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ABSTRACT The concept of healthy ageing is emerging and becoming a norm to achieve a high quality of
life, reducing healthcare costs and promoting longevity. Rapid growth in global population and urbanisation
requires substantial efforts to ensure healthy and supportive environments to improve the quality of life,
closely aligned with the principles of healthy ageing. Access to fundamental resources which include
quality healthcare services, clean air, green and blue spaces plays a pivotal role in achieving this goal. Air
quality, in particular, is a critical factor in achieving healthy ageing targets. However, it necessitates a global
effort to develop and implement policies aimed at reducing air pollution, which has severe implications for
human health including cognitive impairment and neurodegenerative diseases, while promoting healthier
environments such as high quality green and blue spaces for all age groups. Such actions inevitably
depend on the current status of air pollution and better predictive models to mitigate the harmful impact
of emissions on planetary health and public health. In this work, we proposed a hybrid model referred
as AirVCQnet, which combines the variational mode decomposition (VMD) method with a convolutional
neural network (CNN) and a quantum long short-term memory (QLSTM) network for the prediction of
air pollutants. The performance of the proposed model is analysed on five key pollutants including fine
Particulate Matter PM2.5, Nitrogen Dioxide (NO), Ozone (O3), PM10, and Sulphur Dioxide (SO;), sourced
from air quality monitoring station in Northern Ireland, UK. The effectiveness of the proposed model is
evaluated by comparing its performance with its equivalent classical counterpart using root mean square
error (RMSE), mean absolute error (MAE), and R-squared (R?). The results demonstrate the superiority of
the proposed model, achieving a performance gain of up to 14% and validating its robustness, efficiency and
reliability by leveraging the advantages of quantum computation.

INDEX TERMS Air pollution, CNN-QLSTM, healthy ageing, predictive models, quantum machine

learning.
I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Air pollution poses the greatest global environmental
approving it for publication was Sangsoon Lim . challenge of this era, directly impacting our planet and
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public health across the lifespan. Key air pollutants include
fine Particulate Matter PM2.5, Nitrogen Dioxide (NO3),
Ozone (03), PM10, and Sulphur Dioxide (SO,) are emitted
into the air from fossil fuel combustion, transportation
and various non-exhaust industrial emissions [1]. Recent
research indicates extensive strong evidence of serious
health implications on individuals’ health when exposed to
environments that exceed World Health Organisation (WHO)
recommended air quality standards, contributing to around
6.7 million premature deaths globally each year [2], [3]. The
United Nations (UN) established sustainable development
goals (SDGs), specifically 3, 7 and 11 reflect the urgency
to reduce morbidity, mortality, and adverse environmental
effects through specific targets to advance public health,
directly contributing to the broader realm of the healthy
ageing, and promote sustainable urban growth [4]. However,
the United Kingdom (UK) government aims to achieve a 35%
reduction in air pollution by 2030 [5]. Even with growing
global awareness and policies, research on the impact of
air pollution on vulnerable and elderly groups needs further
exploration to better understand, manage and model air
pollution for a better tomorrow’s digital world aligned with
UK Clean Air Strategy roadmap and 25 Year Environment
Plan (25YEP) [6], [7].

The global population is ageing, and medical advance-
ments are helping people live longer. However, achieving
longevity with healthy ageing is crucial. By 2050, the
population aged 60 years or over is expected to double,
with a significant proportion expected to live in urban
areas [8]. The swift growth in urbanisation along with
demographic shift, necessitates ecological upgrades to ensure
a healthier environment that supports healthy ageing for a
growing population. To achieve this, reduction in air pollution
is vital, as exposure to pollutants causes serious health
implications such as respiratory, cardiovascular, and chronic
lung diseases. Cohort studies show a positive correlation
between PM2.5 exposure and the elevated risk of cognitive
decline and dementia [9], [10], [11], [12]. Another high
risked pollutant, NO; is also explored and is being associated
with a high risk of dementia, Parkinson’s, and Alzheimer
disease [11], [13], [14], [15]. For instance, Japan has an
ageing population with 30% of the people already aged
60 years or over and is the only Asian country working
towards a net zero transition while considering the challenges
related to its ageing society. Similarly, China has also
acknowledged the need to adapt to and mitigate climatic
changes to protect vulnerable elderly populations from health
risks associated with extremes of heat.

The UN has declared 2021-2030 as the ‘“Decade of
Healthy Ageing”, led by the WHO. This global collaboration
is a united effort to help people live healthy longer lives
over the next decade [8]. The primary objective is to
improve the elderly population’s lives by building supportive
environments and providing access to personalised care.
To address and support the challenges of healthy ageing,
the UK government invested in research and innovation
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(via UKRI) by allocating a budget of £98 million in different
projects including our SPACE (Supportive Environments for
Physical and Social Activity, Healthy Ageing, and Cognitive
Health) project [16]. In this work, as part of SPACE project,
we are exploring better models for air pollution prediction
which can be further used to overcome the challenges of
healthy ageing and urban environments. Promoting healthier
urban environments is crucial not only to mitigate widespread
health risks and to improve the quality of life for the ageing
population but also to address climate challenges, support
net zero emissions and ensure sustainable living for all. This
demands a substantial reduction in air pollution, hotspot
identifications and accurate air pollution prediction. The
primary objective of this work is to develop air pollution
prediction models using emerging concepts of quantum
machine learning. We anticipate that findings from this work
will provide evidence-based insight and lead to developing
policies and programmes that improve the urban environment
for healthy ageing, life expectancy and quality of life for
everyone. The main contributions of this work include:

o We proposed a hybrid forecasting model i.e. AirVCQnet
using a combination of variational mode decomposi-
tion (VMD) to generate frequency dependent features,
which are further used to extract complex features using
convolutional neural network (CNN). Such features
are further used by quantum long short-term memory
(QLSTM) models to capture time dependencies for an
improved prediction. To the best of our knowledge, this
is the first time quantum machine learning is used to
predict air pollutants in the realm of healthy ageing and
climate change.

o We have performed a detailed experimental investiga-
tion to find the optimum parameters of VMD, CNN, four
qubit variational quantum circuit (VQC) and QLSTM
to obtain improved performance based on real-world
dataset, local to Northern Ireland, for five pollutants
including fine PM2.5, NO,, O3, PM10, and SO».

o We have proposed five bespoke forecasting models
having similar model architecture with a unique set
of hyperparameters for each of the five respective
pollutants. We have evaluated the performance of the
proposed models using root mean square error (RMSE),
mean absolute error (MAE), and R-squared (R?) and
provided a comparison to the equivalent classical model
(i.e., VMD-CNN-LSTM having same architecture and
hyperparameters) for each pollutant. To the best of our
knowledge, this is the first study which provides a head-
to-head comparison of a benchmark quantum based
model to its classical counterpart with same architecture
and parameters on the air pollution data.

The rest of the paper is organised as follows: related
work is provided in Section II. Fundamentals of quan-
tum computing are explained in Section III. Section IV
describes the dataset and Section V provides technical
details of the proposed model. Model training and test-
ing are discussed in Section VI. Results and discussion
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is presented in Section VII. Lastly, the findings are concluded
in Section VIII.

Il. RELATED WORK

Air quality and healthy ageing represents two sides of
the same coin, as poor air quality exacerbates age related
health issues. However, accurate pollution prediction to
address potential health and climate challenges is necessary.
Recent technological advancement by leveraging machine
learning through hybrid and ensemble modelling has made
significant progress in air pollution prediction. However,
recently quantum machine learning has gained considerable
attention and has been extensively explored for its potential
in time series prediction.

A recent study proposed a temporal change information
learning method for dynamic sequence modelling, where a
variant of long short-term memory (LSTM) namely transfor-
mation LSTM is proposed to capture rapid and slow changes
in information (historical data) [17]. Additionally, the study
also proposed a new objective function and optimisation
algorithm named adaptive moment estimation forgetting
gradient to attain effective optimal parameters for modelling
multivariate time series data. To check the effectiveness of
the proposed model, a comprehensive analysis is performed
using three different datasets (i.e. weather, PM2.5 air quality,
and energy consumption dataset), and the results show the
superiority of the proposed method over others based on
evaluation metric MAE and RMSE. A unified machine
learning architecture for air pollutants prediction is proposed
in [18]. The proposed architecture is based on lightGBM
and RF regressor to capture spatiotemporal dependencies
in data. Six months’ data collected from distinct locations
including Malaysia, India and the Philippines is used to train
the model, taking into consideration all relevant direct and
indirect factors dependencies on target pollutants to predict
the following day. The proposed approach performed well
in comparison to a recurrent neural network (RNN) and
transformer models in terms of RMSE. In [19], a study made
comparison of two hybrid models namely CNN-LSTM and
CONV-LSTM with combinational differences of CNN and
LSTM layers in its architecture. The dataset used consists
of 1488 data samples, recorded on an hourly resolution
to predict PM2.5 concentration for the next few hours in
Kemayoran district of Central Jakarta, Indonesia. Findings
revealed the performance of CONV-LSTM better than other
over assessment indicators like RMSE, MAE and MAPE.

A hybrid deep learning model is proposed by combining
bidirectional LSTM (BiLSTM), bidirectional gated recurrent
unit (BiGRU) and fully connected layers [20]. Where the
BiLSTM and BiGRU layer extract initial and deep features
respectively, which are further used by fully connected
layers to predict hourly PM2.5 concentration at multiple
locations in China. The dataset contains 35064 hrs of data
from each monitoring station including 12 air pollutants
and numerous meteorological factors to capture intricate
relationships between data. In [21], proposed another hybrid
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approach for short-term prediction of PM2.5 concentrations
by incorporating wavelet denoising, VMD and principal
component analysis for the feature extraction and BiLSTM
neural network for modelling data. The experimental data
is comprised of 30198 hrs including various air pollutants
and meteorological factors and is collected from Quzhou city,
Zhejiang Province. The proposed model used previous 24 hr
multivariate data to predict the following hour. Findings from
experiments validated the efficacy of the proposed model.
A multivariate time series prediction model is proposed using
Beijing AQI dataset comprised of 4320 data samples [22].
The study modified the binary salp swarm algorithm for the
selection of features and parameters optimisation simulta-
neously. The echo state network (ESN) model is employed
for PM2.5 concentration prediction by incorporating seven
air pollutant data as input features. Results show the
effectiveness of the MBSSA-ESN model over BSSA-ESN
and other models optimised by evolutionary algorithms
using standard indicators. The study in [23] proposed a
lightweight GRU model and employed the spatial temporal
correlation of multi-node data to improve the prediction
accuracy of air quality forecasting. The effectiveness of the
approach is validated using a publicly available Intel lab
dataset and attained reduced error scores in terms of RMSE
and MAE in comparison to single node based prediction.
In [24], the combination of GRU and graph convolution
network is proposed for the prediction tasks like traffic and
air quality prediction across cities. The study proposed a
spatiotemporal prediction model with transfer knowledge to
solve data scarcity issues. Experimental analysis is conducted
using datasets collected from London and Beijing, and the
results indicate that the proposed domain adversarial model
outperformed other models.

In recent years, quantum computing has gathered much
attention because of its higher computational advantages
over classical computing. Machine learning algorithms using
quantum computing, also known as quantum machine
learning, are rapidly growing, and catching researchers’
interest towards its potential application in numerous fields
such as renewable energy, intelligent transportation systems,
natural language processing, finance, and wireless commu-
nication [25], [26], [27], [28], [29]. Recent research shows
the superiority of quantum machine learning over classical
machine learning where quantum computing is exploited
to improve machine learning algorithms with the initial
thought of accelerating the training process in potential
applications [30]. A hybrid quantum LSTM network is
proposed by embedding VQC in LSTM to improve the solar
irradiance prediction accuracy [31]. The considered dataset
is comprised of four years and is collected from five cities
in China. Solar irradiance and meteorological data (such as
wind speed, press, solar zenith angle, humidity, temperature,
dew point, cloud and GHI) of the previous 24 hrs is used
for the hour ahead prediction. The results are evaluated
using standard evaluation metrics RMSE, MAE and RZ score
and compared with other models (SARIMA, CNN, RNN,
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GRU and LSTM). In a similar study [32], a hybrid classical
quantum model is proposed, which combines the classic
LSTM model with a quantum neural network (QNN) for wind
speed forecasting. The proposed model used 2D wind speed
data of the previous 32 hrs to forecast the wind speed of
the farm situated in Fuhai, Taiwan for the following 24 hrs.
The used dataset is collected from seven locations across
various countries, spanning a year. For hyperparameter
selection, Taguchi orthogonal experiments were performed.
The study used QNN with 10 qubit system and the quantum
circuits with a depth of 2 repetitions showed the best score.
The proposed approach outperformed five other models
(RF, SVR, XGBoost, NAR, LSTM Autoencoder, and LSTM)
and is evaluated using performance indicators such as RMSE,
MAE and R? score.

Quantum computing is utilised by integrating quantum
inspired neural network model with deep learning model.
Where the quantum inspired neural network and LSTM
replace the fully connected layer of CNN to enhance
the prediction accuracy of wind speed [33]. Additionally,
quantum particle swarm optimisation is employed for
optimising the parameters of the model architecture. The
2D spatiotemporal dataset is collected from four different
locations to predict the wind speed of the following
day of Fuhai, Taiwan. The dataset used is of one year
with an hourly wind speed resolution. The comprehensive
analysis with other models (XGBoost, DBM, ARIMA-
ANN, GRNN, LSTM-M, CNN-LSTM, CNN-LSTM-FC,
CNN-LSTM-CVNN) demonstrates the effectiveness of the
proposed model and is validated using evaluation indicators
RMSE, MAE and R?. In [34], a hybrid quantum classical
recurrent neural network (QRNN) is proposed for the
prediction of renewable energy of time series data. The
photovoltaic output power data is comprised of one year
and is collected from a power production plant situated
in Oak Ridge, TN, USA. The model is composed of two
cascaded classical LSTM layers with a fully connected layer
and is integrated with a variational quantum (VQ) layer.
To exploit the entanglement and superposition properties
of quantum, the considered VQ layer consists of a 2 qubit
system, ZZFeatureMap with linear entanglement and depth 2.
To process the information, RealAmplitude ansatz circuit
with depth 1 and linear entanglement is considered fol-
lowed by the measurement layer to produce the expected
outcome based on the Pauli-Z gate. The study conducted
an experimental analysis of four seasons and compared the
performance of the proposed model with the LSTM and RF
model using RMSE as an assessment indicator and showed
better results in terms of reduced error score as compared to
the classical counterparts. A linear-layer-enhanced quantum
LSTM (LQLSTM) model is proposed based on QLSTM
for carbon price forecasting [35]. The study introduced
a shared linear embedding layer before VQC, which by
compressing the input features subsequently reduces the
number of qubits and improves learning. However, a separate
linear embedding layer is preferred after VQCs to get
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different information according to each VQC’s functionality.
Additionally, a strongly entangled controlled-Z gate is
preferred over CNOT gate in the variation layer. The dataset
is comprised of four years and is collected from European
Union Emission Trading. Comprehensive analysis shows the
performance of LQLSTM model is better than QLSTM in
terms of reduced RMSE and MAE value but comparable
to LSTM.

IIl. QUANTUM COMPUTING FUNDAMENTALS

In this section, we provided an overview of the fundamentals
of quantum computing to contextualise the methods and
models employed in this work. Quantum information is
represented by a qubit and is defined by its quantum
state |Y) as

[¥) = polO) + p1[1), ey

where pg and p; are the probability amplitudes which satisfy
Ipol® + Ip1 > = 1.

In this work, we have used a combination of quantum gates
in our VQC which we define below in detail.

« Hadamard Gate (H) is used to create a superposition
state and is defined as

1 /1 1
50 e

« Rotation Gates (R, Ry, R;) are used to rotate a given
qubit state around the x, y, and z axes of the Bloch
sphere, respectively. These operations change a qubit’s
position on the Bloch sphere based on the rotation
angle 6. The three rotation gates are defined as:

(% e
COoS (z) —181n (5)
Ry(6) = ; Il B E
—isin (—) cos (—)
2 2
% . [0
cos (5) — sin (5)
RO=| 7, Wl @
sin (—) cos (—)
2 2

—i0)2
R(0) = (e 0 e,»g/z)- 5)

« Controlled-NOT Gate (CNOT) provides one of the
essential operations in quantum processing by entan-
gling quantum states. As defined in eq. 6, the 2-qubit
CNOT operation flips the state of the target qubit if the
control qubit is in state |1), otherwise the state remains

unchanged.
1 0 0 O
0 1 0 O
CNOT = 00 0 1 (6)
0 0 1 O

o Pauli-Z Gate (P;) is commonly used in the measure-
ment stage where it performs a phase flip of state |1),
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leaving the state |0) unchanged. P, is defined as:

I 0
P = (0 _1) : )

and when applying P, to eq. 1, one obtains P,|yy) =
pol0) — p1|1), which has eigenvalues of 4+1 and —1
which correspond to the states |0) and |1), respectively.

IV. DATASET

In this study, the experiments are conducted using a publicly
available dataset collected from Air Quality Northern Ireland,
UK [36]. The dataset contains air quality parameters, which
include the key air pollutants such as PM2.5, NO,, O3,
PM10 and SO,. The dataset contains hourly concentration
levels of the aforementioned pollutants and is comprised
of 1440 hrs used for experimental analysis. The descriptive
statistical information of the air quality parameters is
provided in Table 1. This provides insight into total count,
mean, and standard deviation along with their respective
minimum and maximum values for all major pollutants. The
mean and standard deviation range between 1.78 to 38.60 and
1.94 to 21.21, respectively. Additionally, the minimum and
maximum values fall between O to 1 and 19 to 129 for
all the pollutants. The dataset is pre-processed to remove
outliers and invalid values using interquartile range (IQR)
method.

TABLE 1. Statistics of key air pollutants in xg/m?3.

Count | Mean Std Min | 25% | 50% 75% | Max

PM2.5 1440 11.26 | 10.11 0 6 8 12.76 84
NO:2 1440 3224 | 20.78 1 15 29.42 | 44.50 129
O3 1440 38.60 | 21.21 1 21 40 56 94
PM10 1440 16.58 | 11.78 0 9 13 20 97
SO2 1440 1.78 1.94 0 1 1 2 19

V. PROPOSED MODEL

In this section, we provide a background of our proposed
model AirVCQnet which is a combination of VMD approach
and CNN (aka ConvID) layers to generate new features,
a Max-Pooling layer for down-sampling and a QLSTM layer
for time series forecasting. Fig. 1 provides the architecture of
the proposed model network architecture.

—— e mm e = e o e = -
1 1
| ) ) 1

- )
| [] ] - I
o o 7]
S
. - £ & g ||
[ 2 0 &1
> > S =
1 | & & & &
a o * a
bis) |2 S '
1 c = = |
o o
1 O O |
1 1

FIGURE 1. Proposed model network architecture.
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A. VYMD

VMD is a signal processing approach which decomposes
a signal into a finite number of signals (also refer as
sub-series or IMFs) by exploiting spectral properties [37].
Each IMF, bandlimited in nature, is defined by a unique
spectral component and can capture frequency dependant
unique trends which can be useful in time series forecasting
challenges [38]. Considering a time series V (¢), the series can
be decomposed into K IMFs using:

vi () = Bi(t)cos(¢x (1)), ®)
K
V()= D w() +R, ©)
k=1

where vi(7) is a k" IMF with a amplitude of By (f) and
phase of ¢ (t). Here, R refers to as residual signal and a
unique spectral component of each IMF can be found using
a derivative of the ¢ (¢). In this work, we are using VMD
approach to create new features using the hourly lag of
the respective pollutant time series. Fig. 2 shows the VMD
decomposition of the hourly lag of the PM2.5 pollutant with
K = 5 where each IMF captures different trends. In the
case of the VMD based features for time series forecasting
challenges, it is of utmost importance to select an optimum
value of the K with the intention to improve the prediction
performance metrics. We have performed several trials to find
the best value of the K with the objective to enhance the
performance of the forecasting model.

10
— IMF 2

DM"‘% - i ’l

W{—MF3 e M m At AR A\ vl
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20
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|
o
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|
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o
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Concentration level

FIGURE 2. Decomposition of lag PM2.5 into IMFs and Residual plot.

B. CNN

In recent years, CNN has become a popular approach to
generate new features, also refer as feature map, in various
fields for forecasting and classification problems [39], [40].
In a nutshell, a CNN layer uses a filter or kernel with weights
and calculates a dot product between the weights and data
of the time series to produce a new sample. By doing so,
samples of the new feature can be extracted by sliding the
filter over the given time series. The CNN’s ability to capture
local patterns depends on the kernel size which is referred
to as the length of the filter and requires careful selection.
In addition to this, various filters different in their weights
can be used to generate multiple new features and number
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of output features by a CNN layer is defined by out channel
parameter. We are using ReLU activation function on the
newly generated features for each CNN layer to introduce
nonlinearity. In our proposed model, we are using two CNN
layers and tuning the kernel size and out channel parameters
to improve the performance of the prediction. Followed by
CNN layers, we are using a Max-Pooling layer to reduce the
newly generated information.

C. QLSTM

The LSTM network is a variant of the RNN, specifically
developed to mitigate the vanishing gradient problem faced
by traditional RNNs [41]. This is what makes LSTM much
more effective in significantly improving the performance
over tasks such as time series forecasting, natural lan-
guage processing, and speech recognition, where capturing
long-term dependencies is crucial. LSTM achieved this
by introducing the cell state and gates, where the cell
state acts as long-term memory capable of selectively
retaining and forgetting information over time and the
flow of information is controlled by gates. Fig. 3 presents
a functional diagram of the LSTM cell, highlighting the
cell state and three gates namely the forget gate, input
gate and output gate. Here, the forget gate a(t) controls
how much of the previous cell state g(r — 1) should
be retained in the current cell state g(f). Concurrently,
the proportion of new information g(t) to be integrated
into the current cell state ¢(¢) is determined by the input
gate j(t), based on the current input f(¢) and previous
hidden state g(¢+ — 1). Lastly, the output gate u(¢) decides
the next hidden state or the final output g(¢) based on the
updated cell state g(f), which is the combination of the
past information retained from the forget gate and the new
information added by the input gate. The mathematical
framework of LSTM cell is provided in Eq. (10)-(15) as
follows:

a(t) = o (Wif (1) + wegt — 1) + ba), (10)
J(0) = o (Wi (1) + whg(t — 1) + by), (1)
4(0) = tanh(wif (1) + wigt = D+ by, (12)
u(t) = o Wif (1) + wig(t — 1) + by), (13)
q(t) = a(H)gt = 1) + j((0), (14)
g(t) = u(t)tanh(q(r)), (15)

where, w and b denote the learnable weight matrices applied
to the inputs and the bias term, respectively. The outputs of
the corresponding gates are generated by applying respective
activation functions o (sigmoid) and tanh (hyperbolic
tangent) on weighted sum, allowing the model to effectively
manage the flow of information.

QLSTM is the quantum variant of the classical LSTM
architecture used in machine learning. A significant dis-
tinguishing feature of QLSTM is the integration of VQCs
that replace the traditional gating mechanisms within the
LSTM cell. Fig. 4 presents the functional diagram of the
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FIGURE 3. LSTM cell.
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FIGURE 4. QLSTM cell.

QLSTM cell used in this work, showcasing the incorporation
of four VQCs.

The mathematical formulation of QLSTM cell is detailed
in Eq. (16)-(21) as follows:

a(t) = o(VOCi(v1)), (16)
J(0) = a(VOCr(v)), a7
q(t) = tanh(VQC3(v;)), (18)
u(t) = o (VOCa(vr)), 19)
q(t) = a(t)gq(t — 1) + j()q(1), (20)
g(t) = u()tanh(q(1)), 2n

where, v; represents the current input f(¢) and the previous
hidden state g(z — 1). Similarly, the previous cell state, current
cell state and the final output is represented by g(r — 1),
q(t) and g(¢) respectively. The quantum circuits VOC1 to
VOC4 refers to the homogenous VQCs that replace the
classical LSTM gates (i.e. forget a(¢), input j(¢), update g(t),
and output u(z) gate). These quantum circuits transform
the input and hidden state using quantum computations,
potentially leading to more powerful and efficient sequence
modelling. In this work, we used a 4 qubit VQC architecture
as shown in Fig. 5, which is primarily based on three layers
namely, the data encoding layer, variational layer and the
measurement layer.
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FIGURE 5. Architecture of VQC.

In the data encoding layer of the VQC, each qubit is
initialised into an initial state |0) and transformed into an
unbiased superposition state having an equal probability
of 0.5 using the hadamard gate. In addition, two rotation gates
Ry(61,;) and R,(6,,;) are applied with angles dependant on the
classical data. In these, 61 ; = arctan(x;) and 62 ; = arctan(xiz)
are calculated using the classical data samples x; for each
i wire considering i € {1, 2, 3, 4}.

The variational layer introduces the entanglement using
CNOT gates and parameterised rotations using rotation gate
R(ai, Bi, vi) = Ry (ap)Ry(Bi)R;(y;) along x, y and z axis on the
i wire. In this rotation, o;, Bi, and y; are optimised during
training to improve the performance of the model. Finally,
the measurement layer collapses the quantum state of the
qubits into classical data. For this, each qubit is measured
along the z axis using the expectation value of the Pauli-Z
gate output and this expectation value can be computed as
|pg|2 — |p’1"|2 to generate classical data. Here, |p§”|2 for
s € {0, 1} is the probability of a qubit being in state |s)
in the measurement layer. The classical data output after
measurement is from +1, equivalent to |0), to —1, equivalent
to |1), and values in between are representations of the
superposition states. This output is considered the final output
of the VQC which is further processed by a combination of
the classical layers for the respective task such as prediction
or classification.

VI. MODEL TRAINING AND TESTING

This section presents details about data preparation, model
training, parameters tuning and testing of the proposed
forecasting model. The workflow of model training and
testing with key components is shown in Fig. 6. In this study,
the dataset used for experimentation is sourced from Belfast
city council and is publicly accessible [36]. The input feature
(a sequence) is created using historical information of the
preceding three hours of the target pollutant’s concentration.
Alongside, VMD based features are created using a lag
of the target pollutant being predicted, with experiments
conducted to determine the optimum IMF number, denoted
as K for each pollutant. The dataset is further divided into
training, validation, and testing sets with a corresponding split
ratio of 70%, 20%, and 10%. The indices in each split are
progressively increased to maintain the integrity of the time
series data. This method ensures that shuffling is avoided,
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thereby preserving the temporal structure which is crucial
for accurate forecasting. After splitting, the dataset is
normalized using a z-score approach which is defined as
follows:
X =
Xnorm = s
v
where © and v are the corresponding mean and standard
deviation of data x. Here, data is referred to both features and
target data of the proposed model.

(22)
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FIGURE 6. Workflow of model training and testing.

A. MODEL PARAMETERS AND TUNING

In this work, we proposed AirVCQnet model with a
learning network in which we considered two ConvID
layers followed by a Max-Pooling and a QLSTM layer as
shown in Fig. 1. Each layer required a careful selection
of the parameters. In case of the ConvID layer, kernel
size and number of filters or features at the output of
the layer are key parameters. Considering the Max-Pooling
layer which can reduce feature map using down sampling
depending on the given kernel size value. The final layer
of QLSTM captures the time dependencies based on the
selection of a total number of hidden units or cells in
the layer. In our proposed model, we have tuned the
parameters like kernel size, out channels i.e., the number
of filters of each ConvID layer and the number of hidden
units of the QLSTM layer. We kept the kernel size of
the Max-Pooling layer to a constant value of 2, this
value is chosen after several experimental trials. We have
also considered the learning rate as a tuning parameter
to improve the forecasting model performance. We used
the Optuna framework to find optimum tunable parameters
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of the proposed model by minimising the validation loss
during training using AdaGrad optimiser [42], [43]. In the
optimisation process, the number of the hidden units in
QLSTM layer is in the range [8 64], the kernel size and the
out channel (also referred to as a number of output features)
of each CNN layers are in the range of [2 5] and [4 32],
respectively. In addition, the learning rate is used as an
optimisable parameter within the range [le™ le~'] and
applied early stopping criteria to manage overfitting and
reduce training time. We used PennyLane software package
with a maximum of 1000 epochs and trained the model
on a high performance computing node equipped with a
dual processor (2.5 GHz and L3 128 MB), 32 cores and,
a maximum available RAM of 512 GB. Table 2 provides a
summary of the optimum values of the tunable parameters
for each pollutant. Here, the optimum value of the K is found
using numerous experimental trials with the objective to
enhance the forecasting model performance for the respective
pollutant.

TABLE 2. Optimised hyperparameters of the proposed model for all the
pollutants.

Parameters PM2.5 NO- 03 PM10 SO,
Hidden units 12 55 46 35 59
Kernel size_1 2 3 5 2 5
Kernel size_2 5 4 5 4 5
Out channel_1 8 32 24 16 12
Out channel_2 30 16 19 4 15
Learningrate | 3.le73 | 1.3e73 | 9.7e73 | 1372 | 1.3e73
K 5 3 2 4 2

B. PERFORMANCE METRICS
The effectiveness of the proposed model is assessed using
three widely used evaluation metrics namely R?, RMSE,

and MAE. Their mathematical formulation is provided
in Eq. (23), (24) and (25) as follows:

RP—1— Zi\;l(oi - 0,)

—, (23)
YiLi0i =0
1 N
MAE = ﬁz}‘m_ai , (24)
=
RMSE = (25)

where o0;, 0, 0;, and N represents the target output at
the i sample, mean derived from target output, pre-
dicted output at the i sample, and total number of test
samples, respectively. Both RMSE and MAE serve as
crucial evaluation metrics and provide insight into the
prediction accuracy of the forecasting model by reflect-
ing the degree to which predicted output aligns with
actual target values. Alongside these, R?, also known as
the coefficient of determination is another key metric
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indicating the extent to which the model captures the
underlying data pattern, with a higher score indicating
the better fit between the actual and predicted output.
Briefly, a forecasting model with low RMSE and MAE,
coupled with R? score closer to unity is considered to have
strong predictive capability. This comprehensive evaluation
informs researchers about the model’s accuracy and enables
them to enhance its predictive performance.

VII. RESULTS AND DISCUSSION

This section presents and discusses the experimental findings
of our proposed AirVCQnet model for all the aforementioned
pollutants. The efficacy of the single-step forecasting model
is assessed using key evaluation metrics such as RMSE,
MAE and R?. The results of the proposed AirVCQnet
model for the prediction of PM2.5 level indicate 84%
accuracy over test data along with corresponding RMSE
and MAE values of 1.81 and 1.36, respectively. The
forecasting model prediction performance for PM2.5 over
test data is shown in Fig. 7. As can be seen, the
proposed model closely fits the observed values. Our
proposed model demonstrated its best performance by
achieving R? score of 92% and 91% for NO, and O3
respectively, outperforming its prediction accuracy for the
other pollutants. Furthermore, the model attained RMSE
values of 4.84 and 5.34, along with MAE values of
3.86 and 4.04, respectively. For PM10 and SO, prediction,
the proposed model achieved R? score of 81% and 80%,
respectively. Additionally, the model recorded RMSE of
3.31 and 0.5, along with MAE of 2.34 and 0.34 val-
ues, respectively. Overall, our proposed model achieved
prediction accuracy within the range of 80% to 92%
across the evaluated pollutants for 5 different time series.
To better visualize the prediction performance of our
proposed model in contrast to its classical counterpart,
the prediction curves for NO;, Oz, PM10, and SO, over
the testing data as shown in Fig. 8, 9, 10, and 11,
respectively.

—— PM2.5
Classical Model
—— Proposed Model

N
w

Concentration level
= = N
o (6] £3

w

1300 1320 1340 1360 1380 1400 1420 1440
Time Index (hr)

FIGURE 7. Comparison between actual and predicted data of PM2.5 over
test data.

To check the effectiveness of our proposed AirVCQnet
model, a comparative analysis is performed with its classical
counterpart using the same dataset and hyperparameters.
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FIGURE 8. Comparison between actual and predicted data of NO, over
test data.
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FIGURE 9. Comparison between actual and predicted data of O3 over test
data.
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FIGURE 10. Comparison between actual and predicted data of PM10 over
test data.
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FIGURE 11. Comparison between actual and predicted data of SO, over
test data.

The forecasting models’ prediction performance is evaluated
using the same assessment indicators. The results indicate
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FIGURE 12. Comparison of models in terms of R2.
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FIGURE 13. Comparison of models in terms of RMSE.

that for PM2.5, PM10 and SO, prediction, the classical model
achieved a prediction accuracy of around 70% or higher with
respect to RZ score. The R2, RMSE and MAE values recorded
for PM2.5, PM10 and SO; is 70%, 69%, and 76%, 2.47,4.25,
and 0.55, 1.69, 3.19, and 0.38, correspondingly. Among all
pollutants, O3 and NO; stand out with prediction accuracies
around or exceeding 90%. For Os, the R? score achieved
is 89% with the corresponding RMSE and MAE values of
6.04 and 4.61. Notably, NO; is the only case, where the
R? and MAE value of a classical model is comparable to
the proposed model, with an R? score of 92% and MAE
value of 3.85. On the other hand, the error score in terms
of RMSE is reported as 5, which is slightly higher than
the proposed model. Table 3 highlights the performance
improvement of the proposed model in terms of prediction
accuracy based on R? score for all pollutants considered.
Our findings revealed that our proposed model significantly
improves the prediction performance with a gain of 14%
for PM2.5, 2% for O3, 12% for PM10, and 4% for SO,.
This is further supported by a reduction in error in terms
of both RMSE and MAE within the range of 0.05 to 0.94
and 0.04 to 0.85 respectively. However, the performance of
both models remained comparable for NO;, with AirVCQnet
offering a modest improvement in the error reduction,
as indicated by the RMSE value. Fig. 12, 13, and 14,
summarised the performance comparison of the proposed
model with the classical counterpart (i.e. VMD-CNN-LSTM)
in terms of R? score, RMSE, and MAE values, respectively.
The results of our comparative analysis clearly indicate
that our proposed AirVCQnet outperformed its classical
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counterpart in yielding a higher R? score and lower errors
in terms of both RMSE and MAE across the evaluated
pollutants.

4.04

35

3
2.5

2
1.5

1 1.36
0.5

0

NO2 03

PM2.5

MAE Value

[ 0.34]
PM10 502

Classical Model M Proposed Model

FIGURE 14. Comparison of models in terms of MAE.

TABLE 3. Performance comparison based on proposed model w.r.t R2.

Models PM2.5 | NO2 | O3 | PM10 | SO2
Classical Model 0.70 092 | 0.89 0.69 0.76
Proposed Model 0.84 092 | 091 0.81 0.80
Gain 14 - 2 12 4

VIil. CONCLUSION

Quantum machine learning offers significant computational
advantages and plays a vital role in understanding and
learning from complex datasets to build healthier, safer
and better environments. Looking ahead, healthy ageing is
one of the fundamental pillars of building healthier modern
societies, with air quality standing out as one of the most
critical influencing factors shaping this outcome. In this
work, we investigated a hybrid forecasting model for five
key air pollutants (i.e., PM2.5, NO,, O3, PM10, and SO5)
using the emerging concept of quantum machine learning.
Our proposed model takes advantage of features generated
by VMD and CNN, which are further used to capture time
dependencies using a QLSTM network. We investigated a
four qubit VQC in QLSTM and found optimum proposed
model parameters, including hyperparameters, to achieve
a maximum R? score of 92%. Our findings revealed the
superiority of the proposed model with the performance gain
of 14% and reduced error when comparing its performance
with its equivalent classical counterpart model with the same
features and parameters. We anticipate that quantum inspired
forecasting models can play a crucial role in developing more
accurate prediction systems that influence our future choices
and policies’ of tomorrow.
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