν
1j = Pµi2P̄

ν
2j . (A.4)
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A.2 Recoupling coefficients

We only state the nontrivial recoupling coefficients, the remaining ones are determined by the
following symmetry relations:

CJ
P

p,ij = CJ
P

p,ji, CJ
P

q,ij = CJ
P

q,ji,

CJ
P

p,5i = −
√

3CJ
P

p,3i, CJ
P

p,6i = +
√

3CJ
P

p,4i. (A.5)

The coefficients are derived in the nuclear matter rest frame. The angular average approxi-
mation (2.3.2) does not affect the recoupling of the vacuum amplitudes, therefore the present
form can also be used in the cm-frame.

In Q-space we have

C
3
2
±

q,11 = −3

2

[

v0w0 − w2

√

v2
0 − w2

√

w2
0 − w2

± 1

]

,

C
3
2
±

q,12 =
3

2

i
√

w2(v0 −w0)
√

v2
0 − w2

√

w2
0 − w2

,

C
3
2
±

q,22 = −C
3
2
∓

q,11 (A.6)

and in P-space for J = 1
2

C
1
2
±

p,11 =
1

2

[

v0w0 −w2

√

v2
0 − w2

√

w2
0 − w2

∓ 1

]

,

C
1
2
±

p,12 = −1

2

i
√

w2(v0 − w0)
√

v2
0 − w2

√

w2
0 − w2

,

C
1
2
±

p,22 = −C
1
2
∓

p,11. (A.7)

In P-space the diagonal elements for J = 3
2 are

C
3
2
±

p,33 =
w2(v0 − w0)

2

3
√

v2
0 − w2

3√
w2

0 − w2
3

[

v0w0 − w2 ±
√

v2
0 − w2

√

w2
0 −w2

]

,

C
3
2
±

p,44 = −C
3
2
∓

p,33, C
3
2
±

p,55 = 3C
3
2
±

p,33, C
3
2
±

p,66 = −3C
3
2
∓

p,33,

C
3
2
±

p,77 =
1

6
√

v2
0 − w2

3√
w2

0 − w2
3

[

− 9
(

v3
0w

3
0 − w6

)

+w2
(

v0w0 −w2
) (

5
(

v2
0 +w2

0

)

+ 17v0w0

)

±
√

v2
0 − w2

√

w2
0 −w2

(

−9
(

v2
0w

2
0 + w4

)

+ w2
(

v2
0 + w2

0 + 16v0w0

))

]

C
3
2
±

p,88 = −C
3
2
∓

p,77 (A.8)
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and the off-diagonal elements

C
3
2
±

p,34 =
iw3(v0 −w0)

3

3
√

v2
0 − w2

3√
w2

0 −w2
3 ,

C
3
2
±

p,37 = − i
√

w2(v0 − w0)

3
√

2
√

v2
0 −w2

3√
w2

0 − w2
3

[

3
(

v2
0w

2
0 + w4

)

− w2
(

v2
0 +w2

0 + 4v0w0

)

±3
(

v0w0 −w2
)

√

v2
0 − w2

√

w2
0 − w2

]

,

C
3
2
±

p,38 =
w2(v0 −w0)

2

3
√

2
√

v2
0 − w2

3√
w2

0 − w2
3

[

±
√

v2
0 − w2

√

w2
0 − w2 − 2

(

v0w0 − w2
)

]

,

C
3
2
±

p,47 = −C
3
2
∓

p,38, C
3
2
±

p,48 = C
3
2
∓

p,37,

C
3
2
±

p,78 =
i
√

w2(v0 − w0)

6
√

v2
0 − w23√

w2
0 −w23

[

3
(

v2
0w

2
0 + w4

)

+ w2
(

v2
0 + w2

0 − 8v0w0

)

]

. (A.9)

A.3 Vacuum master loop functions

The free space loop matrix J
(p,q)
ij,V (v, u) (2.41) is composed from thirteen vacuum master loop

functions JHi (v, u) in terms of the six non-vanishing JVi (w) given by (2.52). Based on the def-
inition (2.40) and the representation of the thirteen independent scalar loop function kernels
for the imaginary part in terms of (l · ŵ) and (l ·X) (for notation see Appendix A.1),

K0 = 1,

K1 = (l · ŵ),

K2 = −(l ·X),

K3 =
1

2

(

l2 − (l · ŵ)2 + (l ·X)2
)

,

K4 = (l · ŵ)2,

K5 = (l ·X)2,

K6 = −(l ·X)(l · ŵ),

K7 =
1

2

(

l2 − (l · ŵ)2 + (l ·X)2
)

(l · ŵ),

K8 = −1

2

(

l2 − (l · ŵ)2 + (l ·X)2
)

(l ·X),

K9 = (l · ŵ)3,

K10 = −(l · ŵ)2(l ·X),

K11 = −(l ·X)3,

K12 = (l · ŵ)(l ·X)2 (A.10)

we derive the vacuum master loop functions JHi (v, u) by expanding the corresponding struc-
tures to (A.10) – (l̆ · v̂) and (l̆ ·X(v, u)) – from (2.40) with l̆µ = lµ − ΣV uµ in terms of (l · v̂)
and l ·X(v, u). In order to identify the vacuum loops JVi (w) in the latter expressions we use
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the following simple algebra identities:

lµ → K1ŵµ +K2Xµ,

lµlν → K3Tµν +K4ŵµŵν +K5XµXν +K6 (ŵµXν +Xµŵν) ,

lµlαlν → K7 (Tµνŵα + Tµαŵν + ŵµTαν) +K8 (TµνXα + TµαXν +XµTαν)

+K9ŵµŵαŵν +K10 (ŵµXαŵν +Xµŵαŵν + ŵµŵαXν)

K11XνXαXν +K12 (XµŵαXν + ŵµXαXν +XµXαŵν) (A.11)

with

Tµν = gµν − ŵµŵν +XµXν . (A.12)

Note that expressions (A.11) further simplify because of the vanishing J2 = J6 = J8 = J10 =
J11 = 0 in the vacuum. Finally we obtain

JH0 (v, u) = JV0 ,

JH1 (v, u) = −ΣV
(v · u)√
v2

JV0 +
(v · w)√
v2
√
w2
JV1 ,

JH2 (v, u) = ΣV

√

(v · u)2 − v2

v2
JV0 − (X · w)√

w2
JV1 ,

JH3 (v, u) = JV3 ,

JH4 (v, u) = Σ2
V

(v · u)2
v2

JV0 − 2ΣV
(v · u)(v · w)√

w2v2
JV1

+
v2w2 − (v · w)2

v2w2
JV3 +

(v · w)2

v2w2
JV4 ,

JH5 (v, u) = Σ2
V

(v · u)2 − v2

v2
JV0 − 2ΣV

√

(v · u)2 − v2

v2

(X · w)√
w2

JV1

−
(

1 +
(X · w)2

w2

)

JV3 +
(X · w)2

w2
JV4 ,

JH6 (v, u) = −Σ2
V

(v · u)√
v2

√

(v · u)2 − v2

v2
JV0 +

(X · w)(v · w)√
v2w2

(

JV3 − JV4
)

−ΣV
v2 ((v · w) + (v · u)(w · u)) − 2(v · u)2(v · w)

√

(v · u)2 − v2
√
w2v2

JV1 ,

JH7 (v, u) = −ΣV
(v · u)√
v2

JV3 +
(v · w)√
v2
√
w2
JV7 ,

JH8 (v, u) = ΣV

√

(v · u)2 − v2

v2
JV3 − (X · w)√

w2
JV7 ,

(A.13)
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JH9 (v, u) = −Σ3
V

(v · u)3
√
v2

3 JV0 − 2Σ2
V

(v · u)2
v2

JH1 − 3ΣV
(v · u)√
v2

JH4

−3
(v · w)√
v2
√
w2

(v · w)2 − v2w2

v2w2
JV7 +

(v · w)3
√
v2

3√
w2

3J
V
9 ,

JH10(v, u) = −Σ2
V

(v · u)2
v2

JH2 − 2ΣV
(v · u)√
v2

JH6

+ΣV

√

(v · u)2 − v2

v2

(

v2w2 − (v · w)2

v2w2
JV3 +

(v · w)2

v2w2
JV4

)

+
3(v · w)2 − v2w2

v2w2

(X · w)√
w2

JV7 − (v · w)2

v2w2

(X · w)√
w2

JV9 ,

JH11(v, u) = Σ3
V

√

(v · u)2 − v2

v2

3

JV0 − 3Σ2
V

(v · u)2 − v2

v2
JH2

+3ΣV

√

(v · u)2 − v2

v2
JH5 + 3

(

1 +
(X · w)2

w2

)

(X · w)√
w2

JV7

−(X · w)3
√
w2

3 JV9 ,

JH12(v, u) = 2ΣV

√

(v · u)2 − v2

v2
JH6 − Σ2

V

(v · u)2 − v2

v2
JH1

+ΣV
(v · u)√
v2

(

w2 + (X · w)2

w2
JV3 − (X · w)2

w2
JV4

)

+
(v · w)(X · w)2

√
v2
√
w2

3 JV9 −
(

1 + 3
(X · w)2

w2

)

(v · w)√
v2
√
w2
JV7 . (A.14)

and for Xµ = Xµ(v, u) see (A.1). Note that the complete free-space loop matrix J
(p,q),vac
ij (v, u)

in (2.41) can also be derived by applying the recoupling procedure described in Section 2.2.2
to the full vacuum loop matrix in the basis of Pij(w, u), etc. By construction the sums in
(2.40) do not depend on ΣV explicitly and there are no kinematical singularities at v2 = 0.

A.4 Matrix elements vacuum loop functions

The vacuum loop functions J
(p,q)
ij,V (v, u) are composed from the same algebra of the preceding

Section A.5, but we have to substitute Ji → JHi and m∗
N → mN . The additional terms

∆J
(p,q)
ij,V arising from the definition (2.40) in the nuclear matter rest frame read

∆J
(p)
11,V =

v0√
v2
JH0 , ∆J

(p)
12,V = i

√

v2
0

v2
− 1JH0 ,

∆J
(p)
13,V = ∆J

(p)
24,V = − 1√

3

√

v2
0

v2
− 1JH2 , ∆J

(p)
14,V =

i√
3

v0√
v2
JH2 ,
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∆J
(p)
15,V =

v0√
v2

(√
w2JH0 − JH1

)

, ∆J
(p)
16,V = ∆J

(p)
25,V = i

√

v2
0

v2
− 1
(√

w2JH0 − JH1

)

,

∆J
(p)
17,V = −i

√

2

3

v0√
v2
JH2 , ∆J

(p)
18,V = ∆J

(p)
27,V =

√

2

3

√

v2
0

v2
− 1 JH2 ,

∆J
(p)
22,V = − v0√

v2
JH0 , ∆J

(p)
23,V = − i√

3

v0√
v2
JH2 ,

∆J
(p)
26,V = − v0√

v2

(√
w2JH0 − JH1

)

, ∆J
(p)
28,V = i

√

2

3

v0√
v2
JH2 , (A.15)

∆J
(p)
33,V = −1

3

v0√
v2

(

2JH3 − JH5

)

,

∆J
(p)
34,V = − i

3

√

v2
0

v2
− 1
(

2JH3 + JH5

)

,

∆J
(p)
35,V = ∆J

(p),V
46 = − 1√

3

√

v2
0

v2
− 1
(√

w2JH2 − JH6

)

,

∆J
(p)
36,V = − i√

3

v0√
v2

(√
w2JH2 − JH6

)

,

∆J
(p)
37,V = ∆J

(p),V
48 = −i

√
2

3

√

v2
0

v2
− 1

(

JH3 − JH5

)

,

∆J
(p)
38,V = −

√
2

3

v0√
v2

(

JH3 + JH5

)

,

∆J
(p)
44,V =

1

3

v0√
v2

(

2JH3 − JH5

)

,

∆J
(p)
45,V =

i√
3

v0√
v2

(√
w2JH2 − JH6

)

,

∆J
(p)
47,V =

√
2

3

v0√
v2

(

JH3 + JH5

)

,

∆J
(p)
55,V =

v0√
v2

(

v2JH0 − 2
√
w2JH1 + JH4

)

,

∆J
(p)
56,V = i

√

v2
0

v2
− 1
(

v2JH0 − 2
√
w2JH1 + JH4

)

,

∆J
(p)
57,V = −i

√

2

3

v0√
v2

(√
w2JH2 − JH6

)

,

∆J
(p)
58,V = ∆J

(p)
67 =

√

2

3

√

v2
0

v2
− 1
(√

w2JH2 − JH6

)

,

∆J
(p)
66,V = − v0√

v2

(

v2JH0 − 2
√
w2JH1 + JH4

)

,

∆J
(p)
68,V = i

√

2

3

v0√
v2

(√
w2JH2 − JH6

)

,



106 CHAPTER A. Appendix: Antikaons and hyperons in nuclear matter

∆J
(p)
77,V =

1

3

v0√
v2

(

JH3 − 2JH5

)

,

∆J
(p)
78,V = − i

3

√

v2
0

v2
− 1
(

JH3 + 2JH5

)

,

∆J
(p)
88,V = −1

3

v0√
v2

(

JH3 − 2JH5

)

(A.16)

and

∆J
(q)
11,V =

v0√
v2
JH3 , ∆J

(q)
12,V = i

√

v2
0

v2
− 1JH3 , ∆J

(q)
22,V = − v0√

v2
JH3 . (A.17)

A.5 Matrix elements loop functions

The loop matrix J
(p,q)
ij (v, u) as introduced in (2.37) in terms of v = w − Σ0u and with

m∗
N = mN + ΣS are listed below. They enjoy the symmetry relation J

(p,q)
ij (v, u) = J

(p,q)
ji (v, u)

and are determined by thirteen master loop functions Ji(v, u) introduced in (2.45).

J
(p)
11 = m∗

NJ0 + J1, J
(p)
12 = −iJ2,

J
(p)
13 = J

(p)
24 = − 1√

3
(2J3 − J5) , J

(p)
18 = J

(p)
27 = −

√

2

3
(J3 + J5) ,

J
(p)
14 =

i√
3

(m∗
NJ2 + J6) , J

(p)
17 = −i

√

2

3
(m∗

NJ2 + J6) ,

J
(p)
15 = −

[ (

m∗
N −

√
v2
)

J1 + J4 −m∗
N

√
v2J0

]

,

J
(p)
26 = −

[ (

m∗
N +

√
v2
)

J1 − J4 −m∗
N

√
v2J0

]

,

J
(p)
16 = J

(p)
25 = i

(

J6 −
√
v2J2

)

,

J
(p)
22 = m∗

NJ0 − J1,

J
(p)
23 =

i√
3

(m∗
NJ2 − J6) ,

J
(p)
28 = −i

√

2

3
(m∗

NJ2 − J6) , (A.18)
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J
(p)
33 =

1

3
(m∗

N (2J3 − J5) + J12 − 2J7) ,

J
(p)
34 = − i

3
(2J8 − J11) ,

J
(p)
35 = J

(p)
46 =

1√
3

(

2J7 − J12 −
√
v2 (2J3 − J5)

)

,

J
(p)
36 = − i√

3

((

m∗
N +

√
v2
)

J6 − J10 −m∗
N

√
v2J2

)

,

J
(p)
37 = J

(p)
48 =

i

3

√
2 (2J8 − J11) ,

J
(p)
38 =

√
2

3
(m∗

N (J3 + J5) − J7 − J12) ,

J
(p)
44 =

1

3
(m∗

N (2J3 − J5) − J12 + 2J7) ,

J
(p)
45 = − i√

3

((

m∗
N −

√
v2
)

J6 + J10 −m∗
N

√
v2J2

)

,

J
(p)
47 =

√
2

3
(m∗

N (J3 + J5) + J7 + J12) ,

J
(p)
55 =

(

m∗
N − 2

√
v2
)

J4 + J9 +m∗
Nv

2J0 +
(

v2 − 2m∗
N

√
v2
)

J1,

J
(p)
56 = −i

(

J10 − 2
√
v2J6 + v2J2

)

,

J
(p)
57 = i

√

2

3

((

m∗
N −

√
v2
)

J6 + J10 −m∗
N

√
v2J2

)

,

J
(p)
58 = J

(p)
67 =

√

2

3

(

J7 + J12 −
√
v2 (J3 + J5)

)

,

J
(p)
66 =

(

m∗
N + 2

√
v2
)

J4 − J9 +m∗
Nv

2J0 −
(

v2 + 2m∗
N

√
v2
)

J1,

J
(p)
68 = i

√

2

3

((

m∗
N +

√
v2
)

J6 − J10 −m∗
N

√
v2J2

)

,

J
(p)
77 =

1

3
(m∗

N (J3 − 2J5) + J7 − 2J12) ,

J
(p)
78 =

i

3
(5J8 + 2J11) ,

J
(p)
88 =

1

3
(m∗

N (J3 − 2J5) − J7 + 2J12) , (A.19)

and

J
(q)
11 = m∗

NJ3 + J7, J
(q)
12 = −iJ8, J

(q)
22 = m∗

NJ3 − J7. (A.20)
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A.6 Renormalized scalar loop function kernels

The renormalized principal value in-medium loop function kernels KR
i (l, v̄, v, u) in (2.55) are

introduced as

KR
0 =

v2

v̄2
,

KR
1 =

(√
v2

2
+

(l̄ · v̄)√
v2

)

v2

v̄2
,

KR
2 = − (v · u)

√

(v · u)2 − v2

(l̄ · v̄)√
v2

v2

v̄2
+

√
v2(l̄ · u)

√

(v · u)2 − v2
,

KR
3 =

1

2
KR

5 − 1

2

v2

v̄2

(

(l̄ · v̄)2
v2

− l̄2 − v̄2 − v2

4

)

,

KR
4 =

(√
v2

2
+

(l̄ · v̄)√
v2

)2
v2

v̄2
,

KR
5 =

1

(v · u)2 − v2

[

v2(l̄ · u)2 − 2(v · u)(l̄ · v̄)(l̄ · u) + (v · u)2 (l̄ · v̄)2
v̄2

]

− v̄
2 − v2

12v̄2
v2,

KR
6 =

√
v2

2
KR

2 +
(l̄ · v̄)(l̄ · u)
√

(v · u)2 − v2
− (v · u)
√

(v · u)2 − v2

(l̄ · v̄)2
v̄2

,

KR
7 =

1

2
KR

12 +
1

2

v2

v̄2

(

l̄2 +
v̄2 − v2

4
− (l̄ · v̄)2

v2

)

(√
v2

2
+

(l̄ · v̄)√
v2

)

,

KR
8 =

1

2
KR

11 +

(

l̄2 +
v̄2 − v2

4
− (l̄ · v̄)2

v2

)

×
(

− (v · u)
√

(v · u)2 − v2

(l̄ · v̄)√
v2

v2

v̄2
+

√
v2(l̄ · u)

√

(v · u)2 − v2

)

,

KR
9 =

(√
v2

2
+

(l̄ · v̄)√
v2

)3
v2

v̄2
,

KR
10 = −v

2

4

v2

v̄2

(

1 + 2
(l̄ · v̄)
v2

+ 4
(l̄ · v̄)2
v2v2

)

(v · u)
√

(v · u)2 − v2

(l̄ · v̄)√
v2

+
v2

4

(

1 + 2
(l̄ · v̄)
v2

+ 4
(l̄ · v̄)2
v2v2

)

√
v2(l̄ · u)

√

(v · u)2 − v2

1

2

√
v2(v · u)

√

(v · u)2 − v2

(

(l̄ · u)
(v · u) − (l̄ · v̄)

v̄2

)

(l̄ · v̄),
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KR
11 =

√
v2

√

(v · u)2 − v23

[

v2(l̄ · u)3 − 3(v · u)(l̄ · u)2(l̄ · v̄)v
2

v̄2

+3(v · u)2(l̄ · u)(l̄ · v̄)
2

v2
− (v · u)3

v2

(l̄ · v̄)3
v̄2

]

,

KR
12 =

1

(v · u)2 − v2

[(√
v2

2
+

(l̄ · v̄)√
v2

)

v2

v̄2
v2(l̄ · u)2

−2

(√
v2

2
+

√
v2

(l̄ · v̄)
v2

)

(v · u)(l̄ · u)(l̄ · v̄)
(√

v2

2
+

(l̄ · v̄)√
v2

)

(v · u)2 (l̄ · v̄)2
v̄2

]

(A.21)

with the new variable

l̄µ = lµ −
v̄µ
2

and v̄2 = (v̄ · u)2 − (v · u)2 + v2. (A.22)

A.7 Subtraction terms

The subtraction terms JCi in (2.54) are decomposed with respect to internal and external

variables v̄ and v, while the dependence on v̄ is shifted to the coefficients Cijka,n(w) defined by
(2.57) and (2.61). They depend on three-momentum w exclusively after integrating over the
internal energy v̄0 and thus the energy dependence of JCi is trivially given by v0. In detail we
derive

JC0 = (v · u)C000
0,1 ,

JC1 =
(v · u)
2
√
v2

(

v2C000
0,1 + 2C100

0,1

)

,

JC2 = − (v · u)2√
v2
√

(v · u)2 − v2
C100

0,1 ,

JC3 =
1

2
JC5 + 2

(

(v · u)C200
0,2 + C200

+1,2

)

,

JC4 =
(v · u)

4

(

v2C000
0,1 + 4C100

0,1

)

,

JC5 =
2(v · u)

(v · u)2 − v2
C110
−1,0,
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JC6 =

√
v2

2
JC2 − 1

√

(v · u)2 − v2
C110
−1,0,

JC7 =
1

2
JC12 −

1

16
√
v2

[

− 8C300
+1,2 + v2

(

v2
(

C000
+1,1 + 4C001

+1,2 − 16C200
+1,3

)

+(v · u)
(

v2C000
0,1 + 2

(

C100
0,1 − 2C200

0,2 + 8C300
0,3

))

+2
(

C100
+1,1 + 4

(

C101
+1,2 − 2

(

C200
+1,2 + C300

+1,3

))))]

,

JC8 =
1

2
JC11 −

1

24
√
v2
√

(v · u)2 − v2

[

v2
(

3C010
+1,0 + 12C011

+1,1 + 8C210
+1,2

)

−12C210
+1,1 − (v · u)2

(

3v2C100
0,1 + 8C300

0,2

)

+(v · u)
(

12
(

−C210
0,1 + C300

+1,2

)

+ v2
(

3C010
0,0 + 12C011

0,1

−3C100
+1,1 − 12C101

+1,2 + 8C210
0,2 − 8C300

+1,3

))]

,

JC9 = − 1

8
√
v2

[

− (v · u)v2
(

v2C000
0,1 + 6C100

0,1

)

+ 16(v · u)C300
0,2 + 8C300

+1,2

]

,

JC10 = − 1

12
√
v2
√

(v · u)2 − v2

[

6v2
(

C110
−1,0 + C110

+1,1

)

+ 12C210
+1,1

+16v2C210
+1,2 + (v · u)2

(

3v2C100
0,1 − 16C300

0,2

)

+ 2(v · u)
(

6
(

C210
0,1 − C300

+1,2

)

+v2
(

3C110
0,1 − 3C200

+1,2 + 8C210
0,2 − 8C300

+1,3

))

]

,

JC11 = − 1
√
v2
√

(v · u)2 − v23

[

− 2(v · u)(v2)2C210
0,2 + 2(v2)2C210

+1,2

+(v · u)2
(

3v2C120
0,1 + 3C210

+1,1 − 2v2C210
+1,2

)

+(v · u)3
(

3C210
0,1 + 2v2C210

0,2 −C300
+1,2

)]

,

JC12 =
1

6
√
v2((v · u)2 − v2)

[

(v · u)
(

12C210
+1,1 + v2

(

3v2
(

C020
0,1 − C110

−1,1

)

+6
(

C110
−1,0 + C120

0,1

)

+ 4C210
+1,2

))

+ (v · u)3
(

3v2C−1,1
110 − 4C300

0,2

)

+(v · u)2
(

12C210
0,1 − 6C300

+1,2 + v2
(

3C110
0,1 − 3C200

+1,2 + 12C210
0,2 − 8C300

+1,3

))

+(v2)2
(

− 3C110
0,1 + 6C200

+1,2 − 8C210
0,2 + 4C300

+1,3

)

]

. (A.23)



A.8. Renormalized scalar loop function kernels for low three-momenta w 111

A.8 Renormalized scalar loop function kernels for low three-
momenta w

For sufficiently low three-momenta w the loop functions JMi (v0,w) are defined by

JMi (v0,w) =

+∞
∫

−∞

dv̄0
π

sign(v̄0 − µ)ImJMi (v0, v̄0,w)

v̄0 − v0 − iε(v̄0 − µ)
(A.24)

with the imaginary part analogous to (2.55)

ImJMi (v0, v̄0,w) =

∫

d3l

2(2π)3
1

E∗
N

×
{

KM
i (l+, v0, v̄0,w)ρK(v̄+,w − l) [Θ(+v̄+) − Θ(kF − |l|)]

+KM
i (l−, v0, v̄0,w)ρK(v̄−,w − l)Θ(−v̄−)

}

,

lµ± = (±E∗
N , l),

v̄± = v̄0 ∓ E∗
N . (A.25)

The thirteen renormalized in-medium loop function kernels KM
i (l±, v0, v̄0,w) can be summa-

rized from (A.21) and (A.23) and read:

KM
0 = 1 − (v̄ · u)

v̄2
[(v̄ · u) − (v · u)] ,

KM
1 =

(√
v2

2
+

(l̄ · v̄)√
v2

)

(

1 − (v̄ · u)
v̄2

[(v̄ · u) − (v · u)]
)

,

KM
2 = − (v · u)

√

(v · u)2 − v2

(l̄ · v̄)√
v2

(

1 − (v̄ · u)
v̄2

[(v̄ · u) − (v · u)]
)

+

√
v2(l̄ · u)

√

(v · u)2 − v2
,

KM
3 =

1

2
KM

5 − 1

2

v2

v̄2

(

(l̄ · v̄)2
v2

− l̄2 − v̄2 − v2

4

)

+ 2
v̄2 − v2

v̄2

(l̄ · v̄)2
v̄2

,

KM
4 =

(√
v2

2
+

(l̄ · v̄)√
v2

)

KM
1 − (l̄ · v̄)2

v̄2

(v · u)
v2

[(v̄ · u) − (v · u)] ,
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KM
5 =

1

(v · u)2 − v2

[

v2(l̄ · u)2 − 2
(v · u)2
(v̄ · u) (l̄ · v̄)(l̄ · u) + (v · u)2 (l̄ · v̄)2

v̄2

]

− v̄
2 − v2

12v̄2
v2,

KM
6 =

√
v2

2
KM

2 +
(l̄ · v̄)(l̄ · u)
√

(v · u)2 − v2

(v · u)
(v̄ · u) − (v · u)

√

(v · u)2 − v2

(l̄ · v̄)2
v̄2

,

KM
7 =

1

2
KM

12 +
1

2

v2

v̄2

(

l̄2 − (l̄ · v̄)2
v̄2

)

KM
1 +

3

4

√
v2
(

1 −KM
0

) v̄2 + v2

v̄2

(l̄ · v̄)2
v̄2

+
1

2

√
v2
v̄2 − v2

v̄2

(l̄ · v̄)3
v̄2v̄2

− 1

2

(v · u)√
v2

(v̄ · u) − (v · u)
v̄2

(

1 + 3
v2

v̄2

)

(l̄ · v̄)3
v̄2

,

KM
8 =

1

2
KM

11 +
1

2

v2

v̄2

(

l̄2 − (l̄ · v̄)2
v2

)

KM
2 − 1

3

v̄2 − v2

v̄2

(l̄ · v̄)2
v̄2

KM
2 ,

KM
9 =

(√
v2

2
+

(l̄ · v̄)√
v2

)2

KM
1 − 3

2

(v · u)√
v2

[(v̄ · u) − (v · u)] (l̄ · v̄)2
v̄2

+
1√
v2

(

v2 − v̄2

v2
KM

0 − 2(v · u)(v̄ · u) − (v · u)
v̄2

)

(l̄ · v̄)3
v̄2

,

KM
10 =

v2

4

(

1 + 2
(l̄ · v̄)
v̄2

+ 4
(l̄ · v̄)2
v̄2v̄2

)

KM
2 +

1

3

v2 − v̄2

v̄2

(l̄ · v̄)2
v̄2

KM
2

+
1

2

√
v2(v · u)

√

(v · u)2 − v2

(

(l̄ · u)
(v̄ · u) − (l̄ · v̄)

v̄2

)

(l̄ · v̄),

KM
11 =

√
v2

√

(v · u)2 − v23

[

v2(l̄ · u)3 − 3(v · u)(l̄ · u)2(l̄ · v̄)KM
0

+3(v · u)2(l̄ · u)(l̄ · v̄)
2

v̄2
− (v · u)3

v2

(l̄ · v̄)3
v̄2

KM
0

]

+2

√
v2

√

(v · u)2 − v2

[(v̄ · u) − (v · u)]2
v̄2

(l̄ · u)(l̄ · v̄)
2

v̄2
,

KM
12 =

1

(v · u)2 − v2

[(√
v2

2
+

(l̄ · v̄)√
v2

)

KM
0 v2(l̄ · u)2

−2

(√
v2

2

(v · u)
(v̄ · u) −

√
v2

(

1 − 1

3

v̄2 − v2

v̄2

)

(l̄ · v̄)
v̄2

)

(v · u)(l̄ · u)(l̄ · v̄)

+

(√
v2

2

(

2 −KM
0

)

+
(l̄ · v̄)√
v2

(

1 − 2

3

v̄2 − v2

v̄2

)

KM
0

)

(v · u)2 (l̄ · v̄)2
v̄2

]

−
√
v2
(

1 −KM
0

)

(

1 +
2

3

(l̄ · v̄)
v̄2

− 4

3

(l̄ · u)
(v̄ · u)

)

(l̄ · v̄)2
v̄2

+

√
v2

2

v̄2 − v2

(v̄ · u) (l̄ · u)(l̄ · v̄)
v̄2

(A.26)
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The free-space limit of expressions (A.26) can be obtained by applying the following vacuum
replacement rules:

(l̄ · v̄) =
m2
N −m2

K

2
,

(l̄ · u) =
(v̄ · u)
v̄2

(l̄ · v̄),

(l̄ · u)2 =
(v̄ · u)2
(v̄2)2

(l̄ · v̄)2 +
1

3

(

l̄2 − (l̄ · v̄)
v̄2

)(

1 − (v̄ · u)2
v̄2

)

,

(l̄ · u)3 =
(v̄ · u)3
(v̄2)3

(l̄ · v̄)3 +
(v̄ · u)
v̄2

(l̄ · v̄)
(

l̄2 − (l̄ · v̄)
v̄2

)(

1 − (v̄ · u)2
v̄2

)

(A.27)

and

l̄2 =
m2
N +m2

K

2
− v̄2

4
. (A.28)

A.9 Self-energy

We recall the form of the invariant functions c
(p,q)
ij (q, w, u):

c
(q)
11 = 1

2 E+

(

E+E− + (X · q)2
)

, c
(p)
11 = E+ ,

c
(q)
12 = − i

2 (X · q)
(

E+E− + (X · q)2
)

, c
(p)
12 = −i (X · q) ,

c
(q)
22 = 1

2 E−
(

E+E− + (X · q)2
)

, c
(p)
22 = E− ,

c
(p)
13 = c

(p)
24 = − 1√

3
E+ E− , c

(p)
25 = c

(p)
16 = −i (ŵ · q) (X · q) ,

c
(p)
17 = −i

√

2
3 E+ (X · q) , c

(p)
15 = (ŵ · q)E+ , c

(p)
14 = i√

3
E+ (X · q) ,

c
(p)
28 = −i

√

2
3 E− (X · q) , c

(p)
26 = (ŵ · q)E− , c

(p)
23 = i√

3
E− (X · q) ,

c
(p)
27 = c

(p)
18 = −

√

3
2

(

1
3 E+E− + (X · q)2

)

, (A.29)
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and

c
(p)
33 = 1

3 E
2
− E+ , c

(p)
44 = 1

3 E
2
+E− ,

c
(p)
55 = E+ (ŵ · q)2 , c

(p)
77 = 1

2 E+

(

1
3 E+ E− −

(

X · q
)2
)

,

c
(p)
66 = E− (ŵ · q)2 , c

(p)
88 = 1

2 E−
(

1
3 E+ E− −

(

X · q
)2
)

,

c
(p)
35 = c

(p)
46 = − 1√

3
(ŵ · q)E+ E− , c

(p)
57 = −i

√

2
3 (X · q) (ŵ · q)E+ ,

c
(p)
37 = c

(p)
48 = i

√
2

3
(X · q)E+ E− , c

(p)
68 = −i

√

2
3 (X · q) (ŵ · q)E− ,

c
(p)
34 = − i

3 (X · q)E+ E− , c
(p)
56 = −i (ŵ · q)2 (X · q) ,

c
(p)
78 = i

(

X · q
)

(

3
2

(

X · q
)2

+ 5
6 E+E−

)

,

c
(p)
36 = i√

3
(ŵ · q)E− (X · q) , c

(p)
38 = 1√

2
E−
(

1
3 E+E− + (X · q)2

)

,

c
(p)
45 = i√

3
(ŵ · q)E+ (X · q) , c

(p)
47 = 1√

2
E+

(

1
3 E+E− + (X · q)2

)

,

c
(p)
58 = c

(p)
67 = −

√

3
2 (ŵ · q)

(

1
3 E+E− + (X · q)2

)

, (A.30)

where Xµ = Xµ(w, u) and

E± ≡ m∗
N ± (

√

w2
0 − w 2 − q · ŵ) , E+ E− = q2 − (q · ŵ)2 . (A.31)



Appendix B
Appendix: Non-Local approach for kaonic

atoms

B.1 Asymptotic and analytic solutions of the Klein-Gordon

equation

For a spin-0 particle interacting with the electromagnetic field of the nucleus we can derive
analytic solutions of the Klein-Gordon equation, constraining the boundary conditions with
simple asymptotic solutions for r → 0 and r → ∞. For a point-like nucleus of charge Z the
Coulomb potential VC = −Zα

r enters the Klein-Gordon equation

[

▽2 +

(

ω +
Zα

r

)2

−m2
0

]

φ(r) = 0. (B.1)

Here α is the fine structure constant and we use r = |r|. It leads to an equation for the radial
part ul(r) of the wave function φ(r)

[

d2

dr2
− l(l + 1)

r2
+
Z2α2

r2
+

2ωZα

r
−m2

0 + ω2

]

ul(r) = 0. (B.2)

by applying the standard angular momentum decomposition

φ(r) =
1

r
ul(r)Ylm(ϑ,ϕ), l = 0, 1, 2, . . . (B.3)

for separation of variables in (B.1). The substitutions β = 2
√

m2
0 − ω2 and ρ = βr lead to

[

d2

dρ2
+
λ

ρ
− l(l + 1)

ρ2
+
Z2α2

ρ2
− 1

4

]

ul = 0 (B.4)

with

λ =
2ωZα

β
> 0. (B.5)

The asymptotic solutions of the differential equation (3.4) follow from certain limiting
cases of (B.4). For large radii r → ∞ terms proportional to ρ−1 and ρ−2 can be neglected
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and the differential equation reduces to

[

d2

dρ2
− 1

4

]

ul(ρ) = 0. (B.6)

This equation is solved by
ul(ρ)

ρ→∞−−−→ a e−ρ/2 + b eρ/2 (B.7)

and because of normalizability of the wave function we require b = 0.
For small radii ρ→ 0 the 1/ρ2-terms dominate in (B.4) and the remaining equation

[

d2

dρ2
− l(l + 1)

ρ2
+
Z2α2

ρ2

]

ul = 0. (B.8)

can be solved with the ansatz ul = aρν , where ν is determined by the equation

aν(ν − 1)ρν−2 − a
[

l(l + 1) − Z2α2
]

ρν−2 = 0 (B.9)

as

ν± =
1

2
±
√

1

4
+ l(l + 1) − Z2α2. (B.10)

The regular solutions are given by ν+. In the case of kaonic atoms involving an optical
potential and additional vacuum polarization corrections we have to modify the asymptotic
behaviour ul ∝ ρν with (B.10) for small radii. If we assume that none of the potentials is
more singular than 1

ρ2 then (B.8) simplifies to

[

d2

dρ2
− l(l + 1)

ρ2

]

ul = 0 (B.11)

and ν is determined by

ν =
1

2
+

√

1

4
+ l(l + 1) = l + 1. (B.12)

Expression (B.12) reflects the well known asymptotic behaviour ul(r) ∝ rl+1 and will be used
as a boundary condition for r → 0. Accordingly for the derivative we have u′l(r) ∝ (l + 1)rl.
We observed that the solution of the Klein-Gordon equation (3.4) is rather insensitive to the
actual form of the boundary condition for small radii. We obtain both a correct eigenvalue
and – up to an arbitrary normalization constant of the wave function – a correct wave function
solution even for any constant boundary value of the wave function and its derivative. Hence
the solution is strongly determined by the applied potentials.

For completeness we will also give the analytic expressions for the complete solution and
eigenvalues of the Klein-Gordon equation involving a point-like nucleus with pure Coulomb
potential. It can be used as a benchmark for the numerical solution of the Klein-Gordon
equation. A detailed discussion can be found in [62]. With the definition

µ =

√

1

4
+ l(l + 1) − Z2α2 (B.13)

the solution of (B.4) reads

ul(ρ) = Nρ
1
2
+µe−

ρ
2 f(ρ), (B.14)
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including a normalization constant N and f(ρ) that guarantees normalizability of ul(ρ). Fur-
thermore f(ρ) should be constant for ρ → 0. The function f(ρ) will be constrained by
plugging ansatz (B.14) into (B.4):

d2

dρ2
f(ρ) +

(

2µ+ 1

ρ
− 1

)

d

dρ
f(ρ) − µ+ 1/2 − λ

ρ
f(ρ) = 0. (B.15)

Equation (B.15) is solved by the confluent hypergeometric series 1F1 (a, c; ρ) with a ≡ µ+ 1
2−λ

and c ≡ 2µ+ 1. Using the definition

pFq(a,b, x) =

∞
∑

k=0

(a1)k · . . . · (ap)k
(b1)k · . . . · (bq)k

xk

k!
. (B.16)

and a = (a1, . . . , ap), b = (b1, . . . , bq) we have

f(ρ) =1 +
a

c
ρ+

a(a+ 1)

c(c+ 1)

ρ

2
+ . . .

+
a(a+ 1) . . . (a+ n′)
c(c+ 1) . . . (c+ n′)

ρn
′+1

(n′ + 1)!
+ . . . (B.17)

The hypergeometric series 1F1 (a, c; ρ) diverges for ρ→ ∞:

1F1 (a, c; ρ → ∞) =
Γ(c)

Γ(a)
ρa−ceρ (B.18)

with the Euler gamma function

Γ(x) =

∞
∫

0

dt e−ttx−1, Γ(x) convergent for x > 0. (B.19)

So that ul vanishes for ρ→ ∞ the hypergeometric series has to be truncated at a finite power
n′. For a = −n′ all terms in (B.17) with power m > n′ are identically zero, hence a has to be
a negative integer. Now the energy eigenvalue can be calculated. Starting from

λ = µ+
1

2
+ n′ =

Zαω
√

m2
0 − ω2

(B.20)

and by making use of β = 2
√

m2
0 − ω2, ρ = βr, (B.5) and (B.13) it follows that

ω =
m0√

1 + Z2α2λ−2
= m0











1 +
Z2α2

(

n′ + 1
2 +

√

(

l + 1
2

)2 − Z2α2

)2











− 1
2

. (B.21)

As the product Zα is small compared to 1 except for heavy nuclei we can expand (B.21) in
powers of Z. We define the main quantum number n = n′ + l + 1 and obtain

ω = m0

[

1 − Z2α2

2n2
− Z4α4

2n4

(

n

l + 1
2

− 3

4

)

+ O(Z6α6)

]

. (B.22)

It is instructive to have a closer look at the different contributions of ω. The first summand
is nothing else but the rest energy of a particle with mass m0, the second one is the kinetic
energy of the particle subjected to a Coulomb field in the nonrelativistic approximation. The
third summand is the first relativistic energy correction, depending on the quantum number
l and reflecting a removed degeneracy.
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B.2 Numerical solution of the Klein-Gordon equation

The method of [45] is utilising a pure starting value problem, thus explicitly making use of the
pathologic behaviour of the wave function at large radii due to instabilities of the numerical
solution. The integration of the differential equation is done in direction of the instabilities
of the solution and the eigenvalue is iterated in order to minimize the absolute square of the
wave function at a fixed large radius, pushing the exponential growth of the wave function
due to the instabilities of the solution far away from the origin. The differential equation is
of the form

d2u(r)

dr2
+ (λ2

0 + V (r))u(r) = 0 (B.23)

with a complex eigenvalue λ0. The interaction V (r) includes the centrifugal potential and
vanishes for r → ∞. Suppose for arbitrary λ and large radii we have two solutions, a regular

one u
(1)
λ (r) and an irregular one u

(2)
λ (r) that behave like

u
(1)
λ (r) → e−λr and u

(2)
λ (r) → e+λr. (B.24)

The bound state solution with λ = λ0 behaves like rl+1 at the origin and diminishes exponen-
tially for r → ∞. The method of [45] imposes uλ(r) ∝ rl+1 at the origin and the differential
equation is integrated out to large radii. Now the wave function can be written as

uλ(r) = B(λ)

[

u
(1)
λ (r) +

(

λ− λ0

λ0

)

C(λ)u
(2)
λ (r)

]

r→∞−−−→ B(λ)

[

e−λr +

(

λ− λ0

λ0

)

C(λ)e+λr
]

. (B.25)

The function C(λ) vanishes for any λ except for the eigenvalue λ0, in the region of which
B(λ) as well as C(λ) can be regarded as constant. From now on we will treat these functions
as constant. If λ is not an eigenvalue, the irregular component of uλ(r) will dominate the
solution. For this reason minimizing uλ(r) with respect to λ at a fixed and large r = r0 is an
obvious choice. Because of the complex wave function and eigenvalue we have to minimize
the absolute square |uk(r0)|2, that looks like

|uλ(r0)|2 ≈ |B|2
{

e−2Re(λr0) + O
[

λ− λ0

λ0
C

]

+ |C|2
∣

∣

∣

∣

λ− λ0

λ0

∣

∣

∣

∣

2

e2Re(λr0)

}

. (B.26)

As the irregular component depends on Re(λr0) exponentially the minimum converges on a
very small region and a minimization of |uk(r0)|2 would be inefficient. Thus we define a new
function v(λ), the fraction of the absolute square and the irregular component:

v(λ) =
|uλ(r0)|2

|u(2)
λ (r0)|2

≈ |uλ(r0)|2
e2Re(λr0)

. (B.27)

A Minimization of v(λ) is much more efficient, typical values for r0 are 200− 300 fm. Also r0
should not be chosen too large because of growing numerical error. The method of [45] proved
to be capable of providing the most accurate solutions for light nuclei and bound states with
small l. The formulation as a pure starting value problem is its most severe disadvantage,
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resulting in an inevitable propagation and accumulation of errors and instabilities of the
solution at large radii. Starting with u(rmin) = rl+1

min at small rmin ≈ h with an integration
step size h leads to a wave function of the same order as the typical error of the integration,
O(h5), for l ≥ 4. Further discussion can be found in [63].

The second method known as shooting [64] avoids the disadvantages of [45] and delivers
stable solutions for high quantum numbers l. The inner solution with the same starting
boundary condition rl+1

min is stabilized by matching with an outer solution integrated from
large radii to a fixed matching point. So we are dealing with a two-point boundary value
problem, that requires the knowledge of the outer solution and its derivative as a boundary
condition at rmax. The asymptotic solution (B.7) proved to be sufficient. An implementation
of the full solution (B.14) does not result in a significant improvement of the wave function
and matching process. A typical value of rmax is about 200 fm. The matching of the inner
uinl (r, λ) and outer solution uoutl (r, λ) is done at a matching point rm with rmin < rm < rmax,
typically we use rm ≈ 20 fm. For the determination of the eigenvalue matching the derivative
of the wave function would be sufficient. However, we introduce another matching parameter
κ both for real and imaginary part that is multiplied onto the outer boundary condition (B.7),
because the inner and outer solution are not normalized and can differ by an unknown absolute
value at the matching point rm. Thus the matching condition for the correct eigenvalue λ0

reads

uinl (rm, λ0, κ) = uoutl (rm, λ0, κ),
d

dr
uinl (rm, λ0, κ) =

d

dr
uoutl (rm, λ0, κ) (B.28)

and the minimization of an N = 4 dimensional vector, measuring the differences of wave
function and its derivative at rm, is done with respect to the (complex) parameters λ and κ.

B.3 General covariant self-energy coefficient functions

Covariant coefficient functions c
(p,q)
ij (q, w, u) in Q-space

c
(q)
11 =

m∗
N + (p · ŵ)

2
(

(u · ŵ)2 − 1
)

(

(q̄ · ŵ) ((q · ŵ) − (q · u) (u · ŵ))

+(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
))

,

c
(q)
12 = −i(p · u) − (p · ŵ) (u · ŵ)

2
(

(u · ŵ)2 − 1
) 3

2

(

(q̄ · ŵ) ((q · ŵ) − (q · u) (u · ŵ))

+(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
))

,

c
(q)
21 = c

(q)
12 ,

c
(q)
22 =

m∗
N − (p · ŵ)

2
(

(u · ŵ)2 − 1
)

(

(q̄ · ŵ) ((q · ŵ) − (q · u) (u · ŵ))

+(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
))

(B.29)

and in P-space:
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c
(p)
11 = m∗

N + (p · ŵ),

c
(p)
12 = −i(p · u) − (p · ŵ) (u · ŵ)

√

(u · ŵ)2 − 1
,

c
(p)
13 =

(p · q) − (p · ŵ) (q · ŵ)√
3

,

c
(p)
14 = −i(m

∗
N + (p · ŵ)) ((q · u) − (q · ŵ) (u · ŵ))

√
3

√

(u · ŵ)2 − 1
,

c
(p)
15 = (q · ŵ) (m∗

N + (p · ŵ)) ,

c
(p)
16 = −i(q · ŵ) ((p · u) + (p · ŵ) (u · ŵ))

√

(u · ŵ)2 − 1
,

c
(p)
17 = i

√

2

3

(m∗
N + (p · ŵ)) ((q · u) − (q · ŵ) (u · ŵ))

√

(u · ŵ)2 − 1
,

c
(p)
18 =

1
√

6
(

(u · ŵ)2 − 1
)

[

3(p · u) ((q · u) − (q · ŵ) (u · ŵ)) + (p · q)
(

(u · ŵ)2 − 1
)

+(p · ŵ)
(

(q · ŵ) − 3(q · u) (u · ŵ) + 2(q · ŵ) (u · ŵ)2
) ]

,

c
(p)
21 = c

(12)
12 , c

(p)
22 = m∗

N − (p · ŵ),

c
(p)
23 = −i(m

∗
N − (p · ŵ)) ((q · u) − (q · ŵ) (u · ŵ))

√
3
√

(u · ŵ)2 − 1
,

c
(p)
24 = c

(p)
13 , c

(p)
25 = c

(p)
16 ,

c
(p)
26 = (q · ŵ) (m∗

N − (p · ŵ)) , c
(p)
27 = c

(p)
18 ,

c
(p)
28 = i

√

2

3

(m∗
N − (p · ŵ)) ((q · u) − (q · ŵ) (u · ŵ))

√

(u · ŵ)2 − 1
,

c
(p)
31 = c

(p)
13 (q ↔ q̄), c

(p)
32 = c

(p)
23 (q ↔ q̄),

c
(p)
33 =

(m∗
N − (p · ŵ)) ((q̄ · q) − (q̄ · ŵ) (q · ŵ))

3
,

c
(p)
34 =

i

3
√

(u · ŵ)2 − 1

[

− (p · q) (q̄ · u) − (p · q̄) (q · u) + (p · ŵ) (q̄ · ŵ) (q · u)

+(p · ŵ) (q̄ · u) (q · ŵ) + (p · u) ((q̄ · q) − (q̄ · ŵ) (q · ŵ)) − (p · ŵ) (q̄ · q) (u · ŵ)

+(p · q) (q̄ · ŵ) (u · ŵ) + (p · q̄) (q · ŵ) (u · ŵ) − (p · ŵ) (q̄ · ŵ) (q · ŵ) (u · ŵ)
]

,

c
(p)
35 =

(q · ŵ) ((p · q̄) − (p · ŵ) (q̄ · ŵ))√
3

,

c
(p)
36 = −i(q · ŵ) (m∗

N − (p · ŵ)) ((q̄ · u) − (q̄ · ŵ) (u · ŵ))
√

3
√

(u · ŵ)2 − 1
,
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c
(p)
37 =

i

3
√

2
√

(u · ŵ)2 − 1

[

− (p · q) (q̄ · u) + 2(p · q̄) (q · u) − 2(p · ŵ) (q̄ · ŵ) (q · u)

+(p · ŵ) (q̄ · u) (q · ŵ) + (p · u) ((q̄ · q) − (q̄ · ŵ) (q · ŵ)) − (p · ŵ) (q̄ · q) (u · ŵ)

+(p · q) (q̄ · ŵ) (u · ŵ) − 2(p · q̄) (q · ŵ) (u · ŵ) + 2(p · ŵ) (q̄ · ŵ) (q · ŵ) (u · ŵ)
]

,

c
(p)
38 =

m∗
N − (p · ŵ)

3
√

2
(

(u · ŵ)2 − 1
)

[

3(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
)

+(q̄ · ŵ)
(

(q · ŵ) − 3(q · u) (u · ŵ) + 2(q · ŵ) (u · ŵ)2
) ]

,

c
(p)
41 = c

(p)
14 (q ↔ q̄), c

(p)
42 = c

(p)
24 (q ↔ q̄), c

(p)
43 = c

(p)
34 ,

c
(p)
44 =

(m∗
N + (p · ŵ)) ((q̄ · q) − (q̄ · ŵ) (q · ŵ))

3
,

c
(p)
45 = −i(q · ŵ) (m∗

N + (p · ŵ)) ((q̄ · u) − (q̄ · ŵ) (u · ŵ))
√

3

√

(u · ŵ)2 − 1
,

c
(p)
46 = c

(p)
35 ,

c
(p)
47 =

m∗
N + (p · ŵ)

3
√

2
(

(u · ŵ)2 − 1
)

[

3(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
)

+(q̄ · ŵ)
(

(q · ŵ) − 3(q · u) (u · ŵ) + 2(q · ŵ) (u · ŵ)2
) ]

,

c
(p)
48 = c

(p)
37 ,

c
(p)
51 = c

(p)
15 (q ↔ q̄), c

(p)
52 = c

(p)
25 (q ↔ q̄),

c
(p)
53 = c

(p)
35 (q ↔ q̄), c

(p)
54 = c

(p)
45 (q ↔ q̄),

c
(p)
55 = (m∗

N + (p · ŵ)) (q̄ · ŵ) (q · ŵ),

c
(p)
56 = −i(q̄ · ŵ) (q · ŵ) ((p · u) − (p · ŵ) (u · ŵ))

√

(u · ŵ)2 − 1
,

c
(p)
57 = −

√
2c

(p)
54 ,

c
(p)
58 =

(q̄ · ŵ)
√

6
(

(u · ŵ)2 − 1
)

[

3(p · u) ((q · u) − (q · ŵ) (u · ŵ)) + (p · q)
(

(u · ŵ)2 − 1
)

+(p · ŵ)
(

(q · ŵ) − 3(q · u) (u · ŵ) + 2(q · ŵ) (u · ŵ)2
) ]

,

c
(p)
61 = c

(p)
16 (q ↔ q̄), c

(p)
62 = c

(p)
26 (q ↔ q̄),

c
(p)
63 = c

(p)
36 (q ↔ q̄), c

(p)
64 = c

(p)
46 (q ↔ q̄),

c
(p)
65 = c

(p)
56 (q ↔ q̄), c

(p)
66 = (m∗

N − (p · ŵ)) (q̄ · ŵ) (q · ŵ),

c
(p)
67 = c

(p)
58 , c

(p)
68 = −

√
2c

(p)
63 ,

c
(p)
71 = c

(p)
17 (q ↔ q̄), c

(p)
72 = c

(p)
27 (q ↔ q̄),

c
(p)
73 = c

(p)
37 (q ↔ q̄), c

(p)
74 = c

(p)
47 ,

c
(p)
75 = c

(p)
57 (q ↔ q̄), c

(p)
76 = c

(p)
67 (q ↔ q̄),
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c
(p)
77 =

m∗
N + (p · ŵ)

6
(

(u · ŵ)2 − 1
)

[

− 3(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
)

+(q̄ · ŵ)
(

(q · ŵ) + 3(q · u) (u · ŵ) − 4(q · ŵ) (u · ŵ)2
) ]

,

c
(p)
78 =

i

6
(

(u · ŵ)2 − 1
)

3
2

[

− 2(p · q̄) (q · u) + 2(p · ŵ) (q̄ · ŵ) (q · u) + 2(p · ŵ) (q̄ · u) (q · ŵ)

+(p · ŵ) (q̄ · q) (u · ŵ) − 9(p · ŵ) (q̄ · u) (q · u) (u · ŵ) + 2(p · q̄) (q · ŵ) (u · ŵ)

−5(p · ŵ) (q̄ · ŵ) (q · ŵ) (u · ŵ) + 2(p · q̄) (q · u) (u · ŵ)2

+7(p · ŵ) (q̄ · ŵ) (q · u) (u · ŵ)2 + 7(p · ŵ) (q̄ · u) (q · ŵ) (u · ŵ)2

−(p · ŵ) (q̄ · q) (u · ŵ)3 − 2(p · q̄) (q · ŵ) (u · ŵ)3 − 4(p · ŵ) (q̄ · ŵ) (q · ŵ) (u · ŵ)3

+2(p · q) ((q̄ · u) − (q̄ · ŵ) (u · ŵ))
(

(u · ŵ)2 − 1
)

+(p · u)
(

9(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
)

+(q̄ · ŵ)
(

(q · ŵ) − 9(q · u) (u · ŵ) + 8(q · ŵ) (u · ŵ)2
))]

,

c
(p)
81 = c

(p)
18 (q ↔ q̄), c

(p)
82 = c

(p)
28 (q ↔ q̄),

c
(p)
83 = c

(p)
38 , c

(p)
84 = c

(p)
48 (q ↔ q̄),

c
(p)
85 = c

(p)
58 (q ↔ q̄), c

(p)
86 = c

(p)
68 (q ↔ q̄),

c
(p)
87 = c

(p)
78 ,

c
(p)
88 =

m∗
N − (p · ŵ)

6
(

(u · ŵ)2 − 1
)

[

− 3(q̄ · u) ((q · u) − (q · ŵ) (u · ŵ)) + (q̄ · q)
(

(u · ŵ)2 − 1
)

+(q̄ · ŵ)
(

(q · ŵ) + 3(q · u) (u · ŵ) − 4(q · ŵ) (u · ŵ)2
) ]

. (B.30)
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B.4 Coefficient functions non-local self-energy

The coefficients in P- and Q-space read for a = 1, contribution ∝ 1
4∇2

R,

c
(p)
[33],1 = −1

3

(

m∗
N − m∗

N
2 + ωE∗

N − p · q
√

w2
0 − w2

)

,

c
(p)
[34],1 =

i

3
√

w2
0 − w2

√

(ω + E∗
N )2 − (w2

0 − w2)

[

ω
(

m∗
N

2 + E∗
N

2 − p · q
)

+E∗
N

(

m∗
N

2 + ω2 − p · q−
(

w2
0 − w2

)

) ]

,

c
(p)
[37],1 =

1√
2
c
(p)
[34],1, c

(p)
[38],1 =

1√
2
c
(p)
[33],1,

c
(p)
[44],1 = −1

3

(

m∗
N +

m∗
N

2 + ωE∗
N − p · q

√

w2
0 − w2

)

,

c
(p)
[47],1 =

1√
2
c
(p)
[44],1, c

(p)
[48],1 = c

(p)
[37],1,

c
(p)
[77],1 =

1

2
c
(p)
[44],1, c

(p)
[78],1 =

1

2
c
(p)
[34],1,

c
(p)
[88],1 =

1

2
c
(p)
[33],1,

c
(q)
[11],1 = −1

2

(

m∗
N +

m∗
N

2 + ωE∗
N − p · q

√

w2
0 − w2

)

,

c
(q)
[12],1

=
i

2
√

w2
0 − w2

√

(ω + E∗
N )2 − (w2

0 − w2)

[

E∗
N (w2

0 − w2)

−(ω + E∗
N )
(

m∗
N

2 + ωE∗
N − p · q

) ]

,

c
(q)
[22],1 = −1

2

(

m∗
N − m∗

N
2 + ωE∗

N − p · q
√

w2
0 − w2

)

, (B.31)

for a = 2, contribution ∝ 1
4 (w · ∇R)2,

c
(p)
[33],2 = − 1

3(w2
0 − w2)

(

m∗
N − m∗

N
2 + ωE∗

N − p · q
√

w2
0 − w2

)

,

c
(p)
[34],2 = − i

3
√

w2
0 − w2

3
√

(ω + E∗
N )2 − (w2

0 −w2)

[

ω
(

m∗
N

2 + E∗
N

2 − p · q
)

+E∗
N

(

m∗
N

2 + ω2 − p · q +
(

w2
0 − w2

)

) ]

,

c
(p)
[35],2 = − 1√

3

m∗
N

2 + ωE∗
N − p · q

√

w2
0 − w23 ,
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c
(p)
[36],2 =

i√
3

ω + E∗
N

(

w2
0 − w2

)

√

(ω + E∗
N )2 − (w2

0 − w2)

(

m∗
N − m∗

N
2 + ωE∗

N − p · q
√

w2
0 −w2

)

,

c
(p)
[37],2 =

√
2 i

3
√

w2
0 − w2

3
√

(ω + E∗
N )2 − (w2

0 −w2)

[

ω
(

m∗
N

2 + E∗
N

2 − p · q
)

+E∗
N

(

m∗
N

2 + ω2 − p · q −
(

w2
0 − w2

)

2

)]

,

c
(p)
[38],2 =

1

3
√

2(w2
0 − w2)

2(ω + E∗
N )2 + (w2

0 − w2)

(ω + E∗
N )2 − (w2

0 − w2)

(

m∗
N − m∗

N
2 + ωE∗

N − p · q
√

w2
0 − w2

)

,

c
(p)
[44],2 = − 1

3(w2
0 − w2)

(

m∗
N +

m∗
N

2 + ωE∗
N − p · q

√

w2
0 − w2

)

,

c
(p)
[45],2 =

i√
3

ω + E∗
N

(

w2
0 − w2

)

√

(ω + E∗
N )2 − (w2

0 − w2)

(

m∗
N +

m∗
N

2 + ωE∗
N − p · q

√

w2
0 −w2

)

,

c
(p)
[46],2

= c
(p)
[35],2

,

c
(p)
[47],2 =

1

3
√

2(w2
0 − w2)

2(ω + E∗
N )2 + (w2

0 − w2)

(ω + E∗
N )2 − (w2

0 − w2)

(

m∗
N +

m∗
N

2 + ωE∗
N − p · q

√

w2
0 − w2

)

,

c
(p)
[48],2 = c

(p)
[37],2,

c
(p)
[55],2 = −3c

(p)
[44],2,

c
(p)
[56],2 =

i
√

w2
0 − w2

3
√

(ω + E∗
N )2 − (w2

0 − w2)

[

ω
(

m∗
N

2 + E∗
N

2 − p · q
)

+E∗
N

(

m∗
N

2 + ω2 − p · q−
(

w2
0 − w2

)

) ]

,

c
(p)
[57],2 = −

√
2c

(p)
[45],2,

c
(p)
[58],2 =

1
√

6
√

w2
0 − w23 (

(ω +E∗
N )2 −

(

w2
0 −w2

))

×
[

2 (ω + E∗
N )2

(

m∗
N

2 + ωE∗
N − p · q

)

+
(

w2
0 − w2

)

(

m∗
N

2 + ωE∗
N − p · q− 3E∗

N (ω +E∗
N )
)

]

,

c
(p)
[66],2 = −3c

(p)
[33],2, c

(p)
[67],2 = c

(p)
[58],2, c

(p)
[68],2 = −

√
2c

(p)
[36],2,

c
(p)
[77],2 = − 1

6
√

w2
0 −w2

3

4(ω + E∗
N )2 − (w2

0 − w2)
(

(ω + E∗
N )2 − (w2

0 − w2)
)

×
(
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N

2 + ωE∗
N − p · q +m∗

N

√

w2
0 − w2

)

,
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c
(p)
[78],2 =

i

6
√

w2
0 − w2

3
√

(ω + E∗
N )2 − (w2

0 −w2)
3

×
[

E∗
N (w2

0 − w2)2 + 8E∗
N (w2

0 − w2)(ω + E∗
N )2,

−(ω + E∗
N )
(

4(ω + E∗
N )2 + 5(w2

0 − w2)
)

(

m∗
N

2 + ωE∗
N − p · q

)

]

,

c
(p)
[88],2 =

1

6
√

w2
0 − w23

4(ω + E∗
N )2 − (w2

0 − w2)
(

(ω +E∗
N )2 − (w2

0 − w2)
)

×
(
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N

2 + ωE∗
N − p · q−m∗

N

√

w2
0 − w2

)

,

c
(q)
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1

2
√

w2
0 − w2

(

(ω + E∗
N )2 − (w2

0 − w2)
)

[

m∗
N

2 + ωE∗
N − p · q +m∗

N

√

w2
0 − w2

]

,

c
(q)
[12],2

= − i

2
√

w2
0 − w2

√

(ω + E∗
N )2 − (w2

0 − w2)
3

×
[

E∗
N (w2

0 − w2) − (ω + E∗
N )
(

m∗
N

2 + ωE∗
N − p · q

) ]

,

c
(q)
[22],2 = − 1

2
√

w2
0 − w2

(

(ω + E∗
N )2 − (w2

0 − w2)
)

[

m∗
N

2 + ωE∗
N − p · q−m∗

N

√

w2
0 − w2

]

,

(B.32)

and finally for a = 3, contribution ∝ 1
4 (w · ∇R) (p · ∇R),

c
(p)
[34],3 =

2i

3
√

w2
0 −w2

√

(ω + E∗
N )2 − (w2

0 − w2)
(ω + E∗

N ),

c
(p)
[35],3 =

1√
3
√

w2
0 − w2

,

c
(p)
[37],3 = − 1

2
√

2
c
(p)
[34],3,

c
(p)
[46],3 = c

(p)
[35],3, c

(p)
[48],3 = c

(p)
[37],3,

c
(p)
[58],3 =

1√
2
c
(p)
[35],3,

c
(p)
[67],3 = c

(p)
[58],3,

c
(p)
[78],3 = −c(p)[34],3. (B.33)
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B.5 Implementing the pole structure for J =
1
2 p-wave analyt-

ically

Each of the poles Λ(1115) and Σ(1195) can be approximated by

T = mS
−g2

s−m2
P

(B.34)

with a coupling constant g, a scaling mass mS and the pole position at mP . These yet
unknown parameters will be determined by fitting (B.34) to the numerical data from the
coupled channel calculation [4]. Writing (B.34) in terms of the kaon momentum q results in

T (|q|) = mS
g2

q2 −m2
P̃

with m2
P̃

= (mK +mN )2 −m2
P . (B.35)

In general for our semi-microscopic model the right hand side of the non-local Klein-Gordon
equation takes the form

2µ

∫

d3r′U(r′, r)ϕ(r′) = −
∫

d3r′F(r′, r)ρ(r′, r)ϕ(r′) (B.36)

with

F ≡ F(r′, r) = mS g
2

∫

d3q

(2π)3
C

1
2

+

(|q|)e
−iq(r′−r)

q2 −m2
P̃

, (B.37)

from the pole structure (B.35). In the following we will substitute a = r′ − r and a = |r′ − r|,
q = |q|, whereas C

1
2

+

(|q|) is the coefficient from the trace evaluation in (B.52). Performing
the angular integration in the latter expression yields

F = mS g
2

∞
∫

0

dq

4π2

1
∫

−1

dz C
1
2

+

(q)
e−iqaz

q2 −m2
P̃

q2 = mS
g2

a

∞
∫

0

dq

2π2
C

1
2

+

(q)
sin(qa)

q2 −m2
P̃

q. (B.38)

This real integral can also be written as a complex one through

+R
∫

−R

dq
eiqa

q2 −m2
P̃

q = i

+R
∫

−R

dq
sin(qa)

q2 −m2
P̃

q +

+R
∫

−R

dq
cos(qa)

q2 −m2
P̃

q, (B.39)

with the left hand side of (B.39) being part of a closed contour integral

∮

C
dq

eiqa

q2 −m2
P̃

q (B.40)

in the complex plane. Hence, we will solve (B.40), take the imaginary part and add a factor
1
2i . According to Jordan’s lemma the integral part along the infinite semicircle vanishes if the

contour C is closed in the upper half plane for a > 0. Considering the coefficient C
1
2

+

we can
split the integral

F = mS
g2

a

∞
∫

−∞

dq

2π2
C

1
2

+

(q)
eiqa

q2 −m2
P̃

q (B.41)
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into a sum of two contributions,

−1

2

eiqa

q2 −m2
P̃

q and
1

2

mK +mN
√

(mK +mN )2 − q2
eiqa

q2 −m2
P̃

q. (B.42)

For each contribution there is a pole at q = ±mP̃

√

1 ± iε
m2

P̃

≈ ±mP̃ ± iε′ and the poles are

shifted in the complex plane according to

T = mS
−g2

s−m2
P + iε

=⇒ T = mS
−g2

q2 −m2
P̃
− iε

. (B.43)

We pick up two residues for the two contributions (B.42), namely

R1 = −1

4
eiamP̃ and

R2 =
1

4

(mK +mN )
√

(mK +mN )2 −m2
P̃

eiamP̃ (B.44)

in the upper half of the complex plane for ε→ 0. Collecting all terms and taking the imaginary
part of the integral we obtain

F = Im

[

mS
g2

8πa

(

mK +mN

mP
− 1

)

eiamP̃

]

= mS
ig2

8πa

(

mK +mN

mP
− 1

)

sin

(

a
√

(mK +mN )2 −m2
P

)

(B.45)

The coupling g and scaling mass mS remain to be determined by fitting the ansatz (B.34)
to the numerical results of the coupled channel calculations for each of the two poles. The
scaling mass turns out to be the pole mass mP . The obtained fit is depicted in Figure B.1
for the isospin averaged amplitude.

Finally the pole structure will be modeled by the parameter set

g1 = 10, m
(1)
P = 1115.5MeV,

g2 = 9.2, m
(2)
P = 1195MeV. (B.46)

The real part of the J = 1
2 p-wave contribution to the vacuum scattering amplitude (4.49)

reads

Re
[

T̄ (q)
]

= C
1
2

+

Re

[

M̄ 1
2

+(q)
]

−m
(1)
P

g2
1

q2 −m2
P̃ (1)

−m
(2)
P

g2
2

q2 −m2
P̃ (2)

. (B.47)

The analytic imaginary part (B.45) is directly added to the non-local potential in coordinate
space (B.36) for each of the poles.

B.6 Non-Local self-energy in the semi-microscopic model

We define the antikaon self-energy in the context of the approximation Π(ω = mK , |q|) =
−ρ T̄ (|q|). Note that here we are dealing with four-vectors, that is we have x 6= |x|. We make
use of the vacuum projector algebra introduced in Section 2.2.1.
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Figure B.1: Fit of the reduced amplitudes J = 3
2 for I = 0 and I = 1 as described in the text

to the numerical results of the coupled channel calculation of [4] (dots).

The self-energy is given by

Π(ω = mK , |q|) = 2 · Tr

∫

d4p

(2π)4
i∆SN (p)T̄ (|q|) (B.48)

with an in-medium nucleon propagator analogous to (4.10), but neglecting the nucleon mean-
fields ΣS and ΣV :

∆SN = 2πi · Θ(p0)δ(p
2 −m2

N )Θ(kF − |p|)(/p +mN ). (B.49)

The projector decomposition of the vacuum scattering amplitude T̄ (q) follows (2.22) and
(2.23). In our approximation ω = mK and T̄ (|q|) does not depend on the nucleon three-
momentum p. Using p2

0 = p2 +m2
N = E2

N and δ(p2
0 −E2

N ) = 1
|2EN | [δ(p0 − EN ) + δ(p0 + EN )]

the integration over p0 can be carried out in (B.48) and we obtain

Π(ω = mK , q) = −2
∑

J

∑

±

∫ kF

0

d3p

(2π)3
CJ

±

(q)M̄J±(q)

= −
∑

J

∑

±

2

3π2
k3
FC

J±

(q)M̄J±(q)

≡ −ρ T̄ (q). (B.50)

The coefficients CJ
±

are determined by evaluating the trace in (B.48), using the decomposition
(2.22). In general the coefficients read

CJ
±

=
1

2EN
Tr

[

1

2
(/p+mN )P J

±

]

(B.51)
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and in detail we have

Tr

[

1

2
(/p+mN )P

1
2

−

]

= mN + p · ŵ,

⇒ C
1
2

−

=
1

2

(

1 +
mK +mN√

s

)

,

Tr

[

1

2
(/p+mN )P

1
2

+
]

= −mN + p · ŵ,

⇒ C
1
2

+

=
1

2

(

−1 +
mK +mN√

s

)

,

Tr

[

1

2
(/p +mN )q̄µP

3
2

+

µν q
ν

]

= −2(mN + p · ŵ) (q · q̄ − (q · ŵ)(q̄ · ŵ)) ,

⇒ C
3
2

+

=
m2
Nq2 ((mK +mN +

√
s))

√
s
3

+q2

(

1 +
mK +mN√

s

)(

q2

s
− 1

)

(B.52)

with ŵ = w√
w2

, p = 0, ω = mK and EN = mN . In terms of antikaon momentum it is

s = (mK +mN )2 − q2.

B.7 Density dependent semi-microscopic model

Both the vacuumMJP (q) and in-medium reduced amplitudesM
(p,q)
ij (q) are stated as functions

of q. Note that
√
s =

√

(mK +mN )2 − q2 in our schematic model. We define isospin-averaged
reduced amplitudes

M
1
2

−

0 (q) =
1

4

(

M
(I=0)
1
2

− (q) + 3M
(I=1)
1
2

− (q)

)

, s − wave,

M
3
2

+

0 (q) =
1

4

(

M
(I=0)
3
2

+ (q) + 3M
(I=1)
3
2

+ (q)

)

, p − wave (B.53)

for the vacuum case (kF = 0). The in-medium amplitudes take the same form

M
1
2

−

kF
(q) =

1

4

(

M
(p,I=0)
11 (q) + 3M

(p,I=1)
11 (q)

)

, s − wave,

M
3
2

+

kF
(q) =

1

4

(

M
(q,I=0)
11 (q) + 3M

(q,I=1)
11 (q)

)

, p − wave (B.54)

at the desired Fermi momentum kF in terms of the in-medium amplitudes M
(p,q)
ij defined

in Section 2.2.1. By ’p-wave’ we denote the J = 3
2 p-wave, the J = 1

2 p-wave as well as

the d-wave contribution will be neglected. Ad we take the in-medium M
(p,q)
ij at vanishing

three-momentum w in (B.54) the p-wave is degenerate in P- and Q-space and we can use
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both M
(q)
11 or M

(p)
77 . We introduce the following notation:

ρ(0) ≡ k
(0)
F at kF = 0MeV ≈ ρ = 0,

ρ(175) ≡ k
(175)
F at kF = 175MeV ≈ ρ =

1

4
ρ0,

ρ(215) ≡ k
(215)
F at kF = 215MeV ≈ ρ =

1

2
ρ0,

ρ(270) ≡ k
(270)
F at kF = 270MeV ≈ ρ = ρ0. (B.55)

Our final interpolation scheme between the the isospin-averaged amplitudes (B.53) and (B.54)
reads

[

M
1
2

−
, 3
2

+

int (kF , q)

]−1

=

[

M
1
2

−
, 3
2

+

0 (q)
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k
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3
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3
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k
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3
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3

)
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8
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k
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M
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2

−
, 3
2

+

175 (q)
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−
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M
1
2

−
, 3
2

+

0 (q)
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k
(175)
F

3
− kF

3

)

k
(215)
F

8
(

1 + kF

k
(215)
F

)

(

[

M
1
2

−
, 3
2

+

215 (q)
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−
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2
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+
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)
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)
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(B.56)

The coefficients ki are determined numerically and guarantee that

[

M
1
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−
, 3
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+

int (kF = 175, q)
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1
2

−
, 3
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,

[

M
1
2

−
, 3
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+
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]−1

=

[

M
1
2

−
, 3
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,

[

M
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−
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2

+

int (kF = 270, q)

]−1

=

[

M
1
2

−
, 3
2

+

270 (q)
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. (B.57)

The interpolated density dependent amplitude T
1
2

−
, 3
2

+

int involving s- and p-wave contributions

can be obtained by multiplication with the phase-space coefficient C
1
2

−
, 3
2

+

(q) from (B.52),

T
1
2

−
, 3
2

+

int (kF , q) = C
1
2

−
, 3
2

+

(q)

[

[

M
1
2

−
, 3
2

+

int (kF , q)

]−1
]−1

, (B.58)

where we kept all the arguments kF and q for transparency.
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matter”, Nucl. Phys., A588 (1995) 889.

[12] M.F.M. Lutz and E.E. Kolomeitsev, “Effective chiral theory of kaon-nucleon scattering”,
nucl-th/0004021 .

[13] L. Tolos, A. Ramos, A. Polls and T.S. Kuo, “Partial wave contributions to the antikaon
potential at finite momentum”, Nucl.Phys., A690 (2001) 547.



132 BIBLIOGRAPHY

[14] L. Tolos, E. Oset and A. Ramos, “Chiral approach to antikaon s- and p-wave interactions
in dense nuclear matter”, Phys. Rev., C74 (2006) 015203.

[15] A. Cieply, E. Friedman, A. Gal and J. Mares, “Study of chirally motivated low energy
K− optical potentials”, Nucl. Phys., A696 (2001) 173.

[16] Y. Akaishi and T. Yamazaki, “Nuclear K̄ bound states in light nuclei”, Phys. Rev., C65

(2002) 044005.

[17] Y. Akaishi, A. Dote and T. Yamazaki, “Strange tribaryons as K̄-mediated dense nuclear
systems”, Phys. Lett., B613 (2005) 140.
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