
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.169.5.251

This content was downloaded on 27/02/2017 at 22:23

Please note that terms and conditions apply.

An Extremely Brief Introduction to Quantum Field Theory

View the table of contents for this issue, or go to the journal homepage for more

2017 J. Phys.: Conf. Ser. 802 012003

(http://iopscience.iop.org/1742-6596/802/1/012003)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

ON A MODEL FOR QUANTUM FIELD THEORY

F A  Berezin

HoravamdashLifshitz Type Quantum Field Theory and Hierarchy Problem

Wei Chao

Towards Noncommutative Topological Quantum Field Theory – Hodge theory for cyclic cohomology

I P Zois

Particles, Feynman diagrams and all that

Michael Daniel

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/802/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1070/SM1968v005n01ABEH002583
http://iopscience.iop.org/article/10.1088/0253-6102/65/6/743
http://iopscience.iop.org/article/10.1088/1742-6596/490/1/012236
http://iopscience.iop.org/article/10.1088/0031-9120/41/2/001


An Extremely Brief Introduction to Quantum
Field Theory

W. A. Horowitz
Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701,
South Africa

E-mail: wa.horowitz@uct.ac.za

Abstract. We provide a very brief introduction to n-dimensional scalar field theory, with an
eye to renormalization and expectation values of operators. We assume the audience already
has some experience with QFT.

1. Introduction: Making Quantum Mechanics Relativistic
Recall the postulates of non-relativistic quantum mechanics (NRQM):

(i) the state of the system is represented by a vector |ψ〉 ∈ H, a Hilbert space
(ii) observables are represented by (essentially) self-adjoint operators that obey the Dirac

quantization condition, {A,B} classical
Poisson bracket

= C → [Â, B̂]commutator = iĈ

(iii) if the system is in a state |ψ〉, then the measurement of an observable represented by Ô will
be an eigenvalue ω of Ô, Ô|ω〉 = ω|ω〉 with probability P (ω) ∝ |〈ω|ψ〉|2; as a result of the
measurement, the state of the system changes instantaneously from |ψ〉 to |ω〉

(iv) |ψ(t)〉 evolves according to the Schrödinger equation, i∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉, where Ĥ is
the Hamiltonian operator for the system, which may explicitly (or implicitly) depend on
time t; we usually take Ĥ = p̂2/2m+ V (x̂).

Now recall the postulates of special relativity (SR):

(i) the laws of physics are the same in all inertial reference frames (inertial frames move with
constant velocity with respect to each other; observers in different frames must agree on
the results of physical measurements; and the laws of physics must be the same, which is
to say that all inertial observers agree on the initial conditions and equations of motion for
the system)

(ii) the speed of light is a constant c = 1 in all inertial frames, which is equivalent to requiring
that our physical models are on a pseudo-Riemannian manifold with metric ηµν with
diagonal elements {+1,−1,−1,−1, . . .}, which is again equivalent to requiring that space
and time are treated on equal footing; physical quantities transform under the Lorentz
group, for example U(Λ)φ(x) = φ(Λ−1x) for a scalar field; finally, the speed of light acts as
a speed limit—information travels (at most) as fast as the speed of light in vacuum.

Notice that some of the postulates of NRQM appear to conflict with the postulates of SR.
In particular, wavefunction collapse in NRQM is immediate and the Schrödinger equation is

1

High Energy Particle Physics Workshop 2016                                                                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 802 (2017) 012003          doi:10.1088/1742-6596/802/1/012003

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0


not relativistically invariant. The issue of instantaneous wavefunction collapse was first raised
by Einstein, Podolsky, and Rosen [1]. We will avoid the issue in two ways: first, wavefunction
collapse transmits no information (and therefore does not violate the speed limit imposed by the
finite speed of light); and second, in quantum field theory (QFT), we only ask questions about
asymptotic past or future states of the system.

The Schrödinger equation breaks Lorentz invariance in two ways. First, the usual Hamiltonian
p̂2/2m + V (x̂) does not yield the relativistically correct dispersion relation. One may readily
modify the Hamiltonain to Ĥ =

√
p̂2 +m2, leading to the correct relation E =

√
p2 +m2.

However, the Schrödinger equation breaks Lorentz invariance in a second, fundamental way by
treating time and space as fundamentally different: the Schrödinger equation is linear in ∂t but
quadratic in ∂x; similarly, position is elevated to an operator while time is only a parameter.

In order to resolve the conflict between NRQM and SR we have two options: promote t to
an operator (the string theory like approach [2, 3]) or demote x̂ to a parameter and treat fields
as operators (particle theory like approach [4–12]). As this is a particle physics context, we will
follow the latter approach.

2. The Relativistic Quantum Scalar Field
We will take symmetries as the fundamental organizing principle for QFT.

In path integral language, we seek a Lagrangian that respects the symmetries we postulate
for our physics. (Path integrals perfectly preserve classically the symmetries of the Lagrangian
explicitly. One finds that quantum mechanics leads to anomalies: renormalization can break
classical symmetries.)

Let’s start by postulating that scalar particles are the quanta of a field φ whose Lagrangian
is

L = 1
2(∂µφ0)2 − 1

2m
2
0φ

2
0 + λ0φ

4
0. (1)

Scalars are valuable because they are the simplest mathematical objects to work with (c.f.
fermions, vector fields, etc.). Scalars also describe a wealth of physics (e.g. the Higg’s boson and
scalar and pseudoscalar mesons).

Figure 1. The cloud of interacting
particles (blue) surrounding the “orig-
inal” particle p (black). The particles
are actually all identical, so the differ-
ent colors and sizes for the particles is
for visualization purposes only.

Eq. 1 is written in terms of bare quantities φ0,
m0, and λ0 in anticipation of performing renormalized
perturbation theory, in which we will re-write the
Lagrangian in terms of renormalized quantities φr, mr,
and λr.

Renormalization is a generic feature of QFT (not a
bug!). Mathematically, there are infinities that need to
be rigorously dealt with. Physically, we require that the
parameters in our theory are connected in some way to
a physical measurement. Additionally, our theories will
only make sense if the physics at one scale is not affected
by the physics at a dramatically different scale. (For
example, the physics at infinitesimally small distances
shouldn’t alter the dynamics at macroscopic lengths.)

Remember that we are dealing with an inherently
quantum mechanical system, which implies Heisen-
berg’s Uncertainty Principle, which implies that virtual
pair production is possible; i.e. particle–anti-particle
pairs pop in and out of existence all the time. Our
theory is self-interacting. So for any one physical parti-
cle p of our theory, there is a cloud of virtual particles
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surrounding it, all interacting with each other and with p; see Fig. 1. In fact, physically, we
cannot tell the difference between p and its cloud. So what an experimentalist measures for the
charge of p (related to λ0) or the mass of p (related to m0) or even how many p’s there are
(related to φ0) may depend on the energy scale (or, equivalently, distance) at which they probe
p.

3. Quantizing the Free Relativistic Scalar Field
Our goal is to quantize the free relativistic scalar field in n spatial dimensions. (Note that we
will use a more naturally relativistic notation than Peskin and Schroeder [7], although we will
keep the particle physicist’s mostly minus convention for the metric.)

We will postulate that the relevant relativistically invariant Lagrange (density) is

L = 1
2(∂µφ̂0)2 − 1

2m
2
0φ̂

2
0. (2)

We seek a solution φ̂0 associated with the above Lagrange (density) and a spectrum of the
field operator (eigenvalues and eigenvectors). We will find that φ̂0 is the bare (unrenormalized)
operator associated with the production of a single scalar particle of mass m0. For notational
simplicity, for the rest of this section we will drop the 0 subscript and the operator hat. (Note that
since the theory is non-interacting, we can solve the theory exactly and without renormalization.)

Dimensional analysis is an invaluable tool for the physicist, and so we should pause for
a moment to analyze the dimensions of the objects in our theory. The path integral goes as∫
DφeiS , where S =

∫
dxn+1L. Since one can only take a number to the power of a dimensionless

number, the action must be dimensionless, [S] = 1. Since [dn+1x] = Ln+1 = E−(n+1), we have
that [L] = En+1. Since [∂µ] = [m] = E, we have that [φ] = E(n−1)/2.

Our solution φ must first of all satisfy the classical equations of motion found by extremizing
the action. The Euler-Lagrange equations yield

(� +m2)φ = 0. (3)

Already things are looking very promising: the equations of motion are Lorentz invariant (as
they must be as the Lagrangian is Lorentz invariant).

We may readily solve Eq. 3 by decomposing our solution into Fourier modes:

φ̂(x) =
∫

dnp

(2π)n2E~p

(
â~p e

−ip·x + â†~p e
ip·x
)
p0=E~p=

√
~p2+m2

. (4)

Notice how: 1) we have (explicitly) separated out the classical from the quantum in Eq. 4,
where φ̂† = φ̂ automatically; 2) the Fourier modes obey the usual relativistic dispersion relation;
and 3) dimensional analysis implies that E(n−1)/2 = En−1[â], so then [â] = E(1−n)/2 = [â†].

In order to quantize Eq. 4, we must impose the Dirac quantization condition. We must
of course then first decide what the Dirac quantization condition is. Since we are interested
in relativistic theories, we will require that fields cannot influence each other outside of the
lightcone. Hence a sensible generalization from the 1D NRQM case of [x̂, p̂] = i for the Dirac
quantization condition for fields is to require an equal-time contact interaction:

[φ̂(x0, ~x), π̂(x0, ~y)] = i δ(n)(~x− ~y); (5)

i.e. fields at the same time (in one inertial frame) may only affect each other at exactly equal
points (otherwise information could propagate faster than the speed of light).

As an aside, it’s an interesting exercise, once we’ve solved for φ(x), to compute the
commutator [φ̂(x), φ̂(y)] without the equal time restriction.
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In order to impose our proposed commutator relation Eq. 5, we need to compute the
canonically conjugate momentum to the field: π(x) ≡ ∂L/∂(∂0φ) = ∂0φ = ∂0φ. One may
easily see that

π̂(x) = − i2

∫
dnp

(2π)n
(
â~p e

−ip·x − â†~p e
ip·x
)
p0=E~p=

√
~p2+m2

. (6)

One may then compute the equal-time commutator

[φ̂(x0, ~x), π̂(x0, ~y)] =
∫

dnpdnq

(2π)n(2π)n
−i
4E~p

{
−[â~p, â†~q]e

i(q·y−p·x) + [â†~p, â~q]e
i(p·x−q·y)

}
. (7)

We postulated that Eq. 7 should equal iδ(n)(~x− ~y), Eq. 5. One may show that if

[â~p, â†~q] = (2π)n2E~pδ(n)(~x− ~y), (8)

then Eq. 7 does satisfy Eq. 5. Notice that the required commutation relation for the raising
and lowering operators Eq. 8 is consistent with the dimensional analysis requirement that
[â~p] = [â†~p] = E(1−n)/2.

Now, from a direct application of Noether’s theorem,

Tµν = ∂L
∂(∂µφ)∂

νφ− ηµνL

= ∂µφ∂νφ− ηµν
[1

2∂αφ∂
αφ− 1

2m
2φ2

]
. (9)

Notice that the above Tµν has the right dimensions for an energy momentum tensor density. In
particular, E =

∫
dnxT 00. Since [

∫
dnx] = E−n, we have that [Tµν ] = En+1, which is consistent

with, e.g., [∂µφ∂νφ] = [∂µ][φ][∂ν ][φ] = E E(n−1)/2E E(n−1)/2 = En+1 = [m2φ2].
It’s worth noting, however, that Eq. 9 is sometimes not the best energy momentum tensor

density to use. For example, Eq. 9 has non-zero trace even for a conformal (massless) scalar
field theory. An improved energy momentum tensor density [6, 13] is

θµν ≡ Tµν − 1
4
n− 1
n

(∂µ∂ν − ηµν�)φ2. (10)

One may work out from the solution for φ and the commutation relations Eq. 8 that

P̂µ =
∫
dnx T̂ 0µ =

∫
dnp

(2π)n2p0 p
µ
(
â†~pâ~p + 2p0(2π)nδ(n)(0)

)
→
∫

dnp

(2π)n2p0 p
µâ†~pâ~p, (11)

where in the final step we dropped the infinite vacuum energy contribution (the potentially
infinite spatial infinites are 0 by symmetry). Remember that in QFT we only care about energy
differences, not the absolute energy.

We immediately see that we’ve fully solved our problem: our states are specified by
| . . . n~p, n~q, . . .〉 ∝ · · · (â†~p)n~p(â†~q)n~q · · · |0〉, where |0〉 is the ground state (i.e. the vacuum) with
â~p|0〉 = 0, and each state has energy Ĥ| . . . n~p, n~q, . . .〉 = (. . .+n~pp

0 +n~qq
0 + . . .)| . . . n~p, n~q, . . .〉.

We may now interpret our result: the quanta that are created and destroyed by â†~p and â~p
have all the properties we expect of particles (energy, momentum, spin [not shown], come in
discrete numbers), so we’ll make the intellectual leap to interpret these quanta as particles.

In particular, let’s examine

φ(x)|0〉 =
∫

dnp

(2π)n2p0
~p

(
â~p e

−ip·x + â†~p e
ip·x
)
|0〉 =

∫
dnp

(2π)n2p0 e
ip·x|~p〉, (12)
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where we’ve defined |~p〉 ≡ â†~p|0〉 as the usual momentum eigenstate. (More on |~p〉 in a moment.)
Eq. 12 should look very familiar. Recall that in NRQM, |~x〉 =

∫ dnp
(2π)n e

−i~p·~x|~p〉. Eq. 12 is
clearly the relativistic analog: the integration measure is changed to be relativistically invariant
and the E~p giving the time dependence (in the Heisenberg picture) is now relativistically correct.

We will therefore interpret φ(x)|0〉 as creating a single particle at position xµ. Looking
towards the future, when we have an interacting theory, we expect the only change to be that
φ0(x) may not create exactly one particle at xµ (or, equivalently, may not create a particle with
probability 1); rather, we may need to renormalize the weight of the wavefunctions.

Notice that our momentum eigenstates contain a funny dimension. We’ll take the vacuum
to be properly normalized, 〈0|0〉 = 1; i.e. [|0〉] = 1, the vacuum bra and ket are dimensionless.
Since [â†~p] = E(1−n)/2, we have that [|~p〉] = E(1−n)/2.

Note also that the inner product of two momentum eigenstates is 〈~k|~p〉 = 〈0|â~kâ
†
~p|0〉 =

(2π)n2E~pδ(n)(~k − ~p). Thus [〈~k|~p〉] = E1−n ⇒ [|~p〉] = E(1−n)/2, consistent with the above.
Now, if |~p〉 is really a momentum eigenstate, we should find that

〈P̂µ〉 = 〈ψ|P̂
µ|ψ〉

〈ψ|ψ〉

∣∣∣∣∣
|ψ〉=|~p〉

= 〈~p|P̂
µ|~p〉

〈~p|~p〉
= pµ. (13)

Let’s check:

〈~p|P̂µ|~p〉
〈~p|~p〉

=
〈0|â~p

∫
dnxT̂ 0µâ†~p|0〉
〈~p|~p〉

= 1
〈~p|~p〉

〈0|â~p
∫

dnq

(2π)n(2q0 q
µâ†~qâ~qâ

†
~p|0〉

= 1
〈~p|~p〉

∫
dnq

(2π)n2q0 q
µ〈0|p̂~pâ†~q(2π)n2p0δ(n)(~p− ~q)|0〉

= pµ
〈~p|~p〉
〈~p|~p〉

= pµ, (14)

where to get from the second line to the third line we used Eq. 11.
Since 〈~p|~p〉 = (2π)n2E~pδ(n)(0), in the last line of the above derivation we formally divided ∞

by ∞ in order to obtain a finite result. This formal division of an infinite quantity by exactly
the same infinite quantity to obtain a finite result is a common procedure in QFT.

Another way in which we could’ve arrived at a finite result above is to recognize that |~p〉 is an
unphysical state: we haven’t taken into account the quantum fuzziness (Heisenberg uncertainty)
in the natural world. Physically, one would at best have access to a normalizable wavepacket of
some width. We should really use a state

|ψ〉 =
∫

dnp

(2π)n2p0 f(~p)|~p〉, (15)

where f(~p) is a smooth function whose normalization is given by

〈ψ|ψ〉 =
∫

dnpdnq

(2π)n2p0(2π)n2q0 f
∗(~p)f(~q)〈~p|~q〉 =

∫
dnp

(2π)n2p0 |f(~p)|2 = 1. (16)

Two related advantages to using Eq. 15 are that: 1) |ψ〉 is dimensionless, as we are used to;
and 2) we don’t need to divide by 〈ψ|ψ〉 (or, rather, dividing by 〈ψ|ψ〉 is trivial as it’s 1).
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With our |ψ〉 in hand, we may evaluate

〈P̂µ〉
∣∣∣
|ψ〉

= 〈ψP̂µ|ψ〉

=
∫

dnp

(2π)n2p0 f
∗(~p)〈0|â~p

∫
dnq

(2π)n2q0 q
µâ†~qâ~q

∫
dns

(2π)n2s0 f(~s)â†~s|0〉

=
∫

dnpdnqdns

(2π)n2p0(2π)n2q0(2π)n2s0 f
∗(~p)f(~s)qµ〈0|â~pâ†~q(2π)n2q0δ(n)(~q − ~s)|0〉

=
∫

dnp

(2π)n2p0 |f(~p)|2pµ (17)

Now Eq. 16 tells us that 1
(2π)n2p0 |f(~p|2 is a probability distribution for the momentum of the

particle. Thus Eq. 17 is precisely the average momentum of the particle, which is then the average
value of the momentum in the full field. Thus 〈P̂µ〉 = 〈pµ〉. For a momentum distribution whose
average value is some momentum pµ0 we have 〈P̂µ〉 = pµ0 . In a similar vein, we may make a very
Peskin-like argument that, should f(~p) be highly peaked (i.e. we are experimentally examining
an ensemble average of particles of a nearly definite momentum pµ0 ), like at the LHC, then we
may replace

∫
. . . |f(~p)|2pµ → pµ0 . Then 〈P̂µ〉 = pµ0 .
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