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Abstract We illustrate how the Conformal Ward Identities
(CWI) in momentum space for parity-odd correlators deter-
mine the structure of a chiral anomaly interaction, taking the
example of the VVA (vector/vector/axial-vector) and AAA
correlators in momentum space. Only the conservation and
the anomalous WIs, together with the Bose symmetry, are
imposed from the outset for the determination of the cor-
relators. We use a longitudinal/transverse decomposition of
tensor structures and form factors. The longitudinal (L) com-
ponent is fixed by the anomaly content and the anomaly pole,
while in the transverse (T) sector we define a new parame-
terization. We relate the latter both to the Rosenberg original
representation of the VVA and to the longitudinal/transverse
(L/T) one, first introduced in the analysis of g−2 of the muon
in the investigation of the diagram in the chiral limit of QCD.
The correlators are completely identified by the conformal
constraints whose solutions are fixed only by the anomaly
coefficient, the residue of the anomaly pole. In both cases, our
CFT result matches the one-loop perturbative expression, as
expected. The CWIs for correlators of mixed chirality JL J JR
generate solutions in agreement with the all-orders nonrenor-
malization theorems of perturbative QCD and in the chiral
limit.

1 Introduction

Parity even correlators in d = 4 play a central role in CFT
and have been investigated in coordinate space [1,2] for quite
some time. Parity odd ones, instead, have attracted less atten-
tion, except for the J J J5 and J5 J5 J5 (or VV A and AAA,
where A and V refer to the axial-vector and to the vector
current respectively) due to the role of the chiral anomaly.
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The conformal properties of the VVA diagram, in the
coordinate space, have been studied since the 70’s (see for
instance [3,4]). In more recent years, its non-renormalization
property, which affects only its anomaly (longitudinal) part,
as shown by Adler and Bardeen [5], has been redrawn in
a more general context, given its relevance in the anal-
ysis of g − 2 of the muon [6]. The numerical value of
aμ = (g−2)μ = FM(0), which measures the muon anomaly,
is given by the Pauli form factor at zero momentum transfer,
and involves a soft photon limit on one of the two vector cur-
rents of the VV A diagram, which interpolates with FM via
electroweak corrections.

In such special kinematic configuration, the correlator is
described by the longitudinal and transverse components wL

and wT of the diagram. If we adopt such a L/T separation
of the vertex, wL does not receive radiative corrections, as
shown in [5]. Therefore, any constraining relation involving
both wL and wT is bound to identify combinations of form
factors in the T sector, which are protected against radiative
corrections. The conditions under which such nonrenormal-
ization constraints hold, may involve a special kinematics.
For this reason, the analysis of the correlator requires mov-
ing into momentum space.

It has been argued that in the chiral limit of QCD and with
a soft V line, the relation

wL = 2 wT (1)

holds to all orders in the strong coupling constant αs [6].
This constraint is indeed reproduced by the bare fermion
loop, which is conformal, and is a byproduct of our analysis
of the CWIs in momentum space as well. Notice that, given
the complete overlap of the CFT result with the perturba-
tive one at the lowest order, identities such as the Crewther–
Broadhurst–Kataev (CBK) relation [7–9], are exactly satis-
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fied in our case as well (see [10]). The CBK identity connects
the Adler function for electron-positron annihilation with the
Bjorken function of deep-inelastic sum rules. Away from the
conformal limit, these relations acquire corrections propor-
tional to the QCD β function at higher orders.

A perturbative analysis of the radiative corrections of the
VV A correlator in QCD at two-loop level (O(αs), showed
that the entire vertex is also non renormalized [11], in agree-
ment with (1). However, at higher orders in αs (O(α2

s )), the
nonrenormalization properties of the entire diagram are vio-
lated and conformality is lost. In particular (1) is only limited
to the soft photon limit discussed in [6], as shown in explicit
computations [12].

In our analysis, the constraint in (1) can be viewed also
as a result of conformal symmetry, without resorting to a
perturbative picture, since in the unique solution of the CWIs
from momentum space, such constraint is verified. While the
result is expected, the procedure is novel.

One interesting aspect of the identification of the VV A
or AAA diagrams from the CWIs in momentum space, is
the centrality of the anomaly pole in the longitudinal sec-
tor, that allows to identify every part of the correlator. The
link between such massless state and the nonlocal anomaly
effective action has been stressed in the past in several works,
[13–15]. More recently, these analysis have been extended in
the investigation of chiral density waves, with local actions
[16,17]. These actions play a key role in very different con-
texts where either chiral or conformal anomalies are involved,
such as in topological materials [18,19].

1.1 Conformal analysis in momentum space

In coordinate space the identification of the structure of con-
formal correlators is quite direct, but does not provide much
information on the dynamical properties of those, among
them, which are affected by an anomaly.

In momentum space the vertices of such interactions have
been investigated, in perturbation theory, in terms of differ-
ent (minimal and non minimal) sets of form factors, whose
expressions can be calculated at one-loop level by standard
perturbative methods. At d = 4 the Schouten identities play
an important role in the choice of the most useful represen-
tations of such diagrams, and relate the form factors of the
different parameterizations. For instance, the wL/wT decom-
position, that plays a fundamental role in the investigations
mentioned above, can be related to other representations of
the corresponding form factors.

Being a free fermion Lagrangian at d = 4 conformal at
tree level, the chiral anomaly fermion loop provides a simple
free field theory realization of the VVA vertex, which is also
conformal. As we have mentioned, the conformal symmetry
is eventually broken by radiative corrections only at order
α2
s , in the strong coupling constant. Anomalies arise from

the region of the correlator where all the external coordinate
points (x, y, z) coalesce, and for this reason, by a Fourier
transform, their analysis in momentum space has the advan-
tage of including this region rather automatically. While the
conformal contributions to such correlators at d = 4 are
described, as mentioned, by the simple massless fermion
loop, the identification of the kinematical structure of the ver-
tex in momentum space - without any reference to a Feynman
diagram realization and using only the Ward identities (WIs)
of the case – has never been discussed before. This is the goal
of our work.

We are going to close this gap and show how the entire cor-
relator is fixed by the anomaly also if we resort to a momen-
tum space analysis. We will be using a variant of the separa-
tion of the CWIs into primary and secondary equations [20],
in which the anomaly constraint on the longitudinal form
factor is imposed from the beginning. This approach dif-
fers from the cases discussed so far for 3-point and 4-point
functions affected by the conformal anomaly, since in that
case the anomaly emerges from the renormalization proce-
dure, realized by the inclusion of a Weyl squared counterterm
after renormalization (see [21,22] for a Lagrangian formula-
tion). Renormalized parity even correlators, type-A and type-
B Weyl anomalies have been discussed in [23,24]. It is well
known that for a VVA vertex, as for any anomaly interaction
which is purely topological, the process of renormalization
can be entirely bypassed by imposing the anomalous WIs on
the external currents. Our approach extends to chirally odd
three-point functions the methods used in the analysis of the
parity even ones in momentum space [20,25], in the presence
of a chiral anomaly, and can be formulated also for higher
point functions.

Recently novel approaches have been adopted for the con-
struction of parity odd correlation functions. In particular in
[26] it is shown that parity odd CFT 3-point functions can
be obtained by doing epsilon transformation starting from
parity even CFT correlation functions. Moreover, in [27] the
authors use both the momentum space CWIs as well as spin-
raising and weight-shifting operators to fix the form of par-
ity odd correlators. However both [26,27] do not consider
anomalous correlators.

A recent analysis of 3-point functions for parity even cor-
relators with non-conserved currents of arbitrary spin has
been discussed in [28]. Moreover, another recent analysis
on the conformal bootstrap equations in momentum space at
finite volume has been discussed in [29].

1.2 Massless intermediate states in the anomaly: the pivot

The construction of the entire correlator proceeds from the
anomaly pole, that plays a key role in any anomaly diagram.
This takes the role of a pivot in the procedure, and it allows
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to solve for the longitudinal anomalous WI quite straightfor-
wardly.

The tensorial expansion of a chiral vertex is not unique,
due to the presence of Schouten relations among its tensor
components. For instance, an anomaly pole in the virtuality
of the axial-vector current – denoted as 1/p2

3 in our nota-
tions – can be inserted or removed from a given tensorial
decomposition, just by the use of these relations.

These identities connect two of the most common repre-
sentation of this vertex, the first of them introduced long ago
by Rosenberg [30], expressed in terms of 6 tensor structures
and form factors, and the second one [31], more recent, intro-
duced in the context of the analysis of the g − 2 anomalous
magnetic moment of the muon. The latter, which is the most
valuable from the physical point of view, allows to attribute
the anomaly to the exchange of a pole in the longitudinal
channel [13,32,33].

In this second parameterization of the vertex, the decom-
position identifies longitudinal and transverse components

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = 1

8π2

(
Wμ1μ2μ3

L − Wμ1μ2μ3
T

)

(2)

where WT is the transverse part, while the longitudinal tensor
structure is given by

Wμ1μ2μ3
L = wL pμ3

3 εμ1μ2ρσ p1ρ p2σ ≡ wL pμ3
3 εμ1μ2 p1 p2

(3)

wL is the anomaly form factor, that in the massless (chiral or
conformal) has a 1/p2

3 pole. In the case of gauge anomalies,
the cancelation of the anomaly poles is entirely connected
with the particle content of the theory and defines the con-
dition for the elimination of such massless interactions. The
total residue at the pole then identifies the total anomaly of a
certain fermion multiplet.

A similar behaviour holds for conformal correlators with
stress energy tensors, where the residue at the pole coincides
with the β-function of the Lagrangian field theory, and is
determined by the number of massless degrees of freedom
included in the corresponding anomaly vertex, at the scale at
which the perturbative prescription holds [15].

As illustrated in Fig. 1, the pole emerges from the region
of integration in momentum space in the VVA loop when an
effective interaction, mediated by the fermion/antifermion
pair is generated. The two collinear (on-shell) particles
describe an effective pseudoscalar interaction interpolating
between the incoming axial vector and the two outgoing vec-
tor currents.

Away from the conformal limit, when the VVA diagram
is recomputed with the inclusion of a fermion of mass m, one

Fig. 1 The fermion loop (a); the collinear region (b); the effective
pseudoscalar exchange (c)

discovers the presence of a sum rule satisfied by the spectral
density of the form factor wL of the longitudinal channel.
Such form factor (wL) is characterised by a spectral density
ρ(s), whose integration in the region 4m2 < s < ∞ in the
dispersive variable s, related to the virtuality of the axial-
vector current, is mass-independent and given by

∫ ∞

4m2
ds ρ(s,m2) = a (4)

where a is the anomaly for a single Dirac fermion. For on-
shell vector lines the perturbative vertex reduces only to the
longitudinal component WL .

The separation into transverse and longitudinal contribu-
tions appears to be ambiguous, in the sense that one could
always add and subtract transverse contributions to the pole
part. However, one can show that such 1/p2

3 behaviour does
not depend on the parameterization of the fermion loop. This
important point is illustrated in the case of the longitudinal
transverse (L/T) representation, once this representation is
mapped to the Rosenberg representation, as we are going
to comment below. A perturbative reparameterization of the
loop momentum in the anomaly diagram is equivalent to the
inclusion of Chern–Simons terms in the representation of
two of the six form factors (B1 and B2) that we are going to
define in the next sections, but it is independent of them in
the second parameterization (wL ∼ B1 − B2).

Our analysis shows the centrality of the pole in determin-
ing the general solution of the CWIs, that is only fixed by the
anomaly. Some of these points are reviewed in the appendix
for completeness. The procedure follows a decomposition
similar to the one used in the case of correlators of stress
energy tensors. It is based on the parameterization of such
correlators in terms of a transverse traceless and a longitudi-
nal sector. In the conformal case the trace anomaly sector of
the correlator, identified by pole structures similar to the one
that we are going to discuss here, needs to be modified by
the inclusion of traceless Weyl invariant terms [34,35]. These
are necessary to decompose the correlator into two traceless
and trace parts which both satisfy energy momentum con-
servation. In the case of the chiral VVA the procedure is far
simpler.

In the case of the AAA diagram, as we are going to see, we
are going to encounter contributions which are proportional
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Fig. 2 Distribution of the axial
anomaly for the AAA diagram

to Chern–Simons (CS) forms. These are terms linear in two
of the three momenta and allow to move the anomaly form
one vertex to the other. For instance, in a perturbative evalu-
ation of the VV A and AAA diagrams, in the chiral limit, the
anomaly can be moved around the vertices by the inclusion
of such CS terms

〈Jμ1 Jμ2 Jμ3
5 〉 = 〈Jμ1

5 Jμ2
5 Jμ3

5 〉 + 8 a i

3
εαμ1μ2μ3(p1 − p2)α.

(5)

The term εαμ1μ2μ3(p1 − p2)α corresponds to the Chern–
Simons contribution.

In our analysis we proceed from the VV A case, then turn-
ing to the AAA and show in both cases how primary and
secondary CWI can be solved quite efficiently in momen-
tum space. As shown in Fig. 2, the structure of the AAA is
dictated by symmetry. One can move around the anomaly
content, from the AAA with CS terms in order to obtain the
VVA [36]. Our solutions are then compared with the two
most common representations of such diagrams, the Rosen-
berg and the L/T one. The latter is particularly useful for the
role that provides for the longitudinal component of the cor-
relator. The same representation has been used in the past for
the derivation of new nonrenormalization theorems in pertur-
bative QCD, in the chiral limit. This result has been derived
in [31] and is confirmed by the formal analysis of the CWIs,
once we turn to discuss the relation between an AVV and
a VV A diagram, whose difference, in our analysis, is found
to be expressed in terms of a CS form. For convenience, we
have included an appendix where some of the more technical
aspects of our derivation are collected.

2 The conformal 〈VV A〉 correlator

2.1 Longitudinal/transverse decomposition

The analysis of the conformal constraints for 〈J J J5〉, as
already mentioned, is performed by applying the L/T decom-
position to the correlator. We focus our analysis on the d = 4
case, where the conformal dimensions of the conserved cur-
rents Jμ are 	 = 3 and the tensorial structures of the correla-
tor will involve the antisymmetric tensor in four dimensions
εμναβ . The procedure to obtain the general structure of the
correlator starts from the conservation Ward identities

∇μ〈Jμ〉 = 0, ∇μ〈Jμ
5 〉 = a εμνρσ FμνFρσ (6)

of the expectation value of the non anomalous Jμ and anoma-
lous Jμ

5 currents. The vector currents are coupled to the vec-
tor source Vμ and the axial-vector current to the source Aμ.
Applying multiple functional derivatives to (6) with respect
to the sourceVμ, after a Fourier transform, we find the conser-
vation Ward identities related to the entire correlator which
are given by

piμi 〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = 0, i = 1, 2

p3μ3 〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = −8 a i ε p1 p2μ1μ2 (7)

where ε p1 p2μ1μ2 ≡ εαβμ1μ2 p1α p2β and the momenta are all
incoming. From this relations we construct the general form
of the correlator, splitting the operators into a transverse and
a longitudinal part as

Jμ(p) = jμ(p) + jμloc(p),

jμ = πμ
α (p) Jα(p), πμ

α (p) ≡ δμ
α − pα pμ

p2 ,

jμloc(p) = pμ

p2 p · J (p)

(8)

and

Jμ
5 (p) = jμ5 (p) + jμ5loc(p),

jμ5 = πμ
α (p) Jα

5 (p),

jμ5loc(p) = pμ

p2 p · J5(p)

(9)

Due to (7), the correlator is purely transverse in the vector
currents. We then have the following decomposition

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 =

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉

+ 〈Jμ1(p1)J
μ2(p2) j

μ3
5 loc(p3)〉

(10)

where the first term is completely transverse with respect to
the momenta piμi , i = 1, 2, 3 and the second term is the
longitudinal part that is proper of the anomaly contribution.
Using the anomaly constraint on j5loc we obtain

〈Jμ1(p1)J
μ2(p2) j

μ3
5 loc (p3)〉 =

pμ3
3

p2
3

p3 α3 〈Jμ1(p1)J
μ2(p2)J

α3
5 (p3)〉 =

− 8 a i

p2
3

ε p1 p2μ1μ2 pμ3
3 (11)
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On the other hand, the transverse part can be formally written
as

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 = πμ1

α1
(p1)π

μ2
α2

(p2)π
μ3
α3

(p3)

×
[
A1(p1, p2, p3) ε p1 p2α1α2 pα3

1

+ A2(p1, p2, p3) ε p1 p2α1α3 pα2
3

+ A3(p1, p2, p3) ε p1 p2α2α3 pα1
2

+ A4(p1, p2, p3) ε p1α1α2α3

+ A5(p1, p2, p3) ε p2α1α2α3
]

(12)

where we have made a choice on which independent
momenta to consider for each index, and in particular

α1 ↔ p1, p2, α2 ↔ p2, p3, α3 ↔ p3, p1 (13)

The correlator has to be symmetric under the exchange of the
two vector currents and this fact is reflected in the symmetry
constraints

A3(p1, p2, p3) = −A2(p1, p2, p3),

A5(p1, p2, p3) = −A4(p1, p2, p3),

A1(p1, p2, p3) = −A1(p1, p2, p3) (14)

reducing by two the number of independent form factors.
Furthermore, in d = 4 a class of tensor identities has to be
considered, for instance the Schouten identity

δβ3[α1εα2α3β1β2] = 0. (15)

From this type of tensor identities we find that

πμ1
α1

πμ2
α2

πμ3
α3

(
pα1

2 ε p1 p2α2α3

)
= πμ1

α1
πμ2

α2
πμ3

α3

×
(

−(p2 · p1
)
ε p2α1α2α3+p2

2 ε p1α1α2α3−pα3
2 ε p1 p2α1α2

)
, (16)

πμ1
α1

πμ2
α2

πμ3
α3

(
pα2

3 ε p1 p2α1α3

)
= πμ1

α1
πμ2

α2
πμ3

α3

×
(

− p2
1 ε p2α1α2α3 + (p1 · p2

)
ε p1α1α2α3 − pα3

1 ε p1 p2α1α2

)
,

(17)

reducing the number of independent form factors just to two.
We conclude that the general structure of the transverse part
is given by

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 = πμ1

α1
(p1)π

μ2
α2

(p2)π
μ3
α3

(p3)

×
[
A1(p1, p2, p3) ε p1 p2α1α2 pα3

1

+ A2(p1, p2, p3) ε p1α1α2α3 − A2(p2, p1, p3) ε p2α1α2α3
]

(18)

where A1(p1, p2, p3) = −A1(p2, p1, p3).

2.2 Dilatation ward identities

We now start to analyse the conformal constraints on the form
factors. In this and the next sections, we closely follows the
methodology adopted in [20]. The invariance of the correlator
under dilatation is reflected in the equation

0 =
(

3∑

i=1

	i − 2d −
2∑

i=1

pμ
i

∂

∂pμ
i

)

×

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 (19)

Considering the decomposition (10) in the previous equation,
then the transverse part of the correlator has to satisfy

0 =
(

3∑

i=1

	i − 2d −
2∑

i=1

pμ
i

∂

∂pμ
i

)

×

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 (20)

By using the chain rule

∂

∂pμ
i

=
3∑

j=1

∂p j

∂pμ
i

∂

∂p j
(21)

in term of the invariants pi = |
√
p2
i |, we rewrite (19),

considering 	1 = 	2 = d − 1, for the form factors in order
to obtain

3∑

i=1

pi
∂A j

∂pi
− (	3 − 2 − N j

)
A j = 0, (22)

with N j the number of momenta that the form factors multi-
ply in the decomposition (18) and then we have N1 = 3 and
N2 = 1.

2.3 Special conformal ward identities

The invariance of the correlator with respect to the special
conformal transformations is encoded in the special confor-
mal Ward identities

0 =
2∑

j=1

[

−2
∂

∂p jκ
− 2pα

j
∂2

∂pα
j ∂p jκ

+ pκ
j

∂2

∂pα
j ∂p jα

]

× 〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉

+ 2

(
δμ1κ

∂

∂pα1
1

−δκ
α1

∂

∂p1μ1

)
〈Jα1(p1)J

μ2(p2)J
μ3
5 (p3)〉
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+ 2

(
δμ2κ

∂

∂pα2
2

−δκ
α2

∂

∂p2μ2

)
〈Jμ1(p1)J

α2(p2)J
μ3
5 (p3)〉

≡ Kκ 〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉. (23)

The special conformal operator Kκ acts as an endomorphism
on the transverse sector of the entire correlator. Therefore we
can perform a transverse projection (3 −π projection) on all
the indices in order to identify a set of partial differential
equations corresponding to the primary constraints [20]

0 = πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)×
(
Kκ 〈Jμ1(p1)J

μ2(p2)J
μ3
5 (p3)〉

)
(24)

splitting the correlator into its transverse and longitudinal
parts. Using the Schouten identities listed in Appendix A,
we decompose the action of the special conformal operator
on the transverse sector using the transverse projectors. One
can show that the action of the operator is endomorphic in
the transverse sector. Therefore we have

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
Kκ 〈 jμ1(p1) j

μ2(p2) j
μ3
5 (p3)〉

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3) X
κμ1μ2μ3, (25)

where the tensor Xκμ1μ2μ3 can be constructed using a set of
possible tensor structures, of the form

εμ1μ2μ3 p1 pκ
1 , εμ1μ2μ3 p2 pκ

1 , εμ1μ2 p1 p2 pμ3
1 pκ

1 ,

εμ1μ3 p1 p2 pμ2
3 pκ

1 , εμ2μ3 p1 p2 pμ1
2 pκ

1 , (26)

whose complete list is given in Appendix A. These tensor
structures are not all independent, and are simplified using
some Schouten identites in order to find the minimal number
of tensor structures in which X can be expanded. The first
two identities are

ε[μ2μ3κp1δμ1]α = 0, (27)

ε[μ2μ3κp2δμ1]α = 0, (28)

that can be contracted with p1α and p2α to generate, after the
projection, tensor identities of the form

πλ1
μ1

πλ2
μ2

πλ3
μ3

(
ε p1κμ1μ3 pμ2

3

)
= πλ1

μ1
πλ2

μ2
πλ3

μ3

×
(

− p2
1εκμ1μ2μ3 + ε p1μ1μ2μ3 pκ

1 − ε p1κμ1μ2 pμ3
1

)

(29)

πλ1
μ1

πλ2
μ2

πλ3
μ3

(
ε p1κμ2μ3 pμ1

2

)
= πλ1

μ1
πλ2

μ2
πλ3

μ3

×
(

1

2

(
p2

1 + p2
2 − p2

3

)
εκμ1μ2μ3

+ ε p1κμ1μ2 pμ3
1 + ε p1μ1μ2μ3 pκ

2

)
. (30)

More technical details and a full list of such tensor relations
is given in the Appendix. Combining all the expressions we
obtain the projected equation

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
Kκ 〈 jμ1(p1) j

μ2(p2) j
μ3
5 (p3)〉

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

[
pκ

1

(
C11 εμ1μ2μ3 p1

+ C12 εμ1μ2μ3 p2 + C13 εμ1μ2 p1 p2 pμ3
1

)

+ pκ
2

(
C21 εμ1μ2μ3 p1 + C22 εμ1μ2μ3 p2

+ C23 εμ1μ2 p1 p2 pμ3
1

)

+ C31ε
κμ1μ2μ3 + C32ε

κμ1μ2 p1 pμ3
1

+ C33ε
κμ1μ2 p2 pμ3

1 + C34ε
κμ1 p1 p2δμ2μ3

+ C35ε
κμ2 p1 p2δμ1μ3 + C36ε

κμ3 p1 p2δμ1μ2

]
, (31)

where the Ci j are scalar differential equations involving the
form factors. In particular, C1 j and C2 j are of the second
order, while all the others are first order differential equations.
The action of Kκ on the longitudinal part is then given as

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
Kκ 〈Jμ1(p1)J

μ2(p2) j
μ3
5,loc(p3)〉

)

= πλ1
μ1

(p1) πλ2
μ2

(p2) πλ3
μ3

(p3)
[
A δμ3κεμ1μ2 p1 p2

]

= πλ1
μ1

(p1) πλ2
μ2

(p2) πλ3
μ3

(p3)
[
A
(
εκμ2 p1 p2δμ1μ3

− εκμ1 p1 p2δμ2μ3 + εκμ1μ2 p1 pμ3
1 + εκμ1μ2 p2 pμ3

1

)]
,

(32)

where

A ≡ −16 a i (	3 − 1)

p2
3

(33)

is related to the chiral anomaly. Due to the independence
of the tensor structures listed above, the special conformal
equations are written as

Ci j = 0, i = 1, 2, j = 1, 2, 3 (34)

C31 = 0, (35)

C3 j + A = 0, j = 2, 3, 5 (36)

C34 − A = 0, (37)

C36 = 0 (38)
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the explicit form of the primary equations (34) is

K31 A1 = 0,

K32 A1 = 0,

K31 A2 = 0,

K32 A2 =
(

4

p2
1

− 2

p1

∂

∂p1

)

A2(p1 ↔ p2) + 2A1,

K31 A2(p1 ↔ p2) =
(

4

p2
2

− 2

p2

∂

∂p2

)

A2 − 2A1,

K32 A2(p1 ↔ p2) = 0, (39)

where we have defined

Ki = ∂2

∂p2
i

+ (d + 1 − 2	i )

pi

∂

∂pi
, Ki j = Ki − K j .

(40)

These equations can also be reduced to a set of homogenous
equations by repeatedly applying the operator Ki j and we
have

K31 A1 = 0, K32 A1 = 0,

K31 A2 = 0, K32K32 A2 = 0.
(41)

2.4 Solutions of the CWIs

The most general solution of the conformal Ward identities
of the VV A can be written in terms of integrals involving a
product of three Bessel functions, namely 3K integrals [20].
For a detailed review on the properties of such integrals, see
also [37]. We recall the definition of the general 3K integral

Iα{β1β2β3} (p1, p2, p3) =
∫

dxxα
3∏

j=1

p
β j
j Kβ j

(
p j x
)

(42)

where Kν is a modified Bessel function of the second kind

Kν(x) = π

2

I−ν(x) − Iν(x)

sin(νπ)
, ν /∈ Z

Iν(x) =
( x

2

)ν
∞∑

k=0

1

�(k + 1)�(ν + 1 + k)

( x
2

)2k

(43)

with the property

Kn(x) = lim
ε→0

Kn+ε(x), n ∈ Z (44)

We will also use the reduced version of the triple-K integral
defined as

JN{k j} = I d
2 −1+N

{
	 j− d

2 +k j
} (45)

where we introduced the condensed notation {k j }={k1, k2, k3}.
The 3K integral satisfies an equation analogous to the dilata-
tion equation with scaling degree [20]

deg
(
JN{k j}

)
= 	t + kt − 2d − N (46)

where

kt = k1 + k2 + k3, 	t = 	1 + 	2 + 	3 (47)

From this analysis, it is simple to relate the form factors to the
triple-K integrals. Indeed, the dilatation Ward identities tell
us that the form factor Ai needs to be written as a combination
of integrals of the following type

JNi+kt ,{k1,k2,k3} (48)

where Ni is the number of momenta that the form factor
multiplies in the decomposition (18). The special confor-
mal Ward identities fix the remaining indices k1, k2 and k3.
Indeed, recalling the following property of the 3K integrals

Knm JN{k j} = −2kn JN+1{k j−δ jn} + 2km JN+1{k j−δ jm} (49)

we can write the most general solution of the homogeneous
equations (41) as

A1 = α1 J3{0,0,0}, (50)

A2 = α2 J1{0,0,0} + α3 J2{0,1,0}. (51)

Applying this general solutions to the non-homogenous
equations (39), we find the constraint

α2 = −2α3 (52)

and the solution reduces to

A1 = α1 J3{0,0,0}, (53)

A2 = −2α3 J1{0,0,0} + α3 J2{0,1,0}. (54)

We now consider the first order differential equations (35),
(36), (37) and (38) in their explicit form, ignoring the trivial
ones. We start with

C36 =
(

4

p2
2

− 2

p2

∂

∂p2

)

A2 −
(

4

p2
1

− 2

p1

∂

∂p1

)

A2(p1 ↔ p2) − 2A1 = 0 (55)

and using the property of the 3K integral

∂

∂pn
JN {k j } = −pn JN+1{k j−δ jn} (56)
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we have

C36 = 2α1 J3{0,0,0} = 0,

(57)
obtaining the constraint

α1 = 0. (58)

Taking into account this constraint, we consider the other
secondary Ward identity as

C31 = 2 p2
∂

∂p2
A2(p1 ↔ p2) − 2 p1

∂

∂p1
A2

+ 2(p2
1 + p2

2 − p2
3)

p2
1 p

2
2

(
p2

1 A2 − p2
2 A2(p1 ↔ p2)

)

+2 p1 · p2

p2

∂

∂p2
A2−2 p1 · p2

p1

∂

∂p1
A2(p1 ↔ p2)=0,

(59)

and this equation with the constraints obtained before on the
coefficients αi is trivially satisfied. The last equation we have
to consider is the one related to the anomaly that takes the
form

− 2

p2
3

(
p2

∂

∂p2
+ p1

∂

∂p1
+ 2

)(
A2 + A2(p1 ↔ p2)

)

−
(

4

p2
1

− 2

p1

∂

∂p1

)

A2(p1 ↔ p2) − A = 0. (60)

This equation can be easily solved by taking the limit p3μ →
0, p1μ = −p2μ = pμ. Assuming that α > βt−1 and β3 > 0,
we can write [20]

lim
p3→0

Iα{β j} (p,−p, p3) = pβt−α−1�α{β j} (61)

and then

lim
p3→0

JN {k j } (p,−p, p3)

= lim
p3→0

I d
2 −1+N

{
	 j− d

2 +k j
} (p,−p, p3)

= pkt+	3−2−N � d
2 −1+N

{
	 j− d

2 +k j
}, (62)

where

�α{β j} = 2α−3� (β3)

� (α − β3 + 1)
�

(
α + βt + 1

2
− β3

)

×�

(
α − βt + 1

2
+ β1

)

×�

(
α − βt + 1

2
+ β2

)
�

(
α − βt + 1

2

)
. (63)

With this limit the equation can be solved and we have, with
d = 4 and 	3 = 3, the constraint

α3 = 8i a. (64)

In summary, once the conformal constraints are solved, we
find the solution of the transverse part in terms of one coeffi-
cient, proportional to the anomaly and in particular we have

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 = πμ1

α1
(p1)π

μ2
α2

(p2)π
μ3
α3

(p3)

×
[

8ia

(
− 2 J1{0,0,0} + J2{0,1,0}

)
ε p1α1α2α3

− 8ia

(
− 2 J1{0,0,0} + J2{1,0,0}

)
ε p2α1α2α3

]
(65)

or in terms of the simplified version of the 3K integrals as

J1{0,0,0}=I2{1,1,1}, J2{0,1,0}=I3{1,2,1}, J2{1,0,0}=I3{2,1,1}.
(66)

Explicitly we have

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 = 8ia πμ1

α1
(p1)π

μ2
α2

(p2)π
μ3
α3

(p3)

×
[(

− 2 I2{1,1,1} + I3{1,2,1}
)

ε p1α1α2α3

−
(

− 2 I2{1,1,1} + I3{2,1,1}
)

ε p2α1α2α3

]
. (67)

Furthermore, this expression can be reduced by noticing that

−2 I2{1,1,1} + I3{1,2,1} = p2
2 I3{1,0,1}, (68)

−2 I2{1,1,1} + I3{1,2,1} = p2
1 I3{0,1,1}, (69)

finally giving for (67)

〈 jμ1(p1) j
μ2(p2) j

μ3
5 (p3)〉 = 8ia πμ1

α1
(p1)π

μ2
α2

(p2)π
μ3
α3

(p3)

×
[
p2

2 I3{1,0,1} ε p1α1α2α3 − p2
1 I3{0,1,1} ε p2α1α2α3

]
(70)

3 Reducing the 3K integral in the solution

Using the reduction relations presented in [37,38] we have
that the solution is finite and can be reduced to the standard
perturbation results as

I3{1,0,1} = p1 p3
∂2

∂p1∂p3
I1{0,0,0} (71)

where I1{0,0,0} is the master integral related to the three-point
function of the operator ϕ2 in the theory of free massless
scalar ϕ in d = 4. Indeed through the relation between
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the master integrals and the massless scalar 1-loop 3-point
momentum space integral

I1{0,0,0} = (2π)2K4,{1,1,1} = (2π)2

×
∫

d4k

(2π)4

1

k2 (k − p1)2 (k + p2)2

= i

4π2C0(p
2
1, p

2
2, p2

3) (72)

where

Kd{δ1δ2δ3} =
∫

ddk

(2π)d

1

(k2)δ3 ((k − p1)2)δ2 ((k + p2)2)δ1
.

(73)

By using the relations of the derivative acting on the master
integral presented in [21], and analytically continuing C0 to
d dimensions we find that

p3
∂

∂p3
C0(p

2
1, p2

2, p2
3) = 1

λ

{
2(d − 3)

×
[
(p2

1 − p2
2 + p2

3)B0(p
2
1)

+ (p2
2 + p2

3 − p2
1)B0(p

2
2)

− 2p2
3B0(p

2
3)

]

+
[
(d−4)(p2

1−p2
2)2−(d−2)p4

3

+ 2p2
3(p

2
1 + p2

2)

]

× C0(p
2
1, p2

2, p2
3)

}
(74)

where λ is the Källen λ-function

λ ≡ (p1 − p2 − p3) (p1 + p2 − p3) (p1 − p2 + p3)

× (p1 + p2 + p3) . (75)

Then

− 4π2 i I3{1,0,1} = p1
∂

∂p1

1

λ

{
2(d − 3)

[
(p2

1 − p2
2 + p2

3)B0(p2
1)

+ (p2
2 + p2

3 − p2
1)B0(p2

2) − 2p2
3B0(p2

3)

]

+
[
(d − 4)(p2

1 − p2
2)2 − (d − 2)p4

3 + 2p2
3(p2

1 + p2
2)

]

C0(p2
1, p2

2, p2
3)

}

= − 4p2
1(p2

1 − p2
2 − p2

3)

λ2

{
2(d − 3)

[
(p2

1 − p2
2 + p2

3)B0(p2
1)

+ (p2
2 + p2

3 − p2
1)B0(p2

2) − 2p2
3B0(p2

3)

]

+
[

− (d − 2)p4
3 + 2p2

3(p2
1 + p2

2)

]
C0(p2

1, p2
2, p2

3)

}

+ 1

λ

{
2(d − 3)

[
2p2

1 B0(p2
1) + (p2

1 − p2
2 + p2

3) (d − 4)B0(p2
1)

− 2p2
1 B0(p2

2)

]
+ 4p2

1 p
2
3 C0(p2

1, p2
2, p2

3)

+ 1

λ

[
− (d − 2)p2

3 + 2p2
3(p2

1 + p2
2)

][
2(d − 3)

×
(

(p2
1 + p2

2 − p2
3)B0(p2

2) + (p2
1 − p2

2 + p2
3)B0(p2

3) − 2p2
1B0(p2

1)

)

+
(

− (d − 2)p4
1 + 2p2

1(p2
2 + p2

3)
)
C0(p2

1, p2
2, p2

3)

]}

+ O(d − 4). (76)

This expression is finite in the expansion around d = 4 and
the result simplifies to the form

I3{1,0,1}(p2
1, p

2
2, p2

3) = i

π2λ2

{
− 2p2

1 p
2
3

[
p2

1

(
p2

2 − 2p2
3

)

+ p4
1 + p2

2 p
2
3 − 2p4

2 + p4
3

]
C0

(
p2

1, p
2
2, p2

3

)

+ p2
1

((
p2

1 − p2
2

)2 + 4p2
2 p

2
3 − p4

3

)
log

(
p2

1

p2
2

)

+ 4p2
1 p

2
3

(
p2

1 − p2
3

)
log

(
p2

1

p2
3

)

− p2
3

(
(p2

2 − p2
3)

2 + 4p2
1 p

2
2 − p4

1

)
log

(
p2

2

p2
3

)

− λ(p2
1 − p2

2 + p2
3)

}
(77)

with the form factor given by

A(CFT )
2 (p1, p2, p3) = 8ia p2

2 I3{1,0,1}(p2
1, p2

2, p2
3). (78)

3.1 Perturbative realization of the correlator

The same approach that we have investigated in the previous
section, can be redone in the context of a free field theory,
with a single chiral fermion. The steps are the same as above,
with the correlator expanded in the same basis of form fac-
tors identified above using (10) and (12), using a free Dirac
fermion and the only form factor A2 is given by

A(P)
2 = −ie3 p2

2

2π2λ2

{
− λ (p2

1 − p2
2 + p2

3) + p2
1

×
[ (

p2
1 − p2

2

)2 + 4p2
3 p

2
2 − p4

3

]
log

(
p2

1

p2
2

)

+ p2
3

[
p4

1 − 4p2
1 p

2
2 −

(
p2

2 − p2
3

)2
]

log

(
p2

2

p2
3

)

+ 4p2
1 p

2
3

(
p2

1 − p2
3

)
log

(
p2

1

p2
3

)
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− 2p2
1 p

2
3

[
p2

1

(
p2

2 − 2p2
3

)
+ p4

1 + p2
2 p

2
3 − 2p4

2 + p4
3

]

× C0

(
p2

1, p
2
2, p2

3

)}
. (79)

On can directly check the complete match between the per-
turbative and the CFT result, once the anomaly coefficient is
chosen of the form

a = i e3

16π2 . (80)

4 The conformal 〈AAA〉 correlator

In this section we illustrate how conformal invariance com-
pletely determines the structure of the 〈J5 J5 J5〉 correlator.
Differently from the 〈J J J5〉 correlator, a 3K integral regu-
larization is needed in this case. Therefore, we will work in
d = 4 + ε and then perform the limit ε → 0.

4.1 Longitudinal/transverse decomposition

First of all, we consider the anomalous Ward identity

∇μ J
μ
5 = a′εμνρσ F A

μνF
A
ρσ (81)

where F A
μν is the gauge field coupled to the axial current.

We impose such identity symmetrically on the all the three
external axial-vector currents of the AAA correlator, leading
to the following equations

p1μ1

〈
Jμ1

5 (p1)J
μ2
5 (p2)J

μ3
5 (p3)

〉 = −8 a′ i ε p1 p2μ2μ3

p2μ2

〈
Jμ1

5 (p1)J
μ2
5 (p2)J

μ3
5 (p3)

〉 = 8 a′ i ε p1 p2μ1μ3

p3μ3

〈
Jμ1

5 (p1)J
μ2
5 (p2)J

μ3
5 (p3)

〉 = −8 a′ i ε p1 p2μ1μ2 . (82)

Notice that the equations above are symmetric in the three
momenta, but for technical reasons we prefer to express them
only in terms of p1 and p2. Note that, if we contract the
correlator with multiple momenta at the same time, the result
is zero.

We can then decompose the correlator into the following
transverse and longitudinal parts

〈
Jμ1

5 Jμ2
5 Jμ3

5

〉 = 〈
jμ1
5 jμ2

5 jμ3
5

〉+ 〈 jμ1
5 loc jμ2

5 jμ3
5

〉

+ 〈 jμ1
5 jμ2

5 loc jμ3
5

〉+ 〈 jμ1
5 jμ2

5 jμ3
5 loc

〉
(83)

The longitudinal parts are completely fixed by the anomalous
Ward identity above in the form

〈
Jμ1

5 loc (p1) J
μ2
5 (p2) j

μ3
5 (p3)

〉 = −8 a′i
p2

1

ε p1 p2μ2μ3 pμ1
1

〈
Jμ1

5 (p1) J
μ2
5 loc (p2) j

μ3
5 (p3)

〉 = 8 a′i
p2

2

ε p1 p2μ1μ3 pμ2
2

〈
Jμ1

5 (p1) J
μ2
5 (p2) j

μ3
5 loc (p3)

〉 = −8 a′i
p2

3

ε p1 p2μ1μ2 pμ3
3 .

(84)

On the other hand, the transverse part can be expressed as

〈
jμ1
5 (p1) j

μ2
5 (p2) j

μ3
5 (p3)

〉 = πμ1
α1

(p1) πμ2
α2

(p2) πμ3
α3

(p3)

×
[
Ã(p1, p2, p3)ε

p1 p2α1α2 pα3
1 +A(p1, p2, p3)ε

p1α1α2α3

−A(p2, p1, p3)ε
p2α1α2α3

]
.

(85)

Differently from the 〈J J J5〉 correlator, there is an additional
Bose symmetry condition we have to consider: {p1, μ1} ↔
{p3, μ3}. Therefore, in this case, there is only one indepen-
dent form factor. Indeed we have

Ã(p1, p2, p3) =
2
A(p1, p2, p3) + A(p2, p3, p1) + A(p3, p1, p2)

p2
1 + p2

2 + p2
3

(86)

and moreover

A(p1, p2, p3)

= (p2
1 − p2

2 + p2
3)A(p3, p2, p1) − 2p2

2 A(p1, p3, p2) − 2p2
2 A(p2, p1, p3)

p2
1 + p2

2 + p2
3

(87)

For now on we will ignore such relations and we will treat
Ã and A as independent quantities. We can still check later
that our final result is invariant under the exchange of the
currents.

4.2 Dilatation and special conformal ward identities

The dilatation Ward identities of the transverse part are not
affected by the longitudinal terms. Therefore the constraints
are the same of the 〈J J J5〉 correlator

3∑

i=1

pi
∂ Ã

∂pi
− (	3 − 5) Ã = 0

3∑

i=1

pi
∂A

∂pi
− (	3 − 3) A = 0.

(88)
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The invariance of the correlator with respect to the special
conformal transformations is encoded in the following rela-
tion

0 = πλ1
μ1

(p1) πλ2
μ2

(p2) πλ3
μ3

(p3)Kk

×
[〈
jμ1
5 jμ2

5 jμ3
5

〉+ 〈 jμ1
5 loc jμ2

5 jμ3
5

〉+ 〈 jμ1
5 jμ2

5 loc jμ3
5

〉

+ 〈 jμ1
5 jμ2

5 jμ3
5 loc

〉]
. (89)

We procede in a manner similar to the 〈J J J5〉 correlator,
using the same Schouten identities. We can then decompose
the contribution of the transverse part into the following form
factors

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
Kκ 〈 jμ1(p1) j

μ2(p2) j
μ3
5 (p3)〉

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

[
pκ

1

(
C11 εμ1μ2μ3 p1

+C12 εμ1μ2μ3 p2 + C13 εμ1μ2 p1 p2 pμ3
1

)

+pκ
2

(
C21 εμ1μ2μ3 p1 + C22 εμ1μ2μ3 p2

+C23 εμ1μ2 p1 p2 pμ3
1

)

+C31ε
κμ1μ2μ3 + C32ε

κμ1μ2 p1 pμ3
1

+C33ε
κμ1μ2 p2 pμ3

1 + C34ε
κμ1 p1 p2δμ2μ3

+C35ε
κμ2 p1 p2δμ1μ3 + C36ε

κμ3 p1 p2δμ1μ2

]
,

where the explicit expression for the form factor is the same
of the 〈J J J5〉. However, both the primary and secondary
equations will contain anomalous terms from the longitudinal
parts of the correlators. Indeed, the primary Ward identities
are given by

C11 = 0 C21 = −16(d − 2)a′i
p2

1

C12 = 16(d − 2)a′i
p2

2

C22 = 0

C13 = 0 C23 = 0 (90)

while the secondary equations can be written as

C31 = −8ia′(d − 2)(p1 − p2)(p1 + p2)
(
p2

1 + p2
2 − p2

3

)

p2
1 p

2
2

C32 = 32ia′

p2
3

− 16ia′(d − 2)

p2
1

C33 = 32ia′

p2
3

− 16ia′(d − 2)

p2
2

C34 = −32ia′

p2
3

+ 16ia′(d − 2)

p2
2

C35 = −16ia′(d − 2)

p2
1

+ 32ia′

p2
3

C36 = −16ia′(d − 2)(p1 − p2)(p1 + p2)

p2
1 p

2
2

(91)

The explicit form of the primary special conformal Ward
identity is

K31 Ã = 0,

K32 Ã = 0,

K31 A = 0,

K32 A = 2

(
d − 2

p2
1

− 1

p1

∂

∂p1

)

A(p1 ↔ p2)

+2 Ã + 16a′i (d − 2)

p2
1

K31 A(p1 ↔ p2) = 2

(
d − 2

p2
2

− 1

p2

∂

∂p2

)

A

−2 Ã + 16a′i (d − 2)

p2
2

,

K32 A(p1 ↔ p2) = 0 (92)

These equations can also be reduced to a set of homogenous
equations by repeatedly applying the operator Ki j

K31 Ã = 0, K32 Ã = 0, (93)

K31 A = 0, K32K32 A = 0, (94)

K32 A(p1 ↔ p2) = 0, K31K31 A(p1 ↔ p2) = 0 (95)

As we can see, the presence of anomalous terms in the pri-
mary equations does not affect the structure of the homoge-
nous equations which are exactly the same of the 〈J J J5〉
correlator.

4.3 Solutions of the CWIs

The solutions of the primary homogeneous equations can be
written in terms of the following 3K integrals, extending the
previous approach of the VV A

Ã = α1 J3{0,0,0} = α1 I d
2 +2{ d2 −1, d2 −1, d2 −1}, (96)

A = α2 J1{0,0,0} + α3 J2{0,1,0} = α2 I d
2 { d2 −1, d2 −1, d2 −1}

+ α3 I d
2 +1,{ d2 −1, d2 , d2 −1}. (97)

Inserting our solutions back to the non-homogeneous equa-
tions, in the limit p3 → 0 we find

(
d − 4

3

)
α1 = −

ia′26− d
2 (d − 2) sin

(
πd
2

)

π�
(
d
2 + 1

) + α2 + α3(d − 2).

(98)
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We then focus on the first two secondary equations in (91).
The explicit form of the first equation is

0 = p2
1 + p2

2 − p2
3

p2
1 p2

2

{
− p2

1 p
2
2 Ã + (d − 2)

×
[
p2

1 A − p2
2 A(p2 ↔ p1) + 8ia′(p2

1 − p2
2)
]}

+
(
p2

1 + p2
2 − p2

3

)( 1

p1

∂

∂p1
A(p2 ↔ p1) − 1

p2

∂

∂p2
A

)

−2p1
∂

∂p1
A + 2p2

∂

∂p2
A(p2 ↔ p1) (99)

which leads to the condition

α2 = (d − 2)

(

−α3 + ia′26− d
2 sin

(
πd
2

)

π�
( d

2 + 1
)

)

. (100)

The explicit form of the second equation in (91) is

0 = −2
2p2

1 + (d − 2)p2
3

p2
1 p

2
3

A(p2 ↔ p1) + 2

(

1 − p2
1

p2
3

)

× 1

p1

∂

∂p1
A(p2 ↔ p1) − 2p1

p2
3

∂

∂p1
A

−2p2

p2
3

∂

∂p2
A − 2p2

p2
3

∂

∂p2
A(p2 ↔ p1) − 4A

p2
3

+ p1
(−p2

1 + p2
2 + p2

3

)

p2
3

∂

∂p1
Ã

+ p2
(−p2

1+p2
2−3p2

3

)

p2
3

∂

∂p2
Ã−2

(
2p2

1−2p2
2+p2

3

)
Ã

p2
3

−16 a′ i
(
d − 2

p2
1

− 2

p2
3

)

(101)

which leads to the constraint

α3 = i a′ 27− d
2 (d − 1) sin

(
πd
2

)

π(d − 4)�
( d

2 + 1
) . (102)

The other secondary equations don’t impose any other con-
straints. We insert such conditions into our solution and use
the following property of the 3K integral

I d
2 +1{ d2 −1, d2 , d2 −1} = p2

2 I d
2 +1{ d2 −1, d2 −2, d2 −1}

+(d − 2)I d
2 { d2 −1, d2 −1, d2 −1} (103)

in order to arrive to the following expression in d = 4 + ε

Ã = 0,

A = 24 i a′ p2
2 I3{1,0,1} + 8 i a′ε I2+ ε

2 {1+ ε
2 ,1+ ε

2 ,1+ ε
2 }. (104)

Note that we are keeping the second term of A because the
3K integral has a pole in ε. In the end we have

〈 jμ1
5 (p1) j

μ2
5 (p2) j

μ3
5 (p3)〉 =

πμ1
α1

(p1) πμ2
α2

(p2) πμ3
α3

(p3) 24 i a′×
[(

I3{1,0,1} p2
2 + ε

3
I2+ ε

2 {1+ ε
2 ,1+ ε

2 ,1+ ε
2 }
)

ε p1α1α2α3

−
(
I3{0,1,1} p2

1 + ε

3
I2+ ε

2 {1+ ε
2 ,1+ ε

2 ,1+ ε
2 }
)

ε p2α1α2α3
]

. (105)

4.4 Connection with the 〈VV A〉 correlator

Recalling that a′ = a/3, our results are in accordance with
the formula

〈
jμ1
5 jμ2

5 jμ3
5

〉=1

3

(〈
jμ1
5 jμ2 jμ3

〉+ 〈 jμ1 jμ2
5 jμ3

〉+ 〈 jμ1 jμ2 jμ3
5

〉)

(106)

In order to prove such formula we use the relation

〈
jμ1 (p1) jμ2 (p2) jμ3

5 (p3)
〉 = π

μ1
α1 (p1) π

μ2
α2 (p2) π

μ3
α3 (p3)

× 24 i a′ [I3{1,0,1} p2
2 ε p1α1α2α3 − I3{0,1,1} p2

1 ε p2α1α2α3
] .

(107)

At this stage, exchanging the second current with the third,
we have

〈 jμ1 (p1) j
μ2
5 (p2) j

μ3 (p3)〉 = πμ1
α1

(p1) πμ2
α2

(p2) πμ3
α3

(p3)

× 24 i a′ [−
(
p2

1 I3{0,1,1} + p2
3 I3{1,1,0}

)
ε p1α1α2α3

− p2
1 I3{0,1,1} ε p2α1α2α3 ,

]

(108)

while, exchanging the first current with the third one, we
obtain

〈
jμ1
5 (p1) j

μ2 (p2) j
μ3 (p3)

〉 = πμ1
α1

(p1) πμ2
α2

(p2) πμ3
α3

(p3)

× 24 i a′ [p2
2 I3{1,0,1} ε p1α1α2α3

+
(
p2

2 I3{1,0,1} + p2
3 I3{1,1,0}

)
ε p2α1α2α3

]

(109)

Summing the last three equations and using the following
identity of the 3K integrals

p2
1 I3{0,1,1}+p2

2 I3{1,0,1}+p2
3 I3{1,1,0} = −ε I2+ ε

2 {1+ ε
2 ,1+ ε

2 ,1+ ε
2 }

(110)

we arrive at Eq. (105).
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5 Comparison with other parameterizations

Having established the agreement between the perturbative
(lowest order) and the non-perturbative computation of the
correlator, we try to relate the result of the expansion intro-
duced in (12) with the two most popular parameterizations
of the same vertex.

As we have already mentioned in the introduction, the
original parameterization of the VV A was presented in [30].
Lorentz symmetry and parity fix the correlation function in
the form

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉 = B1(p1, p2)ε

p1μ1μ2μ3

+ B2(p1, p2)ε
p2μ1μ2μ3 + B3(p1, p2)ε

p1 p2μ1μ3 p1
μ2

+ B4(p1, p2)ε
p1 p2μ1μ3 pμ2

2 + B5(p1, p2)ε
p1 p2μ2μ3 pμ1

1

+ B6(p1, p2)ε
p1 p2μ2μ3 pμ1

2 , (111)

with B1 and B2 divergent by power counting. If we use a
diagrammatic evaluation of the correlator, the four invariant
amplitudes Bi for i ≥ 3 are given by explicit parametric
integrals [30]

B3(p1, p2) = −B6(p2, p1) = 16π2 I11(p1, p2),

B4(p1, p2) = −B5(p2, p1) = −16π2
[
I20(p1, p2)

− I10(p1, p2)

]
, (112)

where the general massive Ist integral is defined by

Ist (p1, p2) =
∫ 1

0
dw

∫ 1−w

0
dzws zt

[
z(1−z)p2

1

+w(1−w)p2
2+2wz(p1 · p2)−m2

]−1
. (113)

Both B1 and B2 can be rendered finite by imposing the Ward
identities on the two vector lines, giving

B1(p1, p2) = p1 · p2 B3(p1, p2) + p2
2 B4(p1, p2), (114)

B2(p1, p2) = p2
1 B5(p1, p2) + p1 · p2 B6(p1, p2), (115)

which allow to re-express the formally divergent amplitudes
in terms of the convergent ones. The Bose symmetry on the
two vector vertices is fulfilled thanks to the relations

B5 (p1, p2) = −B4 (p2, p1)

B6 (p1, p2) = −B3 (p2, p1) .
(116)

Using the conservation WIs for the vector currents, we obtain
the convergent expansion [39]

〈Jμ1 Jμ2 Jμ3
5 〉 = B3(p1 · p2ε

p1μ1μ2μ3 + pμ2
1 ε p1 p2μ1μ3)

+ B4(p2 · p2ε
p1μ1μ2μ3 + pμ2

2 ε p1 p2μ1μ3)

+ B5(p1 · p1ε
p2μ1μ2μ3 + pμ1

1 ε p1 p2μ2μ3)

+ B6(p1 · p2ε
p2μ1μ2μ3 + pμ1

2 ε p1 p2μ2μ3)

≡ B3 η
μ1μ2μ3
3 (p1, p2) + B4 η

μ1μ2μ3
4 (p1, p2)

+ B5 η
μ1μ2μ3
5 (p1, p2) + B6 η

μ1μ2μ3
6 (p1, p2),

(117)

where in the last step we have introduced four tensor struc-
tures that are mapped into one another under the Bose sym-
metry of the two vector lines. One can identifies six of them,
as indicated in Table 1, but two of them

η
μ1μ2μ3
1 (p1, p2) = pμ3

1 ε p1 p2μ1μ2 ,

η
μ1μ2μ3
2 (p1, p2) = pμ3

2 ε p1 p2μ1μ2 , (118)

are related by the Schouten relations to the other four,
η3, . . . η6. Indeed one has

η
μ1μ2μ3
1 (p1, p2) = η

μ1μ2μ3
3 (p1, p2) − η

μ1μ2μ3
5 (p1, p2),

(119)

η
μ1μ2μ3
2 (p1, p2) = η

μ1μ2μ3
4 (p1, p2) − η

μ1μ2μ3
6 (p1, p2).

(120)

The remaining tensor structures are inter-related by the Bose
symmetry

η
μ1μ2μ3
3 (p1, p2) = −η

μ2μ1μ3
6 (p2, p1)

η
μ1μ2μ3
4 (p1, p2) = −η

μ2μ1μ3
5 (p2, p1). (121)

The correct counting of the independent form factors/tensor
structures can be done only after we split each of them into
their symmetric and antisymmetric components

η
μ1μ2μ3
i = η

S μ1μ2μ3
i + η

A μ1μ2μ3
i

η
S/A μ1μ2μ3
i ≡ 1

2

(
η

μ1μ2μ3
i (p1, p2)

±η
μ2μ1μ3
i (p2, p1)

)

≡ η
± μ1μ2μ3
i (122)

with i ≥ 3, giving

η+
3 (p1, p2) = −η+

6 (p1, p2) η−
3 (p1, p2) = η−

6 (p1, p2)

(123)

η+
4 (p1, p2) = −η+

5 (p1, p2) η−
4 (p1, p2) = η−

5 (p1, p2).

(124)

where we omitted all the tensorial indices which are in the
order μ1 μ2 μ3. We can then re-express the correlator as

〈VV A〉 = B+
3 η+

3 + B−
3 η−

3 + B+
4 η+

4 + B−
4 η−

4 (125)

in terms of four tensor structures of definite symmetry times
4 independent form factors.
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Table 1 Tensor structures of odd parity in the expansion of the VV A
with conserved vector currents

η1 pμ3
1 ε p1 p2μ1μ2

η2 pμ3
2 ε p1 p2μ1μ2

η3 p1 · p2ε
p1μ1μ2μ3 + pμ2

1 ε p1 p2μ1μ3

η4 p2 · p2ε
p1μ1μ2μ3 + pμ2

2 ε p1 p2μ1μ3

η5 p1 · p1ε
p2μ1μ2μ3 + pμ1

1 ε p1 p2μ2μ3

η6 p1 · p2ε
p2μ1μ2μ3 + pμ1

2 ε p1 p2μ2μ3

5.1 L/T decomposition

An alternative parameterization of the VV A correlator,
which allows to set a direct comparison with the one that
we have introduced in the previous sections is given by [31]

〈Jμ1(p1)J
μ2(p2)J

μ3
5 (p3)〉

= 1

8π2

(
WLμ1μ2μ3 − WT μ1μ2μ3

)
(126)

where the longitudinal component is specified in Eq. (3),
while the transverse component is given by

WT μ1μ2μ3
(p1, p2, p

2
3)

= w
(+)
T

(
p2

1, p2
2, p2

3

)
t (+) μ1μ2μ3(p1, p2)

+ w
(−)
T

(
p2

1, p2
2, p2

3

)
t (−) μ1μ2μ3(p1, p2)

+ w̃
(−)
T

(
p2

1, p
2
2, p2

3

)
t̃ (−) μ1μ2μ3(p1, p2), (127)

This decomposition automatically account for all the sym-
metries of the correlator with the transverse tensors given
by

t(+) μ1μ2μ3(p1, p2) = pμ2
1 εμ1μ3 p1 p2 − pμ1

2 εμ2μ3 p1 p2

− (p1 · p2) εμ1μ2μ3(p1−p2)

+ p2
1 + p2

2 − p2
3

p2
3

(p1 + p2)μ3 εμ1μ2 p1 p2 ,

t(−) μ1μ2μ3(p1, p2) =

εμ1μ2 p1 p2

[

(p1 − p2)μ3 − p2
1 − p2

2

p2
3

(p1 + p2)μ3

]

t̃(−) μ1μ2μ3(p1, p2) = pμ2
1 εμ1μ3 p1 p2 + pμ1

2 εμ2μ3 p1 p2

− (p1 · p2) εμ1μ2μ3(p1+p2).

The map between the Rosenberg representation and the cur-
rent one is given by the relations

B3(p1, p2) = 1

8π2

[

wL − w̃
(−)
T − p2

1 + p2
2

p2
3

w
(+)
T

−2
p1 · p2 + p2

2

p2
3

w
(−)
T

]

, (128)

B4(p1, p2) = 1

8π2

[

wL + 2
p1 · p2

p2
3

w
(+)
T

+2
p1 · p2 + p2

1

k2 w
(−)
T

]

, (129)

and viceversa

wL(p2
1, p2

2, p
2
3) = 8π2

p2
3

[B1 − B2] (130)

or, after the imposition of the Ward identities in Eqs. (114,
115),

wL (p2
1, p2

2, p2
3) = 8π2

p2
3

[
(B3 − B6)p1 · p2 + B4 p2

2 − B5 p2
1

]
,

(131)

w
(+)
T (p2

1, p2
2, p2

3) = −4π2 (B3 − B4 + B5 − B6) , (132)

w
(−)
T (p2

1, p2
2, p2

3) = 4π2 (B4 + B5) , (133)

w̃
(−)
T (p2

1, p2
2, p2

3) = −4π2 (B3 + B4 + B5 + B6) , (134)

where Bi ≡ Bi (p1, p2). As already mentioned, (130) is a
special relation, since it shows that the pole is not affected
by Chern–Simons forms, telling us of the physical character
of this part of the interaction.

Also in this case, the counting of the form factor is four,
one for the longitudinal pole part and 3 for the transverse part.
Notice that all of them are either symmetric or antisymmetric
by construction.

wL(p2
1, p

2
2, p2

3) = wL(p2
2, p

2
1, p2

3)

w
(+)
T (p2

1, p
2
2, p2

3) = w
(+)
T (p2

2, p
2
1, p2

3)

w
(−)
T (p2

1, p
2
2, p2

3) = −w
(−)
T (p2

2, p
2
1, p2

3)

w̃
(−)
T (p2

1, p
2
2, p2

3) = −w̃
(−)
T (p2

2, p
2
1, p2

3). (135)

To relate this decomposition to our, we apply the transverse
projectors and obtain

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
WT μ1μ2μ3 (p1, p2, p3)

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

[(
w

(+)
T + w̃

(−)
T

)
pα2

3 εα1α3 p1 p2

− 2 w
(−)
T pα3

1 εα1α2 p1 p2

+ (w(+)
T − w̃

(−)
T

)
pα1

2 εα2α3 p1 p2 + (w(+)
T + w̃

(−)
T

)
(p1 · p2)

εα1α2α3 p1 − (w(+)
T − w̃

(−)
T

)
(p1 · p2)ε

α1α2α3 p2

]
, (136)

and by using the Schouten identities

πμ1
α1

πμ2
α2

πμ3
α3

(
pα1

2 ε p1 p2α2α3

)
= πμ1

α1
πμ2

α2
πμ3

α3

(
− (p2 · p1

)

ε p2α1α2α3 + p2
2 ε p1α1α2α3 + pα3

1 ε p1 p2α1α2

)
, (137)
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πμ1
α1

πμ2
α2

πμ3
α3

(
pα2

3 ε p1 p2α1α3

)
= πμ1

α1
πμ2

α2
πμ3

α3

(
− p2

1 ε p2α1α2α3

+ (p1 · p2
)
ε p1α1α2α3 − pα3

1 ε p1 p2α1α2

)
, (138)

we obtain

πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

(
WT μ1μ2μ3 (p1, p2, p3)

)

= πλ1
μ1

(p1)π
λ2
μ2

(p2)π
λ3
μ3

(p3)

{
− p2

1

(
w

(+)
T + w̃

(−)
T

)
ε p2α1α2α3

+ p2
2

(
w

(+)
T − w̃

(−)
T

)
ε p1α1α2α3 − 2

(
w̃

(−)
T + w

(−)
T

)
pα3

1 ε p1 p2α1α2

}
.

(139)

We then identify the form factors of our decomposition and
the current L/T one in the form

A1 = 1

4π2

(
w̃

(−)
T + w

(−)
T

)
,

A2 = − 1

8π2 p2
2

(
w

(+)
T − w̃

(−)
T

)
. (140)

Notice that A1 is antisymmetric in the exchange of the two
vector lines and counts for one independent form factor, while
A2 contains both symmetric and antisymmetric components
and counts as two. Combined with wL , we again find that our
form factors are four in the general case, before enforcing the
conformal WIs on the parameterization. One can check from
the solution of the special CWIs that this number is reduced
by one in both representations, since in this case

w̃
(−)
T = −w

(−)
T (141)

for the L/T one. In our case the form factor A1 vanishes

A1 = 0, (142)

and we are left with three form factors in both cases.
Proceeding in a similar manner, we can also map the

Rosenberg parametrization into the one we worked in. The
results are

A1 = B3 − B6

A2 = p2
2(B6 + B4).

(143)

6 Nonrenormalization theorems

In this section we establish a connection between the con-
formal solutions of correlators of mixed chirality and the
perturbative results previously derived for them in the chiral
limit of QCD. They take the form of non-renormalization
theorems, originally presented in [31].

They are a direct consequence of the fact that correlators
of currents of different chiralities vanish in such limit. Also
in this case one identifies constraints between wL , the pole
part, and combinations of transverse form factors, which are
not affected by radiative corrections.

From the perturbative picture, these theorems can be
understood quite easily at diagrammatic level. The reason
lays in the absence of explicit mass insertions in the pertur-
bative expansion of a 〈JL J JR〉 correlator, if computed in the
chiral limit. In this case, chirality flips on the fermion lines of
the the contour of the diagram in Fig. 1 are prohibited, and the
vector-like nature of the QCD interactions with the fermions
does the rest, guaranteeing the vanishing of the correlator.

As just mentioned, the theorems in [31] are derived from
the 〈JL J JR〉 vertex, where JL and JR are left and right chiral
currents

JL ≡ 1

2
(J − J5) , JR ≡ 1

2
(J + J5) (144)

while J is vector-like. The building block of 〈JL J JR〉 is the
J J J5 (or VV A) correlator. All the other diagrams, in the
chiral limit, such as the AVV or V AV or AAA, are trivially
related to the VV A due to the anticommuting property of γ5

and the symmetry constrain

AAA = 1

3
(AVV + V AV + VV A) (145)

as illustrated in Fig. 2. In perturbation theory, the anomaly
(a′) content of the AAA, for instance, can be determined on
the basis of symmetry, assuming an equal sharing (a/3) of the
anomaly for each external axial-vector line. The constraint
can be used as a starting point for moving the anomaly around
the vertices, by the inclusion of appropriate Chern–Simons
terms. In the Rosenberg representation [30] they amount to
shifts of the form factors B1 and B2 (see also the appendix).

In [31], the authors analyzed the 〈JL J JR〉 correlator

〈JL J JR〉 = 1

4

[
〈VVV 〉 − 〈AVV 〉 − 〈AV A〉 + 〈VV A〉

]
.

(146)

Using the charge conjugation invariance, they set the parity-
even contribution 〈VVV 〉 and 〈AV A〉 to zero. Alternatively,
we can assume the correlator is conformally invariant and
arrive to the same conclusion [20]. We start from this point.

Conformal invariance requires the abelian even-parity cor-
relator 〈J J J 〉 to be zero in any dimension. In order to show
that, first we impose the following conservation Ward iden-
tities

piμi 〈Jμ1(p1)J
μ2(p2)J

μ3(p3)〉 = 0, i = 1, 2, 3 (147)
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Therefore the correlator is purely transverse and can be
expressed as

〈
Jμ1 (p1) J

μ2 (p2) J
μ3 (p3)

〉 = πμ1
α1

(p1) πμ2
α2

(p2) πμ3
α3

(p3)

× [A1(p1, p2, p3) p
α1
2 pα2

3 pα3
1

+ A2(p1, p2, p3) δα1α2 pα3
1 + A2 (p3, p1, p2)

× δα1α3 pα2
3 +A2 (p2, p3, p1) δα2α3 pα1

2

]
.

(148)

The A1 form factor is completely antisymmetric for any per-
mutation of the momenta while the form factor A2 is anti-
symmetric under (p1 ↔ p2). We now consider the conformal
constraints on the form factors. The dilatation Ward identities
are

3∑

i=1

pi
∂A1

∂pi
− (d − 6) A1 = 0,

3∑

i=1

pi
∂A2

∂pi
− (d − 4) A2 = 0,

(149)

The primary special conformal Ward identities are

K12A1 = 0, K13A1 = 0,

K12A2 = 0, K13A2 = 2A1.
(150)

The solution to such equations can be written in terms of the
following 3K integrals

A1 = α1 J3{000}
A2 = α1 J2{001} + α2 J1{000}

(151)

The secondary special conformal Ward identities are

L3[A1(p1, p2, p3)] + 2R[A2(p1, p2, p3)

− A2(p3, p1, p2)] = 0

L1[A2(p2, p3, p1)] + 2p2
1 A2(p3, p1, p2)

− 2p2
1 A2(p1, p2, p3) = 0

(152)

where we defined the following operators

LN = p1

(
p2

1 + p2
2 − p2

3

) ∂

∂p1
+ 2p2

1 p2
∂

∂p2

+
[
(2d − 	1 − 2	2 + N ) p2

1 + (2	1 − d)
(
p2

3 − p2
2

)]

R = p1
∂

∂p1
− (2	1 − d)

(153)

Inserting our solution (151) into such equations, we arrive to
the conditions α1 = α2 = 0.

Since 〈AV A〉 is not anomalous, one can prove in the same
way that this correlator vanishes too. Therefore, we are left
with

〈JL J JR〉 = 1

4

(
〈VV A〉 − 〈AVV 〉

)
. (154)

The authors of [31] assumed that the 〈JL J JR〉 correlator is
simply a Chern–Simons term, in order to prove the nonrenor-
malization theorems. Using our conformal solution, we can
directly write the expression for the 〈JL J JR〉 correlator and
prove their statement. Indeed for the longitudinal part we can
write

〈VV A〉loc − 〈AVV 〉loc = −8 i a

[
pμ3

3

p2
3

ε p1 p2μ1μ2

− pμ1
1

p2
1

ε p1 p2μ2μ3

]
(155)

while for the transverse part, after contracting the projectors
in our solution, we have

〈VV A〉transv − 〈AVV 〉transv = 8 i a ε I2+ ε
2 ,{1+ ε

2 ,1+ ε
2 ,1+ ε

2 }

×
[
ε p2μ1μ2μ3 − pμ3

3

p2
3

ε p1 p2μ1μ2 + pμ1
1

p2
1

ε p1 p2μ2μ3

]

= −8 i a

[
ε p2μ1μ2μ3 − pμ3

3

p2
3

ε p1 p2μ1μ2 + pμ1
1

p2
1

ε p1 p2μ2μ3

]

(156)

where in the last row we used the explicit expression of the
3K integral. Adding the contributions together, we arrive to

〈JL J JR〉 = 〈VV A〉 − 〈AVV 〉 = −8 i a ε p2μ1μ2μ3 . (157)

which tells us that the 〈JL J JR〉 correlator is simply given by
a Chern–Simons term, as expected. Note that, proceeding in
a similar manner, one can prove Eq. (5) too.

Of course, one can also check that our conformal solution
directly satisfies the following nonrenormalization theorems,
originally derived in the chiral limit of perturbative QCD

0 =
{[

w
(+)
T + w

(−)
T

] (
q2

1 , q2
2 , (q1 + q2)

2
)

−
[
w

(+)
T + w

(−)
T

] (
(q1 + q2)

2 , q2
2 , q2

1

)}

pQCD

(158)

0 =
{[

w̃
(−)
T + w

(−)
T

] (
q2

1 , q2
2 , (q1 + q2)

2
)

+
[
w̃

(−)
T + w

(−)
T

] (
(q1 + q2)

2 , q2
2 , q2

1

)}

pQCD

(159)
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and

{[
w

(+)
T + w̃

(−)
T

] (
q2

1 , q2
2 , (q1 + q2)2

)

+
[
w

(+)
T + w̃

(−)
T

] (
(q1 + q2)2 , q2

2 , q2
1

)

− wL

(
(q1 + q2)2 , q2

2 , q2
1

)}

pQCD

= −
{

2(q2
2 + q1 · q2)

q2
1

w
(+)
T

(
(q1 + q2)2 , q2

2 , q2
1

)

− 2
q1 · q2

q2
1

w
(−)
T

(
(q1 + q2)2 , q2

2 , q2
1

)}

pQCD

(160)

7 Conclusions

In this work we have illustrated how the CWIs in momen-
tun space can be used to determine the structure of chiral
anomaly diagrams in an autonomous way respect to coordi-
nate space. This shows that anomalies in CFT can be treated
consistently in this specific framework, that allows to estab-
lish a link between such correlators and the ordinary per-
turbative amplitudes. Parity-odd correlators are important in
many physical context, and in this case we have shown how
the conformal properties of previous perturbative analysis,
performed in free field theory in the chiral limit, are the result
of conformal symmetry and of its constraints. Our derivation
does not rely on any Lagrangian realization.

The analysis of parity odd correlators, especially for 4-
point functions, is still under investigation, given its complex-
ity, and the inclusion of the anomaly content is for certainly
an interesting aspect that deserves a closer attention. It may
be possible in the future to consider mixed conformal/chiral
anomalies in the same framework. We hope to come back to
the investigation of these points in future work.
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Appendix A: Schouten identities

εμ1μ2μ3 p1 pκ
1 , εμ1μ2μ3 p2 pκ

1 , εμ1μ2 p1 p2 pμ3
1 pκ

1 ,

εμ1μ3 p1 p2 pμ2
3 pκ

1 , εμ2μ3 p1 p2 pμ1
2 pκ

1 ,

εμ1μ2μ3 p1 pκ
2 , εμ1μ2μ3 p2 pκ

2 , εμ1μ2 p1 p2 pμ3
1 pκ

2 ,

εμ1μ3 p1 p2 pμ2
3 pκ

2 , εμ2μ3 p1 p2 pμ1
2 pκ

2 ,

εμ2μ3 p1 p2δμ1κ , εμ1μ3 p1 p2δμ2κ , εμ1μ2 p1 p2δμ3κ ,

εκμ1μ2μ3 , εκμ1μ2 p1 pμ3
1 , εκμ1μ2 p2 pμ3

1 , εκμ1μ3 p1 pμ2
3 ,

εκμ1μ3 p2 pμ2
3 , εκμ2μ3 p1 pμ1

2 , εκμ2μ3 p2 pμ1
2 ,

εκμ1 p1 p2δμ2μ3 , εκμ1 p1 p2 pμ2
3 pμ3

1 , εκμ2 p1 p2δμ1μ3 ,

εκμ2 p1 p2 pμ1
2 pμ3

1 ,

εκμ3 p1 p2δμ1μ2 , εκμ3 p1 p2 pμ1
2 pμ2

3 . (161)

These tensor structures are not all independent, indeed we
are going to show what are the Schouten identites one has
to consider in order to find the minimal number of tensor
structures. The first two identites are

ε[μ2μ3κp1δμ1]α = 0, (162)

ε[μ2μ3κp2δμ1]α = 0, (163)

that can be contracted with p1α and p2α and taking the pro-
jectors in front we obtain the four tensor identities

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1κμ1μ3 p

μ2
3

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
− p2

1εκμ1μ2μ3

+ ε p1μ1μ2μ3 pκ
1 − ε p1κμ1μ2 p

μ3
1

)

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1κμ2μ3 p

μ1
2

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
1

2

(
p2

1 + p2
2 − p2

3

)

εκμ1μ2μ3 + ε p1κμ1μ2 p
μ3
1 + ε p1μ1μ2μ3 pκ

2

)

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p2κμ1μ3 p

μ2
3

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
1

2

(
p2

1 + p2
2 − p2

3

)

εκμ1μ2μ3 + ε p2μ1μ2μ3 pκ
1 − ε p2κμ1μ2 p

μ3
1

)

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p2κμ2μ3 p

μ1
2

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
− p2

2εκμ1μ2μ3
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+ ε p2κμ1μ2 p
μ3
1 + ε p2μ1μ2μ3 pκ

2

)
. (164)

Then, considering the identity

ε[μ2μ3 p1 p2δμ1]α = 0 (165)

and contracting with δκ
α , p1α and p2α we find

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2μ1μ3 p

μ2
3

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
− p2

1 + p2
2 − p2

3
2

ε p1μ1μ2μ3 − p2
1ε p2μ1μ2μ3 − ε p1 p2μ1μ2 p

μ3
1

)

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2μ2μ3 p

μ1
2

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
p2

1 + p2
2 − p2

3
2

ε p2μ1μ2μ3 + p2
2ε p1μ1μ2μ3 + ε p1 p2μ1μ2 p

μ3
1

)

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2μ1μ2 δκμ3

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
− ε p2μ1μ2μ3 pκ

1

+ ε p1μ1μ2μ3 pκ
2 − ε p1 p2μ2μ3δκμ1 + ε p1 p2μ1μ3δκμ2

)
. (166)

Furthermore, we need to consider the identity

ε[μ2κp1 p2δμ1]α = 0 (167)

that once it is contracted with p1α and p2α we have

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2κμ1 p

μ2
3

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
1

2

(
p2

1 + p2
2 − p2

3

)

ε p1κμ1μ2 + p2
1ε p2κμ1μ2 + ε p1 p2μ1μ2 pκ

1

)
,

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2κμ2 p

μ1
2

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
− 1

2

(
p2

1 + p2
2 − p2

3

)

ε p2κμ1μ2 − p2
2ε p1κμ1μ2 + ε p1 p2μ1μ2 pκ

2

)
, (168)

and it is worth mentioning that the possible contraction with
δ
μ3
α give again an identity that is not independent taking in

consideration the previous tensor identities found.
Finally, we have

ε[κμ3 p1 p2δμ1]μ2 = 0, (169)

ε[κμ3 p1 p2δμ2]μ1 = 0, (170)

giving

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2μ1μ3δμ2κ

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p2κμ1μ3 p

μ2
3

+ ε p1 p2κμ3δμ1μ2 − ε p1 p2κμ1δμ2μ3

)
,

π
λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1 p2μ2μ3δμ1κ

)
= π

λ1
μ1π

λ2
μ2π

λ3
μ3

(
ε p1κμ2μ3 p

μ1
2

+ ε p1 p2κμ3δμ1μ2 − ε p1 p2κμ2 δμ1μ3

)
, (171)

and the two identities

ε[κμ3 p1 p2 pμ1]
2 = 0, (172)

ε[κμ3 p1 p2 pμ2]
1 = 0, (173)

giving the only independent symmetric constraint

πλ1
μ1

πλ2
μ2

πλ3
μ3

(
ε p1 p2κμ3 pμ1

2 pμ2
3

)

= πλ1
μ1

πλ2
μ2

πλ3
μ3

{
1

2

[
− 1

2

(
p2

1 + p2
2 − p2

3

)
ε p1κμ2μ3 pμ1

2

− p2
1ε p2κμ2μ3 pμ1

2 − ε p1 p2μ2μ3 pκ
1 p

μ1
2 − ε p1 p2κμ2 pμ3

1 pμ1
2

− 1

2

(
p2

1 + p2
2 − p2

3

)
ε p2κμ1μ3 pμ2

3 − p2
2ε p1κμ1μ3 pμ2

3

+ ε p1 p2μ1μ3 pκ
2 p

μ2
3 − ε p1 p2κμ1 pμ3

1 pμ2
3

]}
. (174)

In summary, from the analysis above, we conclude that the
minimal number of tensor structures to describe Xκμ1μ2μ3 in
(25) is twelve and in particular we have

π
λ1
μ1 (p1)π

λ2
μ2 (p2)π

λ3
μ3 (p3)

(
Kκ 〈 jμ1 (p1) jμ2 (p2) j

μ3
5 (p3)〉

)
=

= π
λ1
μ1 (p1)π

λ2
μ2 (p2)π

λ3
μ3 (p3)

[
pκ

1

(
C11 εμ1μ2μ3 p1

+ C12 εμ1μ2μ3 p2 + C13 εμ1μ2 p1 p2 p
μ3
1

)

+ pκ
2

(
C21 εμ1μ2μ3 p1 + C22 εμ1μ2μ3 p2 + C23 εμ1μ2 p1 p2 p

μ3
1

)

+ C31εκμ1μ2μ3 + C32εκμ1μ2 p1 p
μ3
1

+ C33εκμ1μ2 p2 p
μ3
1 + C34εκμ1 p1 p2δμ2μ3 + C35εκμ2 p1 p2 δμ1μ3

+ C36εκμ3 p1 p2 δμ1μ2

]
. (175)

Appendix B: Discontinuities in 3-point functions

The presence of a sum rule related to the anomaly is con-
nected with the behaviour of the spectral density for the tri-
angle diagram and its scalar 3-point function C0

C0(k
2,m2) = 1

iπ2

∫
d4l

(l2−m2)((l−k)2−m2)(l−p)2−m2

(176)

with the spectral density

ρ(k2,m2) = 1

2i
Disc C0(k

2,m2) , (177)
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computed from its discontinuity with the usual iε prescrip-
tion (ε > 0)

Disc C0(k
2,m2) ≡ C0(k

2 + iε,m2)−C0(k
2 − iε,m2). (178)

We can use the unitarity cutting rules to compute it

Disc C0(k
2,m2)

= 1

iπ2

∫
d4l

2π iδ+(l2 − m2)2π iδ+((l − k)2 − m2)

(l − p)2 − m2 + iε

= 2π

ik2 log

(
1 +√τ(k2,m2)

1 −√τ(k2,m2)

)

θ(k2 − 4m2), (179)

where τ(k2,m2) = √1 − 4m2/k2. An alternative computa-
tion is to derive the discontinuity from the general expression
of C0(k2,m2)

C0(k
2 ± iε,m2)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2k2 log2

√
τ(k2,m2)+1√
τ(k2,m2)−1

for k2 < 0,

− 2
k2 arctan2 1√

−τ(k2,m2)
for 0 < k2 < 4m2,

1
2k2

(
log 1+

√
τ(k2,m2)

1−
√

τ(k2,m2)
∓ i π

)2

for k2 > 4m2.

(180)

From the two branches encountered with the ±iε prescrip-
tions, the discontinuity is then present only for k2 > 4m2

and agrees with Eq. (179). The dispersive representation of
C0(k2,m2) in this case is written as

C0(k
2,m2) = 1

π

∫ ∞

4m2
ds

ρ(s,m2)

s − k2 , (181)

with ρ(s,m2) given by Eqs. (177) and (179). The equation
above allows to reconstruct the scalar integral C0(k2,m2)

from its dispersive part. One can prove the sum rule in (4)
by direct integration of ρ. The area under the integral is con-
served and in the chiral limit ρ(s,m) → δ(s).

Appendix C: Chern–Simons terms

Introducing external gauge fields Bλ and Aμ, the effective
action for a chiral anomaly interaction, expressed in terms of
such external fields can be modifed by CS terms of the form

VCS ≡ i
∫

dx Aλ(x)Bν(x)F A
ρσ (x)ελνρσ . (182)

By a simple manipulation

VCS =
∫

dx dy dz i

(
∂

∂xα
− ∂

∂yα

)(∫
dk1

(2π)4

dk2

(2π)4

× e−i p1(x−z)−i p2(y−z)
)
Bλ(z)Aμ(x)Aν(y)ελμνα

= (−i)
∫

dx dy dz δ(x − z)δ(y − z)Bλ(z)

×
(

∂

∂xα
Aμ(x)Aν(y) − ∂

∂yα
Aν(y)Aμ(x)

)
ελμνα

= (−i)
∫

dx dy dz
∫

dk1 dp2

(2π)8 e−i p1(x−z)−i p2(y−z)Bλ(z)

×
(

∂

∂xα
Aμ(x)Aν(y) − ∂

∂yα
Aν(y)Aμ(x)

)
ελμνα

=
∫

dx dy dz
∫

dp1

(2π)4

dp2

(2π)4 e
−i p1(x−z)−i p2(y−z)

×ελμνα (kα
1 − kα

2 ) Bλ(z)Aμ(x)Aν(y) (183)

with

ελμνα (pα
1 − pα

2 ) (184)

identifying the CS vertex. If we proceed with a specific
momentum parameterization of the loop, in a given parame-
terization, we obtain

p1μWλμν(p1, p2) = a1ε
λναβ pα

1 p
β
2

p2νWλμν(p1, p2) = a2ε
λμαβ pα

2 p
β
1

p3 λWλμν(p1, p2) = a3ε
μναβ pα

1 p
β
2 , (185)

where

a1 = − i

8π2 a2 = − i

8π2 a3 = − i

4π2 . (186)

Notice that a1 = a2, as expected from the Bose symme-
try of the two V lines. It is also well known that the total
anomaly a1 + a2 + a3 ≡ an is regularization scheme inde-
pendent. We recall that a shift of the momentum in the inte-
grand (p → p + a) where a is the most general momentum
written in terms of the two independent external momenta of
the triangle diagram (a = α(p1 + p2)+β(p1 − p2)) induces
on 	 changes that appear only through a dependence on one
of the two parameters characterizing a, that is

Wλμν(β, p1, p2)=Wλμν(p1, p2)− i

4π2 βελμνσ (p1σ −p2σ ) .

(187)

We have introduced the notation Wλμν(β, p1, p2) to
denote the shifted 3-point function, while Wλμν(p1, p2)

denotes the original one, with a vanishing shift.

p1μWλμν(β ′, p1, p2) =
(
a1 − iβ ′

4π2

)
ελναβ pα

1 p
β
2 ,

p2νWλμν(β ′, p1, p2) =
(
a2 − iβ ′

4π2

)
ελμαβ pα

2 p
β
1 ,

kλWλμν(β ′, p1, p2) =
(
a3 + iβ ′

2π2

)
εμναβ pα

1 p
β
2 . (188)

123



  502 Page 20 of 20 Eur. Phys. J. C           (2023) 83:502 

References

1. H. Osborn, A.C. Petkou, Implications of conformal invariance in
field theories for general dimensions. Ann. Phys. 231, 311–362
(1994). arXiv:hep-th/9307010

2. J. Erdmenger, H. Osborn, Conserved currents and the energy
momentum tensor in conformally invariant theories for
general dimensions. Nucl. Phys. B 483, 431–474 (1997).
arXiv:hep-th/0103237

3. E.J. Schreier, Conformal symmetry and three-point functions.
Phys. Rev. D 3, 980–988 (1971)

4. J. Erlich, D.Z. Freedman, Conformal symmetry and the
chiral anomaly. Phys. Rev. D 55, 6522–6537 (1997).
arXiv:hep-th/9611133

5. S.L. Adler, W.A. Bardeen, Absence of higher order corrections in
the anomalous axial vector divergence equation. Phys. Rev. 182,
1517–1536 (1969)

6. A. Vainshtein, Perturbative and nonperturbative renormalization
of anomalous quark triangles. Phys. Lett. B 569, 187–193 (2003).
arXiv:hep-ph/0212231

7. R.J. Crewther, Nonperturbative evaluation of the anomalies in low-
energy theorems. Phys. Rev. Lett. 28, 1421 (1972)

8. D.J. Broadhurst, A.L. Kataev, Connections between deep inelas-
tic and annihilation processes at next to next-to-leading order and
beyond. Phys. Lett. B 315, 179–187 (1993). arXiv:hep-ph/9308274

9. G.T. Gabadadze, A.L. Kataev, On connection between coefficient
functions for deep inelastic and annihilation processes. JETP Lett.
61, 448–452 (1995). arXiv:hep-ph/9502384

10. G. Gabadadze, G. Tukhashvili, Holographic CBK relation. Phys.
Lett. B 782, 202–209 (2018). arXiv:1712.0992

11. F. Jegerlehner, O.V. Tarasov, Explicit results for the anomalous
three point function and non-renormalization theorems. Phys. Lett.
B 639, 299–306 (2006). arXiv:hep-ph/0510308

12. J. Mondejar, K. Melnikov, The VVA correlator at three loops
in perturbative QCD. Phys. Lett. B 718, 1364–1368 (2013).
arXiv:1210.0812

13. M. Giannotti, E. Mottola, The trace anomaly and massless scalar
degrees of freedom in gravity. Phys. Rev. D 79, 045014 (2009).
arXiv:0812.0351

14. R. Armillis, C. Corianò, L. Delle Rose, Anomaly poles as common
signatures of chiral and conformal anomalies. Phys. Lett. B 682,
322–327 (2009). arXiv:0909.4522

15. C. Corianò, A. Costantini, L. Delle Rose, M. Serino, Supercon-
formal sum rules and the spectral density flow of the composite
dilaton (ADD) multiplet in N = 1 theories. JHEP 06, 136 (2014).
arXiv:1402.6369

16. E. Mottola, A.V. Sadofyev, Chiral waves on the Fermi-Dirac Sea:
quantum superfluidity and the axial anomaly. Nucl. Phys. B 966,
115385 (2021). arXiv:1909.0197

17. E.J. Ferrer, V. de la Incera, Axion-polariton in the magnetic dual
chiral density wave phase of dense QCD. arXiv:2010.0231

18. M.N. Chernodub, Y. Ferreiros, A.G. Grushin, K. Landsteiner,
M.A.H. Vozmediano, Thermal transport, geometry, and anomalies.
Phys. Rep. 977, 1–58 (2022). arXiv:2110.0547

19. V. Arjona, M.N. Chernodub, M.A.H. Vozmediano, Fingerprints of
the conformal anomaly on the thermoelectric transport in Dirac
and Weyl semimetals: result from a Kubo formula. Phys. Rev. B
99, 235123 (2019). arXiv:1902.0235

20. A. Bzowski, P. McFadden, K. Skenderis, Implications of con-
formal invariance in momentum space. JHEP 03, 111 (2014).
arXiv:1304.7760

21. C. Corianò, M.M. Maglio, Exact correlators from conformal ward
identities in momentum space and the perturbative T J J vertex.
Nucl. Phys. B 938, 440–522 (2019). arXiv:1802.0767

22. C. Corianò, M.M. Maglio, The general 3-graviton vertex (T T T )
of conformal field theories in momentum space in d = 4. Nucl.
Phys. B 937, 56–134 (2018). arXiv:1808.1022

23. A. Bzowski, P. McFadden, K. Skenderis, Renormalised 3-point
functions of stress tensors and conserved currents in CFT. JHEP
11, 153 (2018). arXiv:1711.09105

24. A. Bzowski, P. McFadden, K. Skenderis, Renormalised CFT 3-
point functions of scalars, currents and stress tensors. JHEP 11,
159 (2018). arXiv:1805.12100

25. C. Coriano, L. Delle Rose, E. Mottola, M. Serino, Solving the
conformal constraints for scalar operators in momentum space and
the evaluation of feynman’s master integrals. JHEP 07, 011 (2013).
arXiv:1304.6944

26. S. Jain, R.R. John, Relation between parity-even and parity-odd
CFT correlation functions in three dimensions. JHEP 12, 067
(2021). arXiv:2107.00695

27. S. Jain, R.R. John, A. Mehta, A.A. Nizami, A. Suresh, Momentum
space parity-odd CFT 3-point functions. JHEP 08, 089 (2021).
arXiv:2101.11635

28. R. Marotta, K. Skenderis, M. Verma, Momentum space CFT cor-
relators of non-conserved spinning operators. arXiv:2212.13135

29. K. Nishikawa, Conformal bootstrap in momentum space without
large N. arXiv:2303.10534

30. L. Rosenberg, Electromagnetic interactions of neutrinos. Phys.
Rev. 129, 2786–2788 (1963)

31. M. Knecht, S. Peris, M. Perrottet, E. de Rafael, New nonrenormal-
ization theorems for anomalous three point functions. JHEP 03,
035 (2004). arXiv:hep-ph/0311100

32. A.D. Dolgov, V.I. Zakharov, On conservation of the axial current
in massless electrodynamics. Nucl. Phys. B 27, 525–540 (1971)

33. R. Armillis, C. Corianò, L. Delle Rose, Conformal anomalies and
the gravitational effective action: the T J J correlator for a Dirac
fermion. Phys. Rev. D 81, 085001 (2010). arXiv:0910.3381

34. C. Corianò, M.M. Maglio, D. Theofilopoulos, The conformal
anomaly action to fourth order (4T) in d = 4 in momentum space.
Eur. Phys. J. C 81(8), 740 (2021). arXiv:2103.1395

35. C. Corianò, M.M. Maglio, R. Tommasi, Four-point functions of
gravitons and conserved currents of CFT in momentum space: test-
ing the nonlocal action with the TTJJ. arXiv:2212.1277

36. R. Armillis, C. Corianò, M. Guzzi, Trilinear anomalous gauge inter-
actions from intersecting branes and the neutral currents sector.
JHEP 05, 015 (2008). arXiv:0711.3424

37. A. Bzowski, P. McFadden, K. Skenderis, Evaluation of conformal
integrals. JHEP 02, 068 (2016). arXiv:1511.0235

38. A. Bzowski, TripleK: a mathematica package for evaluating triple-
K integrals and conformal correlation functions. Comput. Phys.
Commun. 258, 107538 (2021). arXiv:2005.1084

39. R. Armillis, C. Corianò, L. Delle Rose, M. Guzzi, Anomalous U(1)
models in four and five dimensions and their anomaly poles. JHEP
12, 029 (2009). arXiv:0905.0865

123

http://arxiv.org/abs/hep-th/9307010
http://arxiv.org/abs/hep-th/0103237
http://arxiv.org/abs/hep-th/9611133
http://arxiv.org/abs/hep-ph/0212231
http://arxiv.org/abs/hep-ph/9308274
http://arxiv.org/abs/hep-ph/9502384
http://arxiv.org/abs/1712.0992
http://arxiv.org/abs/hep-ph/0510308
http://arxiv.org/abs/1210.0812
http://arxiv.org/abs/0812.0351
http://arxiv.org/abs/0909.4522
http://arxiv.org/abs/1402.6369
http://arxiv.org/abs/1909.0197
http://arxiv.org/abs/2010.0231
http://arxiv.org/abs/2110.0547
http://arxiv.org/abs/1902.0235
http://arxiv.org/abs/1304.7760
http://arxiv.org/abs/1802.0767
http://arxiv.org/abs/1808.1022
http://arxiv.org/abs/1711.09105
http://arxiv.org/abs/1805.12100
http://arxiv.org/abs/1304.6944
http://arxiv.org/abs/2107.00695
http://arxiv.org/abs/2101.11635
http://arxiv.org/abs/2212.13135
http://arxiv.org/abs/2303.10534
http://arxiv.org/abs/hep-ph/0311100
http://arxiv.org/abs/0910.3381
http://arxiv.org/abs/2103.1395
http://arxiv.org/abs/2212.1277
http://arxiv.org/abs/0711.3424
http://arxiv.org/abs/1511.0235
http://arxiv.org/abs/2005.1084
http://arxiv.org/abs/0905.0865

	Parity-odd 3-point functions from CFT in momentum space and the chiral anomaly
	Abstract 
	1 Introduction
	1.1 Conformal analysis in momentum space 
	1.2 Massless intermediate states in the anomaly: the pivot

	2 The conformal langleVVA rangle correlator
	2.1 Longitudinal/transverse decomposition
	2.2 Dilatation ward identities
	2.3 Special conformal ward identities
	2.4 Solutions of the CWIs

	3 Reducing the 3K integral in the solution
	3.1 Perturbative realization of the correlator

	4 The conformal langleAAA rangle correlator 
	4.1 Longitudinal/transverse decomposition
	4.2 Dilatation and special conformal ward identities
	4.3 Solutions of the CWIs
	4.4 Connection with the langleVVArangle correlator

	5 Comparison with other parameterizations
	5.1 L/T decomposition

	6 Nonrenormalization theorems
	7 Conclusions
	Acknowledgements
	Appendix A: Schouten identities
	Appendix B: Discontinuities in 3-point functions
	Appendix C: Chern–Simons terms
	References


