FERMILAB-SLIDES-21-008-SCD
. /,, .S. DEPARTMENT OF Ofﬂce Of
2= Fermilab (& ENERGY | sconco

Achieving Maintainable Cross-Platform Performance in the Particle-
in-Cell Accelerator Modeling Code Synergia using Kokkos

Qiming Lu, Eric G. Stern, Marc Paterno, James Amundson
SIAM CES21, March 5%, 2021

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of FERMILAB-SLIDES-21-008-SCD
Energy, Office of Science, Office of High Energy Physics.

Synergia
Particle Accelerator
Modeling Framework

« Beam dynamics simulation and modeling package for particle accelerators

— Beam optics from external fields
— Internal fields calculation (space charge with particle-in-cell)
— Beam-beam interactions, wakefield simulations, etc.

2% Fermilab

2 03/05/2021 Qiming Lu | SIAM CES21

Synergia Modeling Framework

C++ library with Python wrappers

— Most simulations are written in Python and import modules to perform the heavy
calculation. Main processing loop is in C++.

Uses MPI parallel processing to scale to large problems.

Runs on desktop/laptop, small/medium clusters, supercomputers.
— Small problems can be run on small systems (number of particles, size of accelerator, etc.)
— Code scales well for large problems on large systems.

2% Fermilab

3 03/05/2021 Qiming Lu | SIAM CES21

Synergia computational ingredients

X

pX X X X X X X
0 6.336E-03 -5.766E-04| 6.336E-03 »5766E-04_ 6.336E-03 -5.766E-04] 6.336E-03 -5. 766E-04_
Particle array -1.624E-03| 8.303E-05) -1.624E-03| 8.303E-05) -1.624E-03| 8.303E-05) -1.624E-03 8303E-05)
1.401E-03] -3.008E-04 1.401E-03] -3.008E-04 1.401E-03] -3.008E-04] 1.401E-03} -3.008E-04
Proc 0 Proc 1 Proc 2 Proc 3
External
paralel for D fep) | fep)] fep) | :
fields
Histogram | local p | local p | local p | local p |
parallel sum
Redundant field solve Z
parallel within each node to | VeV =p | V2V = P | V2y = P | VZy = P |
avoid communication, uses
FFTs l l l l Space
charge
parallel for | apply E | apply E | apply E | apply £ | calculation
with PIC

4 03/05/2021 Qiming Lu | SIAM CES21

2% Fermilab

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

New Challenges in the Era of Exascale Computing

The bulk of computing power at the new large facilities is heavily shifting towards
accelerators such as GPU or other co-processors

— Summit at OLCF: Power9 + Nvidia V100 GPU

— Frontier at OLCF: AMD EPYC CPU + AMD Radeon GPU

— Aurora at ALCF: Intel Xeon CPU + Intel Xe GPU

— Perimutter at NERSC: AMD EPYC CPU + NVidia A100 GPU

Along with emerging parallel programming models and tools, oftentimes locked-in to
specific hardware or platform

CUDA Intel oneAPI
OpenMP / OpenMP Target OpenACC

5 03/05/2021 Qiming Lu | SIAM CES21

2% Fermilab

New Challenges in the Era of Exascale Computing

The application needs to adapt and make use of the accelerators
— Shifting the paradigm from CPU centric parallelization to a hybrid of CPU and accelerator
parallelization

... and be portable
— Keep broad accessibility across computing platforms.
— Use “standard” languages and programming techniques as much as possible.
— Avoid architecture lock-in for code maintainability and execute-everywhere capability.

— Minimize architecture specific code and algorithms.
« a previous CUDA specific Synergia version was unmaintainable and rotted into uselessness

... with high performance!

— Portability is not an excuse for poor performance

o€ =
2 Fermilab
6 03/05/2021 Qiming Lu | SIAM CES21

Lkokkos

* https://kokkos.org
« Part of the Exascale Computing Project
« C++ library maintained as an open-source repository on Github.

« Shared memory programming model that supports architecture specific backends,
e.g., OpenMP or CUDA.

« Hardware agnostic: supports NVIDIA (now), AMD and Intel GPUs (promised)

* Provides abstractions for both parallel execution of code and data management
 Allows significant expressibility, particularly on GPUs

o€ =
2 Fermilab
03/05/2021 Qiming Lu | SIAM CES21

https://kokkos.org

Kokkos Data Storage

* Kokkos::View<T> is a generic multi-dimensional data container
— Allows the user to control “where” (memory spaces) the data resides,

— and “how” (memory layout) the data are stored
 E.g., Kokkos::View<double**, CudaSpace, LayoutLeft> is a 2d double array stored in
the CUDA device memory with column major (left) layout.

« Managing the bulk of particle data with Kokkos::View<>
— Resides in the device memory during its lifetime for fast accessing from computing kernels
— has a host mirror and gets synced manually when necessary
» For OpenMP threads backend, syncing between host and "device" has virtually no costs
— Uses column major for both CPU and GPU backends, optimal for
« CPU vectorization
+ GPU memory coalescing

o€ =
2 Fermilab
8 03/05/2021 Qiming Lu | SIAM CES21

Kokkos Parallel Dispatch

An example with drift propagation in Synergia with Kokkos

// simplified for demonstration ... * The same code can be compiled
KOKKOS_INLINE_FUNCTION and run on both CPU (OpenMP)
double drift_unit(double px, double t) and GPU (CUDA, or other

{ return px * t; } backends supported by Kokkos)
const size t N = ...}

View<double*[6]> p("particles", N); » 3 types of parallel dispatchers
double t = ...; serve as the building blocks for

more complicated algorithms
parallel_for()
parallel_reduce()
parallel_scan()

// fill p with some numbers ...

parallel for(N, [=](int i) {
p(i,2) += drift_unit(p(i,1), t);
p(i,2) += drift_unit(p(i,3), t);

3

o€ =
2 Fermilab
9 03/05/2021 Qiming Lu | SIAM CES21

SIMD Vectorization with Kokkos

« Very limited vectorization support from Kokkos

— Auto-vectorization with compiler directives, available with only Intel compilers in the
OpenMP backend

* Yet being able to use vectorization on CPU is crucial to the performance

« Synergia has implemented a portable SIMD primitive with explicit vector types to

work with Kokkos kernels

— C++ templated class for a range of SIMD vector types

— Uses Agner Fog’s vectorclass (https://github.com/vectorclass) for x86/64 SSE/AVX/AVX512
intrinsic/types

— Supports Quad Processing eXtension(QPX) for IBM Power CPUs

— Compatible with GPU kernels (by falling back to single width data types)

o€ =
2 Fermilab
10 03/05/2021 Qiming Lu | SIAM CES21

https://github.com/vectorclass

SIMD Vectorization with Kokkos

template<class T>

11

struct Vec :

{

}s

public VecExpr<Vec<T>, T>
T data;

KOKKOS_INLINE_FUNCTION
static constexpr int size();

KOKKOS_INLINE_FUNCTION
Vec(const double *p);

KOKKOS_INLINE_FUNCTION
void store(double *p);

KOKKOS_INLINE_FUNCTION
T & cal() { return data; }

KOKKOS_INLINE_FUNCTION
T cal() const { return data; }

template <typename E>

KOKKOS_INLINE_FUNCTION

Vec(VecExpr<E, T> const& vec)

: data(static_cast<E const&>(vec).cal()) { }

03/05/2021 Qiming Lu | SIAM CES21

The template class Vec<T> can be
instantiated with vector types that has basic
operators (+-*/, etc) overloaded

— SSE: Vec<Vec2d>

— AVX: Vec<Vecd4d>

— AVX512: Vec<Vec8d>

— On GPU itis just Vec<double>

VecExpr<E, T> is an expression template where
expressions are evaluated only as needed. It ...

— avoids the need for creating temporaries

— avoids the need for multiple loops in evaluating vectors

2% Fermilab

SIMD Vectorization with Kokkos

12

template<class T»>
KOKKOS_INLINE_ FUNCTION

T drift_unit(T px, double t)
{ return px * t; }

// Vecd4d is the avx type from vector class
using gsv = Vec<Vec4dd>;

parallel for(N, [=](int i) {
int idx = i * gsv::size();

gsv po(&p(idx,0));
gsv pl(&p(idx,1));

pO += drift_unit(pl, t);

po.store(&p(idx,0));
1

03/05/2021 Qiming Lu | SIAM CES21

The same drift method written in SIMD
primitive

drift_unit() is now a function template to
work with various vector types

Particle data is still a double array (as
opposed to a vector typed array)

— Extra load() and store() to construct and
writeback the vectors around the calculation

— Allows flexible control over whether to use
vector calculation (not all algorithms are
suitable for vectorization)

2% Fermilab

Performance Comparison of Unified Computing Kernels

13

Intel Xeon 6248

— 2x and 3.5x for SSE and AV X vectorization é §
E
9 s
Nvidia Volta V100 GPU 5.
o
— 84 SM /5120 CUDA cores 9
U 100
— Max throughput @ 2084.5 MP/s £ 355X
o

Throughputs of Quadrupole Propagation in Million Particles Per Second (MP/s
20 cores / 40 threads @ 3.90GHz turbo &P P pag (MP/s)

SSE4.2 / AVX/AVX2 | AVX512 90.69x
Max throughput @ 81.6 MP/s ’
81.8 MP/s for pure OpenMP implementation 1000

47.02x

1.97x

Using expression templates has nearly
doubled the throughputs on GPUs!

W oR U o N®Y

1x

NVidia Ampere A1 OO GPU CPU Vec<double> CPU Vec<SSE> CPU Vec<AVX> GPU double GPU Vec<double>
23.0 45.2 81.6 1080.7 2084.5
— Max throughputs @ 2876.8 MP/s MP/s MP/s MP/s MP/s MP/s
— ~40% increases vs V100
2% Fermilab

03/05/2021 Qiming Lu | SIAM CES21

Space Charge

B oA | oA X o X oA
Partlcle arra 6.33ﬂ| -5.766E-04_ 6.336E-03| -5.766E—04_ 6.336E-03) -5.766E-04_ 6.336E-03 -5. 7665—04_
y -1.624E-03| 8.303E-05) -1.624E-03| 8.303E-05) -1.624E-03| 8.303E-05) -1.624E-03 8.303E-05]
1.401E-03 -3.008E-04] 1.401! E—CGl -3.008E-04} 1.401E-03 -3.008E-04] 1.401E-03| -3.008E-04]
Charge
Histogram | local p | local p | local p | local p | - g'
deposit
parallel sum
Redundant field solve = Field
parallel within each node to | VeV = P | VZV =p | VZV =p | VZV =p | h solver
avoid communication, uses
FFTs l l l l
parallel for | apply E | apply E | apply E | apply E |

14 03/05/2021 Qiming Lu | SIAM CES21

2% Fermilab

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Sheet1

		x		p_x

		6.336E-03		-5.766E-04

		-1.624E-03		8.303E-05

		1.401E-03		-3.008E-04

		3.369E-03		-3.082E-04

		1.426E-03		-1.783E-04

&A	

Page &P	

Parallel Charge Deposit in Shared-memory

» Two approaches:

— Data duplication is often faster on the host, but too memory expensive on GPUs
— Atomics are faster on GPUs, but slow on the host

View<double**, LayoutLeft> p;
View<double***> grid;
ScatterView<double***3 sy(grid);

parallel for(N, [=](int i) {
auto access = sv.access();

auto [ix, iy, iz] = get_indices(
p(i,0), p(i,2), p(i,4));

access(ix, iy, iz) += charge;
access(ix+1, iy, iz) += charge;

s

contribute(grid, sv);

03/05/2021 Qiming Lu | SIAM CES21

Kokkos::ScatterView<> does duplication
on the host backend, and atomics on
GPUs

As of the latest Kokkos version (3.3.1),
ScatterView still has some performance
issues on OpenMP backend

Synergia has manually implemented the
data duplication histogram on the
OpenMP code path

2% Fermilab

Field Solver

« The 2D and 3D open boundary conditions space charge solver in Synergia uses
the convolution method to solve the field

* Needs a portable FFT method for the solver to be truly portable
— Provides unified FFT interfaces for 2d/3d R2C/C2R DFTs, 3d DST/DCT, etc.
— Handles device/host data movement, memory padding, and data alignments automatically
— Calls FFTW on host
— Calls CUFFT on CUDA backend
— Needs to be extended for AMD GPUs and Intel GPUs

o€ =
2 Fermilab
16 03/05/2021 Qiming Lu | SIAM CES21

Benchmark accelerator simulation results

* QOverall performance comparison o
iterations/second

— Real world particle accelerator 78.4x
simulations

— 4M particles, 3D space charge @

31.4x
100 4

64x64x128 grid size 2
1 or 8 AMD 32 core Opteron nodes % Zc
= 1071 -

» Power9 + Nvidia V100 GPUs
— 1-4 GPUs per node

=
x

i

— Similar to Summit nodes ng n g 58 8

Yo o oo Lo

oc og o> o>

Ve v o © O m©

[alS) s c2 <=

S o S o o0 <)

<z <g > >

~NO ©oQ

mH uN'ag
Je .
3¢ Fermilab

17 03/05/2021 Qiming Lu | SIAM CES21

Conclusion

* |tis possible to achieve portable performance with a unified codebase

— Shifts the burden of hardware specific implementations/optimizations to the third-party libraries and
people with expertise, so we can focus on the algorithms of our specific problems

— A portable and unified codebase is much more maintainable than multiple hardware specific code
branches

« Caveats
— Took a year of work to migrate the code from mostly OpenMP parallelization to Kokkos

— Even though the code can be hardware agnostic, doesn’t mean the developers should also ignore the
differences in underlying hardware — some algorithms and data structures are not suitable for GPUs
and the memory model, therefore needs to be redesigned

— Still some device-specific code was necessary

o€ =
2 Fermilab
18 03/05/2021 Qiming Lu | SIAM CES21

Acknowledgment

19

Synergia development was developed through the ScCiDAC-4 ComPASS
project funded by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research and Office of High
Energy Physics, Scientific Discovery through Advanced Computing
(SciDAC) program.

Work supported by the Fermi National Accelerator Laboratory, managed
and operated by Fermi Research Alliance, LLC under Contract No. DE-
ACO02-07CH11359 with the U.S. Department of Energy.

2% Fermilab
3/12/2021 Qiming Lu | SIAM CES21

	Slide Number 1
	Synergia �Particle Accelerator Modeling Framework
	Synergia Modeling Framework
	Synergia computational ingredients
	New Challenges in the Era of Exascale Computing
	New Challenges in the Era of Exascale Computing
	Slide Number 7
	Kokkos Data Storage
	Kokkos Parallel Dispatch
	SIMD Vectorization with Kokkos
	SIMD Vectorization with Kokkos
	SIMD Vectorization with Kokkos
	Performance Comparison of Unified Computing Kernels
	Space Charge
	Parallel Charge Deposit in Shared-memory
	Field Solver
	Benchmark accelerator simulation results
	Conclusion
	Acknowledgment

