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Abstract

We extend the ability of an unitary quantum circuit by interfacing it with a classical autoregressive
neural network. The combined model parametrizes a variational density matrix as a classical
mixture of quantum pure states, where the autoregressive network generates bitstring samples as
input states to the quantum circuit. We devise an efficient variational algorithm to jointly optimize
the classical neural network and the quantum circuit to solve quantum statistical mechanics
problems. One can obtain thermal observables such as the variational free energy, entropy, and
specific heat. As a byproduct, the algorithm also gives access to low energy excitation states. We
demonstrate applications of the approach to thermal properties and excitation spectra of the
quantum Ising model with resources that are feasible on near-term quantum computers.

1. Introduction

Quantum statistical mechanics concerns the physical properties of quantum systems at non zero
temperatures. These problems pose two sets of challenges to classical computational approaches. First of all,
classical algorithms generally encounter the difficulties of diagonalizing exponentially large Hamiltonians or
the sign problem originating from the quantum nature of the problem. Moreover, even on the eigenbasis of
the Hamiltonian one still faces the problem of the intractable partition function, which involves summation
of an exponentially large number of terms.

A straightforward way to address these difficulties is to directly implement the physical Hamiltonian on
analog quantum devices and study the system at thermal equilibrium; for example, see references [1, 2]. On
the other hand, a potentially more general approach would be to study problems in quantum statistical
mechanics with a universal gate model quantum computer. However, this strategy still calls for algorithmic
innovations to prepare thermal quantum states given the unitary nature of quantum circuits. There have
been quantum algorithms to prepare thermal Gibbs states on quantum computers [3—7]. Unfortunately,
these approaches may not be feasible on near-term noisy quantum computers with limited circuit depth.
While variational quantum algorithm for preparing thermofield double states [8, 9] requires additional
quantum resources such as ancilla qubits, as well as measuring and extrapolating Renyi entropies. The
quantum imaginary-time evolution [10] relies on exponentially difficult tomography on a growing number
of qubits and synthesize of general multi-qubit unitaries.

Recently, references [11, 12] proposed practical approaches to prepare the thermal density matrix as a
classical probabilistic mixture of quantum pure states in the eigenbasis of the density matrix. In these
proposals, the classical part is either assumed to be a factorized probability distribution or as an energy-based
model [13]. However, the factorized distribution is generally a crude approximation for the Gibbs
distribution in the eigenbasis. While the energy-based model still faces the problem of the intractable
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Figure 1. (a) The autoregressive network shown in blue is a classical probabilistic model that parametrizes a joint distribution in
the form of equation (2). The model generates bit string as easy to prepare input product states to the quantum circuit. The
neural network and the circuit produce a parametrized density matrix equation (1). (b) An implementation of the autoregressive
model py using the masked autoencoder [14]. The neural network maps bit strings to real-valued outputs which parametrizes the
conditional probabilities in equation (2).

partition function, which inhibits efficient and unbiased sampling, learning, or even evaluating the model
likelihood.

Modern probabilistic generative models offer solutions to these problems about expressibility and
tractability [15] since the goals of generative modeling are exactly to represent, learn and sample from
complex high-dimensional probability distributions efficiently. Popular generative models include
autoregressive models [14, 16, 17], variational autoencoders [18], generative adversarial networks [19], and
flow-based models [20]. For the purpose of this study, the autoregressive models stand out since they support
unbiased gradient estimator for discrete variables, direct sampling, and tractable likelihood at the same time.
The autoregressive models have reached state-of-the-art performance in modeling realistic data and found
real-world applications in synthesizing natural speech and images [16, 17]. Variational optimization of the
autoregressive network has been used for classical statistical physics problems [21, 22]. Quantum
generalization of the network was also employed for the ground state of quantum many-body systems [23].

In this paper, we combine quantum circuits with autoregressive probabilistic models to study thermal
properties of quantum systems at finite temperature. The resulting model allows one to perform variational
free energy calculation over density matrices efficiently. We demonstrate applications of the approach to
quantum Ising model on a square lattice, where we obtain its variational free energy, thermal entropy,
specific heat and excitation energies.

By leveraging the recent advances in deep probabilistic generative models, the proposed approach
extends the variational quantum eigensolver (VQE) [24] to thermal quantum states with essentially no
overhead. Thus, the present algorithm is also feasible for near-term quantum computers [25-31]. The only
practical difference to the ground state VQE is that one needs to sample input states to the quantum circuit
from a classical distribution, and one has an additional term in the objective function to account for the
entropy of the input distribution.

For the classical simulation of the proposed algorithm, we use Yao . j1, an extensible and efficient
framework for quantum algorithm design [32]. Yao. j1’s batched quantum register and automatic
differentiation via reversible computing [33] makes it an ideal tool for differentiable programming models
which combine classical neural networks and quantum circuits. Our code implementation can be found at
[34].

2. Model architecture, objective function, and optimization scheme

Figure 1(a) shows the architecture of the variational ansatz. A classical probabilistic model generates binary
random variables x according to a classical distribution py (x), where ¢ are the network parameters. It is
straightforward to prepare qubits to the classical product state |x). Then, a parametrized quantum circuit
performs unitary transformation to the input states Up|x), where the circuit parameters 6 do not depend on
the inputs. Overall, the model produces a classical mixture of quantum states. The density matrix of the
ensemble reads [11, 12]

p=_ pe(x)Uslx)(x|Uj. (1)

The density matrix is hermitian and positive definite. Moreover, given a normalized classical probability, one
has Tr(p) = Y pe(x) = 1. The density matrix depends both on parameters ¢ and §. We omit the explicit
dependence in the notation to avoid cluttering in the notations.
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The parametrized quantum circuit performs a unitary transformation to the diagonal density matrix
> Ps(x)|x) (x|, whose diagonal elements are parametrized by a neural network. Using a quantum circuit for
the unitary transformation [35] is more general than the classical flow model [36]. Moreover, it
automatically ensures physical constraints such as the orthogonality of the eigenstates. The classical
distribution p(x) is in general nontrivial since it is not necessarily factorized for each dimension of x [11,
12]. Thus, exact representation of the classical distribution on the eigenbasis p, (x) may also incur
exponential resources. Parametrizing the probability distribution using a classical Boltzmann distribution
has the problem of intractable partition functions. Hence, we employ an autoregressive network to produce
the input states of the quantum circuit.

The autoregressive network models the joint probability distribution as a product of conditional
probabilities

po(x) = HP¢(xi|x<i) = po(x1)pg (x2|x1) P (x3]x1,%2) - - -, (2)

where one has assumed an order of each dimension of the variables. x.; denotes the set of variables that are
before x;. The autoregressive network is a special form of Bayesian network, which models conditional
dependence of random variables as a directed acyclic graph shown in figure 1(a). The model can capture
high-dimensional multimode distribution with complex correlations. One can also directly draw
uncorrelated samples from the joint distribution via ancestral sampling, which follows the order of the
conditional probabilities.

The practical implementation of the autoregressive networks largely benefits from rapid development of
deep learning architectures such as the recurrent or convolutional neural networks [16, 17] and
autoencoders [14]. In this paper, we employ the masked autoencoder shown in figure 1(b). The autoencoder
network transforms bit string x to real-valued vector X of the same dimension, where each element satisfies
0 < X; < 1, e.g. outputs of sigmoid activation functions [13]. We mask out some connections in the
autoencoder network so the connectivity ensures that X; only depends on the binary variable x ;. Thus, each
element of the output defines a conditional Bernoulli distribution pg (x;|x< ;) = &7 (1 — %;)! = for the binary
variable x;. In this way, the joint probability for all binary variables satisfies the autoregressive property
equation (2). Since each conditional probability is normalized ) py(xi|x<;) = 1, the joint distribution is
normalized by construction. The probability distribution is parameterized by the network parameters ¢. In a
simple limit where the network is disconnected, X = sigmoid(¢) and one restores the product state ansatz
considered in references [11, 12].

Given a Hamiltonian H at inverse temperature (3, the density matrix o = e~ /Z plays a central role in
the quantum statistical mechanics problem, where Z = Tr(e~#*) is an intractable partition function. One
can perform the variational calculation over the parametrized density matrix equation (1) by minimizing the
objective function

L ="Tr(plnp) + BTr(pH), (3)

which follows the Gibbs—Delbriick—Moliere variational principle of quantum statistical mechanics [37]. The
two terms of equation (3) correspond to the entropy and the expected energy of the variational density
matrix respectively. The objective function is related to the quantum relative entropy S(p|jo) = L +InZ
between the variational and the target density matrices. Since the relative entropy is non-negative [38], one
has £ > —InZ, i.e. the loss function is lower bounded by the physical free energy. The equality is reached
only when the variational density matrix reaches the physical one p=o.

To estimate the objective function equation (3), one can sample a batch of input states |x) from the
autoregressive network, then apply the parametrized circuit and measure the following estimator:

£ =Eop, o [Inps(x) + 8 (x| U HUs )] (4)

The first term depends solely on the classical probabilistic model, which can be directly computed via
equation (2) on the samples. Note that the entropy of the autoregressive model is known exactly rather than
being intractable in the energy-based models [12]. Moreover, having direct access to the entropy avoids the
difficulties of extrapolating the Renyi entropies measured on the quantum processor [8, 9]. The second term
of equation (4) involves the expected energy of Hamiltonian operators (H), where we denote

(0) = Exnp, () [<x ‘ UZOU@ ’ x>} . The classical neural network and the quantum circuit perform classical

and quantum average respectively. The equation (4) shows zeros variance property, i.e. when the variational
density matrix exactly reaches to the physical one, the variance of the estimator equation (4) reduces to zero.
This can be used as a self-verification of the variational ansatz and minimization procedure [30].
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We would like to utilize the gradient information to train the hybrid model which consists of neural
networks and quantum circuits efficiently. Moreover, random sampling of the autoregressive net and the
quantum circuit suggest that one should employ stochastic optimization with noisy gradient estimators [13].
First, the gradient with respect to the circuit parameters reads

VoL = BExnp, [V <x’UZHU9’x>} . (5)

The term inside the square bracket is a gradient of a quantum expected value. To evaluate the expectation on
an actual quantum device, one can employ the parameter shift rule of [39-42]. These approaches estimate
the gradient of each circuit parameter using the difference of two sets of measurement on the quantum
circuit with the same architecture. While in the classical simulation of the quantum algorithm one can
employ the automatic differentiation [43] to evaluate the gradient efficiently.

Next, the gradients of the neural network parameters can be evaluated using the REINFORCE
algorithm [45]

VoL =Bunp, [(flx) = b) Vg Inpy (x)], (6)

where the term V4 Inpg (x), known as the score-function gradient in the machine learning literature [46],
can be efficiently evaluated via backpropagation through the probabilistic model equation (2) [43]. In this
regard, flx) = Inpy(x) + B{x| U;SH Up|x) can be viewed as the ‘reward signal’ given the policy py(x) for
generating bit string samples. We have introduced the baseline b = ., [f(x)] which does not affect the
expectation of equation (6) since Ey~,, [V Inpg(x)] = 0. However, the baseline helps to reduce the variance
of the gradient estimator [47].

Given the gradient information we train the autoregressive network and the quantum circuit jointly with
the stochastic gradient descend method. The training procedure finds out the circuit Uy which
approximately diagonalizes the density matrix and brings the negative log-likelihood —Inpg(x) closer to the
energy spectrum of the system. In principle, the same circui can diagonalize the density matrices at all
temperatures if Uy fully diagonalize the Hamiltonian. However, in the practical variational calculation, this
does not need to be the case to achieve good variational free energy since the temperature selects the relevant
low-energy spectra which contributes mostly to the objective function.

After training, one can sample a batch of input states |x) and treat them as approximations of the
eigenstates of the system. Since the unitary circuit preserves orthogonality of the input states, the sampled
quantum states span a low energy subspace of the Hamiltonian. For example, measuring the expected energy

(x ‘ UZH Uy ’ x) reveals the excitation energies of the system. In this respect, the objective function

equation (3) is related to the weighted subspace-search VQE algorithm for the excited states [48]. Different
from the weighted subspace-search VQE, a single physical parameter inverse temperature /5 controls the
relative weights on the input states. Adaptive sampling of the autoregressive model provides the correct
weights that spans the relevant low energy space. Due to its close connection to the original VQE

algorithm [24], we denote the present approach as the 3-VQE algorithm. While suppose the Hamiltonian is
diagonal in the computational basis, i.e. a classical Hamiltonian, one can leave out the quantum circuit and
the approach falls back to the variational autoregressive network approach of reference [21]. In the classical
limit it is also obvious that the autoregressive ansatz is advantageous than a simple product ansatz.

3. Numerical simulations

We demonstrate application of 5-VQE to thermal properties of quantum lattice problems. Despite that most
of the efforts on VQE have been devoted to quantum chemistry problems [25-29], quantum lattice problems
are more native applications on near-term quantum computers for two reasons. First, typical problems with
local interaction one does not suffer from unfavorable scaling of a large number of Hamiltonian terms.
Second, quantum lattice models that only involve spins and bosons do not invoke the overhead of mapping
from fermion to qubits. Therefore, it is anticipated that near-term devices should already produce valuable
results for quantum lattice problems before they are impactful for quantum chemistry problems [49].

We consider the prototypical transverse field Ising model on a square lattice with open boundary
conditions:

H=-> 77Z-T)» X, (7)
(i) i

where Z; and X; are Pauli operators acting on the lattice sites. The model exhibits a quantum critical point at
zero temperature at I'. = 3.044 38(2). While for I < T'. the model exhibits a thermal phase transition from a
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Figure 2. (a) Layout of the two qubit unitaries in the variational circuit Uy. In each step one applies two-qubit gates to adjacent
qubits. (b) The two-qubit SU(4) gate consists of three CNOT and 15 single qubit rotation gates. Each single-qubit gate contains a
learnable parameter [44].
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Figure 3. The variational loss equation (4) approaches to the exact free energies (black solid lines) of the 3 X 3 quantum Ising
model equation (7) at S =1.

ferromagnetic phase to a disordered phase. All of these rich physics can be studied unbiasedly with
sign-problem free quantum Monte Carlo approach, e.g. see [50]. Having abundant established knowledge
makes the problem equation (7) an ideal benchmark problem for the 8-VQE algorithm on near-term
quantum computers.

For the autoregressive network equation (2) we employ the masked autoencoder architecture [14] shown
in figure 1(b). We arrange the qubits on the two dimensional grid following the typewriter order. The
autoencoder has a single hidden layer of 500 hidden neurons with rectified linear unit activation. For the
variational quantum circuit, we employ the setup shown in figure 2, which arranges the qubits on a two
dimensional grid [51] and apply general two qubit gates [44] on the neighboring sites in each layer. The
general gate consists of 15 single-qubit gates and three CNOT gates. Each two qubit unitary is parametrized
by 15 parameters in the rotational gates, which parametrizes the SU(4) group. The circuit architecture enjoys
a balanced expressibility and hardware efficiency. We repeat the pattern for d times, which we denote as the
depth d of the variational quantum circuit. Therefore, for the 3 x 3 system considered in figure 2(a) with
d =5, there are 15 x 12 x 5 =900 circuit parameters. Initially we set all the circuit parameters to be zero. We
estimate the gradients equations (5) and (6) on batch of 1000 samples, and we use the Adam algorithms [13]
to optimize the parameters ¢ and 6 jointly.

Figure 3 shows that the objective function decreases towards the exact values as a function of training
epochs. We measure physical observables on the trained model and compare them with exact results. For
example, figures 4(a) and (b) show the expected energy (H) and the specific heat 3% ((H*) — (H)?)
computed by measuring Hamiltonian expectation and its variance. Moreover, one sees in figure 4(c) that the
entropy E,,, () [~ Inpg(x)] changes from In2 per site in the high temperature limit towards zero at zero
temperature. While the purity of the system Tr(p?) = Ey~p, (x) [P (x)] shown in figure 4(d) increases from
zero towards one as the temperature decreases. All these observables can be directly measured on an actual
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Figure 4. Physical quantities obtained via the 8-VQE algorithm for the 3 X 3 quantum Ising model equation (7) at I' = 3. The
black solid lines are exact solutions.
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measured on the samples of the autoregressive model trained at inverse temperature S = 0.5. The solid lines are exact solutions.

quantum device. Overall, one sees the autoregressive model equation (2) combined with variational
quantum circuit yields accurate results over all temperatures. Note that in both the simulation and the actual
experiment there will be statistical error bars due to random sampling of the autoregressive model. However,
given the Hilbert space size (2° = 512) and the batch size used in the calculation (1000), the remaining
deviation from the exact results is due to limits of representability and optimization, but not the statistical
noises.

Figure 5 shows the low energy spectrum of the quantum Ising model obtained from 3-VQE at 8 = 0.5.
One sees that the approach provides low energy spectrum of the problem at various strength of the
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transverse field. The approach works nicely even when the first excited state becomes nearly degenerated with
the ground state.

4. Outlooks

The present approach would be most useful for studying the thermal properties of frustrated quantum
systems which are prevented by the sign problem [52]. Moreover, one can further employ the qubit efficient
VQE scheme [53, 54], where one can study the thermal properties of quantum many-body systems on a
quantum computer with the number of qubits smaller than problem size. In that scenario, the ansatz for the
density matrix is a classical mixture of matrix product states. The variational ansatz for density matrix can
also be used in a quantum algorithm for non-equilibrium dynamics [55] and steady states [56].

The quantum circuit also acts as a canonical transformation that brings the density matrix to a diagonal
representation. Combined with the fact that one can obtain the marginal likelihood of the leading bits in the
autoregressive models, the setup may be useful for deriving effective models with less degrees of freedom
similar to the classical case [57]. Therefore, one can envision using the present setup to derive effective
models by using a quantum circuit for renormalization group transformation. Moreover, since the circuit
approximately diagonalizes the density matrix, one also can make use of it for later purposes, such as
accelerated time evolution [58].

Regarding further improvements of the algorithm, one may consider using tensor network probabilistic
models [59, 60] instead of the autoregressive network to represent the classical distribution in the eigenbasis.
Both models have the shortcoming that the sampling approach produces the bits sequentially. To address this
issue, one may consider employing the recently proposed flow models for discrete variables [61, 62]. While to
further improve the optimization efficiency, one may consider using the improved gradient estimator with
even lower variances [63, 64]. To this end, differentiable programming of neural networks and quantum
circuits shares a unified computational framework. Therefore, a seamless integration of models and
techniques will enjoy advances of both worlds.
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