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1 Introduction

The question concerning the form of the most general, consistent scalar tensor theory of
gravity is frequently being reconsidered due to its foremost physical importance for building
models of inflation and dark energy [1]. The problem is deeper than expected, and its theo-
retical investigation leads to intriguing surprises. Subtleties arise when considering derivative
couplings of gravity to the scalar field, due to the non-linearity of the equations of motion,
and the non trivial structure of the constraint equations. A systematic study of scalar-tensor
theories as a modification of General Relativity (GR) started with the work of Brans and
Dicke [2], and subsequent developments mainly considered scalar-tensor Lagrangians with
non-minimal couplings of the scalar to curvature, but containing at most first derivatives of
the scalar field (see [3] for a comprehensive review).

The modern approach to scalar tensor theories started with the introduction of
Galileons, the most general scalar field theory in flat spacetime with second order equa-
tions of motion [4]. Galileon actions contain second order derivatives acting on the scalar
field. They have very attractive phenomenological and theoretical features. In particular,
they admit self-accelerating solutions that can explain the phenomenon of dark energy, and at
the same time exhibit screening mechanisms, which ensure consistency with the tight bounds
on small scale deviations from GR. Once Galileons are covariantised by naively replacing
partial derivatives by covariant derivatives, the theory leads to third order derivatives in the
equations of motion. A way to avoid them is to introduce counter terms, in the form of
non-minimal couplings to gravity [5]. It was then shown that these theories can be further
extended by including free functions of the scalar field and its kinetic term [6]. Remarkably,
it was found that this theory was already proposed in 1974 by Horndeski [7, 8] and this
theory is now called the Horndeski theory [9].

The basic strategy to construct the Horndeski theory is to ensure that the equations of
motion are of at most second order in derivatives. If the equations of motion contain higher
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order time derivatives, this generally leads to a ghost instability due to the Ostrogradsky
theorem.1 However, it was suggested that — despite the appearance of higher order deriva-
tives — it is still possible to avoid the Ostrogradsky ghost if the theory contains a hidden
constraint and the equations of motion can be recast into a second order form, for example
by field redefinitions. This possibility was studied in detail by refs. [11–14]. In refs. [11, 12],
the authors constructed theories in the so-called unitary gauge where the scalar field depends
only on time, thus allowing it to be used as a clock. It was then found that there are two
more terms with two arbitrary functions of the scalar field and its kinetic term that can
be added to the Horndeski theory. Remarkably, these two terms can be obtained by naively
covariantising the flat space Galileon in the form written with the anti-symmetric Levi-Civita
tensor. Although the equations of motion contain third order time derivatives, it was argued
that they do not lead to the Ostrogradsky instability, since constraints remove this additional
degree of freedom. These terms are dubbed ‘beyond Horndeski’.

There still remains the question of whether beyond Horndeski can be obtained from
Horndeski by a suitable transformation of the metric. It is indeed possible to perform
generalised conformal and disformal transformations [15], that depend on the scalar field
and its kinetic term, on Horndeski and obtain a theory which contains higher order deriva-
tives [14, 16]. As long as the transformation is invertible, it does not change the physics.
Thus, despite the appearance of higher order derivatives, the resultant theory propagates
the same number of degrees of freedom as Horndeski. However, in this case, the theory can
be mapped into Horndeski, so unless we introduce a coupling to matter, the new theory is
nothing but Horndeski. Indeed, it has been shown that a beyond Horndeski term can be
generated by a generalised disformal transformation from Horndeski [12].

This brings us to the question of whether beyond Horndeski is really beyond Horndeski
or not. In this paper, we re-examine the problem of determining the number of degrees
of freedom in the theory of beyond Horndeski [17–19], without selecting any gauge. We
reformulate the theory using geometrical quantities defined with respect to a constant scalar
field hypersurface. This representation gives a simple geometrical understanding of why the
higher derivatives in beyond Horndeski do not lead to any additional degrees of freedom. We
show this fact by demonstrating the existence of a primary constraint in the Hamiltonian
formulation. We further discuss cases in which, when the theory is combined with Horndeski,
this constraint is spoiled. We finally study the conditions for mapping beyond Horndeski to
Horndeski by a generalised disformal transformation.

This paper is organised as follows. In section 2, we introduce Horndeski and beyond
Horndeski theories. We formulate beyond Horndeski using geometrical quantities defined
with respect to the constant scalar field hypersurface. In section 3, we derive kinetic terms
for the metric and a scalar field focusing on its higher derivative terms. In section 4, we
examine the existence of a primary constraint, which is necessary for the non-propagation of
the additional mode due to the higher derivatives. In section 5, we study the possibility of
mapping beyond Horndeski to Horndeski by a generalised disformal transformation. Section 6
is devoted to conclusions.

2 The theories of Horndeski and beyond Horndeski

In this section we review the theories of Horndeski and beyond Horndeski, and reformulate
the latter using geometrical quantities.

1See ref. [10] for a review.
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2.1 Horndeski theory

The scalar tensor theory of Horndeski is given by the action

HS =

∫
d4x
√
−g

(
HL2 + HL3 + HL4 + HL5

)
, (2.1)

where the Lagrangian densities are

HL2 = K(φ,X) , (2.2)
HL3 = G3(φ,X)�φ , (2.3)
HL4 = G4(φ,X)R− 2G4X(φ,X)

[
(�φ)2 − φµνφµν

]
, (2.4)

HL5 = G5(φ,X)Gµνφµν +
1

3
G5X(φ,X)

[
(�φ)3 − 3�φφµνφ

µν + 2φµνφ
νρφµρ

]
. (2.5)

φµν ≡ ∇µ∇νφ and K, G3, 4, 5 are arbitrary functions of φ and X, defined as

X ≡ ∂µφ∂
µφ . (2.6)

This is the most general scalar tensor theory of gravity, involving a single scalar field, that
leads to covariant second order equations of motion.

The cubic Horndeski theory is described by the Lagrangian L3. In this case gravity
becomes dynamical only through a mixing with the scalar field, a phenomenon dubbed kinetic
gravity braiding, see [20]. In the present work, we focus on the quartic L4, and the quintic L5

Horndeski theories, where the tensor spin-2 degrees of freedom have their own kinetic terms.
General Relativity is recovered by setting K = G3 = G5 = 0, and G4 = M2

Pl/2.
In order to study the dynamics of theories with second order derivatives in the action,

it is convenient to adopt the field redefinition introduced in ref. [17]. This is the natural
covariant extension of the one used by Ostrogradsky in his pioneering work (see [10]). We
define therefore a four vector

Aµ ≡ ∇µφ. (2.7)

Using Aµ, the quartic and quintic Horndeski Lagrangians are rewritten as

HL4 = G4(φ,X)R− 2G4X(φ,X) δα[µδ
β
ν]∇αA

µ∇βAν , (2.8)

HL5 = G5(φ,X)Gαµ∇αAµ +
1

3
G5X(φ,X) δα[µδ

β
ν δ

γ
ρ]∇αA

µ∇βAν∇γAρ , (2.9)

where [. . .] denotes anti-symmetrisation2 and

X = AµA
µ = A2 . (2.10)

2.2 Beyond Horndeski theory

As stated above, the Horndeski system is the most general scalar tensor theory leading to
covariant second order equations of motion for the scalar and tensor field, hence it certainly
propagates at most three degrees of freedom. Intriguingly, it is conceivable that more general
scalar tensor theories exist, whose equations of motion are higher order, but at the same
time are characterised by constraints that remove additional, undesired degrees of freedom.

2Notice that in our definition there is no factor 1/n! in front of (anti-)symmetrised tensor.
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A proposal in this direction is the theory of “beyond Horndeski”, described by the following
action

BHS =

∫
d4x
√
−g

(
BHL4 + BHL5

)
, (2.11)

where

BHL4 = F4(φ, X)
[
X
(
(�φ)2 − φµνφµν

)
− 2 (�φφµφ

µνφν − φµφµνφνρφρ)
]
, (2.12)

BHL5 = F5(φ, X)
[
X
(
(�φ)3 − 3�φφµνφ

µν + 2φµνφ
νρφµρ

)
(2.13)

− 3
(

(�φ)2 φµφ
µνφν−2�φφµφ

µνφνρφ
ρ−φµνφµνφρφρσφσ+2φµφ

µνφνρφ
ρσφσ

)]
,

φµ = ∂µφ and F4, F5 are arbitrary functions of φ,X. These actions reduce to Galileonic
actions in an appropriate decoupling limit, when gravity is turned off (this has been shown
in [12] using the results of [21]). On the other hand, when gravity is fully dynamical, beyond
Horndeski is characterised by equations of motion of order higher than two. Using diffeo-
morphism (diff.) invariance and selecting the unitary gauge, one can show that constraint
equations exist that are able to avoid the propagation of additional degrees of freedom [12, 22].

Hence, one would be tempted to freely add the aforementioned beyond Horndeski La-
grangians to the Horndeski action of the previous subsection with arbitrary coefficients, so
to form a more general scalar tensor theory. However, as anticipated in [17], and as we shall
further develop later on, issues arise that suggest that an additional propagating mode could
appear in some cases. Such problems become manifest when one does not select the unitary
gauge in which the scalar field depends only on time [18]. In the following sections, treating
the general system without selecting any gauge, we will make some progress in understanding
the genuine dynamics induced by beyond Horndeski theories.

Before starting our analysis we introduce a suitable geometrical formulation for these
Lagrangians that greatly simplifies the calculation. The basic point of this interpretation
can be already found in [12], but again the choice of the unitary gauge hides the proper
construction. The approach is to introduce quantities according to the constant scalar field
hypersurface, φ = const. This hypersurface is characterised by the following geometrical
quantities

Aµ√
−A2

, Pµν , Φµ
ν , (2.14)

where −Aµ/
√
−A2 is the unitary normal vector,

Pαµ = δαµ −
1

A2
AµA

α (2.15)

the projection tensor on the hypersurface, and

Φν
µ = −PαµP νβ∇αAβ (2.16)

is the extrinsic curvature of the constant φ hypersurface multiplied by
√
−A2. Notice that

these objects have nothing to do with the usual ones associated with a space-time foliation.
The beyond Horndeski Lagrangians can be expressed in terms of the extrinsic curvature

Φµ
α in the following way:

BHL4 = XF4(φ, X) δα[µδ
β
ν] Φµ

αΦν
β , (2.17)

BHL5 = −XF5(φ, X) δα[µδ
β
ν δ

γ
ρ] Φµ

αΦν
βΦρ

γ . (2.18)
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Using the expression for the extrinsic curvature (2.16), this can be written as

BHL4 = XF4(φ, X)Mαβ
µν ∇αAµ∇βAν , (2.19)

BHL5 = XF5(φ, X)Mαβγ
µνρ ∇αAµ∇βAν∇γAρ, (2.20)

where
Mαβ

µν = Pα[µP
β
ν] , Mαβγ

µνρ = Pα[µP
β
ν P

γ
ρ] . (2.21)

The matrix M has a crucial property for the arguments that we are going to develop:

Mα...γ
µ...ρAαA

µ =Mα...γ
µ...ρAγA

ρ = 0 . (2.22)

This property stems from the fact that M is built in terms of the projection tensor (2.15).
As we will show in section 4, this leads to the existence of a primary constraint necessary
to avoid the propagation of an extra mode in beyond Horndeski, despite the fact that the
equations of motion have higher derivatives.

We stress that the unitary gauge used in the literature [12, 22] is a very special choice
of gauge where the constant time hypersurface and the constant scalar field hypersurface
coincide. The analysis in this special gauge could lead to misleading results, as was explicitly
pointed out first in [18] and then in [17, 19]. For this reason, we will refrain from making
this choice in what comes next.

3 Kinetic terms

In order to identify the kinetic terms and carry out the analysis of constraints we need to
separate space and time, performing a 3+1 decomposition. We introduce the time vector
flow tµ = ∂/∂t decomposed as

tµ = N nµ +Nµ , (3.1)

where nµ is the unit normal vector to the t = const. hypersurface, N the lapse function and
Nµ the shift vector orthogonal to the normal vector. The constant time hypersurface is then
characterised by the following three quantities:

nµ , hµν , Kµ
ν , (3.2)

where hµν = δµν + nµnν is the projection tensor on the hypersurface and Kµ
ν the associated

extrinsic curvature

Kµν =
1

2N

(
ḣµν −D(µNν)

)
. (3.3)

With “dot” we mean the Lie derivative respect to tµ , Dµ is the 3D covariant derivative on the
constant time hypersurface and the parenthesis (. . . ) on the indices denote symmetrisation.
Following [17], we decompose Aµ into the normal and transverse components with respect to
the aforementioned hypersurface:

Aµ = −A∗nµ + Âνh
ν
µ . (3.4)

The expression for the covariant derivative of Aµ can be decomposed into various pieces
depending on the derivatives of its components and of the metric:

∇µAν = DµÂν −A∗Kµν + n(µ

(
Kν)ρÂ

ρ −Dν)A∗

)
+ nµnν

(
V∗ − Âρ aρ

)
, (3.5)

– 5 –
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where aµ = nν ∇ν nµ is the acceleration vector. In equation (3.5), as well as for the whole
(beyond) Horndeski Lagrangian, time derivatives appear only for the three dimensional metric
hµν (inside the extrinsic curvature) and for the component A∗ (inside what we called V∗). V∗
plays for A∗ the same role that Kµν plays for hµν , i.e.

V∗ ≡ nµ∇µA∗ =
1

N

(
Ȧ∗ −NµDµA∗

)
. (3.6)

It is convenient therefore to work directly with the extrinsic curvature and V∗, instead of
the real velocities ḣµν and Ȧ∗, identifying those terms as the kinetic contributions to the
action.3 This allows us to treat the fields in a decomposed space-time while still remaining
in a covariant form. Remember however that V∗ contains the second time derivative of the
scalar field, hence it represents a potentially dangerous contribution that could lead to the
propagation of the Ostrogradsky mode.

A further advantage of this procedure is that the Lagrangian densities do not depend
explicitly on the lapse and shift functions. This is because such quantities are implicitly
included in Kµ

ν and V∗. This is a huge simplification that considerably reduces the number
of fields involved in the calculation. Performing a standard ADM canonical analysis would
be very complicated, as was already shown in [18] for the case of quartic beyond Horndeski
only. On the other hand, (beyond) Horndeski Lagrangians are diffeomorphism invariant, so
intuitively we do not expect any modification to the algebra of constraints associated with
the lapse and shift, as they are the generators of such a symmetry. However, this is not
straightforward to show and a general proof is still missing. Steps forward in this direction
have been made very recently in [19], where for a simple quartic Lagrangian, this was indeed
shown to be the case.

For the purposes of this paper, it is sufficient to retain in the Lagrangian only the highest
order terms in the extrinsic curvature, so we obtain the following expressions (we adopt the
notation used in [17]):

Lkin
4 = 2Bαµ V∗Kµ

α +KαβµνKµ
αK

ν
β , (3.7)

Lkin
5 = 3Bαβµν V∗Kµ

αK
ν
β +KαβγµνρK

µ
αK

ν
βK

ρ
γ . (3.8)

In the following, for simplicity, we also assume that the functions G4, G5, F4 and F5 depend
only on X, and not on φ.

For Horndeski, we obtain for the quantities B and K the following expressions

HBαµ = 0, HBαβµν = 0 , (3.9)

HKαβµν = −G4 h
α
[µh

β
ν] + 2G4X

(
A2hα[µh

β
ν] − Â

2P̂α[µP̂
β
ν]

)
, (3.10)

HKαβγµνρ =
1

3
G5XA∗

(
A2hα[µh

β
νh

γ
ρ] − Â

2P̂α[µP̂
β
ν P̂

γ
ρ]

)
, (3.11)

where

P̂αµ = hαµ −
1

Â2
ÂµÂ

α (3.12)

is the three-dimensional projection tensor defined in terms of Âµ. Note that there are no
terms containing V∗, since the B quantities of equation (3.9) vanish. This ensures that the

3To avoid confusion, with kinetic terms we indicate contributions to the Lagrangian that contain time
derivatives; while for quartic (beyond) Horndeski the kinetic terms are at most bilinear in the time derivatives
of the fields, for quintic Horndeski they are at most trilinear.
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equations of motion are second order and that the Horndeski Lagrangian only propagates at
most three degrees of freedom. This is achieved by the special Horndeski tuning between the
(non-minimal) coupling of gravity to the derivatives of the scalar field. While the expressions
associated with the quartic Horndeski have already been derived in [17], this is the first time
these expressions have been found for quintic Horndeski.

The relevant kinetic terms for beyond Horndeski are

BHBαµ = F4A∗Â
2P̂αµ ,

BHBαβµν = −F5A
2
∗Â

2P̂α[µP̂
β
ν] , (3.13)

BHKαβµν = −F4

[
A4hα[µh

β
ν] −A

2Â2P̂α[µP̂
β
ν] + 2Â4P̂αµ P̂

β
ν − Â4

(
P̂αµ h

β
ν + P̂ βν h

α
µ

)]
, (3.14)

BHKαβγµνρ = F5A∗

[
A4hα[µh

β
νh

γ
ρ] −A

2Â2P̂α[µP̂
β
ν P̂

γ
ρ] + Â4

(
P̂α[µP̂

β
ν]

(
P̂ γρ − hγρ

)
+ sym.

)]
, (3.15)

where “sym.” in (3.15) stands for the symmetric permutation of doublets of vertical indices
(e.g. the last term in eq. (3.14)). Since the mixing term only appears in beyond Horndeski

theory, we will mostly omit the superscript “BH” from Bαµ and Bαβµν .

For beyond Horndeski the quantities in eq. (3.13) do not vanish, therefore there are
potentially dangerous mixings between V∗ (containing the second derivative of the scalar
field) and Kν

µ (containing the first derivative of the spatial metric). Such contributions to
the action lead to higher order equations of motion. This suggests, but not necessarily implies,
the presence of additional propagating degrees of freedom. We now study the existence of a
primary constraint that could prevent the propagation of an additional (ghost) mode.

4 Primary constraints in beyond Horndeski theories

The natural tool for counting the number of degrees of freedom is the (Dirac) canonical
analysis of constraints. A complete analysis, however, is beyond the scope of this work and
here we concentrate on studying the existence of primary constraints. In particular we focus
on the constraint that is able to remove the Ostrogradsky mode, and assume that the four
first class constraints associated with the diff. invariance still remain. Of course, the existence
of a primary constraint is not enough to remove a physical dof, nevertheless this would be
the first necessary condition for it. Moreover, to our knowledge, there are no known Lorentz
invariant theories that propagate half degrees of freedom: this would be the case if there are
an odd number of second class constraints. A complete analysis for the quartic Lagrangian
has been recently performed in [19], confirming that a secondary constraint does indeed exist.

Primary constraints exist when, passing to the Hamiltonian formalism, all the velocities
cannot be expressed in terms of the fields and their conjugate momenta. This translates to
relations (constraints) between the fields and momenta that need to be added to the canonical
Hamiltonian through Lagrangian multipliers.

As explained in section 3, instead of working with the true velocities, we work with
closely related quantities and therefore define the conjugate momenta accordingly:

π∗ ≡
1√
−g

δS

δV∗
, παµ ≡

1√
−g

δS

δKµ
α
. (4.1)

Notice that this definition also differs from the usual one due to the presence of the factor
1/
√
−g ; this helps to completely remove the lapse from the relations.

– 7 –
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In Horndeski theory, the primary constraint needed to remove the Ostrogradsky ghost
is automatically enforced by its construction, and it is π∗ ≈ 0.4

4.1 Beyond Horndeski

Using the expression for beyond Horndeski theories given in eqs. (2.19) and (2.20), together
with the expression of ∇αAµ given in eq. (3.5), the conjugate momenta are obtained as

π∗ = 2XF4Mαβ
µν nαn

µ∇βAν + 3XF5Mαβγ
µνρ nαn

µ∇βAν ∇γAρ , (4.2)

ÂµÂαπ
α
µ = 2XF4Mαβ

µν

(
−A∗ÂαÂ

µ + Â2n(αÂ
µ)
)
∇βAν

+ 3XF5Mαβγ
µνρ

(
−A∗ÂαÂ

µ + Â2n(αÂ
µ)
)
∇βAν ∇γAρ . (4.3)

Using the properties of the matrix M

Mα...β
µ...νnαA

µ =Mα...β
µ...ν ÂαA

µ = 0 , (4.4)

which stem from the fact that M is constructed from the projection tensor Pαµ and Aµ =

−A∗n
µ + Âµ, we can derive the following identities

Mα...β
µ...ν ÂαÂ

µ = A2
∗Mα...β

µ...ν nαn
µ , Mα...β

µ...ν nαÂ
µ = A∗Mα...β

µ...ν nαn
µ . (4.5)

Hence, we can find a primary constraint of the form

A∗

(
2Â2 −A2

∗

)
π∗ − ÂµÂα παµ ≈ 0 . (4.6)

With the formulation of beyond Horndeski theories given in section 2.2, it is therefore very
easy to show the existence of the primary constraint necessary to remove the Ostrogradsky
ghost. It is important to notice that the constraint (4.6) is a linear combination of the
conjugate momenta π∗ and παµ . In this case it is possible to remove V∗ by a suitable field
redefinition and the system can be recast as a second order one. However there is no guarantee
that the new system will be Lorentz invariant.

In order to better understand the properties of the conjugate momenta (4.2), (4.3) and
for the sake of the next subsection, we now explain the above result focusing only on the
highest order terms in the extrinsic curvature as given in eq. (3.7) and (3.8). The conjugate
momenta simplify to

π∗ = 2BαµKµ
α + 3BαβµνKµ

αK
ν
β , (4.7)

παµ =
(

2Bαµ + 6BαβµνKν
β

)
V∗ + 2KαβµνKν

β + 3KαβγµνρK
β
νK

ρ
γ . (4.8)

From eqs. (4.7), (4.8) it becomes easy to see that the key property of these momenta is
that V∗ appears only in παµ . This implies that to build a constraint we need to eliminate V∗
taking a suitable linear combination of components of παµ . Using the properties of the three
dimensional projection tensor, i.e.

P̂αµ ÂαÂ
µ = 0 , hα[µh

β
ν]ÂαÂ

µ = Â2P̂ βν , hα[µh
β
νh

γ
ρ]ÂαÂ

µ = Â2P̂ β[νP̂
γ
ρ] , (4.9)

4The customary notation “≈” means weak equality, i.e. equality on the phase space determined by
constraints.
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we can show the following relations for B and K in beyond Horndeski theories

BαµÂαÂµ = Bαβµν ÂαÂµ = 0 , (4.10)

BHKαβµν ÂαÂµ = A∗(2Â
2 −A2

∗)Bβν , (4.11)

BHKαβγµνρ ÂαÂ
µ = A∗(2Â

2 −A2
∗)Bβγνρ . (4.12)

These results imply that we can eliminate V∗ by contracting παµ with ÂαÂ
µ

ÂµÂα π
α
µ = A∗

(
2Â2 −A2

∗

)(
2 BαµKµ

α + 3 BαβµνKµ
αK

ν
β

)
. (4.13)

Then, it is straightforward to verify the primary constraint (4.6).

To conclude, let us give the redefinition of the extrinsic curvature that eliminate the
cross term between V∗ and the extrinsic curvature

Kµ
α = K̄µ

α −
V∗

A∗(2Â2 −A2
∗)
ÂαÂ

µ . (4.14)

We discuss in appendix A the cases when this redefinition is in fact a disformal transformation
of the extrinsic curvature.

4.2 Beyond Horndeski + Horndeski

We now consider what happens to the primary constraint found in beyond Horndeski, when
we combine this theory with the Horndeski one. We will show that, when mixing actions of
different orders, generically the primary constraint of the kind (4.6) is lost. In this regard, it
is enough to consider only the highest order terms in the extrinsic curvature.

B and K in Horndeski theories obey the following relations

HKαβµν ÂαÂµ =
2G4XA

2 −G4

F4A∗
Bβν , (4.15)

HKαβγµνρ ÂαÂ
µ = −G5XA

2

3F5A∗
Bβγνρ . (4.16)

Using these relations, the conjugate momenta in the presence of Horndeski contributions
become

π∗ = 2 BαµKµ
α + 3 BαβµνKµ

αK
ν
β , (4.17)

ÂµÂαπ
α
µ = A∗

(
2Â2 −A2

∗

)(
2BαµKµ

α + 3BαβµνKµ
αK

ν
β

)
+

2
(
2G4XA

2 −G4

)
F4A∗

BαµKµ
α −

G5XA
2

F5A∗
BαβµνKµ

αK
ν
β . (4.18)

Let us first consider the case in which we do not mix different orders. In these cases the
primary constraint still persists.

• Quartic Beyond Horndeski + quartic Horndeski[
A∗

(
2Â2 −A2

∗

)
+

2G4XA
2 −G4

F4A∗

]
π∗ − ÂµÂα παµ ≈ 0 . (4.19)
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• Quintic Beyond Horndeski + quintic Horndeski[
A∗

(
2Â2 −A2

∗

)
− G5XA

2

3F5A∗

]
π∗ − ÂµÂα παµ ≈ 0 . (4.20)

In the above cases, the redefinition of the extrinsic curvature that removes the mixing term
is given respectively by

Kµ
α = K̄µ

α −
F4A∗V∗

F4A2
∗

(
2Â2 −A2

∗

)
+ 2G4XA2 −G4

ÂαÂ
µ . (4.21)

Kµ
α = K̄µ

α −
3F5A∗V∗

3F5A2
∗

(
2Â2 −A2

∗

)
−G5XA2

ÂαÂ
µ . (4.22)

So far, so good. Problems arise when we combine together different orders. This was
already realised in [17] for the case of quintic beyond Horndeski + quartic Horndeski. Here we
also provide the tools to analyse what happens joining together quartic beyond Horndeski +
quintic Horndeski, a system that is more technically challenging to deal with. In both of these
cases the primary constraint is lost. Indeed, the presence of Horndeski terms of different order,
obstructs any linear combination of momenta (4.17) and (4.18) that compensates and sets

to zero the coefficients of both BαµK
µ
α and BαβµνKµ

αKν
β .5

Of course the absence of the primary constraint which is present in isolated beyond
Horndeski theories, does not necessarily mean that a different constraint could not arise.
Surely it cannot come from a linear combination of momenta,6 so in order to check its real
absence, one should be able to prove the invertibility of the non-linear system of matrices
equations (4.17)–(4.18), which is not a simple task.

To summarise, beyond Horndeski theories do have the primary constraint needed to
avoid the Ostrogradsky instability, however this same constraint is spoiled when they are
combined with contributions from different orders of Horndeski.

5 Disformal transformation

In the previous section we found that, due to the linear nature of the primary constraint in
beyond Horndeski theories, a suitable redefinition of the extrinsic curvature can recast the
theory into a manifestly second order system. In this section (see also appendix A) we study
the relation between this field redefinition and a disformal transformation of the metric.

The (generalised) disformal transformation [15] is given by

ḡµν = gµν + Γ(φ, X)AµAν . (5.1)

In [12, 14, 23–25] it was shown that Horndeski theory is mapped into itself by a disformal
transformation if Γ is a function of the scalar field only and that the X dependence of Γ
generates beyond Horndeski terms. In the following, we do not choose any gauge for our
analysis; for simplicity, we only consider the case where Γ depends strictly on X.

5The only exception is for G4 = X1/2. For this particular value the quartic Horndeski contribution vanishes.
(We will meet this special case also in the next section).

6Remember that ÂµÂαπ
α
µ is the only linear combination of components of παµ that does not contain V∗.
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We can show that by a disformal transformation, the Horndeski action is mapped to a
combination of Horndeski and beyond Horndeski actions of the same order

HL̄4[Ḡ4] = HL4[G4] + BHL4[D4] , (5.2)
HL̄5[Ḡ5] = HL5[G5] + BHL5[D5] ; (5.3)

where

G4 = Ḡ4(1 +XΓ)1/2 , D4 =
ΓX

(1 +XΓ)1/2

(
Ḡ4 −

2XḠ4X̄

1 +XΓ

)
, (5.4)

G5 =
Ḡ5

(1 +XΓ)1/2
+

∫
Ḡ5 (Γ +XΓX)

2(1 +XΓ)3/2
dX , D5 =

XḠ5X̄ΓX
3(1 +XΓ)5/2

. (5.5)

On the other hand, beyond Horndeski is mapped into itself only, with a different overall
function

BHL̄4[F̄4] = BHL4[F4] , (5.6)
BHL̄5[F̄5] = BHL5[F5] ; (5.7)

where

F4 =
F̄4

(1 +XΓ)5/2
, F5 =

F̄5

(1 +XΓ)7/2
. (5.8)

From these results, we can easily see that the combination of Horndeski and beyond
Horndeski of the same order can be mapped to Horndeski. Indeed

HL̄4[Ḡ4] + BHL̄4[F̄4] = HL4[G4] , (5.9)
HL̄5[Ḡ5] + BHL̄5[F̄5] = HL5[G5] , (5.10)

for a disformal transformation Γ(X) which satisfies [12]

Γ4X =
F4

X2F4 + 2XG4X −G4
, (5.11)

Γ5X =
3F5

3X2F5 −XG5X
, (5.12)

where G4, G5 are respectively given in equations (5.4), (5.5) and F4, F5 are given in (5.8).
Thus, the absence of the Ostrogradsky mode is ensured by the fact that these combinations
can be mapped to Horndeski. In the absence of a coupling with matter, the theory is
just Horndeski. It is possible to check that, for (5.11)–(5.12), the disformal transformation
reproduces the redefinition of the extrinsic curvature that removes its mixing with V∗, i.e.
eqs. (4.21), (4.22).

On the other hand, if there is only beyond Horndeski, the disformal transformation
cannot map the theory to Horndeski. In fact in this limit Γ4,5 = −1/X and the disformal
transformation becomes

ḡµν = gµν −
1

X
AµAν . (5.13)

This is the projection tensor P νµ which satisfies P νµAν = 0, implying that it has a null eigen-
value and therefore is not invertible. Thus the disformal transformation required to map a
combination of Horndeski and beyond Horndeski to Horndeski, given by eqs. (5.11)–(5.12),
becomes singular in the limit G4,5 → 0.7 This is consistent with the fact that beyond Horn-
deski is mapped into itself by the generalised disformal transformation. Surprisingly, as we

7There is also another value ofG4 that makes the transformation singular, i.e.G4 = X1/2. This clarifies that
the spacial case encountered in the former section, is actually related to an ill-defined disformal transformation.
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showed in the previous section, there still exists a redefinition of the extrinsic curvature that
removes the mixing (dangerous) term, eq. (4.14). However, it can be shown (see appendix A)
that this transformation is not a disformal transformation of the extrinsic curvature. Accord-
ingly to the generality of the disformal transformation [15], this implies that, when recast
into a second order theory, beyond Horndeski is different from Horndeski. It follows natu-
rally therefore that beyond Horndeski is equivalent (up to a field redefinition) to a Lorentz
breaking second order theory.

An important remark is that,8 for the particular cases F4(X) = X−5/2 and F5(X) =
X−7/2, the generalised disformal transformation with an arbitrary function Γ(X) is a sym-
metry of the theories of beyond Horndeski. It would be interesting to investigate whether the
existence of this symmetry is related to a first class constraint, i.e. if it is a gauge symmetry.

6 Discussion

In this paper we examined the number of degrees of freedom present in the theory of beyond
Horndeski, in a gauge-invariant way. We first rewrote beyond Horndeski in terms of the
extrinsic curvature of the constant scalar field hypersurface; then we derived the relevant
kinetic terms for both beyond Horndeski and Horndeski theories. Unlike Horndeski, in beyond
Horndeski there is a mixing term between the second time derivative of the scalar field and
the extrinsic curvature, which could give rise to the propagation of an additional (ghost)
degree of freedom in absence of proper constraints.

We found that in beyond Horndeski there exists a primary constraint that is able to
remove the Ostrogradsky instability. Moreover this constraint occurs in the form of a linear
combination of conjugate momenta. This allowed us to identify the transformation of the
extrinsic curvature that eliminates the aforementioned mixing term.

This primary constraint still persists when we join together theories of beyond Horndeski
and Horndeski of the same order. However, when mixing theories of different orders, the very
same constraint is lost, as shown in [17] for the case of quintic beyond Horndeski + quartic
Horndeski. Here we were able to show that this happens also in the other case, i.e. quartic
beyond Horndeski + quintic Horndeski. Nevertheless, the loss of that constraint does not
exclude the possibility that, in these cases, a different (non-linear) primary constraint could
still arise. The study of this possibility however is well beyond the scope of this work.

Notice that in ref. [18] a non-covariant method for removing the higher order time
derivatives from the field equations was found. This is valid even for mixed order beyond
Horndeski and Horndeski combinations which would seem to contradict our results. However,
the fact that a higher order theory can be recast in a second order one in a non-covariant
way, is not necessarily connected with the number of propagating dof. Nothing forbids that
one of the (second order) modes is indeed a ghost, like in the Ostrogradsky approach.9 The
Hamiltonian analysis confirms itself as the unique tool for the correct counting of dof.

To identify the origin of the primary constraint, we studied the transformation of Horn-
deski and beyond Horndeski under a generalised disformal transformation which depends on
the scalar field kinetic term, without fixing any gauge. The results of this analysis are sum-
marised in table 1. We confirmed that Horndeski is disformally mapped to Horndeski plus
beyond Horndeski of the same order [12]. On the other hand, beyond Horndeski is mapped
to itself by the generalised disformal transformation. Thus, in the absence of coupling with

8Notice that X transforms as X̄ = X/(1 +XΓ).
9We would like to thank C. Deffayet for discussions on this point.
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Table 1. Summary of the results on the combination of Horndeski and beyond Horndeski terms.
H indicates that the theory can be mapped to Horndeski by a disformal tranformation while BH
indicates that the disformal transformation maps it to beyond Horndeski. Crosses indicate theories
that cannot be joined together without loosing the linear primary constraint.

matter, the mixture of Horndeski and beyond Horndeski of the same order is nothing but
Horndeski itself. We checked that the redefinition of the extrinsic curvature that removes
the mixing term can be derived from the disformal transformation only when there are both
Horndeski and beyond Horndeski together. On the other hand, the disformal transformation
that maps Horndeski plus beyond Horndeski to Horndeski is singular precisely in the limit
that would leave the theory of beyond Horndeski alone. This is consistent with the fact that
beyond Horndeski is mapped to beyond Horndeski itself. In this case the transformation to
remove the mixing term cannot be derived from the disformal transformation. This indicates
that beyond Horndeski is disformally disconnected from Horndenski.

The fact that beyond Horndeski cannot be mapped into Horndeski, makes this theory
a covariant scalar-tensor theory that can be recast into a second order system which is not
Horndeski, therefore it should be Lorentz breaking. It is also interesting that the primary
constraint is preserved only when we include a Horndeski term of the same order, but it is
spoiled when a different order Horndeski term is added. In the first case however the theory
is just Horndeski up to a generalised disformal transformation.

It will be important to continue the canonical analysis, performing the dynamical evo-
lution of the primary constraint. For the quartic case it has been recently shown that it leads
to a secondary second class constraint [19]; for the quintic case however such an analysis is
still missing. Moreover, it would also be interesting to study couplings with matter. We will
come back to these issues in a forthcoming work.
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A Redefinition of K and disformal transformation

In this appendix we examine the relation between the transformation of the extrinsic curva-
ture that removes the mixing term between itself and V∗ (eq. (4.14)), and the transformation
of the extrinsic curvature under a generalised disformal transformation of the metric (5.1).
For simplicity, and to avoid very long formulae that are not illuminating, we only give the
expression of the conformal piece and of the term proportional to V∗. It is indeed this last
one that plays the crucial role.

The disformal transformation acts on the extrinsic curvature in the following way

K̄µν = BKµν − C V∗
(
Âµ + Â2ΓAµ

)(
Âν + Â2ΓAν

)
, (A.1)

where

B =

(
1 + Â2Γ

1 +A2Γ

)1/2

, C =
BA∗ ΓX

(1 + Â2Γ)2
. (A.2)

In order to compare this transformation with the one coming from the analysis of
the primary constraint (4.14), we first need to slightly manipulate the latter. Indeed, the
transformation given in section 4 is not unique, we can always multiply the new extrinsic
curvature by a generic function of X without changing its properties. Moreover, since the
disformal transformation acts on all the fields, and not just on the extrinsic curvature, we
also need to accordingly transform the other objects present in (4.14). Once this has been
done, we obtain that the transformation coming from the primary constraint is indeed of the
form (A.1), but with

B =

(
1 + Â2Γ

1 +A2Γ

)1/2

, C =
BA∗ ΓX

(1 + Â2Γ)2
− B

A∗

(
A2

∗ − 2Â2(1 +A2)Γ
) . (A.3)

Clearly in (A.3) there is an additional piece proportional to V∗ that it is not present for
the disformal transformation. This is the key term. When we add together beyond Horn-
deski + Horndeski of the same order, using (5.11)–(5.12) in the analogous equation of (A.3)
coming from (4.21)–(4.22), this extra piece vanishes and the transformation reduces to (A.2).
On the other hand with beyond Horndeski alone this extra term survives making the two
transformations different. We can therefore conclude that, since the transformation that is
able to recast beyond Horndeski into a second order theory is not a disformal transformation,
beyond Horndeski is equivalent to a Lorentz breaking second order theory. Notice that the
singular limit encountered in section 5, i.e. Γ4,5 = −1/X, manifests also here: indeed for this
value the extra piece does not cancel out as one would expect.
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[20] C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect Dark Energy from Kinetic
Gravity Braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].

[21] K. Koyama, G. Niz and G. Tasinato, Effective theory for the Vainshtein mechanism from the
Horndeski action, Phys. Rev. D 88 (2013) 021502 [arXiv:1305.0279] [INSPIRE].

[22] C. Lin, S. Mukohyama, R. Namba and R. Saitou, Hamiltonian structure of scalar-tensor
theories beyond Horndeski, JCAP 10 (2014) 071 [arXiv:1408.0670] [INSPIRE].

[23] D. Bettoni and S. Liberati, Disformal invariance of second order scalar-tensor theories:
Framing the Horndeski action, Phys. Rev. D 88 (2013) 084020 [arXiv:1306.6724] [INSPIRE].

[24] D. Bettoni and M. Zumalacárregui, Kinetic mixing in scalar-tensor theories of gravity, Phys.
Rev. D 91 (2015) 104009 [arXiv:1502.02666] [INSPIRE].

[25] J. Sakstein and S. Verner, Disformal Gravity Theories: A Jordan Frame Analysis, Phys. Rev.
D 92 (2015) 123005 [arXiv:1509.05679] [INSPIRE].

– 15 –

http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://arxiv.org/abs/0901.1314
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1314
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://arxiv.org/abs/0906.1967
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.1967
http://dx.doi.org/10.1103/PhysRevLett.108.051101
http://arxiv.org/abs/1106.2000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2000
http://dx.doi.org/10.1143/PTP.126.511
http://arxiv.org/abs/1105.5723
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5723
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1007/BF01807638
http://inspirehep.net/search?p=find+J+"Int.J.Theor.Phys.,10,363"
http://dx.doi.org/10.1007/978-3-540-71013-4_14
http://dx.doi.org/10.1007/978-3-540-71013-4_14
http://arxiv.org/abs/astro-ph/0601672
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0601672
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://dx.doi.org/10.1103/PhysRevLett.114.211101
http://arxiv.org/abs/1404.6495
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6495
http://dx.doi.org/10.1088/1475-7516/2015/02/018
http://arxiv.org/abs/1408.1952
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.1952
http://dx.doi.org/10.1103/PhysRevD.90.081501
http://dx.doi.org/10.1103/PhysRevD.90.081501
http://arxiv.org/abs/1406.0822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0822
http://dx.doi.org/10.1103/PhysRevD.89.064046
http://dx.doi.org/10.1103/PhysRevD.89.064046
http://arxiv.org/abs/1308.4685
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4685
http://dx.doi.org/10.1103/PhysRevD.48.3641
http://dx.doi.org/10.1103/PhysRevD.48.3641
http://arxiv.org/abs/gr-qc/9211017
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9211017
http://dx.doi.org/10.1103/PhysRevD.92.084027
http://dx.doi.org/10.1103/PhysRevD.92.084027
http://arxiv.org/abs/1507.05390
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05390
http://dx.doi.org/10.1088/1475-7516/2016/02/034
http://arxiv.org/abs/1510.06930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.06930
http://dx.doi.org/10.1103/PhysRevD.92.084013
http://arxiv.org/abs/1506.01974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01974
http://arxiv.org/abs/1512.06820
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06820
http://dx.doi.org/10.1088/1475-7516/2010/10/026
http://arxiv.org/abs/1008.0048
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0048
http://dx.doi.org/10.1103/PhysRevD.88.021502
http://arxiv.org/abs/1305.0279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0279
http://dx.doi.org/10.1088/1475-7516/2014/10/071
http://arxiv.org/abs/1408.0670
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0670
http://dx.doi.org/10.1103/PhysRevD.88.084020
http://arxiv.org/abs/1306.6724
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6724
http://dx.doi.org/10.1103/PhysRevD.91.104009
http://dx.doi.org/10.1103/PhysRevD.91.104009
http://arxiv.org/abs/1502.02666
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02666
http://dx.doi.org/10.1103/PhysRevD.92.123005
http://dx.doi.org/10.1103/PhysRevD.92.123005
http://arxiv.org/abs/1509.05679
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05679

	Introduction
	The theories of Horndeski and beyond Horndeski
	Horndeski theory
	Beyond Horndeski theory

	Kinetic terms
	Primary constraints in beyond Horndeski theories
	Beyond Horndeski
	Beyond Horndeski + Horndeski

	Disformal transformation
	Discussion
	Redefinition of K and disformal transformation

