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Abstract. We present a general method for solving exactly the static field equations of
Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Through this method
one can derive broad classes of static solutions with radial symmetry of the theory, which may
play an important role in applications of the AdS/CFT correspondence to condensed matter
and strongly coupled QFT’s. Moreover, the method allows to prove a new no-hair theorem
about the existence of hairy black brane and black hole solutions.

1. Introduction
In recent years there has been a renewed growing interest for the static black hole solutions
of Einstein (and Einstein-Maxwell) gravity coupled to scalar fields. In particular, the recent
advances in string theory and the AdS/CFT correspondence [1] have shifted the focus from the
search of asymptotically flat to asymptotically anti-de Sitter (AdS) solutions. In fact, static
black hole and black brane solutions with a non trivial profile of the scalar field (scalar ‘hair’)
and AdS asymptotics can play a crucial role in applications of the AdS/CFT correspondence to
holographic strongly coupled quantum field theories (QFTs). In these theories the nontrivial,
coordinate-dependent scalar hair of the black hole solutions can be interpreted as a scalar
condensate which gives rise to a rich phenomenology in the dual QFT, reminiscent of well-
known condensed matter systems [2, 3, 4, 5].

However, despite the growing importance played by static black hole solutions with scalar
hair and AdS asymptotics, very few exact analytical solutions of this kind are known [6, 7, 8].

Starting from these considerations, we propose a general method for solving the field equations
of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field φ in the static,
radially symmetric case. This method allows to find exact analytic solutions of Einstein and
Einstein-Maxwell gravity with scalar hair in several situations: four or generic d+ 2 spacetime
dimensions, different topologies of the transverse space (planar, spherical, hyperbolic) and
different asymptotics (anti-de Sitter, domain wall, conformal to Lifshitz spacetime). Moreover,
the method can be used to prove a new ‘no-hair’ theorem about the general existence of black
brane and black hole solutions of Einstein and Einstein-Maxwell gravity minimally coupled to
a scalar field.

In this paper, mainly based on the work [9], we briefly present this solving method (Sect. 2),
a panoramic of the exact solutions obtained (Sect.3, 4) and the formulation of the new no-hair
theorem (Sect. 5). Finally, in Sect.6 we point out our concluding remarks.
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2. The solving method
We start from the action of Einstein-Maxwell gravity in d+ 2 dimensions, minimally coupled to
a scalar field φ and with a generic self-interaction potential V (φ):

A =
∫
dd+2x

√
−g

(
R− 2(∂φ)2 − F 2 − V (φ)

)
. (1)

We will investigate static, radially symmetric and purely electric solutions. We adopt a
Schwarzschild gauge to write the spacetime metric:

ds2 = −U(r)dt2 + U−1(r)dr2 +R2(r)dΩ2
(ε,d), (2)

where ε = 0, 1,−1 denotes, respectively, the d-dimensional planar, spherical, or hyperbolic
transverse space with metric dΩ2

(ε,d). In these coordinates, the electric field reads: Ftr = Q/Rd,
where Q is the electric charge. With the parametrization (2), the field equations take the form:

R′′

R
= −2

d
(φ′)2, (URdφ′)′ =

1
4
Rd

dV

dφ
, (3)

(URd)′′ = εd(d− 1)Rd−2 + 2
d− 2
d

Q2

Rd
− d+ 2

d
RdV, (4)

(URd−1R′)′ = ε(d− 1)Rd−2 − 2
d

Q2

Rd
− 1
d
RdV. (5)

Our method for solving the field equations (3)-(5) works as follows. Assuming that the r-
dependence of the scalar field φ(r) is given, and introducing the new variables F , Y and u
defined as:

F (r) = −2
d

(φ′)2, R = e
∫
Y , u = URd, (6)

the field equations (3)-(5) become:

Y ′ + Y 2 = F, (uφ′)′ =
1
4
ed
∫
Y dV

dφ
, (7)

u′′ − (d+ 2)(uY )′ = −2ε(d− 1)e(d−2)
∫
Y + 4Q2e−d

∫
Y , (8)

u′′ = εd(d− 1)e(d−2)
∫
Y + 2

d− 2
d

Q2e−d
∫
Y − d+ 2

d
ed
∫
Y V. (9)

The first equation in (7) is a first-order nonlinear equation for Y , known as the Riccati
equation, which can be solved in a number of cases. Once the solution for Y has been found,
we can integrate Eq. (8), which is linear in u, to obtain:

u = Rd+2
[∫ (

4Q2
∫ 1
Rd
− 2ε(d− 1)

∫
Rd−2 − C1

)
1

Rd+2
+ C2

]
, (10)

where C1 and C2 are integration constants. Finally, we can determine the potential V (φ) by
using Eq. (9):

V =
d2(d− 1)
d+ 2

ε

R2
+ 2

d− 2
d+ 2

Q2

R2d
− d

d+ 2
u′′

Rd
, (11)

while the metric functions read (cfr. 6): R = Λe
∫
Y , U = u/Rd, where the integration constant

Λ coming from the integral of Y .
The key feature of this method is to assume a given profile φ(r) for the scalar field and to

solve the system for the metric functions and the potential V (φ). This unusual approach is
actually very useful because, focusing on solutions with AdS asymptotics, in particular for what
concerns application to the AdS/CFT correspondence, the actual exact form of the potential
V (φ) is not particularly relevant, while is often more important the behavior of the scalar field
φ(r), in particular its fall-off behavior at r =∞.
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3. Uncharged solutions
In this section we will consider the case of (3 + 1)-dimensional spacetime, i.e. d = 2,
and uncharged (Q = 0) black brane (ε = 0) solutions. In particular we are interested in
asymptotically domain wall and asymptotically anti de-Sitter solutions.

3.1. Domain wall solutions
Our method for solving the field equations (3)-(5) requires an ansatz for the scalar field. Usually,
domain wall solutions appear when the scalar behaves as log r [10, 11] . The most natural ansatz
is therefore:

γφ = log
r

r−
, (12)

where γ is a constant and r− sets a length-scale.
With the ansatz (12), the Riccati equation in (7) is solved by:

Y =
α

r
, α(α− 1) = − 1

γ2
. (13)

Parametrizing α and γ as: γ−1 = hα = h/(h2 + 1), the solution takes the form:

U =
(
r

r−

) 2
1+h2

− C1

(
r

r−

)− 1−h2

1+h2

, R =
(
r

r−

) 1
1+h2

, (14)

while the potential has a simple exponential form:

V = − 2(3− h2)
(1 + h2)2r2−

e−2hφ. (15)

This solution has the following main features:

• In the ‘extremal’ zero-temperature case, C1 = 0, the solution (14) has the typical form of a
single-scalar domain wall solution: ds2 = (Ar)δ(ηµνdxµdxν) + (Ar)−δdr2, which preserves
only the Poincaré isometry of the 3D transverse space [11];
• For h2 ≤ 3 and C1 > 0, our solution (14) represents a black brane with domain wall

asymptotics, a singularity at r = 0 and a regular horizon at rh = C
(1+h2)/(3−h2)

1 r−.

3.2. Asymptotically AdS solutions
Inspired by known solutions in flat spacetime and in gauged supergravity [6], to search for
asymptotically AdS solutions we use an ansatz in which φ is expressed in terms of an harmonic
function X:

γφ = logX, X = 1− r−
r
, (16)

where γ and r− are constants.
With the ansatz (16), the Riccati equation (7) can be solved in terms of the harmonic function

X to give:

R = ΛrXβ+ 1
2 , β2 − 1

4
= − 1

γ2
. (17)

We consider the C1 = 0 extremal solution. The constant C2 essentially determines the
normalization of the potential and it can be fixed by choosing C2 = 1/L2. With these
assumptions, Eq. (10) and (11) give, respectively, the solution for the metric and the scalar
potential:

U = R2 =
r2

L2

(
1− r−

r

)2β+1

, (18)
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V (γ, φ) = − 2
L2
e2γβφ[2− 8β2 + (1 + 8β2) cosh(γφ)− 6β sinh(γφ)]. (19)

One can easily check that the hairy extremal solution (18) interpolates between an AdS
vacuum: ds2 = (r/L)2(ηµνdxµdxν) + (r/L)−2dr2 at r =∞ and a domain wall solution like the
(14), with C1 = 0, near r = r−.

Unfortunately, our method does not allow to find a full C1 6= 0 one-parameter family of black
brane solutions. If they exist, have to be found numerically.

4. Other solutions
We now present a brief overview on charged, spherical and d+ 2-dimensional solutions obtained
through the solving method. For more details see [9].

4.1. Solutions conformal to Lifshitz spacetime
Starting again from the ansatz (12), we can obtain an exact solution of the field equations
also when Q 6= 0. In this case, the potential has also a simple exponential form, while
in the extremal C1 = 0 case the solution is conformal to the Lifshitz spacetime: ds2 =
l2
(
−r2zdt2 + dr2

r2
+ r2dxidxi

)
, where z is the critical exponent [12].

For C1 > 0 and in a specific range of the parameters, the solution represents a black brane
with asymptotics conformal to Lifshitz, a singularity at r = 0 and a regular horizon.

4.2. Charged asymptotically AdS solutions
Solving the field equations with the ansatz (16), Q 6= 0 and C1 = 0, we obtain a solution
interpolating between an asymptotic AdS vacuum at r = ∞ and a conformal Lifshitz solution
in the near-horizon limit r ∼ r−. This solution describes a one-parameter (the charge Q) family
of black brane solutions, while also in this case the method does not allow to find a full C1 6= 0
two-parameter (mass and charge) family of solutions.

4.3. Other solutions
Several of the ε = 0 and d = 2 solutions found can be easily generalized to the case of spherical
or hyperbolic topology ε = ±1 (black holes) and to d + 2 dimensions. In particular one can
derive:

• Uncharged and charged black holes with Lifshitz and AdS asymptotics;
• Spherical solutions generated from the planar ones;
• (d+ 2)-dimensional domain wall, Lifshitz-like and uncharged asymptotically AdS solutions;

5. No-hair theorem
An important issue in this context is the question about the existence of regular, static black
brane (hole) solutions of Einstein-scalar gravity with AdS asymptotics beyond the Schwarzschild
and Reissner-Nordstrom solutions, i.e. of solutions endowed with non trivial scalar hair.

This problem has been already discussed in the literature. In particular, it has been argued
that a necessary condition for the existence of such black hole solutions is the violation of the
Positive Energy Theorem (PET) [13]. This result rules out black hole solutions with scalar
hair and positive squared-mass m2, but allows for the existence of these solutions when m2 is
negative but above the BF bound [14].

Through the solving method discussed it is possible to prove a new no-hair theorem about
the existence of regular hairy black brane solutions of Einstein-scalar gravity, in which a key
ingredient is the existence of an extremal T = 0 hairy black brane solution. The enunciate of
our theorem is the following (for a detailed demonstration see [9]):
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1) One-parameter families of asymptotically AdS black brane solutions with nontrivial scalar
hair exist only if the field equations (3)-(5) admit an extremal T = 0, U = R2 solution.
2) Black-brane solutions that asymptotically approach the domain wall solution (14) exist in
some range of the parameters for the case of an exponential potential V (φ).
3) The allowed asymptotically AdS hairy black brane solutions necessarily have a scalar hair
that depends on the black brane temperature T . Solutions with temperature-independent scalar
hair exist only for the case of domain wall spacetimes (14).

It is important to stress that this no-hair theorem can be easily extended to the charged case
Q 6= 0 and to the spherical (hyperbolic) case ε = ±1 (black holes).

6. Conclusions
We have presented a general method for finding exact, static and radially symmetric analytic
solutions of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Rather
than assuming a particular form of the scalar self-interaction potential, our method starts from
an ansatz for the scalar field profile and determines, together with the metric functions, the
corresponding form of the potential. For this reason it is particularly suitable for applications
to the AdS/CFT correspondence. Through this method one can derive broad classes of exact
analytic hairy solutions of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar,
and a new no-hair theorem about the existence of black brane (hole) solutions of Einstein gravity
with scalar hair.

Our approach has a main drawback: in some situations it does not allow to find a full one-
parameter family of black holes, i.e. the full spectrum of solutions for different temperatures,
but only ‘extremal’ T = 0 solutions, and it is not even clear whether or not such solutions exist.
A final answer to this question involves numerical computation, currently in progress.

Acknowledgments
M.S. gratefully acknowledges Sardinia Regional Government for the financial support of his
PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region
of Sardinia, European Social Fund 2007-2013 - Axis IV Human Resources, Objective I.3, Line
of Activity I.3.1).

References
[1] J M Maldacena 1998, Adv. Theor. Math. Phys. 2 231
[2] S A Hartnoll, C P Herzog and G T Horowitz 2008, JHEP 1208 015
[3] G T Horowitz and M M Roberts 2008, Phys. Rev. D 78 126008
[4] M Cadoni, G D’Appollonio and P Pani 2010, JHEP 1003 100
[5] M Cadoni and P Pani 2011, JHEP 1104 049
[6] M J Duff and J T Liu 1999, Nucl. Phys. B 554 237
[7] C Martinez, R Troncoso and J Zanelli 2004, Phys. Rev. D 70 084035
[8] C J Gao and S N Zhang 2004, Phys. Rev. D 70 124019
[9] M Cadoni, S Mignemi and M Serra 2011, Phys. Rev. D 84 084046
[10] K Goldstein, S Kachru, S Prakash and S P Trivedi 2010, JHEP 1008 078
[11] E Perlmutter 2011, JHEP 1102 013
[12] S Kachru, X Liu and M Mulligan 2008, Phys. Rev. D 78 106005
[13] T Hertog 2006, Phys. Rev. D 74 084008
[14] P Breitenlohner and D Z Freedmann 1982, Phys. Lett. B 115 197

Young Researcher Meeting in Rome 2012 IOP Publishing
Journal of Physics: Conference Series 383 (2012) 012003 doi:10.1088/1742-6596/383/1/012003

5




