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Abstract. This is a short account of the off-shell N = (1, 0) and on-shell N = (1, 1), 6D
harmonic superspace formalism and its applications for the analysis of higher-dimension

invariants in N = (1, 1) SYM theory.

1 Motivations and contents

For last years, there is a permanent interest in the maximally extended (with 16 supercharges) super-

symmetric gauge theories in diverse dimensions (see, e.g., [1]),

N = 4, 4D =⇒ N = (1, 1), 6D =⇒ N = (1, 0), 10D .

The famous N = 4, 4D SYM theory was the first example of an UV finite theory. Perhaps, it is

also completely integrable [2]. TheN = (1, 1), 6D SYM is not renormalizable by formal counting (the

coupling constant is dimensionful) but it is also expected to possess unique properties. In particular, it

respects the so called “dual conformal symmetry”, like its 4D counterpart [3]. It provides the effective

theory descriptions of some particular low energy sectors of string theory, such as D5-brane dynamics.

The full effective action of D5-brane, generalizing the N = (1, 1) SYM action, was conjectured to

be of non-abelian Born-Infeld type [4, 5]. The N = (1, 1) SYM is anomaly free, as distinct from

N = (1, 0) SYM.

The N = (1, 1) and N = (1, 0) SYM theories can be viewed as a laboratory for studying N = 8

supergravity and its some lower N analogs, which are also non-renormalizable.

The recent perturbative calculations in N = (1, 1) SYM show a lot of unexpected cancelations of

the UV divergencies. The theory is UV finite up to 2 loops, while at 3 loops only a single-trace (planar)

counterterm of canonical dim 10 is required. The allowed double-trace (non-planar) counterterms

do not appear [6] - [8]. Various arguments to explain this were put forward [9] - [12], though the

complete understanding is still lacking. Some new non-renormalization theorems could be expected

in this connection.

The maximal off-shell supersymmetry one can gain in 6D is N = (1, 0) supersymmetry. The

natural off-shell formulation of N = (1, 0) SYM theory is achieved in harmonic N = (1, 0), 6D
superspace [13, 14] as a generalization of the harmonic N = 2, 4D one [15, 16]. This harmonic

6D formalism was further developed in [17] - [20] and [21]. The N = (1, 1) SYM theory in the

harmonic formulation is a hybrid of two N = (1, 0) theories, [N = (1, 1) SYM] = [N = (1, 0) SYM]

+ [6D hypermultiplets], with the second hidden on-shellN = (0, 1) supersymmetry. How to construct

higher-dimension N = (1, 1) invariants in the N = (1, 0) superfield approach?
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One way is the “brute-force” method. One starts with the appropriate dimension N = (1, 0) SYM

invariant and then completes it to N = (1, 1) invariant by adding the proper hypermultiplet terms.

This approach is very complicated technically.

The things are simplified due to the fact that for finding superfield counterterms it is enough to stay

on the mass shell. In a recent paper [21] a new approach to constructing higher-dimension N = (1, 1)

invariants was developed. It uses the concept of the on-shell N = (1, 1) harmonic superspace with the

double set of the harmonic variables u±i , u
±̂
A, i = 1, 2; A = 1, 2 [22]. The novel point of the construction

in [21] is solving the N = (1, 1) SYM constraints [23, 24] through N = (1, 0) superfields. The

d = 8 and d = 10 invariants were built in a simple way and an essential difference between the single-

and double-trace d = 10 invariants was found. The present contribution is a brief account of the 6D
harmonic methods, with the focus on their recent uses in [21].

2 6D superspaces and superfields

2.1 6D superspaces

• The standard N = (1, 0), 6D superspace is parametrized by the coordinates:

z = (xM , θa
i ) , M = 0, . . . , 5 , a = 1, . . . , 4 , i = 1, 2 , (2.1)

• The harmonic N = (1, 0) superspace is obtained by adding S U(2) harmonics to (2.1):

Z := (z, u) = (xM , θa
i , u

±i) , u−i = (u+i )∗, u+iu−i = 1 , u±i ∈ S U(2)R/U(1) . (2.2)

• The analytic N = (1, 0) superspace is an invariant subspace of (2.2):

ζ := (xM
(an), θ

+a, u±i) ⊂ Z , xM
(an) = xM +

i
2
θa

kγ
M
abθ

b
l u+ku−l, θ±a = θa

i u±i . (2.3)

The differential operators in the analytic basis ZA := (xM
(an), θ

+a, u±i, θ−a) are defined as

D+a = ∂−a , D−
a = −∂+a − 2iθ−b∂ab , D0 = u+i ∂

∂u+i − u−i ∂

∂u−i + θ
+a∂+a − θ−a∂−a

D++ = ∂++ + iθ+aθ+b∂ab + θ
+a∂−a , D−− = ∂−− + iθ−aθ−b∂ab + θ

−a∂+a , (2.4)

∂±aθ
±b = δb

a , ∂++ = u+i ∂

∂u−i , ∂−− = u−i ∂

∂u+i .

2.2 Basic superfields

The basic object of N = (1, 0) SYM theory is the analytic gauge connection V++(ζ)

∇++ = D++ + V++ , δV++ = −∇++Λ , Λ = Λ(ζ) . (2.5)

The second harmonic (non-analytic) connection V−−(Z),

∇−− = D−− + V−− , δV−− = −∇−−Λ ,
is related to V++ by the harmonic flatness condition

[∇++,∇−−] = D0 ⇔ D++V−− − D−−V++ + [V++,V−−] = 0

⇒ V−− = V−−(V++, u±) . (2.6)
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The off-shell content of N = (1, 0) SYM theory is revealed in the Wess-Zumino gauge:

V++ = θ+aθ+bAab + 2(θ+)3
aλ

aiu−i − 3(θ+)4Diku−i u−k . (2.7)

Here Aab is the gauge field, λai is the gaugino and Dik = Dki are the auxiliary fields.

The N = (1, 0) SYM covariant derivatives are given by the expressions

∇−a = [∇−−,D+a ] = D−
a +A−

a , ∇ab =
1

2i
[D+a ,∇−b ] = ∂ab +Aab ,

A−
a (V) = −D+a V−−, Aab(V) =

i
2

D+a D+b V−−,

[∇++,∇−a ] = D+a , [∇++,D+a ] = [∇−−,∇−a ] = [∇±±,∇ab] = 0 . (2.8)

The covariant superfield strengths are defined as

[D+a ,∇bc] =
i
2
εabcdW+d , [∇−a ,∇bc] =

i
2
εabcdW−d ,

W+a = −1

6
εabcdD+b D+c D+d V−− , W−a := ∇−−W+a ,

∇++W+a = ∇−−W−a = 0 , ∇++W−a = W+a ,

D+b W+a = δa
bF++ , F++ =

1

4
D+a W+a = (D+)4V−− ,

∇++F++ = 0 , D+a F++ = 0 . (2.9)

The hypermultiplet is accommodated by the analytic superfield q+A(ζ) , (A = 1, 2):

q+A(ζ) = qiA(x)u+i − θ+aψA
a (x) + An infinite tail of auxiliary fields . (2.10)

2.3 N = (1, 0) superfield actions

The N = (1, 0) SYM action was constructed by Boris Zupnik [14]:

S S Y M =
1

f 2

∞∑
n=1

(−1)n+1

n
Tr

∫
d6x d8θ du1 . . . dun

V++(z, u1) . . .V++(z, un)

(u+
1
u+

2
) . . . (u+n u+

1
)

,

δS S Y M = 0 ⇒ F++ = 0 . (2.11)

Here, (u+1 u+2 )−1, . . . (u+n u+1 )−1 are harmonic distributions [16].

The hypermultiplet action, with q+A in adjoint of the gauge group, is written as

S q = − 1

2 f 2
Tr

∫
dζ−4q+A∇++q+A , ∇++q+A = D++q+A + [V++, q+A] ,

δS q = 0 ⇒ ∇++q+A = 0 . (2.12)

The N = (1, 0) superfield form of the N = (1, 1) SYM action ia a sum of the two superfield

actions given above:

S (V+q) = S S Y M + S q =
1

f 2

(∫
dZLSYM − 1

2
Tr

∫
dζ−4q+A∇++q+A

)
,

δS (V+q) = 0 ⇒ F++ +
1

2
[q+A, q+A] = 0 , ∇++q+A = 0 . (2.13)

It is invariant under the second hidden N = (0, 1) supersymmetry:

δV++ = ε+Aq+A , δq+A = −(D+)4(ε−A V−−) , ε±A = εaAθ
±a . (2.14)

These transformations have the correct closure only on shell.
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3 Higher-dimensional invariants

3.1 Dimension d = 6

In the pure N = (1, 0) SYM the d = 6 invariant is defined uniquely [17]:

S (6)
S Y M =

1

2g2
Tr

∫
dζ−4du

(
F++

)2 ∼ Tr

∫
d6x[(∇MFML)2 + . . .]. (3.1)

It vanishes on shell, when F++ = 0 . Using the results of [18], its N = (1, 1) completion is defined up

to a real parameter

Ld=6 =
1

2g2
Tr

∫
dudζ−4

(
F++ +

1

2
[q+A, q+A]

) (
F++ + 2β[q+A, q+A]

)
. (3.2)

But it vanishes on the full N = (1, 1) SYM mass shell! This proves the one-loop finiteness of N =
(1, 1) SYM theory.

3.2 Dimension d = 8

All superfield operators of the canonical dimension d = 8 in the N = (1, 0) SYM theory vanish on

shell, in accord with ref. [24]. Can adding the hypermultiplet terms change something? We have

found that there exist no N = (1, 0) off-shell invariants of the dimension d = 8 which would respect

the on-shell N = (1, 1) invariance.

Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and respects the

on-shell N = (1, 1) supersymmetry can be constructed by giving up the requirement of off-shell
N = (1, 0) supersymmetry.

An example of such an invariant in N = (1, 0) SYM theory is very simple

S̃ (8)
1
∼ Tr

∫
dζ−4 εabcdW+aW+bW+cW+d . (3.3)

Indeed, D+a W+b = δb
aF++, which vanishes on shell, with F++ = 0 . Thus, W+a is on-shell analytic,

and so the above action respects N = (1, 0) supersymmetry on shell. Also, a double-trace on-shell

invariant exists.

These invariants admit N = (1, 1) completions. For (3.3) such a completion reads

L+4
(1,1) = Tr(S )

{1

4
εabcdW+aW+bW+cW+d + 3iq+A∇abq+AW+aW+b

− q+A∇abq+A q+B∇abq+B − W+a[D+a q−A, q
+
B]q+Aq+B

− 1

2
[q+C , q+C][q−A, q

+
B]q+Aq+B

}
. (3.4)

Here, Tr(S ) stands for the symmetrized trace. This Lagrangian is analytic, D+aL+4
(1,1) = 0, on the full

mass shell F++ + 1
2
[q+A, q+A] = 0, ∇++q+A = 0 , and so it is on-shell N = (1, 1) supersymmetric.

Though the nontrivial on-shell d = 8 invariants exist, the perturbative expansion for the amplitudes

in the N = (1, 1) SYM theory does not involve divergences at the two-loop level. The reason is that

these d = 8 invariants do not possess the full off-shell N = (1, 0) supersymmetry which the physically

relevant counterterms should obey.
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4 N = (1, 1) on-shell harmonic superspace

Despite the fact that the d = 8 terms mentioned above cannot appear as counterterms in N = (1, 1)

SYM theory, they can come out, e.g., as quantum corrections to the effective Wilsonian action. For

the pure N = (1, 0) SYM theory this was recently observed in [20]. It was desirable to work out some

systematic way of constructing such higher-orderN = (1, 1) invariants. This becomes possible within

the on-shell harmonic N = (1, 1) superspace.

As the first step, extend the N = (1, 0) superspace to the N = (1, 1) one,

z = (xab, θa
i ) ⇒ ẑ = (xab, θa

i , θ̂
A
a ) . (4.1)

Then we define the covariant spinor derivatives,

∇i
a =

∂

∂θa
i
− iθbi∂ab +Ai

a , ∇̂aA =
∂

∂θ̂Aa
− iθ̂A

b ∂
ab + ÂaA . (4.2)

The constraints of the N = (1, 1) SYM theory can now be written as follows [23, 24]:

{∇(i
a ,∇ j)

b } = {∇̂a(A, ∇̂bB)} = 0 , {∇i
a, ∇̂bA} = δb

aφ
iA

⇒ ∇(i
aφ

j)A = ∇̂a(AφB)i = 0 (By Bianchis) . (4.3)

As the next step, we introduce the N = (1, 1) harmonic superspace [22],

Z = (xab, θa
i , u

±
k ) ⇒ Ẑ = (xab, θa

i , θ̂
A
b , u

±
k , u

±̂
A) , (4.4)

pass to the analytic basis and choose the “hatted” spinor derivatives short, ∇+̂a = D+̂a = ∂
∂θ−̂a

. The set

of constraints (4.3) is rewritten as

{∇+a ,∇+b } = 0 , {D+̂a,D+̂b} = 0 , {∇+a ,D+̂b} = δb
aφ
++̂ ,

[∇+̂+̂,∇+a ] = 0 , [∇̃++,∇+a ] = 0 , [∇+̂+̂,Da+̂] = 0 , [∇̃++,Da+̂] = 0 ,

[∇̃++,∇+̂+̂] = 0 , (4.5)

∇+a = D+a +A+a (Ẑ) , ∇̃++ = D++ + Ṽ++(ζ̂) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂) ,

ζ̂ = (xab
an , θ

±a, θ+̂c , u
±
i , u

±̂
A) . (4.6)

5 Solving N = (1, 1) SYM constraints through N = (1, 0) superfields

The starting point of our analysis in [21] was the WZ gauge for the extra connection V +̂+̂(ζ̂)

V +̂+̂ = iθ+̂a θ
+̂
b Âab + εabcdθ+̂a θ

+̂
b θ
+̂
c ϕ

A
d u−̂A + ε

abcdθ+̂a θ
+̂
b θ
+̂
c θ
+̂
dDABu−̂Au−̂B , (5.1)

where Âab, ϕA
d and D(AB) are some N = (1, 0) harmonic superfields, still arbitrary.

Then the above constraints are reduced to some sets of harmonic equations. We have solved them

and, as the eventual result, obtained that the first harmonic connection V++ coincides with the previous

N = (1, 0) one, V++ = V++(ζ), while the dependence of all other geometric N = (1, 1) objects on the

“hatted” variables is strictly fixed

V +̂+̂ = iθ+̂a θ
+̂
bAab − 1

3
εabcdθ+̂a θ

+̂
b θ
+̂
c D+d q−−̂ +

1

8
εabcdθ+̂a θ

+̂
b θ
+̂
c θ
+̂
d [q+−̂, q−−̂]

φ++̂ = q++̂ − θ+̂a W+a − iθ+̂a θ
+̂
b∇abq+−̂ +

1

6
εabcdθ+̂a θ

+̂
b θ
+̂
c [D+d q−−̂, q+−̂]

+
1

24
εabcdθ+̂a θ

+̂
b θ
+̂
c θ
+̂
d [q+−̂, [q+−̂, q−−̂]] . (5.2)
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Here, q+±̂ = q+A(ζ)u±̂A , q−±̂ = q−A(ζ)u±̂A and W+a, q±A are just the N = (1, 0) superfields explored

previously. In the course of solving the constraints, there naturally appear the superfield equations of

motion

∇++q+A = 0 , F++ =
1

4
D+a W+a = −1

2
[q+A, q+A] . (5.3)

Also, the structure of the spinor covariant derivatives is fully fixed

∇+a = D+a − θ+̂a q+−̂ + θ−̂aφ
++̂ ,

∇−a = D−
a − D+a V−− − θ+̂a q−−̂ + θ−̂aφ

−+̂ , φ−+̂ = ∇−−φ++̂ . (5.4)

The advantage of using the constrained N = (1, 1) strengths φ±+̂ for constructing invariants is the

simple transformation rules of φ±+̂ under the hidden N = (0, 1) supersymmetry

δφ±+̂ = −ε+̂a
∂

∂θ+̂a
φ±+̂ − 2iε−̂a θ

+̂
b ∂

abφ±+̂ − [Λ(comp), φ±+̂] , (5.5)

where Λ(comp) is some composite gauge parameter which does not contribute under trace.

6 Invariants in N = (1, 1) superspace

The single-trace d = 8 invariant (3.4) admits a simple rewriting in N = (1, 1) superspace

S (1,1) =

∫
dζ−4L+4

(1,1) , L+4
(1,1) = −Tr

1

4

∫
dζ̂−4dû (φ++̂)4, dζ̂−4 ∼ (D−̂)4 (6.1)

δL+4
(1,1) = −2i∂abTr

∫
dζ̂−4dû

[
ε−̂a θ
+̂
b

1

4
(φ++̂)4

]
.

Analogously, the double-trace d = 8 invariant is given by

L̂+4
(1,1) = −

1

4

∫
dζ̂−4dû Tr (φ++̂)2 Tr (φ++̂)2. (6.2)

Now it is easy to construct the single- and double-trace d = 10 invariants

S (10)
1
= Tr

∫
dZdζ̂−4dû (φ++̂)2(φ−+̂)2, φ−+̂ = ∇−−φ++̂ ,

S (10)
2
= −

∫
dZdζ̂−4dû Tr

(
φ++̂φ−+̂

)
Tr

(
φ++̂φ−+̂

)
. (6.3)

It is notable that the single-trace d = 10 invariant admits a representation as an integral over the

full N = (1, 1) superspace

S (10)
1

∼ Tr

∫
dZdẐdû φ++̂φ−−̂ , φ−−̂ = ∇−̂−̂φ−+̂ , (6.4)

with dẐ ∼ (D−̂)4(D+̂)4 . On the other hand, the double-trace d = 10 invariant cannot be written as the

full integral and so looks as being UV protected.

This could explain why in the perturbative calculations of the amplitudes in the N = (1, 1) SYM

single-trace 3-loop divergence is seen, while no double-trace structures at the same order were ob-

served [6], [7], [8]. However, this does not seem to be like the standard non-renormalization theorems

because the quantum calculation of N = (1, 0) supergraphs should give invariants in the off-shell
N = (1, 0) superspace, not in the on-shell N = (1, 1) superspace. So the above property seems not

enough to explain the absence of the double-trace divergences and some additional piece of reasoning

is needed.
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7 Summary and outlook

Following refs. [14], [17], [18] and [21], the off-shell N = (1, 0) and on-shell N = (1, 1) harmonic

superfield approaches were reviewed and argued to be efficient for constructing higher-dimensional

invariants in the N = (1, 0) and N = (1, 1) SYM theories. The N = (1, 1) SYM constraints were

solved in terms of harmonic N = (1, 0) superfields. This allowed to explicitly construct the full set of

the dimensions d = 8 and d = 10 superfield invariants possessing N = (1, 1) on-shell supersymmetry.

All possible d = 6 N = (1, 1) invariants were demonstrated to be on-shell vanishing, thereby

proving the UV finiteness of N = (1, 1) SYM at one loop.

The off-shell d = 8 invariants which would be non-vanishing on shell, are absent. Assuming that

the N = (1, 0) supergraphs yield integrals over the full N = (1, 0) harmonic superspace, this means

the absence of two-loop counterterms as well.

Two d = 10 invariants were constructed as integrals over the whole N = (1, 0) harmonic super-

space. The single-trace invariant can be rewritten as an integral over the N = (1, 1) superspace,

while the double-trace one cannot. This property combined with an additional reasoning (e.g., based

on the algebraic renormalization approach [25]) could explain why the double-trace invariant is UV

protected.

Some further lines of development:

(a). To construct the d ≥ 12 invariants in the N = (1, 1) SYM theory using the on-shell N = (1, 1)

harmonic superspace techniques.

(b). To apply the same method for constructing the Born-Infeld action with the manifest off-shell

N = (1, 0) and hidden on-shell N = (0, 1) supersymmetries.

(c). To develop an analogous on-shell harmonic N = 4, 4D superspace approach to the N = 4, 4D
SYM theory in the N = 2 superfield formulation (by solving the N = 4 SYM constraints in terms of

N = 2 superfields) and apply it to the problem of constructing the N = 4 SYM effective action.

(d). Applications in supergravity? The absence of the double-trace divergent structures in the 3-loop

amplitude in N = (1, 1) SYM theory is similar to the absence of 3-loop and 4-loop divergences for

the four-graviton amplitudes in N = 4, 4D and N = 5, 4D supergravities [26], [27], [28], [29]. All

these UV divergence cancelations could find a common explanation within the harmonic superspace

approach 1.
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